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Abstract

In this paper, we deal with an optimal stopping problem whose objective

is to maximize the probability of selecting k out of the last ℓ success,

given a sequence of independent Bernoulli trials of length N, where k and

ℓ are predetermined integers satisfying 1 ≤ k ≤ ℓ < N . This problem

includes some odds problems as special cases, e.g., Bruss’ odds problem,

Bruss and Paindaveine’s problem of selecting the last ℓ successes, and

Tamaki’s multiplicative odds problem for stopping at any of the last

m successes. We show that an optimal stopping rule is obtained by

a threshold strategy. We also present the tight lower bound and an

asymptotic lower bound for the probability of win. Interestingly, our

asymptotic lower bound is attained by using a variation of the well-

known secretary problem, which is a special case of the odds problem.

Our approach is based on the application of Newton’s inequalities and

optimization technique, which gives a unified view to the previous works.
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1. Introduction

In this paper, we discuss a variation of the odds problem, which is an exten-

sion of Bruss’ odds problem discussed in [3] for the first time. LetX1, X2, . . . , XN

denote a sequence of independent Bernoulli random variables. If Xj = 1, we

say that the outcome of random variable Xj is a success. Otherwise (Xj = 0),

we say that the outcome of Xj is a failure. These random variables can be

regarded as results of an underlying discrete stochastic process. For example,

we can assume them to constitute the record process. This paper deals with

an optimal stopping problem of maximizing the probability of selecting k out

of the last ℓ successes where 1 ≤ k ≤ ℓ < N . More precisely, the problem may

be stated as follows.

We consider a game in which a player is given the digits (realization of

random variables) one by one and allowed to select the index of the variable

when he observes a success. The number of selected indices of variables must

be less than or equal to k. The player wins if he selected exactly k indices of

variables contained in the set of last ℓ successes. For example, consider the

case with N = 8, k = 3 and ℓ = 4. When (X1, X2, . . . , X8) has a vector

of realized values (0, 1, 1, 0, 0, 1, 1, 1), the player wins if he selected exactly 3

indices of variables in the set {X3, X6, X7, X8}. We deal with a problem of

maximizing a probability of win. It is easy to see that the player wins if

and only if the first selected variable is in {X3, X6} by simply enumerating

following k = 3 successes. Under this strategy, the player wins if the set of

selected indices is corresponding to either {X3, X6, X7} or {X6, X7, X8}. Thus,

the player only need to observe the sequence with an objective to correctly

This work was partially supported by the Grant-in-Aid for Scientific Research 26285045

and 26242027 of Japan Society for the Promotion of Science.
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predict the occurrence of the m-th last success satisfying k ≤ m ≤ ℓ. From

the above, the problem becomes a “single” stopping problem of maximizing

the probability of stopping on a random variable Xm satisfying Xm = 1 and

ℓ ≥ Xm +Xm+1 + · · ·+XN ≥ k. We present an optimal stopping rule and an

asymptotic lower bound for the probability of “win” (i.e., obtaining m-th last

success with k ≤ m ≤ ℓ).

Table 1: Previous results and our results.

model condition lower bound key inequality (⋆)

Bruss [3] ℓ = k = 1 e−1 [4]

ri+ri+1+···+rN
1

= e1(r)
e0(r) < 1

[3]

B&P(♢) [5] ℓ = k ≥ 1
ℓℓ

(ℓ!)eℓ
(*)

eℓ(r)

eℓ−1(r)
< 1 [5]

Tamaki [13] ℓ ≥ k = 1 exp

(
−(ℓ!)

1
ℓ

) ℓ∑
m=1

(ℓ!)
m
ℓ

m!
[10]

eℓ(r)

e0(r)
< 1 [13]

this paper ℓ ≥ k ≥ 1 (‡) see below (*)
eℓ(r)

ek−1(r)
< 1 (*)

♢ Bruss and Paindaveine.

‡ exp

(
−
(

ℓ!
(k−1)!

) 1
ℓ−k+1

)∑ℓ
m=k

(
1
m!

(
ℓ!

(k−1)!

) m
ℓ−k+1

)
.

* Results obtained in this paper.

