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ABSTRACT
We propose a few-shot adaptation framework, which bridges zero-
shot learning and supervised many-shot learning, for semantic in-
dexing of image and video data. Few-shot adaptation provides ro-
bust parameter estimation with few training examples, by opti-
mizing the parameters of zero-shot learning and supervised many-
shot learning simultaneously. In this method, first we build a zero-
shot detector, and then update it by using the few examples. Our
experiments show the effectiveness of the proposed framework on
three datasets: TRECVID Semantic Indexing 2010, 2014, and Ima-
geNET. On the ImageNET dataset, we show that our method out-
performs recent few-shot learningmethods. On the TRECVID 2014
dataset, we achieve 15.19 % and 35.98 % in Mean Average Precision
under the zero-shot condition and the supervised condition, re-
spectively. To the best of our knowledge, these are the best results
on this dataset.

KEYWORDS
Semantic Indexing, Word Vectors, Zero-Shot Learning, Few-Shot
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1 INTRODUCTION
With advances in information technologies, the amount of multi-
media data such as video, image, audio, and text data has been in-
creasing rapidly. Detecting semantic concepts is known to be a fun-
damental technology to improve the performance of many multi-
media applications including search [1, 2], summarization [3, 4],
and surveillance [5, 6]. Here, semantic concepts are objects, ac-
tions, and scenes.

How to bridge the semantic gap [7], the lack of correspondence
between low-level features and high-level semantic concepts? This
is the most important problem to be solved in semantic concept
detection. Previous studies have proved that supervised learning
with many examples, i.e., supervised many-shot learning 1, is a
straightforward way to find a mapping from low-level features
to high-level semantics. For example, support vector machines
(SVMs) [8, 9] and deep neural networks [10–12] have been shown
to be effective in video semantic indexing [2, 13] and object recog-
nition [10–12, 14]. These methods require large-scale training data
in which positive and negative labels of semantic concepts for each
image/video are given. However, the cost of collecting training
data increases as the number of target semantic concepts increases,
since manual annotation is needed.

1hereinafter it is simply referred to as supervised learning
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Figure 1: Few-Shot Adaptation Framework. Few-shot adap-
tation combines supervised many-shot learning and zero-
shot learning. To train a detector, few-shot adaptation ac-
cepts two inputs: a set of training samplesX and a set of pre-
trained detectors P from supervised and zero-shot learning
frameworks, respectively.

To reduce such costs, some researchers are focusing on tech-
niques to train statistical models with few training samples. For ex-
ample, few-shot learning in [15] has introduced artificially gener-
ated features, namely hallucinating features, which can be used as
additional samples for network training with few images. Match-
ing networks [16] for one-shot learning has provided a frame-
work to adapt an image embedding network to a given training
image with attention mechanism. Domain adaptation [17, 18] and
Bayesian estimation [19, 20] are also known to be effective. How-
ever, these methods rely on the assumption that given few training
samples are high-quality, i.e., an object is often at the center of an
image without occlusion or noise. Thus, they are not always ef-
fective for concept detection from images/videos in the wild with
low-quality training samples.

Another effective approach, which does not rely on the high
quality of images, is to utilize semantic relation among concepts
obtained from large-scale text data. Recent zero-shot learning
studies [21–26] have shown that combining pre-trained detectors
based on semantic relation is effective. For example, convex combi-
nation of pre-trained detectors for 1,000 objects has been proposed
to make effective detectors for other unseen objects [21, 22] or ac-
tions [24, 27–29]. In these methods, word vectors, which represent
a word by a real-valued vector, e.g., word2vec [30, 31], are often in-
troduced to measure similarity among objects and/or actions, and
are used to determine weights for the convex combination. Some
recent studies have focused on applications of zero-shot learning
to the other learning frameworks. For example, prior knowledge



from zero-shot learning is introduced to active learning in [32]. In
few-shot learning, we believe that techniques for zero-shot learn-
ing and supervised learning benefit from each other, because their
inputs are different and complementary.

