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Abstract

The purpose of this thesis is to study quantum periods in four-dimensional N = 2 super-

symmetric gauge theories with hypermultiplets defined in the Nekrasov-Shatashvili (NS)

limit of the Ω-background. We first review the Seiberg-Witten theory. In N = 2 super-

symmetric gauge theories, their dynamics in the Coulomb moduli space is described by

the Seiberg-Witten (SW) curve. The periods of the SW curve enable us to analyze the

low-energy effective theory, including non-perturbative effects, at both weak and strong

coupling. In the weak coupling region, one can investigate the non-perturbative instan-

ton effects through the prepotential. At strong coupling, one obtains the periods around

singularities in the Coulomb moduli space, where BPS particles become massless. The

dual prepotentials around the massless monopole/dyon point are also determined from

the SW curve and its periods. At a superconformal point, where mutually non-local BPS

particles become massless, the curve degenerate and the theory becomes an interacting

N = 2 superconformal field theory, called the Argyres-Douglas (AD) theory. The AD

theory has fractional scaling dimensional operators and no microscopic Lagrangian. The

BPS spectrum of the AD theory is determined from the degenerated SW curve.

We next study the quantization of Seiberg-Witten curve for N = 2 supersymmetric

quantum chromodynamics (SQCD). The SW curve is quantized with help of the canonical

quantization of the symplectic structure derived by the SW differential. The Planck con-

stant ~ corresponds to the deformation parameter of the NS limit of the Ω-background.

The quantum correction to the SW periods, obtained from the WKB solution, is given

from the SW periods by acting some differential operator. In the weak coupling region,

the quantum periods agree with those obtained from the NS limit of the Nekrasov parti-

tion function, where the gauge theory is defined in the Ω-background. We compute the

quantum SW periods around the massless monopole point and the superconformal point

up to the fourth order in ~. We then find the general formulas for the second and fourth

order corrections to the SW periods in the SU(Nc) SQCD and related Argyres-Douglas

theory.
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Chapter 1

Introduction

1.1 Motivation

The standard model is the most successful quantum field theory which explains many

experimental results of elementary particles. The standard model is based on a gauge

theory which can do powerful predictions based on the perturbative method. However,

it is difficult to study non-perturbative effects such as instanton effects and confinement

of quarks, which are important to understand the low-energy dynamics of gauge theories.

One can study such effects by introducing supersymmetry, which is a symmetry between

bosonic and fermionic fields (particles). In particular, for four-dimensional N = 2 super-

symmetric gauge theories 1, we can explicitly analyze low-energy effective physics and the

non-perturbative effects in both the weak and strong coupling region [1, 2]. By breaking

N = 2 to N = 1, one has an explanation of confinement of electric charges via monopole

condensations.

An exact solution to the low-energy effective theory of a four-dimensional N = 2

theory was studied by Seiberg and Witten in 1994 [1, 2]. They proposed a procedure to

analyze exactly the low-energy effective action for a N = 2 SU(2) gauge theory in both

weak and strong coupling region [1, 2]. The low-energy effective theory is an interact-

ing N = 2 supersymmetric U(1) gauge theory, where the low-energy effective action is

obtained by integrating out the massive modes. In usual, it is difficult to perform the

1In general, the number of the supersymmetry refers to the number of conserved fermionic charges.
Since we have four real components in a single fermion in four dimensions, for example, there are 4N
conserved fermionic charges or supercharges in N supersymmetric theory.

9
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path integral directly and explicitly. Seiberg and Witten solved the low-energy effective

action of the N = 2 supersymmetric gauge theory by using a Riemann surface, called

the Seiberg-Witten curve, which characterizes the geometrical structure of the Coulomb

moduli space. They discovered the Seiberg-Witten curve by using the holomorphy and

the strong-weak coupling duality. Here the Coulomb moduli space is parameterized by

the vacuum expectation value (vev) of the scalar fields in the N = 2 vector multiplets.

The Seiberg-Witten curve and its periods enable us to understand both weak and strong

coupling physics of the theory such as instanton effects, the BPS spectrum [1, 2] and in

particular physics at nonlocal superconformal fixed point [3,4]. Their idea has been gener-

alized to the theory based on various gauge group with or without hypermultiplets [5–10].

The Seiberg-Witten theory has been also extended to the higher dimensional theory [11].

The N = 2 supersymmetric gauge theory is constructed from superstring theory or

M-theory. Superstring theory is the most promising candidate for the unified theory of

particles and forces including gravity. Superstring theory is defined perturbatively and

has five consistent theories. These five superstring theories are mutually related through

duality transformations and can be unified by M-theory [12]. M-theory is expected to be

the most fundamental theory of particle physics. However, we have no definitions of the

M-theory since it is a strongly coupled theory. From the analysis of eleven-dimensional

supergravity which is the low-energy effective theory of the M-theory, there are two fun-

damental objects, called M2-branes and M5-branes. In order to investigate M-theory, it

is important to study physics of M2 and M5 branes. The model described multiple M2

branes on C4/Zk is the ABJM model [13] which has been studied extensively. For M5

branes, the world volume theory is the six-dimensional N = (2, 0) superconformal field

theory (SCFT). Four-dimensional N = 2 gauge theories can be derived from compactifi-

cations of six-dimensional N = (2, 0) SCFT on a Riemann surface with punctures [14–16].

It is useful to clarify four-dimensional N = 2 gauge theories from the viewpoint of M5

branes.

It is known that the N = 2 gauge theory are described by certain integrable models

[17–19]. For example, for the N = 2 supersymmetric SU(Nc) Yang-Mills theory, the SW

curve is the same form as the spectral curve of a periodic ANc−1 Toda lattice, which is a

classical integrable model [18].
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At strong coupling in Coulomb moduli space, there exist interacting N = 2 SCFTs,

called Argyres-Douglas (AD) theories [3,4]. The AD theory arises at a superconformal RG

fixed point where mutually non-local BPS particles become massless. There is no electric-

magnetic duality transformation such that particles carry electric charge only. The AD

theory is then a strongly coupled theory which has the particles with both electric and

magnetic charges. This theory, therefore, has no local Lagrangian description. Moreover,

the operators and their couplings have fractional scaling dimensions. The SW curve of

the AD theory is obtained by taking the scaling limit around the superconformal point

of corresponding N = 2 gauge theories [3, 4, 20–22]. Then the BPS spectrum of the

AD theory can be studied by the degenerated SW curve. Recently, the dynamics of AD

theories have been also studied from the viewpoint of the compactification of M5-branes

on a punctured Riemann surface [23] and its relation to two-dimensional conformal field

theories (CFT) [24–27]. By using the N = 1 deformation, the superconformal indices for

the AD theory have been studied in [28–30].

It has been also found that a large class of the N = 2 SCFT corresponds to two-

dimensional CFT with non-unitarity [24] by comparing central charges in both theories

and analyzing the superconformal indices and the characters of two-dimensional chiral

algebras. By applying the conformal bootstrap program [31], the correspondence between

four-dimensional N = 2 SCFTs and two-dimensional CFTs has been also studied in

[32,33].

1.2 Omega background

We have considered the low-energy effective action of the N = 2 supersymmetric gauge

theory in flat spacetime, obtained by using the Seiberg-Witten curve and its periods.

In the weak coupling region, one can compute the partition function of N = 2 gauge

theories based on the microscopic Lagrangian by introducing the Ω-background. The Ω-

background deforms four-dimensional spacetime by the torus action with two parameters

(ε1, ε2) [34,35]. The partition function, called the Nekrasov partition function, provides an

exact formula of the effective Lagrangian including the non-perturbative instanton effects

by taking the limit where ε1, ε2 → 0.
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Recently it has been recognized that the N = 2 supersymmetric gauge theories are

related to various dimensional mathematical physics through the Nekrasov partition func-

tion. The Nekrasov partition functions are related to conformal blocks of two-dimensional

CFTs [36,37], the partition function of topological strings [38,39] and the solutions of the

Panlevé equations [40, 41], where the Ω-deformation parameters enter into the formulas

of the central charge and the string coupling.

The Nekrasov partition function in the weak coupling region can be computed with the

help of localization technique. At strong coupling, however, we do not know the localiza-

tion method to reproduce the dual effective action around singularities with massless BPS

particles in the Coulomb moduli space. In particular, for the Argyres-Douglas theories,

since we have no appropriate microscopic Lagrangian, one can not compute the parti-

tion function in a usual localization method. In the case of the self-dual Ω-background

with ε1 = −ε2, the AD theories have been studied by using the holomorphic anomaly

equation [38,42] and the E-strings [43].

1.3 Quantum Seiberg-Witten curve

The purpose of this thesis is to study the effects of the Ω-deformation at strong coupling.

In particular, we consider the Nekrasov-Shatashvili (NS) limit [44] of the Ω background

where one of the deformation parameters ε2 goes to zero. In this limit, the SW curve

becomes the so-called quantum Seiberg-Witten curve which is an ordinary differential

equation. This differential equation is obtained by the canonical quantization procedure

for the symplectic structure induced by the SW differential. Here the deformation pa-

rameter ε1 plays a role of the Planck constant ~. The Ω-deformed SW periods in the NS

limit, which are the main subjects of this thesis, are obtained from the WKB solution of

the quantum SW curve.

In the weak coupling region, the validity of the quantum SW curve has been studied

for various N = 2 theories. For SU(2) pure Yang-Mills theory, the quantum SW curve

becomes the Schrödinger equation with the sine-Gordon potential [45] and the period com-

puted from the WKB solution is shown to agree with that obtained from the Nekrasov

partition function. For N = 2 SU(2) supersymmetric quantum chromodynamics (SQCD)
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with Nf ≤ 4 hypermultiplets, the WKB solutions of the quantum SW curves have been

studied in [46]. Generalization to other N = 2 theories and their relations to the Nekrasov

partition functions have been investigated extensively [47–50]. The quantum SW curve

is also derived from the analysis of the conformal block with the insertion of the surface

operator [51–53]. From the classical limit of the conformal blocks of two-dimensional

CFTs, the deformed prepotentials for the SU(2) gauge theories with Nf = 1, 2, 4 hyper-

multiplets have been also obtained in [54–56]. In [57], the exact quantization condition for

the SU(Nc) pure Yang-Mills theory has been studied, which including non-perturbative

effects in ~.

It is interesting to study perturbative and non-perturbative quantum corrections in the

strong coupling region of the Coulomb moduli space, which might lead to the modification

of strong coupling dynamics of the theory. The perturbative corrections around the

massless monopole point in the SU(2) pure Yang-Mills theory have been studied in [58].

In [59], the one-instanton correction in ~ to the dual prepotential has been calculated.

The non-perturbative aspects of the ~ expansion in N = 2 theories have been studied

in [60–63]. For the Argyres-Douglas theories, the quantum SW curve has been studied

in [64] from the viewpoint of the ODE/IM correspondence (for a review of the ODE/IM

correspondence see [65]).

In this thesis, we will study the perturbative corrections in ~ to the SW periods for

N = 2 SQCD at the strong coupling, especially, around the massless monopole point and

the superconformal point of the Coulomb moduli space. We will show that the higher

order corrections in ~ to the SW periods can be expressed by acting the differential

operators with respect to some parameters on the SW periods, such as the Coulomb

moduli parameters and the mass parameters. We will then calculate the WKB solutions

of the quantum SW curve and investigate the relation between the higher order corrections

in ~ and the SW periods up to the fourth order in ~. Then we will compute the quantum

corrections to the SW periods around the massless monopole point and the superconformal

point up to the fourth order in ~. Around the massless monopole point of the N = 2

SU(2) SQCD, we will calculate the the NS limit of the Ω-deformed dual prepotential by

using the quantum SW periods and find the interesting phenomenon that the massless

monopole point in the Coulomb moduli space is shifted by the quantum corrections up to
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the fourth order in ~. Around the superconformal point of the N = 2 SU(2) SQCD, we

will evaluate the quantum SW periods by applying the relation between the higher order

correction in ~ and the SW periods up to the fourth order in ~. In AD theories realized

from N = 2 SU(Nc) SQCD, we will find general formulas for the second and fourth order

corrections, which would be useful to explore higher order corrections.
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1.4 Outline

This thesis is organized as follows:

In chapter 2, we will review the Seiberg-Witten theory. For SU(2) pure Yang-Mills

theory which is the simplest example of the SW theory, we will introduce the Seiberg-

Witten curve and the SW differential. We will obtain the (dual) prepotential in both

weak and strong coupling region. The construction of the SW solution for the pure SU(2)

theory can be generalized to the SU(2) SQCD with Nf (= 1, 2, 3, 4) hypermultiplets and

the SU(Nc) (Nc ≥ 3) SQCD with Nf (< 2Nc) hypermultiplets.

In chapter 3, we will review the Argyres-Douglas theory. The SW curve for the AD

theory is obtained from the degeneration of the SW curve for N = 2 gauge theories.

The SW differentials for the AD theories take different forms for each Nf due to fla-

vor symmetry. Then we will compute the period integrals around the superconformal

point for the SU(2) SQCD with Nf = 1, 2, 3 hypermultiplets. We will generalize to the

case of the SU(Nc) SQCD and derive the SW curve and the SW differential around the

superconformal point.

In chapter 4, we will introduce the Ω-deformation of the four-dimensional spacetime.

The Nekrasov partition function, which is computed with help of the Localization theorem,

reproduces the prepotential in the weak coupling region. In the Nekrasov-Shatashvili (NS)

limit, the low-energy effective theory is defined in the two-dimensional Ω-background with

a deformation parameter ε1. The supersymmetric vacua condition of the two-dimensional

Ω-deformed theories derives that the SW periods satisfy the Bohr-Sommerfeld quantiza-

tion condition which the Ω-deformation parameter ε1 is a roll of the Plank constant.

In chapter 5, we will study the quantization of the SW curve for the SU(2) gauge

theory with Nf (= 0, . . . , 4) hypermultiplets. We will obtain the quantum corrections to

the SW periods for the SU(2) SQCD. We will show that the prepotentials obtained from

the WKB solutions of the quantum SW curve agree with those obtained from the NS

limit of the Nekrasov partition functions. Then we will compute the dual prepotential

around the massless monopole point and discuss the modification of the strong coupling

physics by the Ω-deformation. This chapter is based on the paper [66] of the author in

collaboration with K. Ito and S. Kanno.
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In chapter 6, we will study the quantum SW curve for the Argyres-Douglas theory. We

will show the relation between the SW periods and the higher order corrections up to the

fourth order in ~. We will calculate the quantum corrections to the SW periods near the

superconformal point, which are expressed in terms of the hypergeometric function. Then

we will extend to the AD theory associated with SU(Nc) SQCD and show the higher order

corrections can be also expressed by acting the differential operators on the SW periods

up to fourth order in ~. This chapter is based on the paper [67] and the work [68].

In chapter 7, we summarize this research and discuss future works.



Chapter 2

Seiberg-Witten theory

This chapter is a review part of the Seiberg-Witten (SW) theory [1, 2]. The SW theory

provides us a low-energy effective description for N = 2 gauge theories in both weak and

strong coupling region. The basic facts of the supersymmetry are summarized in appendix

A.

2.1 Effective action for N = 2 supersymmetric gauge

theory

Let us consider the representation of the N = 2 supersymmetry. There are two types

of multiplets, namely the vector multiplet and the hypermultiplet, which consist of the

fields as follows:

N = 2 vector multiplet : N = 2 hypermultiplet :

gauge field Aµ Weyl spinor ψq
Weyl spinor λ ψ complex scalar q q̃†

complex scalar φ Weyl spinor ψ†q̃

(2.1)

where Aµ is a gauge field, (λ, ψ) are Weyl spinors and φ is a complex scalar filed in the

vector multiplet. (ψq, ψ
†
q̃) are Weyl spinors and (q, q̃†) are complex scalar fields in the

hypermultiplet. The components fields in the N = 2 vector multiplet and the N = 2

17
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hypermultiplet can be organized into the N = 1 multiplets as follows:

N = 2 vector multiplet : N = 2 hypermultiplet :

N = 1 vector multiplet : (Aµ, λ), N = 1 chiral multiplet : (q, ψq),

N = 1 chiral multiplet : (φ, ψ), N = 1 chiral multiplet : (q̃†, ψ†q̃).

(2.2)

TheN = 2 supersymmetry algebra contains the R-symmetry which rotates of supercharge

by the U(2)R ' SU(2)R × U(1)R group. The R-symmetry U(1)J × U(1)R acts on the

component fields in the vector multiplet as

U(1)J :

 Aµ
λ ψ

φ

→
 Aµ
eiαλ e−iαψ

φ

 , (2.3)

U(1)R :

 Aµ
λ ψ

φ

→
 Aµ
eiαλ eiαψ

e2iαφ

 , (2.4)

where U(1)J denotes the diagonal subgroup of the SU(2)R. Here we note (λ, ψ) are

doublets under SU(2)R. The fields belonging to the hypermultiplet transform as

U(1)J :

 ψq
q q̃†

ψ†
q̃†

→
 ψq
eiαq e−iαq̃†

ψ†
q̃†

 , (2.5)

U(1)R :

 ψq
q q̃†

ψ†
q̃†

→
 eiαψq
q q̃†

e−iαψ†
q̃†

 , (2.6)

under U(1)J × U(1)R where (q, q̃†) are doublets under SU(2)R. Note that the U(1)R

symmetry is broken to a discrete subgroup at quantum level by the anomaly. For instance,

in the SU(Nc) gauge theory with Nf hypermultiplets, the chiral anomaly breaks U(1)R

to the discrete subgroup Z4Nc−2Nf .

Let us consider the low-energy effective theory for the N = 2 pure Yang-Mills theory

with gauge group G. The adjoint scalar field φ contained in the N = 2 vector multiplet

has the potential term:

V(φ) =
1

g2
Tr[φ, φ†]2, (2.7)
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where g is the gauge coupling constant. In the classical vacuum defined by V = 0, the

scalar field takes the vacuum expectation value (vev) as

〈φ〉 =
∑
i

aiH
i, (2.8)

up to gauge transformation where ai is the complex parameter and H i (i = 1, · · · , r)
belongs to the Cartan subalgebra for G. Here r is a rank of G. The classical vacua

of this theory are degenerated continuously and parameterized by the gauge invariants〈
Trφk

〉
where k belongs to order of Casimir operators of G. The moduli space of vacua

parameterized by
〈
Trφk

〉
is called the Coulomb moduli space. In the generic classical

vacua, the gauge group G of the theory is broken to the subgroup U(1)r by the vev of the

scalar fields. Thus the low-energy effective theory for the N = 2 pure Yang-Mills theory

becomes an interacting N = 2 U(1)r gauge theory. Integrating out the massive modes,

we obtain the low-energy effective Lagrangian. The N = 2 supersymmetric effective

Lagrangian can be written in terms of the N = 1 superfield by introducing the N = 1

field strength Wα =
∑

iWαiH
i and the N = 1 chiral superfield Φ =

∑
i ΦiH

i. It takes

the form:

Leff =
1

4π
Im

[∫
d4θΦi

DΦ̄i +
1

2

∫
d2θτ ijWα

i Wαj

]
. (2.9)

Here the dual chiral superfield Φi
D and the complex effective coupling constant τ ij are

defined by

Φi
D =

∂F
∂Φi

, τ ij =
∂2F

∂Φi∂Φj

, (2.10)

respectively, where the holomorphic function F(Φ) of Φ is a prepotential. For SU(2)

gauge theory, τ is the effective coupling constant, given by

τ :=
θeff

2π
+

4πi

g2
eff

, (2.11)

where θeff is the effective theta angle and geff is the effective coupling constant. Classically,

the prepotential is given by

Fcl(Φi) =
1

2
τclΦ

iΦi, (2.12)
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where τcl is the bare coupling constant.

We determine the prepotential F(Φ) to obtain the effective Lagrangian for the N = 2

gauge theory. The prepotential F(Φ) includes not only the perturbative but also non-

perturbative corrections.

2.2 Seiberg-Witten solution to N = 2 SU(2) super

Yang-Mills theory

2.2.1 Prepotential for N = 2 SU(2) super Yang-Mills theory

Let us study the simplest example: N = 2 supersymmetric SU(2) Yang-Mills theory.

The prepotential for this theory has been obtained by Seiberg and Witten [1]. They gave

a procedure to determine exactly the prepotential at both weak and strong couplings.

We first consider the vacuum structure of the SU(2) gauge theory. The condition

V(φ) = 0 is satisfied when the scalar field takes the form 〈φ〉 = aσ3 with σ3 = diag(1,−1)

where a is a complex parameter. The Coulomb moduli space has dimension one and is

parameterized by

u :=
〈
Trφ2

〉
= 2a2. (2.13)

For u 6= 0, the gauge group SU(2) is broken to U(1) by the Higgs mechanism and then the

non-Abelian gauge bosons A±µ become massive. There is a singularity at u = 0, since the

gauge group SU(2) is restored and the non-Abelian gauge bosons become massless. The

quantum moduli space of vacua is also parameterized by the Coulomb moduli parameter

u. In the quantum theory, U(1)R is broken to Z8 by the anomaly. The Coulomb moduli

parameter u transforms as u→ −u under this R-symmetry. The dynamics at the generic

point of the quantum moduli space is described by the U(1) gauge theory. The effective

Lagrangian is given by (2.9) for r = 1:

Leff =
1

4π
Im

[∫
d4θΦDΦ̄ +

1

2

∫
d2θτWαWα

]
, (2.14)

where ΦD and τ are defined by

ΦD =
∂F
∂Φ

, τ =
∂2F
∂Φ2

, (2.15)
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respectively. In the weak coupling region where u ∼ ∞, the form of the full prepotential

is determined as follows: Classically, the prepotential Fcl(Φ) is given by (2.12) for r = 1.

From the non-renormalization theorem [69], we see that the perturbative correction has

only the one-loop correction. Since the coupling constant is given by the second derivative

of prepotential with respect to Φ (2.15), the one-loop correction to the prepotential is

determined by the one-loop coupling constant. For the energy scale µ ≥ |a|, the one-loop

coupling constant is given by

τone-loop(µ) =
2i

π
log

µ

Λ
, (2.16)

where Λ is the cut-off of the high-energy renormalization scale. For µ < |a| the coupling

remains constant since the gauge group SU(2) is broken to U(1) and then the field with

the U(1) charge decouple. The behavior of the running coupling is shown in Fig 2.1. In

Figure 2.1: The one-loop coupling for the SU(2) Yang-Mills theory

the vacuum breaking from SU(2) to U(1), the high-energy SU(2) gauge field A
SU(2)
µ is

related to the low-energy U(1) gauge field A
U(1)
µ such as A

SU(2)
µ = diag(A

U(1)
µ ,−AU(1)

µ ).

The relation between the coupling constant of the low-energy U(1) gauge theory and that

of the high-energy SU(2) theory is given by

τU(1) = 2τSU(2). (2.17)

Thus in the low-energy limit, the effective coupling constant becomes

τ(a) ∼ 4i

π
log

a

Λ0

, (2.18)
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up to the perturbative correction where Λ0 is the dynamically generated scale like the

QCD scale parameter:

Λ4
0 := Λ4e2πiτcl . (2.19)

Here subscript 0 of Λ0 denotes the number of the hypermultiplets: Nf = 0. Integrating

the effective coupling constant τ(a) over a twice, we see the one-loop correction to the

prepotential given by

Fone-loop(a) =
i

π
a2 log

(
a2

Λ2
0

)
. (2.20)

Although the prepotential is exact in the perturbation theory, the prepotential includes

the non-perturbative correction due to instanton effect [69]. The instanton factor can be

written as

e2πiτk =

(
Λ0

a

)4k

, (2.21)

by using the one loop effective coupling (2.18). The instanton factor is invariant under

Z8 symmetry. Since the chiral superfield Φ has the charge 2 under the U(1)R symmetry,

the prepotential transforms under the U(1)R symmetry as a field of charge 4 and then the

non-perturbative correction to the prepotential is proportional to Φ2. The full form of the

prepotential, which receives the one-loop correction (2.20) and the instanton correction,

takes

F(Φ) =
i

π
Φ2 log

(
Φ2

Λ2
0

)
+

1

2πi

∞∑
k=1

FkΦ2

(
Λ0

Φ

)4k

, (2.22)

where the coefficients Fk can be calculated indirectly [1] as will be shown later. In the

next subsection, we will discuss the duality between the weak and the strong coupling

region for the SU(2) Yang-Mills theory.

2.2.2 Duality

For the N = 2 SU(2) Yang-Mills theory in the Coulomb moduli space, there is the

SL(2,Z) duality transformation which acts on Φ and ΦD as(
ΦD

Φ

)
→M

(
ΦD

Φ

)
, (2.23)
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where M ∈ SL(2,Z). Let us introduce the SL(2,Z) generators by

Tk =

(
1 k
0 1

)
, S =

(
0 1
−1 0

)
, (2.24)

where k is an integer. Under the T -transformation M = Tk, the effective Lagrangian

(2.14) is modified such that the coupling constant is shifted by

τ → τ + k, (2.25)

but the path integral remains invariant.

We next consider the S-transformation M = S. The chiral superfield Φ and the dual

chiral superfield ΦD exchange each other under the S-transformation as(
ΦD

Φ

)
→
(
−Φ
ΦD

)
. (2.26)

This means that the theory should be described in terms of not (Φ,Wα) but (ΦD,WDα)

where WDα is the N = 1 dual field strength. By introducing the N = 1 dual vector

superfield as the Lagrange multiplier and integrating outWα, the dual effective Lagrangian

can be written by

LeffD =
1

4π
Im

[
−
∫
d4θΦΦ̄D +

1

2

∫
d2θτDW

α
DWαD

]
, (2.27)

where Φ and τD are regarded as the function of ΦD given by

Φ =
∂FD
∂ΦD

, τD = −∂
2FD
∂Φ2

D

, (2.28)

with FD(ΦD) being the dual prepotential. By using (2.28), we interpret τD as the dual

coupling constant:

τD = −1

τ
. (2.29)

The duality under the S-transformation denotes the strong-weak coupling duality. From

(2.25) and (2.29), we see the SL(2,Z) group acts on τ as

τ → ατ + β

γτ + δ
, (2.30)

where αδ − βγ = 1 and α, β, γ, δ ∈ SL(2,Z).
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The central charge Z of the N = 2 supersymmetry algebra is given by [70]

Z = nea+ nmaD, (2.31)

where ne and nm are the electric and magnetic charges, respectively. aD corresponds to

the vev of the dual scalar field including in the dual chiral superfield ΦD, defined by

aD :=
∂F
∂a

. (2.32)

When (a, aD) transform to (−aD, a) under the S-transformation, the central charge be-

comes Z = −nma+neaD, so that (−nm, ne) can be regarded as new electric and magnetic

charges: (ñe, ñm) := (−nm, ne). This is precisely the electric-magnetic duality transfor-

mation.

2.2.3 Structure of Coulomb moduli space

To study the geometrical structure of the Coulomb moduli space, we will discuss the

monodromies around the singularities on the Coulomb moduli space. We will focus on the

behavior of a and aD around the singularities on u-plane. For large u, which corresponds to

the weak coupling region, the theory is asymptotically free and the perturbative correction

to the prepotential (2.20) gives a good approximation. By using (2.13) and (2.20), we

obtain

aD(u) '2i

π

√
u

2
log

u

Λ2
0

, (2.33)

a(u) '
√
u

2
. (2.34)

If the moduli parameter u circles as u→ e2πiu, aD(u) and a(u) become(
aD(u)
a(u)

)
→M∞

(
aD(u)
a(u)

)
, (2.35)

where M∞ is the monodromy matrix around u ∼ ∞:

M∞ =

(
−1 4
0 −1

)
. (2.36)

The existence of the non-trivial monodromy at large u implies that there must be other

singular points on u-plane. Classically, since the non-Abelian gauge boson becomes mass-

less, there is the singularity at the origin on the u-plane. If there is only two singularities
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(u =∞ and u = 0) on the quantum moduli space, the monodromy around u = 0 should

coincide with M∞. This means that a2 should be a good global complex coordinate.

However, it is inconsistent with the positivity of the metric of the Coulomb moduli space,

given by the holomorphic function Im τ(a). We assume that there are three singularities

including u ∼ ∞ in the Coulomb moduli space 1. The singularities arise at not the origin

but u = ±Λ2
0 because of the Z2 symmetry on u-plane. What particles become massless at

these singularities? The first guess would be that the non-Abelian gauge boson becomes

massless. The existence of the massless gauge boson implies that the theory becomes

the asymptotically conformal invariant theory in the IR limit. However, the point where

gauge boson becomes massless is only u = 0 due to the conformal invariance. Thus the

massless particles belong to not the vector multiplet, but the hypermultiplet. There are

no elementary particles belonging to the hypermultiplet in the pure SU(2) gauge theory.

Seiberg and Witten identified such particles as the monopole and dyon which are the BPS

particles [1]. Here the BPS particles have no quantum correction and the mass of the BPS

particle is given by

M =
√

2|Z| =
√

2|nea+ nmaD|, (2.37)

by using the N = 2 supersymmetry algebra and the formula for the central charge (2.31).

We assume the monopole with (ne, nm) = (0, 1) becomes massless at u = Λ2
0 and the dyon

with (ne, nm) = (−2, 1) becomes massless at u = −Λ2
0.

Let us consider the monodromy around u = Λ2
0 where the theory is in the strong

coupling region. At u = Λ2
0, the theory becomes the magnetic U(1) theory with the

monopole coupling to the magnetic U(1) gauge fields. It is convenient to describe by using

the dual prepotential FD(ΦD). Around u = Λ2
0, the form of the full dual prepotential

takes

FD(ΦD) =
i

4π
Φ2
D log

(
ΦD

Λ0

)
+

1

2πi
Λ2

0

∞∑
k=1

FDk
(
iΦD

Λ0

)n
. (2.38)

1Actually the number of the singularities is determined three due to the consistency with the asymp-
totic forms of aD(u) and a(u) at large u: (2.33) and (2.34) [71].
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The asymptotic forms of aD(u) and a(u) are given by

aD(u) 'u− Λ2
0

Λ0

, (2.39)

a(u) ' i

2π

u− Λ2
0

Λ0

log

(
u− Λ2

0

Λ2
0

)
. (2.40)

Under u− Λ2
0 → e2πi(u− Λ2

0), aD(u) and a(u) transform as(
aD(u)
a(u)

)
→MΛ0

(
aD(u)
a(u)

)
, (2.41)

where MΛ0 is the monodromy matrix around u = Λ0:

MΛ0 =

(
1 0
−1 1

)
. (2.42)

If aD and a in this case are written by(
aD
a

)
=

(
nm ne
γ δ

)(
ãD
ã

)
, (2.43)

under the SL(2,Z) duality transformation where nmδ − neγ = 1 and nm, ne, γ, δ ∈
SL(2,Z), the mass of the monopole given by (2.37) with (ne, nm) = (0, 1) becomes that

of the particle with (ne, nm):

M =
√

2|neã+ nmãD|. (2.44)

By using the monodromy transformation (2.41), we find that the monodromy matrix for

t(ãD, ã) is of the form as

M(ne,nm) =

(
1 + nenm n2

e

−n2
m 1− nenm

)
. (2.45)

This monodromy matrix is corresponds to that around a singularity where the BPS par-

ticle with charge (ne, nm) becomes massless. Indeed, by using (2.45) we obtain the mon-

odromy M−Λ0 at u = −Λ2
0 as

M−Λ0 = M(−2,1) =

(
−1 4
−1 3

)
. (2.46)

The monodromy matrices M∞ and M±Λ0 satisfy the condition of the monodromy on the

u-plane:

M∞ = MΛ0M−Λ0 . (2.47)
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We note that under the SL(2,Z) duality, the monodromies (2.42) and (2.46) can transform

into those of other BPS particles with other charges (ne, nm). The monodromy matrices

M∞ and M±Λ0 generate the monodromy group Γ0(4), which is the subgroup of SL(2,Z)

and is defined by

Γ0(4) =

{(
α β
γ δ

)
∈ SL(2,Z)

∣∣∣∣ β = 0 mod 4

}
. (2.48)

The metric of the moduli space Im τ(u) takes the positive due to unitarity. Thus the

u-plane that we consider is viewed as the quotient of the upper half-plane H+ by the

monodromy group Γ0(4).

