T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

題目(和文)	 組合せ剛性理論に基づく3次元構造物生成手法の探究 - 建築デザインへ の応用を目指して -
Title(English)	
著者(和文)	小林祐貴
Author(English)	Yuki Kobayashi
出典(和文)	学位:博士(工学), 学位授与機関:東京工業大学, 報告番号:乙第4150号, 授与年月日:2018年1月31日, 学位の種別:論文博士, 審査員:藤井 晴行,大佛 俊泰,中井 検裕,竹内 徹,斎尾 直子,鍵 直樹
Citation(English)	Degree:Doctor (Engineering), Conferring organization: Tokyo Institute of Technology, Report number:乙第4150号, Conferred date:2018/1/31, Degree Type:Thesis doctor, Examiner:,,,,,
 学位種別(和文)	
Type(English)	Doctoral Thesis

組合せ剛性理論に基づく 3次元構造物生成手法の探究 - 建築デザインへの応用を目指して -

小林 祐貴

Exploration of Methods of Form Generation Based on Combinatorial Rigidity

Towards Applications to Architecture Design

組合せ剛性理論に基づく3次元構造物生成手法の探究

- 建築デザインへの応用を目指して -

IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF ENGINEERING DEPARTMENT OF ARCHITECTURE AND BUILDING ENGINEERING

Tokyo Institute of Technology

Yuki Kobayashi 小林 祐貴 December, 2017

要旨

本論文は組合せ剛性理論に基づいた剛な構造物の生成手法を探求し, 建築デザ インに応用することを目的とする.建築の形態をデザインする際には、スケッチ や模型の作成、CAD ソフトによるモデリングといった方法を用いて設計を行う. そのようなとき、設計者は実際に構造物を建築することを想定し、直感的に部材 の接続関係などから「剛な構造物として実現可能である」、「実現するために柔 らかそうな部分には部材を追加する」といった判断を行なっていると言える.実 際に構造物を建築する段階では部材の正確な座標位置を決定し、数値解析によっ て構造物が剛であるかを判断するが、設計の初期段階から厳密な座標を決定する ことはデザインを限定することともなる.本論文で扱う「組合せ剛性理論」とは、 構造物の接続関係をグラフとして扱うことで構造物が剛であるかを組合せ的に扱 う理論である. その成果は, 構造物の剛性について人が働かせる直感を, 厳密に 数理の問題として議論したものであると言える. これらのことから, 組合せ剛性 理論を建築デザインへと応用することにより,設計の初期段階より剛性の検討が 可能となり、設計者が直感的に思い浮かべる形態を、より自然に建築物として実 現できるようになると考える. しかしながら組合せ剛性理論による構造物が剛で あるかの判定は、ある種の一般性の仮定のもとで行なわれ、このことに建築デザ インに応用する難しさがある.

本論文では剛なパネルがヒンジによって繋がれた panel-hinge フレームワー クと剛な棒材がピン接合によって繋がれた bar-joint フレームワークを扱う. は じめに極小剛な panel-hinge フレームワークに対応するグラフをもれなく全て

4

列挙する手法を示す. さらに冗長性を考慮した剛なグラフの組合せ的な特徴付 けを示す. 次に, グラフを列挙する操作に基づき, 一般的ではない配置の剛な panel-hinge フレームワークを生成する操作を示す. 操作に基づき形態生成や模 型作成を行ない, 建築デザインへの応用可能性を示す. bar-joint フレームワーク については, 空間充填立体を極小剛にする手法を提案し, 建築的な構造物を想定 し筋交いを追加することにより極小剛な構造物を得る手法を示す.

【第1章序論】

第1章では,研究の背景,既往研究,研究の目的及び概要について述べる.

【第2章 構造物の剛性行列と剛性の組合せ的特徴付け】

第2章では、本論文で扱う構造物である bar-joint フレームワークと panel-hinge フレームワークを定義し、剛性行列による剛性の判定方法を述べる.その後、そ れぞれの構造物について、剛性の組合せ的な特徴付けを述べる.

【第3章 極小剛な panel-hinge グラフの逐次生成手法】

第3章では, 逐次的に panel-hinge グラフを生成する 5 つの操作を定義し, 次の ことを示している. (i) 極小剛な panel-hinge グラフに対して 5 つの操作を行っ てできるいずれのグラフもまた, 極小剛な panel-hinge グラフである. (ii) 5 つの 操作の操作列を施すことにより, 任意の極小剛な panel-hinge グラフを生成可能 である.

【第4章 panel-hinge グラフの冗長剛性及び冗長大域剛性の特徴付け】 第4章では、2次元において次の三条件が等価であることを示している. (i) panel-hinge グラフが (k,h)-剛である. (ii) panel-hinge グラフが (k,h+1)-大域 剛である. (iii) グラフが (k,h+2)-連結である. さらに、3次元以上においては次 の三条件が等価であることを示している. (i') panel-hinge グラフが (k,h)-剛で ある. (ii') panel-hinge グラフが (k,h)-大域剛である. (iii') グラフが (k,h+1)-連結である. 【第5章 剛な panel-hinge フレームワークの生成手法】

第5章では,極小剛な panel-hinge グラフを逐次的に生成する操作に基づき,非 一般配置の剛な panel-hinge フレームワークを生成する手法を探究している. さ らにフラクタル図形に基づき,空間充填多面体を基本形とする非一般配置の剛な panel-hinge フレームワークを生成する手法を提案している. その後,提案手法 が建築デザインに応用可能であることを,構造物の例や模型を作成することで示 している.

【第6章 極小剛な bar-joint フレームワークの生成手法】

第6章では,空間充填立体の bar-joint フレームワークに対して,最小本数の筋交 いを追加することで極小剛とする手法を示す.さらに開発した操作を拡張し,内 部空間や開口部を想定した極小剛な構造物の生成手法を提案している.

【第7章結論】

第7章では、本論文で得られた成果と今後の課題をまとめる.

目次

覀	Ь
安	日

第1章	序論	11				
1.1	組合せ剛性理論に関する理論的研究					
	1.1.1 既往研究	15				
	1.1.2 本論文の位置付け	16				
1.2	建築デザインへの応用を目的とした研究..........	16				
	1.2.1 既往研究	16				
	1.2.2 本論文の位置付け	17				
1.3	本論文の目的............................	18				
1.4	本論文の成果..........................					
	1.4.1 本論文の構成	19				
	1.4.2 発表文献	19				
第2章	構造物の剛性行列と剛性の組合せ的特徴付け	21				
2.1	剛性行列	21				
	2.1.1 Bar-joint フレームワークの剛性行列	- 1 21				
	2.1.7 Dan John ディーション ション ション ション ション 2.1.7 Dan John マレームワークの剛性行列	- 1 24				
2.2	副性の組合せ的特徴付け	24 26				
2.2	2.2.1 剛な bar-joint フレームワークの組合せ的特徴付け	20 26				

3

	2.2.2 剛な panel-hinge フレームワークの組合せ的特徴付け .	27
2.3	結語	28
第3章	極小剛な panel-hinge グラフの逐次生成手法	29
3.1	序説	29
3.2	極小剛な panel-hinge グラフを逐次的に生成する 5 つの操作	33
	3.2.1 定理 3.1 の証明	34
3.3	定理 3.2 の証明	40
3.4	結語	50
第4章	Panel-hinge グラフの冗長剛性及び冗長大域剛性の特徴付け	53
4.1	序説	53
4.2	定理 4.1 の証明	55
4.3	結語	58
第5章	剛な panel-hinge フレームワークの生成手法	61
第5章 5.1	剛な panel-hinge フレームワークの生成手法 序説...................................	61 61
第5章 5.1 5.2	剛な panel-hinge フレームワークの生成手法 序説	616162
第5章 5.1 5.2	 剛な panel-hinge フレームワークの生成手法 序説 直交パネルを用いた剛な panel-hinge フレームワークの生成手法 5.2.1 建築的な形態を想定した剛な panel-hinge フレームワー 	61 61 62
第5章 5.1 5.2	 剛な panel-hinge フレームワークの生成手法 序説 直交パネルを用いた剛な panel-hinge フレームワークの生成手法 5.2.1 建築的な形態を想定した剛な panel-hinge フレームワー クの生成 	61616267
第5章 5.1 5.2 5.3	 剛な panel-hinge フレームワークの生成手法 序説 直交パネルを用いた剛な panel-hinge フレームワークの生成手法 5.2.1 建築的な形態を想定した剛な panel-hinge フレームワー クの生成 空間充填多面体とフラクタル図形を用いた panel-hinge フレー 	61616267
第5章 5.1 5.2 5.3	 剛な panel-hinge フレームワークの生成手法 序説 直交パネルを用いた剛な panel-hinge フレームワークの生成手法 5.2.1 建築的な形態を想定した剛な panel-hinge フレームワー クの生成 空間充填多面体とフラクタル図形を用いた panel-hinge フレー ムワークの生成 	 61 61 62 67 69
第5章 5.1 5.2 5.3 5.4	剛な panel-hinge フレームワークの生成手法 序説 直交パネルを用いた剛な panel-hinge フレームワークの生成手法 5.2.1 建築的な形態を想定した剛な panel-hinge フレームワー クの生成 空間充填多面体とフラクタル図形を用いた panel-hinge フレー ムワークの生成 模型作成	 61 61 62 67 69 73
第5章 5.1 5.2 5.3 5.4 5.5	 剛な panel-hinge フレームワークの生成手法 序説 直交パネルを用いた剛な panel-hinge フレームワークの生成手法 5.2.1 建築的な形態を想定した剛な panel-hinge フレームワークの生成 空間充填多面体とフラクタル図形を用いた panel-hinge フレームワームワークの生成 模型作成 結語 	 61 61 62 67 69 73 75
第5章 5.1 5.2 5.3 5.4 5.5 第6章	 剛な panel-hinge フレームワークの生成手法 序説 直交パネルを用いた剛な panel-hinge フレームワークの生成手法 5.2.1 建築的な形態を想定した剛な panel-hinge フレームワークの生成 空間充填多面体とフラクタル図形を用いた panel-hinge フレームワークの生成 模型作成 精語 極小剛な bar-joint フレームワークの生成手法 	 61 61 62 67 69 73 75 77
第5章 5.1 5.2 5.3 5.4 5.5 第6章 6.1	剛な panel-hinge フレームワークの生成手法 序説 直交パネルを用いた剛な panel-hinge フレームワークの生成手法 5.2.1 建築的な形態を想定した剛な panel-hinge フレームワー クの生成 空間充填多面体とフラクタル図形を用いた panel-hinge フレー ムワークの生成 横型作成 結語 藤小剛な bar-joint フレームワークの単成手法 Bar-joint フレームワークの剛性と組合せ的な特徴付け	 61 61 62 67 69 73 75 77 79
第5章 5.1 5.2 5.3 5.4 5.5 第6章 6.1 6.2	 剛な panel-hinge フレームワークの生成手法 序説 直交パネルを用いた剛な panel-hinge フレームワークの生成手法 5.2.1 建築的な形態を想定した剛な panel-hinge フレームワークの生成 空間充填多面体とフラクタル図形を用いた panel-hinge フレームワークの生成 模型作成 横型作成 極小剛な bar-joint フレームワークの生成手法 Bar-joint フレームワークの剛性と組合せ的な特徴付け 空間充填立体を極小剛とする手法 	 61 61 62 67 69 73 75 77 79 82

	6.2.2	菱形十二面体の空間充填立体を極小剛とする手法....	86
6.3	建築形	態生成手法への拡張......................	92
	6.3.1	内部空間をもつ極小剛な空間充填立体の生成手法....	92
	6.3.2	内部空間が外部につながった剛な空間充填立体の生成手法	94
6.4	結語.		97
第7章	結論		99
参考文献			103
発表文献			109
謝辞			111

第1章

序論

建築の形態をデザインする際には、スケッチや模型の作成、CAD ソフトによる モデリングといった方法を用いて設計を行う. そのようなとき, 設計者は実際に 構造物を建築することを想定し、 直感的に部材の接続関係などから「剛な構造物 として実現可能である」、「実現するために柔らかそうな部分には部材を追加す る」といった判断を行なっていると言える. 実際に構造物を建築する段階では部 材の正確な座標位置を決定し,数値解析によって構造物が剛であるかを判断する が,設計の初期段階から厳密な座標を決定することはデザインを限定することと もなる. 本論文で扱う組合せ剛性理論 (theory of combinatorial rigidity) とは, 構造物の接続関係をグラフとして扱うことで構造物が剛であるかを組合せ的に扱 う理論である.その成果は、構造物の剛性について人が働かせる直感を、厳密に 数理の問題として議論したものであると言える. これらのことから, 組合せ剛性 理論を建築デザインへと応用することにより,設計の初期段階より剛性の検討が 可能となり、設計者が直感的に思い浮かべる形態をより自然に建築物として実現 できるようになると考える.しかしながら組合せ剛性理論による構造物が剛であ るかの判定は、ある種の一般性の仮定のもとで行われ、このことに建築デザイン に応用する難しさがある.

構造体の動きが元々の構造体の合同変換のみである場合, その構造体は剛

(rigid) であるとする. 剛な棒材 (bar) とピン接合 (joint) で構成される構造体 を bar-joint フレームワークとよぶ. 剛な構造体からどの棒材を 1 つ取り除 いた場合にも, 剛ではなくなる (柔軟となる) フレームワークのことを極小剛 (minimally rigid) とよぶ.

panel-hinge フレームワークとは, ヒンジ (hinge) によってつながれた 2 次 元の剛なパネル (panel) の集合である (図 1.1(a)). パネルは ℝ³ において連続的 に動くことが許されている. ここでのヒンジとは直線で, ヒンジによってつなが れた 2 つのパネルの動きはヒンジ周りの回転である. panel-hinge フレームワー クをグラフ G = (V, E) と $e \in E$ の 1 次元アフィン部分空間 $\mathbf{p}(e)$ への写像 \mathbf{p} の 組 (G, \mathbf{p}) として考える. $v \in V$ はパネルに対応し, $uv \in E$ は 2 つのパネル u, vをつなぐヒンジ $\mathbf{p}(uv)$ に対応する. このとき, ℝ³ 上に G が実現されたといい, このグラフ G を panel-hinge グラフとよぶ (図 1.1(b)).

図 1.1 (a) panel-hinge フレームワーク (b) panel-hinge グラフ

組合せ剛性理論は構造物の接続関係をグラフとして扱うことで、その剛性についての特徴付けを組合せ的に行う理論であり、様々な構造物の特徴付けが成されている [49]. さらに、構造物の剛性に関する基礎的知見を与えることに留まらず、 機械設計やタンパク質の挙動シミュレーション・知的 CAD の開発・センサーネットワークのローカライゼイション等、90 年代後半から様々な分野において 応用されている [14]. 組合せ的な特徴付けに基づき、いわゆる一般的な (generic) 配置を前提としたフレームワークの剛性判定は、構造力学分野において行われている剛性行列のランクを計算する剛性判定と比較して、少ない計算時間で実行可 能である. このことは, 構造物を構成する部材が増えるに従って有用である. 例 えば, デザインの変更に伴って, 部材数が数千~数万程度の構造物の剛性判定 を, 繰り返し行う場合などを想定した時に, 組合せ剛性論の成果を効果的に活 用できると考える. また, 一般的な配置の詳細な定義については, 2 章に記載す る. アルゴリズミック・デザインと呼ばれる設計手法 [56] により生成される形態 には, 大量の部材によって構成されるものが多く, 組合せ剛性理論の応用が期待 される. 組合せ剛性理論では, 様々な構造物の剛性について組合せ的な特徴付け が為されている. 本研究では建築への応用を考慮した場合に有用な bar-joint フ レームワーク, panel-hinge フレームワークに着目する.

建築デザインの分野では, 評価基準が必ずしもはっきりせず, 最適化問題が明確に定義できない場合が多い. このような場合, 大域最適解 (数理計画問題における目的関数を最適化する解. 単に最適解ということが多いが, 局所最適解との区別を強調するとき, 大域最適解と呼ぶ.)を求めることはできないので, 制約条件を満たす解をすべて列挙しておけば, その中から, 設計者が解を1つに絞り込むことができる [57]. そのため, 本研究では列挙問題を扱う.

panel-hinge グラフから 3 次元的なフレームワークを想像することは困難であ る. さらに剛なフレームワークを得るためには具体的なヒンジ配置を考慮する必 要がある. そこで,本研究ではヒンジ配置を考慮した上で剛なフレームワークを 生成し,建築デザインへの応用が可能であることを示す.

panel-hinge フレームワークが剛であるかどうかの判定は剛性行列のランク計 算によって確認することができる.フレームワークを構成する部材数が多くなる につれて,剛性行列のランク計算において数値誤差が生じる.一方で,組合せ的 な特徴づけによる構造物の剛性判定では,そのような数値誤差は生じない.しか し,組合せ剛性理論による構造物の剛性判定はいわゆる一般的な配置の構造物に のみ適応することができる (図 1.2).従って,組合せ剛性理論に基づいた建築デ ザインの手法を開発するためには,一般的な配置を考慮する必要がある.建築デ ザインへの応用を考える際には,一般的な配置ではない場合を扱うことが多いた め, 理論を拡張する必要がある (デザインにはパターンを繰り返し用いたり, 平行 や対称な配置が扱われる [3]).

図 1.2 (a) panel-hinge グラフ (b) (a) に対応する柔軟な panel-hinge フレー ムワーク (c) (a) に対応する剛な panel-hinge フレームワーク

本研究で扱う panel-hinge フレームワークは,折紙を拡張した枠組みとみなす ことができ,折紙は建築デザインに応用され始めている [39]. 折紙を panel-hinge フレームワークとみなし,枠組みを拡張することにより,より建築デザインに適 した形態を生成可能にすると考える.例えば,いくつかのヒンジを追加すること で,小さな panel-hinge フレームワークを大きな panel-hinge フレームワークと することができる.あるいはヒンジを除くことで,大きな panel-hinge フレーム ワークを小さな panel-hinge フレームワークとすることができる.さらに,冗長 な panel-hinge フレームワークを考えることで,剛性を失うことなくヒンジやパ ネルを修理することができる.あるいは自由度を持つフレームワークを考えるこ とで,変形可能な形態を生成することができる.

また、本論文における組合せ剛性理論に関する用語は、日本において組合せ剛 性理論の第一人者である Katoh [53], Tanigawa [54] が用いる言葉に従う.

1.1 組合せ剛性理論に関する理論的研究

1.1.1 既往研究

2 次元の bar-joint フレームワークが極小剛であるための必要十分条件は Laman によって示されており [19], 特に極小で剛なグラフを Laman グラフと 呼ぶ. この Laman グラフを演繹的に生成する手法については, Henneberg 構 築という方法が知られており, これによりすべての Laman グラフを生成できる ことが知られている [48]. しかしながら基本的な問題である, 3 次元の bar-joint フレームワークに対する剛性の組合せ的特徴付けの導出は未解決な状態であ る [48].

Tay, Whiteley らにより, body-bar, body-hinge フレームワーク (図 1.3(a) および (b)) といった構造物の特徴付けが為されている [48]. Body-bar フレー ムワークとは, 剛な棒材 (bar) によってピン接合でつながれた剛体 (body) の 集合であり, Body-bar グラフは剛体をグラフの頂点に, 棒材をグラフの辺に対 応させたグラフである. Body-hinge フレームワークとは, ヒンジ (hinge) でつ ながれた剛体 (body) の集合である. 一般的なジョイント配置の body-bar フ レームワークに関して, 極小剛な body-bar フレームワークに対応する極小剛な body-bar グラフは, 6 つの辺素な全域木によって, 剛性を特徴づけることができ ることを Tay は示した [42]. また, 極小剛な body-bar グラフは, [46] のアルゴ リズムを用いることですべて高速に列挙可能である.