⋆ An optimal stopping rule is attained by the threshold strategy defined by the

minimum index i satisfying the key inequality in the last column (see (2) for

detail) where r = (ri, ri+1, . . . , rN ) and other notations are defined by (1).

When Pr[Xi = 1] = 1/i, our problem gives a variation of the secretary

problems. Especially, in the case that ℓ = k = 1, the problem is equivalent to

the classical secretary problem. One of the reason why the odds problems are

popular in the optimal stopping theory is that it includes the secretary problem

as a special case.

Although our problem setting looks artificial, it includes some odds problems
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as special cases (see Table 1). When ℓ = k = 1, the problem is equivalent

to the well-known Bruss’ odds problem [3], which has an elegant and simple

optimal stopping rule known as the Odds theorem or Sum-the-Odds theorem. A

typical lower bound for an asymptotic optimal value (the probability of win),

when N approaches infinity, has been shown to be e−1 by Bruss [4], which

is equal to that for the classical secretary problem. If ℓ = k ≥ 1, Bruss

and Paindaveine [5] showed that an optimal stopping rule is obtained by a

threshold strategy. When ℓ ≥ k = 1, Tamaki [13] demonstrated the Sum-the-

Multiplicative-Odds theorem, which gives an optimal stopping rule obtained

using a threshold strategy. Recently, we discussed his model and showed a

lower bound for the probability of win [10]. Bruss and Paindaveine [5] and

Tamaki [13] also discussed the corresponding secretary problem and derived

asymptotic optimal values. The related problem of the distribution of the rank

of the accepted candidate has been studied by Bartoszyński [1] and of the last

record rank before the last acceptance by Bruss [2].

In this paper, we describe an optimal stopping rule and derive the greatest

lower bound for the probability of win for the the problem of selecting k out of

the last ℓ success. The asymptotic value of our lower bound is equivalent to the

asymptotic optimal value for the corresponding secretary problem appearing

in Bruss [4], Bruss and Paindaveine [5], and Tamaki [13]. A special feature

of our proof is the application of Newton’s inequalities [11] and optimization

technique to obtain our bound.

2. Elementary Symmetric Polynomials

For any pair of positive integers m,N satisfying 1 ≤ m ≤ N and a vector

r ∈ RN , em(r) denotes the m-th elementary symmetric polynomial (function)
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of r = (r1, r2, . . . , rN ) defined by

em(r) =
∑

1≤i1<i2<···<im≤N

ri1ri2 · · · rim =
∑

B ⊆ {1, 2, . . . , N}

and |B| = m

∏
i∈B

ri, (1)

which is the sum of

(
N

m

)
terms. We also define that e0(r) = 1. The m-th

elementary symmetric mean of r is defined by

Sm(r) =
em(r)(

N

m

) (∀m ∈ {1, 2, . . . , N}) and S0(r) = 1.

We abbreviate Sm(r) to Sm, when there is no ambiguity. The elementary

symmetric polynomials satisfy the following inequalities shown by Newton.

Theorem 2.1. (Newton’s inequalities [11]) For every non-negative vector r ∈ RN
+

and a positive integer 1 ≤ m < N ,

Sm(r)2 ≥ Sm−1(r)Sm+1(r),

with equality exactly when all the ri are equal.

Newton’s inequalities directly imply the following.

Lemma 1. For any positive vector r̃ = (r̃1, r̃2, . . . , r̃N ) > 0 and integers (m, ℓ)

satisfying 1 ≤ m ≤ ℓ ≤ N , the inequality
eℓ−1(r̃)

em−1(r̃)
≥ eℓ(r̃)

em(r̃)
holds.

Proof. The positivity of r̃ implies that Sm′(r̃) > 0 (0 ≤ ∀m′ ≤ N).