2.2.4 Seiberg-Witten curve for N = 2 SU(2) super Yang-Mills
theory

So far, we find that the structure of the Coulomb moduli space corresponds to H+/Γ0(4)

when there are three singularities: u =∞ and u = ±Λ2
0. The elliptic curve parameterized

by H+/Γ0(4) is described as the form [1,2, 10,72,73]

y2 = C(p)2 − Λ4
0 = (p2 − u)2 − Λ4

0, (2.49)

where

C(p) = p2 − u. (2.50)

This curve (2.49) is called the Seiberg-Witten curve for the pure SU(2) gauge theory.

The Riemann surface (2.49) is a torus. Since the metric of the Coulomb moduli space is

proportional to Im τ(u) > 0 and the SL(2,Z) duality act on τ(u) as (2.30), the coupling

constant τ(u) is interpreted as the modulus of this torus and is defined by a ratio of the

period integrals:

τ(u) =
ωD(u)

ω
, (2.51)

where ω and ωD is defined by the integration of a holomorphic differential dp
y

on the curve:

ω(u) :=

∮
α

2dp

y
, ωD(u) :=

∮
β

2dp

y
. (2.52)
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Here α and β are canonical one-cycles on the SW curve (2.49). From the relation of the

coupling constant:

τ(u) =
∂aD
∂a

=
∂uaD(u)

∂ua(u)
, (2.53)

where ∂u = ∂
∂u

, we find

∂a(u)

∂u
= ω(u),

∂aD(u)

∂u
= ωD(u). (2.54)

Integrating them over u, a(u) and aD(u) are given by the SW periods Π := (a, aD):

a(u) =

∮
α

λSW, aD(u) =

∮
β

λSW, (2.55)

where the meromorphic one form λSW is the SW differential

λSW = pd log
C(p)− y
C(p) + y

. (2.56)

The u-derivative of the SW differential becomes the holomorphic differential:

∂

∂u
λSW =

2p

y
+ d(∗). (2.57)

Hence the α cycle degenerates in the weak coupling region u = ∞ and the β cycle

degenerates at the massless monopole point u = Λ2
0. The massless dyon point u = −Λ2

0

corresponds to the degeneration of the cycle β− 2α. In figure 2.2, we show the schematic

of the p-plane of the SW curve.

Figure 2.2: The p-plane of the SW curve for the SU(2) theory.

We now compute the SW periods (2.55) and obtain the (dual) prepotential in both

weak and strong coupling region. When we write the curve (2.49) in the form

y2 =
4∏
i=1

(p− ei), (2.58)
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where the weak coupling limit corresponds to e2 → e3 and e1 → e4, we can evaluate the

period integrals ∂uΠ (2.54), given by

∂ua =

∮
α

2dp

y
=

√
2

2π

∫ e3

e2

dp

[(p− e1)(p− e2)(p− e3)(p− e4)]
1
2

, (2.59)

∂uaD =

∮
β

2dp

y
=

√
2

2π

∫ e3

e1

dp

[(p− e1)(p− e2)(p− e3)(p− e4)]
1
2

, (2.60)

where the normalization is chosen such that the asymptotic forms around u = ∞ are

compatible with those in the weak coupling region (2.33) and (2.34). In general, the

period integrals ∂uΠ can be represented in terms of the hypergeometric function:

F (a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, (a)n =

Γ(a+ n)

Γ(a)
, (2.61)

after changing the variable and using the representation of the hypergeometric function:

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

dt tb−1(1− t)c−b−1(1− tz)a. (2.62)

We then obtain

∂ua =

√
2

2
(e1 − e2)−

1
2 (e3 − e4)−

1
2F

(
1

2
,
1

2
; 1;w′

)
, (2.63)

∂uaD =

√
2

2
(e2 − e1)−

1
2 (e3 − e4)−

1
2F

(
1

2
,
1

2
; 1; 1− w′

)
, (2.64)

where

w′ =
(e3 − e2)(e1 − e4)

(e1 − e2)(e3 − e4)
. (2.65)

Here the region around w′ = 0 corresponds to the weak coupling region. The point

w′ = 1 corresponds to the massless monopole point and w′ = ∞ is the massless dyon

point. Since the variable of the hypergeometric function w′ is complicated in general, we

use the quadratic transformation [74,75]

F

(
2a, 2b; a+ b+

1

2
; z

)
= F

(
a, b; a+ b+

1

2
; 4z(1− z)

)
, (2.66)

and the cubic transformation [74,75]

F

(
3a, a+

1

6
; 4a+

2

3
; z

)
=
(

1− z

4

)
F

(
a, a+

1

3
; 2a+

5

6
;− 27z2

(z − 4)3

)
, (2.67)
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such that the new variable becomes symmetric of the root ei, which is given by

w =
27w′2(1− w′)2

4(w′2 − w′ + 1)3
. (2.68)

From these transformation, we obtain the period integrals in the weak coupling region [75]:

∂ua =

√
2

2
(−D)−

1
4F

(
1

12
,

5

12
; 1;w

)
, (2.69)

∂uaD = i

√
2

2
(−D)−

1
4

[
3

2π
ln 12F

(
1

12
,

5

12
; 1;w

)
− 1

2π
F∗

(
1

12
,

5

12
; 1;w

)]
, (2.70)

where

F∗(a, b; 1; z) = F (a, b; 1; z) ln z +
∞∑
n=0

(a)n(b)n
(n!)2

n−1∑
r=0

(
1

a+ r
+

1

b+ r
− 2

1 + r

)
zn. (2.71)

Here the variable (2.68) can be represented by

w = −27∆

4D3
, (2.72)

where ∆ is the discriminant of the curve (2.58):

∆ =
∏
i<j

(ei − ej)2, (2.73)

and D is given by

D =
∑
i<j

e2
i e

2
j − 6

4∏
i=1

ei −
∑
i<j<k

(e2
i ejek + eie

2
jek + eieje

2
k). (2.74)

The integral F = (−D)
1
4

∮
dp
y

obeys the hypergeometric differential equation:

w(1− w)
d2F

dw2
+ (γ − (α + β + 1)w)

dF

dw
− αβF = 0, (2.75)

with α = 1
12

, β = 5
12

and γ = 1. Changing the variable from w to u, the hypergeometric

differential equation (2.75) for F ( 1
12
, 5

12
; 1;w) leads to the differential equation with respect

to u which takes the form:

∂3Π

∂u3
+ p1

∂2Π

∂u2
+ p2

∂Π

∂u
= 0, (2.76)
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where p1 and p2 are given by

p1 =
∂u(−D)

1
4

(−D)
1
4

− ∂2
uw

∂uw
+
γ − (1 + α + β)w

w(1− w)
∂uw, (2.77)

p2 =
∂2
u(−D)

1
4

(−D)
1
4

+
∂u(−D)

1
4

(−D)
1
4

{
−∂

2
uw

∂uw
+
γ − (1 + α + β)w

w(1− w)
∂uw

}
− αβ

w(1− w)
(∂uw)2 , (2.78)

where α = 1
12

, β = 5
12

and γ = 1. This differential equation is called the Picard-Fuchs

equation for ∂uΠ [76, 72, 77–79, 75]. In the pure SU(2) gauge theory, the Picard-Fuchs

equation (2.76) turns out to be the second order differential equation for Π [76]

∂2Π

∂u2
− 1

4(Λ4
0 − u)

Π = 0. (2.79)

Let us calculate the prepotential in the weak coupling region for the pure SU(2) gauge

theory by using (2.69) and (2.70). The discriminant ∆ and D for the pure SU(2) gauge

theory are given by

∆ = 256Λ8
0(u2 − Λ4

0), D = 12Λ4
0 − 16u2. (2.80)

Substituting (2.80) into (2.69) and (2.70), we obtain the SW periods:

a(u) =

√
u

2
− Λ0

24
√

2

(
Λ2

0

u

) 3
2

− 15Λ0

210
√

2

(
Λ2

0

u

) 7
2

− 105Λ0

214
√

2

(
Λ2

0

u

) 11
2

+ · · · , (2.81)

aD(u) =− i

2
√

2π

(
−4
√

2a(u) log
8u

Λ2
0

+ 8
√
u− Λ0

4

(
Λ2

0

u

) 3
2

− 47Λ0

29

(
Λ2

0

u

) 7
2

+ · · ·

)
,

(2.82)

by expanding (2.69) and (2.70) around u =∞ and integrating over u. Solving u in terms

of a in (2.81) and substituting it into aD, aD becomes a function of a. Then integrating

it over a, we obtain the prepotential [72]

F(a) =
i

2π
a2

(
2 log

a2

Λ2
0

− 6 + 8 log 2−
∞∑
k=1

Fk
(

Λ

a

)4k
)
, (2.83)

where the first several coefficients of Fk are listed in table 2.1. The first term of the
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k 1 2 3 4 5

Fk
1

25

5

214

3

218

1469

231

4471

234 · 5

Table 2.1: The coefficients of the prepotential (2.83) for the pure SU(2) theory.

prepotential (2.83) is the perturbative correction to the prepotential and the last term is

the non-perturbative instanton correction.

We can also study the SW periods in the strong coupling region. Around u = ±Λ2
0,

solving the Picard-Fuchs equation (2.79) in terms of hypergeometric function, we can

compute the SW periods [72]. For example, the SW periods around the massless monopole

point u = Λ0 are given by

aD(û) =iΛ0

(
1

2

û

Λ2
0

− 1

25

(
û

Λ2
0

)2

+
3

29

(
û

Λ2
0

)3

− 52

214

(
û

Λ2
0

)4

+ · · ·

)
, (2.84)

a(û) =
i

2π

[
aD(u) log

û

25Λ2
0

− iΛ0

(
−1

2

(
û

Λ2
0

)
− 3

26

(
û

Λ2
0

)2

+
3

28

(
û

Λ2
0

)3

+ · · ·

)]
,

(2.85)

where û := u−Λ2
0. Inverting aD(û) in terms of û and inserting it into a(û), we obtain aD

as a function of a. Then the dual prepotential around u = Λ2
0 is given by the integration

of aD over a [72]:

FD(aD) =
i

2π

(
1

2
a2
D log

(
− iaD

16Λ0

)
−
∞∑
k=1

FDkΛ2
0

(
iaD
Λ0

)n)
, (2.86)

where the first several coefficients of FDk are listed in the table 2.2. The first term

of the dual prepotential (2.86) corresponds to the perturbative corrections to the dual

prepotential (2.38). In the next section, we will extend the above discussion to the SU(2)

gauge theory with Nf (= 1, 2, 3, 4) hypermultiplets.

2.3 Seiberg-Witten solution for SU(2) SQCD

Let us discuss the low-energy effective theory for the SU(2) gauge theory with Nf (=

1 . . . 4) hypermultiplets [2]. In the previous section, we obtained the SW curve and the
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k 1 2 3 4 5

FDk 0
3

4

1

24

5

29

11

212 · 5

Table 2.2: The coefficients of the dual prepotential (2.86) for the pure SU(2) theory.

SW differential for the SU(2) pure Yang-Mills theory. In the next subsection, we will write

down the superpotential for the hypermultiplets in terms of the N = 1 superfields and

give the BPS mass formula including the mass of the squarks. In the next subsection, we

will obtain the SW curve for the SU(2) gauge theory with Nf (= 1 . . . 4) hypermultiplets.

2.3.1 Superpotential for hypermultiplet

In terms of the N = 1 superfields, the N = 2 hypermultiplets consist of two N = 1 chiral

superfields Qa
i and Q̃ai where i (= 1, 2) is the color index and a (= 1, · · · , Nf ) is the flavor

index. Here the chiral superfields Qa
i and Q̃ai contain (ψq, q) and (ψ†q̃, q̃), respectively,

and belong to the fundamental representation of the SU(2) gauge group. In the N = 1

language, the superpotential is given by

W =
√

2Q̃aΦQ
a +

Nf∑
a=1

maQ̃aQ
a, (2.87)

where ma is the bare mass for the Nf hypermultiplets and the color indices are suppressed.

When ma = 0, the classical theory has the global symmetry which is the subgroup of

O(2Nf ) × SU(2)R × U(1)R. On the classical Coulomb moduli space, which implies that

the vacuum condition is 〈φ〉 = aσ3 and 〈Q〉 = 〈Q̃〉 = 0, the SU(2) gauge group is

spontaneously broken to U(1). From the vev of the scalar field 〈φ〉 and the superpotential

(2.87), the squarks acquire mass. The squarks are the BPS particles and then the BPS

mass formula including the squarks is give by [70,2]

M =
√

2|Z|, (2.88)
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with

Z = nea+ nmaD +

Nf∑
a=1

1√
2
Sama, (2.89)

where Sa are the U(1) charges corresponding to the additional symmetry, to which the

global symmetry is broken by non-zero masses. One of the squarks has mass as a±ma√
2
. The

effective Lagrangian also takes the form (2.14) by integrating out the massive modes, while

the Coulomb moduli space for the SU(2) SQCD is also parameterized by the Coulomb

moduli parameter defined by (2.13). In the next subsection, we will consider the structure

of the Coulomb moduli space and show the SW curve and the SW differential for the SU(2)

gauge theory with Nf hypermultiplets.

2.3.2 Seiberg-Witten curve for SU(2) SQCD

As discussed in the subsection 2.2.4, by deriving the monodromy group generated by the

monodromy around singularities, we can study the (singularity) structure of the quantum

Coulomb moduli space. Furthermore, by taking the decoupling limit where

mNf →∞, ΛNf → 0, Λ
4−Nf+1
Nf−1 := mNfΛ

4−Nf
Nf

: fixed, (2.90)

with ΛNf being a QCD scale parameter for Nf ≤ 3, the number of the hypermultiplets

Nf are reduced to Nf − 1. For Nf = 4, the decoupling limit to the Nf = 3 is defined by

m4 →∞, q → 0, Λ3 := m4q : fixed, (2.91)

with q = exp(2πiτUV) where τUV denotes the UV coupling constant [80, 36]. Then we

require that the SW curve and the SW differential for the Nf theory become those for

the Nf − 1 theory in the decoupling limit (2.90) and (2.91). The SW curve for the SU(2)

gauge theory with Nf (= 0 . . . 4) hypermultiplets, which satisfies the above condition, is

given by [10]

y2 = C(p)2 − Λ̄2G(p), (2.92)
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where Λ̄ = Λ
2−

Nf
2

Nf
for Nf ≤ 3 and Λ̄ = q

1
2 for Nf = 4. C(p) and G(p) are given by

C(p) =



p2 − u, (Nf = 0, 1)

p2 − u+
Λ2

2

8
(Nf = 2)

p2 − u+
Λ3

4

(
p+

m1 +m2 +m3

2

)
, (Nf = 3)(

1 +
q

2

)
p2 − u+

q

4
p

4∑
i=1

mi +
q

8

∑
i<j

mimj, (Nf = 4)

(2.93)

and

G(p) =

Nf∏
i=1

(p+mi). (2.94)

The SW differential is expressed as (2.56). The SW periods Π := (a, aD) are

a(u) =

∮
α

λSW, aD =

∮
β

λSW, (2.95)

where α and β are the canonical one-cycles on the SW curve. The SW curve (2.92) can

be written into the form [10]

Λ̄

2

(
G+(p)z +

G−(p)

z

)
= C(p), (2.96)

by introducing

y = Λ̄G+(p)z − C(p), (2.97)

where

G+(p) =

N+∏
i=1

(p+mi), G−(p) =

Nf∏
i=N++1

(p+mi), (2.98)

with N+ being a fixed integer satisfying 1 ≤ N+ ≤ Nf . The SW differential becomes

λSW = p

(
d log

G−(p)

G+(p)
− 2d log z

)
. (2.99)

The u-derivative of the SW differential becomes the holomorphic differential:

∂λSW

∂u
=

2∂uz

z
dp+ d(∗) =

2dp

y
+ d(∗), (2.100)
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where ∂u := ∂
∂u

. Differentiating the SW periods Π with respect to u, one obtains the

periods for the curve:

∂ua(u) =

∮
α

2∂uz

z
dp =

∮
α

2dp

y
, ∂uaD(u) =

∮
β

2∂uz

z
dp =

∮
β

2dp

y
. (2.101)

As discussed in the previous section, the period integrals (2.101) are given by (2.69) and

(2.70) in the weak coupling region. We also find the periods ∂uΠ obey the Picard-Fuchs

equation (2.76). For the SW curve (2.96) with Nf ≤ 3, the Picard-Fuchs equation (2.76)

agrees with that in [78, 79]. Note that for the massless case, the Picard-Fuchs equation

turns out to be the second order differential equation for Π [77].

To solve the Picard-Fuchs equation (2.76) for the Nf theories, we need to derive the

discriminant ∆ (2.73) and D (2.74) for each Nf . In the following ∆Nf , DNf and wNf

stand for ∆, D and w in (2.73), (2.74) and (2.72) for the Nf theory, respectively. In the

case of the Nf = 1 theory, they are given by

∆1 =− Λ6
1(256u3 − 256u2m2

1 − 288um1Λ3
1 + 256m3

1Λ3
1 + 27Λ6

1),

D1 =− 16u2 + 12m1Λ3
1.

(2.102)

For Nf = 2, ∆2 and D2 are obtained by

∆2 =
Λ12

2

16
− 3Λ10

2 m1m2 − Λ8
2

(
8u2 − 36

(
m2

1 +m2
2

)
u+ 27m4

1 + 27m4
2 + 6m2

1m
2
2

)
+ 256Λ4

2u
2
(
u−m2

1

) (
u−m2

2

)
− 32Λ6

2m1m2

(
10u2 − 9

(
m2

1 +m2
2

)
u+ 8m2

1m
2
2

)
,

D2 =− 3

4
Λ4

2 + 12Λ2
2m1m2 − 16u2.

(2.103)

We then consider the Nf = 3 and 4 theories, but ∆Nf and DNf are rather complicated in

the generic mass case. So we will write down them for these theories with the same mass

m := m1 = m2 = · · · = mNf . For Nf = 3, ∆3 and D3 become

∆3 =− Λ2
3 (8m2 + Λ3m− 8u) 3 (256Λ3 (8m3 − 3mu) + 8Λ2

3 (3m2 + u) + 3Λ3
3m− 2048u2)

4096
,

D3 =− Λ4
3

256
+ 12Λ3m

3 + Λ2
3

(
u− 9m2

4

)
− 16u2,

(2.104)



2.3. SEIBERG-WITTEN SOLUTION FOR SU(2) SQCD 37

in the same mass case. For Nf = 4, we have

∆4 =
224q2 (m2 − u)

4
(m4(q − 16)q + 8m2qu+ 16u2)

(q − 4)10
,

D4 =
16 (−m4q ((q − 12)2q − 192)− 8m2(q − 8)q2u− 16((q − 4)q + 16)u2)

(q − 4)4
. (2.105)

We can also solve the Picard-Fuchs equation for general mass case based on ∆Nf and

DNf with Nf = 3, 4 but we do not show them here. It is shown that these formulas are

consistent with the decoupling limit: (2.90) and (2.91).

In the weak coupling region, the periods ∂ua and ∂uaD are found to be given by (2.69)

and (2.70) with ∆Nf and DNf . Expanding them around u = ∞ and integrating over u,

we have the SW periods in the weak coupling region. The prepotential is derived from

the SW periods at u = ∞. In chapter 5, we will compute the quantum SW periods for

the SU(2) gauge theory with Nf (= 0, · · · , 4) by solving the Picard-Fuchs equation.

We next consider the strong coupling region, where the monopole/ dyon particles

become massless. We can also evaluate the SW periods by solving the Picard Fuchs

equation (2.76) around the massless monopole/dyon point on the u-plane. Here we note

that the singularities on the u-plane are obtained by the zero of the discriminant ∆Nf at

which the SW curve degenerates.

Let us consider the SW periods around the massless monopole point in general Nf ,

which the discriminant ∆Nf becomes zero. Here we define u0 as the massless monopole

point. From the BPS mass formula (2.88) with only magnetic charge, we find the dual

SW period aD(u) becomes zero at the massless monopole point u = u0. By solving the

Picard-Fuchs equation around u = u0, the periods around the massless monopole point

take the form as [75]

∂uaD =

√
2i

2
(−DNf )

− 1
4F

(
1

12
,

5

12
; 1;wNf

)
, (2.106)

∂ua =

√
2

2
(−DNf )

− 1
4

[
3

2π
ln 12F

(
1

12
,

5

12
; 1;wNf

)
− 1

2π
F∗

(
1

12
,

5

12
; 1;wNf

)]
. (2.107)

where wNf and DNf are given by (2.72) and (2.74), respectively. In general, wNf and

(−DNf )
1
4 are expanded around u = u0 as follows:

wNf =
∞∑
n=1

Anû
n, (−DNf )

− 1
4 =

∞∑
n=0

Bnû
n, (2.108)
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where û = u − u0. Substituting (2.108) into (2.106) and (2.107) and integrating over u,

the SW periods can be of the form as

aD(û) =
∞∑
n=1

Jnûn, (2.109)

a(û) =
i

2π

[
laD(û)

{
log(A

1
l
l û)− 3

l
log 12

}
+
∞∑
n=1

Inûn
]
, (2.110)

where a integral constant for aD is determined such that the deal SW period satisfies the

condition aD(0) = 0. a(û) is given up to independent constant of û. We define the integer

l as the smallest integer, giving nonzero An i.e. An = 0 (n < l) and Al 6= 0. Jn and In
are given in terms of An and Bn. We show the first three terms of An and Bn as follows:

J1 = i
B0√

2
,

J2 =
i

2
√

2

(
B1 +B0A1f

(1)
)
, (2.111)

J3 =
i

3
√

2

{
B2 + (B0A2 +B1A1)f (1) +

1

2
B0A

2
1f

(2)

}
,

I1 = −lB1,

I2 = − l
2
B2 +

Al+1

Al

1

2
B1 +

i

2
√

2
B0A1g

(1), (2.112)

I3 = − l
3
B3 +

Al+1

Al

2

3
B2 +

(
Al+2

Al
−
A2
l+1

2A2
l

)
1

3
B1 +

i

3
√

2

{
(B0A2 +B1A1)g(1) +

1

2
B0A

2
1g

(2)

}
,

where

f (n) =
(α)n(β)n

n!
,

g(n) =
(α)n(β)n

(n!)2

n−1∑
r=0

(
1

α + r
+

1

β + r
− 2

1 + r

)
. (2.113)

with α = 1
12

and β = 5
12

. One can determine the higher order corrections in û in a similar

way. In chapter 5, by using the above formulas, we will calculate the expansion of the

quantum SW periods around the massless monopole point in some cases: the massless

hypermultiplets and the massive hypermultiplets with the same mass. We note that the

periods around the massless dyon point can be analyzed in the same manner.
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2.4 Generalization to SU(Nc) (Nc ≥ 3) SQCD

In the previous sections, we had the SW curve and the SW differential for the SU(2) gauge

theory with Nf (= 0, · · · , 4) hypermultiplets. The construction of the curve for the SU(2)

SQCD can be generalized to the gauge theory with or without hypermultiplets [5–10].

In this section, we will consider the SU(Nc) (Nc ≥ 3) gauge theory with Nf (< 2Nc)

hypermultiplets [10].

For the SU(Nc) gauge theory with Nf (< 2Nc) hypermultiplets, the vev of the scalar

fields (2.8) are given by

〈φ〉 = diag[a1, · · · , aNc ], (2.114)

where

Nc∑
i=1

ai = 0. (2.115)

Then at generic point on the Coulomb moduli space, the SU(Nc) gauge group is broken to

U(1)Nc−1 and the Coulomb moduli space is expressed as the Nc − 1 complex dimensional

moduli space, parameterized by the gauge invariants:

uk =
〈
Trφk

〉
=

Nc∑
i=1

aki , k = 2, · · ·Nc. (2.116)

To construct the SW curve and the SW differential for Nc ≥ 3, it is convenient to use the

symmetric polynomial sk of ai:

sk = (−1)k
∑

i1<···<ik

ai1 · · · aik , k = 2, · · · , Nc, (2.117)

rather than the gauge invariants (2.116). The sets of sk and uk satisfy the Newton’s

formula [6]

ksk +
k∑
i=1

sk−iui = 0, s0 = 1, s1 = u1 = 0. (2.118)

This relation also satisfy at the quantum level.
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The BPS mass formula (2.88) are generalized to the case of the N = 2 SU(Nc) SQCD,

given by [2,10]

Z =
Nc∑
i=1

(
nieai + nimaDi

)
+

Nf∑
a=1

1√
2
Sama. (2.119)

The electric nie and magnetic nim charges can be chosen to satisfy

Nc∑
i=1

nie = 0,
Nc∑
i=1

nim = 0. (2.120)

Here aDi (i = 1, · · · , Nc) denotes the vev of the dual scalar fields satisfying
∑Nc

i=1 aDi = 0.

The SW curve for the SU(Nc) (Nc ≥ 3) gauge theory with Nf hypermultiplets is given

by

y2 =C(p)2 − Λ
2Nc−Nf
Nf

G(p), (2.121)

where C(p) and G(p) are given by

C(p) =pNc −
Nc∑
i=2

sip
Nc−i +

Λ
2Nc−Nf
Nf

4

Nf−Nc∑
j=0

vjp
Nf−Nc−j, (2.122)

G(p) =

Nf∏
j=1

(p+mj). (2.123)

Here vj (j = 1, · · · , Nf ) are some symmetric polynomial of mj:

Nf∑
j=0

vjp
Nf−j :=

Nf∏
j=1

(p+mj), v0 = 1. (2.124)

The SW curve is a Riemann surface of the genus Nc − 1. The SW periods Π = (al, aDl)

(l = 1, · · · , Nc − 1) are given by

al =

∮
αl

λSW, aDl =

∮
βl

λSW, (2.125)

where αl and βl are the canonical one-cycles on the curve. The SW differential λSW takes

the same form as (2.56). The SW differential satisfies

∂λSW

∂si
= ωi + d(∗), (2.126)
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where ωi is the basis of the holomorphic 1-forms given by

ωi :=
2∂siC(p)

y
dp, (2.127)

with ∂si := ∂
∂si

. In the decoupling limit which is given by

mNf →∞, ΛNf → 0, Λ
2Nc−Nf+1
Nf−1 = mNcΛ

2Nc−Nf
Nf

: fixed, (2.128)

we also find the SW curve and the SW differential for the Nf theory go to those for the

Nf − 1 theory.

Summary

In this chapter, we explained the Seiberg-Witten theory for the SU(Nc) gauge theory with

Nf hypermultiplets. We constructed the SW curve and the SW differential for the SU(2)

pure Yang-Mills theory, for example. We then expressed the SW periods in terms of the

hypergeometric function. We calculated the expansions of the SW periods and obtained

the (dual) prepotential around u = ∞ and u = Λ2
0. The construction in the case of the

SU(2) pure Yang-Mills theory was generalized to the case of SU(Nc) SQCD.
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Chapter 3

Argyres-Douglas theory

In this chapter, we will review the Argyres-Douglas (AD) theory [3,4]. The AD theory is

an interacting N = 2 superconformal field theory (SCFT) where mutually non-local BPS

particles become massless. The BPS spectrum of the AD theory can be studied by the

Seiberg-Witten curve, which is obtained from degeneration of the curve of N = 2 gauge

theory. We will discuss the general properties of an interacting N = 2 superconformal

field theory in the first section of this chapter. In the next section, we will discuss the

SW curve for the AD theory, realized from the SU(2) SQCD, by taking the scaling limit

around the superconformal point on u-plane and then calculate the SW periods around

the superconformal point. In the third section, we generalize the AD theories obtained

from the SU(Nc) SQCD.

3.1 Interacting N = 2 SCFT

We begin by discussing four-dimensional interacting conformal field theories (CFTs) with-

out supersymmetry. The generators of the conformal algebra satisfy the commutation

43
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relation as follows (see [81] for a textbook):

[D,Pµ] =iPµ,

[D,Kµ] =− iKµ,

[Kµ, Pν ] =2i(ηµνD − Lµν),

[Kµ, Lνρ] =i(ηµνKρ − ηµρKν),

[Pµ, Lνρ] =i(ηµνPρ − ηµρPν),

[Mµν , Lρσ] =i(ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ),

(3.1)

with all other commutators vanishing where Lµν is the Lorentz generator, Pµ is the transla-

tion generator, D is the dilation generator and Kµ is the special conformal transformation

generator. All the fields in the CFT belong to the representations of the conformal algebra

which are characterized by the scaling dimension and the SU(2)L× SU(2)R Lorentz spin

(s+, s−). For example, we consider the field strength operator Fµν . It is convenient to

introduce the two-form as F := Fµνdx
µ ∧ dxν . The field strength can be separated into

the self and antiself dual parts.

F± = F ± ∗F, (3.2)

with the spins (1, 0) and (0, 1), respectively, where ∗ is the Hodge dual. F± is the confor-

mal primary operator which is annihilated by Kµ. The descendants are created by acting

Pµ on the primary states . The norm of the state of the conserved current J± = ∗dF± is

given by

| |J±〉 |2 = 2 ([F ]− 2) , (3.3)

where [F ] denotes the scaling dimension of the field strength. From (3.3) and unitarity,

we see the field strength satisfies [F ] ≥ 2. For [F ] = 2, due to the Bianchi identity, we

obtain the free equation of motion dF+±dF− = 0 which implies that the theory becomes

the free U(1) theory. For [F ] > 2, the theory has the non-zero conserved currents J± 6= 0

which are the descendants of the primary operators F±. Due to the presence of both the

non-zero electric current Je := J+ +J− and the non-zero magnetic current Jm := J+ +J−,

any interacting field strength must couple to both electrons and monopole in CFT. This

statement is also valid in supersymmetric conformal field theories.
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We next consider the N = 2 SCFT. The superconformal algebra is generated by

the superconformal charge QI
α, Q̄α̇I , S

α
I , S̄

α̇I and the R charge RI
J in addition to the

generators of the conformal algebra. The representations of the N = 2 superconformal

algebra are labeled by not only the scaling dimension and the Lorentz spins but also U(1)R

charge R and SU(2)R spin I. This means that there is an anomaly free U(1)R symmetry,

which is the subalgebra of the N = 2 superconformal algebra, in N = 2 SCFTs. As

discussed in the previous chapter, in the N = 2 gauge theory on the Coulomb moduli

space, the classical U(1)R is broken by the anomaly. Thus there appears the accidental

U(1)R symmetry in the IR, if the N = 2 SCFTs appear at a certain point in the Coulomb

moduli space.

In the Coulomb moduli space, the interacting N = 2 SCFT arises at the special locus

where mutually non-local BPS particles become massless. This N = 2 SCFT is called

the Argyres-Douglas theory [3,4]. Here the term “mutually non-local” means there is no

electric-magnetic duality transformation going to the frame such that the fields carry only

electric charge. Since there are both the massless particles with electric charge and those

with magnetic charge, the AD theory has no Lagrangian description.