Katoh らは panel-hinge フレームワーク (図 1.3(c)) に関して, パネルを剛体 として扱うことで body-hinge フレームワーク (図 1.3(b)) と同様の議論が可能 であることを示している [14]. panel-hinge グラフに関しては第 2 章 2.2.2 項で 述べるグラフの特性上, body-bar グラフと同様なアルゴリズムで列挙すること はできず, 多項式時間で列挙するアルゴリズムはこれまで知られていなかった.

また, グラフの冗長剛性については 2 次元の bar-joint フレームーワークにつ

図 1.3 (a) body-bar フレームワーク (b) body-hinge フレームワーク (c) panel-hinge フレームワーク

いては、剛性とグラフの連結性に関する既往研究がある [11, 23, 37].

1.1.2 本論文の位置付け

本論文ではこれまで知られていなかった,逐次的に極小剛な panel-hinge グラフを生成する手法を開発し,もれなく効率よく列挙する手法を明らかにする.

さらに冗長剛な panel-hinge グラフについては、グラフ理論において広く研究 がなされている、グラフの連結性との関係を明らかにする.

2次元の bar-joint フレームーワークの場合,任意のグラフから冗長剛な barjoint グラフを求める問題は多項式時間で解くことはできないが [7],本論文の成 果により,任意の panel-hinge グラフを任意の次元において最小本数の辺を追加 することにより,冗長剛とすることができる.

1.2 建築デザインへの応用を目的とした研究

1.2.1 既往研究

組合せ剛性理論の成果は分子生物学や機械工学等,様々な分野において応用さ れている [49, 53]. 分子生物学分野においては,分子を構成する原子を剛体とみ なし,原子間の結合や原子間に働く力を棒材によって表現した分子フレームワー クとしてモデル化し,組合せ剛性理論を用いた剛性判定が行われている [53]. 建築学分野への応用に関する研究は、大崎、第二著者ら [32] による、部材同士 が交差しないことを制約として極小剛な 2 次元 bar-joint フレームワークを生成 する手法の研究、岡野、第二著者ら [33] による、グラフの同型性判定を行いなが ら極小剛な 2 次元 bar-joint フレームワークを列挙する手法の開発と、極小剛な 3 次元構造物の模型作成、古田、第二著者ら [17] の研究といった構造分野におけ る研究がある.

折紙は本研究で扱う panel-hinge フレームワークの特殊な場合として捉えるこ とができる. 折紙に関しては形態生成について多くの研究がなされており, Lang による意図した構造を持った形を折り出すための理論 [20] や, それを実現する ためのソフトウェア TreeMaker [21] などが考案されている.

1.2.2 本論文の位置付け

本論文では,組合せ剛性理論に基づいて一般のヒンジ配置ではない剛な panelhinge フレームワークを逐次的に生成する手法を探求する.例えば分子生物学分 野では,一般の配置を前提として,厳密な剛性判定ではなく,高速で精度の良い シミュレーション方法が求められていることから,組合せ剛性理論による剛性判 定が利用されている.本論文では,数値解析による剛性判定と比較してより直感 的な剛性の組合せ的特徴付けを,建築デザインへと応用することを目指し,非一 般のヒンジ配置の剛な panel-hinge フレームワークの生成手法を提案し,建築デ ザインへの応用手法を提案する.

さらに組合せ的な特徴付けが長年未解決である3次元 bar-joint フレームワー クについては,空間充填多面体を用いた3次元の極小剛な bar-joint フレーム ワークの生成手法,剛な panel-hinge フレームワーク生成手法を探求し,建築デ ザインへの応用手法を提案する.

1.3 本論文の目的

本論文は組合せ剛性理論に基づいた剛な構造物の生成手法を探求し, 建築デザ インに応用することを目的とする.構造物の剛性を考えることなく建築形態を実 現することはできない.組合せ剛性理論を建築デザインに応用することにより, 構造物の接続関係から剛性を判定する特性を生かし,設計の初期段階より構造物 の剛性を検討することができる.このことは,通常,建築分野において独立した プロセスである意匠設計と構造設計を,横断的に行うことを可能とし,より魅力 的な建築構造物の実現につながると考える.

1.4 本論文の成果

第2章:構造物の剛性行列と剛性の組合せ的特徴付け.

本論文で扱う構造物である bar-joint フレームワークと panel-hinge フレーム ワークを定義し, 剛性行列による剛性の判定方法を述べる. その後, それぞれの 構造物について, 剛性の組合せ的な特徴付けを述べる.

第3章:極小剛な panel-hinge グラフの逐次的生成手法.

極小剛な panel-hinge グラフの列挙問題を扱う. 極小剛な panel-hinge グラフ を逐次的に導出する操作を開発し, これによりすべての panel-hinge グラフを漏 れなく, 効率よく出力1つあたり多項式時間で生成可能であることを示した.

第4章: Panel-hinge グラフの冗長剛性及び冗長大域剛性の特徴付け.

冗長剛な panel-hinge グラフの組合せ的な特徴づけを行う. 冗長剛な panelhinge グラフとグラフ理論分野で広く知られている, グラフの連結性との関係を 明らかにした.

第5章: 剛な panel-hinge フレームワークの生成手法.

剛な panel-hinge フレームワークを実現する問題を扱う.2枚,3枚の直交パネ ルを追加して剛な panel-hinge フレームワークを生成する方法を開発し,建築デ ザインへの応用に取り組んだ.

第6章: 極小剛な bar-joint フレームワークの生成手法.

極小剛な空間充填立体 bar-joint フレームワークを生成する問題を扱う. 空間 充填立体 bar-joint フレームワークに対して, ブレースを追加することで極小剛 にする手法を示し,提案手法を用いた剛な bar-joint フレームワークの形態生成 を行った.

1.4.1 本論文の構成

本論文では組合せ剛性理論分野における問題を第3章および第4章で扱い, 構造物の生成における問題を第5章,第6章で扱う (図 1.4). 第5章で提案する 剛なフレームワークを生成する操作は,第3章のグラフを逐次的に生成する操作 に基づく.

1.4.2 発表文献

第3章は発表文献 [B] に基づき,第4章は [D] に基づいている. [A] は [B] の 準備段階の論文である.第5章は [E] に基づき,第6章は [F] に基づいている. [C] は [E] の準備段階の論文である.

図 1.4 本論文の構成

第2章

構造物の剛性行列と剛性の組合 せ的特徴付け

2.1 剛性行列

2.1.1 Bar-joint フレームワークの剛性行列

ここでは, bar-joint フレームワークの剛性に関するいくつかの定義と事実を 記す. 組合せ剛性理論において, 3 次元 bar-joint フレームワーク は グラフ G = (V, E) と写像 $\mathbf{p} : V \to \mathbb{R}^3$ の組 (G, \mathbf{p}) で表される. ここで G の各頂 点はジョイントを, 各辺は棒材に対応しており, \mathbf{p} は各ジョイントの配置である. このようなグラフ G のことを bar-joint グラフと呼び, 極小剛な bar-joint フ レームワークとして実現可能な bar-joint グラフのことを, 極小剛な bar-joint グラフと呼ぶ.

辺 $e = (u, v) \in E$ に対応するフレームワークの棒材の長さは $\|\mathbf{p}(u) - \mathbf{p}(v)\|$ により与えられる.棒材は剛であるとし、 $\|\mathbf{p}(u) - \mathbf{p}(v)\|$ はいかなるフレーム ワークの変形のもとでも一定である.フレームワークの連続変形を考えた場合、 $\mathbf{p}(u)$ を変数 t の連続関数, すなわち $\mathbf{p}_t(u)$ として表すことができる.ここで、す べての $v \in V$ に対して、 $\mathbf{p}_0(v) = \mathbf{p}(v)$ が成立すると仮定する.フレームワーク が変形した場合にも、棒材の長さは変わらないことより、以下の式を得る.

$$(\mathbf{p}_t(u) - \mathbf{p}_t(v)) \cdot (\dot{\mathbf{p}}_t(u) - \dot{\mathbf{p}}_t(v)) = 0, \ \forall (u, v) \in E$$
(2.1)

 $\dot{\mathbf{p}}_{0}(v)$ は t = 0におけるジョイント vの速度ベクトルとみなすことができ,単純に, $\dot{\mathbf{p}}(v) = (\dot{x}(v), \dot{y}(v), \dot{z}(v))$ とする. $\mathbf{u}(v) = \dot{\mathbf{p}}_{0}(v)$ とし,t = 0について式(2.1)は以下のように変換できる.

$$(\mathbf{p}(u) - \mathbf{p}(v)) \cdot (\mathbf{u}(u) - \mathbf{u}(v)) = 0, \forall (u, v) \in E$$
(2.2)

式 (2.2) の線形方程式は、以下の行列として表すことができ、

$$R(G, \mathbf{p})\mathbf{u}^{\top} = \begin{bmatrix} \vdots & \ddots & \vdots & \cdots & \vdots & \ddots & \vdots \\ 0 & \cdots & (\mathbf{p}_i - \mathbf{p}_j) & \cdots & (\mathbf{p}_j - \mathbf{p}_i) & \cdots & 0 \\ \vdots & \ddots & \vdots & \cdots & \vdots & \ddots & \vdots \end{bmatrix} \mathbf{u}^{\top} = \mathbf{0}^{\top}$$

行列 $R(G, \mathbf{p})$ は剛性行列 (rigidity matrix) と呼ばれている.

例えば以下の図 2.1 のような 2 次元フレームワークの剛性行列 $R_G(\mathbf{p})$ は以下のようになる.

図 2.1 2次元 bar-joint フレームワーク

	v_1	v_2	v_3	v_4	v_1	v_2	v_3	v_4
e_1	$(p_{x,1} - p_{x,2})$	$p_{x,2} - p_{x,1}$	0	0	$p_{y,1} - p_{y,2}$	$p_{y,2} - p_{y,1}$	0	0)
e_2	0	$p_{x,2} - p_{x,3}$	$p_{x,3} - p_{x,2}$	0	0	$p_{y,2} - p_{y,3}$	$p_{y,3} - p_{y,2}$	0
e_3	0	0	$p_{x,3} - p_{x,4}$	$p_{x,4} - p_{x,3}$	0	0	$p_{y,3} - p_{y,4}$	$p_{y,4} - p_{y,3}$
e_4	$p_{x,1} - p_{x,4}$	0	0	$p_{x,4} - p_{x,1}$	$p_{y,1} - p_{y,4}$	0	0	$p_{y,4} - p_{y,1}$
e_6	$(p_{x,1} - p_{x,3})$	0	$p_{x,3} - p_{x,1}$	0	$p_{y,1} - p_{y,3}$	0	$p_{y,3} - p_{y,1}$	0)

また、この $R(G, \mathbf{p})$ に対して、3 つの独立なベクトル $\mathbf{u}_x = (1, 1, 1, 1, 0, 0, 0, 0)$, $\mathbf{u}_y = (0, 0, 0, 0, 1, 1, 1, 1)$, $\mathbf{u}_r = (-p_{y,1}, -p_{y,1}, -p_{y,1}, -p_{y,1}, p_{x,2}, p_{x,3}, p_{x,4})$ はそれぞれ先の等式を満たすことが確認される. この \mathbf{u}_x は x 軸方向の平行移動, \mathbf{u}_y は y 軸方向の平行移動, また \mathbf{u}_r は反時計まわりの回転に相当する. つまり, これらの線形結合で得られるベクトルも同様に先の等式を満たし、そのような無 限小動き \mathbf{u} を自明な無限小動き (trivial infinitesimal motion) と呼ぶ. 可能な無 限小動きが全て自明なフレームワークを, 無限小剛 (infinitesimally rigid) とい う. またそれ以外のとき, フレームワークは無限小柔軟 (infinitesimally flexible) という.

図 2.2 2 次元上で (a) 無限小剛なフレームワークと (b) 無限小柔軟なフレー ムワーク (矢印が非自明な無限小動きを表す)

どのようなフレームワークに関しても自明な無限小動きの集合の次元は $\binom{d+1}{2}$ であり, $R(G, \mathbf{p})$ が無限小剛であるためには,

rank
$$R(G, \mathbf{p}) = d|V| - \binom{d+1}{2}$$
 (2.3)

が必要十分条件となる.

2.1.2 Panel-hinge フレームワークの剛性行列

パネルの合同変換は同次座標系を用いることで, 平行移動と回転を共に含んだ 4×4の行列 *M* で表すことができる. ここで, 2 つのパネル *B*, *B'* がヒンジ *H* に よって接続されているとし, *H* の両端点の同次座標を $\mathbf{p}_1 = (p_{1,x}, p_{1,y}, p_{1,z}, 1)$, $\mathbf{p}_2 = (p_{2,x}, p_{2,y}, p_{2,z}, 1)$ とする (図 2.3). そして, パネルの動きを表す行列 *M*, *M'* がそれぞれ *B*, *B'* に与えられているとする. このとき, ヒンジによる制約は $M\mathbf{p}_1 = M'\mathbf{p}_1, M\mathbf{p}_2 = M'\mathbf{p}_2$ と表すことができる. この等式を微分して, 以下 の式が得られる.

$$M\mathbf{p}_i = M'\mathbf{p}_i \quad \text{for } i = 1,2 \tag{2.4}$$

図 2.3 2 枚のパネルがヒンジにより接続されている

$$I$$
 および I' は B, B' に割り当てられた無限小動きとみなすことができる. $I = \begin{pmatrix} R & v^{\top} \\ 0 & 0 \end{pmatrix}$ とあらわすことができると知られている. ここで R

は
$$R = \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix}, v = (v_x, v_y, v_z) \in \mathbb{R}^3$$
である. 同様に I' も $\begin{pmatrix} R' & v'^{\mathsf{T}} \\ 0 & 0 \end{pmatrix}$ と表わすことができる. (2.4) に代入して整理すると以下の式が得られる.

$$\left(\begin{vmatrix} \omega_{y} - \omega'_{y} & \omega_{z} - \omega'_{z} \\ p_{1,y} & p_{1,z} \end{vmatrix} + v_{x} - v'_{x}, \begin{vmatrix} \omega_{z} - \omega'_{z} & \omega_{x} - \omega'_{x} \\ p_{1,z} & p_{1,x} \end{vmatrix} + v_{y} - v'_{y}, \\ \begin{vmatrix} \omega_{x} - \omega'_{x} & \omega_{y} - \omega'_{y} \\ p_{1,x} & p_{1,y} \end{vmatrix} + v_{z} - v'_{z}, \begin{vmatrix} \omega_{y} - \omega'_{y} & \omega_{z} - \omega'_{z} \\ p_{1,y} - p_{2,y} & p_{1,z} - p_{2,z} \end{vmatrix}, \\ \begin{vmatrix} \omega_{z} - \omega'_{z} & \omega_{x} - \omega'_{x} \\ p_{1,z} - p_{2,z} & p_{1,x} - p_{2,x} \end{vmatrix}, \begin{vmatrix} \omega_{x} - \omega'_{x} & \omega_{y} - \omega'_{y} \\ p_{1,x} - p_{2,x} & p_{1,y} - p_{2,y} \end{vmatrix} \right) = 0$$

となり,次の等式をみたすtが存在する.

$$(\omega - \omega', v - v') = t \left(\begin{vmatrix} p_{1,x} & 1 \\ p_{2,x} & 1 \end{vmatrix}, - \begin{vmatrix} p_{1,y} & 1 \\ p_{2,y} & 1 \end{vmatrix}, \begin{vmatrix} p_{1,z} & 1 \\ p_{2,z} & 1 \end{vmatrix}, \\ \begin{vmatrix} p_{1,y} & p_{1,z} \\ p_{2,y} & p_{2,z} \end{vmatrix}, \begin{vmatrix} p_{1,z} & p_{1,x} \\ p_{2,z} & p_{2,x} \end{vmatrix}, \begin{vmatrix} p_{1,x} & p_{1,x} \\ p_{2,x} & p_{2,y} \end{vmatrix} \right)$$
(2.5)

式 (2.5) の左辺はヒンジでつながれた両側の剛体の無限小動きを表わしており, 右辺の 6 次元ベクトルはヒンジによる制約を表している.

無限小動きの定義より, すべての $e = uv \in E$ について, 以下の等式を満たす 無限小動きに直交するベクトル $r_i(\mathbf{p}(e))(1 \le i \le 5)$ をとることができ, このと き *S* を (*G*, **p**) の無限小動きとよぶ.

$$(S(u) - S(v)) \cdot r_i(\mathbf{p}(e)) = 0$$

すなわち,式 (2.4) の無限小動きは 5|E| 個の等式で記述され, 5 $|E| \times 6|V|$ の 行列 $R(G, \mathbf{p})$ を

とする. ここで, $r(\mathbf{p}(e))$ は 5×6 の行列であり, $r(\mathbf{p}(e)) = \begin{pmatrix} r_1(\mathbf{p}(e)) \\ \vdots \\ r_{D-1}(\mathbf{p}(e)) \end{pmatrix}$ であ る. この $R(G, \mathbf{p})$ が panel-hinge フレームワークの剛性行列であり, $R(G, \mathbf{p})$ の ランクが 6(|V|-1) と等しい場合, そのフレームワークは剛であることが知られ ている [14]. $R(G, \mathbf{p})$ が, すべての部分グラフにおいて最大のランクをもつとき, そのフレームワークは一般的であるという [12].

2.2 剛性の組合せ的特徴付け

2.2.1 剛な bar-joint フレームワークの組合せ的特徴付け

以下の定理は Maxwell の条件として知られている [25].

定理 2.1 (Maxwell [25]). 伸び縮みのない |E|本の棒材と |V| 個のジョイントで 構成された 3 次元 bar-joint フレームワークが剛であるためには $|E| \ge 3|V| - 6$ が必要条件である.

さらに Alexandrov [1] は以下の定理を示している.

定理 2.2 (Alexandrov [1]). 任意の凸多面体の各面を三角形分割した bar-joint フレームワークは剛である.

図 2.4 (a) D = 6 のとき,図 1.3(c) のフレームワークに対応するグラフの 各辺を D - 1 (= 5) 本の辺で置き換えてできたグラフ \tilde{G} . (b) \tilde{G} における 6 個の辺素な全域木

2.2.2 剛な panel-hinge フレームワークの組合せ的特徴付け

2.1.2 節では, すべてのヒンジ配置について剛性判定が可能な手法について述 べてきた.一方で, 剛性行列のランク計算はその複雑さから, 構造物の部材数が 多くなるにつれて困難となり, 数値誤差も生じやすくなる.そのため, 一般的な ヒンジ配置を前提とした組合せ的な特徴付けが有用となる.

body-hinge フレームワークの各剛体を剛なパネルで置き換えたフレームワー クが panel-hinge フレームワークである (図 1.3(c)). Katoh と Tanigawa [14] は以下の命題を示した.

命題 2.1 (Katoh et al. [14]). G = (V, E) をグラフとする. G が \mathbb{R}^d において 無限小剛な body-hinge フレームワークとして実現可能であるための必要十分条 件は G は \mathbb{R}^d において無限小剛な panel-hinge フレームワークとして実現可能 であることである.

このことから,一般的なヒンジ配置の剛な panel-hinge フレームワークの組合 せ的な特徴付けは以下である.

命題 2.2 (Katoh et al. [14]). グラフ *G* の各辺を 5 本の多重辺で置き換えたグ ラフを \tilde{G} とする. \tilde{G} が 6 個の辺素な全域木をもつことは, *G* が \mathbb{R}^3 において一 般的なヒンジ配置をとる剛な panel-hinge フレームワークとして実現可能であ ることの必要十分条件である.

図 2.4(a) は図 1.3(c) の panel-hinge フレームワークに対応するグラフであ る. $G \ge 5$ 重化したグラフ \tilde{G} には図 2.4(b) のように 6 つの辺素な全域木を詰 込むことが可能であり, 命題 2.2 は 3 次元上に一般的なヒンジ配置をとる剛な panel-hinge フレームワークを実現可能であることを示している.