Newton’s inequalities is equivalent to the midpoint log-concavity log(Sm′) ≥

(1/2)(log(Sm′−1) + log(Sm′+1)), which directly yields the concavity of the se-

quence (log(S0), log(S1), log(S2), . . . , log(SN )) and the following inequalities:

log(Sm) + log(Sℓ−1)

2
≥ log(Sm−1) + log(Sℓ)

2
,

SmSℓ−1 ≥ Sm−1Sℓ,(
N

m− 1

)
eℓ−1(r̃)(

N

ℓ− 1

)
em−1(r̃)

=
Sℓ−1

Sm−1
≥ Sℓ

Sm
=

(
N

m

)
eℓ(r̃)(

N

ℓ

)
em(r̃)

,

eℓ−1(r̃)

em−1(r̃)
≥

(
N −m+ 1

N − ℓ+ 1

)(
ℓ

m

)
eℓ(r̃)

em(r̃)
≥ eℓ(r̃)

em(r̃)
.
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■

Lemma 2. For any positive vector r̃ = (r̃1, r̃2, . . . , r̃N ) > 0 and integers (m, ℓ,N)

satisfying 0 ≤ m ≤ ℓ < N and N ≥ 2, the inequality
eℓ(r̃)

em(r̃)
≥ eℓ(r̃−1)

em(r̃−1)
holds,

where r̃−1 = (r̃2, . . . , r̃N ).

Proof. When m = 0, it is obvious from the positivity of r̃. Let us consider

cases that m ≥ 1. If we apply Lemma 1 to the positive vector r̃−1, then we

obtain the inequality
eℓ−1(r̃−1)

em−1(r̃−1)
≥ eℓ(r̃−1)

em(r̃−1)
, which directly implies that

eℓ(r̃)

em(r̃)
=

r̃1 eℓ−1(r̃−1) + eℓ(r̃−1)

r̃1 em−1(r̃−1) + em(r̃−1)
≥ eℓ(r̃−1)

em(r̃−1)
. ■

3. Threshold Strategy

We deal with a sequence of independent 0/1 random variablesX1, X2, . . . , XN ,

where N is a given positive integer and the distribution is Pr[Xi = 1] =

pi, Pr[Xi = 0] = 1 − pi = qi, 0 < pi < 1 for each i. We define ri = pi/qi

for each i. The ri’s are called odds. Given a pair of integers (k, ℓ) satisfying

1 ≤ k ≤ ℓ < N , we discuss a problem to predict the m-th last success satisfying

k ≤ m ≤ ℓ, if any, with maximum probability at the time of its occurrence.

In the rest of this section, we denote the subvector (ri, ri+1, . . . , rN ) by r[i]

and introduce the notations:

Wi
def.
= Pr[k ≤ Xi+1 + · · ·+XN ≤ ℓ] =

ℓ∑
m=k

em(r[i+1])∏N
j=i+1(1 + rj)

, and

Vi
def.
= Pr[k ≤ Xi + · · ·+XN ≤ ℓ | Xi = 1] =

ℓ−1∑
m=k−1

em(r[i+1])

∏N
j=i+1(1 + rj)

.

We define an index i∗ by

i∗
def.
= min

{
i

∣∣∣∣1 ≤ i ≤ N − ℓ and
eℓ(r

[i+1])

ek−1(r[i+1])
< 1

}
. (2)
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When the minimum in (2) is taken on the empty set, we put i∗
def.
= N − ℓ+ 1.

Now we give an optimal rule.

Theorem 3.1. Let us consider the problem of stopping at m-th last success

with k ≤ m ≤ ℓ defined on X1, X2, . . . , XN satisfying ri > 0 (∀i) and 1 ≤ k ≤

ℓ < N . An optimal stopping rule is obtained by stopping at the first success

Xi = 1 with i ≥ i∗, and the corresponding probability of win is equal to Wi∗−1.

Proof. First, we show a property of the ratio Wi/Vi. The definition of i∗ and

Lemma 2 directly induce the following,

eℓ(r
[i+1])

ek−1(r[i+1])

 ≥ 1 (0 ≤ ∀i ≤ i∗ − 1),

< 1 (i∗ ≤ ∀i ≤ N − ℓ).
(3)

The definitions of Wi and Vi imply

Wi

Vi
=

ℓ∑
m=k

em(r[i+1])

N∏
j=i+1

(1 + rj)

·

N∏
j=i+1

(1 + rj)

ℓ−1∑
m=k−1

em(r[i+1])

=

ℓ−1∑
m=k

em(r[i+1]) + eℓ(r
[i+1])