In this paper, we propose a few-shot adaptation framework,
which bridges supervised learning and zero-shot learning for im-
age and video semantic indexing. It optimizes the parameters of su-
pervised learning and zero-shot learning, simultaneously, under an
assumption that a set of training samples and a set of pre-trained
detectors are given (Figure 1). In our experiments, the proposed
framework is evaluated on three datasets: TRECVID Semantic In-
dexing 2010, 2014, and ImageNet. We achieve 15.19 % and 35.98
% in Mean Average Precision under the zero-shot condition and
the official supervised condition, respectively. To the best of our
knowledge, these are the best results on the TRECVID 2014 dataset.

The rest of this paper is organized as follows. Section 2 sum-
marizes related studies. Section 3 defines the notations for super-
vised learning and zeros-shot learning for preparation. Section 4
presents the proposed few-shot adaptation framework. Section 5
reports the results of experimental evaluations, and Section 6 de-
scribes conclusion and future work.

2 RELATEDWORK
2.1 Supervised Learning and Adaptation
Supervised learning is a straightforward way to obtain detectors of
semantic concepts from training samples. It requires positive and
negative samples for training. Recent studies have shown the ef-
fectiveness of deep learning using convolutional neural networks
(CNNs) on large-scale datasets. AlexNet [10] with 8 layers is their
typical example. It accepts raw image data as input to train ob-
ject classifiers at the final softmax layer. GoogLeNet [12], VGGNet
[11], ResNet [33], and DenseNet [34] are its extension to deeper
networks. These networks are often trained on a large-scale im-
age dataset such as the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) dataset [35] and the Places 365 dataset [36].

Some recent studies have focused on techniques to train statisti-
cal models with a small number of training samples. Examples in-
clude one-/few-shot learning [15, 16, 37, 38], model transformation
[39], domain adaptation [17, 18], and Bayesian estimation [19, 20].

Hariharan et al. [15] proposed a few-shot learning method,
which uses artificially generated features, called hallucinating fea-
tures, for additional training data. They introduced a network to
predict and generate features based on analogies on the ImageNet
dataset. For example, from a given image of a bird with a sky back-
ground, it predicts features of bird images with other backgrounds
such as forest, by using images of other objects with these back-
grounds in the ImageNet dataset. Matching networks in [16] tack-
led a one-shot learning problem by introducing attention mecha-
nism to adapt an image embedding network to given one example.

For generative models such as Gaussian Mixture Models
(GMM), Bayesian estimation [19, 20, 40] is known to be effective.
Perronnin el al. [20] proposed vocaburary adaptation using GMMs.
It is extended to image representation called Fisher vectors [41].
Mensink el al. [19] applied maximum a posterior estimation to
metric learning for image classification. They showed the effec-
tiveness of distance-based classifiers in image recognition with a

small set of training samples. For recent network-based discrim-
inative models such as the above CNNs, fine-tuning is the most
promising approach. It is effective for many tasks including event
detection [43, 44] and action recognition [45, 46].

For video semantic indexing, updating or replacing only the
final classification layer is one of the best ways in fine-tuning.
For example, the final softmax layer is replaced by support vec-
tor machines (SVMs) to detect semantic concepts from video data
in [42, 43]. This performed the best at the semantic indexing com-
petition in the TRECVID workshop [42, 47, 48, 67].

However, with few training examples, these methods are often
sensitive to the selection of training examples. Reducing the sensi-
tivity is known to be one of the challenging tasks in training using
few examples.

2.2 Zero-Shot Learning
Zero-shot learning [21, 25, 49], for the case when a set of semantic
concepts for training and that for testing are disjoint, has been re-
ceiving attention in recent years. Comparedwith supervised learn-
ing, the performance of zero-shot learning is rather low, because
image/video samples are not given for training. A recent trend is
to build detectors by a weighted combination of pre-trained detec-
tors, in which weights are determined based on similarity between
concepts [24, 25, 27, 28, 50]. Here, how to use the relation among
concepts to measure the similarity is a key factor to improve the
performance.

For object recognition, the object attributes are useful to mea-
sure similarity between objects. For example in animal recognition,
attributes such as color, texture, and shape are known to be useful
for zero-shot learning [49, 51, 52]. The more detailed the attributes
are, the more precise similarity between concepts will be. How-
ever, it is often given to a small set of objects, and is difficult to
manually prepare the attributes for a large number of objects.