ここで,無限小剛な panel-hinge フレームワークに対応するグラフのことを 剛な panel-hinge グラフと呼ぶ. さらに,極小で無限小剛な panel-hinge フレー ムワークに対応するグラフのことを極小剛な panel-hinge グラフと呼ぶ.

多重辺を含むが自己ループを持たない多重グラフをG = (V, E)とする. $X \subseteq V$ について,G[X]をXにより誘導されるグラフとし, $\delta_G(X) = \{uv \in E \mid u \in X, v \notin X\}$ とする. 任意の正の整数をmとし, $1 \leq i, j \leq m, i \neq j$ と し, $\cup_{i=1}^{m} V_i = V$ としたとき,頂点の部分集合の集合 $\{V_1, V_2, \ldots, V_m\}$ をVの 分割 Pとする. $\delta_G(\mathcal{P})$ を, \mathcal{P} において別の頂点集合間をつなぐGの辺集合とす る. $\tilde{E} \notin \tilde{G}$ の辺集合とする. 以下のTutte-Nash-Williamsの辺素な木に関する 定理が知られている [31, 45].

命題 2.3 (Tutte, Nash-Williams [31, 45]). 多重グラフG = (V, E) に k 個の 辺素な全域木を詰め込み可能であることは、Vのすべての分割 \mathcal{P} について $|\delta_G(\mathcal{P})| \ge k(|\mathcal{P}| - 1)$ が成り立つことが必要十分条件である.

2.3 結語

本章では, bar-joint フレームワーク, panel-hinge フレームワークの剛性行列 を定義した. さらに組合せ剛性理論において, これまでに明らかとなっている, bar-joint フレームワーク, panel-hinge フレームワークについての組合せ的な特 徴付けを述べた.

第3章

極小剛な panel-hinge グラフの逐 次生成手法

3.1 序説

一般の2次元の bar-joint フレームワークが無限小剛であるための必要十分条 件は Laman [19] により示されている. Laman グラフは Henneberg 構築によっ て生成可能であることが知られており, すべての Laman グラフが Henneberg 構築によって生成可能であることも示されている [9, 49]. さらに, マトロイド の性質を用いることによって, [46] のアルゴリズムにより, 効率よくすべての Laman グラフを列挙することが可能である. 一方で, 一般の3次元の bar-joint フレームワークの組合せ的な特徴づけについては未解決である [49].

3 次元 bar-joint フレームワークの特殊な場合である body-bar フレーム ワーク, panel-hinge フレームワークについては組合せ的な特徴づけは Tay と Whiteley [43, 48] によりなされている. body-bar フレームワーク (図 1.3(a)) は剛な棒材でつながれた剛体の集合であり,剛体は頂点,棒材は辺に対応させ た body-bar グラフとして表現される. d 次元において,一般的配置の極小剛な body-bar フレームワークに対応する極小剛な body-bar グラフが, D 個の辺素 な全域木によって特徴づけられることが知られている [42]. D 個の辺素な全域 木は D 個のグラフィックマトロイドの和集合とみなすことができ, [46] のアル ゴリズムを用いることにより, すべての極小剛な body-bar グラフを列挙する多 項式時間アルゴリズムを容易に開発することができる. さらに, d 次元の極小剛 な body-bar グラフを逐次的に生成する方法も知られている [5].

一方で, 極小剛な panel-hinge グラフについては, これまで逐次的な生成手法 は知られていなかった. Katoh と Tanigawa は極小剛な panel-hinge グラフが 与えられた時,より小さなサイズの極小剛な panel-hinge グラフを生成する 2 つ の操作 (極小剛な真部分グラフを縮約する操作と次数 2 の頂点を 1 つ除いて辺を 追加する操作 splitting off) については示している [14].

本章では $d \ge 3$ とした時, d 次元において単純グラフである極小剛な panelhinge グラフを逐次的に生成する 5 つの操作を開発した (詳細は 3.2 節を参照). より正確には, 以下の定理を示した.

定理 3.1. 任意の極小剛な panel-hinge グラフ G が与えられたとき, 5つの操作 のうち少なくともひとつを適用することができ,頂点数が 1 または 2,G よりも 大きい単純グラフである極小剛な panel-hinge グラフを得ることができる. さら に,各操作は多項式時間で実行可能である.

定理 3.2. 三角形グラフから開始し,5つの操作の操作列を施すことによって, 任意の単純グラフである極小剛な panel-hinge グラフを得ることができる.

多重グラフである panel-hinge グラフは工学的な観点からは重要ではないので、本研究では、単純グラフである panel-hinge グラフに着目する.

多重辺を含むが自己ループを持たない多重グラフをG = (V, E)とする. $X \subseteq V$ について,G[X]をXにより誘導されるグラフとし, $\delta_G(X) = \{uv \in E \mid u \in X, v \notin X\}$ とする. $X = \{v\}$ について,単体のみによる集合を記述する際に,集合を表す括弧を例えば $\delta_G(\{v\})$ は $\delta_G(v)$ とするように省略する.本章において,任意の正の整数をmとし, $1 \leq i, j \leq m, i \neq j$ とし, $\cup_{i=1}^m V_i = V$ としたとき,項点の部分集合の集合 $\{V_1, V_2, \ldots, V_m\}$ を V の分割 \mathcal{P} とする. $\delta_G(\mathcal{P})$ を, \mathcal{P} において別の頂点集合間をつなぐ G の辺集合とする. \tilde{E} を \tilde{G} の 辺集合とする. さらに \tilde{e} を \tilde{E} の辺 e を D-1 個の平行な辺に置き換えた辺の集 合とする. $1 \leq i \leq D-1$ とし, \tilde{e} の辺を e_i とインデックスをつけ, \tilde{e} の i 番目 の辺と表すこととする.

Katoh と Tanigawa [14] は極小剛な panel-hinge グラフ G = (V, E) から,より小さな極小剛な panel-hinge グラフを生成する 2 つの操作を示した.

一つ目の操作は剛な真部分グラフを縮約する操作である. ここで、1 < |V'| < |V|を満たす G の部分グラフ G' = (V', E')が剛であるとき、G'を剛な真部分 グラフと呼ぶ (図 3.1(a)).

二つ目の操作は, *splitting off* と呼ばれる操作である (図 3.1(b)). *G* の頂点 *v* について, *G* において *v* が隣接する頂点の集合を $N_G(v)$ とする. 次数 2 の頂点 についてのみ splitting off の操作を行うことができる. ここで $N_G(v) = \{a, b\}$ とする. G_v^{ab} を, *G* から *v* と *v* に接続する辺を除き,新たな辺 *ab* を追加してで きるグラフとする. したがって, G_v^{ab} は *va* または *vb* を縮約してできるグラフ と同型である.

剛な真部分グラフには様々な頂点数のグラフを考えることができ,縮約の逆操 作によって,より大きな極小剛なグラフを生成すると頂点数が突然大きいグラフ ができることとなり,列挙することができない.

したがって,これら2つの逆操作のみによって,直接的にすべての極小剛な panel-hinge グラフを多項式時間で列挙するアルゴリズムは構築できないことに 注意する.

さらに,以下の6つの補題が知られている [14].

補題 3.1. [14] 剛な panel-hinge グラフを G とする. このとき G は 2 辺連結グ ラフである.

以下の補題は、極小剛な panel-hinge グラフの剛な部分グラフを縮約してでき

Proper rigid subgraph

図 3.1 (a) 真に剛な部分グラフを縮約する操作 (b) 次数 2 の頂点に対して splitting off の操作を行う.

るグラフが,より小さなサイズの極小剛な panel-hinge グラフであることを示している.

補題 **3.2.** [14] 多重グラフである極小剛な panel-hinge グラフを G = (V, E) と し, G の剛な部分グラフを G' = (V', E') とする. このとき G に対して E' を縮 約してできるグラフは多重グラフである極小剛な panel-hinge グラフである.

剛な真部分グラフを持たない極小剛な panel-hinge グラフに着目したとき,頂 点の個数により,辺の本数の上限が以下の補題によって与えられる.

補題 **3.3.** [14] 剛な真部分グラフを持たない,多重グラフである極小剛な panelhinge グラフを G = (V, E) とする. このとき,以下が成り立つ.

$$(D-1)|E| < D(|V|-1) + D - 1$$
(3.1)

以下の補題は次数が低い頂点が存在していることを示している.

補題 3.4. [14] 剛な真部分グラフを持たない,多重グラフである極小剛な panelhinge グラフを G = (V, E) とする.このとき,G はサイクルグラフであるか, $0 \le i \le d-1$ において $v_i v_{i+1} \in E$ のような長さ d の鎖 v_0, v_1, \ldots, v_d を含み, $1 \le i \le d-1$ において $|\delta_G(v_i)| = 2$ が成り立つ.

以下の補題は極小剛な panel-hinge グラフ G において G_n^{ab} は常に剛であるこ

とを示している.

補題 **3.5.** [14] 剛な panel-hinge グラフを G = (V, E) とする. このとき, $N_G(v) = \{a, b\}$ とする次数 2の任意の頂点 v について, G_v^{ab} は剛な panel-hinge グラフである.

splitting off は一般に極小性は保証していない. しかし剛な真部分グラフを持たない極小剛な panel-hinge グラフについては splitting off を行ってできるグラフは極小剛となる.

補題 3.6. [14] 剛な真部分グラフを持たない,極小剛な panel-hinge グラフをG = (V, E) とする. このとき, $N_G(v) = \{a, b\}$ とする次数 2の任意の頂点 v について, G_n^{ab} は極小剛な panel-hinge グラフである.

本章の構成は以下の通りである. 3.2 節では 5 つの操作を導入し,定理 3.1 を 証明する. 3.3 節では定理 3.2 を証明する. 3.4 節では本章の結語を述べる.

3.2 極小剛な panel-hinge グラフを逐次的に生成する 5 つの操作

頂点数を $n \ge 0$ $n \ge 3 \ge 3$ こする. 単純グラフである極小剛な panel-hinge グラ フ G = (V, E) について考える. n = 3 のとき, G は三角形グラフである. G よ りも頂点数が 1 または 2 大きい単純グラフである極小剛な panel-hinge グラフ G' = (V', E') を生成する以下の 5 つの操作を定義する.

操作 1 (edge-split): ある辺 ab を選び, ab に対して新たに頂点 v を追加してで きるグラフが剛であるとき,頂点を追加する (図 3.2(1)).

操作 2 (edge-split plus 1-addition): 以下を満たす V の頂点分割 P が存在する
場合を考える.

$$(D-1)|\delta_G(\mathcal{P})| = D(|\mathcal{P}|-1) \tag{3.2}$$

 $\mathcal{P} = \{V_1, V_2, \dots, V_m\}$ とする. ある辺 $ab \in \delta_G(\mathcal{P})$ に対して, abに対して新たに頂点 v を追加する. $1 \leq i, j \leq m, i \neq j$ としたとき, $x \in V_i, y \in V_j$ となり, 辺 ab を $E \cup \{va, vb\} \setminus \{ab\}$ に追加することによって Gよりできるグラフ H が極小剛となる頂点 $x, y \in V$ を見つける. このとき辺 xy を追加する (図 3.2(2)). 次節では常にこのような辺 xy が存在することを示す.

操作 **3** (vertex 2-addition): 新たに頂点 *v* を追加し, 頂点 *a*, *b* を選び, 辺 *va*, *vb* を追加してできるグラフが極小剛であるとき, この操作を行う (図 3.2(3)).

操作 4 (triangle-addition): 任意の頂点 a を選び, 新たに頂点 v_1 と v_2 , 辺 v_1a , v_1v_2 , v_2a を追加する (図 3.2(4)).

操作 5 (triangle-expansion): 任意の頂点 *a* を選択する. *a* の次数を *d* とする. 頂点 *b* と *c* が少なくともひとつ, *a* の隣接頂点につながった三角形グラフ *v*, *b*, *c* で *a* を置き換えることで *G* からできるグラフを *H* とする. この操作は操作後のグラフが極小剛である場合にのみ行う (図 3.2(5)). より正確には, $N_G(a) = \{v_1, v_2, ..., v_p\}$ とし, *p*' を $2 \le p' \le p$ を満たす正の整数とする. $V' = V \cup \{b, c\} \setminus a, E' = E \cup \{v_i b : 1 \le i \le p' - 1\} \cup \{v_i c : p' \le i \le p\} \setminus \{v_i a : 1 \le i \le p\}$ とする H = (V', E') とする.

3.2.1 定理 3.1 の証明

5 つの操作のうちの 1 つを施してできるグラフを *H* = (V′, E′) とする.

(1) edge-split (\boxtimes 3.2(1)).

H が極小であることを示す.背理法を用いるために H が極小ではない,すなわち冗長な辺 f が H に存在すると仮定する.従って f を取り除いても H は剛で

図 3.2 極小剛な panel-hinge グラフを逐次的に生成する操作

図 3.3 D = 6の時の操作1に関する図. (a) 極小剛な panel-hinge グラフ G と G に対応する \tilde{G} . (b) 操作1をG に対して行ってできるグラフ H と H に対応する \tilde{H} .

ある. v は次数 2 であるので, $f \neq va, vb$ である. よって $f \in E$ である. $H \setminus \{f\}$ は剛であるので, 補題 3.5 より $H_v^{ab} \setminus \{f\}$ もまた剛である. $H_v^{ab} = G$ より G が 冗長であることとなり, G が極小剛であることに反する. 従って, H は極小剛 な panel-hinge グラフである.

(2) edge-split plus 1-addition (\boxtimes 3.2(2)).

はじめに H が剛であることを示す. $(D-1)|\delta_G(\mathcal{P})| = D(|\mathcal{P}|-1)$ より, $\mathcal{P}' =$

図 3.4 D = 6の時の操作 2 に関する図. (a) 極小剛な panel-hinge グラフ G と G に対応する \tilde{G} . (b) 操作 2 を G に対して行ってできるグラフ H と H に対応する \tilde{H} .

 $(V_1, V_2, ..., V_m, V_{m+1} (= \{v\}))$ は命題 2.3 の条件を満たしていないので *ab* を edge-split してできたグラフは剛ではない. そこで, $1 \le i, j \le m, i \ne j$ とした とき, $x \in V_i, y \in V_j$ とし, $E \cup \{va, vb\} \setminus ab$ に辺 xy を追加することで G よりで きるグラフ H を剛とするような辺 xy が常に存在することを示す. そのような 辺 xy が存在することを適確と呼ぶこととする. このことを示すために, ab が適 確であることを示す. 辺 ab_j を使用する全域木を T_j $(1 \le j \le D - 1)$ とし, \tilde{ab} を使用しない全域木を T_D とするような \tilde{G} における D 個の辺素な全域木を T_j $(1 \le j \le D)$ とする (図 3.4(a)). T_1, \ldots, T_D において $j = 1, 2, \ldots, D - 2$ とし, $T'_j = T_j \cup \{va_j, vb_j\} \setminus \{ab_j\}, T'_{D-1} = T_{D-1} \cup \{va_{D-1}, ab_1\}, T'_D = T_D \cup \{vb_{D-1}\}$ とする (図 3.4(b)). このとき T'_1, \ldots, T'_D は明らかに \tilde{H} において辺素な全域木 である. よって H は剛である. しかし, 極小剛ではない場合がある.

操作を行ってできるグラフが極小剛であるときのみ,この操作は行うこととし,グラフが極小剛であるかの判定は例えばペブルゲームアルゴリズムを用いることで調べることができる [22].

(3) vertex 2-addition (\boxtimes 3.2(3)).

図 3.5 D = 6の時の操作 3 に関する図. (a) 極小剛な panel-hinge グラフ G と G に対応する \tilde{G} . (b) 操作 3 を G に対して行ってできるグラフ H と H に対応する \tilde{H} .

H が剛であることを示す. va_j または $vb_{j'}$ を追加することにより, \tilde{G} の D 個の 辺素な全域木 T_j $(1 \le j \le D)$ から D 個の辺素な全域木 T'_j $(1 \le j \le D)$ を \tilde{H} についてとることができることを示す (図 3.5(b)). $\tilde{va} \cup \tilde{vb}$ の辺数は 2(D-1)であることから,常に可能である. 従って, vertex 2-addition によって得られる グラフ H もまた剛である. 一方で常に極小であるとは限らないので,この操作も また,操作後のグラフが極小剛であるときにのみ行う.

(4) triangle-addition (\boxtimes 3.2(4)).

H が極小剛な panel-hinge グラフであることを示す. グラフ G は極小剛な panel-hinge グラフであるので, \tilde{G} には D 個の辺素な全域木が存在する. F を三 角形グラフとし, ここで F は極小剛な panel-hinge グラフである. このとき, \tilde{F} には D 個の辺素な全域木が存在する (図 3.6(a)). G と F は単一の頂点 a を共有 するので, $\tilde{G} \ge \tilde{F}$ の全域木の和集合は明らかに \tilde{H} の全域木となる (図 3.6(b)). G と F のが極小剛であることから H も明らかに極小である. 従って H は極小 剛な panel-hinge グラフである.

図 3.6 D = 6の時の操作4に関する図. (a) 極小剛な panel-hinge グラフ G と G に対応する \tilde{G} . (b) 操作4をG に対して行ってできるグラフ H と H に対応する \tilde{H} .

(5) triangle-expansion (\boxtimes 3.2(5)).

H が剛であることを示す.F = vbcを三角形グラフとする.このとき F は極小剛な panel-hinge グラフである.従って \widetilde{F} には D 個の辺素な全域木が存在する (図 3.7(a)). G'を H から v 及び接続する辺 vb と vc を除き bc としたグラフとする.

Gの全域木を T としたとき, 1 辺が a に接続するとき (その辺を $v_i a$ と呼ぶ), 1 $\leq i \leq p' - 1$ として G' の部分グラフ S_T の $v_i b$ に対応させ, それ以外を $v_i c$ と するような S_T を自然に定義することができる.

より丁寧に言えば、ST の辺集合は以下によって定義される.

 $\{e \in T \mid e \text{ is not incident to } a\} \cup \{v_i b \mid v_i a \in T, 1 \le i \le p' - 1\}$ $\cup \{v_i c \mid v_i a \in T, p' \le i \le p\}$

このとき, F の全域木と ST の和集合が H の全域木であることは容易に確認

図 3.7 D = 6の時の操作 5 に関する図. (a) 極小剛な panel-hinge グラフ $G \geq G$ に対応する \tilde{G} . (b) 操作 5 を Gに対して行ってできるグラフ $H \geq H$ に対応する \tilde{H} .

図 3.8 D = 6の時の操作 5 に関する図.操作 5 を行なって極小剛ではない panel-hinge グラフができる例.

できる. すなわち triangle-expansion によってできるグラフ H は剛である.

しかし, 操作 5 によってできるグラフは常に極小剛であるとは限らない. 図 3.8 に示す極小剛な panel-hinge グラフ *G* について, 三角形 *v*,*b*,*c* によって頂点 *a* を置き換えてできるグラフ *H* を考える. *H* から辺 *bc* を除いてできるグラフが 剛であることから *H* は冗長なグラフである.

最後に5つの操作が多項式時間で実行可能であることを示す. (3.2)を満たす

*P*を多項式時間で見つけることができる (より正確には,最大流 O(n) で計算す
ることを応用することで可能である [35]).操作 2 を行う際に辺 xy を追加するこ
とによってできるグラフが剛であるかの確認はペブルゲームアルゴリズム [22]
を用いることによって O(n²) で可能である.その他の 4 つの操作も多項式時間
で実行可能である.
□

3.3 定理 3.2 の証明

本節では定理 3.2 の証明を行う. はじめに以下の 3 つの補題を示す.

補題 3.7. $G' = (V', E') \ge |V'| \ge 3 \ge 0$, 剛な真部分グラフを含まない, 単純 グラフである極小剛な panel-hinge グラフとする. このとき, 次数 2 の頂点数は (D-3)|V'|/(D-1) + 2/(D-1)以上である.

