[2R2 Exflsks U H—FURI Y

Science Tokyo Research Repository

oo /00000
Article / Book Information

oo@a) OO0000000O0ON=20000000000000
Title(English) Quantum periods for N=2 Supersymmetric QCD at strong coupling
oo@a) OOoooo
Author(English) Takafumi Okubo
oo@a) OO0:00@0),

oOooooo:0oo0ooa,

O000:00110390,

O0000:20190 30 260,

ooooo:0o0o0a,

OO00:00 00,00 00,00 00,00 00,00 O

Citation(English) Degree:Doctor (Science),

Conferring organization: Tokyo Institute of Technology,
Report number:[J [0 1103901,

Conferred date:2019/3/26,

Degree Type:Course doctor,

Examiner:,,,,
goog@mao) ooong
Type(English) Doctoral Thesis

Powered by T2R2 (Science Tokyo Research Repository)


http://t2r2.star.titech.ac.jp/

Doctoral Thesis

Quantum periods for N/ =2 Supersymmetric
QCD at strong coupling

Takatumi Okubo

Department of Physics, Tokyo Institute of Technology
Tokyo, 152-8551, Japan

December, 2018



Abstract

The purpose of this thesis is to study quantum periods in four-dimensional N' = 2 super-
symmetric gauge theories with hypermultiplets defined in the Nekrasov-Shatashvili (NS)
limit of the Q-background. We first review the Seiberg-Witten theory. In N = 2 super-
symmetric gauge theories, their dynamics in the Coulomb moduli space is described by
the Seiberg-Witten (SW) curve. The periods of the SW curve enable us to analyze the
low-energy effective theory, including non-perturbative effects, at both weak and strong
coupling. In the weak coupling region, one can investigate the non-perturbative instan-
ton effects through the prepotential. At strong coupling, one obtains the periods around
singularities in the Coulomb moduli space, where BPS particles become massless. The
dual prepotentials around the massless monopole/dyon point are also determined from
the SW curve and its periods. At a superconformal point, where mutually non-local BPS
particles become massless, the curve degenerate and the theory becomes an interacting
N = 2 superconformal field theory, called the Argyres-Douglas (AD) theory. The AD
theory has fractional scaling dimensional operators and no microscopic Lagrangian. The
BPS spectrum of the AD theory is determined from the degenerated SW curve.

We next study the quantization of Seiberg-Witten curve for A/ = 2 supersymmetric
quantum chromodynamics (SQCD). The SW curve is quantized with help of the canonical
quantization of the symplectic structure derived by the SW differential. The Planck con-
stant h corresponds to the deformation parameter of the NS limit of the {2-background.
The quantum correction to the SW periods, obtained from the WKB solution, is given
from the SW periods by acting some differential operator. In the weak coupling region,
the quantum periods agree with those obtained from the NS limit of the Nekrasov parti-
tion function, where the gauge theory is defined in the (2-background. We compute the
quantum SW periods around the massless monopole point and the superconformal point
up to the fourth order in A. We then find the general formulas for the second and fourth
order corrections to the SW periods in the SU(N,) SQCD and related Argyres-Douglas
theory.
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Chapter 1

Introduction

1.1 Motivation

The standard model is the most successful quantum field theory which explains many
experimental results of elementary particles. The standard model is based on a gauge
theory which can do powerful predictions based on the perturbative method. However,
it is difficult to study non-perturbative effects such as instanton effects and confinement
of quarks, which are important to understand the low-energy dynamics of gauge theories.
One can study such effects by introducing supersymmetry, which is a symmetry between
bosonic and fermionic fields (particles). In particular, for four-dimensional ' = 2 super-
symmetric gauge theories !, we can explicitly analyze low-energy effective physics and the
non-perturbative effects in both the weak and strong coupling region [1,2]. By breaking
N =2 to N =1, one has an explanation of confinement of electric charges via monopole
condensations.

