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Skeleton-based Human Action Recognition with
Fine-to-Coarse Convolutional Neural Network

Thao MINH LE†, Nakamasa INOUE†, and Koichi SHINODA†

† Tokyo Institute of Technology, Japan

Abstract This work introduces a new framework for skeleton-based human action recognition. Existing ap-
proaches using Convolutional Neural Network (CNN) often suffer from the insufficiency problem of training data.
In this study, we utilize a fine-to-coarse (F2C) CNN architecture that is come up based on the special structure of
human skeletal data. We evaluate our proposed method on two skeletal datasets publicly available, namely NTU
RGB+D and SBU Kinect Interaction dataset. It achieves 79.6% and 84.6% of accuracies on NTU RGB+D with
cross-object and cross-view protocol, respectively, which are almost identical with the state-of-the-art performance.
In addition, our method significantly improves the accuracy of the actions in two-person interactions.
Key words Action Recognition, Human Skeleton, Fine-to-Coarse CNN

1. Introduction

Human action recognition studies utilizing 3D skeleton
data have drawn a great deal of attention [1] due to its appli-
cations in a number of areas including security surveillance
systems, human-computer-interaction-based games, and the
healthcare industry.

Earlier methods of 3D human action recognition utilized
hand-crafted features for representing the intra-frame rela-
tionships through the skeleton sequences [2]. Some studies
are built upon the deep learning, end-to-end learning based
on Recurrent Neural Networks (RNNs) with Long Short-
Term Memory (LSTM) has been utilized to learn the tem-
poral dynamics [3], [4]. Recent studies have shown the supe-
riority of Convolutional Neural Networks (CNNs) over RNN
with LSTM for this task [5], [6]. These CNN-based meth-
ods are, however, weak in handling long temporal sequences.
And thus, it usually fails to distinguish actions with simi-
lar distance variations but with different durations, such as
“handshaking” and “giving something to other persons”.

Motivated by the success of the generative model for
CAPTCHA images [7], we believe 3D human action recogni-
tion systems can also benefit from a specific network struc-
ture for this application domain. In particular, we introduce
a fine-to-coase (F2C) CNN architecture that utilizes both the
temporal relationships between temporal segments and spa-
tial connectivities among human body parts. Our method is
expected to have a superior performance to the naive deep
CNN networks. We are unaware of any attempt to use F2C
network for 3D human action recognition.

2. Fine-to-Coarse CNN for Skeleton-
based Human Action Recognition

Figure 1 shows an overview of our framework. It consists
of two phases: feature representation and high-level feature
learning with a F2C network architecture.

2. 1 Feature Representation
We encode the geometry of human body originally given

in an image space into local coordinate systems. Motivated
by Ke at al. [5], six joints located in different body parts are
selected as reference joints in order to generate whole-body-
based (WB) features and body-part-based (BP) features. In
other words, the hip joint is chosen as the origin of the co-
ordinate system presenting the WB features; while the other
reference joints, namely the head, the left shoulder, the right
shoulder, the left hip, and the right hip, are used to represent
the BP features. The WB features represent the motions of
human joints around the base of the spine, while the BP fea-
tures represent the variation of appearance and deformation
of the human pose when viewed from different body parts.

Different from the other studies using BP features [3], [5],
[8], we extract a velocity together with a joint position from
each joint of the raw skeleton. The velocity represents the
variations over the time and has been widely employed in
many handcrafted-feature-based approaches [9]. It is robust
against the speed changes; and accordingly, is effective to dis-
criminate actions with similar distance variations but with
different speeds, such as punching and pushing.

In the t-th frame of sequence of skeletons with n joints,
the 3D position of the i-th joint is depicted as:
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Figure 1 System Overview.

pi(t) = [px
i (t), py

i (t), pz
i (t)]⊤. (1)

The relative inter-joint positions are highly discriminative for
human actions. The relative position of joint i at time t is
described as:

p̂i(t) = pi(t) − pref(t), (2)

where pref(t) depicts the position of a selected reference joint.
The velocity feature v̂i(t) at time frame t is defined as the
first derivatives of the relative position feature p̂i(t). Zanfir
et al. [9] showed that it is effective to compute the derivatives
of human instantaneous pose which is represented by joints’
location at a given time frame t over a time segment. The
velocity feature, therefore, is formulated as:

v̂i(t) ≈ p̂i(t + 1) − p̂i(t − 1). (3)

Considering each component of WB and BP features are
2D array features, we finally project these 2D array features
into RGB image space using a linear transformation. In par-
ticular, each of three components (x, y, z) of each skeleton
joint is represented as one of the three corresponding com-
ponents (R, G, B) of a pixel in a color image by normalizing
the (x, y, z) values to the range 0 to 255. We call these two
RGB images as skeleton images.