証明 補題 3.3 より,以下が成り立つ.

$$(D-1)|E'| < D(|V'|-1) + (D-1)$$
(3.3)

次数 2 の頂点数を k とする. このとき |V'| – k 個の次数 2 よりも大きい頂点が 存在することとなる. これより以下が成り立つ.

$$2k + 3(|V'| - k) \le 2|E'| \tag{3.4}$$

式 (3.3) と 式 (3.4) より

 $2(D-1)k + 3(D-1)(|V'| - k) \le 2(D-1)|E'| \le 2D(|V'| - 1) + 2(D-1)$

その結果,以下が得られる.

$$k \ge (D-3)|V'|/(D-1) + 2/(D-1) \qquad \Box$$

補題 **3.8.** 多重グラフである極小剛な panel-hinge グラフを G = (V, E) とする.

図 3.9 頂点 a, b 間の 2 重辺を縮約した後に 2 重辺ができる場合.

このとき, (a) G は 2 つより多い多重辺を持たない. (b) 二重辺を 1 つの頂点に 縮約して新たに多重辺ができることはない.

証明 (a) G が頂点 $a \ge b$ の間に三重辺を持つと仮定する. $\tilde{G} \ge \tilde{G}$ の D 個の辺 素な全域木について考える. このとき \tilde{G} は高々 D が D 個の辺素な全域木に用 いられる辺 3(D-1) $D \ge 6$ 及び $2(D-1) \ge D$ より $a \ge b$ の三重辺の少なくと も 1 辺は冗長である.

(b) 二重辺を縮約した後のグラフも, 補題 3.3 より極小剛である. 二重辺を縮約 することによってできるグラフに新しい二重辺ができると仮定する. これは二 重辺 $e \ge e'$ が頂点 $a, b \in V$ の間に存在することであり, さらに頂点 $a \ge b$ は共 通の隣接頂点 v を持つ (図 3.9). e または e' が冗長であり, G の極小性に反する. 従って二重辺を縮約することによって新たに二重辺はできない.

以下の補題は定理 3.2 の証明において重要な役割を担う.

補題 **3.9.** $|V| \ge 3$ とし,単純グラフである極小剛な panel-hinge グラフ G = (V, E) には少なくとも 1 つ次数 2 の頂点が存在する.

証明 背理法を用いるために, すべての頂点の次数が3以上である単純グラフで ある極小剛な panel-hinge グラフ G が存在すると仮定する.以下の2つの場合 を考える.

場合 1. G が剛な真部分グラフを持たない場合.

各頂点の次数が3以上であるので、以下が成り立つ.

$$3|V| \le 2|E| \tag{3.5}$$

補題 3.3 及び式 (3.5) より

$$3(D-1)|V| \le 2(D-1)|E| \le 2D(|V|-1) + 2(D-1)$$
(3.6)

その結果 $(D-3)|V| \le -2$ となり, $|V| \ge 3$ に反する.

場合 2. G が剛な真部分グラフを持つ場合.

各項点の次数が 3 以上であるすべての極小剛な panel-hinge グラフ G の中から 最小の頂点数のグラフを選ぶ. G' = (V', E') を G の最小の頂点数の真部分グラ フとする. 仮定より G は次数 2 の頂点を持たず,補題 3.7 より $|\delta_G(V')| \ge 3$ と なる. G' を頂点 s に縮約してできるグラフを G'' とし,以下の 2 つの場合につい て考える. 補題 3.2 より, G'' は極小剛な panel-hinge グラフである.

場合 2A. G" が二重辺を持たない場合.

このとき, G'' は単純グラフである極小剛な panel-hinge グラフである. さらに $|\delta_G(V')| \ge 3$ より s の次数は 3 以上であり, G についての仮定より, 他の頂点の 次数についても 3 以上である. これは G の頂点数が最小であることに反する.

場合 2B. G" が二重辺を持つ場合.

このとき, *G'* と *G* \ *G'* をつなぐ辺は *G* \ *G'* の頂点を共有する (図 3.11). *G'* を単一の頂点に縮約した後, いくつかの二重辺の集合が存在する. すべての二重 辺を単一の頂点に縮約した後, 補題 3.8 より縮約した後のグラフは二重辺を持た ない.

主張 **3.1.** *G*["] について *s* に隣接する頂点数が *3* 以上のとき, *s* に接続するすべての多重辺を縮約してできるグラフに次数 *2*の頂点は存在しない.

証明 v₁,...,v_l を s に隣接する頂点とする. 多重辺が存在する場合を考える. s

図 3.10 s' に隣接する頂点

と v_i $(1 \le i \le k)$ の間に多重辺が存在し, $s \ge v_j$ $(k+1 \le j \le l)$ の間に単一の辺 が存在すると仮定した場合にも一般性は失われない (図 3.10). v_1, \ldots, v_k の次数 は 3 以上なので, v_1, \ldots, v_k の各頂点は s 以外の頂点に少なくとも 1 つ隣接する. v_i $(1 \le i \le k)$ について $w \ge v_i$ の s 以外の隣接する頂点とする. $w \ne v_1, \ldots, v_k$ であることを背理法によって示す. 三角形グラフは極小剛な panel-hinge グラフ であるので, v_i , w, s の誘導部分グラフは冗長である. G'' は冗長となり, G'' が 極小剛であることに反する. したがって, $1 \le j \le k$ の時, 任意の j について $w \ne v_i$ が成立する.

 $s' \in s \geq v_l$ の間のすべての多重辺を縮約してできる頂点とし, G'''をすべて の多重辺を縮約してできるグラフとする. このとき $|\delta_{G'''}(s')| \geq l \geq c$ なる. $l \geq 3$ より, s に接続するすべての多重辺を縮約して次数 2 の頂点ができることはな い.

補題 3.4 より, *G*' は (*D* + 1) 以上の頂点数のグラフ,または頂点数 *D* 以下の サイクルグラフであるので、それぞれの場合について考える.

場合 2B-a. *G'* の頂点数が *D* + 1 以上の場合. *G'* の頂点数が最小であるので, *G'* は剛な真部分グラフを持たない. 従って補題 3.7 より, *G'* は *D* − 1 以上の次 数 2 の頂点を持つ. *G'* と *G* \ *G'* の間に *D* − 1 本以上の辺が存在することとなる.

補題 3.7 より $|\delta_{G''}(s)| = |\delta_G(V')| \ge D - 1$ が成り立つ.補題 3.2 より G'' は極小剛であり, G'' は補題 3.8 より 2 より多い多重辺は持たない.従って, G'' に

図 3.11 G'の頂点数は高々 D+1 (図は D=6の場合)

図 3.12 (a) *G*' はサイクルグラフ (b) *G*'' について, *G*' を縮約してできる頂 点 *s* は 2 つの隣接頂点を持つ.

おいて *s* に隣接する頂点数は $\lceil (D-1)/2 \rceil$ 以上であり, $D \ge 6$ より 3 以上であ る. このことから, この場合は主張 3.1 が適応できる. したがって, 縮約によって 次数 2 の頂点ができることはない. 従って, 縮約によって各頂点が次数 3 以上の 単純グラフである極小剛な panel-hinge グラフができるが, このことは *G* の頂点 数の最小性に矛盾する.

場合 2B-b. G' が頂点数 D 以上のサイクルグラフの場合.

 $G' \geq G \setminus G'$ の間の3辺が $G \setminus G'$ の頂点を共有しているとき,そのうちの1辺 は冗長であり,Gが極小剛であることに矛盾する.

従って, $G' \geq G \setminus G'$ の間の2辺が $G \setminus G'$ の頂点を共有している場合を考える.

va, vb がそのような辺であるとする. このとき補題 3.1 より, 剛な panel-hinge グラフは 2-辺連結であるので, G'の頂点 $a \ge b$ の間には辺素な経路 P_1, P_2 が存 在する (図 3.12(a)). G'は G の最小の剛な真部分グラフであるので,以下が成 り立つ.

$$|P_1| + |P_2| \le |P_1| + 2, |P_1| + |P_2| \le |P_2| + 2 \tag{3.7}$$

成立しないとした時,サイクルグラフ $P_1 \cup \{va, vb\}$ または $P_2 \cup \{va, vb\}$ の頂 点数が G'よりも小さいこととなり,Gのすべての剛な真部分グラフの中で最小 の頂点数であるように G'を選んだことに反する. $|P_1| \leq 2$ かつ $|P_2| \leq 2$ である ので以下の場合を考える.

場合 2B-b-i. $|P_1| = 1$ and $|P_2| = 1$.

このとき、多重グラフとなり、Gが単純グラフであることに反する.

場合 2B-b-ii. $|P_1| = 2$ and $|P_2| = 1$.

G'が頂点数3以上のサイクルグラフであるとき、 $V' \cup v$ の誘導部分グラフは明 らかに冗長であり、Gの極小性に反する.

場合 2B-b-iii. $|P_1| = 2$ and $|P_2| = 2$.

 $c \geq d$ がそれぞれ P_1, P_2 に含まれる頂点であるとする. $E_x \in x \in V' \geq G \setminus G'$ をつなぐ辺の集合であるとする. $adbc \in G'$ の閉路とする. G'はサイ クルグラフであるので, adbcは $G' \geq -$ 致する. Gの各頂点は次数 3 以上であ り, $\delta_G(V') = 4 \geq x$ るる. $G \setminus G'$ における $\delta_G(V')$ の端点の集合を $W \geq y$ るる. $|W| \geq 3$ のとき, $G' \in 項点 s$ に縮約した後,補題 3.1 が適応できる. さらに G''の多重辺を縮約することで,各頂点の次数が 3 以上の単純グラフである極小剛な panel-hinge グラフができる. これは,次数が 3 以上のすべての単純グラフであ る極小剛な panel-hinge グラフにおいて, G が頂点数最小であることに反する. 従って, $|W| = 2 \geq (wc)$ する. $W = \{v, v'\} \geq y$ る. この場合,図 3.12(b)のよう な状況である. このとき,頂点 v, a, c, v', d, bで構成される 6-閉路が存在し, 6-閉 路は極小剛な panel-hinge グラフであるので辺 ad, bc は冗長であるので, Gの極小性に反する. 従って, G' は D 以上のサイクルグラフではない.

場合1及び2より,単純グラフである極小剛な panel-hinge グラフにおいて次数2の頂点は1つ以上存在する. □

単純グラフである極小剛な panel-hinge グラフにおける頂点数の帰納法によっ て証明する. 基本的な場合として,三角形グラフは明らかに単純グラフである極 小剛な panel-hinge グラフであり,定理を満たす.

 $n \ge 4$ として, 頂点数がn-1以下の任意の極小剛な panel-hinge グラフを, 三 角形グラフから始める 5 つの操作の操作列によって生成可能であると仮定する. 頂点数 n の極小剛な panel-hinge グラフ G = (V, E) が存在すると仮定する. Gに対して, 5 つの操作のうちのいずれかの操作の逆操作を施すことにより, 頂点 数がn-1またはn-2の極小剛な panel-hinge グラフを生成可能であることを 証明する. 空ではない E の分割を E_1, E_2 とする. E_1, E_2 の辺集合により誘導 される部分グラフをそれぞれ $G[E_1], G[E_2]$ とする.

 $G[E_1]$ 及び $G[E_2]$ は単一の頂点 v を共有しており,すなわち v は切断点であ り, $G[E_2]$ が三角形グラフであると仮定する.このとき, G は $G[E_1]$ に対して操 作 4 を施してできたグラフである.従って, G が $G[E_2]$ が三角形グラフであるよ うな E_1 及び E_2 の分割を持たない場合を考える.さらに, G が三角形グラフを 剛な真部分グラフとして持ち,三角形グラフの頂点のうち一つが次数 2 のとき, 操作 5 の逆操作を行う.この場合,補題 3.2 より,操作後のグラフは極小剛なグ ラフである.従って,以下では G は三角形グラフを部分グラフとして持たない場 合を考える.

操作 1, 2, 3 のいずれかの操作のうちの一つの逆操作を施すことができるこ とを示す. はじめに操作 1 の逆操作を行うことを考える. 補題 3.9 より, 次数 2 の頂点は少なくとも一つ存在する. ここで, 操作 1 の逆操作とは, すなわち splitting off のことである. 従って, v に隣接する頂点を a, b とし, 操作後のグラ フを G_v^{ab} とする. G にはその部分グラフとして三角形グラフが存在しないと仮

図 3.13 操作 2 の逆操作

定しているので, 辺 ab は存在しない. よって, G_n^{ab} は単純グラフである.

ここで, *G* が剛な真部分グラフを持つ場合と持たない場合で場合分けをして証明する.

場合 1. G が剛な真部分グラフを持たない場合.

この場合,補題 3.6 より,操作 1 の逆操作 (すなわち splitting off) により,頂点 数が n-1 の極小剛な panel-hinge グラフを生成することができる.

場合 2. G が剛な真部分グラフを持つ場合.

この場合,補題 3.5 より操作後のグラフは剛である. しかし,極小性は保証さ れていない. 操作後のグラフが極小剛である場合,頂点数がn - 1の極小剛な panel-hinge グラフを得ることができる. そこで,それ以外の場合について考え る. 辺 ab が冗長であるとき, G_v^{ab} より ab を除いたグラフは剛である. このグラ フは操作 3(vertex 2-addition) の逆操作を行ってできるグラフと同じである. こ のとき G は極小剛であるので,操作 3 の逆操作を行ってできるグラフは常に極 小剛である. 従って,次数 2 の頂点 v が存在し, G_v^{ab} において辺 ab が冗長である とき,G について操作 3 の逆操作を施して頂点数 n - 1の極小剛な panel-hinge グラフができる.

従って, G_v^{ab} について ab が冗長ではなく冗長な辺 $e \in E \setminus \{av, bv\}$ が存在す る場合を考える (図 3.13). $G' = G_v^{ab} \setminus \{e\}$ とする. G は極小剛であり, 命題 2.3 より, 任意の頂点分割 \mathcal{P} に対して以下が成り立つ.

$$(D-1)|\delta_G(\mathcal{P})| \ge D(|\mathcal{P}|-1) \tag{3.8}$$

G が極小剛であるので, *e* を除いたとき, *G*\{*e*} は剛ではない. 従って, 命題 2.3 より, 以下の式を満たす $e \in \delta_G(\mathcal{P})$ となる頂点分割 \mathcal{P} が存在する.

$$(D-1)|\delta_{G\setminus\{e\}}(\mathcal{P})| < D(|\mathcal{P}|-1)$$
(3.9)

これより以下を得る.

$$(D-1)|\delta_G(\mathcal{P})| < D|\mathcal{P}| - 1 \tag{3.10}$$

 $\mathcal{P} = \{V_1, V_2, \dots, V_m\}$ とし, $v \in V_1$ とする.

 $|V_1| \ge 2$ または $|V_1| = 1$ の場合について考える.

場合 **2A.** $|V_1| \ge 2$

 \mathcal{P}' を \mathcal{P} において V_1 よりvを除いてできる頂点分割とする.

このとき、以下の式が成り立つ.

$$|\mathcal{P}'| = |\mathcal{P}|, \ |\delta_{G'}(\mathcal{P}')| \le |\delta_G(\mathcal{P})| - 1 \tag{3.11}$$

式 (3.11) より, 以下が成り立つ.

$$(D-1)|\delta_{G'}(\mathcal{P}')| - D(|\mathcal{P}'|-1) \le (D-1)(|\delta_G(\mathcal{P})|-1) - D(|\mathcal{P}|-1)$$

= $(D-1)|\delta_G(\mathcal{P})| - D|\mathcal{P}| + 1 < 0$ (3.12)

これは G' が剛であることに矛盾するので, このような頂点分割 P は存在しない.

場合 **2B.** $|V_1| = 1$.

 $\mathcal{P}' = \mathcal{P} \setminus \{\{v\}\} \ \mathsf{ETS}.$

場合 2B-a. ある $i \neq 1$ とする V_i に $a \ge b$ が含まれる場合.

このとき以下が成り立つ.

$$|\mathcal{P}'| = |\mathcal{P}| - 1, \ |\delta_{G'}(\mathcal{P}')| = |\delta_G(\mathcal{P})| - 3 \tag{3.13}$$

これより以下を得る.

$$(D-1)|\delta_{G'}(\mathcal{P}')| - D(|\mathcal{P}'| - 1)$$

= $(D-1)(|\delta_G(\mathcal{P})| - 3) - D(|\mathcal{P}| - 2)$
= $(D-1)|\delta_G(\mathcal{P})| - D|\mathcal{P}| + 1 - D + 2 < 0$ (3.14)

G'の剛性に矛盾するので、このような \mathcal{P} は存在しない.

場合 2B-b. i > 1, j > 1 とし $i \neq j$ とする V_i と V_j に a と b が含まれる場合. $\mathcal{P}' = \mathcal{P} \setminus V_1$ とする. このとき以下が成り立つ.

$$|\mathcal{P}'| = |\mathcal{P}| - 1, \ |\delta_{G'}(\mathcal{P}')| = |\delta_G(\mathcal{P})| - 2$$
 (3.15)

 G_v^{ab} は剛であり, 辺 e は冗長であるので, G' もまた剛な panel-hinge グラフである. このとき命題 2.3 より, 以下が成り立つ.

$$(D-1)|\delta_{G'}(\mathcal{P}')| \ge D(|\mathcal{P}'|-1)$$
 (3.16)

式 (3.15)(3.16) より,

$$(D-1)|\delta_G(\mathcal{P})| \ge D|\mathcal{P}| - 2 \tag{3.17}$$

式 (3.10)(3.17) より、

$$(D-1)|\delta_G(\mathcal{P})| = D|\mathcal{P}| - 2 \tag{3.18}$$

式 (3.15)(3.18) より,

$$(D-1)(|\delta_{G'}(\mathcal{P}')|+2) = D(|\mathcal{P}'|+1) - 2$$

(D-1)|\delta_{G'}(\mathcal{P}')| = D(|\mathcal{P}'|-1) (3.19)

式 (3.19) より, G' は極小剛である. さらに, 式 (3.19) は操作 2 の条件に等しい. よって, 極小剛な panel-hinge グラフ G に対して操作 2 の逆操作を行うことで 頂点数が n-1 の極小剛な panel-hinge グラフを作ることができる.

従って,任意の与えられた頂点数 n の単純グラフである極小剛な panel-hinge グラフに対して,5つの操作の逆操作のうちの一つを施すことにより,頂点数が n-1または n-2の極小剛な panel-hinge グラフを生成することができる.

3.4 結語

第3章では、 $d \ge 3$ とする d 次元の単純グラフである極小剛な panel-hinge グラフを逐次的に生成する操作を定義し、以下のことを証明した. (i) 極小剛な panel-hinge グラフに対して 5 つの操作を行ってできるいずれのグラフもまた、 極小剛な panel-hinge グラフである. (ii) 5 つの操作の操作列を施すことにより、 任意の極小剛な panel-hinge グラフを生成可能である.

多項式時間で全ての単純グラフである極小剛な panel-hinge グラフを生成する

手法の開発は今後の課題である.操作5を行う場合,頂点 *a* の *d* 個の隣接頂点を 2 つの部分集合に分ける際, *O*(2^{*d*})の選択肢が存在するため,多項式時間アルゴ リズムを開発することの問題点となっている.

第4章

Panel-hinge グラフの冗長剛性及 び冗長大域剛性の特徴付け

4.1 序説

本研究の目的はグラフの連結性の観点から ℝ^d の panel-hinge グラフの冗長な 剛性及び冗長な大域的剛性の特徴づけを行うことである. グラフの連結性はこれ までに広く研究が行われてきており [6, 30], 2 次元の bar-joint フレームーワー クについては, 剛性とグラフの連結性に関する既往研究がある [11, 23, 37].

ここで, 混合連結度 (mixed-connectivity) の定義を行う.

定義 4.1. 混合連結度 (mixed-connectivity) $k \ge h$ をそれぞれ $k \ge 1, h \ge 1 \ge$ する整数とする. グラフ G から任意の (k - 1) 個の頂点を取り除いてできるグ ラフが, h-辺連結グラフであるとき, グラフ G を (k, h)-連結と呼ぶ.