An exact solution to the low-energy effective theory of a four-dimensional N = 2
theory was studied by Seiberg and Witten in 1994 [1,2]. They proposed a procedure to
analyze exactly the low-energy effective action for a N' = 2 SU(2) gauge theory in both
weak and strong coupling region [1,2]. The low-energy effective theory is an interact-
ing N/ = 2 supersymmetric U(1) gauge theory, where the low-energy effective action is

obtained by integrating out the massive modes. In usual, it is difficult to perform the

n general, the number of the supersymmetry refers to the number of conserved fermionic charges.
Since we have four real components in a single fermion in four dimensions, for example, there are 4N
conserved fermionic charges or supercharges in A/ supersymmetric theory.
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path integral directly and explicitly. Seiberg and Witten solved the low-energy effective
action of the N' = 2 supersymmetric gauge theory by using a Riemann surface, called
the Seiberg-Witten curve, which characterizes the geometrical structure of the Coulomb
moduli space. They discovered the Seiberg-Witten curve by using the holomorphy and
the strong-weak coupling duality. Here the Coulomb moduli space is parameterized by
the vacuum expectation value (vev) of the scalar fields in the AV = 2 vector multiplets.
The Seiberg-Witten curve and its periods enable us to understand both weak and strong
coupling physics of the theory such as instanton effects, the BPS spectrum [1,2] and in
particular physics at nonlocal superconformal fixed point [3,4]. Their idea has been gener-
alized to the theory based on various gauge group with or without hypermultiplets [5-10].
The Seiberg-Witten theory has been also extended to the higher dimensional theory [11].

The N = 2 supersymmetric gauge theory is constructed from superstring theory or
M-theory. Superstring theory is the most promising candidate for the unified theory of
particles and forces including gravity. Superstring theory is defined perturbatively and
has five consistent theories. These five superstring theories are mutually related through
duality transformations and can be unified by M-theory [12]. M-theory is expected to be
the most fundamental theory of particle physics. However, we have no definitions of the
M-theory since it is a strongly coupled theory. From the analysis of eleven-dimensional
supergravity which is the low-energy effective theory of the M-theory, there are two fun-
damental objects, called M2-branes and M5-branes. In order to investigate M-theory, it
is important to study physics of M2 and M5 branes. The model described multiple M2
branes on C*/Z; is the ABJM model [13] which has been studied extensively. For M5
branes, the world volume theory is the six-dimensional N' = (2,0) superconformal field
theory (SCFT). Four-dimensional A/ = 2 gauge theories can be derived from compactifi-
cations of six-dimensional N' = (2,0) SCFT on a Riemann surface with punctures [14-16].
It is useful to clarify four-dimensional N = 2 gauge theories from the viewpoint of M5
branes.

It is known that the N’ = 2 gauge theory are described by certain integrable models
[17-19]. For example, for the N' = 2 supersymmetric SU(N.) Yang-Mills theory, the SW
curve is the same form as the spectral curve of a periodic Ay, _; Toda lattice, which is a

classical integrable model [18].
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At strong coupling in Coulomb moduli space, there exist interacting N/ = 2 SCFTs,
called Argyres-Douglas (AD) theories [3,4]. The AD theory arises at a superconformal RG
fixed point where mutually non-local BPS particles become massless. There is no electric-
magnetic duality transformation such that particles carry electric charge only. The AD
theory is then a strongly coupled theory which has the particles with both electric and
magnetic charges. This theory, therefore, has no local Lagrangian description. Moreover,
the operators and their couplings have fractional scaling dimensions. The SW curve of
the AD theory is obtained by taking the scaling limit around the superconformal point
of corresponding N' = 2 gauge theories [3,4,20-22]. Then the BPS spectrum of the
AD theory can be studied by the degenerated SW curve. Recently, the dynamics of AD
theories have been also studied from the viewpoint of the compactification of M5-branes
on a punctured Riemann surface [23] and its relation to two-dimensional conformal field
theories (CFT) [24-27]. By using the A/ = 1 deformation, the superconformal indices for
the AD theory have been studied in [28-30].

It has been also found that a large class of the N/ = 2 SCFT corresponds to two-
dimensional CFT with non-unitarity [24] by comparing central charges in both theories
and analyzing the superconformal indices and the characters of two-dimensional chiral
algebras. By applying the conformal bootstrap program [31], the correspondence between
four-dimensional N' = 2 SCFTs and two-dimensional CFTs has been also studied in

32,33].