Another approach to measure the similarity between concepts
is to utilize word vectors, which represent a word by a real-valued
vector, obtained from large-scale text data. For example, word vec-
tors extracted by the skip-gram model [31] are introduced to zero-
shot object recognition [50]. Here, the skip-gram model is a neu-
ral network to extract vector representation of words. It is of-
ten trained on a large-scale text corpus such as Wikipedia [31].
Since words in a text corpus include not only nouns but also
verbs, these methods have wide-range applications related to ac-
tions [24, 27, 28], events [53–56], and semantic concepts [57]. Some
recent studies focus on improving word embedding methods with
joint learning [58–61].

Compared with supervised learning, zero-shot learning effec-
tively introduces knowledge from text data. This is the reason why
we believe that supervised learning and zero-shot learning benefit
from each other.

3 SUPERVISED LEARNING AND ZERO-SHOT
LEARNING

This section briefly summarizes the supervised and zero-shot
learning methods we employ as components of our proposing
method. In these methods, the goal is to build a detector f for each
semantic concept c ∈ C , where C is a set of concepts. We define



Symbols Meaning
c ∈ C a concept to be detected
x ∈ Rd a feature vector for testing
X = {(xi ,yi )}Ni=1 a set of training samples
xi ∈ Rd a feature vector for training
yi ∈ {−1,+1} a label for training
fSV (·) a supervised detector
P = {дj (·)}Mj=1 a set of pre-trained detectors
дj (·) a pre-trained detector for dj
dj ∈ D a concept where D ∩C = ∅
sim(·, ·) similarity between two concepts
fZS (·) a zero-shot detector

Table 1: Summary of notations.

notations to be used in this section and the next section as in Ta-
ble 1.

Supervised Learning. Supervised learning assumes that a set of
training samples X = {(xi ,yi )}Ni=1 is given for each concept c ∈
C , where xi ∈ Rd is a feature vector of an image or video, yi ∈
{+1,−1} is a positive or negative label for xi , and N is the number
of training samples. A supervised detector fSV is then trained from
these samples. Its simplest example is a linear detector given by

fSV (x ) =
N∑

i=1
αix

T
i x + γ , (1)

where x is a testing sample, and αi andγ are themodel parameters.
Recent studies extend it to non-linear detectors by introducing ker-
nel tricks [62, 63] and/or deep neural networks [10, 12] . Note that,
by introducing explicit feature maps [64] corresponding to kernel
functions or by viewing deep neural networks as a feature extrac-
tor, these non-linear detectors often can be re-formulated as linear
detectors in a high-dimensional feature space.

Zero-Shot Learning. Zero-shot learning assumes that a set of
pre-trained detectors P = {дj (·)}Mj=1 is given instead of a set of
training samples. Here, дj is a pre-trained detector for a concept
dj ∈ D, where D is another set of concepts disjoint to C , and M is
the number of pre-trained detectors. To build a detector for a con-
cept c ∈ C (c ! D), recent zero-shot learning methods [21, 24, 25]
combine given detectors by

fZS (x ) =
M∑

j=1
βjдj (x ) + γ

′, (2)

where βj and γ ′ are weighting and bias parameters, respectively.
Since βj is a weight which relates the concept dj to the target con-
cept c , the similarity measure between dj and c , sim(dj , c ), is often
used as βj , i.e., βj = sim(dj , c ). Its example is cosine similarity be-
tween word vectors [31] given by

sim(dj , c ) =
ψ (dj )Tψ (c )

∥ψ (dj )∥2∥ψ (c )∥2
, (3)

where ψ (·) ∈ Rd ′ is a word vector of a concept. A word vector,
which is a word representation by a real-valued vector, is obtained
from semantic embedding methods such as skip-gram [31]. The
bias parameter γ ′ is often experimentally optimized.

4 FEW-SHOT ADAPTATION
4.1 Overview
Our basic idea of few-shot adaptation is to optimize the parameters
of supervised learning and zero-shot learning, simultaneously. As
shown in Figure 1, the proposed framework accepts a pair of the
following two sets as inputs:

(1) a set of training samples X,
(2) a set of pre-trained detectors P,

which are from supervised and zero-shot learning frameworks, re-
spectively.