以下では, 任意の (h - 1) 本の辺をグラフ G より除いてできるグラフが \mathbb{R}^d に おいて剛であるとき, \mathbb{R}^d において G は h-辺剛であると呼ぶ. 我々の定義と成果 は任意の次元 d $(d \ge 2)$ において成立し, それぞれの例においては, 特定の次元 についてのものとする. ここで、グラフについての冗長剛性の定義を行う.

定義 4.2. 冗長剛性 (redundant rigidity) $k \ge h$ をそれぞれ $k \ge 1, h \ge 1$ とする整数とする. グラフ G から任意の (k - 1) 個の頂点を取り除いてできるグラフが, \mathbb{R}^d において h-辺剛グラフであるとき, グラフ G を \mathbb{R}^d において (k, h)-剛であるという.

さらに、本研究は大域剛性に応用することができる. (G, \mathbf{p}) と表現できる全て の d 次元フレームワークが、唯一の実現のみであるとき、 \mathbb{R}^d において (G, \mathbf{p}) を 大域剛であるという (より詳細な定義は [13] を参照). \mathbb{R}^d においてグラフ G の 一般配置における全ての実現が大域剛であるとき、 \mathbb{R}^d において、グラフ G は大 域剛である. G より (h - 1) 本の辺を除いてできるグラフが \mathbb{R}^d において大域剛 であるとき、G は \mathbb{R}^d において h-辺大域剛であるという.

ここで、グラフについての冗長な大域剛性についての定義を行う.

定義 4.3. 冗長大域剛性 (redundant global rigidity) $k \ge h$ をそれぞれ $k \ge 1$, $h \ge 1$ とする整数とする. グラフ G から任意の (k - 1) 個の頂点を取り除いてで きるグラフが, \mathbb{R}^d において h-辺大域剛グラフであるとき, グラフ G を \mathbb{R}^d にお いて (k, h)-大域剛であるという.

本章の主な成果は以下の定理を示したことである.

定理 4.1. $k \ge h$ をそれぞれ $k \ge 1$, $h \ge 1$ とする整数とする. (1) グラフ G が (k, h + 1)-連結であることとは \mathbb{R}^2 において G が (k, h)-剛であることの必要十 分条件である. さらに G が (k, h)-連結であることは \mathbb{R}^2 において G が (k, h)-大 域剛であることの必要十分条件である.

(2) $d \ge 3$ について, 任意のグラフ G について以下の 3 つの条件は等価である.: (i) \mathbb{R}^d において G は (k,h)-剛である. (ii) \mathbb{R}^d において G は (k,h)-大域剛である. (iii) G は (k,h+1)-連結である. Katoh らは以下の命題を示した [14].

命題 **4.1** (Katoh et al.). *G*をグラフとする. このとき, $d \ge 2$ とし, *G* が \mathbb{R}^d において剛であるとき, *G* は 2-辺連結である.

Jordán らは panel-hinge フレームワークの大域剛性の特徴づけを行った [13].

命題 4.2 (Jordán et al.). Gをグラフとしたとき, G が 3-辺連結であることは \mathbb{R}^2 において G が大域剛であることの必要十分条件である.

命題 4.3 (Jordán et al.). $G \ e^{f} \ o = 3 \ e^{d+1}$ とし, $(D-1)G \ o \in \mathbb{R}^d$ において (D-1)G - f が D 個の辺素な全域木を持つ ことは \mathbb{R}^d において G が大域剛であることの必要十分条件である.

4.2 定理 4.1 の証明

本節では定理 4.1 の証明を行う.そのために次の 3 つについて証明を行う.(a) G が (k, h+1)-連結であることは, G が $d \ge 2$ としたとき \mathbb{R}^d において (k, h)-剛 であることの必要十分条件である.(b) G が (k, h+2)-連結であることは, \mathbb{R}^2 に おいて G が (k, h)-大域剛であることの必要十分条件である.(c) G が (k, h)-大 域剛であることは, $d \ge 3$ について \mathbb{R}^d において G が (k, h)-剛であることの必要 十分条件である.

これら3つをまとめたとき,定理 4.1の証明を完了することとなる.

(a)の十分条件についての証明

対偶をとり, (a) が十分条件であることを示す. 従って, "G が (k, h+1)-連結 ではないとき, \mathbb{R}^d において G は (k, h)-剛ではない"ということを示す.

 $|V'| \leq k - 1$ とし G から頂点集合 $V' \subset V$ を除いてできるグラフ G' が, (1,h+1)-連結ではないような |V'|が存在する. このとき,命題 2.3 より, $|\mathcal{P}| = 2$ であり, $|\delta_{G'}(\mathcal{P})| \leq h$ となるような頂点分割 \mathcal{P} が存在する. ここで, G'' が存在し、命題 2.1、2.3 より <math>G'' は剛ではない. 従って、元のグラフ G は(k,h)-剛ではない.

(a)の必要条件についての証明

背理法により証明する.: *G* は (*k*,*h*+1)-連結であり, ℝ^{*d*} において (*k*,*h*)-剛で はないと仮定する. (*k* – 1) 個の頂点の集合を *G* より除いてできるグラフ *G'* が *h*-辺剛ではないような頂点集合が存在する. (*h* – 1) 本の辺を *G'* より除いてでき るグラフ *G''* が剛ではないような辺集合 *F* が存在する. 命題 2.1 より, *G''* の各辺 を (*D* – 1) 本の多重辺で置き換えてできるグラフに *D* 個の辺素な全域木を詰め 込むことはできない. 命題 2.3 より, $|\mathcal{P}| \ge 2$ 及び (*D* – 1) $|\delta_{G''}(\mathcal{P})| < D(|\mathcal{P}| - 1)$ となるような, *G'* の頂点分割 *P* が存在する. また, $|\delta_{G'}(\mathcal{P})| \le |\delta_{G''}(\mathcal{P})| + h - 1$ が成り立ち, 以下の式を得る.

$$|\delta_{G'}(\mathcal{P})| < \frac{D}{D-1}(|\mathcal{P}|-1) + h - 1$$
 (4.1)

一方, G' は (1, h + 1)-連結であるので, 以下が成り立つ.

$$|\delta_{G'}(\mathcal{P})| \ge \frac{h+1}{2}|\mathcal{P}| \tag{4.2}$$

 $value(D, h, |\mathcal{P}|)$ を以下のように定義する.

$$value(D,h,|\mathcal{P}|) = \frac{D}{D-1}(|\mathcal{P}|-1) + h - 1 - \frac{h+1}{2}|\mathcal{P}|$$

 $d \ge 2$ より $D \ge 3$ であるので, $D/(D-1) \le 3/2$ となる. 従って,以下が成り立つ.

$$value(D, h, |\mathcal{P}|) \leq \frac{3}{2}(|\mathcal{P}| - 1) + h - 1 - \frac{h+1}{2}|\mathcal{P}|$$
$$= -\frac{1}{2}(h-2)(|\mathcal{P}| - 2) - \frac{1}{2}$$

このとき, 条件より $h \ge 2$ と $|\mathcal{P}| \ge 2$, $value(D, h, |\mathcal{P}|) < 0$ は常に成り立ち, これらより

$$\frac{D}{D-1}(|\mathcal{P}|-1) + h - 1 < \frac{h+1}{2}|\mathcal{P}|$$
(4.3)

となり, (4.1) と (4.2) に矛盾する.

(b) の証明

定義 4.1, 4.3 と命題 4.2 より, 証明は直ちに導かれる.

(c)の十分条件についての証明

大域剛の定義より, このことは明らかである.

(c)の必要条件についての証明

はじめに、以下の補題を示す.

補題 4.1. $d \ge 3 \ge 0$, $D = \binom{d+1}{2} \ge 0$ としたとき, $G = (V, E) \ge |V| \ge 6$ かつ $(D-1)|E| = D(|V|-1) \ge 0$ 満たすグラフとする. このとき G には次数 2の頂 点が少なくとも 6 個以上存在する.

補題 4.1 の証明

Gの次数2の頂点の数をsとする.このとき、以下の式を得る.

$$2|E| \ge 2s + 3(|V| - s) \tag{4.4}$$

式 4.4 と (D-1)|E| = D(|V|-1)より,以下の式を得る.

$$2D(|V|-1) \ge 2(D-1)s + 3(D-1)(|V|-s)$$
(4.5)

$$s \ge \frac{D-3}{D-1}|V| + \frac{2D}{D-1}$$
(4.6)

 $|V| \ge 6$ 及び $D \ge 6$ より, $(D-3)|V|/(D-1) = (1-2/(D-1))|V| \ge 18/5$ と 2D/(D-1) = 2 + 2/(D-1) > 2を得る. これより $s \ge 6$ となる.

ここで背理法により証明する: G が \mathbb{R}^d において (k,h)-剛であり, \mathbb{R}^d におい

57

て (k,h)-大域剛ではないと仮定する. G' を G から (k - 1) 個の頂点と (h - 1) 本の辺を除くことによりできるグラフとし, G' を大域剛とする. 命題 4.3 より, (D-1)G' - f が D 個の辺素な全域木を持たないような (D-1)G'の辺 f が存在 する. このとき, 命題 2.3 より, $|\delta_{(D-1)G'-f}(\mathcal{P})| < D(|\mathcal{P}|-1)$ となるような, G' の頂点分割 \mathcal{P} が存在する. G' は剛であるので, $(D-1)|\delta_{G'}(\mathcal{P})| \ge D(|\mathcal{P}|-1)$ と なる. $|\delta_{(D-1)G'-f}(\mathcal{P})| = (D-1)|\delta_{G'}(\mathcal{P})|-1$ より, $(D-1)|\delta_{G'}(\mathcal{P})| = D(|\mathcal{P}|-1)$ を得る.

補題 4.1 より, ア の 6 つ以上の頂点集合が存在し, i = 1, ..., p について $|\delta_{G'}(V_i)| = 2$ となるような $V_1, ..., V_p$ with $p \ge 6$ とする. $G \setminus G'$ の任意の辺 eについて, G' + e を考える. ア と同じ頂点分割について, e が V_l と V_k をつなぐ 場合においても, $|\delta_{G'+e}(V_i)| = 2$ となるような少なくとも 4 頂点以上の頂点集合 V_i が存在する.

G' + eより V_i に接続する e'を除いたとき, 命題 3 より G' + e - e' は柔軟となる. 一方, G は (k, h)-剛であることから G' + e は 2-辺剛であるはずなので, 矛盾.

4.3 結語

本章では, ℝ^d においてグラフの冗長な剛性と冗長な大域剛性をグラフの連結 性によって特徴づけた.

最小本数の辺の追加で Laman グラフ (2 次元の一般の極小剛な bar-joint フ レームワーク [19]) から 2-辺剛な bar-joint グラフを求める問題は NP 困難 [7] であることと, 本研究の成果は大きく異なる.

定理 4.1 より, 任意のグラフ*G* を任意の次元において最小本数の辺を追加する ことにより, *h*-辺剛とするために, *G* を (*h* + 1)-辺連結とする多項式時間アルゴ リズム [29] を用いることができる.

さらに、定理 4.1 より、 与えられたグラフが h-辺剛であるかの確認は、 グラ

フが (h+1)-辺連結であるかを $O(|E| + \min\{h|V|^2, |E||V| + |V|^2 \log |V|\})$ で 確認することで、可能である [27]. 特に h = 2 の場合、線形時間で可能であ る [26, 28, 41]. 同様に、h-辺大域剛も確認することができる.

第5章

剛な panel-hinge フレームワーク の生成手法

5.1 序説

本章では,組合せ剛性理論を建築形態デザインへと応用することを目的とし, 2 つの新たなアプローチを開発した.一つは一般的な配置ではない,直交パネ ルで構成された剛な panel-hinge フレームワークを演繹的に生成する手法であ る.もう一つは,空間充填多面体を基本形としてフラクタル図形に基づき,一般 的な配置ではない,剛な panel-hinge フレームワークの生成手法である.形態デ ザインへの応用可能性を示すために,2 つの提案手法により生成される,それぞ れ異なる形態の例を示す.さらに,適切なヒンジを除くことで展開可能な剛な panel-hinge フレームワークの模型を示す.このように折紙のような展開可能な 構造物の工業分野への高い応用可能性は,これまでに示されている [38].

本章の構成は以下の通りである. 5.2 節では,一般的ではない配置の剛な panel-hinge フレームワークを逐次的に生成する手法を提案する. 5.3 節は空間 充填多面体を用いて,剛な panel-hinge フレームワークを生成する手法を提案 する.

5.2 直交パネルを用いた剛な panel-hinge フレームワー クの生成手法

本節では、3章で開発した操作に基づき、非一般のヒンジ配置で構成される剛な panel-hinge フレームワークを逐次的に生成する手法を探求した.

すべてのパネルが矩形で, x - y, y - z, z - x 平面のうち一つに平行であり, ヒンジはパネルの端にあるような panel-hinge フレームワークを, 逐次的に生成 する手法をはじめに提案する.より大きなサイズの剛な panel-hinge フレーム ワークを生成する 2 つの逐次的操作を定義する.このうち,1つの操作は第3章 で示した panel-hinge グラフを逐次的に生成する操作に対応する.さらに,提案 する操作によって生成される形態の例を示す.これらの構造物の例では,部材自 体の荷重等は考慮していないことに注意する.前述の通り,提案手法のヒンジ配 置は一般的ではない.従って,提案手法を行なった後のフレームワークが剛であ ることを示す必要がある.

操作 1 (Add 2-panel):新たなパネルを追加可能な辺があるパネル P_1 を選ぶ. 2 枚の新たなパネル P_2 と P_3 を, P_1 , P_2 , P_3 がそれぞれ直行し, P_2 と P_3 が P_1 と, P_2 と P_3 がヒンジによって繋がっており, 3つのヒンジは頂点 v において交 わるように追加する.

操作 2 (Add 3-panel):新たなパネルを追加可能な辺があるパネル P_1 を選ぶ. 3 枚の新たなパネル P_2 , P_3 , P_4 を, P_1 , P_2 , P_4 が互いに直行し, P_3 は P_1 と平行 し, P_2 と P_4 は P_1 とヒンジによって繋がり, P_2 は P_3 と, P_3 は P_4 とヒンジに よって繋がっているように追加する.

ここで, 操作 Add 2-panel は第3章で提案したグラフについての操作 triangleaddition に対応している. 図 5.1 に操作 Add 2-panel によって生成された形態 を示す. 図 5.2 に操作 Add 2-panel を繰り返しによって生成された形態を示す.

図 5.1 操作 Add 2-panel (上部,下部の図はそれぞれ,panel-hinge フレー ムワーク,panel-hinge グラフ).赤色破線で囲うパネルは P_1 ,青色破線で囲 うパネルは新たに追加するパネル P_2 , P_3 である.

ここで,以下の定理を示す.

定理 5.1. フレームワークが剛であるとき,操作 1を施してできるフレームワー クもまた剛である.

証明 $x_1 \neq x_2, y_1 \neq y_2, z_1 \neq 0$ とし, $P_1 = (x_1, y_1, 0), P_2 = (x_1, y_2, 0),$ $P_3 = (x_1, y_2, z_1), P_4 = (x_2, y_2, 0)$ とする. ヒンジ P_1P_2, P_2P_3, P_2P_4 の 2extensor をそれぞれ, C(p(1)), C(p(2)), C(p(3))とする. 式 (2.5) より, 以下 の等式が成り立つ.

$$C(p(1)) = (0, -(y_1 - y_2), 0, 0, 0, x_1y_2 - x_1y_1)$$
(5.1)

$$C(p(2)) = (0, 0, -z_1, y_2 z_1, -x_1 z_1, 0)$$
(5.2)

$$C(p(3)) = (x_1 - x_2, 0, 0, 0, 0, x_1y_2 - x_2y_2)$$
(5.3)

ヒンジ P_1P_2 , P_2P_3 , P_2P_4 によって繋がれたパネルの無限小動きをそれぞれ, $S_1 \ge S_2$, $S_2 \ge S_3$, $S_3 \ge S_1 \ge 5$. 式 (2.5) より,以下の等式が成り立つ.

$$S_2 - S_1 = t_1 C(p(1)) \tag{5.4}$$

$$S_3 - S_2 = t_2 C(p(2)) \tag{5.5}$$

$$S_1 - S_3 = t_3 C(p(3)) \tag{5.6}$$

これらより,以下が成り立つ.

$$0 = t_1 C(p(1)) + t_2 C(p(2)) + t_3 C(p(3))$$
(5.7)

式 (5.1), (5.2), (5.3), (5.4) より, $0 = t_3(x_1 - x_2)$, $0 = t_1(y_1 - y_2)$, $0 = -t_2z_1$, $0 = -t_2x_1z_1$, $0 = (t_1 - t_3)(x_1y_2 - x_2y_2)$ となる. $x_1 \neq x_2$, $y_1 \neq y_2$, $z_1 \neq 0$ よ り, $t_1 = t_2 = t_3 = 0$ が成り立つ. 式 (5.4), (5.5), (5.6) より, $S_1 = S_2 = S_3$ が 成り立つ. 従って, この操作によりできるフレームワークもまた剛である.

図 5.2 操作 Add 2-panel を繰り返し行なってできる構造物の例

操作 Add 2-panel を繰り返し行なって生成した構造物のイメージを図 5.3 に 示す.

図 5.4 に Add 3-panel によって生成した panel-hinge フレームワークを示す. 図 5.5 に繰り返しこの操作を行なって生成した例を示す. ここで以下の定理を証 明する.

定理 5.2. フレームワークが剛であるとき,操作 2を施してできるフレームワー クもまた剛である.

図 5.3 操作 Add 2-panel を繰り返し行なって生成した構造物のイメージ

証明 $x_1 \neq x_2, y_1 \neq y_2, z_1 \neq 0$ とし, $P_1 = (x_1, 0, 0), P_2 = (x_2, 0, 0), P_3 = (x_1, 0, z_1), P_4 = (x_2, 0, z_1), P_5 = (0, y_1, z_1), P_6 = (0, y_2, z_1), P_7 = (0, y_1, 0),$ $P_8 = (0, y_2, 0)$ とする (図 5.6). ヒンジ $P_1P_2, P_3P_4, P_5P_6, P_7P_8$ の 2-extensor をそれぞれ, C(p(1)), C(p(2)), C(p(3)), C(p(4))とする. 式 (2.5) より以下が 成り立つ.

$$C(p(1)) = (x_1 - x_2, 0, 0, 0, 0, 0)$$
(5.8)

$$C(p(2)) = (x_1 - x_2, 0, 0, 0, z_1(x_2 - x_1), 0)$$
(5.9)

$$C(p(3)) = (0, -(y_1 - y_2), 0, z_1(y_1 - y_2), 0, 0)$$
(5.10)

$$C(p(4)) = (0, -(y_1 - y_2), 0, 0, 0, 0)$$
(5.11)

ヒンジ P_1P_2 , P_2P_3 , P_2P_4 によって繋がれたパネルの無限小動きをそれぞれ, $S_1 \geq S_2$, $S_2 \geq S_3$, $S_3 \geq S_4$, $S_4 \geq S_1 \geq 5$. 式 (2.5) より,以下の式を得る.

図 5.4 操作 Add 3-panel (上部,下部の図はそれぞれ,panel-hinge フレー ムワーク,panel-hinge グラフ).赤色破線で囲うパネルは P_1 ,青色破線で囲 うパネルは新たに追加するパネル P_2 , P_3 , P_4 である.

図 5.5 操作 Add 3-panel を繰り返し行なってできる構造物の例

$$S_2 - S_1 = t_1 C(p(1)) \tag{5.12}$$

$$S_3 - S_2 = t_2 C(p(2)) \tag{5.13}$$

$$S_4 - S_3 = t_3 C(p(3)) \tag{5.14}$$

$$S_1 - S_4 = t_4 C(p(4)) \tag{5.15}$$

操作 Add 2-panel と同様に, $S_1 = S_2 = S_3 = S_4$ を示すことができる.従って, この操作によってできるフレームワークもまた剛である.