1.2 Omega background

We have considered the low-energy effective action of the N = 2 supersymmetric gauge
theory in flat spacetime, obtained by using the Seiberg-Witten curve and its periods.
In the weak coupling region, one can compute the partition function of N' = 2 gauge
theories based on the microscopic Lagrangian by introducing the (2-background. The -
background deforms four-dimensional spacetime by the torus action with two parameters
(€1, €2) [34,35]. The partition function, called the Nekrasov partition function, provides an
exact formula of the effective Lagrangian including the non-perturbative instanton effects

by taking the limit where €1, €5 — 0.
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Recently it has been recognized that the N’ = 2 supersymmetric gauge theories are
related to various dimensional mathematical physics through the Nekrasov partition func-
tion. The Nekrasov partition functions are related to conformal blocks of two-dimensional
CFTs [36,37], the partition function of topological strings [38,39] and the solutions of the
Panlevé equations [40,41], where the Q-deformation parameters enter into the formulas
of the central charge and the string coupling.

The Nekrasov partition function in the weak coupling region can be computed with the
help of localization technique. At strong coupling, however, we do not know the localiza-
tion method to reproduce the dual effective action around singularities with massless BPS
particles in the Coulomb moduli space. In particular, for the Argyres-Douglas theories,
since we have no appropriate microscopic Lagrangian, one can not compute the parti-
tion function in a usual localization method. In the case of the self-dual 2-background
with ¢ = —eg, the AD theories have been studied by using the holomorphic anomaly

equation [38,42] and the E-strings [43].

1.3 Quantum Seiberg-Witten curve

The purpose of this thesis is to study the effects of the (2-deformation at strong coupling.
In particular, we consider the Nekrasov-Shatashvili (NS) limit [44] of the © background
where one of the deformation parameters €5 goes to zero. In this limit, the SW curve
becomes the so-called quantum Seiberg-Witten curve which is an ordinary differential
equation. This differential equation is obtained by the canonical quantization procedure
for the symplectic structure induced by the SW differential. Here the deformation pa-
rameter €; plays a role of the Planck constant A. The (2-deformed SW periods in the NS
limit, which are the main subjects of this thesis, are obtained from the WKB solution of
the quantum SW curve.

In the weak coupling region, the validity of the quantum SW curve has been studied
for various N' = 2 theories. For SU(2) pure Yang-Mills theory, the quantum SW curve
becomes the Schrodinger equation with the sine-Gordon potential [45] and the period com-
puted from the WKB solution is shown to agree with that obtained from the Nekrasov
partition function. For N' = 2 SU(2) supersymmetric quantum chromodynamics (SQCD)
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with Ny < 4 hypermultiplets, the WKB solutions of the quantum SW curves have been
studied in [46]. Generalization to other ' = 2 theories and their relations to the Nekrasov
partition functions have been investigated extensively [47-50]. The quantum SW curve
is also derived from the analysis of the conformal block with the insertion of the surface
operator [51-53]. From the classical limit of the conformal blocks of two-dimensional
CFTs, the deformed prepotentials for the SU(2) gauge theories with Ny = 1,2,4 hyper-
multiplets have been also obtained in [54-56]. In [57], the exact quantization condition for
the SU(N,) pure Yang-Mills theory has been studied, which including non-perturbative
effects in h.

It is interesting to study perturbative and non-perturbative quantum corrections in the
strong coupling region of the Coulomb moduli space, which might lead to the modification
of strong coupling dynamics of the theory. The perturbative corrections around the
massless monopole point in the SU(2) pure Yang-Mills theory have been studied in [58].
In [59], the one-instanton correction in A to the dual prepotential has been calculated.
The non-perturbative aspects of the A expansion in N' = 2 theories have been studied
in [60-63]. For the Argyres-Douglas theories, the quantum SW curve has been studied
in [64] from the viewpoint of the ODE/IM correspondence (for a review of the ODE/IM
correspondence see [65]).

In this thesis, we will study the perturbative corrections in A to the SW periods for
N =2 SQCD at the strong coupling, especially, around the massless monopole point and
the superconformal point of the Coulomb moduli space. We will show that the higher
order corrections in A to the SW periods can be expressed by acting the differential
operators with respect to some parameters on the SW periods, such as the Coulomb
moduli parameters and the mass parameters. We will then calculate the WKB solutions
of the quantum SW curve and investigate the relation between the higher order corrections
in A and the SW periods up to the fourth order in 4. Then we will compute the quantum
corrections to the SW periods around the massless monopole point and the superconformal
point up to the fourth order in 4. Around the massless monopole point of the AN/ = 2
SU(2) SQCD, we will calculate the the NS limit of the Q-deformed dual prepotential by
using the quantum SW periods and find the interesting phenomenon that the massless

monopole point in the Coulomb moduli space is shifted by the quantum corrections up to
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the fourth order in h. Around the superconformal point of the N' = 2 SU(2) SQCD, we
will evaluate the quantum SW periods by applying the relation between the higher order
correction in i and the SW periods up to the fourth order in A. In AD theories realized
from N =2 SU(N,) SQCD, we will find general formulas for the second and fourth order

corrections, which would be useful to explore higher order corrections.
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1.4 Outline

