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for Calculating Shapley-Shubik Power Index
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Abstract

This paper addresses Monte Carlo algorithms for calculating the Shapley-Shubik
power index in weighted majority games. First, we analyze a naive Monte Carlo
algorithm and discuss the required number of samples. We then propose an efficient
Monte Carlo algorithm and show that our algorithm reduces the required number of
samples as compared to the naive algorithm.

1 Introduction

The analysis of power is a central issue in political science. In general, it is difficult to
define the idea of power even in restricted classes of the voting rules commonly considered
by political scientists. The use of game theory to study the distribution of power in voting
systems can be traced back to the invention of “simple games” by John von Neumann
and Oskar Morgenstern in their 1944 classic book titled Theory of Games and Economic
Behavior [28]. A simple game is an abstraction of the constitutional political machinery for
voting.

In 1954, Shapley and Shubik [25] proposed the specialization of the Shapley value [24]
to assess the a priori measure of power of each player in a simple game. Since then, the
Shapley-Shubik power index (S-S index) has become widely known as a mathematical tools
for measuring the relative power of the players in a simple game.

In this paper, we consider a special class of simple games, called weighted majority
games, which constitute a familiar example of voting systems. Let N be a set of players.
Each player i ∈ N has a positive integer voting weight wi as the number of votes or weight
of the player. The quota needed for a coalition to win is a positive integer q. A coalition
N ′ ⊆ N is a winning coalition, if

∑
i∈N ′ wi ≥ q holds; otherwise, it is a losing coalition.

The difficulty involved in calculating the S-S index in weighted majority games is de-
scribed in a book [11] by Garey and Johnson without proof (see p. 280, problem [MS8]).
Deng and Papadimitriou [8] showed the problem of computing the S-S index in weighted
majority games to be #P-complete. Prasad and Kelly [22] proved the NP-completeness
of the problem of verifying the positivity of a given player’s S-S index in weighted major-
ity games. The problem of verifying the asymmetricity of a given pair of players was also
shown to be NP-complete [19]. It is known that even approximating the S-S index within a
constant factor is intractable unless P = NP [9].

There are variations of methods for calculating the S-S index. These include algorithms
based on the Monte Carlo method [16, 18, 10, 6, 1, 7], multilinear extensions [20, 14], dynamic
programming [5, 15, 17, 18, 26], generating functions [3], binary decision diagrams [4], the
Karnaugh map [23], relation algebra [2], or the enumeration technique [13]. A survey of
algorithms for calculating power indices in weighted voting games is presented in [18].



This paper addresses Monte Carlo algorithms for calculating the S-S index in weighted
majority games. In the following section, we describe the notations and definitions used in
this paper. In Section 3, we analyze a naive Monte Carlo algorithm (Algorithm A1) and
extend some results obtained in the study reported in [1]. In Section 4, we propose an
efficient Monte Carlo algorithm (Algorithm A2) and show that our algorithm reduces the
required number of samples as compared to the naive algorithm. Table 1 summarizes the

results of this study, where (φ1, φ2, . . . , φn) denotes the S-S index and (φA1 , φA2 , . . . , φAn )
denotes the estimator obtained by Algorithm A1 or A2.

Table 1: Required Number of Samples.

Required number of samples
Property Algorithm A1 Algorithm A2

(naive algorithm) (our algorithm)

Pr
[∣∣∣φAi − φi

∣∣∣ < ε
]
≥ 1− δ

ln 2 + ln(1/δ)

2ε2
ln 2 + ln(1/δ)

2ε2

(
1

i2

)
(shown by Bachrach et al. [1]) (under Assumption 1)

Pr
[
∀i ∈ N,

∣∣∣φAi − φi

∣∣∣ < ε
]
≥ 1− δ

ln 2 + ln(1/δ) + lnn

2ε2
ln 2 + ln(1/δ) + ln 1.129

2ε2

Pr

[
1

2

∑
i∈N

∣∣∣φAi − φi

∣∣∣ < ε

]
≥ 1− δ.

n ln 2 + ln(1/δ)

2ε2
n′′ ln 2 + ln(1/δ)

2ε2

An integer n′′ denotes the size of a maximal player subset with mutually different weights.

2 Notations and Definitions

In this paper, we consider a special class of cooperative games called weighted major-
ity games. Let N = {1, 2, . . . , n} be a set of players. A subset of players is called
a coalition. A weighted majority game G is defined by a sequence of positive integers
G = [q;w1, w2, . . . , wn], where we may think of wi as the number of votes or the weight of
player i and q as the quota needed for a coalition to win. In this paper, we assume that
0 < q ≤ w1 + w2 + · · ·+ wn.

A coalition S ⊆ N is called a winning coalition when the inequality q ≤
∑

i∈S wi holds.
The inequality q ≤ w1 + w2 + · · · + wn implies that N is a winning coalition. A coalition
S is called a losing coalition if S is not winning. We define that an empty set is a losing
coalition.