5.2.1 建築的な形態を想定した剛な panel-hinge フレームワークの 生成

前節で提案した手法を建築デザインに応用可能であることを示すために、剛な panel-hinge フレームワークを生成する.

はじめに,一つの頂点が原点と一致するような panel-hinge フレームワークで ある単位立方体を考える (図 5.6).後述する 3 つのパネルで構成されるコンポー ネントを,剛であることが保証された操作 Add 3-panel によって追加する.こ の操作を繰り返し行うことで,剛な矩形の面を得ることができる (図 5.7).

3 つのパネルで構成される panel-hinge フレームワーク F を以下のように定 義する. F の 3 つのパネルは互いに直行しているとする. F の凸法は単位立方 体に一致し, F の 2 つのパネル P_1 , P_2 は正方形であり, P_3 は P_1 または P_2 に 繋がっているパネルとする. さらに P_3 の幅は [0.1,1] の間の大きさとすること とする (図 5.7). F の追加は y-軸または z-軸方向に行うこととし, パネル P_3 は常に yz 平面に平行となる. この 3 つのパネルで構成される単位立方体を剛 な panel-hinge フレームワークに対して追加することは, 5.2 節で示した, 操作 Add 3-panel を行うことと同じである.

図 5.8 に,この制約のもとで Add 3-panel によって生成した panel-hinge フレームワークを示す.図 5.8(b) のフレームワークのスリットの幅は乱数により 決定し,値の大きさを z-座標の値が大きくなるにつれて増加することとした.こ のように,3-panel コンポーネントによって構成される,剛で不均一な面を生成 することができる.このフレームワークを建築の壁や屋根,ファサードなどに利 用可能であると考える.本手法により剛な面を生成し,光や風の透過をスリット の幅を変えることにより,制御できると考える.図 5.9 に提案手法により生成し

図 5.6 立方体の面のラベル付け

図 5.7 立方体を基本形とし,操作 Add 3-panel によって剛な面を生成した例.赤線は追加したヒンジである.青色箇所はパネルの隙間部分である.

た面によって構成した空間の例を示す.この時,生成した面同士は剛な接合を用 いていることに注意する.

図 5.8 (a) 0 から 0.5 の間で隙間の幅をランダムに決定するように生成した 構造物の例. (b) *z* 軸座標の値が増加するに従って,隙間の幅を大きくするよ うに構造物を生成した例.

5.3 空間充填多面体とフラクタル図形を用いた

panel-hinge フレームワークの生成

平行移動のみを許した時,空間充填可能な多面体は立方体,六角柱,菱形十二 面体,長菱形十二面体,切頂八面体の5種類であることが知られている [1, 4].

本節では、フラクタル図形に基づいて非一般配置の剛な panel-hinge フレーム ワークを逐次的に生成する手法を提案する.フラクタル図形は再帰構造を持つ 図形である [24].立方体と切頂八面体を基本単位として、フラクタル図形である 剛な panel-hinge フレームワークを生成する手法を提案する.空間充填多面体を 用いることにより、面が交差することなく panel-hinge フレームワークを生成す ることができる.

図 5.9 3つの剛な面を用いて空間を作ることを想定した例.

はじめに,立方体,切頂八面体を panel-hinge フレームワークとしてみなす. 立方体,切頂八面体に基づく基本単位を考えるため,冗長なヒンジとパネルを削除する.立方体と切頂八面体には極小剛性の観点からすると,冗長なヒンジとパネルがある.基本単位を以下のように定義する.立方体の基本単位 F₀ は 2 枚のパネルとパネルにつながったヒンジを取り除き,さらにもう一つのヒンジを取り除いてできる 4 つのパネルで構成されるフレームワークである.したがって,フレームワークに対応する panel-hinge グラフは 4-閉路グラフとなる (図 5.10). 切頂八面体の基本単位 F₀ は 6 つの四角形パネルと 2 つの六角形パネルを除いたフレームワークである.したがってフレームワークに対応する panel-hinge グラ

前節と同様の方法で,図 5.11(a), 5.11(a) の基本単位 F₀ の剛性を確かめることができる.

立方体の基本単位が剛であることは,操作 Add 3-panel と同様に説明することができる.したがって,切頂八面体の場合に関して以下の定理を示す.

定理 5.3. 6枚の四角形パネルと 2枚の六角形パネルを切頂八面体から取り除い たフレームワークを基本単位 F₀ とする.このとき, F₀ は剛である.

図 5.10 (a) 立方体による基本単位 (b) (a) に対応する panel-hinge グラフ

証明 $p_0 = (0, 1, -2), p_1 = (0, 2, -1), p_2 = (-1, 0, -2), p_3 = (-2, 0, -1),$ $p_4 = (-1, -2, 0), p_5 = (-2, -1, 0), p_6 = (0, -2, 1), p_7 = (0, -1, 2), p_8 =$ $(2, 0, 1), p_9 = (1, 0, 2), p_{10} = (2, 1, 0), p_{11} = (1, 2, 0)$ とする. ヒンジ $p_0p_1,$ $p_2p_3, p_4p_5, p_6p_7, p_8p_9, p_{10}p_{11}$ の2-extensor をそれぞれ $C(p(i))(0 \le i \le 5)$ と する (図 5.11(a)). $p_0p_1, p_2p_3, p_4p_5, p_6p_7, p_8p_9, p_{10}p_{11}$ によって繋がれるパネ \mathcal{N} の無限小動きをそれぞれ S_0 と S_1, S_2 と S_3, S_3 と S_4, S_4 と S_1 とする. 式 (2.5)より,以下の式を得る.

$$S_0 - S_1 = t_0 C(p(0)) = t_0(0, 1, -1, 3, 0, 0)$$
(5.16)

$$S_1 - S_2 = t_1 C(p(1)) = t_1(1, 0, -1, 0, 3, 0)$$
(5.17)

$$S_2 - S_3 = t_2 C(p(2)) = t_2(1, 1, 0, 0, 0, -3)$$
(5.18)

$$S_3 - S_4 = t_3 C(p(3)) = t_3(0, 1, -1, -3, 0, 0)$$
(5.19)

$$S_4 - S_5 = t_4 C(p(4)) = t_4(1, 0, -1, 0, -3, 0)$$
(5.20)

$$S_5 - S_0 = t_5 C(p(5)) = t_5(1, 1, 0, 0, 0, 3)$$
(5.21)

図 5.11 (a) 切頂八面体による基本単位 (b) (a) に対応する panel-hinge グラフ

式 (5.16), (5.17), ..., (5.21) より,以下の式を得る.

$$t_1 + t_2 + t_4 + t_5 = 0 \tag{5.22}$$

$$t_0 + t_2 + t_3 + t_5 = 0 \tag{5.23}$$

$$-t_0 - t_1 - t_3 - t_4 = 0 (5.24)$$

$$3t_0 - 3t_3 = 0 \tag{5.25}$$

$$-3t_1 - 3t_4 = 0 \tag{5.26}$$

 $-3t_2 + 3t_5 = 0 \tag{5.27}$

式 (5.25), (5.26), (5.27) より, $t_3 = t_0$, $t_4 = t_1$, $t_5 = t_2$ を得る. さらに 式 (5.22) より, $t_4 = t_1$, $t_5 = t_2$ となり, $t_2 = -t_1$ を得る. 式 (5.23) より, $t_2 = -t_1$, $t_3 = t_0$, $t_5 = -t_1$ となり, $t_1 = t_0$ を得る. 式 (5.24) より, $t_0 = 0$ となることから, $t_0 = t_1 = t_2 = t_3 = t_4 = t_5 = 0$ を得る. したがって, $S_0 = S_1 = S_2 = S_3 = S_4 = S_5$ となり, F_0 は剛である. panel-hinge フレームワーク F_0 の各パネルを F_0 自体によって置き換えるこ とで新たな panel-hinge フレームワーク F_1 を作ることができる. 同様に, F_1 か ら F_2 を作ることができる (図 5.12(a) 及び図 5.13(a)). panel-hinge フレーム ワーク F_i (i = 1, 2, 3) したがって, それぞれ新たにできた panel-hinge フレー ムワーク F_i (i = 1, 2, 3) は, ひとつ前のフレームワーク F_{i-1} を各頂点としてみ なすことで, 同じ panel-hinge グラフによって表現できることとなる.

図 5.12 (a) 基本形 F_0 を用いて再帰的に生成した例 (赤色破線は基本形同 士を接続するヒンジ) (b) (a) の各フレームワークに対応する panel-hinge グ ラフ

5.4 模型作成

レーザーカッターを用いて, panel-hinge フレームワークの木の模型を作成した (図 5.14). パネルはヒンジによって繋がれているので, 簡単に組み立てるこ

図 5.13 (a) 基本形 F_0 を用いて再帰的に生成した例 (赤色破線は基本形同 士を接続するヒンジ) (b) (a) の各フレームワークに対応する panel-hinge グ ラフ

とができる.

図 5.14 (a) 極小剛な panel-hinge グラフ (b) (a) に対応する panel-hinge フ レームワークの木製模型 (c) (b) を組み立てる工程

さらに,6枚のパネルによって構成される剛な panel-hinge フレームワークの 椅子を作成した.この椅子は,450 mm × 900 mm の大きさの矩形へと折りた たむことができ (図 5.15(i)),座ることができる (図 5.15(iv)).このように,剛な panel-hinge フレームワークは有用な折りたたみ可能な機構に利用可能である.

図 5.15 剛な panel-hinge フレームワークの椅子

5.5 結語

逐次的に panel-hinge グラフを生成する手法 [15] に基づいて,2つの操作を 開発した.はじめに,直行パネルによって構成される非一般配置の剛な panelhinge フレームワークを逐次的に生成する手法を開発し,空間充填多面体を基本 単位として,剛な panel-hinge フレームワークを生成する手法を開発した.提案 手法により形態生成を行い,模型作成や椅子を作成することによって,提案手法 を建築デザインへと応用可能であることを示した.

第6章

極小剛な bar-joint フレームワー クの生成手法

空間内を隙間なく埋め尽くすことができる多面体のことを空間充填多面体と 言い,空間充填多面体を隙間なく並べてできる立体のことを空間充填立体と言う. また,回転は行わず平行移動のみを許した場合に,一種類の多面体で空間充填可 能なものは立方体,六角柱,菱形十二面体,切頂八面体,長菱形十二面体の5種 類 (図 6.1) であることが知られている [1, 4].

本章で空間充填多面体を用いるのは,棒材が交差することなく形態生成を行う ことができるためである.回転を許した場合や複数の種類の多面体を使った場 合,より多くの空間充填可能な多面体が知られているが,研究の始まりとして, まずは回転を許容しない空間充填立体について限定し,極小剛な構造物を生成可 能であるかの確認を行った.

組合せ剛性理論の成果は分子生物学や機械工学等,様々な分野において応用さ れている [49, 53]. 建築学分野への応用に関する研究は,大崎,第二著者ら [32] に よる,部材同士が交差しないことを制約として極小剛な 2 次元 bar-joint フレー ムワークを生成する手法の研究, 岡野, 第二著者ら [33] による, グラフの同型性 判定を行いながら極小剛な 2 次元 bar-joint フレームワークを列挙する手法の開

図 6.1 (a) 立方体 (b) 六角柱 (c) 菱形十二面体 (d) 切頂八面体 (e) 長菱形十二面体

発と, 極小剛な 3 次元構造物の模型作成, 古田, 第二著者ら [17] の研究といった 構造分野における研究がある.

本章では新たに,空間充填多面体を用いた3次元の極小剛な bar-joint フレー ムワークの生成手法を開発し,建築デザインへの応用手法を提案する.

図 6.2 (a) 3 次元の柔軟な bar-joint フレームワーク (b) (a) に筋交いを追加 したことにより、剛となったフレームワーク

空間充填立体の辺を棒材 (bar) に,頂点をピン接合 (joint) に置き換えた barjoint フレームワークは剛ではない.そのため,空間充填立体 bar-joint フレーム ワーク (図 6.2(a)) に対して,筋交いを追加することで極小剛にする手法を示す (図 6.2(b)).さらに提案手法を拡張し,建築デザインへの応用を目指した極小剛 な bar-joint フレームワークの形態生成を行う.

極小剛なフレームワークを採用することにより,最小本数の部材により剛なフ レームワークを得ることができる.本論文では扱わないが,極小剛なフレーム ワークがわかることによって,極小剛なフレームワークに対してブレースを追加 することにより,冗長性を指定した構造物を作ることができる. ここで,以下より組合せ剛性理論の既往研究について述べる.組合せ剛性 理論において,3次元 bar-joint フレームワークはグラフ G = (V, E) と写像 $\mathbf{p}: V \to \mathbb{R}^3$ の組 (G, \mathbf{p}) で表される.ここで Gの各頂点はピン接合,各辺は棒 材に対応しており, \mathbf{p} は各ピン接合の配置である.このとき,グラフ G のことを **bar-joint グラフ**と呼び,極小剛な bar-joint フレームワークとして実現可能な bar-joint グラフのことを,極小剛な bar-joint グラフと呼ぶ.

2 次元の bar-joint フレームワークが極小剛であるための必要十分条件を Laman [19] は示しており, 極小剛なグラフを Laman グラフと呼ぶ. この Laman グラフを演繹的に生成する手法については, Henneberg 構築という方 法が知られており, これによりすべての Laman グラフを生成できる [9]. また, Bolker ら [2] は, 正方形で構成されたグリッドフレームワークに対して, 筋交い を追加したフレームワークが剛であるかを組合せ的に判定するアルゴリズムを提 案し, 最近, 著者らは穴をもつグリッドフレームワークを極小剛とするブレース 追加手法を明らかにした [10].

一般の 3 次元 bar-joint フレームワークに対する剛性の組合せ的特徴付けは長年の未解決問題である [8]. Recski [34] は,立方体で構成された 3 次元 bar-joint フレームワークに対して,筋交いを追加することで剛であるときの必要条件を示した. Whiteley [49] は,剛な 3 次元 bar-joint フレームワークを生成するいくつかの操作を示しており,本章では後述するそのうちの一つの操作を用いて,極小剛な空間充填立体の生成手法を提案する.

Bar-joint フレームワークの剛性と組合せ的な特徴 付け

bar-joint グラフ G = (V, E) の辺 $e = (u, v) \in E$ に対応するフレームワーク (G, \mathbf{p}) の棒材の長さは $\|\mathbf{p}(u) - \mathbf{p}(v)\|$ により与えられる. 棒材は剛であるとし, $\|\mathbf{p}(u) - \mathbf{p}(v)\|$ はいかなるフレームワークの変形のもとでも一定である. フレー ムワークの連続変形を考えた場合, $\mathbf{p}(u)$ を変数 t の連続関数, すなわち $\mathbf{p}_t(u)$ と して表すことができる. ここで, すべての $v \in V$ に対して, $\mathbf{p}_0(v) = \mathbf{p}(v)$ が成立 すると仮定する. フレームワークが変形した場合にも, 棒材の長さは変わらない ことより, 以下の式を得る.

$$(\mathbf{p}_t(u) - \mathbf{p}_t(v)) \cdot (\dot{\mathbf{p}}_t(u) - \dot{\mathbf{p}}_t(v)) = 0, \ \forall (u, v) \in E.$$
(6.1)

Whiteley により、以下の操作が定義されている [49].

操作 1 (Vertex 3-addition). グラフ G = (V, E) が与えられているとし, $v_1, v_2, v_3 \in V$ とする. 新たに頂点 v_0 及び辺 $(v_0, v_1), (v_0, v_2), (v_0, v_3)$ を追加す る操作を操作 1 (Vertex 3-addition) とする (図 6.3).

⊠ 6.3 Vertex 3-addition

さらに Whiteley は操作 1 について, 以下の補題を示している [49]. ここで頂 点 v_i のジョイント配置を \mathbf{p}_i とする.

補題 6.1 (Whiteley [49]). グラフ G = (V, E) が与えられているとし, $v_1, v_2, v_3 \in V$ とする. 剛なフレームワーク (G, \mathbf{p}) に新たな頂点 v_0 と, 新たな 辺 $(v_0, v_1), (v_0, v_2), (v_0, v_3)$ を追加したフレームワークを (G', \mathbf{p}') とする. この とき $\mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$ が同一平面上にないならば, (G', \mathbf{p}') もまた剛である.

さらに補題 6.1 の条件を満たす操作を極小剛なフレームワークに施すことで, 新たに頂点数が一つ大きい, 極小剛なフレームワークを得ることができるため, 以下の補題が成り立つ.

補題 6.2 (Whiteley [49]). グラフ G = (V, E) が与えられているとし, $v_1, v_2, v_3 \in V$ とする. 極小剛なフレームワーク (G, \mathbf{p}) に新たな頂点 v_0 と, 新 たな辺 $(v_0, v_1), (v_0, v_2), (v_0, v_3)$ を追加したフレームワークを (G', \mathbf{p}') とする. このとき $\mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$ が同一平面上にないならば, (G', \mathbf{p}') もまた極小剛である.

また、本章では筋交いは空間充填多面体の面内にのみ追加することとする (図 6.4(b)). これは、筋交いを多面体の内部に追加した場合、多面体内を人が利用 する空間として捉えると、空間内を分断することとなるためである (図 6.4(a)). 従って応用上の観点より、筋交いは面内にのみ追加することに限定する.

本章では一つの多面体によって空間充填可能な多面体を単位として,各操 作を定義し,形態生成を行なっているが,補題 6.2 の条件を満たして vertex 3-addition を行う場合においては,操作後のフレームワークもまた,極小剛であ り,提案する各操作の基本単位は,本章で採用した座標位置の多面体に限定され ることはない.

さらに,棒材同士が交差することなく,補題 6.2 の条件を満たして vertex 3-addition を行うことができる形状については,極小剛性を保って形態生成可 能であり,その一般化について本稿では扱わないが,発展の可能性がある.本稿 では,基礎理論の構築を目指し,基本的な空間充填立体を扱う.

ピン自体が大きさを持つ場合を本手法で考える時には、ピンを剛体として扱っ てモデル化することとなり、body-bar フレームワークとして扱うこととなる. body-bar フレームワークについても組合せ的な特徴付けは知られているが、本 稿では、基礎的な問題として bar-joint フレームワークの空間充填立体の形態生 成について扱う. さらに、実際の建築空間の構造体として考えた場合には、棒材 の太さ、それに伴う荷重について考慮する必要がある.

図 6.4 (a) 筋交いを空間充填多面体の内部に追加した例 (b) 面に追加した例

6.2 空間充填立体を極小剛とする手法

6.2.1 立方体の空間充填立体を極小剛とする手法

ここでは, 立方体により構成される空間充填立体に, 筋交いを追加することで 剛にする手法を示す.

辺の長さ 1 の $l \times m \times n$ 個の立方体で構成する空間充填立体の bar-joint フ レームワーク X について考える (図 6.2(a)). 立方体の各面は xy, zx, yz 平面 のうち, いずれかの平面について平行であるとする. X のうちの一つの立方体 C について, C の頂点のなかで x 座標, y 座標, z 座標の各々が最小の頂点が存 在する. その頂点を v_C とする. $v_C = (s,t,u)$ のとき, C を (s,t,u)-立方体と 呼ぶ.

さらに、(s,t,u)-立方体の頂点をそれぞれ、 $v_1 = (s+1,t,u), v_2 = (s+1,t+1,u), v_3 = (s,t+1,u), v_4 = (s,t,u), v_5 = (s+1,t,u+1), v_6 = (s+1,t+1,u+1), v_7 = (s,t+1,u+1), v_8 = (s,t,u+1)$ とし、複数の立方体の頂点を定義する必要がある場合には、それぞれ $v_{1(s,t,u)}, v_{2(s,t,u)}, v_{3(s,t,u)}, v_{4(s,t,u)}, v_{5(s,t,u)}, v_{6(s,t,u)}, v_{7(s,t,u)}, v_{8(s,t,u)}$ とする (図 6.5).