This thesis is organized as follows:

In chapter 2, we will review the Seiberg-Witten theory. For SU(2) pure Yang-Mills
theory which is the simplest example of the SW theory, we will introduce the Seiberg-
Witten curve and the SW differential. We will obtain the (dual) prepotential in both
weak and strong coupling region. The construction of the SW solution for the pure SU(2)
theory can be generalized to the SU(2) SQCD with Ny(=1,2,3,4) hypermultiplets and
the SU(N,) (N, > 3) SQCD with Ny(< 2N,) hypermultiplets.

In chapter 3, we will review the Argyres-Douglas theory. The SW curve for the AD
theory is obtained from the degeneration of the SW curve for N/ = 2 gauge theories.
The SW differentials for the AD theories take different forms for each Ny due to fla-
vor symmetry. Then we will compute the period integrals around the superconformal
point for the SU(2) SQCD with N; = 1,2, 3 hypermultiplets. We will generalize to the
case of the SU(N,) SQCD and derive the SW curve and the SW differential around the
superconformal point.

In chapter 4, we will introduce the {2-deformation of the four-dimensional spacetime.
The Nekrasov partition function, which is computed with help of the Localization theorem,
reproduces the prepotential in the weak coupling region. In the Nekrasov-Shatashvili (NS)
limit, the low-energy effective theory is defined in the two-dimensional {2-background with
a deformation parameter €;. The supersymmetric vacua condition of the two-dimensional
)-deformed theories derives that the SW periods satisfy the Bohr-Sommerfeld quantiza-
tion condition which the 2-deformation parameter €; is a roll of the Plank constant.

In chapter 5, we will study the quantization of the SW curve for the SU(2) gauge
theory with Ny(=0,...,4) hypermultiplets. We will obtain the quantum corrections to
the SW periods for the SU(2) SQCD. We will show that the prepotentials obtained from
the WKB solutions of the quantum SW curve agree with those obtained from the NS
limit of the Nekrasov partition functions. Then we will compute the dual prepotential
around the massless monopole point and discuss the modification of the strong coupling
physics by the (2-deformation. This chapter is based on the paper [66] of the author in

collaboration with K. Ito and S. Kanno.
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In chapter 6, we will study the quantum SW curve for the Argyres-Douglas theory. We
will show the relation between the SW periods and the higher order corrections up to the
fourth order in A. We will calculate the quantum corrections to the SW periods near the
superconformal point, which are expressed in terms of the hypergeometric function. Then
we will extend to the AD theory associated with SU(N,) SQCD and show the higher order
corrections can be also expressed by acting the differential operators on the SW periods
up to fourth order in h. This chapter is based on the paper [67] and the work [68].

In chapter 7, we summarize this research and discuss future works.



Chapter 2

Seiberg-Witten theory

This chapter is a review part of the Seiberg-Witten (SW) theory [1,2]. The SW theory
provides us a low-energy effective description for N' = 2 gauge theories in both weak and

strong coupling region. The basic facts of the supersymmetry are summarized in appendix

A.

2.1 Effective action for A/ = 2 supersymmetric gauge
theory

Let us consider the representation of the N/ = 2 supersymmetry. There are two types
of multiplets, namely the vector multiplet and the hypermultiplet, which consist of the

fields as follows:

N = 2 vector multiplet : N = 2 hypermultiplet :
gauge field A, Weyl spinor g (2.1)
Weyl spinor A (0 complex scalar q gt
complex scalar [0) Weyl spinor z/zg

where A, is a gauge field, (A, 1)) are Weyl spinors and ¢ is a complex scalar filed in the

vector multiplet. (wq,@bg) are Weyl spinors and (¢, §') are complex scalar fields in the

hypermultiplet. The components fields in the N = 2 vector multiplet and the N/ = 2

17
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hypermultiplet can be organized into the N' = 1 multiplets as follows:

N = 2 vector multiplet : N = 2 hypermultiplet :
N =1 vector multiplet : (A, \), N =1 chiral multiplet : (g, 1), (2.2)
N =1 chiral multiplet : (¢, 1)), N =1 chiral multiplet : (g, w;).