Let π : {1, 2, . . . , n} → N be a permutation defined on the set of players N , which
provides a sequence of players (π(1), π(2), . . . , π(n)). We denote the set of all the permuta-
tions by ΠN . We say that the player π(i) ∈ N is the pivot of the permutation π ∈ ΠN , if
{π(1), π(2), . . . , π(i−1)} is a losing coalition and {π(1), π(2), . . . , π(i−1), π(i)} is a winning
coalition. For any permutation π ∈ ΠN , piv(π) ∈ N denotes the pivot of π. For each player
i ∈ N , we define Πi = {π ∈ ΠN | piv(π) = i}. Obviously, {Π1,Π2, . . . ,Πn} becomes a
partition of ΠN . The S-S index of player i, denoted by φi, is defined by |Πi|/n!. Clearly,
we have that 0 ≤ φi ≤ 1 (∀i ∈ N) and

∑
i∈N φi = 1.

Throughout this paper, we assume the following property.

Assumption 1 The set of players is arranged to satisfy w1 ≥ w2 ≥ · · · ≥ wn.



Clearly, this assumption implies that φ1 ≥ φ2 ≥ · · · ≥ φn.

3 Naive Algorithm and its Analysis

In this section, we describe a naive Monte Carlo algorithm and analyze its theoretical
performance.

Algorithm A1

Step 0: Set m := 1, φ′
i := 0 (∀i ∈ N).

Step 1: Choose π ∈ ΠN uniformly at random.
Put the random variable I(m) := piv(π).
Update φ′

I(m) := φ′
I(m) + 1.

Step 2: If m = M , then output φ′
i/M (∀i ∈ N) and stop.

Else, update m := m+ 1 and go to Step 1.

For each permutation π ∈ ΠN , we can find the pivot piv(π) ∈ N in O(n) time. Thus,
the time complexity of Algorithm A1 is bounded by O(M(τ(n) + n)) where τ(n) denotes
the computational effort required for random generation of a permutation.

We denote the vector (of random variables) obtained by Algorithm A1 by

(φA1
1 , φA1

2 , . . . , φA1
n ). The following theorem is obvious.

Theorem 1 For each player i ∈ N , E
[
φA1
i

]
= φi.

The following theorem provides the number of samples required in Algorithm A1.

Theorem 2 For any ε > 0 and 0 < δ < 1, we have the following.

(1) [1] If we set M ≥ ln 2 + ln(1/δ)

2ε2
, then each player i ∈ N satisfies that

Pr
[∣∣∣φA1

i − φi

∣∣∣ < ε
]
≥ 1− δ.

(2) If we set M ≥ ln 2 + ln(1/δ) + lnn

2ε2
, then

Pr
[
∀i ∈ N,

∣∣∣φA1
i − φi

∣∣∣ < ε
]
≥ 1− δ.

(3) If we set M ≥ n ln 2 + ln(1/δ)

2ε2
, then

Pr

[
1

2

∑
i∈N

∣∣∣φA1i − φi

∣∣∣ < ε

]
≥ 1− δ.

The distance measure 1
2

∑
i∈N

∣∣∣φA1
i − φi

∣∣∣ appearing in (3) is called the total variation dis-

tance.



4 Efficient Algorithm

In this section, we propose a new algorithm based on the hierarchical structure of the
partition {Π1,Π2, . . . ,Πn}. First, we introduce a map fi : Πi → ΠN for each i ∈ N \ {1}.
For any π ∈ Πi, fi(π) denotes a permutation obtained by swapping the positions of players
i and i−1 in the permutation (π(1), π(2), . . . , π(n)). Because wi−1 ≥ wi (Assumption 1), it
is easy to show that the pivot of fi(π) becomes the player i−1. The definition of fi directly
implies that ∀{π, π′} ⊆ Πi, if π ̸= π′, then fi(π) ̸= fi(π

′). Thus, we have the following.

Lemma 1 For any i ∈ N \ {1}, the map fi : Πi → Πi−1 is injective.

When an ordered pair of permutations (π, π′) satisfies the conditions that π ∈ Πi, π
′ ∈

Πj , i ≤ j, and π = fi−1 ◦ · · · ◦ fj−1 ◦ fj(π
′), we say that π′ is an ancestor of π. Here,

we note that π is always an ancestor of π itself. Lemma 1 implies that every permutation
π ∈ ΠN has a unique ancestor, called the originator, π′ ∈ Πj satisfying that either j = n
or its inverse image f−1

j+1(π
′) = ∅. For each permutation π ∈ ΠN , org(π) ∈ N denotes the

pivot of the originator of π; i.e., Πorg(π) includes the originator of π.
Now, we describe our algorithm.

Algorithm A2

Step 0: Set m := 1, φ′
i := 0 (∀i ∈ N).

Step 1: Choose π ∈ ΠN uniformly at random.
Put the random variable L(m) := org(π).

Update φ′
i :=

{
φ′
i + 1/L(m) (if 1 ≤ i ≤ L(m)),

φ′
i (if L(m) < i).

Step 2: If m = M , then output φ′
i/M (∀i ∈ N) and stop.

Else, update m := m+ 1 and go to Step 1.