ℓ−1∑
m=k

em(r[i+1]) + ek−1(r
[i+1])

(4)

and thus we have the following inequality,

Wi

Vi

 ≥ 1 (0 ≤ ∀i ≤ i∗ − 1),

< 1 (i∗ ≤ ∀i ≤ N − ℓ).
(5)

From property (5), our problem becomes a monotone stopping problem and

the one-stage look-ahead strategy gives an optimal stopping rule (see [6, 7, 8, 12]

for example). Thus, an optimal stopping rule is attained by the threshold

strategy with the threshold value

τ
def.
= min

{
i

∣∣∣∣1 ≤ i ≤ N − ℓ and
Wi

Vi
< 1

}
.

When the minimum in the above definition is taken on the empty set, we put

τ
def.
= N − ℓ+1. If we employ the optimal threshold strategy defined by τ , it is

also known that the corresponding probability of win is equal to Wτ−1.
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From equality (4), we have the property,

Wi

Vi
< 1 if and only if

eℓ(r
[i+1])

ek−1(r[i+1])
< 1

and thus i∗ = τ . As a result, an optimal stopping rule is obtained by the

threshold strategy with the threshold value i∗, which does not select any index

less than i∗ and selects the first variable Xi = 1 satisfying i∗ ≤ i. The

corresponding probability of win is equal to Wτ−1 = Wi∗−1. ■

4. Lower Bound

In this section, we discuss a lower bound for the probability of win under

the optimal stopping rule. First, we discuss a lemma which plays an important

role in this section.

Lemma 3. Every positive vector r̃ = (r̃1, r̃2, . . . , r̃N ) > 0 satisfies that

(Sk−1(r̃))
ℓ−m ≥ (Sm(r̃))ℓ−k+1(Sℓ(r̃))

k−1−m, ∀m ∈ {0, 1, 2, . . . , k − 1},(6)

(Sm(r̃))ℓ−k+1 ≥ (Sk−1(r̃))
ℓ−m(Sℓ(r̃))

m−k+1, ∀m ∈ {k, k + 1, . . . , ℓ}, (7)

(Sℓ(r̃))
m−k+1 ≥ (Sk−1(r̃))

m−ℓ(Sm(r̃))ℓ−k+1, ∀m ∈ {ℓ+ 1, . . . , N}. (8)

Proof. In the following, we abbreviate Sm(r̃) to Sm for simplicity. Newton’s

inequalities directly imply the concavity of the sequence (log(S0), . . . , log(SN ))

and thus we have the following inequalities:

log(Sk−1) ≥
(ℓ− k + 1) log(Sm) + (k − 1−m) log(Sℓ)

ℓ−m
, ∀m ∈ {0, 1, . . . , k − 1},

log(Sm) ≥ (ℓ−m) log(Sk−1) + (m− k + 1) log(Sℓ)

ℓ− k + 1
, ∀m ∈ {k, k + 1, . . . , ℓ},

log(Sℓ) ≥
(m− ℓ) log(Sk−1) + (ℓ− k + 1) log(Sm)

m− k + 1
, ∀m ∈ {ℓ+ 1, ℓ+ 2, . . . , N}.

Consequently, inequalities (6) (7) and (8) are obtained. ■

Theorem 4.1. Let us consider the problem of stopping at m-th last success

with k ≤ m ≤ ℓ defined on X1, X2, . . . , XN satisfying (1) ri > 0 (∀i), (2)

1 ≤ k ≤ ℓ < N , (3) 1 > eℓ(r̄)
ek−1(r̄) where r̄ = (rN−ℓ+1, rN−ℓ+2, . . . , rN ) ∈ Rℓ and



Compare the Ratio of Symmetric Polynomials of Odds to One and Stop 9

(4) eℓ(r)
ek−1(r) ≥ 1. Under the optimal stopping rule, the greatest lower bound for

the probability of win is equal to

ℓ∑
m=k

(
N

m

)
θm

(1 + θ)N
where θ =


(

N

k − 1

)
(

N

ℓ

)


1

ℓ−k+1

.