To bridge supervised learning and zero-shot learning, we im-
pose the following two constraints:

(C1) few-shot adaptation outputs a supervised detector fSV if
the set of pre-trained detectors is empty (P = ∅).

(C2) few-shot adaptation outputs a zero-shot detector fZS if the
set of training samples is empty (X = ∅).

To simultaneously optimize the parameters of supervised learn-
ing and zero-shot learning, few-shot adaptation linearly combines
a supervised detector fSV and a zero-shot detector fZS, i.e., we define
a detector in few-shot adaptation by

fFS (x ) = fSV (x ) + fZS (x ). (4)

For example, with a linear supervised detector in Eq. (1) and a zero-
shot detector in Eq. (2), we have

fFS (x ) =
N∑

i=1
αix

T
i x +

M∑

j=1
βjдj (x ) + γ

′′. (5)

The goal is to optimize αi , βj , and γ ′′, where the two bias param-
eters are unified into γ ′′ = γ + γ ′.

We believe that this is a straightforward way to unify two learn-
ing frameworks, and expect that few-shot adaptation will be ef-
fective in cases where the number of training samples is small,
because zero-shot learning and supervised learning benefit from
each other.

4.2 Introducing an Objective Function from
Supervised Learning

To satisfy the constraint (C1), an objective function should be im-
ported from supervised learning to optimize the parameters in
Eq. (5). However, since supervised learning is a mapping from a
set of training samples X to a detector fSV, it can not be directly
applied to the input (X,P) of few-shot adaptation, as inputs and
outputs are summarized in Table 2.

To solve this problem, our idea is to generate a set of pseudo
training samples XP from pre-trained detectors, and to apply su-
pervised learning to a union set U = X ∪ XP . In this way, many
types of supervised learning techniques can be introduced to our
framework without modifying their objective function. Note that
by simply definingX∅ = ∅, we haveU = X∪X∅ = X when P = ∅.
This shows that the constraint (C1) is satisfied. The definition of
XP is given in the following subsection.



Method Input # Training Samples # Pre-trained Detectors Output Parameters
Supervised Learning X = {(xi ,yi )}Ni=1 N 0 fSV αi ,γ
Zero-Shot Learning P = {дj (·)}Mj=1 0 M fZS βj ,γ ′

Few-Shot Adaptation (X,P) N M fFS αi , βj ,γ ′′

Table 2: Summary of assumptions and parameters of each detector.

4.3 Generating Pseudo Training Samples from
Zero-Shot Detectors

Our next focus is on the constraint (C2) for a zero-shot detector. If
X = ∅, few-shot adaptation applies a supervised learning method
to a setU = X ∪ XP = XP as described above. We focus on how
to generate pseudo training samples that give a zero-shot detector as
a result of supervised learning.

Let us start from the simplest example using linear function as
the supervised detector and the zero-shot detector in Eq. (5). Let
the pre-trained detectors for zero-shot learning be given byдj (x ) =
wT
j x . Then,

fFS (x ) =
N∑

i=1
αix

T
i x +

M∑

j=1
βjw

T
j x + γ

′′. (6)

Here,w j (∥w j ∥ = 1) is the normal vector to the decision boundary
ofдj (x ) = 0. In this equation, we see that its two terms on the right-
hand side share a common structure that each term is a product
of a parameter (αi and βj ) and an inner product of two vectors
(xTi x andwT

j x ). Since xi can be understood as a training sample to
optimize αi , this one-to-one correspondence implies to us thatw j
can be used as a pseudo training sample to optimize βj .

How to make pseudo training samples? To obtain a function
д(x ) = wT x as a result of supervised learning, the easiest way
is to have a pair of the normal vector w and its mirrored vector
−w for training with positive and negative labels, respectively, as
shown in Figure 2 (b). In this case, a set of pseudo training samples
is given by XP = {(λw,+1), (−λw,−1)}, where λ > 0 is a scaling
coefficient.