The N' = 2 supersymmetry algebra contains the R-symmetry which rotates of supercharge
by the U(2)g ~ SU(2)g x U(1)r group. The R-symmetry U(1); x U(1)r acts on the

component fields in the vector multiplet as

Ay Ay

Ul)y: [ A | — [N e |, (2.3)
¢ ¢
Ay Ay

Ul)g: | A v — | e\ e |, (2.4)
¢ ¥

where U(1); denotes the diagonal subgroup of the SU(2)g. Here we note (\,v) are
doublets under SU(2)g. The fields belonging to the hypermultiplet transform as

Uq Uq

Ul)s:|4a q| — e e7q |, (2.5)
o o
Vg eia¢q

U)g: | a it = |4q |, (2.6)
ID; e_i%/)j;r

under U(1); x U(1)g where (q,q") are doublets under SU(2)g. Note that the U(1)g
symmetry is broken to a discrete subgroup at quantum level by the anomaly. For instance,
in the SU(N,) gauge theory with Ny hypermultiplets, the chiral anomaly breaks U(1)g
to the discrete subgroup Zyn, 2

Let us consider the low-energy effective theory for the AN/ = 2 pure Yang-Mills theory
with gauge group G. The adjoint scalar field ¢ contained in the A" = 2 vector multiplet

has the potential term:

wwzéﬂmwﬁ 2.7)
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where ¢ is the gauge coupling constant. In the classical vacuum defined by V = 0, the
scalar field takes the vacuum expectation value (vev) as

(0) =3 at, (2.8)

7

up to gauge transformation where a; is the complex parameter and H* (i = 1,---,r)
belongs to the Cartan subalgebra for G. Here r is a rank of G. The classical vacua
of this theory are degenerated continuously and parameterized by the gauge invariants
<Tr¢k> where k belongs to order of Casimir operators of G. The moduli space of vacua
parameterized by <Tr¢>k> is called the Coulomb moduli space. In the generic classical
vacua, the gauge group G of the theory is broken to the subgroup U(1)" by the vev of the
scalar fields. Thus the low-energy effective theory for the N = 2 pure Yang-Mills theory
becomes an interacting N' = 2 U(1)" gauge theory. Integrating out the massive modes,
we obtain the low-energy effective Lagrangian. The N = 2 supersymmetric effective
Lagrangian can be written in terms of the N’ = 1 superfield by introducing the N’ = 1
field strength W, = >, W, H" and the N' = 1 chiral superfield ® = Y. ®;H". It takes

the form:
1 4nmi T 1 2, Qi1 o
£eﬁ‘ = 4—Im d Qq)Dq)z + 5 d“0t Wz Haj . (29)

Here the dual chiral superfield ®%, and the complex effective coupling constant 7 are

defined by

. OF g 02F
’L = — v = —
R R 5555, (2.10)

respectively, where the holomorphic function F(®) of ® is a prepotential. For SU(2)
gauge theory, 7 is the effective coupling constant, given by

R 4
T = —H—Fg, (2.11)
S

where O is the effective theta angle and gg is the effective coupling constant. Classically,

the prepotential is given by

1 .
]:cl(q)i) = 57}1@@@', (2-12)
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where 7, is the bare coupling constant.
We determine the prepotential F(®) to obtain the effective Lagrangian for the N' = 2
gauge theory. The prepotential F(®) includes not only the perturbative but also non-

perturbative corrections.