Proof. Since the optimal stopping rule defined by (2) is a threshold strat-

egy, the truncation of the subsequence X1, X2, . . . , Xi∗−1 does not affect the

probability of win. Thus, we only need to consider a case where

ek−1(r2, r3, . . . , rN )− eℓ(r2, r3, . . . , rN ) > 0 and (9)

ek−1(r1, r2, r3 . . . , rN )− eℓ(r1, r2, r3 . . . , rN ) ≤ 0. (10)

Under assumptions (9) and (10), the optimal stopping rule is obtained by

setting i∗ = 1, and the probability of win is equal to

W0 =

∑ℓ
m=k em(r)

(1 + r1)(1 + r2) · · · (1 + rN )
.

Thus, the greatest lower bound for the probability of win under the optimal

stopping rule is equal to the optimal value of an optimization problem,

P1 : min. Pwin(N)
def.
=

ℓ∑
m=k

em(r)

(1 + r1)(1 + r2) · · · (1 + rN )

s. t. 0 < ri (∀i ∈ {1, 2, . . . , N}),

ek−1(r−1)− eℓ(r−1) > 0,

ek−1(r)− eℓ(r) ≤ 0, (11)

where r−1 = (r2, r3, . . . , rN ).

We show that we only need to consider feasible solutions satisfying con-

straint (11) by equality. Let r′ be a feasible solution of P1 satisfying ek−1(r
′)−

eℓ(r
′) < 0. We introduce a function f(r) : [0, r′1] → R defined by

f(r) = ek−1(r, r
′
2, r

′
3, . . . , r

′
N )− eℓ(r, r

′
2, r

′
3, . . . , r

′
N ),
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which is obtained by fixing N − 1 variables {r′2, r′3, . . . , r′N}. The assumption

on r′ directly implies that

f(r′1) = ek−1(r
′)− eℓ(r

′) < 0 < ek−1(r
′
−1)− eℓ(r

′
−1) = f(0).

From the continuity of f(r), the mean-value theorem implies the existence of a

value r′′ ∈ (0, r′1) satisfying f(r′′) = 0. Obviously, (r′′, r′2, r
′
3, . . . , r

′
N ) is feasible

to P1. The objective function value P′
win(N) corresponding to r′ becomes

P′
win(N) =

ℓ∑
m=k

em(r′)

(1 + r′1)(1 + r′2) · · · (1 + r′N )
=

ℓ∑
m=k

(
em(r′−1) + r′1em−1(r

′
−1)

)
(1 + r′1)(1 + r′2) · · · (1 + r′N )

=

ℓ∑
m=k

(
em(r′−1)− em−1(r

′
−1) + (1 + r′1)em−1(r

′
−1)

)
(1 + r′1)(1 + r′2) · · · (1 + r′N )

=

(−1)
ek−1(r

′
−1)− eℓ(r

′
−1)

1 + r′1
+

ℓ∑
m=k

em−1(r
′
−1)

(1 + r′2) · · · (1 + r′N )
.

Since ek−1(r
′
−1) − eℓ(r

′
−1) > 0 and r′′ ∈ (0, r′1), the objective function value

of (r′′, r′2, r
′
3, . . . , r

′
N ) is strictly less than that of r′. As a result, we have shown

that if a solution r′ feasible to P1 satisfies ek−1(r
′) − eℓ(r

′) < 0, then there

exists a feasible solution r′′ satisfying ek−1(r
′′) − eℓ(r

′′) = 0 with a strictly

smaller objective value. Thus, we only need to consider a set of feasible solutions

of P1 satisfying ek−1(r)− eℓ(r) = 0.