The relevant operators ũi, which deform the superconformal point with their coupling

M̃i, are regarded as the chiral primary fields with I = 0 and (s+, s−) = (0, 0) in the N = 2

vector multiplets. For N = 2 SCFTs, the scaling dimension of the chiral primary field is

determined from the U(1)R charge R and has the bound:

[ũi] =
1

2
R ≥ 1. (3.4)

When the inequality is saturated, the fields satisfy the null state equations corresponding

to the free Maxwell equations. At the superconformal point, there are no null states so

that [ũi] > 1. Furthermore, the operators ũi and their coupling M̃i satisfy the condition

[ũi] + [M̃i] = 2. (3.5)

From the above, one finds the bound of the scaling dimension of the relevant or marginal

operators:

1 < [ũi] ≤ 2. (3.6)
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If [ũi] > 2, the operator ũi is irrelevant. Thus the operators for the AD theory have the

fractional scaling dimension due to the accidental U(1)R symmetry. The scaling dimension

of the operators can be determined from the SW curve of the theory and the fact the SW

differential has the scaling dimension one. In the next section, we will focus on the SU(2)

SQCD and see that the SW curve and the SW periods for the AD theory are given by

those for SU(2) SQCD, taking the scaling limit.

3.2 AD theory realized from SU(2) SQCD

In this section, we study the superconformal point in the Coulomb moduli space forN = 2

SU(2) SQCD where mutually non-local BPS particles become massless [3, 4].

The charges for two dyons to be the mutually non-local satisfy [3]

n(1)
m n(2)

e − n(2)
m n(1)

e 6= 0, (3.7)

where n
(i)
m and n

(i)
e are the magnetic and electric charges of the i’th dyon.

For SU(2) gauge theories with Nf = 1, 2, 3 hypermultiplets, there is a superconformal

point on the u-plane, where the squark and monopole/dyon are both massless [4]. The

superconformal point are given by choosing the Coulomb moduli parameter and the mass

parameters as u = u∗ and m1 = · · · = mNf = m∗ where u∗ and m∗ are given in table 3.1.

The SW curve (2.92) degenerates as

y2 ∼ (p− p∗)3, (3.8)

where p∗ is the branch point of p given in table 3.1.

3.2.1 Seiberg-Witten curve at superconformal point

We study the SW curve and the SW differential around the superconformal point. The

relevant operators and its corresponding couplings are identified by taking the scaling

limit. One determines their scaling dimensions from the SW curve and the fact the

differential has the scaling dimensions one.

Let us consider in the Nf = 1 theory at first. If we substitute the branch point

p = p∗ = −Λ1

2
into the curve (2.96), the curve becomes zero at z = ±Λ

1
2
1

2
. We choose the



3.2. AD THEORY REALIZED FROM SU(2) SQCD 47

Nf 1 2 3

m∗
3

4
Λ1

Λ2

2

Λ3

8

u∗
3

4
Λ2

1

3

8
Λ2

2

Λ2
3

32

p∗ −1

2
Λ1 −

Λ2

2
−Λ3

8

Table 3.1: The superconformal point for the SU(2) theory is given by tuning the moduli
parameter and the mass parameter to u = u∗ and m = m∗, respectively. p∗ is the branch
point of p of the SW curve degenerated from the curve (2.92) at the superconformal point.

branch point z = −Λ
1
2
1

2
and introduce new variables as

p =εp̃− Λ1

2
, z =

i2
1
2 ε

3
2

Λ1

z̃ − ε2M̃

Λ
1
2
1

− εp̃

Λ
1
2
1

− Λ
1
2
1

2
,

u =ε3ũ+ ε2M̃Λ1 +
3

4
Λ2

1, m1 = ε2M̃ +
3

4
Λ1. (3.9)

Expanding around ε = 0 with keeping ũ and M̃ finite, the leading order of the curve in ε

corresponds to the curve for the AD theory of (A1, A2)-type:

z̃2 = p̃3 − M̃Λ1p̃−
Λ1

2
ũ. (3.10)

The SW differential (2.99) becomes

λSW =
iε

5
2

2
1
2 Λ

1
2
1

λ̃SW + . . . , (3.11)

λ̃SW := − 8

Λ1

z̃dp̃. (3.12)

by using (3.9) and taking the scaling limit ε → 0. From the curve (3.10), the scaling

dimensions of ũ and M̃ are 6
5

and 4
5
, respectively. Here ũ is the relevant operator and M̃

is the corresponding coupling parameter.
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For Nf = 2, we define the new variables

p = εp̃− εM̃

3
− Λ2

2
, z =

i2
1
2 ε

3
2

Λ
1
2
2

z̃ − εp̃− 2εM̃

3
,

u = ε2ũ− (εM̃)2

3
+ Λ2εM̃ +

3Λ2
2

8
,

m1 =
Λ2

2
+ εM̃ + ε

3
2 ã, m2 =

Λ2

2
+ εM̃ − ε

3
2 ã, (3.13)

and consider the scaling limit ε → 0 of the curve (2.96). At leading order in ε the curve

(2.96) becomes

z̃2 = p̃3 − ũp̃− 2

3
M̃ũ+

8

27
M̃3 − C̃2Λ2

4
. (3.14)

Here ũ, M̃ and C̃2 := 2ã2 are the relevant operator, the corresponding coupling and the

Casimir invariant of the U(2) flavor symmetry, respectively. The curve (3.14) corresponds

to that of the AD theory of (A1, A3)-type. In the scaling limit around the superconformal

point, the SW differential (2.99) becomes

λSW =
iε

3
2

2
1
2 Λ

1
2
2

λ̃SW + · · · , (3.15)

up to the total derivatives where

λ̃SW = −4z̃ d log

(
p̃+

2

3
M̃

)
. (3.16)

The scaling dimensions of ũ, M̃ and C̃2 are 4
3
, 2

3
and 2, respectively.

For Nf = 3, introducing the scaling variables as

p = ε2p̃− εM̃ +
4
(

(εM̃)2 + ε3ũ
)

3Λ3

+
16(εM̃)3

9Λ2
3

− Λ3

8
,

z = ε3iz̃ − 4(εM̃)3

3Λ
3
2
3

− 2(εM̃)(ε2p̃)

Λ
1
2
3

− ε3ũ

Λ
1
2
3

,

u = ε3ũ− 4(εM̃)3

3Λ3

+ (εM̃)2 +
3Λ3εM̃

8
+

Λ2
3

32
,

m1 =
Λ3

8
+ εM̃ + ε2c̃1, m2 =

Λ3

8
+ εM̃ + ε2c̃2, m3 =

Λ3

8
+ εM̃ − ε2(c̃1 + c̃2),

(3.17)



3.2. AD THEORY REALIZED FROM SU(2) SQCD 49

and then taking the scaling limit ε → 0 with fixed ũ, M̃ , c̃1 and c̃2, we obtain the curve

of the AD theory of (A1, D4)-type:

z̃2 = p̃3 − p̃

(
C̃2

2
+

4M̃ũ

Λ3

)
− ũ2

Λ3

− 8M̃3ũ

3Λ2
3

+
16M̃6

27Λ3
3

− 2C̃2M̃
2

3Λ3

+
C̃3

3
, (3.18)

where

C̃2 :=2
(
c̃2

1 + c̃1c̃2 + c̃2
2

)
, C̃3 := −3

(
c̃2

1c̃2 + c̃1c̃
2
2

)
. (3.19)

Here ũ and M̃ are the operator and the corresponding coupling, respectively. C̃2 and C̃3

refer to the Casimir invariants associated with the U(3) flavor symmetry. Then the SW

differential (2.99) around the superconformal point becomes

λSW =
iε2

Λ
1
2
3

λ̃SW + · · · , (3.20)

up to the total derivatives where

λ̃SW = iΛ
1
2
3

{
2p̃ d log

(
iz̃ − 2M̃p̃

Λ
1
2
3

− 4M̃3

3Λ
3
2
3

− ũ

Λ
1
2
3

)
−

3∑
i=1

p̃ d log(p̃+ m̃i)

}
. (3.21)

Here the parameters m̃i (i = 1, . . . , 3) are interpreted as the mass parameters at the

superconformal point, which defined by

m̃1 =
4M̃2

3Λ3

+ c̃1, m̃2 =
4M̃2

3Λ3

+ c̃2, m̃3 =
4M̃2

3Λ3

− (c̃1 + c̃2). (3.22)

We see that the scaling dimensions of ũ, M̃ , C̃2 and C̃3 are 3
2
, 1

2
, 2 and 3, respectively.

We summarize the scaling dimensions of the operators for the AD theory realized from

the Nf = 1, 2, 3 theories in table 3.2.

3.2.2 The period integrals around the superconformal point

We next discuss the SW periods for the AD theories realized from the SU(2) gauge theory

with Nf hypermultiplets. The SW curves for the Nf AD theory takes the form as

z̃2 = p̃3 − ρNf p̃− σNf , (3.23)
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Nf AD theory [ũ] [M̃ ] [C̃2] [C̃3]

1 (A1, A2)
6

5

4

5
− −

2 (A1, A3)
4

3

2

3
2 −

3 (A1, D4)
3

2

1

2
2 3

Table 3.2: The scaling dimension of the operators for the AD theory of (A1, A2), (A1, A3)
and (A1, D4)-type. [O] denotes the scaling dimension of O.

where ρNf and σNf are read off from (3.10), (3.14) and (3.18). The SW differentials λ̃SW

(3.12), (3.15) and (3.20) have been normalized such that

∂

∂ũ
λ̃SW =

2dp̃

z̃
. (3.24)

We then define the SW periods as

Π̃ = (ã, ãD) =

(∫
α̃

λ̃SW ,

∫
β̃

λ̃SW

)
, (3.25)

where α̃ and β̃ are canonical 1-cycles on the curve (3.23). The ũ-derivative of the SW

periods becomes the period integral of the holomorphic differential defined by

ω =

∫
α̃

dp̃

z̃
, ωD =

∫
β̃

dp̃

z̃
. (3.26)

As discussed in the SU(2) SQCD, we express the period integral in terms of the hyper-

geometric functions of w̃ given by

w̃Nf := −
27∆̃Nf

4D̃3
Nf

= 1−
27σ2

Nf

4ρ3
Nf

. (3.27)

Here ∆̃Nf and D̃Nf correspond to ∆ in (2.73) and D in (2.74), respectively, which are

given by

∆̃Nf = 4ρ3
Nf
− 27σ2

Nf
, (3.28)

D̃Nf = −3ρNf . (3.29)
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By using the quadratic (2.66) and cubic transformation (2.67) [74,75], the periods (3.26)

are obtained by

ω0(w̃, D̃) =2π
(
−D̃

)− 1
4
F

(
1

12
,

5

12
; 1; w̃

)
, (3.30)

ω0
D(w̃, D̃) =− 2iπ

(
−D̃

)− 1
4

(
3 log 12

2π
F

(
1

12
,

5

12
; 1; w̃

)
− 1

2π
F∗

(
1

12
,

5

12
; 1; w̃

))
,

(3.31)

around the point w̃ = 0 where F (α, β; γ; z) and F∗(α, β; 1; z) are defined by (2.61) and

(2.71). Here the subscript Nf of w̃ and D̃ has been omitted for sake of simplicity. Since

the dual period (3.31) has logarithmic behavior around w̃ = 0, it is not the expression

around the superconformal point with the fractional dimensional ũ and M̃ .

From the analytic continuation of the solutions around w̃ = 0 to those of w̃ =∞, the

periods (3.30) and (3.31) become

ω∞(w̃, D̃) =2π(−D̃)−
1
4

(
Γ
(

1
3

)
Γ
(

5
12

)
Γ
(

11
12

)(1− w̃)−
1
12F

(
1

12
,

7

12
;
2

3
;

1

1− w̃

)

+
Γ
(
−1

3

)
Γ
(

1
12

)
Γ
(

7
12

)(1− w̃)−
5
12F

(
5

12
,
11

12
;
4

3
;

1

1− w̃

))
,

(3.32)

ω∞D (w̃, D̃) =2iπ(−D̃)−
1
4

(
(−1)

5
6 Γ
(

1
3

)
Γ
(

5
12

)
Γ
(

11
12

)(1− w̃)−
1
12F

(
1

12
,

7

12
;
2

3
;

1

1− w̃

)

+
(−1)

1
6 Γ
(
−1

3

)
Γ
(

1
12

)
Γ
(

7
12

) (1− w̃)−
5
12F

(
5

12
,
11

12
;
4

3
;

1

1− w̃

))
,

(3.33)

respectively. Here we use the connection formula [74]

F (α, β; γ; z) =
Γ(γ)Γ(β − α)

Γ(β)Γ(γ − α)
(1− z)−αF

(
α, γ − β;α− β + 1;

1

1− z

)
+

Γ(γ)Γ(α− β)

Γ(α)Γ(γ − β)
(1− z)−βF

(
β, γ − α;−α + β + 1;

1

1− z

)
,

(3.34)

where | arg(1− z)| < π. Similarly, we use the connection formula

F (α, β; γ; z) =
(1− z)−α−β+γΓ(γ)Γ(α + β − γ)

Γ(α)Γ(β)
F (γ − α, γ − β;−α− β + γ + 1; 1− z)

+
Γ(γ)Γ(−α− β + γ)

Γ(γ − α)Γ(γ − β)
F (α, β;α + β − γ + 1; 1− z),

(3.35)
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in order to perform the analytic connection to the solutions around w̃ = 1. Thus we find

the expansions around w̃ = 1:

ω1(w̃, D̃) =π−
1
2 (−D̃)−

1
4

(
6Γ

(
5

12

)
Γ

(
13

12

)
F

(
1

12
,

5

12
;
1

2
; 1− w̃

)
−(1− w̃)

1
2 Γ

(
7

12

)
Γ

(
11

12

)
F

(
7

12
,
11

12
;
3

2
; 1− w̃

))
,

(3.36)

ω1
D(w̃, D̃) =− iπ−

1
2 (−D̃)−

1
4

(
6Γ

(
5

12

)
Γ

(
13

12

)
F

(
1

12
,

5

12
;
1

2
; 1− w̃

)
+(1− w̃)

1
2 Γ

(
7

12

)
Γ

(
11

12

)
F

(
7

12
,
11

12
;
3

2
; 1− w̃

))
.

(3.37)

By using these formulas, we will study the SW periods for the AD theories obtained

from the SU(2) theory with Nf = 1, 2, 3 in the scaling limit as follows:

1. For Nf = 1, w̃1 and D̃1 are given by

w̃1 = 1− 27ũ2

16Λ1M̃3
, (3.38)

D̃1 = −3Λ1M̃. (3.39)

The superconformal point corresponds to w̃′1 := 1
1−w̃1

= 0. Thus the expansions

around the superconformal point are given by using Eqs. (3.32) and (3.33):

∂ã

∂ũ
= 2ω∞(w̃1, D̃1),

∂ãD
∂ũ

= 2ω∞D (w̃1, D̃1). (3.40)

From the integration of these solution over ũ, one obtains the SW periods

ã =
3

1
2 Λ

3
2
1

2
1
2 · 5π 1

2

(
ũ

Λ2
1

) 5
6
(

2
8
3 Γ

(
1

6

)
Γ

(
1

3

)
F

(
− 5

12
,

1

12
;
2

3
; w̃′1

)
+15w̃′1

1
3 Γ

(
−1

6

)
Γ

(
5

3

)
F

(
− 1

12
,

5

12
;
4

3
; w̃′1

))
, (3.41)

ãD =
3

1
2 Λ

3
2
1

2
1
2 · 5π 1

2

(
ũ

Λ2
1

) 5
6
(
−2

8
3 (−1)

1
3 Γ

(
1

6

)
Γ

(
1

3

)
F

(
− 5

12
,

1

12
;
2

3
; w̃′1

)
+15(−1)

2
3 w̃′1

1
3 Γ

(
−1

6

)
Γ

(
5

3

)
F

(
− 1

12
,

5

12
;
4

3
; w̃′1

))
.

(3.42)

Note that the SW periods Π̃ satisfy the Picard-Fuchs equation [21]

(1− w̃′1) w̃′1
∂2

∂w̃′1
2
Π̃ +

2

3
(1− w̃′1)

∂

∂w̃′1
Π̃ +

5

144
Π̃ = 0. (3.43)



3.2. AD THEORY REALIZED FROM SU(2) SQCD 53

From (3.41) and (3.42), we see that ã ∼ ũ
5
6 and ãD ∼ ũ

5
6 . We also find that the

scaling dimension of ũ and M̃ is given by 6
5

and 4
5
, respectively, by using the fact the

SW periods ã and ãD have the scaling dimension one. From (3.41) and (3.42), we

can compute the expansion of the coupling constant τ := ∂ũãD
∂ũã

in w̃′1. We then find

it does not have logarithmic divergence, which implies that the theory is around

the superconformal point. The SW periods (3.41) and (3.42) are interpreted as the

expansions in the coupling M̃ with fixed ũ in the scaling limit. We note that the

present expansions for Nf theories are different from the results in the previous

literature: In [75, 38], one have expanded in small ũ without taking the scaling

limit, after the coupling and the Casimir invariants have been chosen to be zero.

In [82], the expansion of the SW periods without taking the scaling limit have been

calculated.

2. For Nf = 2, w̃2 and D̃2 are obtained by

w̃2 = 1−
(27

2
C̃2Λ2 − 16M̃3 + 36M̃ũ)2

432ũ3
, (3.44)

D̃2 = −3ũ. (3.45)

The superconformal point corresponds to w̃′2 := 1 − w̃2 = 0. Applying Eqs.(3.36)

and (3.37), we obtain the expansion around the superconformal point:

∂ã

∂ũ
= 2ω1(w̃2, D̃2),

∂ãD
∂ũ

= 2ω1
D(w̃2, D̃2). (3.46)

After expanding them around w̃′2 = 0, where M̃2

ũ
� 1 and C̃2Λ2

ũ
3
2
� 1, we integrate

over ũ. Then the expansions of the SW periods around the superconformal point

are given by

ã =Λ
3
2
2

(
ũ

Λ2
2

) 3
4

24Γ
(

5
12

)
Γ
(

13
12

)
3

1
4π

1
2

−
23 · 3 1

4 Γ
(

7
12

)
Γ
(

11
12

)
π

1
2

(
M̃2

ũ

) 1
2

−
3

1
2 Γ
(

7
12

)
Γ
(

11
12

)
π

1
2

(
C̃2

2Λ2
2

ũ3

) 1
2

+ · · ·

 , (3.47)
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ãD =Λ
3
2
2

(
ũ

Λ2
2

) 3
4

−24iΓ
(

5
12

)
Γ
(

13
12

)
3

1
4π

1
2

−
23 · 3 1

4 iΓ
(

7
12

)
Γ
(

11
12

)
π

1
2

(
M̃2

ũ

) 1
2

−
3

1
2 iΓ
(

7
12

)
Γ
(

11
12

)
π

1
2

(
C̃2

2Λ2
2

ũ3

) 1
2

+ · · ·

 . (3.48)

We see again that the scaling dimensions of ũ, M̃ and C̃2 are given by 4
3
, 2

3
and

2, respectively. The expansions of the periods (3.47) and (3.48) do not contain

logarithmic terms.

3. For Nf = 3, we have

w̃3 = 1− (−9C̃3Λ3
3 + 18C̃2Λ2

3M̃
2 − 16M̃6 + 72Λ3M̃

3ũ+ 27Λ2
3ũ

2)2

108Λ6
3

(
C̃2

2
+ 4M̃ũ

Λ3

)3 , (3.49)

D̃3 = −3

(
C̃2

2
+

4M̃ũ

Λ3

)
. (3.50)

The superconformal point corresponds to w̃3 = ∞ or w̃′3 := 1
1−w̃3

= 0. By using

Eqs. (3.32) and (3.33), the periods around the superconformal point are given by

∂ã

∂ũ
= 2ω∞(w̃3, D̃3),

∂ãD
∂ũ

= 2ω∞D (w̃3, D̃3). (3.51)

In a similar way as the case of the Nf = 1 and 2, we expand them around w̃′3 = 0,

where M̃3

ũΛ3
� 1,

C̃3
2Λ2

3

ũ4
� 1 and C̃3Λ3

ũ2
� 1, and integrate over ũ. After that, we have

the SW periods:

ã =Λ
3
2
3 (−1)

5
6

(
ũ

Λ2
3

) 2
3

5Γ
(
−5

6

)
Γ
(

1
3

)
2 · 3 1

2π
1
2

−
23Γ

(
−1

3

)
Γ
(

5
6

)
3

1
2π

1
2

(
M̃3

ũΛ3

) 1
3

+
Γ
(
−1

3

)
Γ
(

5
6

)
2 · π 1

2

(
C̃3

2Λ2
3

ũ4

) 1
3

+
Γ
(

1
6

)
Γ
(

1
3

)
22 · 3 3

2π
1
2

(
C̃3Λ3

ũ2

)
+ · · ·

 ,

(3.52)

ãD =Λ
3
2
3 (−1)

1
6

(
ũ

Λ2
3

) 2
3

5Γ
(
−5

6

)
Γ
(

1
3

)
2 · 3 1

2π
1
2

−
23Γ

(
−1

3

)
Γ
(

5
6

)
3

1
2π

1
2

(
M̃3

ũΛ3

) 1
3

+
iΓ
(
−1

3

)
Γ
(

5
6

)
2 · π 1

2

(
C̃3

2Λ2
3

ũ4

) 1
3

+
Γ
(

1
6

)
Γ
(

1
3

)
22 · 3 3

2π
1
2

(
C̃3Λ3

ũ2

)
+ · · ·

 .

(3.53)
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The scaling dimensions of ũ, M̃ , C̃2 and C̃3 are also read off 3
2
, 1

2
, 2 and 3, respec-

tively. Furthermore, we see the expansion of the SW periods includes no logarithmic

behavior.

In the next section, we will generalize the above discussion to the case of the SU(Nc)

SQCD and obtain the SW curve and the SW differential around the superconformal point.

3.3 AD theory realized from SU(Nc) SQCD

We will consider the curve obtained from the degeneration of the SW curve (2.121) around

the superconformal point ofN = 2 SU(Nc) SQCD. For the pure SU(Nc) gauge theory, the

SW curve around the superconformal point has been studied in [21]. The superconformal

point for the SU(Nc) gauge theory with Nf hypermultiplets has been studied in [20, 22].

For SU(Nc) SQCD, the curve at the superconformal point are classified as follows:

1. For Nf = 0, the superconformal point is given by si = s∗i where

s∗1 = s∗2 = · · · = s∗Nc−1 = 0, s∗Nc = ΛNc
0 . (3.54)

The SW curve (2.121) at the superconformal point becomes

y2 ≈ (p− p∗)Nc , (3.55)

where p∗ = 0 is the branch point of p.

2. For Nf = 1, we can not distinguish squarks from other singularities, but we find the

form of the curve takes

y2 ≈ (p− p∗)Nc+1, (3.56)

by counting the number of parameters, where p∗ is the branch point of p. The

theory described by the curve (3.56) belongs to the same universality class as the

theory described by the curve (3.55).

3. For Nf ≥ 2, we can find systematically the superconformal point [20]. We consider

the case that all of the mass is same mass: m := m1 = · · · = mNf . In the case of
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even hypermultiplets Nf = 2n, the SW curve (2.121) can be split by

y2 = y+(p)y−(p),

where

y±(p) = C(p)± ΛNc−n(p+m)n.

The discriminant ∆ of the curve (2.121) becomes

∆ = ∆s∆m, (3.57)

where

∆s = Res(y+, y−)2 = (C(p = −m))Nf , (3.58)

∆m = Res (y+, ∂p y+) Res (y−, ∂p y−) , (3.59)

where Res(f, g) denotes the resultant of the two polynomials f(p) and g(p). In a

similar way, we can treat the case of Nf = 2n+ 1 and find that the discriminant is

of the form (3.57).

The point where ∆s = 0 relates to the massless squark point. When we fix sNc = s∗Nc

where s∗Nc is the solution of ∆s = 0, then the function C(p) and the discriminant

∆m become

C(p) = (p+m)C1(p), ∆m = ∆1∆2m, (3.60)

where C1(p) is a polynomial of order Nc − 1 and ∆1 is (a power of ) the resultant

of C1(p) and p+m. The curve becomes

y2 = (p+m)2
(
C1(p)2 − Λ

2Nc−Nf
Nf

(p+m)Nf−2
)
. (3.61)

We next set sNc−1 = s∗Nc−1 which is the solution of the ∆1 = 0. Then C1(p) and

∆2m are written as

C1(p) = (p+m)C2(x), ∆2m = ∆2∆4m, (3.62)

with a polynomial C2(p) of order Nc − 2. The curve becomes

y2 = (p+m)4
(
C2(p)2 − Λ

2Nc−Nf
Nf

(p+m)Nf−4
)
. (3.63)

Similarly we obtain the critical values s∗Nc , s
∗
Nc−1, s

∗
Nc−2, · · · and m∗ successively.
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Eventually, we classify maximally superconformal point of SU(Nc) theories with Nf hy-

permultiplets into four groups by degeneration of the curve

Nf = 0, 1, y2 ≈ (p− p∗)l,
{
l = Nc, for Nf = 0,
l = Nc + 1, for Nf = 1,

(3.64)

Nf = 2, y2 ≈ (p+m∗)Nc+1, (3.65)

Nf = 2n+ 1, y2 ≈ (p+m∗)Nf , (3.66)

Nf = 2n, (n ≥ 2), y2 ≈ (p+m∗)Nc+n, (3.67)

where m∗ is the superconformal point of m and p∗ is the branch point of p for the

superconformal point.

We study the SW curve for the AD theory obtained from the SU(Nc) SQCD in the

scaling limit. In order to obtain the SW curve around the superconformal point, we define

the scaling variables from the moduli parameters si (i = 1, · · · , Nc), the mass parameters

mj (j = 1, · · · , Nf ) and the coordinate p of the SW curve as

p =p∗ + εp0 + ε2p̃,

si =s∗i +

hi−1∑
k=1

εks0ik + εhi s̃i, (i = 2, · · ·Nc),

mj =m∗ +

hM−1∑
k=1

εkm0jk + εhMM̃ + εhc c̃j, (j = 1, · · · , Nf ),

(3.68)

where hi, hM and hc are given by

hi =
2[s̃i]

[p̃]
, hM =

2[M̃ ]

[p̃]
, hc =

2

[p̃]
, (3.69)

with [O] being the scaling dimension of O. Here, c̃Nf is defined by

c̃Nf := −
Nf−1∑
j=1

c̃j. (3.70)

The parameters p0, s0ij and m0jk are determined such that the leading term of the SW

curve becomes

y2 = ε
4[ỹ]
[p̃] ỹ2 + · · · , (3.71)

after expanding around ε = 0 where ỹ corresponds to the SW curve for the AD theory

realized from the SU(Nc) gauge theory with Nf hypermultiplets in the scaling limit.
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3.3.1 Nf = 0

For Nf = 0, we define hi = 2i in the scaling variables (3.68). Substituting (3.68) into

(2.122) and (2.123), we find

C(p) =− ΛNc
0 + ε2NcC̃(p̃), (3.72)

G(p) =1, (3.73)

where

C̃(p̃) = p̃Nc −
Nc∑
i=2

s̃ip̃
Nc−i. (3.74)

The SW curve (2.121) and the SW differential (2.56) become

y2 = ε2Nc ỹ2 + ε4NcC̃(p̃)2, (3.75)

λSW = εNc+2λ̃SW + · · · , (3.76)

where the leading order term of the SW curve and the SW differential are

ỹ2 = −2ΛNc
0 C̃(p̃), (3.77)

λ̃SW = − 2

ΛNc
0

ỹdp̃. (3.78)

Since the scaling dimension of the SW differential is one, we find

[ỹ] =
Nc

Nc + 2
, [p̃] =

2

Nc + 2
, [s̃i] =

2i

Nc + 2
. (3.79)

3.3.2 Nf = 1

For the SU(Nc) gauge theory with Nf = 1 hypermultiplet, we use the scaling parameters

(3.68) with

hi = 2i (i = 2 · · ·Nc − 1), hNc = 2(Nc + 1), hM = 2Nc. (3.80)

Substituting (3.68) into (2.122) and (2.123), we find

C(p) =±
(
Λ2Nc−1

1 (p∗ +m∗)
) 1

2 ± ε2 1

2

(
Λ2Nc−1

1

p∗ +m∗

) 1
2

p̃+
Nc∑
i=2

ε2iĈi(p̃)− ε2(Nc+1)s̃Nc ,

(3.81)

Λ2Nc−1
1 G(p) =Λ2Nc−1

1 (p∗ +m∗) + ε2p̃+
Nc−1∑
i=2

ε2iα′iΛ
2Nc−i
1 s̃i + ε2NcΛ2Nc−1

1 M̃, (3.82)
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where α′i (i = 2, · · · , Nc − 1) are some coefficients determined by the scaling variables

(3.68). Ĉi(p̃) (i = 2, · · · , Nc) are the functions of p̃ determined such that the leading

terms of the SW curve (2.121) and the SW differential (2.56) become

y2 = ε2(Nc+1)ỹ2 + · · · , (3.83)

λSW = εNc+3λ̃SW + · · · . (3.84)

In the scaling limit ε → 0, we find the form of the curve ỹ and the SW differential λ̃SW

given by

ỹ2 = ũ0p̃
Nc+1 +

Nc+1∑
i=2

ũip
Nc+1−i, (3.85)

λ̃SW =
bNc
ΛNc

1

ỹdp̃, (3.86)

where ũ0 is proportional to ΛNc−1
1 and ũi := ũi(s̃i, M̃) (i = 2, · · · , Nc + 1) is the moduli

parameter. The first several bNc ’s are shown as follow:

b2 = −4, b3 = 2
9
5 , b4 = − 4

5
1
7

, b5 =

(
217

7

) 1
9

, · · · . (3.87)

The scaling dimensions of the parameters are read off from (3.85):

[ỹ] =
Nc + 1

Nc + 3
, [p̃] =

2

Nc + 3
, [ũi] =

2i

Nc + 3
, (i = 2, · · ·Nc + 1). (3.88)

The SW curve and the SW differential correspond to those for the AD theory which

obtained from the scaling limit of the pure SU(Nc + 1) theory: (3.77) and (3.78).

3.3.3 Nf = 2

For Nf = 2, substituting the scaling variables (3.68) with

hi = 2i, hM = 2, hc = Nc + 1, (3.89)

into (2.122) and (2.123), we obtain

C(p) =− ε2ΛNc−1
2 (p̃+ M̃) + ε2NcC̃(p̃), (3.90)

G(p) =
(
ε4(p̃+ M̃)2 + ε2Nc+2C̃2

)
, (3.91)
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where C̃2 = c̃1c̃2 and

C̃(p̃) = p̃Nc −
Nc∑
i=2

s̃ip̃
Nc−i. (3.92)

By taking the scaling limit ε → 0, the SW curve (2.121) and the SW differential (2.56)

become

y2 = ε2Nc+2ỹ2 + ε4NcC̃(p̃)2, (3.93)

λSW = εNc−1λ̃SW + · · · , (3.94)

where

ỹ2 = −2ΛNc−1

(
(p̃+ M̃)C̃(p̃) +

ΛNc−1
2

2
C̃2

)
, (3.95)

λ̃SW = − 2

Λ
Nf−1
2

ỹd log
(
p̃+ M̃

)
. (3.96)

By using the fact that the SW differential has the scaling dimension one, we find

[ỹ] = 1, [p̃] =
2

Nc + 1
, [s̃i] =

2i

Nc + 1
, [M̃ ] =

2

Nc + 1
, [C̃2] = 2. (3.97)

The AD theories associated with the Nf = 2 theories have the U(2) flavor symmetry.