This can be extended to a zero-shot detector fZS, a weighted
sum of functions дj . By multiplying weight values sim(dj , c ) given
from the zero-shot learning framework, e.g., Eq. (3), a set XP =
{(x̃k , ỹk )}Kk=1 is defined by

x̃2j = +λsim(dj , c )w j , (7)
x̃2j−1 = −λsim(dj , c )w j , (8)

with ỹ2j = +1, ỹ2j−1 = −1 for j = 1, 2, · · · ,M , where K = 2M is
the number of pseudo training samples.

Finally, by applying supervised learning to a union set U =

X ∪ XP , the detector of few-shot adaptation is reformulated by

fFS (x ) =
N∑

i=1
αix

T
i x +

K∑

k=1
β̃k x̃

T
k x + γ

′′, (9)

where αi , β̃k , andγ ′′ are parameters. Figure 2 shows how few-shot
adaptation works with the minimum sets of training data.

To exactly obtain a zero-shot detector, the objective function
imported from supervised learning for parameter estimation is re-
quired to give β̃2j = +1 and β̃2j−1 = −1 when X = ∅. In prac-
tice, this is often a trivial solution of parameter estimation since

U = ∅ ∪ XP = XP only has pairs of symmetric samples. In this
case, we have

fFS (x ) =
K∑

k=1
β̃k x̃

T
k x + γ

′′ (10)

=

M∑

j=1
(β̃2j x̃2j + β̃2j−1x̃2j−1)T x + γ ′′ (11)

=

M∑

j=1
λ(β̃2j − β̃2j−1)sim(dj , c )w

T
j x + γ

′′ (12)

= 2λ fZS (x ), (13)

and thus by setting λ = 1
2 , fFS is equal to fZS as required in (C2).

Note also that if the dimension of feature vector x is larger than
the number of pre-trained detectors M , XP becomes linearly sep-
arable. This supports many supervised learning methods to satisfy
the requirement, by introducing recent high-dimensional feature
extractor including deep convolutional networks.

4.4 Extensions to Non-Linear Functions
This subsection presents three methods to introduce nonlinearity
to few-shot adaptation. The first method extends linear few-shot
adaptation in Eq. (9) to kernelized few-shot adaptation. The second
method introduces a deep convolutional network to a zero-shot de-
tector in our framework. The third method extends our framework
to multi-class classification using neural networks.

4.4.1 Kernelized Few-Shot Adaptation. To introduce non-
linearity into our framework, we apply kernel tricks [62, 63] to
Eq. (9), by replacing dot products with a kernel κ (·, ·). The detec-
tor is then given by

fFS (x ) =
N∑

i=1
αiκ (xi ,x ) +

K∑

k=1
β̃kκ (x̃k ,x ) + γ

′′. (14)

Note that we keep to use a setU = X∪XP for training. With this
kernelization, a linear zero-shot detector fZS will not be obtained
exactly when X = ∅. Instead, it provides a kernelized zero-shot
detector, which can be viewed as an extended method for zero-
shot learning.

4.4.2 Pre-trained Detectors with Neural Networks. In practice,
many recent studies have proved the effectiveness of neural net-
works trained on large-scale datasets. Most of these networks have
a softmax classifier at the final layer. Here, we present a way to in-
troduce them to our framework by defining w j in Eq. (7) and (8)
by a concatenation of network parameters.



Figure 2: Example of few-shot adaptation. (a) Training samples from a supervised learning framework. x1 and x2 are positive
and negative training samples, respectively. (b) Pre-trained detectors from zero-shot learning framework. An example using
a single pre-trained detector д1 (x ) = wT

1 x is given with illustration of the normal vector λw1. (c) Few-shot adaptation with a
decision boundary, in which supervised learning and zero-shot learning are combined.

Let h be an input of a softmax layer, which has outputs for M
concepts. The output value (posterior probability) for the j-th con-
cept is given by

pj (h) =
exp(aTj h + bj )

∑M
j=1 exp(aTj h + bj )

(15)

where aj and bj are parameters on the layer. To extract pseudo
training samples, we focus on its linear calculation aTj h + bj , and
define

w j =

(
aj
bj

)
, (16)

with a feature vector

x =

(
h
1

)
. (17)

Note that exp function and the normalization process (with a de-
nominator of the sum of exp values) in Eq. (15) are omitted with
these definition. They can be again introduced by utilizing Gauss-
ian kernel in kernelized few-shot adaptation in Eq. (14), and by
applying score normalization to values of fFS (x ) if they are needed.