2. 2 Fine-to-Coarse Network Architecture
Our F2C network, as illustrated in Figure 2, takes three

color channels of skeleton images as inputs. Accordingly, the
input of our F2C network consists of two dimensions: the
spatial dimension describing the geometric dependencies of
human joints along the joint chain, and the temporal dimen-
sion of the time-feature representation over T frames of a
skeleton sequence. Let m be the number of segments along
the temporal axis, n is the number of body parts (n = 5),
each image skeleton is considered as a set of m×n slices. As-
sume Tseg (T =m×Tseg) is the number of frames in one tempo-
ral segment, lbp is the dimension of one body part along the
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Figure 2 Fine-to-Coarse Network Architecture. Blue arrows
show pair slices which are concatenated along each di-
mension before passing to a convolutional block.

spatial dimension, each input slide has size of lbp × Tseg. We
then simultaneously concatenate the slices over both spatio-
temporal axes. In other words, we first concatenate each
body part which belongs to human limbs with the torso,
while concatenating two consecutive temporal segments to-
gether. Each concatenated 2D array feature is further passed
through a convolution layer followed by a max pooling layer.
The same procedure is applied in the next step. In short, our
F2C network composes of three layer-concatenation steps,
and three convolution blocks accordingly.

Both WB-based and BP-based skeleton images are gone
through the proposed F2C network in the same way. While
it is conceivable for feeding BP features into our network
for high-level feature learning, we believe WB features also
benefit from going through the network since the spatial di-
mension of WB features, which are formed by a pre-defined
joint chain, contains the intrinsic relationships between body
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Table 1 Classification Performance on NTU RGB+D Dataset

Methods CS CV
Enhanced skeleton visualization [10] 76.0 82.6
Temporal CNNs [11] 74.3 83.1
Clips+CNN+Concatenation [6] 77.1 81.1
Clips+CNN+MTLN [6] 79.6 84.8
VA-LSTM [4] 79.4 87.6
SkeletonNet [5] 75.9 81.2
(WB + BP) + VGG 68.1 72.4
BP + F2C network 78.2 81.9
(WB + BP) w/o velocity + F2C network 76.6 81.7
F2CSkeleton (Proposed) 79.6 84.6

parts.
Our network can be viewed as a procedure to eliminate

unwanted connections between layers from the CNN. We
believe conventional CNN models include some redundant
connections for capturing human-body-geometric features.
Many actions only require the movement of the upper body
(e.g. hand waving, clapping) or the lower body (e.g. sit-
ting, kicking), while the other requires the movements of the
whole body (e.g. moving towards, pick up something). For
this reason, the bottom layers in our method can discrim-
inate “fine” actions which require the interactions of some
certain body parts, while the top layers are discriminative
for “coarse” actions using the movements of the whole body.

3. Experimental Results

3. 1 Datasets and Experimental Conditions
We conduct experiments on two skeleton benchmark

datasets publicly available: NTU RGB+D [3] and SBU
Kinect Interaction Dataset [12].

NTU RGB+D Dataset: contains 56,880 skeleton se-
quences. Each skeleton contains 25 human joints. This
dataset is collected by 40 human subjects performing 60 dis-
tinct action classes of three human-action groups: daily ac-
tions, health-related actions, and two-person interactive ac-
tions. It is challenging due to the large variations of view-
points and sequence lengths. We use the two standard eval-
uation protocols proposed by the original study [3], namely,
cross-subject (CS) and cross-view (CV).

SBU Kinect Interaction Dataset: 282 skeleton se-
quences divided into 21 subsets collected from eight differ-
ent types of two-person interactions including approaching,
departing, pushing, kicking, punching, exchanging objects,
hugging, and shaking hands. Each skeleton contains 15
joints. There are seven subjects who performed the actions
in the same laboratory environment. We also augment data
as in [5] before doing five-fold cross-validation. Eventually,
we obtain a dataset of 11,280 samples.

Table 2 Two-person-Interactions, RGB+D dataset (CV)

Actions SkeletonNet F2CSkeleton
Prec. Rec. Prec. Rec.