3.3.4 Nf = 2n+ 1

In the Nf = 2n+ 1 (n ≥ 1) theory, using the scaling variables (3.68) with

hi =

{
1, (2 ≤ i ≤ Nc − n),

2(−Nc + n+ i) + 1, (Nc − n+ 1 ≤ i ≤ Nc),
(3.98)

q = 1, hc = 2, (3.99)

then we obtain

C(p) = εNf C̃(p̃) + · · · , G(p) = ε2Nf G̃(p̃), (3.100)

in the scaling limit ε→ 0 where C̃(p̃) and G̃(p̃) are given by

C̃(p̃) =
n∑
l=0

ũlp̃
n−l, G̃(p̃) =

Nf∏
j=1

(p̃+ c̃j), (3.101)
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with ũl := ũl(s̃i, M̃) (l = 0, · · · , n). In the scaling limit ε→ 0, the SW curve and the SW

differential are given by

y2 = ε2Nf ỹ2 + · · · , (3.102)

λSW = ε2λ̃SW + · · · , (3.103)

where

ỹ2 =C̃(p̃)2 − Λ
2Nc−Nf
Nf

G̃(p̃), (3.104)

λ̃SW =p̃d log
C̃(p̃)− ỹ
C̃(p̃) + ỹ

. (3.105)

The Nf = 2n + 1 theories have the U(Nf ) flavor symmetry with c̃i being interpreted as

the mass parameters where the scaling dimension is one. Since the power of C̃(p̃)2 is less

than that of G̃(p̃) and the SW differential has the scaling dimension one, we find

[ỹ] =
Nf

2
, [p̃] = 1, [ũl] = l +

1

2
, [c̃i] = 1. (3.106)

If we restrict ũl to the relevant operator and its coupling, there exist only two parameters

ũ0 and ũ1 where [ũ0] + [ũ1] = 2 and then C̃(p̃) becomes

C̃(p̃) = ũ0p̃
n + ũ1p̃

n−1. (3.107)

Thus their theories are the SCFTs with the U(Nf ) flavor symmetry, which have a relevant

operator and its coupling.

3.3.5 Nf = 2n (n ≥ 2)

For Nf = 2n (n ≥ 2), there are two different subsectors obtained in different scaling limit

where the scaling dimension of c̃i is one. These sectors have been studied in [22]. In order

to study two sectors, we introduce two scales ε = εA, εB � 1. In the A sector (ε = εA),

we define the scaling variables (3.68) with

hi = 2(n−Nc + i) (Ñ ≤ i ≤ Nc), hM = 2, hc = 2, (3.108)

and s̃i (2 ≤ i < Ñ) setting to be zero where Ñ := Nc − n + 2. In the B sector (ε = εB),

we use

hi = 2i (2 ≤ i ≤ Nc), hM = 2, hc = Ñ = Nc − n+ 2, (3.109)
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of the scaling variables (3.68). Since c̃i has the scaling dimension one in both sectors, we

derive the relation

ε2A = εÑB , εA � εB. (3.110)

It is possible to obtain the SW curve and the SW differential for the A and B subsectors

by expanding around εA = 0 and εB = 0, respectively.

For ε = εA, substituting (3.68) with (3.108) into (2.122) and (2.123), we obtain

C(p) =ε
Nf
A C̃(p̃) + ε

2Nf
A p̃Nc , (3.111)

G(p) =ε
2Nf
A G̃(p̃), (3.112)

where

C̃(p̃) =− ΛNc−n
Nf

p̃n −
n∑
i=2

s̃Ñ−2+ip̃
n−i, (3.113)

G̃(p̃) =

Nf∏
i=1

(
p̃+ M̃ + c̃i

)
. (3.114)

Then the SW curve (2.121) and the SW differential (2.56) become

y2 =ε
2Nf
A ỹ2 + ε

3Nf
A p̃NcC̃(p̃) + ε

4Nf
A p̃2Nc , (3.115)

λSW =ε2Aλ̃SW + · · · , (3.116)

where

ỹ =C̃(p̃)2 − Λ
2Nc−Nf
Nf

G̃(p̃), (3.117)

λ̃SW =p̃d log
C̃(p̃)− ỹ
C̃(p̃) + ỹ

. (3.118)

By using the fact that the SW differential has scaling dimension one, we find

[ỹ] = n, [p̃] = 1, [s̃i] = −Ñ + 2 + i, [M̃ ] = 1, [c̃i] = 1. (3.119)

For i = Ñ , the parameter s̃Ñ has the scaling dimension two: [s̃Ñ ] = 2.

For ε = εB, by applying (3.68) with (3.109) to (2.122) and (2.123), we obtain

C(p) =− ε2nB ΛNc−n
Nf

(
p̃+ M̃

)n
+ ε2NcB C̃(p̃), (3.120)

G(p) =ε4nB

(
p̃+ M̃

)2n

+
2n∑
j=2

ε
j(Nc−n)+4n
B

(
p̃+ M̃

)2n−j
C̃j, (3.121)
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where

C̃(p̃) = p̃Nc −
Nc∑
i=2

s̃ip̃
Nc−i, (3.122)

and C̃j is the symmetric polynomial of c̃j:

Nf∑
j=0

C̃j p̃
Nf−j :=

Nf∏
j=1

(p̃+ c̃j), C̃0 := 1, C̃1 := 0. (3.123)

Expanding in εB, the SW curve (2.121) and the SW differential (2.56) become

y2 =ε2Nc+2n
B ỹ2 + ε4NcB C̃(p̃)2 −

2n∑
j=3

ε
j(Nc−n)+4n
B Λ2nc−2n

Nf

(
p̃+ M̃

)2n−j
C̃j, (3.124)

λSW =εNc−nB λ̃SW + · · · , (3.125)

where

ỹ2 =− 2ΛNc−n
Nf

(
p̃+ M̃

)n(
C̃(p̃) +

ΛNc−n
Nf

2

(
p̃+ M̃

)n−2

C̃2

)
, (3.126)

λ̃SW =− 2

ΛNc−n
Nf

ỹ(
p̃+ M̃

)ndp̃. (3.127)

The scaling dimensions of the parameters are give by

[ỹ] =
Nc + n

Nc − n+ 2
, [p̃] =

2

Nc − n+ 2
,

[s̃i] =
2i

Nc − n+ 2
, [M̃ ] =

2

Nc − n+ 2
, [C̃2] = 2.

(3.128)

For i = Ñ , the scaling dimension of s̃Ñ is given by [s̃Ñ ] = 2. We note the operators s̃j

(Ñ + 1 < j ≤ Nc) are the irrelevant operators due to [s̃j] > 2. If we assume that there

are only the relevant operators and their couplings, C̃(p̃) becomes

C̃(p̃) = p̃Nc −
Ñ∑
i=2

s̃ip̃
Nc−i. (3.129)

These sectors A and B are coupled by an infrared-free SU(2) [22]. For the A sector,

the curve (3.117) has the operator which represents the squared mass parameter of the

SU(2) flavor symmetry. Similarly, the curve of the B sector (3.126) also has the squared

mass parameter of the SU(2) flavor symmetry.
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Summary

In this chapter, we introduced the Seiberg-Witten curve and the Seiberg-Witten differ-

ential for a class of Argyres-Douglas theories obtained from N = 2 SU(Nc) SQCD. For

SU(2) SQCD, the SW curves of the corresponding AD theories become a common cubic

form but the SW differentials take a different form due to the flavor symmetry. The

SW periods around the superconformal point is expressed in terms of the hypergeomet-

ric function and have no logarithmic divergence which implies the theory is around the

superconformal point. The AD theories associated with SU(Nc) SQCD are classified by

the flavor symmetry as in table 3.3. We also find the SW differentials take a different

form due to the flavor symmetry. The Nf = 2n theory has two different subsectors in two

different scaling limit and both sectors are coupled by SU(2) flavor symmetry.

Nf SW curve SW differential

Nf = 0, 1 ỹ2 ∼
∑Nc

i=0 ũip̃
Nc−i λ̃SW ∼ ỹdp̃

Nf = 2 ỹ2 ∼ (p̃+ M̃)C̃(p̃) +
ΛNc−1
2

2
C̃2 λ̃SW ∼ ỹd log

(
p̃+ M̃

)
Nf = 2n+ 1 ỹ2 ∼ C̃(p̃)2 − Λ

2Nc−Nf
Nf

G̃(p̃) λ̃SW ∼ p̃d log
C̃(p̃)− ỹ
C̃(p̃) + ỹ

Nf = 2n (n ≥ 2)A ỹ2 ∼ C̃(p̃)2 − Λ
2Nc−Nf
Nf

G̃(p̃) λ̃SW ∼ p̃d log
C̃(p̃)− ỹ
C̃(p̃) + ỹ

Nf = 2n (n ≥ 2)B ỹ2 ∼
(
p̃+ M̃

)n(
C̃(p̃) +

ΛNc−nNf

2

(
p̃+ M̃

)n−2

C̃2

)
λ̃SW ∼

ỹ

(p̃+ M̃)n
dp̃

Table 3.3: The SW curve and the SW differential for the AD theory obtained from the
N = 2 SU(Nc) SQCD.



Chapter 4

Ω-deformed N = 2 supersymmetric
gauge theory

In this chapter, we will introduce the Ω-deformation for the N = 2 supersymmetric

gauge theories. The four-dimensional theory in the Ω-background is constructed from

the dimensional reduction of the six-dimensional theory in R1,3×T2, where the metric is

defined by [83,35]

ds2
6 = ηµν (dxµ + Ωn

µ
ρx

ρdxn) (dxν + Ωm
ν
ρx

ρdxm)− (dx4)2 − (dx5)2, (4.1)

with µ, ν, ρ = 0, 1, 2, 3 and n,m = 4, 5. x4 and x5 are the coordinates of the two-

dimensional torus T2:

x4 ∼ x4 + 2πR4, x5 ∼ x5 + 2πR5, (4.2)

where R4 and R5 are the radii of compactification. Here Ωn
µ
ν are the matrices of Lorentz

rotations, where the complex linear combinations Ωµν and Ω̄µν are defined by

Ωµν :=
1√
2

(Ω4
µν + iΩ5

µν) =
1√
2


0 ε1 0 0
−ε1 0 0 0
0 0 0 ε2
0 0 −ε2 0

 , (4.3)

Ω̄µν :=
1√
2

(Ω4
µν − iΩ5

µν) =
1√
2


0 ε̄1 0 0
−ε̄1 0 0 0
0 0 0 ε̄2
0 0 −ε̄2 0

 , (4.4)

with (ε1, ε2) being the deformation parameters of the torus action. In the limit: R4, R5 →
0, the four-dimensional theory in the Ω-background is appeared. The Ω-background
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Figure 4.1: The deformation from the flat spacetime to the Ω-background.

deforms the four-dimensional spacetime by the torus action with ε1 and ε2. The schematic

of the Ω-background is described as in figure 4.1.

In the weak coupling region of the four-dimensional N = 2 supersymmetric gauge

theory, one can compute the Nekrasov partition function ZNek(a; ε1, ε2) with help of the

localization method [34, 35]. In the next section, we will write down the full form of

the partition function for the N = 2 SU(2) SQCD in the Ω-background. In the second

section, we will take the Nekrasov-Shatashvili limit of the Ω-background and give the

Ω-deformed prepotential in the NS limit.

4.1 Nekrasov partition function

The Nekrasov partition function for the N = 2 supersymmetric gauge theory can be

written in terms of the prepotential FNek(a; ε1, ε2):

ZNek(a; ε1, ε2) = exp

(
− 1

ε1ε2
FNek(a; ε1, ε2)

)
. (4.5)
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It is separated into the perturbative and non-perturbative contributions:

ZNek(a; ε1, ε2) := Zpert(a; ε1, ε2)Zinst(a; ε1, ε2), (4.6)

where Zpert(a; ε1, ε2) is the perturbative part of the partition function and Zinst(a; ε1, ε2)

is the instanton part.

In theN = 2 U(2) gauge theory withNf (= 0, . . . , 4) hypermultiplets, the perturbative

and instanton parts of the Nekrasov partition function are written down as follows:

• The perturbative part Zpert(a; ε1, ε2) is given by [83,35]

Zpert(a; ε1, ε2) = exp

 2∑
l,n=1

γε1,ε2(al − an; ΛNf )−
2∑
l=1

Nf∑
a=1

γε1,ε2(al +ma; ΛNf )

 ,

(4.7)

where a := a1 = −a2 is the vev of the scalar field and

γε1,ε2(x; ΛNf ) =
d

ds

∣∣∣∣
s=0

Λs
Nf

Γ(s)

∫ ∞
0

dt ts−1 e−tx

(eε1t − 1)(eε2t − 1)
. (4.8)

• The instanton partition function is given by [34–36]

Zinst(a; ε1, ε2) =
∑
~Y

q|
~Y |zvector(~a, ~Y )

N+∏
a=1

zantifund(~a, ~Y ,ma)

Nf∏
b=N++1

zfund(~a, ~Y ,mb),

(4.9)

where ~a := (a1, a2) and q := e2πiτUV is the instanton factor. ~Y = (Y1,Y2) is the set

of the Young tableaux where

Yl = (Yl,1, Yl,2, · · · ), Yl,1 ≥ Yl,2 ≥ · · · ≥ Yl,n > 0 = Yl,n+1 = Yl,n+2 = · · · ,
(4.10)

with Yl,i being the number of the boxes of the i-th column. The total number of

the boxes |~Y | :=
∑

l,i Yl,i refers to the instanton number. The contribution of the

vector multiplet zvector(~a, ~Y ) is defined by

zvector(~a, ~Y ) =

 2∏
l,n=1

∏
(i,j)∈Yl

E (al − an,Yl,Yn; i, j)
∏

(i,j)∈Yn

(ε1 + ε2 − E (an − al,Yn,Yl; i, j))

−1

,

(4.11)
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where E(a,Y1,Y2; i, j) is given by

E(a,Y1,Y2; i, j) = a− ε1LY2(i, j) + ε2(AY1(i, j) + 1). (4.12)

AY(i, j) and LY(i, j) are the arm-length and leg-length for a box in the tableau Y,

defined by

AY(i, j) = Yi − j, LY(i, j) = (Y T )j − i, (4.13)

respectively, where (i, j) is the coordinate of the box and (Y T )i denotes the number

of the boxes of the i-th column for the transpose of Y. The schematic of the Young

tableau is shown in figure 4.2.

Figure 4.2: The arm-length and leg-length for a box in the Young tableau.

The contributions of the fundamental and anti-fundamental hypermultiplets zfund(~a, ~Y ,m)

and zfund(~a, ~Y ,m) are defined by

zfund(~a, ~Y ,m) =
2∏
l=1

∏
(i,j)∈Y

(φ(a; i, j)−m+ ε1 + ε2), (4.14)

zantifund(~a, ~Y ,m) =zfund(~a, ~Y , ε1 + ε2 −m), (4.15)

where φ(a; i, j) is given by

φ(a; i, j) = a+ ε1(i− 1) + ε2(j − 1). (4.16)

The instanton partition function (4.9) includes the U(1) gauge group contribution,

given by the U(1) factor:

ZU(1) := (1− q)2M0(ε1+ε2−M1), (4.17)
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where M0 := 1
2
(m1 + m2) and M1 := 1

2
(m3 + m4). Thus the instanton partition

function for the SU(2) SQCD is given by

Z
SU(2)
inst = Zinst(a; ε1, ε2)/ZU(1). (4.18)

In the limit ε1, ε2 → 0, the Nekrasov partition function reproduces the Seiberg-Witten

prepotential FSW(a) in the weak coupling region [35]:

FSW(a) = lim
ε1,ε2→0

−ε1ε2ZNek(a; ε1, ε2). (4.19)

In the next section, we will take the special limit of the Ω-background, called the Nekrasov-

Shatashvili limit [44].

4.2 Nekrasov-Shatashvili limit of Ω-background

In the Nekrasov-Shatashvili (NS) limit [44] of the Ω-background where one of the defor-

mation parameters ε2 is set to be zero, the prepotential at the weak coupling is derived

from the Nekrasov partition function (4.5) as

FNS(a; ε1) = lim
ε2→0
−ε1ε2 logZNek(a; ε1, ε2). (4.20)

The Ω-deformed prepotential in the NS limit consists of the perturbative and the instanton

parts:

FNS(a; ε1) :=Fpert
NS (a; ε1) + F inst

NS (a; ε1), (4.21)

where

Fpert
NS (a; ε1) := lim

ε2→0
−ε1ε2 logZpert(a; ε1, ε2), (4.22)

F inst
NS (a; ε1) := lim

ε2→0
−ε1ε2 logZinst(a; ε1, ε2). (4.23)

We firstly consider the perturbative part of the Ω-deformed prepotential in the NS limit.

In this limit, the function (4.8) becomes

γε1(x,ΛNf ) := lim
ε2→0

ε1ε2γε1,ε2(x,ΛNf )

=ε21
d

ds

∣∣∣∣
s=0

Λs
Nf

εs1Γ(s)

∫ ∞
0

dt ts−2 e
−t

(
1+ x

ε1

)
(1− e−t)

. (4.24)
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Differentiating it with respect to x, we find

∂

∂x
γε1(x; ΛNf ) = ε1

(
1

2
+
x

ε1

)
log

ΛNf

ε1
− ε1 log Γ

(
1 +

x

ε1

)
+
ε1
2

log 2π. (4.25)

From the above formula, the a-derivative of the perturbative part of the deformed prepo-

tential in the NS limit becomes [46]

∂

∂a
Fpert

NS (a; ε1) =− 8a

(
log

2a

ΛNf

− 1 +
∞∑
k=1

B2k

2k(2k − 1)

( ε1
2a

)2k
)

+

Nf∑
a=1

[
2(a+ma)

(
log

a+ma

ΛNf

− 1 +
∞∑
k=1

(21−2k − 1)B2k

2k(2k − 1)

(
ε1

a+ma

)2k
)]

,

(4.26)

where Bk is the k-th Bernoulli number. Here we shift the mass parameter as ma → ma+
ε1
2

.

Integrating it over a, we obtain the perturbative part of the prepotential.

We next consider the instanton part of the Ω-deformed prepotential in the NS limit.

For the instanton partition function (4.18), we shift the mass parameters: ma → ma +

ε1+ε2
2

for a fundamental hypermultiplet or ma → ε1+ε2
2
− ma for an anti-fundamental

hypermultiplet. In the N = 2 SU(2) SQCD, the instanton part of the prepotential in the

NS limit is given by

F inst
NS (a; ε1) = lim

ε2→0
−ε1ε2 logZ

SU(2)
inst (a; ε1, ε2). (4.27)

Then expanding it around ε1 = 0, we obtain the expansion of the instanton contribution

of the prepotential.

The low-energy effective theory in the NS limit of the Ω-background arises in the

two-dimensional Ω background with ε1. The prepotential FNS(a; ε1) leads to the twisted

superpotential for the two-dimensional N = 2 supersymmetric gauge theory, which is

expanded in ε1 as

W(a; ε1) ' 1

ε1
FNS(a; ε1) =

1

ε1
FSW(a) + · · · , (4.28)

where FSW(a) is the SW prepotential. In the limit ε1 → 0, the twisted superpotential

W(a) := limε1→0W(a; ε1) satisfies the two-dimensional supersymmetric vacua condition:

∂W(a)

∂a
= 2πin (4.29)
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with n being an integer. Since the a-derivative of the SW prepotential is given by the

integration of the SW differential, the deformed periods in the NS limit is found to satisfy

the Bohr-Sommerfeld (BS) quantization condition [44] :∮
λSW = 2πi

(
n+

1

2

)
ε1, (n ∈ Z), (4.30)

where the deformation parameter ε1 is a roll of the Planck constant ~. Mironov and

Morozov gave a different interpretation to the BS condition (4.30) [45]. The BS condition

means that the SW curve is quantized by introducing the canonical quantization of the

holomorphic symplectic structure induced by dλSW. The quantum SW curve becomes the

ordinary differential equation. Solving the differential equation, the quantum correction

to the SW periods is obtained from the WKB solution. In the next chapter, we will check

that the Ω-deformed prepotential for the N = 2 SU(2) SQCD in the NS limit agrees

with that obtained from the quantum SW periods in the weak coupling region up to

fourth order in ε1. Then we will compute the quantum prepotential around the massless

monopole point.

Summary

In this chapter, we reviewed theN = 2 supersymmetric gauge theory in the Ω-background.

In the weak coupling region, the Nekrasov partition function reproduces explicitly the

full form of the prepotential including the instanton contribution. In the NS limit, the

low-energy effective theory becomes a two-dimensional Ω-deformed theory with one de-

formation parameter ε1. From the two-dimensional supersymmetric vacua condition, it

is found that the SW periods in the NS limit satisfy the Bohr-Sommerfeld quantization

condition.
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Chapter 5

Quantum periods for N = 2 SU(2)
SQCD

In this chapter, we will study the effect of the Ω-deformation at the massless monopole

point for the SU(2) gauge theory with Nf (= 1, 2, 3, 4) hypermultiplets. In particular,

we will take the Nekrasov-Shatashvili limit: ε1 := ~ and ε2 → 0. In the NS limit, the

SW periods satisfy the BS quantization condition (4.30) and the SW curve becomes a

differential equation, obtained by the canonical quantization of the symplectic structure

defined by dλSW. The quantum corrections to the SW periods are obtained from the

WKB solution of the quantum SW curve. Interestingly they can be represented by acting

Ôk on the SW periods where Ôk denotes some differential operator with respect to the

moduli parameter and the mass parameters. In the weak coupling region, the quantum

prepotential obtained from the quantum SW periods agrees with that obtained from the

Nekrasov partition function (4.20) [45].

In this chapter, we will construct Ô2 and Ô4 explicitly for N = 2 SU(2) SQCD and

compute the second and fourth order corrections to the SW periods in ~ around u ∼ ∞
and the massless monopole point u ∼ u0. In the following, Π := (a, aD) denotes the

quantum SW periods while Π(0) := (a(0), a
(0)
D ) refers to the “undeformed” (or classical)

SW periods defined by (2.95) as discussed previously.
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5.1 Quantum SW curve

The SW curve and the SW differential for the SU(2) gauge theory with the Nf hyper-

multiplets are given by (2.96) and (2.99), respectively. By introducing z = eix, the SW

curve (2.92) is

C(p)− Λ̄

2

(
G+(p)eix +G−(p)e−ix

)
= 0 (5.1)

and the SW differential (2.99) becomes

λSW = p

(
d log

G−(p)

G+(p)
− 2idx

)
. (5.2)

The differential gives a symplectic form dλSW = dp∧dx on the (p, x) space. By regarding

the coordinate p as the differential operator −i~ d
dx

, we obtain the quantum SW curve,

taking the form of the differential equations[
C(−i~∂x)−

Λ̄

2

(
e
ix
2 G+(−i~∂x)e

ix
2 + e−

ix
2 G−(−i~∂x)e−

ix
2

)]
Ψ(x) = 0, (5.3)

where ∂x = ∂
∂x

. C(p) and G±(p) are given by (2.93) and (2.98), respectively. Here we

take the ordering prescription of the differential operators as in [46]:

eitx(−i~∂x +mi)e
i(1−t)x = (−i~∂x +mi − t~)eix, (5.4)

where t = 1
2

in the second term in (5.3), for example.

We will choose the number of the hypermultiplet N+ in G+(p) such that (5.3) becomes

the second order differential equation:(
∂2
x + f(x)∂x + g(x)

)
Ψ(x) = 0. (5.5)

By introducing Ψ(x) = exp
(
−1

2

∫
f(x)dx

)
ψ(x), this equation becomes the Schrödinger

type equation: (
−~2∂2

x +Q(x)
)
ψ(x) = 0, (5.6)

where Q(x) = − 1
~2 (−1

2
∂xf − 1

4
f 2 + g). In the case of SU(2) SQCD, the potential Q(x)

becomes the expansions in ~ as

Q(x) = Q0(x) + ~2Q2(x). (5.7)
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The quantum SW periods are defined by the WKB solution of the equation (5.6):

ψ(x) = exp

(
i

~

∫ x

Φ(y)dy

)
, (5.8)

where

Φ(y) =
∞∑
n=0

~nφn(y), (5.9)

and φ0(y) = p(y). Substituting the expansion (5.9) into (5.6), we obtain the recursion

relation of φn(x)’s:

Q0(x) + φ0(x)2 = 0, (5.10)

Qn(x) + 2φ0φn +
∑
l+k=n

φlφk − i∂xφn−1 = 0, for n ≥ 1, (5.11)

where Qn(x) = 0 for n 6= 0, 2 and l, k ≥ 1. We separate Φ(x) into odd and even order

corrections as

Φ(x) = Φodd(x) + Φeven(x), (5.12)

where

Φodd(x) =
∑
j≥0

~2j−1φ2j−1(x), Φeven(x) =
∑
j≥0

~2jφ2j(x). (5.13)

We then find that Φodd becomes a total derivative:

Φodd(x) =
i

2

∂

∂x
log Φeven. (5.14)

There is only φ2n(x) as the contribution to the period integrals. The first three φ2n’s are

given by

φ0(x) = i
√
Q0, (5.15)

φ2(x) =
i

2

Q2√
Q0

+
i

48

∂2
xQ0

Q
3
2
0

, (5.16)

φ4(x) = − 7i

1536

(∂2
xQ0)2

Q
7
2
0

+
i

768

∂4
xQ0

Q
5
2
0

− iQ2∂
2
xQ0

32Q
5
2
0

+
i∂2
xQ2

48Q
3
2
0

− iQ2
2

8Q
3
2
0

, (5.17)
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up to total derivatives. The leading order term φ0(x) leads to the SW periods Π(0) =∮
φ0(x). The quantum correction to the SW periods is given by the integration of φ2n(x).

Then one can expand the quantum periods Π =
∮

Φ(x)dx = (a, aD) in ~ as

Π = Π(0) + ~2Π(2) + ~4Π(4) + · · · , (5.18)

where Π(2n) :=
∫
φ2n(x)dx.

The SW periods Π(0) can be evaluated by solving the Picard-Fuchs equation (2.76) as

discussed previously. The higher correction Π(k) to the SW periods Π(0) can be computed

by using the expressions as [38, 47,58,39]:

Π(k) = ÔkΠ(0). (5.19)

where Ôk is some differential operators, represented in various ways. For example, Π(k)

can be expressed in terms of a basis ∂uΠ
(0) and ∂2

uΠ
(0):

Π(k) =

(
X1
k

∂2

∂u2
+X2

k

∂

∂u

)
Π(0). (5.20)

Let us study the simplest example, the Nf = 0 theory. The quantum SW curve (5.6)

becomes the Schrödinger type equation with the sine-Gordon potential:

Q(x) = −u− Λ2
0

2
(eix + e−ix). (5.21)

The SW periods Π(0) satisfy the Picard-Fuchs equation (2.79). By applying the WKB

method we find the second and fourth order quantum corrections, given by [38,45,58]

Π(2) =

(
1

12
u
∂2

∂u2
+

1

24

∂

∂u

)
Π(0), (5.22)

Π(4) =

(
75Λ8

0 − 4u4 + 153Λ4
0u

2

5760 (u2 − Λ4
0) 2

∂2

∂u2
− u3 − 15Λ4

0u

2880 (u2 − Λ4
0) 2

∂

∂u

)
Π(0). (5.23)

By using the Picard-Fuchs equation (2.79), it is found that a simpler formula for Π(4) is

obtained by

Π(4) =

(
7

1440
u2 ∂

4

∂u4
+

1

48
u
∂3

∂u3
+

5

384

∂2

∂u2

)
Π(0). (5.24)
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In the weak coupling region where u is large, the expansions of the SW periods

(a(0), a
(0)
D ) are given by (2.81) and (2.82), respectively. Applying (5.22) and (5.24) on

(a(u), aD(u)), the expansions of the quantum SW periods around u =∞ are given by

a(u) =

(√
u

2
− Λ0

16
√

2

(
Λ2

0

u

) 3
2

+ · · ·

)
+

~2

Λ0

(
− 1

64
√

2

(
Λ2

0

u

) 5
2

− 35

2048
√

2

(
Λ2

0

u

) 9
2

+ · · ·

)

+
~4

Λ3
0

(
− 1

256
√

2

(
Λ2

0

u

) 7
2

− 273

16384
√

2

(
Λ2

0

u

) 11
2

+ · · ·

)
+ · · · ,

aD(u) =− i

2
√

2π

[
−4
√

2a(u) log
8u

Λ2
0

+

(
8
√
u− Λ4

0

4u
3
2

+ · · ·
)

+
~2

Λ0

(
− 1

6
√
u
− 13

96

(
Λ2

0

u

) 5
2

+ · · ·

)

+
~4

Λ3
0

(
1

720u
3
2

− 63

1280

(
Λ2

0

u

) 7
2

+ · · ·

)
+ · · ·

]
,

(5.25)

up to the fourth order in ~. It has been showed that the prepotential obtained from them

agrees with that obtained from the NS limit of the Nekrasov partition function [45,58].

We can also study the quantum SW periods in the strong coupling region. We have

the expansions of the SW periods around the massless monopole point u = Λ2
0: (2.84)

and (2.85). In order to analyze the quantum SW periods around the massless monopole

point, it is convenient to use (5.24) rather than (5.23) since the coefficients in (5.23) have

singularities at u = Λ2
0. Then the expansions of the quantum SW periods around u = Λ2

0

are given by [58]:

aD(û) =i

(
û

2Λ0

− û2

32Λ3
0

+ · · ·
)

+
i~2

Λ0

(
1

64
− 5

1024

(
û

Λ2
0

)
+ · · ·

)
+
i~4

Λ3
0

(
− 17

65536
+

721

2097152

(
û

Λ2
0

)
+ · · ·

)
+ · · · ,

a(û) =
i

2π

[
aD(û) log

û

25Λ2
0

+ i

(
− û

2Λ0

− 3û2

64Λ3
0

+ · · ·
)

+
i~2

Λ0

(
1

24

(
û

Λ2
0

)−1

+
5

192
+ · · ·

)

+
i~4

Λ3
0

(
7

1440

(
û

Λ2
0

)−3

− 1

2560

(
û

Λ2
0

)−2

+ · · ·

)
+ · · ·

]
,

(5.26)

where û := u − Λ2
0 up to fourth order in ~. In the following sections, we consider the

quantum corrections to the SW periods at strong coupling for Nf = 1, 2, 3, 4 cases.



78 CHAPTER 5. QUANTUM PERIODS FOR N = 2 SU(2) SQCD

5.2 Quantum SW periods for Nf ≥ 1

We discuss the quantum SW periods for the SU(2) theory with Nf ≥ 1 hypermultiplets.

We will take N+ of (2.98) such that the differential equation (5.3) becomes the second

order differential equation. The quantum SW curve takes the form of the Schrödinger

type equation (5.6) by the redefinition of the wave function. The higher order corrections

to the SW periods are given by the integration of (5.16) and (5.17) over x along α and

β cycles. The expressions are represented as ÔkΠ(0) with some differential operators Ôk.
In this section, we will find the second and fourth order corrections to the SW periods.