4.4.3 Extension to Multi-Class Classification. Our framework
presented above is for binary classification to train concept detec-
tors in a one-versus-all manner. This is effective to detection tasks
in the wild, e.g., TRECVID Semantic Indexing Task [67], in which a
video shot can have multiple labels. On the other hand, a number
of recent studies on few-shot learning [15, 16, 39] have focused
on multi-class classification using neural networks, for exmaple,
object recognition on the ImageNet dataset. To compare our ap-
proach with them, we extend our framework to multi-class classi-
fication by utilizing only positive pseudo training samples, i.e., a
set of positive pseudo training samples XcP for each concept c is
added to training samples for multi-class classification.

5 EXPERIMENTS
Our few-shot adaptation framework is evaluated on three datasets,
TRECVID 2010, TRECVID 2014, and ImageNet.

5.1 Evaluation on TRECVID datasets
5.1.1 Experimental Settings. The TRECVID 2010 and 2014

datasets consist of Internet videos used in the TRECVID Seman-
tic Indexing Competition [67]. Here, we use the whole ImageNet
images [35] and Places 365 images [36] for pre-training. We be-
lieve this is one of the best choices to report results by increasing
the number of training samples from zero tomany, and to show the
versatility of ImageNet and Places 365 datasets with our proposed
framework.

The task is to detect semantic concepts from each video shot.
Shot boundaries are provided in the datasets. The number of video
shots for training and testing are listed in Table 3. Each dataset
has 30 types of semantic concepts to be detected. The evaluation
measure is Mean Average Precision (Mean AP), which is calculated
by using the official toolkit and annotations.

Evaluation results are reported on three training conditions:
zero-shot, few-shot, and many-shot. The zero-shot condition does
not use TRECVID videos for training. The few-shot condition lim-
its the number of training video shots to N (0 < N ≤ 100) by ran-
dom sampling. The many-shot condition use all TRECVID videos
for training. In the many-shot condition, we can compare our re-
sults with official submissions using supervised learning methods
at the competition. Note that our main focus is on the few-shot
condition.

For pre-trained detectors, three types of GoogLeNets [12] are
used: ImageNet-1K, Places-365, and ImageNet-Shuffle13K. The
Goog-LeNet is a convolutional neural network with 23 layers.
ImageNet-1K uses 1.2 million images of 1,000 objects in ILSVRC
2012 for training [12]. Places-365 uses 1.8 million images of 365



Figure 3: Few-Shot Evaluation on the TRECVID 2010 and 2014 datasets. Linear/Kernelized Few-Shot Adaptation: our proposed
framework. Fine-Tuned CNN: baseline using GoogLeNet features. Hallucinating Features [15]: artificially-generated samples
using neural networks trained using analogy among ImageNet objects. NCM-MAP [19]: Nearest class mean classifier with
Maximum a Posteriori estimation using zero-shot priors. Results are reported for three types of pre-trained networks: (a,d)
ImageNet-1K, (b,e) Places-365, and (c,f) ImageNet-Shuffle13K, on two datasets: (a,b,c) TRECVID 2010 and (d,e,f) TRECVID 2014.
All experiments are repeated for 10 times, and the average results are reported.

scenes in Places 2 dataset [36]. ImageNet-Shuffle13K uses the Ima-
geNet Shuffle method [43] for training, which provides 12,988 ob-
ject classifiers trained on the whole ImageNet dataset. For word
vectors, 300 dimensional vectors obtained from the Skip-gram
model in [31] are used. They are used to measure similarity
between concepts in Eq. (3). The average similarity between a
TRECVID concept and its closest concept in pre-training is 0.557
for ImageNet-1K, 0.606 for Places-365 and 0.781 for ImageNet-
Shuffle13K. For objective function, the SVM loss (Hinge loss with
L2 regulalization) is used for parameter optimization.