2.2 Seiberg-Witten solution to N = 2 SU(2) super
Yang-Mills theory

2.2.1 Prepotential for N' =2 SU(2) super Yang-Mills theory

Let us study the simplest example: N = 2 supersymmetric SU(2) Yang-Mills theory.
The prepotential for this theory has been obtained by Seiberg and Witten [1]. They gave
a procedure to determine exactly the prepotential at both weak and strong couplings.
We first consider the vacuum structure of the SU(2) gauge theory. The condition
V(¢) = 0 is satisfied when the scalar field takes the form (¢) = ac® with o3 = diag(1, —1)
where a is a complex parameter. The Coulomb moduli space has dimension one and is

parameterized by
u = (Tr¢*) = 2a”. (2.13)

For u # 0, the gauge group SU(2) is broken to U(1) by the Higgs mechanism and then the
non-Abelian gauge bosons Aljf become massive. There is a singularity at u = 0, since the
gauge group SU(2) is restored and the non-Abelian gauge bosons become massless. The
quantum moduli space of vacua is also parameterized by the Coulomb moduli parameter
u. In the quantum theory, U(1)g is broken to Zg by the anomaly. The Coulomb moduli
parameter u transforms as u — —u under this R-symmetry. The dynamics at the generic
point of the quantum moduli space is described by the U(1) gauge theory. The effective
Lagrangian is given by (2.9) for r = 1:

1 - 1
Log = —Im { / d*0epd + = / dZGTWaWa} , (2.14)
Am 2
where & and 7 are defined by
2
o, 0T (2.15)

0P’ 02’
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respectively. In the weak coupling region where u ~ 0o, the form of the full prepotential
is determined as follows: Classically, the prepotential F.,(®) is given by (2.12) for r = 1.
From the non-renormalization theorem [69], we see that the perturbative correction has
only the one-loop correction. Since the coupling constant is given by the second derivative
of prepotential with respect to ® (2.15), the one-loop correction to the prepotential is
determined by the one-loop coupling constant. For the energy scale p > |al, the one-loop

coupling constant is given by

21
Tonetoap(#1) = = log % (2.16)

where A is the cut-off of the high-energy renormalization scale. For p < |a| the coupling

remains constant since the gauge group SU(2) is broken to U(1) and then the field with

the U(1) charge decouple. The behavior of the running coupling is shown in Fig 2.1. In
1

-2
9ers

SU(2)

|

|

|

' I
AO a

Figure 2.1: The one-loop coupling for the SU(2) Yang-Mills theory

the vacuum breaking from SU(2) to U(1), the high-energy SU(2) gauge field AEU(Z) is
related to the low-energy U(1) gauge field AB(I) such as AEU(Q) = diag(AE(l), —Ag(l)).
The relation between the coupling constant of the low-energy U(1) gauge theory and that
of the high-energy SU(2) theory is given by

LU 9, 8U(2) (2.17)

Thus in the low-energy limit, the effective coupling constant becomes

a

4
T(a) ~ —Zlog—, (2.18)
s AO
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up to the perturbative correction where Ay is the dynamically generated scale like the

QCD scale parameter:
Ay = Ate?™me, (2.19)

Here subscript 0 of Ay denotes the number of the hypermultiplets: Ny = 0. Integrating
the effective coupling constant 7(a) over a twice, we see the one-loop correction to the

prepotential given by

2

1 a
Fone-loop(a) = ;@2 log (A_%) . (220)

Although the prepotential is exact in the perturbation theory, the prepotential includes

the non-perturbative correction due to instanton effect [69]. The instanton factor can be

4k
ek — (ﬁ) , (2.21)

written as

a
by using the one loop effective coupling (2.18). The instanton factor is invariant under
Zg symmetry. Since the chiral superfield ® has the charge 2 under the U(1)r symmetry,
the prepotential transforms under the U(1)g symmetry as a field of charge 4 and then the
non-perturbative correction to the prepotential is proportional to ®2. The full form of the
prepotential, which receives the one-loop correction (2.20) and the instanton correction,

takes
2

i i) 1 & A\ ™
_ g2 2
F(P) = W(D log (A3> + e ,;_1 Fi® < % ) , (2.22)

where the coefficients Fj, can be calculated indirectly [1] as will be shown later. In the
next subsection, we will discuss the duality between the weak and the strong coupling

region for the SU(2) Yang-Mills theory.