Nf = 1 theory

For Nf = 1, we can take N+ = 1 in the SW curve (2.96) without loss of generality. We

have the quantum curve as the Schrödinger type equation with the Tzitzéica-Bullough-

Dodd type potential

Q(x) = −1

2
Λ

3
2
1m1e

ix − u− 1

16
Λ3

1e
2ix − 1

2
Λ

3
2
1 e
−ix, (5.27)

where Q2(x) = 0. The SW periods Π(0) satisfy not only the Picard-Fuchs equation (2.76)

with (2.102) but also the differential equation:

∂2Π(0)

∂m1∂u
= b1

∂2Π(0)

∂u2
+ c1

∂Π(0)

∂u
, (5.28)

where

b1 = −16m1u− 9Λ3
1

8(4m2
1 − 3u)

, c1 = − m1

4m2
1 − 3u

. (5.29)

The second and fourth order corrections are given by the integration of (5.16) and (5.17)

over x, respectively [39]. In terms of the basis ∂uΠ
(0) and ∂2

uΠ
(0), we obtain the expressions

of these corrections:

Π(2) =

(
X1

2

∂2

∂u2
+X2

2

∂

∂u

)
Π(0), (5.30)

Π(4) =

(
X1

4

∂2

∂u2
+X2

4

∂

∂u

)
Π(0), (5.31)
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where the coefficients in (5.30) are given by

X1
2 =− −9Λ3

1m1 − 16m2
1u+ 24u2

48 (4m2
1 − 3u)

,

X2
2 =− 3u− 2m2

1

12 (4m2
1 − 3u)

,

(5.32)

and the coefficients in (5.31) are given by

X1
4 =

Λ12
1

1440(4m2
1 − 3u)∆2

1

(
−864Λ9

1m1

(
4350m2

1u+ 1192m4
1 + 441u2

)
− 49152Λ3

1m1u
2
(
−455m2

1u
2 + 609m4

1u− 204m6
1 + 267u3

)
+ 768Λ6

1

(
−19593m2

1u
3 + 42348m4

1u
2 − 22624m6

1u+ 6400m8
1 + 8235u4

)
+ 131072u4

(
15m2

1u
2 + 6m4

1u− 2m6
1 + 9u3

)
− 729Λ12

1

(
615u− 1792m2

1

))
,

(5.33)

X2
4 =

Λ12
1

45(4m2
1 − 3u)∆2

1

(
24Λ6

1

(
−1080m2

1u
2 + 4254m4

1u− 800m6
1 + 1215u3

)
− 768Λ3

1m1u
(
−185m2

1u
2 + 267m4

1u− 80m6
1 + 159u3

)
+ 2048u3

(
15m2

1u
2 + 6m4

1u− 2m6
1 + 9u3

)
− 81Λ9

1m1

(
235m2

1 + 6u
))
.

(5.34)

In the weak coupling region, the quantum SW periods reproduce the deformed prepo-

tential obtained from the NS limit of the Nekrasov partition function as will show in

the next section. From the above representation of the period integrals, it is possible to

investigate the decoupling limit to the pure SU(2) theory, which defined by (2.90) with

Nf = 1. When we take the decoupling limit (2.90) with Nf = 1, the second and fourth

order corrections (5.30) and (5.31) become (5.22) and (5.23).

In section 5.5, we will compute the deformed period integrals in the strong coupling

region, where the monopole/dyon becomes massless. In this case, the coefficients in (5.30)

and (5.31) become singular since the discriminant ∆1 = 0 at the massless BPS point. With

help of the Picard-Fuchs equation (2.76) and the differential equation (5.28), the higher

order corrections can be expressed such that all coefficients are regular with ∆1 = 0. We

note that the coefficients of the differential operator for Π(2) can be written as

X1
2 =

1

6
u+

1

6
m1b1, X2

2 =
1

12
+

1

6
m1c1. (5.35)

From the Picard-Fuchs equation (2.76) and the differential equation (5.28), the second
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and fourth order corrections to the SW periods can be expressed as

Π(2) =
1

12

(
2u

∂2

∂u2
+ 2m1

∂

∂m1

∂

∂u
+

∂

∂u

)
Π(0), (5.36)

Π(4) =
1

1440

(
28u2 ∂

4

∂u4
+ 124u

∂3

∂u3
+ 81

∂2

∂u2

+ 56um1
∂

∂m1

∂3

∂u3
+ 28m2

1

∂2

∂m2
1

∂2

∂u2
+ 132m1

∂

∂m1

∂2

∂u2

)
Π(0).

(5.37)

We can easily analyze the quantum SW periods at the various strong coupling points in

the Coulomb moduli space since all the coefficients have no singularities when ∆1 = 0.

Nf = 2 theory

In the case of Nf = 2, we can choose N+ = 1 or N+ = 2 in (2.98) for the SW curve (2.96).

Although in either case, we have the quantum curves with the form of the Schrödinger

type equations, they have apparently different Q(x):

Q(x) =− u− Λ2

2

(
m1e

ix +m2e
−ix)− Λ2

2

8
cos 2x, (N+ = 1) (5.38)

Q(x) =− eixΛ3
2 + Λ2

2(e2ix(m1 −m2)2 − 2) + 8Λ2e
ix(m1m2 − u) + 16u

4(−2 + eixΛ2)2

+ ~2 eixΛ2

2(−2 + eixΛ2)2
, (N+ = 2) (5.39)

where for the N+ = 2 case Q(x) has the second order correction in ~. The quantum curves

look quite different but it is shown that they give the same period integrals. One of the

reasons is that the SW periods in both cases satisfy the same Picard-Fuchs equation with

(2.103) and the differential equations

∂2Π(0)

∂m1∂u
=

1

L2

(
b

(1)
2

∂2Π(0)

∂u2
+ c

(1)
2

∂Π(0)

∂u

)
, (5.40)

∂2Π(0)

∂m2∂u
=

1

L2

(
b

(2)
2

∂2Π(0)

∂u2
+ c

(2)
2

∂Π(0)

∂u

)
, (5.41)
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where

L2 =− Λ4
2 + 8m1m2Λ2

2 + 32
[
4m2

1m
2
2 − 3u(m2

1 +m2
2) + 2u2

]
,

b
(1)
2 =3Λ4

2m1 − 4Λ2
2m2(3m2

1 − 9m2
2 + 8u)− 64m2u(m2

1 − u),

c
(1)
2 =4Λ2

2m2 + 32m1(m2
2 − u),

b
(2)
2 =3Λ4

2m2 − 4Λ2
2m1(3m2

2 − 9m2
1 + 8u)− 64m1u(m2

2 − u),

c
(1)
2 =4Λ2

2m1 + 32m2(m2
1 − u). (5.42)

Since the SW periods are uniquely determined by solving the Picard-Fuchs equation

around some singularities on the u-plane, we obtain the solutions of the SW periods

which do not depend on the choice of N+. The second reason is that one can also obtain

the second and fourth order corrections with the independent of N+, which are given by

Π(2) =
1

6

(
2u

∂2

∂u2
+

3

2

(
m1

∂

∂m1

∂

∂u
+m2

∂

∂m2

∂

∂u

)
+

∂

∂u

)
Π(0), (5.43)

Π(4) =
1

360

[
28u2 ∂

4

∂u4
+ 120u

∂3

∂u3
+ 75

∂2

∂u2

+ 42

(
um1

∂

∂m1

∂3

∂u3
+ um2

∂

∂m2

∂3

∂u3

)
+

345

4

(
m1

∂

∂m1

∂2

∂u2
+m2

∂

∂m2

∂2

∂u2

)
+

63

4

(
m2

1

∂2

∂m2
1

∂2

∂u2
+m2

2

∂2

∂m2
2

∂2

∂u2

)
+

126

4
m1m2

∂

∂m1

∂

∂m2

∂2

∂u2

]
Π(0). (5.44)

Here we required that all the coefficients of the expression do not have any singularity

with ∆2 = 0. Thus we conclude that the quantum SW periods do not depend on the

choice of N+ at least up to the fourth order in ~. [46].

As explained in the previous sections, there are various way to represent the quantum

corrections and the expressions (5.43) and (5.44) can be convert by using the Picard-Fuchs

equation (2.76) and the differential equation (5.40). For example the expression of the

second order correction (5.43) becomes that in terms of a basis ∂2
uΠ

(0) and ∂uΠ
(0) as

Π(2) =

[(
1

3
u+

1

4L2

(m1b
(1)
2 +m2b

(2)
2 )

)
∂2

∂u2
+

(
1

6
+

1

4L2

(m1c
(1)
2 +m2c

(2)
2 )

)
∂

∂u

]
Π(0),

(5.45)

where L2, b
(1)
2 , · · · c(2)

2 are given in (5.42). In the decoupling limit (2.90) with Nf = 2,

the SW periods is reduced to that of the Nf = 1 theory. It can be also checked that



82 CHAPTER 5. QUANTUM PERIODS FOR N = 2 SU(2) SQCD

the higher order corrections to the SW periods become those of the Nf = 1 theory up to

fourth order in ~.

Nf = 3 theory

For Nf = 3, we should choose N+ = 1 or 2 in (5.3) since the quantum SW curve becomes

the third order differential equation if we take other N+. We will take N+ = 2 without

loss of generality. The quantum SW curve becomes the form of the Schrödinger type

equation (5.6) with

Q(x) =
e−2ix

16
(
−2 + eixΛ

1
2
3

)2

(
−4Λ3 − 4e3ixΛ

1
2
3 (m3Λ3 + 8m1m2 − 8u)− e2ix

(
Λ2

3 − 24m3Λ3 + 64u
)

− 4 (m1 −m2) 2e4ixΛ3 + 4eixΛ
1
2
3 (Λ3 − 8m3)

)
+ ~2 eixΛ

1
2
3

2
(
−2 + eixΛ

1
2
3

)2 .

(5.46)

where the potential Q(x) has the second order corrections in ~. As explained in the Nf = 1

and 2 theories, the SW periods satisfy the Picard-Fuchs equation and the differential

equations with respect to the mass parameter mi (i = 1, 2, 3) and the moduli parameter

u. We consider the same mass m := m1 = m2 = m3 for simplicity. The Picard-Fuchs

equation is given by (2.76) with (2.104) and the differential equation takes the form

∂2Π(0)

∂m∂u
= b3

∂2Π(0)

∂u2
+ c3

∂Π(0)

∂u
(5.47)

where

b3 =
3m (Λ2

3 + 24Λ3m− 128u)

16 (16m2 − Λ3m− 4u)
, c3 =

12m

m (Λ3 − 16m) + 4u
. (5.48)

In general mass case, it can be checked that the quantum corrections to the SW periods
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Π(0) are expressed as

Π(2) =

[(
5

6
u− 1

384
Λ2

3

)
∂2

∂u2
+

1

2

3∑
i=1

mi
∂

∂mi

∂

∂u
+

5

12

∂

∂u

]
Π(0), (5.49)

Π(4) =

[
7

10

(
5

6
u− 1

384
Λ2

3

)2
∂4

∂u4
+

47

20

(
241

47

1

6
u− 1

384
Λ2

3

)
∂3

∂u3
+

571

480

∂2

∂u2

+
3∑
i=1

(
7

10

(
5

6
u− 1

384
Λ2

3

)
mi

∂

∂mi

∂3

∂u3
+

131

120
mi

∂

∂mi

∂2

∂u2

)

+
3∑
i=1

3∑
j=1

(
7

40
mimj

∂

∂mi

∂

∂mj

∂2

∂u2

)]
Π(0).

(5.50)

where all the coefficients are regular when ∆3 = 0. By using the Picard-Fuchs equation

and the differential equation with respect to the mass parameters, the quantum SW

periods (5.49) and (5.50) can be expressed in terms of a basis ∂uΠ
(0) and ∂2

uΠ
(0). For the

same mass case, we find that

Π(2) =

[(
5

6
u− 1

384
Λ2

3 +
1

2
mb3

)
∂2

∂u2
+

(
5

12
+

1

2
mc3

)
∂

∂u

]
Π(0). (5.51)

This representation is suitable to discuss the decoupling limit to the Nf = 0 theory, which

is defined by m→∞ and Λ3 → 0 with m3Λ3 = Λ4
0 being fixed. By taking the decoupling

limit, the SW periods for Nf = 3 theory are reduced to those for the Nf = 0 theory.

Moreover, it can be shown that, in this limit, the second and fourth order corrections to

the SW periods agree with those of the Nf = 0 theory.

Nf = 4 theory

In the case of Nf = 4, we will take N+ = 2 in (5.3). Otherwise, the quantum SW curve

becomes the third or fourth order differential equation. The quantum curve is the form



84 CHAPTER 5. QUANTUM PERIODS FOR N = 2 SU(2) SQCD

of the Schrödinger type equation with

Q(x) =
e−2ix

4
(
−4
√
q cos(x) + q + 4

)2

(
4
√
qe3ix

(
m2

1q +m2
2q −m1m2(q + 8)−m3m4q + 8u

)
+ 4
√
qeix

(
m2

3q +m2
4q −m3m4(q + 8)−m1m2q + 8u

)
− e2ix

(
q
((
m2

1 +m2
2 +m2

3 +m2
4

)
q − 24 (m1m2 +m3m4)

)
+ 16(q + 4)u

)
− 4qe4ix (m1 −m2) 2 − 4q (m3 −m4) 2

)
+ ~2

√
qe−ix

(
qe2ix − 8

√
qeix + q + 4e2ix + 4

)
2
(
−4
√
q cos(x) + q + 4

)2 .

(5.52)

Due to complication in the general mass case, we consider the simpler case: massive

hypermultiplets with the same mass: m := m1 = m2 = m3 = m4. In this case, the

potential Q(x) becomes

Q(x) =−
(
(m2 + u)

(
−16
√
q cos(x) + (q − 4)q + 32

)
− (q − 4)2u

)(
−4
√
q cos(x) + q + 4

)2

+ ~2

√
qe−ix

(
qe2ix − 8

√
qeix + q + 4e2ix + 4

)
2
(
−4
√
q cos(x) + q + 4

)2 . (5.53)

As discussed previously, the SW periods Π(0) satisfy the Picard-Fuchs equation (2.76)

with (2.105). In terms of a basis ∂uΠ
(0) and ∂2

uΠ
(0), the higher order corrections to the

SW periods in ~ are given up to fourth order in ~ as follows: The second order correction

is expressed as

Π(2) =

(
X1

2

∂2

∂u2
+X2

2

∂

∂u

)
Π(0), (5.54)

where

X1
2 =− −18m4q +m4q2 − 8m2u+ 10m2qu+ 24u2

96m2
,

X2
2 =− −2m2 +m2q + 6u

48m2
.

(5.55)

The fourth order correction is given by

Π(4) =

(
X1

4

∂2

∂u2
+X2

4

∂

∂u

)
Π(0), (5.56)
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where

X1
4 =

1

46080m2 (m2 − u)2 (m2q − 4m2
√
q + 4u

)2 (
m2q + 4m2

√
q + 4u

)2

×
(

7m14q8 − 399m14q7 + 8484m14q6 − 80616m14q5 + 312480m14q4 − 284544m14q3

+ 153600m14q2 + 175m12q7u− 7196m12q6u+ 96504m12q5u− 436320m12q4u

+ 266496m12q3u− 789504m12q2u+ 1848m10q6u2 − 51624m10q5u2 + 403488m10q4u2

− 896256m10q3u2 + 2328576m10q2u2 + 313344m10qu2 + 10648m8q5u3

− 190176m8q4u3 + 820224m8q3u3 − 1501184m8q2u3 − 921600m8qu3 + 35968m6q4u4

− 377984m6q3u4 + 881664m6q2u4 − 26624m6qu4 − 8192m6u4 + 70656m4q3u5

− 344064m4q2u5 − 325632m4qu5 + 24576m4u5 + 73728m2q2u6 + 12288m2qu6

+ 319488m2u6 + 30720qu7 + 122880u7
)
,

(5.57)

X2
4 =

1

23040m2 (m2 − u)2 (m2q − 4m2
√
q + 4u

)2 (
m2q + 4m2

√
q + 4u

)2

×
(

7m12q7 − 287m12q6 + 3780m12q5 − 15816m12q4 + 1440m12q3 − 38400m12q2

+ 147m10q6u− 4032m10q5u+ 29736m10q4u− 55872m10q3u+ 225408m10q2u+ 30720m10qu

+ 1260m8q5u2 − 21768m8q4u2 + 88704m8q3u2 − 221952m8q2u2 − 133632m8qu2

+ 5608m6q4u3 − 56768m6q3u3 + 147456m6q2u3 + 7168m6qu3 − 2048m6u3

+ 13536m4q3u4 − 64512m4q2u4 − 58368m4qu4 + 6144m4u4 + 16512m2q2u5 + 3072m2qu5

+ 79872m2u5 + 7680qu6 + 30720u6
)
.

(5.58)

These expressions are useful to discuss the decoupling limit to Nf = 0: m→∞ and q → 0

with m4q = Λ4
0 being fixed. In the decoupling limit, the SW periods agree with those for

the Nf = 0 theory. We can also show that the second and fourth order corrections of the

quantum SW periods (5.54) and (5.56) are reduced to those for the Nf = 0 theory in this

limit.

We then consider the massless limit. The Picard-Fuchs equation turns out a simple



86 CHAPTER 5. QUANTUM PERIODS FOR N = 2 SU(2) SQCD

form:

∂2Π(0)

∂u2
+

1

2u

∂Π(0)

∂u
= 0. (5.59)

We note that the expressions (5.54) and (5.56) have the coefficients which become singular

in m → 0. In the massless case, it is found that the second and fourth order corrections

to the SW periods convert into

Π(2) =

(
−uq

8

∂2

∂u2
+

(q − 4)q

16u

∂

∂q

)
Π(0), (5.60)

Π(4) =

(
−26q + 11q2

2304

∂2

∂u2
− (q − 4)(−52q + 35q2)

4608u2

∂

∂q
− (q − 4)2q2

288u2

∂2

∂q2

)
Π(0), (5.61)

with help of the Picard-Fuchs equation. We note that these formulas include the derivative

with respect to q as well as u.

In the following sections, we will compute the quantum SW periods both in the weak

and strong coupling regions and evaluate the deformed (dual) prepotentials.

5.3 Deformed SW periods in the weak coupling

In this section, we will study the expansion of the quantum SW periods in the weak

coupling region for the completeness. We expand the quantum SW periods at u =∞ and

then obtain the deformed prepotential for the Nf theories [39,84]. Then we will check that

obtained prepotential agrees with that obtained from the Nekrasov partition function in

the NS limit [46]. The SW periods in the weak coupling region are given by integrating

the expansions of the periods (2.69) and (2.70) over u [75]. The quantum SW periods are

given by acting the differential operators on the SW periods a(0) and a
(0)
D .

5.3.1 Nf ≤ 3

For Nf = 1, the discriminant ∆1 and D1 are given by (2.102). Substituting them into

(2.69) and (2.70) and expanding around u =∞, we obtain the expansions of the periods

∂ua
(0) and ∂ua

(0)
D in the weak coupling region. The expansions of the SW periods are

obtained by the integration of them over u. Then applying (5.36) and (5.37) to the SW
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periods, the expansions of the quantum SW periods around u =∞ are given by

a(u) =

√
u

2
−

Λ3
1m1

(
1
u

) 3
2

24
√

2
+

3Λ6
1

(
1
u

) 5
2

210
√

2
+ · · ·

+ ~2

−Λ3
1m1

(
1
u

) 5
2

26
√

2
+

15Λ6
1

(
1
u

) 7
2

212
√

2
−

35Λ6
1m

2
1

(
1
u

) 9
2

211
√

2
+ · · ·


+ ~4

−Λ3
1m
(

1
u

) 7
2

28
√

2
+

63Λ6
1

(
1
u

) 9
2

214
√

2
−

273Λ6
1m

2
(

1
u

) 11
2

214
√

2
+ · · ·

+ · · · ,

(5.62)

aD(u) =− i

2
√

2π

[
√

2a(u)

(
iπ − 3 log

16u

Λ2
1

)
+

(
6
√
u+

m2
1√
u

+

m4
1

6
− 1

4
Λ3

1m1

u
3
2

+ · · ·

)

+ ~2

(
− 1

4
√
u
− m2

1

12u
3
2

+
− 9

64
Λ3

1m1 − m4
1

12

u
5
2

+ · · ·

)

+ ~4

(
1

160u
3
2

+
7m2

1

240u
5
2

+

7m4
1

96
− 127Λ3

1m1

2560

u
7
2

+ · · ·

)
+ · · ·

]
.

(5.63)

Inverting the series of a(u) in (5.62), we obtain the expansion of u in terms of a. Substi-

tuting it into aD, aD becomes a function of a. The integration of aD over a derives the

deformed prepotential:

F1(a, ~) =
1

2πi

[
Fpert

1 (a, ~) +
∞∑
k=0

∞∑
n=1

~2kF (2k,n)
1

(
1

a

)2n
]
, (5.64)

where the first few coefficients of F (2k,n)
1 (k = 0, 1, 2) are listed in the table 5.1. The

perturbative part Fpert
1 (a, ~) of the prepotential takes the form

Fpert
1 (a, ~) =− 3

2
a2 log

a2

Λ2
1

+
1

2
F1
s − a2 log a− 3m2

1

4

+ ~2

(
− 1

12
log a− 1

96

∂2F1
s

∂a2
+

1

16

)
+ ~4

(
− 1

5760a2
+

7

210 · 32 · 5
∂4F1

s

∂a4

)
+ · · · ,

(5.65)

where F1
s is defined as [78]

F1
s =

(
a+

m1√
2

)2

log

(
a+

m1√
2

)
+

(
a− m1√

2

)2

log

(
a− m1√

2

)
. (5.66)
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k F (2k,1)
1 F (2k,2)

1 F (2k,3)
1 F (2k,4)

1

0 1
32

Λ3
1m1 − 3Λ6

1

8192

5Λ6
1m

2
1

16384
−7Λ9

1m1

393216

1 0 1
256

Λ3
1m1 − 15Λ6

1

65536

21Λ6
1m

2
1

65536

2 0 0
Λ3
1m1

2048
− 63Λ6

1

524288

Table 5.1: The coefficients of the prepotential for the Nf = 1 theory

Similarly, the expansions of the deformed prepotentials for Nf = 2 and 3 theories are

given by

FNf (a, ~) =
1

2πi

[
Fpert
Nf

(a, ~) +
∞∑
k=0

∞∑
n=1

~2kF (2k,n)
Nf

(
1

a

)2n
]
, (5.67)

where some coefficients F (2k,n)
Nf

(k = 0, 1, 2) are shown in appendix B. The perturbative

parts are expanded as

Fpert
2 (a, ~) =− a2 log

a2

Λ2
2

+
1

2
F2
s − 2a2 log a− 3

4
(m2

1 +m2
2)

+ ~2

(
− 1

12
log a− 1

96

∂2F2
s

∂a2
+

1

8

)
+ ~4

(
− 1

5760a2
+

7

210 · 32 · 5
∂4F2

s

∂a4

)
+ · · · ,

(5.68)

Fpert
3 (a, ~) =− 1

4
a2 log

a2

Λ2
3

+
1

2
F3
s − 3a2 log a−

3∑
i=1

3

4
m2
i

+ ~2

(
− 1

12
log a− 1

96

∂2F3
s

∂a2
+

3

16

)
+ ~4

(
− 1

5760a2
+

7

210 · 32 · 5
∂4F3

s

∂a4

)
+ · · · ,

(5.69)

where FNfs (Nf = 2, 3) is defined as [79]

FNfs =

Nf∑
i=1

((
a+

mi√
2

)2

log

(
a+

mi√
2

)
+

(
a− mi√

2

)2

log

(
a− mi√

2

))
. (5.70)

It can be shown that these deformed prepotentials are reduced to those for the theory

with less number of the hypermultiplets in the decoupling limit.
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We now compare the prepotentials for Nf = 1, 2, 3 theories, which obtained from

the Nekrasov partition function in the NS limit. When we rescale the parameters ~, mi

(i = 1, 2, 3), and ΛNf as

2πiF(a, ~)→ F(a, ε1), ΛNf → 2
2

(4−Nf )
√

2ΛNf , ~→
√

2ε1, mi →
√

2mi,

and then shift the mass parameters : mi → mi + ε1
2

for a fundamental matter or mi →
ε1
2
−mi for an anti-fundamental matter, we find that the prepotential coincides with that

with the NS limit of the Nekrasov partition [34], which is given in chapter 4.

5.3.2 Nf = 4

In the theory with the Nf = 4 hypermultiplets, we will rescale the coordinates y and p

in the form of the SW curve (2.92) by a factor of 1− q
2
, so that we can use the formulas

(2.69) and (2.70). In the weak coupling region, the SW periods a(0) and a
(0)
D are obtained

by expanding the periods around q = 0 and integrating over u.

For simplicity, we consider the same mass case m := m1 = m2 = m3 = m4. The

discriminant ∆4 and D4 are given in (2.105). The deformed prepotential takes the form:

F4 =
1

2πi

[
Fpert

4 (a, ~) +
∞∑
k=0

∞∑
n=1

~2kF (2k,n)
4 qn

]
, (5.71)

where the perturbative part is

Fpert
4 (a, ~) =a2 log q +

1

2
F4
s − 4a2 log a

+ ~2

(
− 1

12
log(a)− 1

96

∂2F4
s

∂a2

)
+ ~4

(
− 1

5760a2
+

7

210 · 32 · 5
∂4F4

s

∂a4

)
+ · · · ,

(5.72)

where

F4
s =4

((
a+

m√
2

)2

log

(
a+

m√
2

)
+

(
a− m√

2

)2

log

(
a− m√

2

))
. (5.73)

The first several coefficients F (2k,n)
4 for k = 0, 1, 2 are given in appendix B.3. After

rescaling the parameters ~, m and q as

2πiF(a, ~)→ F(a, ε1), q → 4q, ~→
√

2ε1, m→
√

2m, (5.74)
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it can be checked that (5.71) coincides with the prepotential with the NS limit of the

Nekrasov partition function of the theory with the same mass. Here we note that the

mass parameter in the Nekrasov partition function are shifted as mi → mi + ε1
2

for a

fundamental matter or mi → ε1
2
−mi for an anti-fundamental matter (i = 1, · · · 4).

For the massless case m = 0, the solution of the Picard-Fuchs equation (5.59) is given

by

Π(0) = f(q)u
1
2 , (5.75)

where

f(q) =

√
2

((q − 4)q + 16)
1
4

F

(
1

12
;

5

12
; 1;

108(q − 4)2q2

(q2 − 4q + 16)3

)
. (5.76)

Then, applying (5.60) and (5.61), the second and fourth order corrections to the SW

periods are obtained by

Π(2) =
1

32
√
u

(
qf(q) + 2(q − 4)

∂f(q)

∂q

)
, (5.77)

Π(4) =− q

9216u
3
2

(
(11q − 26)f(q) + 2(q − 4)

(
16(q − 4)q

∂2f(q)

∂q2
+ (35q − 52)

∂f(q)

∂q

))
.

(5.78)

After using (5.75), (5.77) and (5.78), we obtain the expansion of the prepotential around

q = 0, which agree with (5.71) for m = 0. From the above discussions, it is found that

the deformed periods explicitly coincide with those with the Nekrasov partition function

in the NS limit up to the fourth order in ~.

5.4 Deformed effective coupling constant

The deformed effective coupling can be computed by using the relation (5.20) and the

Picard-Fuchs equation (2.76). By applying the Picard-Fuchs equation (2.76), the u-

derivative of the quantum corrections to the SW periods (5.20) is given by the form

as

∂

∂u
Π(2k) =

(
Y 1

2k

∂2

∂u2
+ Y 2

2k

∂

∂u

)
Π(0), (5.79)
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where

Y 1
2k :=− p1X

1
2k +

∂X1
2k

∂u
+X2

2k, (5.80)

Y 2
2k :=− p2X

1
2k +

∂X2
2k

∂u
. (5.81)

with p1 and p2 being the coefficients of the Picard-Fuchs equation (2.77) and (2.78). Then

we have the u-derivative of the quantum SW period Π =
∑∞

k=0 ~2kΠ(2k), which is of the

form:

∂

∂u
Π =

(
Y1

∂2

∂u2
+ Y2

∂

∂u

)
Π(0), (5.82)

where

Y1 =
∞∑
n=1

~2nY 1
2n, Y2 = 1 +

∞∑
n=1

~2nY 2
2n. (5.83)

The deformed effective coupling is defined by

τ :=
∂uaD
∂ua

. (5.84)

Substituting (5.82) into it and expanding in ~, we obtain the expansions of the deformed

coupling constant, given by

τ = τ (0)
(
1 + ~2Y 1

2 ∂u log τ (0) +O(~4)
)
. (5.85)

up to second order in ~ where τ (0) =
∂ua

(0)
D

∂ua(0)
. Since ∂u log τ (0) is proportional to the beta

functions at the weak coupling, the second order correction to the effective coupling

constant in ~ is determined by a dimensionless constant Y 1
2 in (5.80).

We will compute the coefficient Y 1
2 for some simple cases, where all hypermultiplets

have the same mass m. For Nf = 0, the coefficient of the Picard-Fuchs equation (2.77)

is given by p1 = 2u
u2−Λ4

0
, while the coefficients X1

2 and X2
2 read off (5.22). From them, one

finds

Y 1
2 =

1

8
− u2

6 (u2 − Λ4
0)
. (5.86)

In a similar way one can evaluate the coefficient Y 1
2 for Nf ≥ 1. The results are the

followings:
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1. For Nf = 1, we have

Y 1
2 =

1

4
+

(
1

2
m+

3

16
b1

)
c1 −

1

6
(u+mb1)

(
∂u∆1

∆1

+
3

4m2 − 3u

)
. (5.87)

2. For Nf = 2, we have

Y 1
2 =

1

2
+

(
3m

4
− 2b2

)
c2 −

(
1

3
u+

m

4
b2

)(
∂u∆2

∆2

− 8(3m2 − 2u)

8m2 − 8u+ Λ2
2

c2

m

)
, (5.88)

where

b2 =
1

L2

(b
(1)
2 + b

(2)
2 ), c2 =

1

L2

(c
(1)
2 + c

(2)
2 ). (5.89)

3. For Nf = 3, we have

Y 1
2 =

5

4
+

(
3

2
m− 1

6
b3

)
−
(

5

6
u− 1

384
Λ2

3 +
1

2
mb3

)(
∂u∆3

∆3

− 24m2 + 8u+mΛ3

−8m2 + 8u−mΛ3

c3

m

)
,

(5.90)

where b3 and c3 is given by (5.48).

4. For Nf = 4, we find

Y 1
2 =

1− q
8
− 5u

8m2
− 1

96

(
2(4− 5q)u−m2(q − 18)q − 24u2

m2

)(
∂u∆4

∆4

+
3

m2 − u

)
.

(5.91)

The above formulas are consistent with the decoupling limit.

5.5 Deformed periods around massless monopole point

In this section, we consider the quantum SW periods at the strong coupling of the theories

with Nf = 1, 2, 3 hypermultiplets, where a BPS monopole/dyon becomes massless. In

particular, we will discuss the massless monopole point of the deformed theories where

aD(u) = 0. At the massless (“classical”) monopole point where the dual SW period a
(0)
D

becomes zero, the discriminant ∆Nf of the SW curve and also wNf become zero. In the

following, we will compute the expansion of the quantum SW periods around the classical
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massless monopole point. We can analyze the periods around the dyon massless in the

same way.

In general Nf , we gave the expansions of the SW periods around the massless monopole

point u = u0, which are expressed as (2.109) and (2.110). Once the SW periods around

the massless monopole point are obtained, the quantum SW periods can be computed by

applying the relations between the SW periods and the quantum corrections as discussed

at the weak coupling. Since the coefficients of (2.109) and (2.110) are read off the series

expansions of wNf and (−DNf )
1
4 around u = u0: (2.108), we should expand wNf and

(−DNf )
1
4 around u = u0 which is one of the solution of ∆Nf = 0. In the following, we

will only evaluate the expansion of the quantum SW periods in simpler cases; massless

hypermultiplets and massive hypermultiplets with the same mass because the expression

of u0 is rather complicated for general mass parameters.