5.1.2 Few-Shot Evaluation. Figure 3 shows evaluation results
on TRECVID 2010 and 2014 datasets under the few-shot condi-
tion. As a baseline, results using CNN+SVM with supervised fine-
tuning are reported, where the final softmax layer of GoogLeNet
is replaced by an SVM. Note that this has been one of the best
ways to apply neural networks to the semantic indexing task at
TRECVID. For comparison, evaluation results of Nearest Class
Mean Classifier [19] with Maximum a Posteriori estimation us-
ing zero-shot priors (NCM-MAP) and artificially-generated hallu-
cinating features (HF) in [15] are also reported. HF is applied only
for ImageNet-1K because it uses a network trained with analogy
among the 1K objects on ILSVRC 2012.

We see from the results that kernelized few-shot adaptation per-
forms the best with all networks and on both datasets. This shows
the effectiveness of the proposed framework, and confirms that

TRECVID Year 2010 2014
Training video shots 119,685 547,634
Positive in training per concept 735 1,657
Testing video shots 144,988 107,806

Table 3: The number of video shots on TRECVID 2010 and
2014 datasets. Each dataset has 30 types of semantic concepts
for evaluation.

zero-shot learning and supervised learning benefit from each other
when the number of training samples is small (0 < N ≤ 100).
We also see that few-shot adaptation approaches to supervised
fine-tuning as N increases. This shows our framework straight-
forwardly bridges zero-shot learning and supervised learning.

If we compare linear and kernelized few-shot adaptation, the
kernelized one is always better. This shows that the kernel trick in
supervised learning is effective. Utilizing the other types of kernels
is interesting as a next step in future.

5.1.3 Zero-Shot Evaluation. Table 4 reports our results on the
zero-shot condition. Our method performs the best among meth-
ods in [47, 48] from the non-annotation track at TRECVID 2014 and
zero-shot methods [21, 57]. Here, non-annotation track is a train-
ing conditionwhich requires not to use TRECVID videos but to use
the other resources such as web images for training. Note that our
zero-shot method can be viewed as a modification of ConSE [21],



Zero-Shot Methods Mean AP
ConSE [21] (ImageNet-1K) 6.39
Inoue et al. [57] (ImageNet-1K) 8.31
Ours (ImageNet-1K) 8.49
Ours (Places-365) 11.63
Ours (ImageNet-Shuffle13K) 14.89
Ours (3-Net Fusion) 15.19
Webly Supervised Methods Mean AP
Jiang et al.[47] 1.21
McGuinness et al. [48] 7.97

Table 4: Zero-Shot Evaluation. Our proposed method is
compared with zero-shot learning methods and webly su-
pervised learning methods.

Methods Mean AP
Ours (with pseudo samples) 35.89
Ours (without pseudo samples) 35.73
Snoek [13] (8 CNNs) 33.19
Laaksonen [70] (2 CNNs + Hard Negative Mining) 29.36
Inoue [71] (CNN + Temporal N-Gram Model) 28.12
Safadi [72] (CNN + Re-Ranking Model) 26.59
Ballas [73] (CNN + Audio-Visual Features) 25.90

Table 5: Many-Shot Evaluation with and without pseudo
samples. The top 5 official submissions at TRECVID 2014 are
also reported.

where a normalization step for multi-class classification is omit-
ted. Since normalization assumes that each video shot has one of
concept labels, it is not suitable for our concept detection task, in
which a video shot can have multiple concept labels with unbal-
anced positive and negative samples. To further improve the per-
formance in the zero-shot condition, modifying and introducing
recent zero-shot multi-class classification methods such as mani-
fold learning [50] is promising.

The results also show that late fusion of detection scores ob-
tained from three networks improves the performance. This sug-
gests that adding other types of pre-trained detectors is also
needed in future work.

5.1.4 Many-Shot Evaluation. Table 5 compares our results with
the official submissions in TRECVID 2014. We achieved 35.89 %
and 35.73% in Mean AP with and without pseudo samples, respec-
tively. To the best of our knowledge, this is the best performance
on this dataset. This confirms that our pseudo training samples for
few-shot adaptation do not affect the performance in the many-
shot condition, and means that our few-shot adaptation success-
fully unifies zero-shot learning and supervised learning.