2.2.2 Duality

For the N' = 2 SU(2) Yang-Mills theory in the Coulomb moduli space, there is the
SL(2,7) duality transformation which acts on ® and ®p as

(ZD) — M (q)q)D) , (2.23)
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where M € SL(2,7Z). Let us introduce the SL(2,Z) generators by

ﬂ__ci§>’ s__<flé), (2.24)

where k is an integer. Under the T-transformation M = T, the effective Lagrangian

(2.14) is modified such that the coupling constant is shifted by
T —T+k, (2.25)

but the path integral remains invariant.
We next consider the S-transformation M = S. The chiral superfield ® and the dual

chiral superfield ®p exchange each other under the S-transformation as

(qD@D) — (;i) . (2.26)

This means that the theory should be described in terms of not (®, W,,) but (®p, Wpa)
where Wp, is the N/ = 1 dual field strength. By introducing the N/ = 1 dual vector
superfield as the Lagrange multiplier and integrating out W, the dual effective Lagrangian

can be written by

1 - 1
Legp = 4—Im [— /d49(1)(I)D + §/d297DWSWaD} ; (2.27)
T
where ® and 7p are regarded as the function of ®p given by
0Fp 0 Fp
¢ =_— =——— 2.28
9o, T 9y (2:28)

with Fp(®p) being the dual prepotential. By using (2.28), we interpret 7p as the dual

coupling constant:

1
= ——, 2.29
D . (2.29)

The duality under the S-transformation denotes the strong-weak coupling duality. From

(2.25) and (2.29), we see the SL(2,Z) group acts on 7 as

at + [
YT+ 0

where a0 — By =1 and «a, 8,7,0 € SL(2,7Z).

(2.30)

T —
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The central charge Z of the N’ = 2 supersymmetry algebra is given by [70]
Z = nea + nyap, (2.31)

where n, and n,, are the electric and magnetic charges, respectively. ap corresponds to
the vev of the dual scalar field including in the dual chiral superfield ®p, defined by
oOF

T 90

When (a,ap) transform to (—ap,a) under the S-transformation, the central charge be-

(2.32)

comes Z = —n,,a+n.ap, so that (—n,,n.) can be regarded as new electric and magnetic
charges: (e, M) := (—Num,ne). This is precisely the electric-magnetic duality transfor-
mation.

2.2.3 Structure of Coulomb moduli space

To study the geometrical structure of the Coulomb moduli space, we will discuss the
monodromies around the singularities on the Coulomb moduli space. We will focus on the
behavior of @ and ap around the singularities on u-plane. For large u, which corresponds to
the weak coupling region, the theory is asymptotically free and the perturbative correction

to the prepotential (2.20) gives a good approximation. By using (2.13) and (2.20), we

21 Ju u
ap(u) :?\/;log A (2.33)
0

a(u) >y [ <. (2.34)

obtain

2Ty, ap(u) and a(u) become

() 2 () 2

where M., is the monodromy matrix around u ~ oo:

M, = (_01 _41> : (2.36)

The existence of the non-trivial monodromy at large u implies that there must be other

If the moduli parameter u circles as u — e

singular points on u-plane. Classically, since the non-Abelian gauge boson becomes mass-

less, there is the singularity at the origin on the u-plane. If there is only two singularities
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(u= oo and u = 0) on the quantum moduli space, the monodromy around u = 0 should
coincide with M_,,. This means that a® should be a good global complex coordinate.
However, it is inconsistent with the positivity of the metric of the Coulomb moduli space,
given by the holomorphic function Im 7(a). We assume that there are three singularities
including u ~ oo in the Coulomb moduli space !. The singularities arise at not the origin
but u = +A2 because of the Zy symmetry on u-plane. What particles become massless at
these singularities? The first guess would be that the non-Abelian gauge boson becomes
massless. The existence of the massless gauge boson implies that the theory becomes
the asymptotically conformal invariant theory in the IR limit. However, the point where
gauge boson becomes massless is only u = 0 due to the conformal invariance. Thus the
massless particles belong to not the vector multiplet, but the hypermultiplet. There are
no elementary particles belonging to the hypermultiplet in the pure SU(2) gauge theory.
Seiberg and Witten identified such particles as the monopole and dyon which are the BPS
particles [1]. Here the BPS particles have no quantum correction and the mass of the BPS

particle is given by
M =\2|Z| = V2|n.a+ nmap|, (2.37)

by using the N' = 2 supersymmetry algebra and the formula for the central charge (2.31).
We assume the monopole with (n, n,,) = (0,1) becomes massless at « = AZ and the dyon
with (ne,n,,) = (=2, 1) becomes massless at u = —A2.