Let r∗ be a feasible solution of P1 satisfying ek−1(r
∗) − eℓ(r

∗) = 0. Next,

we derive an upper bound and/or a lower bound for em(r∗). We introduce

the notations α
def.
=
(
(Sk−1)ℓ

(Sℓ)k−1

) 1

ℓ−k+1

and θ
def.
=
(

Sℓ

Sk−1

) 1

ℓ−k+1

, for simplicity. The

equality ek−1(r
∗)− eℓ(r

∗) = 0 directly implies

θ =

(
Sℓ

Sk−1

) 1

ℓ−k+1

=


(

N

k − 1

)
eℓ(r

∗)(
N

ℓ

)
ek−1(r∗)


1

ℓ−k+1

=


(

N

k − 1

)
(

N

ℓ

)


1

ℓ−k+1

.
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(i) Inequalities (6) imply that for any m ∈ {0, 1, 2, . . . , k − 1},

em(r∗) =

(
N

m

)
Sm ≤

(
N

m

)(
(Sk−1)

ℓ−m

(Sℓ)k−1−m

) 1

ℓ−k+1

=

(
N

m

)(
(Sk−1)

ℓ

(Sℓ)k−1
· (Sℓ)

m

(Sk−1)m

) 1

ℓ−k+1

=

(
N

m

)
α θm.

(ii) For each m ∈ {k, k + 1, . . . , ℓ}, inequalities (7) give a lower bound (not

upper bound):

em(r∗) =

(
N

m

)
Sm ≥

(
N

m

)(
(Sk−1)

ℓ−m(Sℓ)
m−k+1

) 1

ℓ−k+1

=

(
N

m

)(
(Sk−1)

ℓ

(Sℓ)k−1
· (Sℓ)

m

(Sk−1)m

) 1

ℓ−k+1

=

(
N

m

)
α θm.

(iii) Inequalities (8) imply that for any m ∈ {ℓ+ 1, ℓ+ 2, . . . , N},

em(r∗) =

(
N

m

)
Sm ≤

(
N

m

)(
(Sℓ)

m−k+1

(Sk−1)m−ℓ

) 1

ℓ−k+1

=

(
N

m

)(
(Sk−1)

ℓ

(Sℓ)k−1
· (Sℓ)

m

(Sk−1)m

) 1

ℓ−k+1

=

(
N

m

)
α θm.
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Then the objective function value P∗
win(N) corresponding to r∗ satisfies:

1

P∗
win(N)

=
(1 + r∗1)(1 + r∗2) · · · (1 + r∗N )

ℓ∑
m=k

em(r∗)

=

N∑
m=0

em(r∗)

ℓ∑
m=k

em(r∗)

=

k−1∑
m=0

em(r∗)

ℓ∑
m=k

em(r∗)

+

ℓ∑
m=k

em(r∗)

ℓ∑
m=k

em(r∗)

+

N∑
m=ℓ+1

em(r∗)

ℓ∑
m=k

em(r∗)

≤

k−1∑
m=0

(
N

m

)
α θm

ℓ∑
m=k

(
N

m

)
α θm

+ 1 +

N∑
m=ℓ+1

(
N

m

)
α θm

ℓ∑
m=k

(
N

m

)
α θm

=

α

N∑
m=0

(
N

m

)
θm

α

ℓ∑
m=k

(
N

m

)
θm

=
(1 + θ)N

ℓ∑
m=k

(
N

m

)
θm

and thus

P∗
win(N) ≥

ℓ∑
m=k

(
N

m

)
θm

(1 + θ)N
. (12)

Lastly, we discuss the tightness of the above lower bound. If we consider the

case where r̂1 = r̂2 = · · · = r̂N = θ, then we have that

ek−1(r̂)− eℓ(r̂) =

(
N

k − 1

)
θk−1 −

(
N

ℓ

)
θℓ

=

(
N

k − 1

)
(

N

k − 1

)
(

N

ℓ

)


k−1

ℓ−k+1

−
(

N

ℓ

)
(

N

k − 1

)
(

N

ℓ

)


ℓ

ℓ−k+1

=

(
N

k − 1

)1+ k−1

ℓ−k+1

(
N

ℓ

) k−1

ℓ−k+1

−

(
N

k − 1

) ℓ

ℓ−k+1

(
N

ℓ

)−1+ ℓ

ℓ−k+1

= 0.
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and

ek−1(r̂−1)− eℓ(r̂−1) =

(
N − 1

k − 1

)
θk−1 −

(
N − 1

ℓ

)
θℓ

=

(
N − k + 1

N

)(
N

k − 1

)
θk−1 −

(
N − ℓ

N

)(
N

ℓ

)
θℓ

=

(
N − k + 1

N

)
ek−1(r̂)−

(
N − ℓ

N

)
eℓ(r̂)

=

(
N − k + 1

N

)
ek−1(r̂)−

(
N − ℓ

N

)
ek−1(r̂) =

ℓ− k + 1

N
ek−1(r̂) > 0.