以下では,筋交いを適宜追加しながら立方体を逐次的に追加していき,極小剛 な空間充填立体を生成することを考える.このとき新たな立方体を追加する際に は,すでに存在する剛な複数の立方体と面を共有することとする.一つの面,二 つの面,三つの面を共有する場合について以下の3つの操作を定義する.

図 6.5 立方体の頂点のラベル

操作 C1 剛な一つの面 $v_1v_4v_8v_5$ が与えられているとし, 操作 1 (vertex 3-addition) を以下の順序で実行し, 新たな立方体を得る (図 6.6).

- (i) 頂点 v_6 と辺 (v_1, v_6) , (v_5, v_6) , (v_8, v_6) を追加する.
- (ii) 頂点 v_2 と辺 (v_1, v_2) , (v_4, v_2) , (v_6, v_2) を追加する.
- (iii) 頂点 v₇ と辺 (v₄, v₇), (v₆, v₇), (v₈, v₇) を追加する.
- (iv) 頂点 v_3 と辺 (v_2, v_6) , (v_4, v_6) , (v_7, v_6) を追加する.

図 6.6 操作 C1

操作 C2 剛な二つの面 $v_1v_4v_8v_5$, $v_1v_2v_3v_4$ が与えられているとし, 操作 1 を以下の順序で実行し, 新たな立方体を得る (図 6.7).

(i) 頂点 v_6 と辺 (v_1, v_6) , (v_5, v_6) , (v_8, v_6) を追加する.

(ii) 頂点 v_2 と辺 (v_1, v_2) , (v_4, v_2) , (v_6, v_2) を追加する.

図 6.7 操作 C2

操作 C3 剛な三つの面 $v_1v_4v_8v_5$, $v_1v_2v_3v_4$, $v_3v_4v_8v_7$ が与えられているとし, 操作 1 により, 頂点 v_6 と辺 (v_1, v_2) , (v_4, v_2) , (v_6, v_2) を追加し, 新たな立方体 を得る (図 6.8).

図 6.8 操作 C3

補題 6.3.3 つの操作によって得られる新たな立方体は、極小剛である.

証明 補題 6.2 の条件を満たす操作 1 によって得られており, 操作を施すことに よって得られる立方体は極小剛である. □

立方体の空間充填立体フレームワークに対して,筋交いを追加することによっ て極小剛なフレームワークを生成するアルゴリズムは,3つの操作を用いた,4 つのステップで構成される以下のアルゴリズム1として記述される.このとき, $1 \le s \le l - 1, 1 \le t \le m - 1, 1 \le u \le n - 1$ とする.

アルゴリズム 1.

入力: (0,0,0)-立方体.

ステップ 1: (0,0,0)-立方体の各面にブレースを追加する (図 6.9(a)).

ステップ 2: (1,0,0), (2,0,0), ..., (l-1,0,0)-立方体を操作 C1 により, (1,0,0)-立方体から順に追加する. 同様に, 操作 C1 により (0,t,0), (0,0,u)-立 方体をそれぞれ, (0,1,0)-立方体, (0,0,1)-立方体から順に追加する (図 6.9(b)). ステップ 3: (s,t,0), (0,t,u), (s,0,u)-立方体を操作 C2 により, 順に追加する (図 6.9(c)).

ステップ 4: (s,t,u)-立方体を操作 C3 により追加する (図 6.9(d)).

図 6.9 アルゴリズム 1 (a) ステップ 1 (b) ステップ 2 (c) ステップ 3 (d) ステップ 4

定理 6.1. アルゴリズム 1 によって得られるフレームワークは, 極小剛なフレー ムワークである.

証明 ステップ 1 で得られる立方体は定理 2.2 より剛である. さらに定理 2.1 の 等式を満たすことから極小剛である. また, ステップ 2 から 4 によって得られ る立方体は 3 つの操作によって得られており, 補題 6.3 より剛である. さらに, 3 つの操作は操作 1 のみを用いているので極小性も保たれている. したがって, ア ルゴリズム 1 によって得られるフレームワークは極小剛なフレームワークであ る.

6.2.2 菱形十二面体の空間充填立体を極小剛とする手法

以下では菱形十二面体で構成される剛な空間充填立体の生成手法を示す.他の 空間充填多面体についても,立方体,菱形十二面体と同様な手法により,極小剛 な空間充填立体を得ることができることはこれまでに確認しており [52],本稿で は紙面の都合上,菱形十二面体に関しての詳細についてのみ以下で述べる.

ここでは、菱形十二面体により構成される空間充填立体に、ブレースを追加する ことで剛にする手法を示す. 頂点をそれぞれ $v_1 = (0, 0, -2), v_2 = (1, -1, -1),$ $v_3 = (1, 1, -1), v_4 = (-1, 1, -1), v_5 = (-1, -1, -1), v_6 = (2, 0, 0), v_7 =$ $(0, 2, 0), v_8 = (-2, 0, 0), v_9 = (0, -2, 0), v_{10} = (1, -1, 1), v_{11} = (1, 1, 1),$ $v_{12} = (-1, 1, 1), v_{13} = (-1, -1, 1), v_{14} = (0, 0, 2)$ とする [55].

これらの頂点で構成される菱形十二面体を(0,0,0)-菱形十二面体 R とし, Rの面 $v_3v_7v_{11}v_6$, $v_2v_6v_{10}v_9$, $v_6v_{11}v_{14}v_{10}$ に隣接する菱形十二面体をそれぞれ (1,0,0)-菱形十二面体,(0,1,0)-菱形十二面体,(0,0,1)-菱形十二面体とする.同 様に(s,t,u)-菱形十二面体を, R から順にs, t, u 個の菱形十二面体を配置した 場所に位置する菱形十二面体とする.このようにして配置された $l \times m \times n$ 個の 菱形十二面体で構成される空間充填立体の bar-joint フレームワークについて考

図 6.10 (a) 菱形十二面体の頂点のラベル (b) 操作 R1

える.

菱形十二面体について立方体と同様に 8 つの操作を定義する.

操作 **R1** 剛な面 $v_2 v_6 v_{10} v_9$ が与えられているとし, 操作 1 を以下の順序で実行し, 新たな菱形十二面体を得る (図 6.10).

(i) 頂点 v_{14} と辺 (v_6, v_{14}) , (v_{10}, v_{14}) , (v_9, v_{14}) , 頂点 v_1 と辺 (v_9, v_1) , (v_6, v_1) , (v_2, v_1) , 頂点 v_8 と辺 (v_9, v_8) , (v_{14}, v_8) , (v_1, v_8) , 頂点 v_7 と辺 (v_6, v_7) , (v_8, v_7) , (v_1, v_7) をそれぞれ操作 1 により追加する.

(ii) 頂点 v₃ と辺 (v₁, v₃), (v₆, v₃), (v₇, v₃), 頂点 v₄ と辺 (v₁, v₄), (v₇, v₄),
(v₈, v₄), 頂点 v₅ と辺 (v₁, v₅), (v₈, v₅), (v₉, v₁), 頂点 v₁₁ と辺 (v₆, v₁₁), (v₇, v₁₁),
(v₁₄, v₁₁), 頂点 v₁₃ と辺 (v₈, v₁₃), (v₉, v₁₃), (v₁₄, v₁₃) をそれぞれ操作 1 により
追加する.

操作 R2 剛な面 $v_2v_6v_{10}v_9, v_3v_7v_{11}v_6$ が与えられているとし, 操作 1 を以下の 順序で実行し, 新たな菱形十二面体を得る (図 6.11).

(i) 頂点 v_1 と辺 $(v_2, v_1), (v_3, v_1), (v_9, v_1),$ 頂点 v_{14} と辺 $(v_7, v_{14}), (v_{10}, v_{14}),$ (v_{11}, v_{14}) をそれぞれ操作 1 により追加する.

(ii) 頂点 v_8 と辺 (v_{14}, v_8) , (v_7, v_8) , (v_9, v_8) , 頂点 v_4 と辺 (v_1, v_4) , (v_7, v_4) , (v_8, v_4) , 頂点 v_5 と辺 (v_1, v_5) , (v_8, v_5) , (v_9, v_5) をそれぞれ操作 1 により追加す

る.

(iii) 頂点 v_{12} と辺 (v_7, v_{12}) , (v_8, v_{12}) , (v_{14}, v_{12}) , 頂点 v_{13} と辺 (v_8, v_{13}) , (v_9, v_{13}) , (v_{14}, v_{13}) をそれぞれ操作 1 により追加する.

操作 R3 剛な面 $v_1v_5v_9v_2$, $v_1v_3v_6v_2$, $v_1v_4v_7v_3$, $v_1v_4v_8v_5$ が与えられていると し, 操作 1 を以下の順序で実行し, 新たな菱形十二面体を得る (図 6.12(a)).

(i) 頂点 v₁₄ と辺 (v₆, v₁₄), (v₇, v₁₄), (v₉, v₁₄), 頂点 v₁₀ と辺 (v₆, v₁₀), (v₉, v₁₀), (v₁₄, v₁₀), 頂点 v₁₁ と辺 (v₆, v₁₁), (v₇, v₁₁), (v₁₄, v₁₁) をそれぞれ操作 1 により 追加する.

(ii) 頂点 v_{12} と辺 (v_7, v_{12}) , (v_8, v_{12}) , (v_{14}, v_{12}) , 頂点 v_{13} と辺 (v_8, v_{13}) , (v_9, v_{13}) , (v_{14}, v_{13}) をそれぞれ操作 1 により追加する.

操作 R4 剛な面 $v_1v_5v_9v_2$, $v_1v_3v_6v_2$, $v_1v_4v_7v_3$, $v_1v_4v_8v_5$, $v_2v_4v_8v_5$ が与えられ ているとし、頂点 v_{11} と辺 (v_6, v_{11}) , (v_7, v_{11}) , (v_{10}, v_{11}) , 頂点 v_{14} と辺 (v_9, v_{14}) , (v_{10}, v_{14}) , (v_{11}, v_{14}) , 頂点 v_{12} と辺 (v_7, v_{12}) , (v_8, v_{12}) , (v_{14}, v_{12}) , 頂点 v_{13} と辺 (v_8, v_{13}) , (v_9, v_{13}) , (v_{14}, v_{13}) をそれぞれ操作 1 により追加する (図 6.12(b)).

操作 R5 剛な面 $v_1v_3v_6v_2$, $v_1v_5v_9v_2$, $v_2v_6v_{10}v_9$ が与えられているとし, 操作 1 を以下の順序で実行し, 新たな菱形十二面体を得る (図 6.13(a)).

(i) 頂点 v_7 と辺 (v_1, v_7) , (v_3, v_7) , (v_6, v_7) , 頂点 v_8 と辺 (v_1, v_8) , (v_5, v_8) , (v_9, v_8) , 頂点 v_{14} と辺 (v_6, v_{14}) , (v_9, v_{14}) , (v_{10}, v_{11}) をそれぞれ操作 1 により

図 6.12 (a) 操作 R3, (b) 操作 R4.

図 6.13 (a) 操作 R5, (b) 操作 R6.

追加する.

(ii) 頂点 v₄ と辺 (v₁, v₄), (v₇, v₄), (v₈, v₄), 頂点 v₁₁ と辺 (v₆, v₁₁), (v₇, v₁₁), (v₁₄, v₁₁),
頂点 v₁₃ と辺 (v₈, v₁₃), (v₉, v₁₃), (v₁₄, v₁₃), 頂点 v₁₂ と辺 (v₇, v₁₂), (v₈, v₁₂),
(v₁₄, v₁₂) をそれぞれ操作 1 により追加する.

操作 R6 剛な面 $v_1v_5v_9v_2$, $v_1v_3v_6v_2$, $v_1v_4v_7v_3$, $v_1v_4v_8v_5$, $v_2v_4v_8v_5$, $v_3v_7v_{11}v_6$ が与えられているとし、頂点 v_{14} と辺 (v_7, v_{14}) , (v_{10}, v_{14}) , (v_{11}, v_{14}) , 頂点 v_{12} と辺 (v_7, v_{12}) , (v_8, v_{12}) , (v_{14}, v_{12}) , 頂点 v_{13} と辺 (v_8, v_{13}) , (v_9, v_{13}) , (v_{14}, v_{13}) をそれぞれ操作 1 により追加する (図 6.13(b)).

操作 **R7** 剛な面 $v_1v_5v_9v_2$, $v_1v_3v_6v_2$, $v_2v_6v_{10}v_9$, $v_3v_7v_{11}v_6$ が与えられている とし、

(i) 頂点 v_4 と辺 (v_1, v_4) , (v_5, v_4) , (v_7, v_4) , 頂点 v_{14} と辺 (v_7, v_{14}) , (v_{10}, v_{14}) ,

図 6.14 (a) 操作 R7, (b) 操作 R8.

 (v_{11}, v_{14}) , 頂点 v_{13} と辺 (v_5, v_{13}) , (v_9, v_{13}) , (v_{14}, v_{13}) をそれぞれ操作 1 により 追加する.

(ii) 頂点 v_8 と辺 $(v_4, v_8), (v_5, v_8), (v_{13}, v_8),$ 頂点 v_{12} と辺 $(v_7, v_{12}), (v_8, v_{12}),$ (v_{14}, v_{12}) をそれぞれ操作 1 により追加する (図 6.14(a)).

操作 **R8** 剛な面 $v_1v_3v_6v_2$, $v_2v_6v_{10}v_9$, $v_3v_7v_{11}v_6$ が与えられているとし,

(i) 頂点 v_8 と辺 (v_1, v_8) , (v_7, v_8) , (v_9, v_8) , 頂点 v_4 と辺 (v_1, v_4) , (v_7, v_4) , (v_8, v_4) , 頂点 v_5 と辺 (v_1, v_5) , (v_8, v_5) , (v_9, v_5) をそれぞれ操作 1 により追加する.

(ii) 頂点 v₁₂ と辺 (v₇, v₁₂), (v₈, v₁₂), (v₁₁, v₁₂), 頂点 v₁₄ と辺 (v₁₀, v₁₄),
(v₁₁, v₁₄), (v₁₂, v₁₄), 頂点 v₁₃ と辺 (v₈, v₁₃), (v₉, v₁₃), (v₁₄, v₁₃) をそれぞれ
操作 1 により追加する (図 6.14(b)).

補題 6.4. 8 つの操作によって得られる新たな菱形十二面体は全て, 極小剛で ある.

証明 8 つの操作は全て, 補題 6.1 の条件を満たす操作 1 によって得られているので, 操作によって得られる菱形十二面体は極小剛である. □

菱形十二面体に関する 8 つの操作を用いて, 7 つのステップから成るアルゴリ ズムを以下に示す.

アルゴリズム 2.

入力: (0,0,0)-菱形十二面体.

ステップ 1: (0,0,0)-菱形十二面体の各面に筋交いを追加する (図 6.15(a)).

ステップ 2: $(1,0,0), (2,0,0), \dots, (l-1,0,0)$ -菱形十二面体を操作 R1 により, (1,0,0)-菱形十二面体から順に追加する. 同様に, $1 \le t \le m-1$ とし, (0,t,0)-菱形十二面体を追加する (図 6.15(b)).

ステップ 3: $1 \le s \le l - 1, 1 \le t \le m - 1$ とし, (s, t, 0)-菱形十二面体を操作 R2 により追加する (図 6.15(c)).

ステップ 4: (0,0,1)-菱形十二面体を操作 R3 により追加する (図 6.15(d)).

ステップ 5: $(1,0,1), (2,0,1), \dots, (l-2,0,1)$ -菱形十二面体を操作 R4 により, 順に追加する. 同様に, $1 \le t \le m-2$ について (0,t,1)-菱形十二面体を追加す る. さらに, (l-1,0,1), (0,m-1,1)-菱形十二面体を操作 R5 により追加する (図 6.15(e)).

ステップ 6: $1 \le s \le l-2, 1 \le t \le m-2$ について (s,t,1)-菱形十二面体を操作 作 R6 により追加する. さらに, (l-1,t,1), (s,m-1,1)-菱形十二面体を操作 R7 により追加する. 最後に, (l-1,m-1,1)-菱形十二面体を操作 R8 により追 加する (図 6.15(f)).

ステップ 7: ステップ 4~6 を繰り返す (図 6.15(g)).

ここで、以下の定理を示す.

定理 6.2. アルゴリズム 2 によって得られる bar-joint フレームワークは, 極小 剛な bar-joint フレームワークである.

証明 ステップ 1 で得られる菱形十二面体は定理 2.2 より剛である. さらに定理 2.1 の等式を満たすことから極小剛である. また, ステップ 2 から 7 によって得 られる菱形十二面体は 8 つの操作によって得られており, 補題 6.4 より剛である. さらに, 8 つの操作列は操作 1 のみを用いているので極小性も保たれている. し たがってアルゴリズム 2 によって得られるフレームワークは, 極小剛なフレーム ワークである.

図 6.15 アルゴリズム 2 (a) ステップ 1 (b) ステップ 2 (c) ステップ 3 (d) ステップ 4 (e) ステップ 5 (f) ステップ 6 (g) ステップ 7

6.3 建築形態生成手法への拡張

6.3.1 内部空間をもつ極小剛な空間充填立体の生成手法

ここでは、提案手法を建築の形態生成に用いることを想定し、はじめに、大き さ $(k-2) \times (l-2) \times (m-2)$ の立方体の穴を内側にもつ大きさ $k \times l \times m$ の剛 な立体の作り方を示す.

このとき, 新たな操作 C4 を定義する.

操作 C4 剛な二つの面 $v_{1(s,t,u)}v_{4(s,t,u)}v_{8(s,t,u)}v_{5(s,t,u)}, v_{4(s+1,t-1,u)}v_{3(s+1,t-1,u)}$ $v_{7(s+1,t-1,u)}v_{8(s+1,t-1,u)}$ と剛な一つの頂点 $v_{3(s,t,u)}$ が与えられているとし、 操作 1 により、頂点 $v_{7(s,t,u)}$ と辺 $(v_{7(s,t,u)}, v_{8(s,t,u)}), (v_{7(s,t,u)}, v_{3(s,t,u)}),$ $(v_{7(s,t,u)}, v_{8(s+1,t-1,u)})$ を追加する (図 6.16).

図 6.16 操作 C4

このとき, 操作 C4 も補題 6.2 の条件を満たした, 操作 1 のみを用いていることから, 極小剛性を保つ操作である.

4 つの操作を用いた, 4 つのステップで構成されるアルゴリズムを以下に示す. アルゴリズム 3.

ステップ 1: アルゴリズム1のステップ1~3を行う (図 6.17(a)).

ステップ 2: 操作 C2 により, (k-1,t,u), (s,l-1,u), (s,t,m-1)-立方体を追加する (図 6.17(b)). ここで, $1 \le s \le l-3$, $1 \le t \le m-3$, $1 \le u \le n-3$ とする.

ステップ **3**: 操作 C4 により, 頂点 (k-2, l-2, u), (s, l-2, m-2), (k-2, t, m-2)を追加する (図 6.17(c)). ここで, $2 \le s \le l-2$, $2 \le t \le m-2$, $2 \le u \le n-2$ とする.

ステップ 4: 操作 C3 により, 残りの立方体を追加する (図 6.17(d)).

図 6.17 において,全ての棒材,頂点を表現すると図が煩雑になるため,図 6.17 (a), (b), (d) は追加する立方体を黒色で表現している.

ここで,以下の定理を示す.

定理 6.3. アルゴリズム 3 によって得られる bar-joint フレームワークは, 極小 剛な bar-joint フレームワークである.

証明 極小性が保証された操作 C1~C4 によりフレームワークは得られており, ア

図 6.17 アルゴリズム 3 (a) ステップ 1 (b) ステップ 2, (c) ステップ 3 (d) ステップ 4

ルゴリズム3によって得られるフレームワークは極小剛である.