After analyzing the quantum SW periods around u = u0, we find an interesting phe-

nomenon by the quantum corrections. Although the undeformed SW period a
(0)
D (u) is zero

at û = 0, the deformed SW period aD(u) does not become zero at same point. This means

that the massless monopole point is shifted on the u-plane by the quantum correction.

Indeed, the quantum correction to the SW periods around u = u0 is expressed as

a
(2k)
D =

∞∑
n=0

J (2k)
n ûn. (5.92)

Here J (0)
n := Jn in (2.109) with J (0)

0 = 0 and J (0)
1 , J (2)

0 and J (4)
0 take non-zero values by

explicit calculation. Then we find the massless monopole point U0 of the deformed theory

is expanded as

U0 = u0 + ~2u1 + ~4u2 + · · · , (5.93)

where u1 and u2 are determined by

u1 = −J
(2)
0

J (0)
1

, (5.94)

u2 = −J
(4)
0

J (0)
1

− J
(2)
1

J (0)
1

u1 −
J (0)

2

J (0)
1

u2
1. (5.95)

We will explicitly calculate these corrections in the following examples.



94 CHAPTER 5. QUANTUM PERIODS FOR N = 2 SU(2) SQCD

5.5.1 Massless hypermultiplets

We consider the Nf theories with massless hypermultiplets. Since the Coulomb moduli

space has some discrete symmetry, this case is a simple and interesting example. We will

consider the massless monopole point of the u-plane. The SW periods around the massless

monopole point u0 have been studied in [77] by solving the Picard-Fuchs equation.

Nf = 1

For Nf = 1, the massless monopole point is given by u0 = −3Λ2
1

2
8
3

. The expansions of w1

and (−D1)−
1
4 around u = u0 are expressed as

w1 = −2
14
3

Λ2
1

û− 2
22
3 · 5
3Λ4

1

û2 − 47104

27Λ6
1

û3 + · · · , (5.96)

(−D1)−
1
4 = −i

(
2

1
3

3
1
3 Λ1

+
22

3
3
2 Λ3

1

û+
2

8
3

3
3
2 Λ5

1

û2 + · · ·

)
. (5.97)

Here the coefficients An and Bn in the expansions (2.108) can be read off from above

expansions.

The SW periods around the massless monopole point are obtained by substituting

these coefficients into (2.109) and (2.110). Applying the relations (5.36) and (5.37), the

quantum SW periods around û = 0 are expanded as

aD(û) =

(
û

2
1
6 · 3 1

2 Λ1

+
û2

2
1
2 · 3 5

2 Λ3
1

+
û3

2
5
6 · 3 11

2 Λ5
1

+ · · ·

)

+
~2

Λ1

(
5

2
19
6 · 3 5

2

+
35

2
7
2 · 3 9

2

(
û

Λ2
1

)
+

665

2
23
6 · 3 15

2

(
û

Λ2
1

)2

+ · · ·

)

+
~4

Λ3
1

(
2471

6
15
2

+
144347

2
53
6 · 3 19

2

(
û

Λ2
1

)
+

1964347

2
55
6 · 3 23

2

(
û

Λ2
1

)2

+ · · ·

)
+ · · · ,

(5.98)
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k F (2k,1)
D1 F (2k,2)

D1 F (2k,3)
D1 F (2k,4)

D1

0 0 −3 − 5
12

1
c̃(1)

− 515
1152

1
c̃(1)2

1 25
96

1
c̃(1)

425
4608

1
c̃(1)2

− 3275
110592

1
c̃(1)3

− 50645
294912

1
c̃(1)4

2 104263
5308416

1
c̃(1)3

757333
28311552

1
c̃(1)4

− 7173929
1019215872

1
c̃(1)5

− 4749125675
32614907904

1
c̃(1)6

Table 5.2: The coefficients of the dual prepotentials for the Nf = 1 theory, where c̃(1) =

−3
3
2 · 2−17

6 [77].

a(û) =
i

2π

[
aD(û)

(
−iπ + log

û

2
4
3 33 Λ2

1

)
+ i

(
− û

2
1
6 · 3 1

2 Λ1

− 5û2

2
3
2 · 3 5

2 Λ3
1

− 298û3

2
5
6 · 3 13

2 Λ5
1

+ · · ·

)

+
i~2

Λ1

(
− 1

2
23
6 · 3 1

2

(
û

Λ2
1

)−1

+
13

2
19
6 · 3 7

2

+
101

6
9
2

(
û

Λ2
1

)
+ · · ·

)

+
i~4

Λ3
1

(
7

2
15
2 · 3 1

2 · 5

(
û

Λ2
1

)−3

+
29

2
47
6 · 3 5

2 · 5

(
û

Λ2
1

)−2

+
107

2
49
6 · 3 9

2

(
û

Λ2
1

)−1

+ · · ·

)]
.

(5.99)

Solving û in terms of aD and substituting it into a, we have a as a function of aD. Then

the integration of a over aD reproduces the dual prepotential:

FD1(aD, ~) =
i

8π

[
a2
D log

(
aD
Λ1

)2

− ~2

12
log (aD)− 7~4

5760a2
D

+ · · ·

+
∞∑
k=0

∞∑
n=1

Λ2
1

(
~
Λ1

)2k

F (2k,n)
D1

(
aD
Λ1

)n]
,

(5.100)

where the first several coefficients F (2k,n)
D1 (k = 0, 1, 2) are listed in the table 5.2.

Nf = 2

In the case of the Nf = 2 theory, the massless monopole point is given by u0 =
Λ2
2

8
. Then

we have the expansions of w2 and (−D2)−
1
4 as

w2 =
108

Λ4
2

û2 − 432

Λ6
2

û3 − 3456

Λ8
2

û4 + · · · , (5.101)

(−D2)−
1
4 =

1

Λ2

− û

Λ3
2

− 3û2

2Λ5
2

+ · · · . (5.102)
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The expansions of the quantum SW periods around û = 0 are given by

aD(u) =i

(
û

2
1
2 Λ2

− û2

2
3
2 Λ3

2

+
3û3

2
5
2 Λ5

2

+ · · ·

)

+
i~2

Λ2

(
1

2
7
2

− 5

2
9
2

(
û

Λ2
2

)
+

35

2
11
2

(
û

Λ2
2

)2

+ · · ·

)

+
i~4

Λ3
2

(
− 17

2
17
2

+
721

2
21
2

(
û

Λ2
2

)
− 10941

2
23
2

(
û

Λ2
2

)2

+ · · ·

)
+ · · · ,

(5.103)

a(u) =
i

2π

[
2aD(û) log

û

4Λ2
2

+ i

(
− 2û

2
1
2 Λ2

− 3û2

2
3
2 Λ3

2

+
12û3

2
5
2 Λ5

2

+ · · ·

)

+
i~2

Λ2

(
1

2
5
2 · 3

(
û

Λ2
2

)−1

+
10

2
7
2 · 3
− 77

2
9
2 · 3

(
û

Λ2
2

)
+ · · ·

)

+
i~4

Λ3
2

(
7

2
11
2 · 32 · 5

(
û

Λ2
2

)−3

− 1

2
13
2 · 5

(
û

Λ2
2

)−2

+
53

2
15
2 · 3 · 5

(
û

Λ2
2

)−1

+ · · ·

)
+ · · ·

]
.

(5.104)

From the above formulas, one finds the deformed dual prepotential for the Nf = 2 theory

takes the forms as

FD2(aD, ~) =
i

8π

[
2a2

D log

(
aD
Λ2

)2

+
~2

6
log(aD)− 7~4

2880a2
D

+ · · ·

+
∞∑
k=0

∞∑
n=1

Λ2
2

(
~
Λ2

)2k

F (2k,n)
D2

(
aD
Λ2

)n] (5.105)

where the first several coefficients F (2k,n)
D2 are listed in the table 5.3.

Nf = 3

For the Nf = 3 theory, the massless monopole point is u0 = 0. Then the expansions of

w3 and (−D3)−
1
4 are given by

w3 =
222 · 33

Λ8
3

û4 +
231 · 33

Λ10
3

û5 +
234 · 35 · 5

Λ12
3

û6 + · · · , (5.106)

(−D3)−
1
4 =

4

Λ3

+
256

Λ3
3

û+
36864

Λ5
3

û2 + · · · . (5.107)
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k F (2k,1)
D2 F (2k,2)

D2 F (2k,3)
D2 F (2k,4)

D2

0 0 −6 1
2

1
c̃(2)

5
64

1
c̃(2)2

1 3
16

1
c̃(2)

17
256

1
c̃(2)2

205
6144

1
c̃(2)3

315
16384

1
c̃(2)4

2 135
32768

1
c̃(2)3

2943
524288

1
c̃(2)4

69001
10485760

1
c̃(2)5

1422949
201326592

1
c̃(2)6

Table 5.3: The coefficients of the dual prepotential for the Nf = 2 theory, where c̃(2) =

−i2− 5
2 [77].

Then we obtain

aD(u) =i

(
2

3
2 û

Λ3

+
2

13
2 û2

Λ3
3

+
211 · 3û3

Λ5
3

+ · · ·

)

+
i~2

Λ3

(
1

2
1
2

+ 2
13
2

(
û

Λ2
3

)
+ 219 · 52

(
û

Λ2
3

)2

+ · · ·

)

+
i~4

Λ3
3

(
2

5
2 · 5 + 2

17
2 · 43

(
û

Λ2
3

)
+ 2

25
2 · 1141

(
û

Λ2
3

)2

+ · · ·

)
,

(5.108)

a(u) =
i

2π

[
4aD(û) log

16û

Λ2
3

+ i

(
−2

7
2 û

Λ3

+
2

15
2 · 3û2

Λ3
3

+
2

29
2 · 3û3

Λ5
3

+ · · ·

)

+
i~2

Λ3

(
− 1

2
7
2

(
û

Λ2
3

)−1

+
2

7
2

3
+

2
13
2 · 29

3

(
û

Λ2
3

)
+ · · ·

)

+
i~4

Λ3

(
7

2
21
2 · 32 · 5

(
û

Λ2
3

)−3

− 1

2
9
2 · 3 · 5

(
û

Λ2
3

)−2

+
7

2
3
2 · 5

(
û

Λ2
3

)−1

+ · · ·

)]
.

(5.109)

We then have the expansions of the dual prepotential around the massless monopole point:

FD3(aD, ~) =
i

8π

[
4a2

D log

(
aD
Λ3

)2

+
~2

3
log(aD)− 7~4

1440a2
D

+ · · ·

+
∞∑
k=0

∞∑
n=1

Λ2
3

(
~
Λ3

)2k

F (2k,n)
D3

(
aD
Λ3

)n] (5.110)

where the first several coefficients of F (2k,n)
D3 are listed in the table 5.4.
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k F (2k,1)
D3 F (2k,2)

D3 F (2k,3)
D3 F (2k,4)

D3

0 0 −12 1
c̃(3)

5
32

1
c̃(3)2

1 −1
8

1
c̃(3)

− 5
128

1
c̃(3)2

− 19
1024

1
c̃(3)3

− 85
8192

1
c̃(3)4

2 37
49152

1
c̃(3)3

239
262144

1
c̃(3)4

5221
5242880

1
c̃(3)5

102949
100663296

1
c̃(3)6

Table 5.4: The coefficients of the dual prepotential for the Nf = 3 theory, where c̃(3) =

i2−
13
2 [77].

The dual prepotentials have the perturbative corrections as (5.65), (5.68) and (5.69) in

the weak coupling region. These terms also arise in the SU(2) pure Yang-Mills theory [58].

The deformed massless monopole point U0 in the u-plane can be computed from the

expansion of aD. We then have

U0 =



Λ2
0 −

1

32
~2 +

9

32768Λ2
0

~4 + · · · , Nf = 0

−3Λ2
1

2
8
3

− 5

72
~2 − 1571

2
22
3 37Λ2

1

~4 + · · · , Nf = 1

Λ2
2

8
− 1

8
~2 +

9

256Λ2
2

~4 + · · · , Nf = 2

−1

4
~2 − 4

Λ2
3

~4 + · · · , Nf = 3.

(5.111)

In the next subsection, we will compute the expansion around the massless monopole

point u0 for the theory where all the hypermultiplets have the same mass.
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5.5.2 Massive hypermultiplets with the same mass

For the same mass case m := m1 = · · · = mNf , one of the solutions of the discriminant

∆Nf = 0 corresponds to the classical massless monopole point u0, given by

u0 =
−64m4 − 216Λ3

1m+ 8m2H
1
3
1 −H

2
3
1

24H
1
3
1

, for Nf = 1, (5.112)

u0 =− Λ2
2

8
+ Λ2m, for Nf = 2, (5.113)

u0 =
1

512

(
Λ2

3 − 96Λ3m+
√

Λ3 (Λ3 + 64m) 3
)
, for Nf = 3 (5.114)

where

H1 = 729Λ6
1 − 512m6 + 4320Λ3

1m
3 + 3

√
3
(
27Λ4

1 − 64Λ1m
3
) 3

2 . (5.115)

These points are consistent in the decoupling limit to the Nf = 0 theory: m → ∞ and

ΛNf → 0 with mNfΛ
(4−Nf )
Nf

= Λ4
0 being fixed, where the massless monopole point for

the Nf = 0 theory is Λ2
0. In the massless limit m → 0, the massless monopole points

correspond to those for the massless Nf theories.

We start by discussing the Nf = 1 theory. Here we consider the small mass |m| � Λ1,

around which u0 is expanded as [85]

u0 =− 3Λ2
1

2
8
3

− Λ1m

2
1
3

+
m2

3
+ · · · . (5.116)

From (2.109), the expansion of the SW period a
(0)
D around u = u0 is given by

a
(0)
D (û) =û

(
1

2
1
6 · 3 1

2 Λ1

− 2
3
2m2

3
7
2 Λ3

1

+ · · ·

)
+ û2

(
1

2
1
2 · 3 5

2 Λ3
1

+
2

17
6 m

3
7
2 Λ4

1

+ · · ·

)
+ · · · , (5.117)

where û = u − u0. By using the relations (5.36) and (5.37), we obtain the second and

fourth order corrections to the SW periods around u = u0:

a
(2)
D (û) =

(
5

2
13
6 · 3 5

2 Λ1

− m

2
5
6 · 3 7

2 Λ2
1

+ · · ·

)
+ û

(
35

2
7
2 · 3 9

2 Λ3
1

+
5m

2
1
6 · 3 11

2 Λ4
1

+ · · ·

)
+ · · · ,

(5.118)

a
(4)
D (û) =

(
2471

6
15
2 Λ3

1

− 613m

2
31
6 · 3 15

2 Λ4
1

+ · · ·

)
+ û

(
144347

2
53
6 · 3 19

2 Λ5
1

+
26495m

2
9
2 · 3 21

2 Λ6
1

+ · · ·

)
+ · · · .

(5.119)
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From above expansions, we have the quantum SW period aD =
∑

~ka(k)
D up to fourth

order in ~. Then the monopole massless point U0 is found to be (5.93) where

u0 =− 3Λ2
1

2
8
3

− Λ1m

2
1
3

+
m2

3
+ · · · ,

u1 =− 5

23 · 32
+

m

2
2
3 · 33Λ1

+
5m2

2
1
3 · 34Λ2

1

+ · · · ,

u2 =− 1571

2
22
3 · 37Λ2

1

+
613m

25 · 37Λ3
1

+
11329m2

2
11
3 · 39Λ4

1

+ · · · , (5.120)

for the small mass.

In a similar way, we can obtain the massless monopole point U0 in the deformed theory

for Nf = 2 and 3. For Nf = 2, the massless monopole point U0 is given by (5.93) where

u0 =− Λ2
2

8
+ Λ2m,

u1 =− m− 2Λ2

32m− 16Λ2

,

u2 =
9 (−8Λ3

2 +m3 − 2Λ2m
2 − 26Λ2

2m)

2048Λ2 (Λ2 − 2m) 4
. (5.121)

In the case of the small mass |m| � Λ2, we find

u0 =− Λ2
2

8
+ Λ2m,

u1 =− 1

8
− 3m

16Λ2

− 3m2

8Λ2
2

+ · · · ,

u2 =− 9

256Λ2
2

− 405m

1024Λ3
2

− 2385m2

1024Λ4
2

+ · · · . (5.122)

For Nf = 3 with |m| � Λ3, the massless monopole point U0 is (5.93) where

u0 =− 3Λ3m

8
− 3m2 + · · · ,

u1 =− 1

4
+

6m

Λ3

− 336m2

Λ2
3

+ · · · ,

u2 =− 4

Λ2
3

+
888m

Λ3
3

− 131904m2

Λ4
3

+ · · · . (5.123)

Note that the first terms in the expansions of u1 and u2 agree with those in the massless

limit.
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In a similar calculation, we can obtain U0 up to the fourth order in ~ for general m.

We find that the massless monopole point is modified by the quantum correction in ~.

In Fig. 5.1 , we have shown the graphs of the deformed massless monopole point as a

function of m
ΛNf

with ~ = 1. For Nf = 2, U0 has singular at the superconformal point

where m
Λ2

= 1
2
. This is because the ratios of J (k)

n in (5.94) and (5.95) are divergent.

However, for Nf = 1 and 3 their ratios remain finite. In order to study precisely the

quantum SW periods around the superconformal point, we need to take the scaling limit

of the Coulomb moduli and the mass parameters around the superconformal point. In the

next chapter, we will discuss the quantum SW periods for the Argyres-Douglas theory.

u0

u0+u1

u0+u1+u2

0.2 0.4 0.6 0.8 1.0

m

1

-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

U0

1
2

Nf = 1

u0

u0+u1

u0+u1+u2

0.2 0.4 0.6 0.8 1.0

m

2

-4

-2

2

4

U0

2
2

Nf = 2

u0

u0+u1

u0+u1+u2

0.2 0.4 0.6 0.8 1.0

m

3

-2.0

-1.5

-1.0

-0.5

U0

3
2

Nf = 3

Figure 5.1: The graphs of u0, u0 + ~2u1 and u0 + ~2u1 + ~4u2 with respect to m
ΛNf

for

Nf = 1, 2 and 3 where we choose ~ = 1.
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Summary

In this chapter, we argued the quantization of the SW curve for the SU(2) gauge theory

with Nf (= 1, . . . 4) hypermultiplets. The quantum SW curve becomes the Schrödinger

type equation. The quantum corrections to the SW periods are obtained by acting some

differential operators on the SW periods. We calculated the expansion of the quantum

SW periods in the weak coupling region and confirmed that the quantum prepotential

agrees with that obtained from the NS limit of the Nekrasov partition function up to

fourth order in ~. We also computed the expansion of the quantum SW periods around

the massless monopole point up to fourth order in ~. We find that the massless monopole

point is shifted by the quantum correction.



Chapter 6

Quantum periods for
Argyres-Douglas theory

In the previous chapter, we have shown that the WKB solutions of the quantum SW

curve at the weak coupling correspond to those for the Ω-deformed theory in the NS

limit. We computed the quantum SW periods around the massless monopole point for

SU(2) SQCD. We then found the massless monopole point is shifted by the quantum

correction. In this chapter, we will extend the above discussion to the Argyres-Douglas

(AD) theory and obtain the quantum SW periods in terms of hypergeometric function up

to the fourth order in ~.

6.1 SU(2) SQCD around superconformal point

We will study the quantum SW periods around the superconformal point of the moduli

space of N = 2 SU(2) SQCD with Nf = 1, 2, 3 hypermultiplets. Around the supercon-

formal point, the SW curve for Nf theories degenerates into a curve of a common cubic

form (3.23), corresponding to the SW curve for the AD theory. From (3.12), (3.15) and

(3.20), however, their SW differentials take different forms due to the flavor symmetry.

This means that we need to introduce different quantization conditions for each Nf . In

the following, we will quantize the SW curve for each Nf and construct the higher order

corrections to the SW periods up to fourth order in ~.

103
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6.1.1 Nf = 1

For Nf = 1, the differential (3.12) gives a symplectic form dλ̃SW = dz̃ ∧ dp̃ on the (z̃, p̃)

space. The quantization of the SW curve, given by (3.10), is performed by replacing the

coordinate z̃ by the differential operator:

z̃ = −i~ ∂
∂p̃
. (6.1)

Then the quantum SW curve is given by the Schrödinger type equation:(
−~2 ∂

2

∂p̃2
+Q(p̃)

)
Ψ(p̃) = 0, (6.2)

where

Q(p̃) = −
(
p̃3 − M̃Λ1p̃−

Λ1

2
ũ

)
. (6.3)

The WKB solution to the equation (6.2) takes the same form as (5.9) in terms of p̃. In a

similar way to the previous chapter, we also find the second and fourth order corrections

are of the same form as (5.16) and (5.17) with Q2 = 0 up to total derivatives. The

quantum SW periods are defined by

Π̃ = (ã, ãD) =

(∮
α̃

Φ(p̃)dp̃,

∫
β̃

Φ(p̃)dp̃

)
, (6.4)

with α̃ and β̃ being the canonical 1-cycles. The periods are expanded in ~ as

Π̃ = Π̃(0) + ~2Π̃(2) + ~4Π̃(4) + · · · , (6.5)

where Π̃(2n) :=
∮
φ2n(p̃)dp̃ with Π̃(0) denoting the classical SW period.

We will consider the differential equation which the quantum SW period obeys. It is

found that the SW periods Π̃(0) satisfy not only the Picard-Fuchs equation (3.43) but also

the differential equation with respect to M̃ and ũ:

∂2

∂M̃∂ũ
Π̃(0) = − 3ũ

2M̃

∂2

∂ũ2
Π̃(0) − 1

4M̃

∂

∂ũ
Π̃(0). (6.6)

Substituting (6.3) into (5.16) and (5.17) and integrating over p̃, we obtain the second and

fourth order corrections to the SW periods in ~. We then find

Π̃(2) =
1

Λ2
1

∂

∂M̃

∂

∂ũ
Π̃(0), (6.7)

Π̃(4) =
7

10Λ4
1

∂2

∂M̃2

∂2

∂ũ2
Π̃(0). (6.8)
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We note that the higher order corrections can be obtained from those for the Nf = 1

SU(2) theory in the scaling limit around the superconformal point. The second and fourth

order corrections to the SW periods for the Nf = 1 theory have been obtained by (5.36)

and (5.37), respectively. It can be checked that, by taking the scaling limit (3.9), the

leading orders in ε to the quantum SW periods (5.36) and (5.37) correspond to (6.7) and

(6.8), respectively. Since the quantization conditions for the AD theories become different

to those for the SQCD, it is nontrivial to check that the quantum SW periods of the AD

theories agree with those of the SQCD in the scaling limit. In the subsection 6.1.4, we

will compute the quantum SW periods around the superconformal point by applying the

relations (6.7) and (6.8) up to fourth order.

6.1.2 Nf = 2

For Nf = 2, since the SW differential is given by (3.16), we need to introduce a new

variable ξ by

p̃ = eξ − 2

3
M̃, (6.9)

such that the SW differential (3.15) takes a canonical form

λ̃SW = z̃dξ. (6.10)

Then the SW curve (3.14) becomes

z̃2 −

(
e3ξ − 2M̃e2ξ + eξ

(
4M̃2

3
− ũ

)
− Λ2C̃2

4

)
= 0. (6.11)

The quantum SW curve is obtained by(
−~2 ∂

2

∂ξ2
+Q(ξ)

)
Ψ(ξ) = 0, (6.12)

where

Q(ξ) = −

(
e3ξ − 2M̃e2ξ + eξ

(
4M̃2

3
− ũ

)
− Λ2C̃2

4

)
. (6.13)

by replacing z̃ by the differential operator

z̃ = −i~ ∂
∂ξ
, (6.14)
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The WKB solution of the quantum SW curve takes (5.9) in terms of ξ, in which the

leading term in ~ gives the classical SW periods Π̃(0) =
∫
φ0(ξ)dξ. The period integrals

(−D̃2)
1
4∂ũΠ̃

(0) can be found to satisfy the Picard-Fuchs equation (2.75). Π̃(0) also obeys

the differential equation

∂2

∂M̃∂ũ
Π̃(0) = L2

(
4ũ

∂2

∂ũ2
Π̃(0) +

∂

∂ũ
Π̃(0)

)
, (6.15)

where

L2 :=
4
(

4M̃2 − 3ũ
)

27Λ2C̃2 + 24M̃ũ− 32M̃3
. (6.16)

By applying (5.16) and (5.17), the second and fourth order corrections are given by

Π̃(2) =

(
1

4

∂

∂M̃

∂

∂ũ
+
M̃

3

∂2

∂ũ2

)
Π̃(0), (6.17)

Π̃(4) =

(
7M̃2

90

∂4

∂ũ4
+

1

20

∂3

∂ũ3
+

7

160

∂2

∂ũ2

∂2

∂M̃2
+

7M̃

60

∂3

∂ũ3

∂

∂M̃

)
Π̃(0). (6.18)

Note that (6.17) and (6.18) are given up to the Picard-Fuchs equations. We also find that,

after taking the scaling limit (3.13), the second and fourth order formulas of the Nf = 2

theory (5.43) and (5.44) agree with (6.17) and (6.18), respectively.

6.1.3 Nf = 3

Finally we discuss the quantum SW curve for the Nf = 3 theory. The SW differential

(3.20) takes the canonical form

λ̃SW = iΛ3

(
p̃dξ̃ +

3∑
i=1

p̃d log(p̃+ m̃i)

)
, (6.19)

by introducing a new coordinate ξ:

z̃ = −i
(
eξ +

1

2
(f0p̃+ f1)

)
, (6.20)

where we define

f0 =
4M̃

Λ
1
2
3

, f1 =
8M̃3

3Λ
3
2
3

+
2ũ

Λ
1
2
3

, g(p̃) = p̃3 − ρ3p̃− σ3 +

(
2M̃p̃

Λ
1
2
3

+
4M̃3

3Λ
3
2
3

+
ũ

Λ
1
2
3

)2

.

(6.21)
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Here the coefficients ρ3 and σ3 are read off from (3.18). Then the SW curve (3.18) becomes

e2ξ + (f0p̃+ f1)eξ + g(p̃) = 0. (6.22)

Since the SW differential is defined a symplectic form dλ̃SW ∼ dp̃ ∧ dξ, we quantize the

SW curve by replacing the coordinate ξ as the differential operator

ξ = −i~ ∂
∂p̃
. (6.23)

However, we need to consider the ordering of the operators, which defined by

tp̃e−i~∂p̃Ψ(p̃) + e−i~∂p̃ ((1− t)p̃Ψ(p̃)) = (p̃− i(1− t)~)e−i~∂p̃Ψ(p̃), (6.24)

with the parameter t (0 ≤ t ≤ 1). After taking the t = 1
2

prescription as in the previous

section [46], we obtain the quantum SW curve (6.22 )(
exp(−2i~∂p̃) +

(
1

2
f0p̃+ f1

)
exp(−i~∂p̃) + exp(−i~∂p̃)

1

2
f0p̃+ g(p̃)

)
Ψ(p̃) = 0. (6.25)

We consider the WKB solution to the quantum curve, where the leading term φ0(p̃) :=

ξ(p̃) leads to the SW periods. In order to obtain the higher order terms in ~, we convert

the quantum SW curve (6.25) into

J(2) +

(
f0

(
p̃− i

2
~
)

+ f1

)
J(1) + g(x) = 0, (6.26)

by introducing

J(α) := exp

(
− i
~

∫ p̃

Φ(y)dy

)
exp

(
−i~α ∂

∂p̃

)
exp

(
i

~

∫ p̃

Φ(y)dy

)
. (6.27)

After taking Φ(p̃) in (6.26) as the form (5.9) in terms of p̃ we obtain the recursion relation

of φn’s. The leading correction φ0(p̃) is given by

φ0(p̃) = log

(
1

2
(−f0p̃− f1 + 2ỹ)

)
(6.28)

whose integration corresponds to the SW period. Here ỹ is defined by

ỹ2 =
1

4
(f0p̃+ f1)2 − g(p̃). (6.29)
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φ1(p̃) becomes the total derivative:

φ1(p̃) =
∂

∂p̃

(
i

2
φ0(p̃) +

i

4
log 4ỹ

)
. (6.30)

φ3(p̃) is also shown to be a total derivative. φ2 and φ4 are obtained by

φ2(p̃) =
(−f0p̃− f1) g′′(p̃)

96ỹ3
+
f 2

0 (f0p̃+ f1)

192ỹ3
, (6.31)

φ4(p̃) =g(4)(p̃)

(
(f0p̃+ f1) g(p̃)

1536ỹ5
+
−f0p̃− f1

5760ỹ3

)
+ g(3)(p̃)

(
f0g(p̃)

480ỹ5
+

f0

720ỹ3

)
+ g′′(p̃)

(
−7f 2

0 (f0p̃+ f1) g(p̃)

3072ỹ7
− 7f 2

0 (f0p̃+ f1)

7680ỹ5

)
+ g′′(p̃)2

(
7 (f0p̃+ f1) g(p̃)

3072ỹ7
+

7 (f0p̃+ f1)

7680ỹ5

)
+

7f 4
0 (f0p̃+ f1) g(p̃)

12288ỹ7
+

7f 4
0 (f0p̃+ f1)

30720ỹ5
,

(6.32)

up to the total derivative.

For the classical SW periods Π̃(0), (−D̃3)
1
4∂ũΠ̃

(0) obeys the Picard-Fuchs equation

(2.75). we also find Π̃(0) satisfies the differential equation with respect to M̃ and ũ:

∂2

∂M̃∂ũ
Π̃(0) = b3

∂2

∂ũ2
Π̃(0) + c3

∂

∂ũ
Π̃(0) (6.33)

where

b3 =
4M̃

(
3Λ3M̃ũ+ 4M̃4 − 3Λ2

3ρ3

)
ρ3 + 27Λ2

3ũσ3

3Λ3

(
9Λ3M̃σ3 − 4M̃3ρ3 − 3Λ3ũρ3

) , (6.34)

c3 =

(
4M̃3 + 3Λ3ũ

)
2 − 12Λ2

3M̃
2ρ3

3Λ3

(
9Λ3M̃σ3 − 4M̃3ρ3 − 3Λ3ũρ3

) . (6.35)

Substituting (6.21) into (6.31) and (6.32) we find that the second and fourth order cor-

rections in ~ can be computed by applying the relations as

Π̃(2) =

(
−M̃

2

12

∂2

∂ũ2
− Λ3

16

∂

∂ũ

∂

∂M̃

)
Π̃(0), (6.36)

Π̃(4) =

(
7M̃4

1440

∂4

∂ũ4
+

Λ3M̃

192

∂3

∂ũ3
+

7Λ2
3

2560

∂2

∂ũ2

∂2

∂M̃2
+

7Λ3M̃
2

960

∂3

∂ũ3

∂

∂M̃

)
Π̃(0). (6.37)
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These formulas coincide with those of the scaling limit (3.17) for the SU(2) gauge theory

with Nf = 3 hypermultiplets: (5.49) and (5.50).

In the next subsection, we will compute the expressions of the quantum corrections to

the SW periods around the superconformal point up to fourth order in ~.

6.1.4 Calculation of Quantum SW periods around superconfor-
mal point

In the previous subsection, we have investigated the quantum SW curves and the relation

between the quantum SW periods and the classical SW periods in the AD theory. In this

subsection, we will compute explicitly the quantum corrections to the SW periods around

the superconformal point up to the fourth order in ~. We will study the expansion in the

coupling constant of the relevant operator and the mass parameters for the AD theory.