Thus, r̂ is feasible for P1 and the corresponding probability of win (under the

optimal stopping rule) attains the lower bound appearing in the right-hand side

of (12). From the above, r̂ is optimal for P1, which induces the tightness of

our lower bound. ■

Finally, we consider an asymptotic lower bound that is independent of N .

The greatest lower bound for the probability of win (under the optimal stopping

rule) is non-increasing with respect to N. Thus we discuss the case that N → ∞

and present a general lower bound.

Corollary 1. Under the assumptions in Theorem 4.1, the probability of win is

greater than

exp

(
−
(

ℓ!

(k − 1)!

) 1

ℓ−k+1

)
ℓ∑

m=k

(
1

m!

(
ℓ!

(k − 1)!

) m

ℓ−k+1

)
.

Proof. It is easy to see that

ℓ∑
m=k

(
N

m

)
θm

(1 + θ)N
≥ e−Nθ

ℓ∑
m=k

(
N

m

)
θm = exp

(
−
(

N

1

)
θ

) ℓ∑
m=k

(
N

m

)
θm.
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For each m ∈ {0, 1, . . . , N}, we can find an asymptotic value for

(
N

m

)
θm:

(
N

m

)
θm =

(
N

m

)
(

N

k − 1

)
(

N

ℓ

)


m

ℓ−k+1

=
N !

(N −m)!m!

(
ℓ!(N − ℓ)!

(k − 1)!(N − k + 1)!

) m

ℓ−k+1

=
1

m!

(
ℓ!

(k − 1)!

) m

ℓ−k+1 N !

(N −m)!Nm

(
(N − ℓ)!N ℓ−k+1

(N − k + 1)!

) m

ℓ−k+1

=
1

m!

(
ℓ!

(k − 1)!

) m

ℓ−k+1

(
1− 0

N

) (
1− 1

N

)
· · ·
(
1− m−1

N

)((
1− k−1

N

) (
1− k

N

)
· · ·
(
1− ℓ−1

N

)) m

ℓ−k+1

→ 1

m!

(
ℓ!

(k − 1)!

) m

ℓ−k+1

, as N → ∞.

From the above discussion, we obtain the asymptotic lower bound

lim
N→∞

ℓ∑
m=k

(
N

m

)
θm

(1 + θ)N
≥ lim

N→∞
exp

(
−
(

N

1

)
θ

) ℓ∑
m=k

(
N

m

)
θm

= exp

(
−
(

ℓ!

(k − 1)!

) 1

ℓ−k+1

)
ℓ∑

m=k

(
1

m!

(
ℓ!

(k − 1)!

) m

ℓ−k+1

)
.

■

5. Conclusion

In this paper, we consider an optimal stopping problem of maximizing the

probability of selecting k out of the last ℓ successes where 1 ≤ k ≤ ℓ < N .

Our results thus cover quite a general class of odds problems which include the

original Bruss’ odds problem [3], as well as the results of Bruss and Paindav-

eine [5] and Tamaki [13]. We showed that an optimal stopping rule is given by

a threshold strategy. We also gave a lower bound for the probability of win.

Our proofs are based on Newton’s inequalities and optimization technique.

Our general lower bound for the probability of win is attained by correspond-

ing odds problems and/or secretary problems:
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(1) e−1 (if ℓ = k = 1), which is a well-known bound for the classical secretary

problem and a lower bound for Bruss’ odds problem shown by Bruss [4],

(2)
ℓℓ

(ℓ!)eℓ
(if ℓ = k ≥ 1) shown by Bruss and Paindaveine [5] for the secretary

problem,

(3) exp

(
−(ℓ!)

1
ℓ

) ℓ∑
m=1

(ℓ!)
m
ℓ

m!
(if ℓ ≥ k = 1) shown by Tamaki [13] for the

secretary problem, and by Matsui and Ano [10] for a variation of the

odds problem proposed by Tamaki.
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