Punching/slapping 59.2 56.0 80.6 82.2
Kicking 46.8 64.9 90.4 91.3
Pushing 69.7 72.2 88.0 86.1
Pat on back 54.7 46.2 82.8 80.7
Point finger 42.8 72.8 88.3 91.1
Hugging 77.6 83.5 92.9 83.8
Giving something 72.5 72.5 88.7 91.8
Touch other’s pocket 66.9 50.6 90.9 95.3
Handshaking 83.1 82.6 95.8 94.9
Walking towards 66.2 82.3 96.9 97.8
Walking apart 61.8 78.5 76.2 77.7

* Prec.: Precision Rec.: Recall

Implementation Details For a fair comparison with the
previous studies, transfer learning is applied in order to im-
prove the classification performance. To be more specific,
our proposed F2C network architecture is first trained with
ImageNet with the input image dimension of 224×224. The
pre-trained weights are then applied to all experiments. Re-
garding input skeletons at each time step, we consider up to
two distinct human subjects at once.

For NTU RGB+D dataset, 20% of training samples are
used as a validation set. The first fully connected layer has
256 hidden units, while the output layer has the same size
as the number of actions in the datasets. The network is
trained using Adam for stochastic optimization [13]. The
learning rate is set to 0.001 and exponentially decayed over
25 epochs. We use a batch size of 32. The same experimental
settings are applied to all the experiments.

3. 2 Experimental Results
NTU RGB+D Dataset We compare the performance of

our method with the previous studies in Table 1. The clas-
sified accuracy is chosen as the evaluation metric. (WB +
BP) + VGG uses VGG16 pre-trained on ImageNet dataset
instead of our F2C network. This examines the significance
of the proposed F2C network for high-level feature learn-
ing against the conventional deep CNN models. BP + F2C
network only adopts the skeleton images generated by BP
features to feed into the proposed F2C network architecture.
This aims to justify the contribution of WB features going
through our F2C network. (WB + BP) w/o velocity + F2C
network only uses joint position features which are put into
the proposed F2C network to examine the importance of
incorporating velocity feature to the final classification per-
formance. Finally, WB + BP + F2C network (F2CSkeleton)
is our proposed method.

As shown in Table 1, our proposed method outperforms re-
sults reported by [5], [6], [10], [11] with the same testing con-
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Table 3 Classification Performance on SBU Dataset
Methods Acc.

SkeletonNet [5] 93.5
Clips+CNN+Concatenation [6] 92.9
Clips+CNN+MTLN [6] 93.6
Context-aware attention LSTM [15] 94.9
VA-LSTM [4] 97.2
F2CSkeleton (Proposed) 99.1

dition. In particular, we gain over 3.0% improvement from
our baseline [5] on both two testing protocols, and around
2.5 points better than Ke et al. [6] with feature concatena-
tion. However, Ke et al. [6] with Multi-Task Learning Net-
work (MTLN) obtained a slightly better performance than
ours with the CV protocol. The learning paradigm MTLN
works as a hierarchical method to effectively learn the in-
trinsic correlations between multiple related tasks [14], thus,
outperforms a mere concatenation.

Table 1 also shows that our F2C network performs signifi-
cantly better than VGG16 by approximately 12 points, while
the incorporation of velocity improves the performance about
3.0 points with both testing protocols. Besides, the use of
WB and BP features in combination improves the accuracies
from 78.2% to 79.6% and 81.9% to 84.6% with CS and CV
protocol, respectively.

Our method outperforms SkeletonNet on all the two-
person interactions (Table 2). Two-person interactions usu-
ally require the movement of the whole body. We argue that
top layers of our tailored network architecture can learn the
whole body motion better than the naive CNN models orig-
inally designed for detecting generic objects in a still image.

SBU Kinect Interaction Dataset Table 2 shows the
comparisons of our proposed method with the previous stud-
ies on SBU dataset. As can be seen, our proposed method
achieved the best performance on this dataset over all the
other previous methods. In particular, our method gains
more than 5.0 points improvement compared to the two
state-of-the-art CNN-based methods [5], [6], about 4.0 points
better than [15], and approximately 2.0 points better than [4].
These results again confirm that our method has superior
performance on two-person interaction actions.

4. Conclusion

This work addresses two problems of the previous stud-
ies: the loss of temporal information in a skeleton sequence
when modeling with CNNs and the need for a network model
specific to a human skeleton sequence. We first propose to
segment a skeleton sequence to retrieve the dependencies be-
tween temporal segments in an action. We also propose an
F2C CNN architecture for exploiting the spatio-temporal fea-

ture of skeleton data. As a result, our method with only
three network blocks shows the superior generalization abil-
ity across very deep CNN models. We achieve a perfor-
mance of 79.6% and 84.6% of accuracies on the large skele-
ton dataset, NTU RGB+D, with cross-object and cross-view
protocol, respectively, which is competitive with the state-
of-the-art. In the future, as has been noted, we will adopt
the notion of multi-task learning for better performance.
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