Nf = 1 theory

We first discuss the Nf = 1 theory around the superconformal point. The SW peri-

ods around the superconformal point are expressed as (3.41) and (3.42). Substituting

them into (6.7) and changing the variables (ũ, M̃) to (ũ,w̃′1), we obtain the second order

corrections to the SW periods in terms of hypergeometric function as

ã(2) =
1

2
5
2 · 3 3

2π
1
2 Λ

7
2
1

(
ũ

Λ2
1

)− 5
6 (
F

(2)
1 (w̃′1)− F (2)

2 (w̃′1)
)
, (6.38)

ã
(2)
D =

1

2
5
2 · 3 3

2π
1
2 Λ

7
2
1

(
ũ

Λ2
1

)− 5
6 (

(−1)
2
3F

(2)
1 (w̃′1) + (−1)

1
3F

(2)
2 (w̃′1)

)
, (6.39)

where

F
(2)
1 (w̃′1) =2

7
3 · 3Γ

(
2

3

)
Γ

(
5

6

)(
F

(
5

12
,
11

12
;
4

3
; w̃′1

)
− 5F

(
11

12
,
17

12
;
4

3
; w̃′1

))
, (6.40)

F
(2)
2 (w̃′1) =− 7w̃′1

2
3 Γ

(
1

6

)
Γ

(
1

3

)
F

(
13

12
,
19

12
;
5

3
; w̃′1

)
. (6.41)
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Similarly, applying (6.8) and changing the variables (ũ, M̃) to (ũ,w̃′1), the fourth order

corrections to the SW periods (6.5) are expressed as

ã(4) =− 7

2
43
6 · 3 5

2 · 5π 1
2 Λ

17
2

1

w̃′1
1
3

(w̃′1 − 1)

(
ũ

Λ2
1

)− 5
2 (
−F (4)

1 (w̃′1) + F
(4)
2 (w̃′1)

)
, (6.42)

ã
(4)
D =− 7

2
43
6 · 3 5

2 · 5π 1
2 Λ

17
2

1

w̃′1
1
3

(w̃′1 − 1)

(
ũ

Λ2
1

)− 5
2 (

(−1)
1
3F

(4)
1 (w̃′1) + (−1)

2
3F

(4)
2 (w̃′1)

)
, (6.43)

where

F
(4)
1 (w̃′1) =23 · 7 · 13Γ

(
1

3

)
Γ

(
7

6

)(
(11w̃′1 + 13)F

(
19

12
,
25

12
;
5

3
; w̃′1

)
− 5F

(
13

12
,
19

12
;
5

3
; w̃′1

))
,

(6.44)

F
(4)
2 (w̃′1) =2

1
3 · 5 · 11 · 17w̃′1

1
3 Γ

(
2

3

)
Γ

(
5

6

)(
(7w̃′1 + 17)F

(
23

12
,
29

12
;
7

3
; w̃′1

)
− F

(
17

12
,
23

12
;
7

3
; w̃′1

))
.

(6.45)

Expanding the quantum SW periods around w̃′1 = 0, we have the expansions of them as

ã =Λ
3
2
1

(
ũ

Λ2
1

) 5
6

(
−

2
7
6 Γ
(
−5

6

)
Γ
(

1
3

)
3

1
2π

1
2

−
7Γ
(
−7

6

)
Γ
(

2
3

)
6

1
2π

1
2

w̃′1
1
3 + · · ·

)

+
~2

Λ
7
2
1

(
ũ

Λ2
1

)− 5
6

(
−

7Γ
(
−7

6

)
Γ
(

2
3

)
2

1
6 · 3 5

2π
1
2

+ · · ·

)

+
~4

Λ
17
2

1

(
ũ

Λ2
1

)− 5
2

(
72 · 13Γ

(
−5

6

)
Γ
(

1
3

)
2

19
6 · 3 9

2π
1
2

w̃′1
1
3 + · · ·

)
+ · · · , (6.46)

ãD =Λ
3
2
1

(
ũ

Λ2
1

) 5
6

(
2

7
6 (−1)

1
3 Γ
(
−5

6

)
Γ
(

1
3

)
3

1
2π

1
2

−
7(−1)

2
3 Γ
(
−7

6

)
Γ
(

2
3

)
6

1
2π

1
2

w̃′1
1
3 + · · ·

)

+
~2

Λ
7
2
1

(
ũ

Λ2
1

)− 5
6

(
−

7(−1)
2
3 Γ
(
−7

6

)
Γ
(

2
3

)
2

1
6 · 3 5

2π
1
2

+ · · ·

)

+
~4

Λ
17
2

1

(
ũ

Λ2
1

)− 5
2

(
−

72 · 13(−1)
1
3 Γ
(
−5

6

)
Γ
(

1
3

)
2

19
6 · 3 9

2π
1
2

w̃′1
1
3 + · · ·

)
+ · · · . (6.47)

Let us define the effective coupling constant1 τ̃ of the deformed theory by

τ̃ :=
∂ũãD
∂ũã

, (6.48)

1Note that the present definition of the effective coupling constant is inverse of the one in [3].
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where the expansion in ~ is given by

τ̃ = τ̃ (0) + ~2τ̃ (2) + ~4τ̃ (4) + · · · . (6.49)

From (6.46) and (6.47), the deformed effective coupling constant (6.48) is expanded around

the superconformal point as

τ̃ =

(
−(−1)

1
3 +

3
1
2 · 7iπ 1

2 Γ
(
−7

6

)
10Γ

(
−5

6

)
Γ
(

1
6

) w̃′1 1
3 + · · ·

)

+
~2

Λ5
1

(
−

2
4
3 · 3 1

2 iπ
1
2 Γ
(

5
6

)
Γ
(

1
6

)
Γ
(
−5

6

) (
ũ

Λ2
1

)− 5
3

+ · · ·

)

+
~4

Λ10
1

(
−

2 · 3 3
2 iπ

1
2 Γ
(

5
6

)2
Γ
(

5
3

)
Γ
(
−5

6

)2
Γ
(

1
6

)
Γ
(

1
3

) ( ũ

Λ2
1

)− 10
3

+ · · ·

)
+ · · · . (6.50)

τ̃ can be expressed in terms of ã by inverting (6.46). We then obtain the free energy

by integrating τ̃ over ã twice. We find that the free energy at M̃ = 0 coincides with

that obtained from the E-string theory [86]. We note that the present expansions for Nf

theories in the coupling parameter are different from those in the self-dual Ω-background

[38], which are expanded in the operator have been done with the zero coupling and

without taking the scaling limit.

Nf = 2 theory

In the case of the Nf = 2 theory, applying (6.17) to (3.46), we obtain the second order

corrections in terms of the hypergeometric function as

ã(2) =− 1

24 · 3 15
4 π

1
2 Λ

3
2
2

(
ũ

Λ2
2

)− 3
4 (
F

(2)
1 (w̃′2)− F (2)

2 (w̃′2)
)
, (6.51)

ã
(2)
D =

i

24 · 3 15
4 π

1
2 Λ

3
2
2

(
ũ

Λ2
2

)− 3
4 (
F

(2)
1 (w̃′2) + F

(2)
2 (w̃′2)

)
, (6.52)

with w̃′2 = 1− w̃2. Here F
(2)
1 (w̃′2) and F

(2)
2 (w̃′2) are defined by

F
(2)
1 (w̃′2) =32Γ

(
1

12

)
Γ

(
5

12

)22 · 3
1
2

(
M̃2

ũ

) 1
2

F

(
5

12
,
13

12
;
1

2
; w̃′2

)
− 5w̃′2

1
2F

(
13

12
,
17

12
;
3

2
; w̃′2

) ,

(6.53)

F
(2)
2 (w̃′2) =62Γ

(
7

12

)
Γ

(
11

12

)(
3F

(
7

12
,
11

12
;
3

2
; w̃′2

)
+ 7X(2)F

(
11

12
,
19

12
;
3

2
; w̃′2

))
, (6.54)
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where

X(2) = −3 + 2 · 3
1
2 w̃′2

1
2

(
M̃2

ũ

) 1
2

. (6.55)

The expansions of the second order terms in w̃′2 are given by

ã(2) =
1

Λ
3
2
2

(
ũ

Λ2
2

)− 3
4

−3
1
4 Γ
(

7
12

)
Γ
(

11
12

)
2π

1
2

+
Γ
(

1
12

)
Γ
(

5
12

)
24 · 3 5

4π
1
2

(
M̃2

ũ

) 1
2

+ · · ·

 , (6.56)

ã
(2)
D =

1

Λ
3
2
2

(
ũ

Λ2
2

)− 3
4

−3
1
4 iΓ
(

7
12

)
Γ
(

11
12

)
2π

1
2

−
iΓ
(

1
12

)
Γ
(

5
12

)
24 · 3 5

4π
1
2

(
M̃2

ũ

) 1
2

+ · · ·

 . (6.57)

Here we note that the expansion around w̃′2 = 0 corresponds to that in M̃2

ũ
� 1 and

C̃2Λ2

ũ
3
2
� 1.

In a similar way, the fourth order corrections are given by

ã(4) =
1

29 · 3 11
4 · 5π 1

2 Λ
9
2
2

1

w̃′2
1
2 (w̃′2 − 1)2

(
ũ

Λ2
2

)− 9
4 (
F

(4)
1 (w̃′2)− F (4)

2 (w̃′2)
)
, (6.58)

ã
(4)
D =− i

29 · 3 11
4 · 5π 1

2 Λ
9
2
2

1

w̃′2
1
2 (w̃′2 − 1)2

(
ũ

Λ2
2

)− 9
4 (
F

(4)
1 (w̃′2) + F

(4)
2 (w̃′2)

)
, (6.59)

where

F
(4)
1 (w̃′2) =Γ

(
1

12

)
Γ

(
5

12

)(
−14X

(4)
1 F

(
1

12
,

5

12
;
1

2
; w̃′2

)
+X

(4)
2 F

(
5

12
,
13

12
;
1

2
; w̃′2

))
,

(6.60)

F
(4)
2 (w̃′2) =14w̃′2

1
2 Γ

(
7

12

)
Γ

(
11

12

)(
−2X

(4)
1 F

(
7

12
,
11

12
;
3

2
; w̃′2

)
+X

(4)
2 F

(
11

12
,
19

12
;
3

2
; w̃′2

))
.

(6.61)
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Here the coefficients X1 and X2 are defined by

X
(4)
1 =− 22 · 3

3
2 w̃′2

1
2 (10w̃′2 + 11) + 3

(
M̃2

ũ

) 1
2

(377w̃′2 + 127)

− 23 · 3
1
2

(
M̃2

ũ

)
w̃′2

1
2 (13w̃′2 + 113) + 28

(
M̃2

ũ

) 3
2

(13w̃′2 + 11) ,

(6.62)

X
(4)
2 =− 3

3
2 w̃′2

1
2 (1345w̃′2 + 671) + 6

(
M̃2

ũ

) 1
2 (

520w̃′2
2 + 4639w̃′2 + 889

)
− 22 · 3

3
2

(
M̃2

ũ

)
w̃′2

1
2 (593w̃′2 + 1423) + 56

(
M̃2

ũ

) 3
2

(211w̃′2 + 77) .

(6.63)

The fourth order corrections to the SW periods are expanded in w̃′2 around w̃′2 = 0 as

ã(4) =
1

Λ
9
2
2

(
ũ

Λ2
2

)− 9
4

−11Γ
(

1
12

)
Γ
(

5
12

)
29 · 3 5

4π
1
2

−
3

1
4 · 5 · 7Γ

(
7
12

)
Γ
(

11
12

)
28π

1
2

(
M̃2

ũ

) 1
2

+ · · ·

 , (6.64)

ã
(4)
D =

1

Λ
9
2
2

(
ũ

Λ2
2

)− 9
4

11iΓ
(

1
12

)
Γ
(

5
12

)
29 · 3 5

4π
1
2

−
3

1
4 · 5 · 7iΓ

(
7
12

)
Γ
(

11
12

)
28π

1
2

(
M̃2

ũ

) 1
2

+ · · ·

 . (6.65)

We then expand the effective coupling constant τ̃ in ~ as

τ̃ =

−i− iΓ
(

7
12

)
Γ
(

11
12

)
3

1
2 Γ
(

5
12

)
Γ
(

13
12

) (M̃2

ũ

) 1
2

+
i3

1
2 Γ
(

7
12

)
Γ
(

11
12

)
23Γ

(
5
12

)
Γ
(

13
12

) (C̃2
2Λ2

2

ũ3

) 1
2

+ · · ·


+

~2

Λ3
2

(
ũ

Λ2
2

)− 3
2

3
1
2 iΓ
(

7
12

)
Γ
(

11
12

)
24Γ

(
5
12

)
Γ
(

13
12

) +
32iΓ

(
7
12

)2
Γ
(

11
12

)2

Γ
(

1
12

)2
Γ
(

5
12

)2

(
M̃2

ũ

) 1
2

+ · · ·


+

~4

Λ6
2

(
ũ

Λ2
2

)−3
(
−

3iΓ
(

7
12

)2
Γ
(

11
12

)2

29Γ
(

5
12

)2
Γ
(

13
12

)2

−
3

1
2 i
(

3Γ
(

7
12

)3
Γ
(

11
12

)3
+ 19π2Γ

(
5
12

)
Γ
(

13
12

))
210Γ

(
5
12

)3
Γ
(

13
12

)3

(
M̃2

ũ

) 1
2

+ · · ·

+ · · · .

(6.66)

It would be interesting to compare the free energy with that of the E-string theory, which

is left for future work.
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Nf = 3 theory

We now investigate the Nf = 3 case. Substituting (3.51) into (6.36), the second order

corrections to the SW periods are obtained by

ã(2) =
1

2
10
3 · 3 7

2π
1
2 w̃′3Λ3

3

(
ũ

Λ2
3

)
(−σ3)−

5
6

(
1 +

4

3

M̃3

ũΛ3

)(
F

(2)
1 (w̃′3) + F

(2)
2 (w̃′3)

)
, (6.67)

ã
(2)
D =

i

2
10
3 · 3 7

2π
1
2 w̃′3Λ3

3

(
ũ

Λ2
3

)
(−σ3)−

5
6

(
1 +

4

3

M̃3

ũΛ3

)(
(−1)

5
6F

(2)
1 (w̃′3) + (−1)

1
6F

(2)
2 (w̃′3)

)
,

(6.68)

where w̃′3 := 1
1−w̃3

. F
(2)
1 (w̃′3) and F

(2)
2 (w̃′3) are given by

F
(2)
1 (w̃′3) =18Γ

(
1

6

)
Γ

(
1

3

)(
F

(
1

12
,

7

12
;
2

3
; w̃′3

)
−X(2)F

(
7

12
,
13

12
;
2

3
; w̃′3

))
, (6.69)

F
(2)
2 (w̃′3) =− 3w̃′3

2
2
3

Γ

(
−1

6

)
Γ

(
−1

3

)(
F

(
5

12
,
11

12
;
4

3
; w̃′3

)
− 5X(2)F

(
11

12
,
17

12
;
4

3
; w̃′3

))
.

(6.70)

where

X(2) = 1 +
2

2
3 · 3M̃Λ3

(3ũΛ3 + 4M̃3)
(−σ3)

1
3 w̃′3

2
3 . (6.71)

We expand the second order corrections to the SW periods in w̃′3, where M̃3

ũΛ3
� 1,

C̃3
2Λ2

3

ũ4
� 1

and C̃3Λ3

ũ2
� 1. Then we have

ã(2) =
1

Λ
1
2
3

(
ũ

Λ2
3

)− 2
3

−(−1)
1
6 Γ
(

2
3

)
Γ
(

5
6

)
2 · 3 1

2π
1
2

+

(
1 + 19(−1)

1
3

)
Γ
(

1
6

)
Γ
(

1
3

)
34π

1
2

(
M̃3

ũΛ3

) 2
3

+ · · ·

 ,

(6.72)

ã
(2)
D =

1

Λ
1
2
3

(
ũ

Λ2
3

)− 2
3

−(−1)
5
6 Γ
(

2
3

)
Γ
(

5
6

)
2 · 3 1

2π
1
2

+
(−1)

2
3

(
1 + 19(−1)

1
3

)
Γ
(

1
6

)
Γ
(

1
3

)
34π

1
2

(
M̃3

ũΛ3

) 2
3

+ · · ·

 ,

(6.73)
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It can be also found that the effective coupling constant is given by

τ̃ =

−(−1)
1
3 − 24iπ2

Γ
(

1
6

)2
Γ
(

1
3

)2

(
M̃3

ũΛ3

) 1
3

− 2iπ2

Γ
(

1
6

)2
Γ
(

1
3

)2

(
C̃3

2Λ2
3

ũ4

) 1
3

+ · · ·


+

~2

Λ2
3

(−1)
5
6

(
ũ

Λ2
3

)− 4
3

− 3
1
2 Γ
(

2
3

)
Γ
(

5
6

)
5Γ
(
−5

6

)
Γ
(

1
3

) − 2
10
3 · 3 1

2 Γ
(
−1

6

)
Γ
(

5
6

)2

52Γ
(
−5

6

)2
Γ
(

1
6

) (
M̃3

ũΛ3

) 1
3

+ · · ·


+ · · · .

(6.74)

The fourth order corrections to the effective coupling constant can be obtained in a similar

manner as will shown in appendix C. The result is

τ̃ (4) =
(−1)

1
6

Λ4
3

(
ũ

Λ2
3

)− 8
3

 2
4
3 · 3 1

2πΓ
(

5
6

)2

52Γ
(
−5

6

)2
Γ
(

1
6

)2 +
23 · 3 3

2π
1
2 Γ
(
−1

6

)
Γ
(

5
6

)3

53Γ
(
−5

6

)3
Γ
(

1
6

)2

(
M̃3

ũΛ3

) 1
3

+ · · ·

 .

(6.75)

In summary, for the AD theories of (A1, A2), (A1, A3) and (A1, D4)-types, we have the

explicit form of the quantum corrections to the SW periods in terms of the hypergeometric

functions up to the fourth orders in ~.

6.2 SU(Nc) SQCD around superconformal point

In this section, we will study the quantum SW periods for the AD theory realized from

the SU(Nc) SQCD. The SW curve and the SW differential around the superconformal

point were discussed in section 3.3. We have seen the SW differentials for each Nf take

the different form due to flavor symmetry. Therefore we need to introduce different

quantization condition in each Nf . In the following, we will discuss the quantum SW

curve around the superconformal point and construct the differential operator on the SW

periods to represent the quantum correction to the SW periods.
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6.2.1 Nf = 0, 1

For Nf = 0 and Nf = 1, the SW differential (3.78) and (3.86) are defined by dλ̃SW ∼
dỹ ∧ dp̃. The quantum SW curve for the Nf = 0 and 1 theories is given by(

−~2 ∂
2

∂p̃2
+Q(p̃)

)
Ψ(p̃) = 0. (6.76)

The potential Q(p̃) is given by the SW curve (3.77) and (3.85):

Q(p̃) = −ỹ2. (6.77)

where Q2 = 0. The quantum SW periods can be obtained by the WKB solution of

the quantum SW curve (6.76), which takes the form as (5.9) in terms of p̃. We note

the quantum corrections to the SW periods agree with the leading term of those for the

corresponding N = 2 SQCD in the scaling limit up to total derivatives 2. For Nf = 0, we

find

Π(2) = ε−Nc+2

(
−3ΛNc

0

2
Π̃(2)

)
+ · · · , Π(4) = ε−3Nc+2

(
−Λ3Nc

0 Π̃(4)
)

+ · · · . (6.78)

For Nf = 1, we also find that the second and fourth order corrections correspond to those

in the scaling limit up to total derivatives at least Nc ≤ 5:

Π(2) = ε−(Nc+1)+2b
(2)
Nc

ΛNc
1 Π̃(2) + · · · , Π(4) = ε−3(Nc+1)+2b

(4)
Nc

Λ3Nc
1 Π̃(4) + · · · , (6.79)

where the first several coefficients b
(2)
Nc

and b
(4)
Nc

are given by

b
(2)
2 = −3

4
, b

(2)
3 = − 3

2
9
5

, b
(2)
4 =

3 · 5 1
7

4
, b

(2)
5 = −3 · 7 1

9

2
17
9

, · · · , (6.80)

b
(4)
2 =

1

8
, b

(4)
3 =

1

2
12
5

, b
(4)
4 = −5

3
7

8
, b

(4)
5 =

7
1
3

2
8
3

, · · · . (6.81)

Since the SW curve for the AD theory realized from the pure SU(Nc+1) gauge theory

agrees with that obtained from the SU(Nc) gauge theory with Nf = 1 hypermultiplet in

the scaling limit, we obtain same quantum corrections from both cases. Thus we will

choose the case of the SU(Nc) gauge theory with Nf = 1 hypermultiplet and then obtain

2In appendix D, we perform the WKB approximation of the quantum SW curve for the SU(Nc)
SQCD. We then obtain the second and fourth order corrections to the SW periods.
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the relation between the quantum corrections and the SW periods. The relation formulas

between Π̃(k) (k = 2, 4) and Π̃(0) are not unique and there are various ways to represent

the differential operator Ôk. For example, the second and fourth order corrections to the

SW periods can be expressed as

Π̃(2) =
1

12

(
Nc+1∑
i=0

Ui2
∂

∂ũNc+1

∂

∂ũi
Π̃(0)

)
, (6.82)

Π̃(4) =
7

1440

(
5

7

Nc+1∑
i=0

Ui4
∂2

∂ũ2
Nc+1

∂

∂ũi
Π̃(0) +

Nc+1∑
i,j=0

Ui2Uj2
∂2

∂ũ2
Nc+1

∂

∂ũi

∂

∂ũj
Π̃(0)

)
, (6.83)

where

Uij :=
(Nc + 1− i+ j)!

(Nc + 1− i)!
ũi−j. (6.84)

For the SU(2) gauge theory with the Nf = 1 hypermultiplet, these relations are shown

to agree with (6.7) and (6.8) up to the Picard-Fuchs equations.

6.2.2 Nf = 2

For Nf = 2, the SW curve (3.95) and the SW differential (3.96) become

ỹ2 =
Nc+1∑
l=0

t̃le
(Nc+1−l)ξ, (6.85)

λ̃SW =− 2

Λ
Nf−1
2

ỹdξ, (6.86)

where t̃l = t̃l(M̃, s̃i) (l = 0, · · · , Nc + 1) by introducing p̃ = eξ − M̃ . The SW differential

defines the symplectic one-form dλ̃SW = dỹ ∧ dξ. The quantum SW curve takes the form

as (
−~2 ∂

2

∂ξ2
+Q(ξ)

)
Ψ(ξ) = 0, (6.87)

where

Q(ξ) = −ỹ2 = −

(
Nc+1∑
l=0

t̃le
(Nc+1−l)ξ

)
. (6.88)



118 CHAPTER 6. QUANTUM PERIODS FOR ARGYRES-DOUGLAS THEORY

The quantum corrections to the SW periods are given by the WKB solutions of the quan-

tum curve (6.87). Since the quantum SW curve (6.87) is the Schrödinger type equation,

the second and fourth order terms are of the form as (5.16) and (5.17) in terms of ξ, re-

spectively. The quantum corrections are shown to agree with those of the scaling limit of

the Nf = 2 theory. When we change the variables ξ to p̃, then the second order correction

to the SW periods becomes

Π̃(2) =

∮
φ̃2(p̃)

(p̃+ M̃)
dp̃, (6.89)

where

φ̃2(p̃) =
i(p̃+ M̃)

48

(
Q′(p̃)

Q(p̃)
3
2

+
(p̃+ M̃)Q′′(p̃)

Q(p̃)
3
2

)
. (6.90)

This correction agrees with the second order correction to the SW periods for the original

Nf = 2 theory by taking the scaling limit ε → 0. Similarly, we also find that the fourth

order correction obtained by the quantum SW curve (6.87) agrees with that for the Nf = 2

theory in the scaling limit:

Π(2) = ε−(Nc+3) 3

2
Λ

(Nc−1)
2 Π̃(2) + · · · , Π(4) = ε−3(Nc−1)+2

(
−Λ

3(Nc−1)
2 Π̃(4)

)
+ · · · .

(6.91)

The second and fourth order corrections to the SW periods are obtained by acting the

differential operators on the SW periods as

Π̃(2) =
1

12

Nc+1∑
l=1

(Nc + 2− l)2t̃l−1
∂

∂t̃l

∂

∂t̃Nc
Π̃(0), (6.92)

Π̃(4) =
7

1440

(
5

7
Ô(4)
A Π̃(0) + Ô(4)

B Π̃(0)

)
, (6.93)

where

Ô(4)
A =

Nc+1∑
l=1

(Nc + 2− l)4tl−1
∂

∂t̃l

∂

∂t̃Nc

∂

∂t̃Nc+1

, (6.94)

Ô(4)
B =

Nc+1∑
l=1

Nc+1∑
k=1

(Nc + 2− l)2(Nc + 2− k)2t̃l−1t̃k−1
∂

∂t̃l

∂

∂t̃k

∂2

∂t̃2Nc
. (6.95)

These formulas are consistent in the case of the SU(2) gauge theory with Nf = 2 theory:

(6.17) and (6.18) up to the Picard-Fuchs equation.
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6.2.3 Nf = 2n+ 1

By introducing ỹ = z̃−C̃(p̃), the SW curve (3.104) and the SW differential (3.105) become

C̃(p̃)− 1

2

(
z̃ +

Λ
2Nc−Nf
Nf

G̃(p̃)

z̃

)
= 0, (6.96)

λ̃SW = p̃
(
d log G̃(p̃)− 2d log z̃

)
. (6.97)

Rewriting the coordinates as

z̃ = exp

(
−i~ ∂

∂p̃

)
, (6.98)

the quantum SW curve for the Nf = 2n+ 1 is given by[
1

2

(
exp

(
−i~ ∂

∂p̃

)
+ exp

(
i
~
2

∂

∂p̃

)
Λ

2Nc−Nf
Nf

G̃(p̃) exp

(
i
~
2

∂

∂p̃

))
− C̃(p̃)

]
Ψ(p̃) = 0.

(6.99)

To discuss the higher order corrections to the SW periods, we rewrite the quantum SW

curves as

1

2

(
J(1) + Λ

2Nc−Nf
Nf

G̃

(
p̃+ i

~
2

)
J(−1)

)
+ C̃(p̃) = 0, (6.100)

where J(α) is defined by (6.27). Note that we take the different ordering of the operators

from the case of the SU(2) gauge theory with Nf = 3 hypermultiplets as in the previous

section. Although we look like quite different quantization, we can obtain the same results

of quantum SW periods in each case. Expanding the quantum SW curve in ~, we obtain

the second and fourth order corrections to the SW periods. Note the second and fourth

order corrections to the SW periods for Nf = 2n+ 1 agree with the scaling limit of those

for the SU(Nc) gauge theory with Nf = 2n+ 1:

Π(2) = ε2Π̃(2) + · · · , Π(4) = ε2Π̃(4) + · · · . (6.101)

Define

Ũij :=
(n− i+ j)!

(n− i)!
ũi−j, Ṽab :=

(Nf − a+ b)!

(Nf − a)!
C̃a−b, (6.102)
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where

Nf∑
a=0

C̃ap̃
Nf−a :=

Nf∏
a=1

(p̃+ c̃a). (6.103)

We also find the relations between the quantum corrections and the SW periods as

Π̃(2) =
1

24

 n∑
i,j=0

(
Ũi0Ũj2 + Ũi1Ũj1

) ∂

∂ũi

∂

∂ũj
Π̃(0) +

n∑
i=0

Ũi2
∂

∂ũi
Π̃(0) +

n∑
i=0

Nf∑
a=2

Ũi0Ṽa2
∂

∂ũi

∂

∂C̃a
Π̃(0)

 ,

(6.104)

Π̃(4) =
1

27 · 32 · 5

(
n∑

i,j,k,l=0

A
(1)
ijkl

∂

∂ũi

∂

∂ũj

∂

∂ũk

∂

∂ũl
Π̃(0) +

n∑
i,j,k=0

A
(2)
ijk

∂

∂ũi

∂

∂ũj

∂

∂ũk
Π̃(0)

+
n∑

i,j=0

A
(3)
ij

∂

∂ũi

∂

∂ũj
Π̃(0) +

n∑
i=0

A
(4)
i

∂

∂ũi
Π̃(0)

)

+
1

27 · 32 · 5

 n∑
i,j,k=0

Nf∑
a=2

B
(1)
ijka

∂

∂ũi

∂

∂ũj

∂

∂ũk

∂

∂C̃a
Π̃(0) +

n∑
i,j=0

Nf∑
a,b=2

B
(2)
ijab

∂

∂ũi

∂

∂ũj

∂

∂C̃a

∂

∂C̃b
Π̃(0)

+
n∑

i,j=0

Nf∑
a=2

B
(3)
ija

∂

∂ũi

∂

∂ũj

∂

∂C̃a
Π̃(0) +

n∑
i=0

Nf∑
a,b=2

B
(4)
iab

∂

∂ũi

∂

∂C̃a

∂

∂C̃b
Π̃(0) +

n∑
i=0

Nf∑
a=2

B
(5)
ia

∂

∂ũi

∂

∂C̃a
Π̃(0)

 ,

(6.105)

up to fourth order in ~ where

A
(1)
ijkl =7

(
Ũi0Ũj0Ũk2Ũl2 + Ũi1Ũj1Ũk1Ũl1 + 2Ũi0Ũj1Ũk1Ũl2

)
, (6.106)

A
(2)
ijk =51Ũi0Ũj2Ũk2 + 84Ũi1Ũj1Ũk2 + 36Ũi0Ũj1Ũk3 + 5Ũi0Ũj0Ũk4, (6.107)

A
(3)
ij =81Ũi2Ũj2 + 78Ũi1Ũj3 + 39Ũi0Ũj4, (6.108)

A
(4)
i =36Ũi4, (6.109)

B
(1)
ijka =14Ũi0Ũj1Ũk1Ṽa2 + 14Ũi0Ũj0Ũk2Ṽa2, (6.110)

B
(2)
ijab =7Ũi0Ũj0Ṽa2Ṽb2, (6.111)

B
(3)
ija =28Ũi1Ũj1Ṽa2 + 64Ũi0Ũj2Ṽa2 + 16Ũi0Ũj1Ṽa3 + 5Ũi0Ũj0Ṽa4, (6.112)

B
(4)
iab =21Ũi0Ṽa2Ṽb2, (6.113)

B
(5)
ia =36Ũi2Ṽa2 + 16Ũi1Ṽa3 + 19Ũi0Ṽa4. (6.114)
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It can be shown that the above formulas are consistent with the case of the SU(2) theory

with Nf = 3 hypermultiplets up to the Picard-Fuchs equation. We note the second and

fourth order corrections (6.104) and (6.105) include the differential operators with respect

to the irrelevant operators of which the scaling dimensions are greater than 2. In order

to obtain the second and fourth order correction for the AD theory associated with the

Nf = 2n + 1 theory, we should use the relation (6.104) and (6.105) with keeping the

irrelevant operators finite and then take the limit where these operators go to zero.

6.2.4 Nf = 2n (n ≥ 2)

For Nf = 2n (n ≥ 2), we need to introduce the different quantization condition in each

two sector ε = εA and εB since the SW differential in the A sector (3.118) is different form

from that in the B sector (3.127). We will first discuss the quantum SW periods in the A

sector.

