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Activities in Extended Video (ActEV)

あWe propose a system for activity detection, which utilizes the Action Tubelet (ACT) Detector [1]

to localize activities in video data. Our network is trained for all of activities in the ActEV dataset with a

backbone convolutional neural network pre-trained on the ImageNet dataset. We inserted a thresholding

module to the original ACT framework to adapt detector to the ActEV task [2], since activities in this

task appear more sparsely distributed than those in the action detection task in [1]. Our result was 0.882

in mean-p miss@0.15rfa *1 at the AD Leaderboard Evaluation.

1 Method

The overview of our system for the ActEV task is shown in Figure 1. A thresholding module is

inserted to the original ACT detector framework [1], which consists of a tubelet-extraction module and a

tube-creation module. Our system consists of three modules as a result: extracting tubelets, thresholding

and creating tubes.

The tubelet-extraction module takes image frames as input and outputs spatio-temporal regions of

objects associated with the target activity. These regions are extracted from image frames in the following

two steps as in [1]. First, deep features are extracted using a backbone CNN from each image frame in a

video clip. Second, the Single-Shot MultiBox Detector framework [3] extended to multi-frames is applied

Figure 1: Overview of our system

*1probability of missed detections at condition which allow false alarm 0.15 times a minute
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Figure 2: Overview results of the AD Leaderboard Evaluation. Runs are sorted with mean-p miss@0.15rfa

(lower is better). Our run is labelled as red.

Dataset

Method Validation Test

w/o thresholding (baseline) 0.885 -

w/ thresholding 0.05 0.856 0.882

Table 1: Comparison of baseline(original ACT-detector) and ours in mean-p miss@0.15rfa.

to them to detect spatio-temporal regions, namely tubelets, of objects. In this step, an appearance

probability of the target activity is also calculated for each tubelet.

The thresholding module has a function to reject detected tubelets based on the probabilities. This

module is introduced to adapt the detectors to the ActEV task, which includes many objects not asso-

ciated with the target activity. Thresholding parameters are optimized by grid search on the validation

data of ActEV dataset.

The tube-creation module concatenates tubelets by computing the overlap between tubelets as in [1]

to output activity tubes.

2 Experiments

Our leaderboard submission used threshold value of 0.05, based on the best local validation set

results. Our result was 0.882 in mean-p miss@0.15rfa, which is ranked 6th among 10 teams as shown in

Figure 2. Table 1 shows results with and without the thresholding module on validation data. We see

that thresholding helps to reduce errors by 2.9% p miss value.

3 Conclusion

We participated in Activities in Extended Video (ActEV) and evaluated our system using ACT

detectors. Our run achieved 0.882 in mean-p miss@0.15rfa at AD Leaderboard Evaluation. Future work

will be focusing on temporal modeling of activities.
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