For each permutation π ∈ ΠN , we can find the originator org(π) ∈ N in O(n) time.
Thus, the time complexity of Algorithm A2 is also bounded by O(M(τ(n)+n)) where τ(n)
denotes the computational effort required for random generation of a permutation.

We denote the vector (of random variables) obtained by Algorithm A2 by

(φA2
1 , φA2

2 , . . . , φA2
n ). The following theorem is obvious.

Theorem 3 (1) For each player i ∈ N , E
[
φA2
i

]
= φi.

(2) For each pair of players {i, j} ⊆ N , if φi > φj, then φA2
i ≥ φA2

j ,

(3) For each pair of players {i, j} ⊆ N , if φi = φj, then φA2
i = φA2

j .

The following theorem provides the number of samples required in Algorithm A2.

Theorem 4 For any ε > 0 and 0 < δ < 1, we have the following.

(1) For each player i ∈ N = {1, 2, . . . , n}, if we set M ≥ ln 2 + ln(1/δ)

2ε2i2
, then

Pr
[∣∣∣φA2i − φi

∣∣∣ < ε
]
≥ 1− δ.

(2) If we set M ≥ ln 2 + ln(1/δ)

2ε2
, then

Pr
[
∀i ∈ N,

∣∣∣φA2i − φi

∣∣∣ < ε
]
≥ 1−2

n∑
i=1

(
δ

2

)i2

= 1−2

((
δ

2

)
+

(
δ

2

)4

+

(
δ

2

)9

+ · · ·+
(
δ

2

)n2)
.



(3) If we set M ≥ |N∗| ln 2 + ln(1/δ)

2ε2
, then

Pr

[
1

2

∑
i∈N

∣∣∣φA2i − φi

∣∣∣ < ε

]
≥ 1− δ,

where N∗ = {i ∈ N \ {n} | φi > φi+1} ∪ {n}, i.e., |N∗| is equal to the size of the maximal
player subset, the S-S indices of which are mutually different.

The following corollary provides an approximate version of Theorem 4 (2). Surprisingly,
it says that the required number of samples is irrelevant to n (number of players).

Corollary 1 For any ε > 0 and 0 < δ′ < 1, we have the following. If we set

M ≥ ln 2 + ln(1/δ′) + ln 1.129

2ε2
, then

Pr
[
∀i ∈ N,

∣∣∣φA2i − φi

∣∣∣ < ε
]
≥ 1− δ′.

Here, we note that ln 2 ≃ 0.69314 and ln 1.129 ≃ 0.12133.
In a practical setting, it is difficult to estimate the size of N∗ defined in Theo-

rem 4 (3), since the problem of verifying the asymmetricity of a given pair of players is
NP-complete [19]. The following corollary is useful in some practical situations.

Corollary 2 For any ε > 0 and 0 < δ < 1, we have the following. If we set

M ≥ n′′ ln 2 + ln(1/δ)

2ε2
, then

Pr

[
1

2

∑
i∈N

∣∣∣φA2i − φi

∣∣∣ < ε

]
≥ 1− δ,

where n′′ = |{i ∈ N \ {n} | wi > wi+1} ∪ {n}|, i.e., n′′ is equal to the size of a maximal
player subset with mutually different weights.

The game of the power of the countries in the EU Council is defined by G =
[q; 10, 10, 10, 10, 8, 5, 5, 5, 5, 4, 4, 3, 3, 3, 2], where q = 62 or q = 65 [3]. In this case, n = 15
and n′′ = 6. A weighted majority game defined by Owen [21] for a voting process in United
States has a vector of weights

[270; 45, 41, 27, 26, 26, 25, 21, 17, 17, 14, 13, 13, 12, 12, 12, 11, 10, . . . , 10︸ ︷︷ ︸
4 times

, 9, . . . , 9︸ ︷︷ ︸
4 times

, 8, 8, 7, . . . , 7︸ ︷︷ ︸
4 times

,

6, . . . , 6︸ ︷︷ ︸
4 times

, 5, 4, . . . , 4︸ ︷︷ ︸
9 times

, 3, . . . , 3︸ ︷︷ ︸
7 times

], where n = 51 and n′′ = 19.

5 Conclusion

In this paper, we analyzed a naive Monte Carlo algorithm (Algorithm A1) for calculating
the S-S index denoted by (φ1, φ2, . . . , φn) in weighted majority games. By employing the
Bretagnolle-Huber-Carol inequality [27]. we estimated the required number of samples that
gives an upper bound of the total variation distance.

We also proposed an efficient Monte Carlo algorithm (Algorithm A2). The time complex-
ity of our algorithm is equal to that of the naive algorithm (Algorithm A1). Our algorithm

has the property that the obtained estimator (φA2
1 , φA2

2 , . . . , φA2
n ) satisfies

both [ if φi < φj then φA2
i ≤ φA2j ] and [ if φi = φj then φA2

i = φA2
j ].



We also proved that, even if we consider the property Pr
[
∀i ∈ N,

∣∣∣φA2
i − φi

∣∣∣ < ε
]
≥ 1− δ,

the required number of samples is irrelevant to n (the number of players).
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