5.2 Evaluation on Imagenet dataset
5.2.1 Experimental Settings. The ImageNet Large Scale Visual

Recognition Competition (ILSVRC) dataset consists of 1.2 million
images with 1,000 object categories. For few-shot evaluation, we
follow the evaluation setting proposed in [15], which divides the
1,000 categories into 389 base categories and 611 novel categories.
All examples from base categories are used for pre-training, and
few examples (N = 1, 2, 5, 10, and 20) for novel categories are used

Few-Shot Methods N = 1 2 5 10 20
Baseline 43.0 54.3 67.2 72.8 75.9
Hallucinating Features [15] 54.3 62.1 71.3 75.8 78.1
Matching Network [16] 55.0 61.5 69.3 73.4 76.2
Model Regression [39] 46.4 56.7 66.8 70.4 72.0
Ours 55.2 63.3 71.8 76.0 78.0

Table 6: Evaluation on ImageNet dataset. Top-5 accuracy is
reported.N is the number of training examples per category.
The ResNet-10 network architecture in [15] is used for all
experiments.

(a) Novel Categories
Few-Shot Methods N = 1 2 5 10 20
Hallucinating Features [15] 32.8 46.4 61.7 69.7 73.8
Matching Network [16] 41.3 51.3 62.1 67.8 71.8
Ours 35.0 49.7 62.6 70.1 73.7

(b) Base Categories
Few-Shot Methods N = 1 2 5 10 20
Hallucinating Features [15] 88.4 87.1 86.6 85.5 85.0
Matching Network [16] 76.7 77.8 80.6 82.2 83.3
Ours 87.5 84.8 86.4 85.2 84.8

Table 7: Analysis with novel and base categories. (a) Top-
5 accuracy for novel categories. (b) Top-5 accuracy for base
categories.

for few-shot adaptation. Evaluationmeasure is Top-5 accuracy. For
a fair comparison, ResNet-10 used in [15] is applied to this multi-
class classification problem.

5.2.2 Comparison with Other Few-Shot Learning Methods. Ta-
ble 6 compares our method with state-of-the-art few-shot learn-
ingmethods formulti-class classification:MatchingNetwork (MN)
for one-shot learning [16], Model Regression [39], and Halluci-
nating Features (HF) [15]. We see our method performs the best
for N = 1, 2, 5, 10, and the second best for N = 20 among these
methods. To analyze results, Table 7 separately reports accuracy
on novel and base sets of categories. Note that they are in a trade-
off relation. We see a tendency that MN and HF are effective for
novel and base categories, respectively, and that our method pro-
vides well-balanced performance on both. This experiment uses
only 389 pre-trained detectors for a fair comparison. Increasing
the number of base categories is promising to further improve the
accuracy of our method.

5.3 Limitations and Discussions
Herewe show some example video shots detected on the TRECVID
dataset. Figure 4 shows the top-ranked video shots. They are
mostly true positive shots even with 10 training examples. Figure 5
shows Average Precisions (APs) by semantic concepts. Few-shot
adaptation is effective for various concepts. However, it is diffi-
cult to detect actions such asWalking and SittingDown from video
with few examples. To further improve the overall performance,
pre-trained detectors closely related to the domain of the TRECVID
task are required. For example, introducing 3D CNNs pre-trained
on action video datasets such as Kinetics [68, 69] would be inter-
esting as a promising next step.



Figure 4: Top three video shots for six types of semantic concepts. Kernelized few-shot adaptation with N = 10 is applied.

Figure 5: Average Precision by concepts on the TRECVID 2010 dataset.

Another limitation of our framework is in its assumption that
word vectors are given by a semantic embedding method. New
types of word vectors, such as those obtained by joint training of
text and image representation [60, 61] or manifold learning [50],
can be introduced to our framework. However, our few-shot adap-
tation can not update these embeddings in its training phase. The
three joint training of whole system including semantic embed-
dings is needed in future work.

6 CONCLUSION
We proposed a few-shot adaptation framework, which combines
zero-shot learning and supervised learning. It provided robust pa-
rameter estimation with few training examples, by optimizing the
parameters of zero-shot learning and supervised learning simul-
taneously. Our experiments showed the effectiveness of the pro-
posed framework on TRECVID 2010, 2014, and ImageNet datasets.

Our future work will be focusing on audio and text analysis to de-
tect actions and events from video data.
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