For ε = εA, the SW curve (3.117) and the SW differential (3.118) are same form as

those for the Nf = 2n + 1 theory (3.104) and (3.105), respectively. The quantum SW

curve is given by (6.99) where C̃(p̃) and G̃(p̃) are defined by (3.113) and (3.114). Here

we shift the coordinate from p̃ to p̃1 as

p̃1 := p̃− M̃. (6.115)

Then the functions (3.113) and (3.114) become

C̃(p̃) =
n∑
l=0

ũlp̃
n−l, (6.116)

G̃(p̃) =

Nf∏
a=1

(p̃1 + c̃a) :=

Nf∑
a=0

C̃ap̃
Nf−a
1 , C̃0 := 1, C̃1 := 0, (6.117)

where ũl = ũl(M̃, s̃i) (l = 0, · · · , n) are the moduli parameters and C̃a (a = 2, · · · , Nf )

are the Casimir invariants of U(Nf ) flavor symmetry. As discussed in the case of the

Nf = 2n + 1 theory, by using the WKB method and solving the recursion relation of

φ̃k (k = 0, 1, · · · ) on the p̃1-plane, we find the relation between the SW periods and the

quantum corrections to the SW periods are given by (6.104) and (6.105) up to forth order

in ~. By taking the scaling limit εA → 0, we also find the leading order terms of the
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second and fourth order corrections for the Nf = 2n theory agree with those obtained

from the quantum SW curve for the A sector:

Π(2) = ε2AΠ̃(2) + · · · , Π(4) = ε2AΠ̃(4) + · · · . (6.118)

For ε = εB, we introduce new variables ξ as

p̃ = ξ−
1

n−1 − M̃, (6.119)

so that the SW curve (3.126) and the SW differential (3.127) become

ỹ2 =
Nc∑
l=0

t̃lξ
−Nc−l+n

n−1 , (6.120)

λSW =− 2

ΛNc−n
Nf

1

(−n+ 1)
ỹdξ, (6.121)

where t̃l = t̃l(M̃, s̃i) (l = 0, · · · , Nc). The SW differential defines the symplectic form

dλ̃SW ∼ dỹ ∧ dξ. By introducing ỹ = −i~ ∂
∂ξ

, we obtain the quantum SW curve:(
−~2 ∂

2

∂ξ2
+Q(ξ)

)
Ψ(ξ) = 0, (6.122)

with Q(ξ) = Q0(ξ) + ~2Q2(ξ) where

Q0(ξ) = −

(
Nc∑
l=0

t̃lξ
−Nc−l+n

n−1

)
, Q2(ξ) = − n

4(n− 1)
ξ−2. (6.123)

The second and fourth order corrections are obtained by applying (5.16) and (5.17) in

terms of ξ. These corrections agree with those for the Nf = 2n (n ≥ 2) theory by taking

the scaling limit εB → 0 up to total derivatives:

Π(2) = ε
−(Nc−n)+2
B (n− 1)ΛNc−n

Nf
Π̃(2) + · · · , Π(4) =ε

−3(Nc−n)+2
B (n− 1)3Λ

3(Nc−n)
Nf

Π̃(4) + · · · .
(6.124)

This is reason why we add Q2 (6.123) in (6.122).

In order to obtain the relation between the higher order correction and the SW periods,

it is convenient to introduce some functions as

µ(i) := −Nc − i+ n

n− 1
, Ñ := Nc − n+ 2, T

(k)
i :=

Γ (µ(i) + 1)

Γ (µ(i)− k + 1)
. (6.125)
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Then we find the second and fourth order corrections are given by

Π̃(2) =
1

12

(
Nc∑
i=1

(
T

(2)
i−1 −

6n

n− 1

)
t̃i−1

∂

∂t̃i

∂

∂t̃Ñ−1

Π̃(0) +

(
T

(2)
Nc
− 6n

n− 1

)
t̃Nc

∂

∂t̃Nc

∂

∂t̃Ñ
Π̃(0)

)
,

(6.126)

Π̃(4) =
7

1440

(
5

7
Ô(4)
A Π̃(0) + Ô(4)

B Π̃(0) + Ô
(4)
C Π̃(0) + Ô

(4)
D Π̃(0)

)
, (6.127)

where

Ô(4)
A =

Nc∑
i=1

(
T

(4)
i−1 +

6n

n− 1
T

(2)
i−1 + d1(n)

)
t̃i−1

∂

∂t̃i

∂

∂t̃Ñ−1

∂

∂t̃Ñ
, (6.128)

Ô(4)
B =

Nc∑
i=1

Nc∑
j=1

(
T

(2)
i−1T

(2)
j−1 + d2(n)

)
t̃i−1t̃j−1

∂

∂t̃i

∂

∂t̃j

∂2

∂t̃2
Ñ−1

, (6.129)

Ô(4)
C =

Nc∑
i=1

(
2n(2n− 1)

(n− 1)2
T

(2)
i−2 + d3(n)

)
t̃i−2t̃Nc

∂

∂t̃i

∂

∂t̃Nc

∂2

∂t̃2
Ñ−1

, (6.130)

Ô(4)
D =d4(n)t̃Nc t̃Nc

∂2

∂t̃2Nc

∂2

∂t̃2
Ñ

. (6.131)

The coefficients di(n) (i = 1, . . . , 4) are given by

d1(n) := −7T
(4)
Nc

+
(
T

(2)
Nc−1

)2

+
4n(14n− 23)

(n− 1)2
T

(2)
Nc
, (6.132)

d2(n) :=
1

7

(
−6T

(4)
Nc

+
(
T

(2)
Nc−1

)2

+
16n(3n− 7)

(n− 1)2
T

(2)
Nc

)
, (6.133)

d3(n) := −4n(n+ 1)

(n− 1)2
T

(2)
Nc
, (6.134)

d4(n) := 6T
(4)
Nc
−
(
T

(2)
Nc−1

)2

− n(62n− 77)

(n− 1)2
T

(2)
Nc
. (6.135)

As discussed in the case of the Nf = 2n+ 1 theory, we should use (6.126) and (6.127)

with keeping the irrelevant operator finite since these formulas have the differential oper-

ator with respect to the irrelevant operator on the SW periods. After using (6.126) and

(6.127), we obtain the quantum correction for the AD theory in the B sector by taking

the limit where the irrelevant operators go to zero.
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Summary

In this chapter, we studied the quantum SW periods for the Argyres-Douglas theories

associated with SU(Nc) SQCD. The quantum SW curve takes the different form for each

Nf . The SW differential also takes the different form, which introduces the different

quantization condition. In the case of SU(2) SQCD, we obtained the relation between

the quantum corrections and the classical SW periods. We computed the quantum SW

periods around the superconformal point up to fourth order in ~. We then wrote down

the explicit form of the quantum correction to the SW periods in terms of hypergeometric

function up to the fourth order in ~. The quantum SW periods of the AD theory are

shown to agree with those of the original SQCD by taking the scaling limit. We found the

general formulas for the second and fourth order corrections in the AD theories realized

from the SU(Nc) SQCD, which are obtained from the SW periods by acting the differential

operators.



Chapter 7

Conclusions and Discussions

In this thesis, we studied the low-energy effective theory of SU(Nc) SQCD in the NS

limit of the Ω-background. In chapter 2, we reviewed the basic idea of the Seiberg-Witten

theory by adopting the N = 2 supersymmetric SU(2) Yang-Mills theory as an example.

We then introduced the Seiberg-Witten curve and the SW differential for the SU(Nc)

gauge theory with Nf hypermultiplets. In chapter 3, we obtained the SW curve for the

AD theory by taking the scaling limit of the corresponding N = 2 gauge theory. For

SU(2) theory, the corresponding SW curves take the form of the cubic elliptic curve for

all Nf , but the SW differentials take the different form. For SU(Nc) SQCD, the AD

theories are classified four groups by the number of the hypermultiplets.

In chapter 4, we introduced the Ω-deformed N = 2 supersymmetric gauge theories

in the four-dimensional spacetime. In the weak coupling region, the Nekrasov partition

function provides an exact formula of the prepotential including the instanton contribu-

tion. We then took the Nekrasov-Shatashvili limit of the Ω-background. In this limit,

the low-energy effective theories appear in the two-dimensional Ω-background with one

deformation parameter ε1. The two-dimensional supersymmetric vacua condition is found

to induce that the SW periods satisfy the Bohr-Sommerfeld quantization condition.

In chapter 5, we studied the low-energy effective theory of SU(2) gauge theories with

Nf hypermultiplets in the NS limit of the Ω-background. The deformed SW periods are

given by the quantum SW curve, which is the ordinary differential equation and can be

solved by the WKB method. By using the quantum SW curve and the Picard-Fuchs

equation, it is possible to solve the series expansion with respect to the Coulomb moduli
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parameter and the deformation parameter ~. We found that the second and fourth order

corrections to the SW periods are represented by simple formulas which are obtained by

applying the differential operators on the SW periods. In the weak coupling region, we

evaluated the quantum SW periods up to fourth order in ~. By using the quantum SW

periods, we obtained the same prepotential as that given from the NS limit of the Nekrasov

partition function. We then investigated the expansion of the quantum correction to

the SW periods around the massless monopole point. The quantum corrections to the

dual SW periods aD are given by solving the Picard-Fuchs equation for the SW periods.

Then we found the massless monopole points on the u-plane are shifted by the quantum

corrections.

We also studied the quantum SW periods around the superconformal point in chapter

6. Since the SW differentials take the different form for each Nf , we need to introduce

the different quantization condition. We also have the simple formulas to represent the

second and fourth order corrections, which obtained from the classical periods by acting

the differential operator with respect to operators and their corresponding coupling. They

are shown to agree with the scaling limit of the formulas for the quantum SW periods

of the original SQCD. For SU(2) SQCD, we computed the quantum correction to the

SW periods up to fourth order in ~ in terms of hypergeometric functions. Around the

superconformal point, the SW periods and the effective coupling constant are expanded

in the Coulomb moduli parameter with the fractional scaling dimension. We also find the

general formulas for the second and fourth order corrections in AD theories associated

with N = 2 SU(Nc) SQCD.

It is interesting to explore the higher order corrections and how the structure of the

moduli space is modified by the quantum corrections. In particular non-perturbative

structure of the ~-corrections can be studied with the help of the resurgence method

[60–63].

Although the SW differential for the AD theory associated with certain gauge theory

takes the different form to that associated with other gauge theory, there are cases that

both AD theories belong to same universality class [20,23]. For example, the pure SU(4)

gauge theory associated with the AD theory of the (A1, A3)-type, which corresponds to

the SU(2) gauge theory with Nf = 2 hypermultiplets. Around the superconformal point
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of the pure SO(8) gauge theory, the curve describes the same AD theory, which is (A1, D4)

type, as the SU(2) gauge theory with Nf = 3 hypermultiplets. It would be interesting to

study the universality classes of N = 2 SCFT in the NS limit of the Ω-background.

For AD theory, there are the singularities on the moduli space where one of the periods

becomes the logarithmic behavior. It would be interesting to describe the theory around

this point by the Nekrasov partition function.

The Ω-deformed theories in the NS limit are described by certain quantum integrable

systems. The quantum SW curve yields the same data as the integrable systems. For

the AD theory obtained from the SU(Nc) Yang-Mills theory, the quantum curve takes

the form of the Schrödinger equation with the polynomial potential. In [64], from the

viewpoint of the ODE/IM correspondence (for a review see [65]), the exponential of the

quantum period have been shown to be regarded as the Y-function of the quantum inte-

grable model associated with the Yang-Lee edge singularity. It is interesting to investigate

this relationship further by computing higher order corrections via the ODE/IM corre-

spondence.
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Appendix A

Short introduction to
supersymmetry

A.1 Supersymmetry algebra

In this section, let us introduce the supersymmetry algebra in four-dimensional space-

time. The Poincaré symmetry is generated by the translations in R1,3 and the Lorentz

transformations with the generators Pµ and Lµν , respectively (where the indices run over

µ, ν = 0, 1, 2, 3). The Lorentz group SO(3, 1) is isomorphic to SU(2)L× SU(2)R, labeled

by two positive (or zero) spins (s+, s−) where s± ∈ Z/2. We show the representations

with s± in the four-dimensional theory in the table A.1.

Representation (s+, s−) Representation (s+, s−)

Scalar (0, 0) Left chiral fermion
(

1
2
, 0
)

4-vector
(

1
2
, 1

2

)
Right chiral fermion

(
0, 1

2

)
Symmetric tensors (rank 2) (1,1) Self-dual anti-symmetric tensor (rank 2) (1, 0)

Anti-selfdual anti-symmetric tensor (rank 2) (0, 1)

Table A.1: The finite dimensional representations of SL(2,C) ∼ SU(2)L × SU(2)R

The supersymmetry enlarges the Poincaré algebra by introducing the supercharge:

Qα
I left Weyl spinor (s+, s−) =

(
1
2
, 0
)
,

Q̄α̇I =
(
Qα

I
)†

right Weyl spinor (s+, s−) =
(
0, 1

2

)
,

(A.1)

α, α̇ = 1, 2, I = 1, 2, · · · ,N , (A.2)
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where α and α̇ are the Weyl spinor indices and the label I = 1, · · · N is the number of the

independent supersymmetry. The supercharges transform as the Weyl spinors of SO(3, 1)

and are translation invariant [Pµ, Qα
I ] = 0. The relevant relations of the supersymmetry

algebra generators are given by

{QI
α, Q̄β̇J} = 2σµ

αβ̇
Pµδ

I
J , (A.3)

{QI
α, Q

J
β} = 2

√
2εαβZ

IJ , (A.4)

{Q̄α̇I , Q̄β̇J} = 2
√

2εα̇β̇Z
∗
IJ , (A.5)

where σµ
αβ̇

is the Pauli matrices and εαβ is the anti-symmetric tensor where ε12 = −ε21 =

−1. The generators ZIJ and Z∗IJ are the anti-symmetric in the indices I and J and

commute with all generators of the supersymmetric algebra, called central charges:

ZIJ = −ZJI , [ZIJ , anything] = 0. (A.6)

The central charge vanishes for the N = 1 supersymmetry.

Let us study the representation of supersymmetry algebra. We firstly discuss the

irreducible massless representation in which one can choose a Lorentz frame with P µ =

E(−1, 0, 0, 1). Then the supersymmetry algebra becomes

{QI
α, Q̄β̇J} =

(
4E 0
0 0

)
αβ̇

δIJ . (A.7)

The unitarity of the theory implies {QI
2, Q̄2̇J} = 0 i.e. QI

2 = 0 and ZIJ = 0. The remaining

supercharges QI
1 and Q̄1̇I play a role of lowering and raising operators for helicity of the

state by 1
2
. We define the Clifford vacuum |Ωλ〉 with the lowest helicity λ which satisfy

QI
1 |Ωλ〉 = 0. All the states in the massless representation can be constructed by acting the

supercharge Q̄1̇I on |Ωλ〉. In CPT invariant theories, a fundamental multiplet contains

the constructed state and its CPT conjugate. For N = 1 and 2, the state in theories

without gravity are listed in table A.2. For N = 1, the multiplet with λ = 1
2

is called a

chiral multiplet while that with λ = 0 is a vector multiplet. For N = 2, the multiplets

with λ = −1
2

and 0 are called a vector multiplet and a hypermultiplet, respectively.

We next consider the irreducible massive representation. One can choose the rest

frame with P µ = (M, 0, 0, 0) so that the supersymmetry algebra (A.3) becomes

{QI
α,
(
QJ
β

)†} = 2Mδβαδ
I
J . (A.8)
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Helicity N = 1 N = 1 N = 2 N = 2
(≤ 1) λ = 1

2
λ = 0 λ = 0 λ = −1

2

1 1 0 1 0
1
2

1 1 2 2
0 0 1 + 1 1 + 1 4
−1

2
1 1 2 2

−1 1 0 1 0

Table A.2: Massless representations for N = 1, 2 supersymmetry.

In this case, we have two sets of ladder operators for helicity. We consider the case of

N = 2 supersymmetry. Under the unitary transformation, the central charge can be

chosen the form:

ZIJ = εIJZ, (A.9)

with Z being the real values. We define the linear combinations of the supercharge, given

by

Q1
α =

1

2

(
Q1
α + εαβ(Q2

β)†
)
, Q2

α =
1

2

(
Q1
α − εαβ(Q2

β)†
)
. (A.10)

Using the supersymmetry algebra, they satisfy{
Q1
α, (Q1

β)†
}

= δαβ

(
M +

√
2Z
)
,

{
Q2
α, (Q2

β)†
}

= δαβ

(
M −

√
2Z
)
, (A.11)

with all other anticommutators vanishing. Since all physical states should be the positive

norm, we find a bound on the mass M ≥
√

2|Z|, called the BPS bound. For the saturation

of the BPS bound, the states belong to a smaller representation of the supersymmetry

algebra. The massive representation for the N = 1 and 2 is listed in table A.3.

A.2 N = 1 superfield

To study the N = 1 supersymmetric theories, it is convenient to introduce the Grassmann

spinors θα and θ̄α̇ in addition to the space-time coordinate xµ. The Grassmann coordinates

of superspace are defined by

{θα, θβ} = {θ̄α̇, θ̄β̇} = {θα, θ̄β̇} = 0 (A.12)
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Spin N = 1 N = 1 N = 2 N = 2 N = 2
(≤ 1) λ = 1

2
λ = 0 λ = 0 BPS λ = 0 BPS λ = −1

2

1 1 0 1 1 0
1
2

2 1 2 2 2
0 1 2 5 1 4

Table A.3: Massive representation for N = 1 and 2 supersymmetry. λ is the lowest spin
of the Clifford vacuum.

In the following, we use the contraction conventions for the Grassmann spinors:

θθ = θαθα, θ̄θ̄ = θ̄α̇θ̄
α̇, (A.13)

θσµθ̄ = θασµαα̇θ̄
α̇, θ̄σ̄µθ = θ̄α̇σ̄

µα̇αθα. (A.14)

The integration over θ and θ̄ is defined by∫
d2θθθ =

∫
d2θ̄θ̄θ̄ =

∫
d4θθθθ̄θ̄ = 1. (A.15)

The supercharges acting on the superspace are given by

Qα =
∂

∂θα
− iσµαα̇θ̄α̇∂µ, Q̄α̇ = − ∂

∂θ̄α̇
+ iθασµαα̇∂µ, (A.16)

which satisfy

{Qα, Q̄β̇} = 2iσµ
αβ̇
∂µ. (A.17)

We also introduce the supercovariant derivatives:

Dα =
∂

∂θα
+ iσµαα̇θ̄

α̇∂µ, D̄α̇ = − ∂

∂θ̄α̇
− iθασµαα̇∂µ, (A.18)

which satisfy {Dα, D̄β̇} = −2iσµ
αβ̇
∂µ and also anticommute with Q and Q̄.

A superfield is defined by a function of xµ, θα and θ̄α̇. From the anticommutativity of

the Grassmann coordinates, the superfield can be written as the finite series expansions

in powers of the Grassmann variables θ and θ̄:

S(x, θ, θ̄) =φ(x) + θψ(x) + θ̄χ̄(x) + θθF (x) + θ̄θ̄G∗(x)

+ θσµθ̄Aµ(x) + θθθ̄λ̄(x) + θ̄θ̄θρ(x) + θθθ̄θ̄D(x).
(A.19)
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Under infinitesimal supersymmetry transformation, the superfield S(x, θ, θ̄) transforms as

δξS(x, θ, θ̄) = (ξαQα + ξ̄α̇Q̄
α̇)S, (A.20)

where the parameters ξα and ξ̄α̇ are anticommuting parameters. This can lead to the

supersymmetric transformation of component fields including in the superfield. We then

find that the variation of the top component D(x) become a total derivative. The com-

ponent fields belonging to the representation of the supersymmetry can be constructed

from superfield S(x, θ, θ̄), but it is highly reducible. The irreducible components can be

derived by imposing the constraints on the superfield.

A chiral superfield Φ is defined by imposing the condition

D̄α̇Φ = 0. (A.21)

We introduce the coordinate yµ = xµ + iθσµθ̄, satisfying

D̄α̇y
µ = 0, D̄α̇θ

β = 0. (A.22)

Then the chiral superfield can be written by the function (y, θ):

Φ(y, θ) = φ(y) +
√

2θψ(y) + θθF (y). (A.23)

If Φ is a scalar superfield, the components φ and ψ are the scalar and spinor fields respec-

tively and F is an auxiliary field. Thus the N = 1 chiral multiplet can be represented by

the chiral superfield. Similarly an antichiral superfield Φ† satisfies DαΦ† = 0 and can be

expanded as

Φ†(y†, θ̄) = φ†(y†) +
√

2θ̄ψ̄(y†) + θ̄θ̄F †(y†), (A.24)

where y†µ = xµ − iθσµθ̄.
Here we consider the function constructed by chiral superfields Φi: W(Φi). In general

the function W(Φi) is also a chiral superfield. The term with the highest power of θ of

W(Φi) is given by ∫
d2θW(Φi) =

∂W
∂φi

Fi −
1

2

∂2W
∂φi∂φj

ψiψj. (A.25)
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Under infinitesimal supersymmetry transformation (A.20), this term becomes total deriva-

tives. The function W(Φi) is called the superpotential.

Any arbitrary function of Φ and Φ† is neither the chiral nor antichiral superfields. In

the component fields, it is written by∫
d4θK(Φi,Φ

†
j) =

1

2

∂2K

∂φiφ
†
j

FiF
†
j −

1

2

∂3K

∂φi∂φj∂φ
†
k

ψiψjF
†
k −

1

8

∂4K

∂φi∂φj∂φ
†
k∂φ

†
l

ψiψjψ̄kψ̄l.

(A.26)

We also find that the variation of it becomes total derivatives. K(Φi,Φ
†
j) is referred as

the Kähler potential.

A vector superfield satisfies the reality condition

V = V †. (A.27)

In a similar way, the vector superfield is expanded as

V (x, θ, θ̄) =C(x) + iθχ(x)− iθ̄χ̄(x)

+
i

2
θθ[M(x) + iN(x)]− i

2
θ̄θ̄[M(x)− iN(x)]

− θσµθ̄Aµ(x) + iθθθ̄

[
λ̄(x) +

i

2
σ̄µ∂µχ(x)

]
− iθ̄θ̄θ

[
λ(x) +

i

2
σµ∂µχ̄(x)

]
+

1

2
θθθ̄θ̄

[
D(x) +

1

2
∂µ∂

µC(x)

]
,

(A.28)

where the component field C, D, M , N are the real fields and Aµ is regarded as the vector

field.

We firstly consider in the case of the Abelian gauge theory. We find λ and D are

invariant under the Abelian gauge transformation:

V → V + Φg + Φ†g, (A.29)

where Φg and Φ†g are the chiral and antichiral superfield. Thus λ and D are regarded as

the gaugino and the auxiliary field, respectively. The Abelian field strength is defined by

Wα = −1

4
D̄D̄DαV, W̄α = −1

4
DDD̄α̇V, (A.30)
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so that Wα is a gauge invariant chiral superfield. Under the gauge transformation, we

choose a special gauge fixing: C = χ = M = N = 0, called the Wess-Zumino gauge. In

component fields, the Abelian field strength becomes

Wα = −iλα(y) + θαD −
i

2
(σµσ̄νθ)αFµν + θ2(σµ∂µλ̄)α, (A.31)

where Fµν is the Abelian field strength. For the non-Abelian gauge, the vector superfield

V belongs to the adjoint representation of the gauge group. The field strength is given

by

Wα = −1

4
D̄D̄

(
e−2VDαe

2V
)
, W̄α̇ = −1

4
DD

(
e2V D̄αe

−2V
)
. (A.32)

Under the gauge transformation:

eV → e−iΦ
†
ge2V eiΦg , (A.33)

the field strength becomes Wα → e−iΦgWαe
iΦg . In the Wess-Zumino gauge, the field

strength is expanded as

Wα = −iλα(y) + θαD −
i

2
(σµσ̄νθ)αFµν + θ2(σµDµλ̄)α, (A.34)

where Fµν and Dµ are the non-Abelian field strength and the covariant derivative.

Now we can write down the N = 1 supersymmetric Lagrangian in terms of the su-

perfields. In the non-Abelian gauge theory with the chiral and vector multiplets, the

renormalizable Lagrangian is given by

L =
1

8π
Im

(
τTr

∫
d2θWαWα

)
+

∫
d4θΦ†e−2V Φ +

∫
d2θW +

∫
d2θ̄W̄ , (A.35)

where τ is the complex gauge coupling: τ = θ
2π

+ 4πi
g2
.

A.3 N = 2 superfield

For N = 2 supersymmetric field theories, we introduce the coordinates of the N = 2

superspace as

xµ, θαI := (θα1, θα2), θ̄α̇J := (θ̄α̇1, θ̄α̇2), (I, J = 1, 2) (A.36)
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with {θ, θ} = {θ̄, θ̄} = 0. The generic superfield is defined as a function of (xµ, θI , θ̄
J),

expanded as

S(x, θI , θ̄
J) = φ(x) + θ1ψ(x) + θ̄1χ̄(x) + · · ·+ θ2

1θ
2
2 θ̄

2
1 θ̄

2
2D(x). (A.37)

As in the case of N = 1, this is reducible. We need to impose the constraint on the

superfields.

A N = 2 chiral superfield is defined by imposing

D̄α̇IΨ = 0, (A.38)

where D̄α̇I is the N = 2 supercovariant derivative:

DI
α =

∂

∂θαI
+ iσµαα̇θ̄

α̇I∂µ, D̄I
α = − ∂

∂θ̄α̇I
+ iθαI σ

µ
αα̇∂µ. (A.39)

Since the N = 2 chiral superfield is reducible, we impose the constraint on the superfields,

which given by

DIDJΨ = D̄ID̄JΨ = 0. (A.40)

The expansion of Ψ in powers of θ2 takes the form:

Ψ(y, θ) = Ψ(1)(y, θ1) +
√

2θα2 Ψ(2)
α (y, θ1) + θα2 θ2αΨ(3)(y, θ1), (A.41)

where yµ = xµ + iθ1σ
µθ̄1 + iθ2σ

µθ̄2. The N = 2 multiplets can be expressed in terms of

N = 1 multiplets:

Ψ(1) = Φ(y, θ1), Ψ(2) = Wα(y, θ1), Ψ(3) =

∫
d2θ̄1 Φ†(y − iθ1σθ̄1, θ1, θ̄1)e−2V (y−iθ1σθ̄1,θ1,θ̄1),

(A.42)

where Φ is the N = 1 chiral superfield while Wα is the N = 1 field strength. We then

find that the component fields of Ψ are those of the N = 2 vector multiplet.

By using the N = 2 chiral superfield, the Lagrangian for the N = 2 pure Yang-Mills

theory can be written down as

L =
1

4π
ImTr

∫
d2θ1d

2θ2
1

2
τΨ2. (A.43)
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In terms of the N = 1 superfield, it takes the form

L =
1

4π
ImTr

[
τ

(∫
d4θ Φ†e−2V Φ +

1

2

∫
d2θ WαWα

)]
, (A.44)

where θ := θ1. We then introduce the function of Ψ as F(Ψ), which is also the N = 2

chiral superfield. For the N = 2 pure Yang-Mills theory, the generic Lagrangian is given

by

L =
1

4π
ImTr

∫
d2θ1d

2θ2 F(Ψ)

=
1

4π
ImTr

[∫
d4θ Φ†e−2V ∂F(Φ)

∂Φ
+

1

2

∫
d2θ

∂2F(Φ)

∂Φ2
WαWα

]
. (A.45)

where the function F(Ψ) is called the prepotential.
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Appendix B

Coefficients F (2k,n)
Nf

for Nf = 2, 3 and 4

theories

In this appendix we explicitly write down some coefficients in the expansion of the pre-

potentials for Nf = 2, 3, 4 theories in the weak coupling region.

B.1 Nf = 2

For the Nf = 2 theory, the first four coefficients of the classical part of the prepotential

in (5.67) are

F (0,1)
2 =

Λ4
2

4096
+

1

32
Λ2

2m1m2,

F (0,2)
2 =− 3Λ4

2m
2
1

8192
− 3Λ4

2m
2
2

8192
,

F (0,3)
2 =

5Λ8
2

134217728
+

5Λ4
2m

2
1m

2
2

16384
+

5Λ6
2m1m2

196608
,

F (0,4)
2 =− 63Λ8

2m
2
1

134217728
− 63Λ8

2m
2
2

134217728
− 7Λ6

2m
3
1m2

393216
− 7Λ6

2m1m
3
2

393216
. (B.1)

The coefficients in the second order correction to the prepotential are

F (2,1)
2 =0,

F (2,2)
2 =

Λ4
2

8192
+

1

256
Λ2

2m1m2,

F (2,3)
2 =− 15Λ4

2m
2
1

65536
− 15Λ4

2m
2
2

65536
,
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NF

FOR NF = 2, 3 AND 4 THEORIES

F (2,4)
2 =

21Λ8
2

134217728
+

21Λ4
2m

2
1m

2
2

65536
+

35Λ6
2m1m2

786432
. (B.2)

For the fourth order corrections, they are
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B.2 Nf = 3

For Nf = 3, the coefficients of the prepotential in the expansion (5.67) are given by
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for the classical part,
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for the second order in ~ and
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for the fourth order in ~.

B.3 Nf = 4

For the Nf = 4 theory, the coefficients of the prepotential (5.71) are given by
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for the second order in ~, and

F (4,1)
4 =

m4

2048a6
,

F (4,2)
4 =

1

65536a2
− m2

8192a4
+

7m4

16384a6
− 63m6

131072a8
+

219m8

1048576a10
,

F (4,3)
4 =

1

262144a2
− m2

32768a4
+

119m4

786432a6
− 133m6

393216a8
+

1689m8

4194304a10
− 253m10

1048576a12
+

1495m12

25165824a14
,

F (4,4)
4 =

235

268435456a2
− 973m2

134217728a4
+

24571m4

536870912a6
− 9457m6

67108864a8
+

68835m8

268435456a10

− 625537m10

2147483648a12
+

1765673m12

8589934592a14
− 353325m14

4294967296a16
+

985949m16

68719476736a18
, (B.9)

for the fourth order in ~.



Appendix C

Fourth order corrections in (A1, D4)
theory

In this appendix, we will write down the fourth order corrections to the SW periods

for AD theory of (A1, D4) type, associated with the SU(2) gauge theory with Nf = 3

hypermultiplets. Using (6.37) and (3.51), we obtain the fourth order corrections to the

SW periods, which are given by
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ũ

Λ2
3

)3

(−σ3)−
5
2

(
1 +

4

3

M̃3
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Here the coefficients X
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Expanding (C.1) and (C.2) in M̃3

ũΛ3
,
C̃2

2Λ2
3

ũ4
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The ~4 correction to the effective coupling constant is expanded as
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Appendix D

Quantum periods of SU(Nc) SQCD

The SW curve (2.121) and the SW differential (2.56) become
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Here we take the ordering prescription of the differential operators as [46]. By using
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the quantum SW curve becomes
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Expanding the quantum SW curve in ~, we obtain the recursion relation of φk. Solving

the recursion relation, we find φ2n+1(p) (n = 0, 1) become the total derivatives. The first

three φ2k’s are given by

φ0(p) = log (C(p)± y) , (D.8)
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where y′ := ∂y
∂p

. The integration of φk is interpreted as the quantum correction to the SW

periods:

Π(k) :=

∮
φk(p)dp. (D.11)

It can be checked that the second order correction to the SW periods agrees with that

in [46] up to total derivatives. The second and fourth order corrections to the SW periods

for the AD theory are obtained from not only the WKB solutions of the quantum SW

curve for the AD theory, but also the scaling limit ε→ 0 of the second and fourth order

corrections for the corresponding SU(Nc) SQCD: (D.9) and (D.10) .
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