6.3.2 内部空間が外部につながった剛な空間充填立体の生成手法

さらに, 建築的な構造物の形態生成を行うため, 開口部となるような穴が空間 充填立体の外側にもある立体 (図 6.18)を想定し, 極小剛とする手法の検討を 行った. この場合にも新たに1つの操作を定義し, その操作を用いることで極小 剛な立体を得ることができる.

操作 C5 剛な二つの面 $v_{1(s,,t,u)}v_{4(s,,t,u)}v_{8(s,,t,u)}v_{5(s,,t,u)}, v_{4(s+1,,t-1,u)}v_{3(s+1,,t-1,u)}$ $v_{7(s+1,,t-1,u)}v_{8(s+1,,t-1,u)}$ が与えられているとし、操作 1 により、頂点 v_8 と辺 $(v_4, v_8), (v_7, v_8), (v_5, v_8)$ を追加する (図 6.19).

図 6.18 外部の穴の場所

図 6.19 操作 C5

このとき, 操作 C5 も補題 6.2 の条件を満たした, 操作 1 のみを用いていることから, 極小剛性を保つ操作である.

これまでと同様に,5つの操作を用いた5つのステップで構成されるアルゴリズムを以下に示す.

アルゴリズム 4.

ステップ 1: アルゴリズム 3 のステップ 1 ~ 2 と同様に, (8,0,4), (9,0,3), (9,0,4), (9,1,3), (9,1,4)-立方体を除いた高さ 5 までの剛な立方体を追加する (図 6.20(a)).

ステップ 2: (8,0,4), (9,0,3), (9,0,4), (9,1,3), (9,1,4)-立方体を, アルゴリズム 3 のステップ 3 ~ 4 と同様に追加する (図 6.20(b)).

図 6.20 アルゴリズム 4 (a) ステップ 1 (b) ステップ 2 (c) ステップ 3 (d) ステップ 4 (e) ステップ 5

ステップ 3: アルゴリズム 3 のステップ 1 ~ 2 と同様に, (8,9,6), (9,8,6), (9,9,6)-立方体を除いた高さ 7 までの剛な立方体を追加する (図 6.20(c)). ステップ 4: 操作 C5 により, (8,9,6), (9,8,6), (9,9,6)-立方体を追加する

ステップ 5: アルゴリズム 3 のステップ 1 ~ 4 と同様に剛な立方体を追加する (図 6.20(e)).

定理 6.4. アルゴリズム 4 によって得られる bar-joint フレームワークは, 極小 剛な bar-joint フレームワークである.

証明 極小性が保証された操作 C1~C5 によりフレームワークは得られており, ア ルゴリズム 4 によって得られるフレームワークは極小剛である. □

図 6.21, 6.22 にアルゴリズム 4 によって得られた極小剛な構造物を示す.

(図 6.20(d)).

図 6.21 アルゴリズム 4 による極小剛なフレームワークの例

6.4 結語

組合せ剛性理論を用いて,空間充填立体を極小剛とするブレースの追加手法を 開発した.さらに,建築構造物への応用を想定した剛な形態生成を可能とする操 作の開発と形態生成を行い,建築デザインへの応用の可能性を示した.

建築構造物への応用を想定した形態生成手法を,開口部や内部空間の数や形状 などを,条件として与えることのできる手法として確立することは,今後の課題 である.

図 6.22 別の角度から見た例

第7章

結論

本論文では組合せ剛性理論の建築デザインへの応用を目指し, panel-hinge フレームワーク及び, bar-joint フレームワークに着目し, 各章において以下のことを明らかにした.

第3章「極小剛な panel-hinge グラフの逐次生成手法」では, 逐次的に panelhinge グラフを生成する 5 つの操作を定義し, 次のことを示した. (i) 極小剛な panel-hinge グラフに対して 5 つの操作を行ってできるいずれのグラフもまた, 極小剛な panel-hinge グラフである. (ii) 5 つの操作の操作列を施すことにより, 任意の極小剛な panel-hinge グラフを生成可能である.

第4章「Panel-hinge グラフの冗長剛性及び冗長大域剛性の特徴付け」では,2次元において次の三条件が等価であることを示している. (i) panel-hinge グラフ*G*が (k,h)-剛である. (ii) panel-hinge グラフ*G*が (k,h+1)-大域剛である. (iii) グラフ*G*が (k,h+2)-連結である. さらに,3次元以上においては次の三条件が等価であることを示している. (i') panel-hinge グラフ*G*が (k,h)-剛である. (ii') panel-hinge グラフ*G*が (k,h)-削である.

第5章「剛な panel-hinge フレームワークの生成手法」では, 極小剛な panel-hinge グラフを逐次的に生成する操作に基づき, 非一般配置の剛な panel-hinge

フレームワークを生成する手法を探究した.さらにフラクタル図形に基づき,空 間充填多面体を基本形とする非一般配置の剛な panel-hinge フレームワークを生 成する手法を提案した.その後,提案手法が形態デザインに応用可能であること を,構造物の例や模型を作成することで示した.

第6章「極小剛な bar-joint フレームワークの生成手法」では,空間充填立体 の bar-joint フレームワークに対して,最小本数の筋交いを追加することで極小 剛とする手法を示した.さらに開発した操作を拡張し,内部空間や開口部を想定 した極小剛な構造物の生成手法を提案した.

最後に,本研究の今後の課題について述べる. 極小剛な panel-hinge グラフの 逐次生成手法については,逐次的に極小剛な panel-hinge グラフを生成する操作 によってはペブルゲームアルゴリズムによって,操作後のグラフの極小剛性を確 認する必要がある. ペブルゲームアルゴリズムを用いることなく,逐次的にグラ フを生成する操作は明らかとなっていない. さらに,多項式時間で全ての単純グ ラフである極小剛な panel-hinge グラフを生成する手法の開発も今後の課題であ る. この時,操作5を行う場合,頂点 *a* の *d* 個の隣接頂点を 2 つの部分集合に分 ける必要があり, *O*(2^{*d*}) の選択肢が存在するため,多項式時間アルゴリズムを開 発することの問題点となっている.

第5章,第6章で提案している剛な構造物を生成する手法では,パネルや棒材 自体の荷重を考慮しておらず,実際に建築の構造体として実現することを考える 場合には,数値解析が必要となる.

さらに第5章で提案するグラフに対する操作に基づく形態生成手法は,一つ の提案例であり,提案手法以外にも異なる生成手法を考えることができることに 注意する.そして,第5章では第3章で開発した操作の一部に対応する形態生 成手法を提案しているため,他のグラフを生成する操作に対応する形態生成手法 を検討することも考えられる.また,本研究での提案手法は逐次的に剛なフレー ムワークを生成する手法であるが,panel-hinge グラフに対応する一般的な配置 を考慮したフレームワークを生成することが可能となれば,形態デザインにとっ て,より有用となる.さらに,提案手法によって剛な形態を生成する場合において,光環境や温熱環境といったシミュレーションと関連付けて,形態の最適化を 行うことも今後の課題である.

第6章の極小剛な bar-joint フレームワークの生成手法については,柔軟なフ レームワークに対して,筋交いを追加することにより極小剛なフレームワークを 得る手法を提案しているが,筋交いを全て追加した状態から考えて,柔軟となら ないように筋交いを抜いていく,といった問題を考えることもできる.また,複 数の多面体からなる空間充填立体についても同様に,極小剛とする筋交いの追加 方法が存在するかといったことについても,本研究では確認をしていない.建築 構造物への応用を想定した形態生成手法を,開口部や内部空間の数や形状などを, 条件として与えることのできる手法として確立することは,今後の課題である.

室配置の接続関係をグラフとして扱い,分析するといったように,建築計画分 野においてもグラフ理論は応用がこれまでになされている.組合せ剛性理論に おける知見を建築計画分野において活用することも今後の課題である.

参考文献

- A. D. Alexandrov, "Convex Polyhedra", Gostekhizdat, Moscow-Leningrad, 1950 (in Russian), English translation: Springer, Berlin, 2005.
- [2] E. D. Bolker and H. Crapo, "Bracing rectangular frameworks. I", SIAM Journal on Applied Mathematics, 36(3):473–490, 1979.
- [3] J. Farre, A. John, J. Sidman, and L. Theran, "Special positions of body-and-cad Frameworks", arXiv preprint arXiv:1306.1572, 2013.
- [4] E. S. Fedorov, "An introduction to the theory of figures (in Russian)", Notices of the Imperial Mineralogical Society, 2(21):1–279, 1885.
- [5] A. Frank and L. Szegǫ, "Constructive characterizations for packing and covering with trees", *Discrete Applied Mathematics*, 131(2):347–371, 2003.
- [6] A. Frank, "Connections in Combinatorial Optimization", Oxford Lecture Series in Mathematics and Its Applications, 38, Oxford University Press, 2011.
- [7] A. Garcia and J. Tejel, "Augmenting the rigidity of a graph in R²", *Algorithmica*, 59:145–168, 2011.
- [8] J. E. Graver, B. Servatius, and H. Servatius, "Combinatorial Rigidity", volume 2 of Graduate Studies in Mathematics, American Mathematical Society, 1993.

- [9] L. E. L. Henneberg, "Die graphische Statik der starren Systeme", B.G. Teubners Sammlung von Lehrbüchern auf dem Gebiete der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, B. G. Teubner, 1911.
- [10] Y. Ito, Y. Kobayashi, Y. higashikawa, N. Katoh, S. Poon, and M. Saumell, "Optimally Bracing Grid Frameworks with Holes", *Theoretical Computer Science*, DOI:10.1016/j.tcs.2015.07.062, 2015.
- [11] B. Jackson and T. Jordán, "A sufficient connectivity condition for generic rigidity in the plane", *Discrete Applied Mathematics*, 157(8):1965–1968, 2009.
- [12] B. Jackson and T. Jordán, "The generic rank of body-bar-and-hinge frameworks", European Journal of Combinatorics, 31(2):574–588, 2009.
- [13] T. Jordán, C. Király, and S. Tanigawa, "Generic global rigidity of bodyhinge frameworks", EGRES Technical Reports, TR-2014-06, 2014.
- [14] N. Katoh and S. Tanigawa, "A proof of the molecular conjecture", Discrete & Computational Geometry, 45:647–700, 2011.
- [15] Y. Kobayashi, Y. Higashikawa, N. Katoh, and N. Kamiyama, "An Inductive Construction of Minimally Rigid Body-Hinge Simple Graphs", *Theoretical Computer Science*, 556, 2–12, 2014.
- [16] Y. Kobayashi, N. Katoh, T. Okano, and A. Takizawa, "An Inductive Construction of Rigid Panel-Hinge Graphs and Their Applications to Form Design", *The International Journal of Architectural Computing*, 13(1):45–63, 2015.
- [17] R. Kohta, M. Yamakawa, N. Katoh, Y. Araki, and M. Ohsaki, "A Design Method for Optimal Truss Structures with Certain Redundancy Based on Combinatorial Rigidity Theory", Journal of Structural and Construction Engineering, 79(699):583–592, 2014.

- [18] L. A. Kuhn, D. J. Rader, and M. F. Thorpe, "Protein flexibility predictions using graph theory", *Proteins*, 44:150–65, 2001.
- [19] G. Laman, "On graphs and rigidity of plane skeltal structures", Journal of Engineering mathematics, 4(4):331–340, 1970.
- [20] R. J. Lang, "Origami Design Secrets", Mathematical Methods for an Ancient Art, AK Peters, 2003.
- [21] R. J. Lang, "TreeMaker", http://www.langorigami.com/science/ treemaker/treemaker5.php, 2006.
- [22] A. Lee and I. Streinu, "Pebble game algorithms and sparse graphs", Discrete Mathematics, 308(8), 1425–1437, 2008.
- [23] L. Lovász and Y. Yemini, "On Generic Rigidity in the Plane", SIAM Journal on Algebraic Discrete Methods, 3(1):91–98, 1982.
- [24] B. B. Mandelbrot, "The fractal geometry of nature/Revised and enlarged edition", WH Freeman and Co., New York, 1983.
- [25] J. C. Maxwell, "On the calculation of the equilibrium and stiffness of frames", *Philosophical Magazine*, 27:294–299, 1864.
- [26] K. Mehlhorn, A. Neumann, and J. Schmidt, "Certifying 3-edgeconnectivity", arXiv:1211.6553v1, 2013.
- [27] H. Nagamochi and T. Ibaraki, "Computing edge connectivity in multigraphs and capacitated graphs", SIAM Journal on Discrete Mathematics, 5:54–66, 1992.
- [28] H. Nagamochi and T. Ibaraki, "A linear time algorithm for computing 3-edge-connected components in a multigraph", Japan Journal of Industrial and Applied Mathematics, 9:163–180, 1992.
- [29] H. Nagamochi and T. Ibaraki, "Augmenting edge-connectivity over the entire range in Õ(nm) time", Japan Journal of Industrial and Applied Mathematics, 30:253–301, 1999.
- [30] H. Nagamochi and T. Ibaraki, "Algorithmic aspects of graph connectivity", Lemma 4.8, Cambridge University Press New York, 2008.
- [31] C. Nash-Williams, "Edge-disjoint spanning trees of finite graphs", Journal of the London Mathematical Society, s1(1):445–450, 1961.
- [32] M. Ohsaki, N. Katoh, T. Kinoshita, S. Tanigawa, D. Avis, and I. Streinu, "Enumeration of optimal pin-jointed bistable compliant mechanism", *Structural and Multidisciplinary Optimization*, 37(6):645-651, 2009.
- [33] T. Okano, N. Katoh, A. Takizawa, and Y. Yoshinaka, "An Enumeration Algorithm of Minimally Rigid Graph Structure", *Algode 2011*, Tokyo, Mar. 14-15, 2011.
- [34] A. Recski, "Bracing cubic grids-a necessary condition", Discrete Mathematics, 73:199–206, 1989.
- [35] A. Schrijver, "Combinatorial Optimization", vol. B, p. 881, Corollary 51.3b, Springer, 2003.
- [36] G. Selig, "Geometric Fundamentals of Robotics", 2nd edn. Springer, 2004.
- [37] B. Servatius and H. Servatius, "Rigidity, global rigidity, and graph decomposition", European Journal of Combinatorics, 31:1121–1135, 2009.
- [38] T. Tachi, "Freeform Variations of Origami", Journal for Geometry and Graphics, 14(2):203-215, 2010.
- [39] T. Takenaka and A. Okabe, "A Computational Method for Integrating Parametric Origami Design and Acoustic Engineering", *Proceedings of* the 31st eCAADe Conference, 2, 289–295, 2013.
- [40] S. Tanigawa, "Sufficient conditions for globally rigidity of graphs", arXiv:1403.3742, 2014.
- [41] S. Taoka, T. Watanabe, and K. Onaga, "A linear-time algorithm for computing all 3-edge-connected components of a multigraph", *IEICE*

TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, 75(3):410–424, 1992.

- [42] T. Tay, "Rigidity of multi-graphs. I. Linking rigid bodies in n-space", Journal of Combinatorial Theory, Series B, 36(1): 95–112, 1984.
- [43] T. Tay, "Linking (n 2)-dimensional panels in n-space ii:(n 2, 2)frameworks and body and hinge structures", Graphs and Combinatrics, 5(1):245–273, 1989.
- [44] K. Terzidis, "Algorithmic Architecture", Taylor & Francis, 2006.
- [45] W. T. Tutte, "On the problem of decomposing a graph into n connected factors", Journal of the London Mathematical Society, s36:221– 230, 1961.
- [46] T. Uno, "A new approach for speeding up enumeration algorithms and its application for matroid bases", COCOON 1999, pp. 349–359, 1999.
- [47] N. White and W. Whiteley, "The algebraic geometry of motions of bar-and-body frameworks", SIAM Journal on Algebraic and Discrete Methods, 8(1):1–32, 1987.
- [48] W. Whiteley, "The union of matroids and the rigidity of frameworks", SIAM Journal on Discrete Mathematics, 1(2):237–255, 1988.
- [49] W. Whiteley, "Some matroids from discrete applied geometry", Contemporary Mathematics, 197:171–311, 1996.
- [50] W. Whiteley, "Rigidity and scene analysis", Handbook of Discrete and Computational Geometry, In J. Goodman and J. O' Rourke, Chapman Hall/CRC Press, Boca Raton, FL, 2nd edition, chapter 60, 1327–1354, 2004.
- [51] W. Whiteley, "Counting out to the flexibility of molecules", *Physical Biology*, 2:1–11. 2005.
- [52] 伊藤慈彦, 小林祐貴, 東川雄哉, 加藤直樹, 堀山貴史, 伊藤仁一, 奈良知恵, "

- [53] 加藤直樹, "組合せ剛性理論の最近の進展と応用", 電子情報通信学会論文誌, J99-D(10):1055-1068, 2016.
- [54] 谷川眞一, "構造物の組合せ剛性:計数条件とグラフ分割", 第 22 回 RAMP シンポジウム,名古屋, 2010.
- [55] 一松信, "正多面体を解く", 東海大学出版部, 2002.
- [56] 日本建築学会編, "アルゴリズミック・デザイン 建築・都市の新しい設計手法", 鹿島出版会, 2009.
- [57] 日本建築学会編,"建築のデザイン科学",京都大学学術出版会,2012.

発表文献

- [A] Y. Higashikawa, N. Kamiyama, N. Katoh, and Y. Kobayashi, "An Inductive Construction of Minimally Rigid Body-Hinge Simple Graphs", *Proceedings of the 7th Annual International Conference on Combinatorial Optimization and Applications* (COCOA 2013), Lecture Notes in Computer Science 8287, pp. 165–177, Chengdu, China, December 2013.
- [B] Y. Kobayashi, Y. Higashikawa, N. Katoh, and N. Kamiyama, "An Inductive Construction of Minimally Rigid Body-Hinge Simple Graphs", *Theoretical Computer Science*, 556:2–12, 2014.
- [C] Y. Kobayashi, N. Katoh, T. Okano, and A. Takizawa, "An Inductive Construction of Minimally Rigid Panel-Hinge Graphs and Application to Design Form", Proceedings of the 19th International Conference of the Association of Computer-Aided Architectural Design Research in Asia (CAADRIA 2014), pp. 493–502, Kyoto, Japan, May 2014.
- [D] Y. Kobayashi, Y. Higashikawa, N. Katoh, and A. Sljoka, "Characterizing Redundant Rigidity and Redundant Global Rigidity of Body-Hinge Graphs", *Information Processing Letters*, 116(2):175–178, DOI:10.1016/j.ipl.2015.08.011, 2016.
- [E] Y. Kobayashi, N. Katoh, T. Okano, and A. Takizawa, "An Inductive Construction of Rigid Panel-Hinge Graphs and Their Applications to Form Design", *The International Journal of Architectural Computing*,

13(1):45-63, 2015.

 [F] 小林祐貴, 加藤直樹, "極小剛な空間充填立体 bar-joint フレームワークの生成手法及び建築形態デザインへの応用", 日本建築学会環境系論文集, Vol. 83, No. 745, 2018.

謝辞

東京工業大学に来ることなくしては、本論文を書き上げることはできませんで した.藤井晴行教授をはじめ、多くの先生方の支え、ご理解により本論文をまと めることができました.

本論文の研究成果の多くは, 京都大学時代に加藤直樹教授が, ともに議論して 下さった内容であり, 多くのご指導いただきましたことを感謝いたします. 京都 大学時代の先輩であった東川雄哉助教には, 学生の時より多くの時間をともに し, 議論していただいたことに感謝いたします. 伊藤仁一教授, 奈良知恵客員教 授, 堀山貴史准教授には, 幾何学, 計算幾何学の観点から, 本研究についてご助 言, 議論いただきましたことに感謝いたします. また, 本研究は JST, CREST JPMJCR1402, JSPS 科研費 JP25240004, JP17K12868 の助成を受けたもの です.

最後に,いつも支えてくれた家族,友人に感謝いたします.