Let us consider the monodromy around u = A2 where the theory is in the strong
coupling region. At u = A2, the theory becomes the magnetic U(1) theory with the
monopole coupling to the magnetic U(1) gauge fields. It is convenient to describe by using
the dual prepotential Fp(®p). Around u = A2, the form of the full dual prepotential

takes

i o) 1 > idp\"
dp) = —d2 log [ -2 ) + —A2 K2 2,
Fo(®p) = - DOg(A0>+2m O;ID’“(AO) (2.38)

L Actually the number of the singularities is determined three due to the consistency with the asymp-
totic forms of ap(u) and a(u) at large u: (2.33) and (2.34) [71].
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The asymptotic forms of ap(u) and a(u) are given by

u— A2
ap(u) " 2 (2.39)
iu— A2 u— A3
~— 1 0. 2.4
o) =5 "o (M) (2.40)

Under v — A2 — €™ (u — AZ), ap(u) and a(u) transform as

() = one (0) e

where M), is the monodromy matrix around u = Ag:

My, = (_11 ?) . (2.42)

If ap and a in this case are written by

aD o nm ne dD
(0)- 07 5) (%) =
under the SL(2,7Z) duality transformation where n,,0 — n.y = 1 and n,,,n.,v,0 €

SL(2,7), the mass of the monopole given by (2.37) with (n.,n,) = (0,1) becomes that
of the particle with (n., n,,):

M = \2|n.a + nmap|. (2.44)

By using the monodromy transformation (2.41), we find that the monodromy matrix for

“(ap,a) is of the form as

1+ n.ng, ng
M(ne’nm) = ( 2 ) .

-n;, 1 —nng,

(2.45)

This monodromy matrix is corresponds to that around a singularity where the BPS par-
ticle with charge (n.,n,,) becomes massless. Indeed, by using (2.45) we obtain the mon-

odromy M_,, at u = —AZ as

-1 4
M_AO == M(_QJ) - (_1 3> . (246)

The monodromy matrices M., and M,, satisfy the condition of the monodromy on the

u-plane:

Mo = My, M_y,. (2.47)
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We note that under the SL(2, Z) duality, the monodromies (2.42) and (2.46) can transform
into those of other BPS particles with other charges (ne,n,,). The monodromy matrices
M, and My, generate the monodromy group I'g(4), which is the subgroup of SL(2,Z)
and is defined by

To(4) = { <?; f) € SL(Q,Z)‘ B =0 mod 4} . (2.48)

The metric of the moduli space Im 7(u) takes the positive due to unitarity. Thus the
u-plane that we consider is viewed as the quotient of the upper half-plane H' by the

monodromy group ['g(4).

2.2.4 Seiberg-Witten curve for N' = 2 SU(2) super Yang-Mills
theory

So far, we find that the structure of the Coulomb moduli space corresponds to H*/T'y(4)
when there are three singularities: u = oo and « = £A2Z. The elliptic curve parameterized

by H*/T'4(4) is described as the form [1,2,10,72, 73]
y'=Cp)* — Ao = (0" — )’ — Ay, (2.49)
where
C(p) =p* —u. (2.50)

This curve (2.49) is called the Seiberg-Witten curve for the pure SU(2) gauge theory.
The Riemann surface (2.49) is a torus. Since the metric of the Coulomb moduli space is
proportional to Im 7(u) > 0 and the SL(2,Z) duality act on 7(u) as (2.30), the coupling
constant 7(u) is interpreted as the modulus of this torus and is defined by a ratio of the

period integrals:

T(u) = : (2.51)

where w and wp is defined by the integration of a holomorphic differential % on the curve:

2d 2d
w(u) == —p, wp(u) = =P, (2.52)
a Y B Yy
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Here o and [ are canonical one-cycles on the SW curve (2.49). From the relation of the

coupling constant:

dap  Oyap(u)

T(U) = aa - aua(u) ) (253)
where 0, = a%, we find
da(u) dap(u)
B w(u), Sy wp(u). (2.54)

Integrating them over u, a(u) and ap(u) are given by the SW periods Il := (a,ap):

alu) = j{ Asw, ap(u) = ]i Asw (2.55)

where the meromorphic one form Agw is the SW differential

Clp) —y
Asw = pdlog ———. 2.56
The u-derivative of the SW differential becomes the holomorphic differential:
0 2p
—Asw = — + d(%). 2.57
Jodsw = 2+ d(x) (257)

Hence the a cycle degenerates in the weak coupling region u = oo and the § cycle
degenerates at the massless monopole point u = A2. The massless dyon point u = —A2
corresponds to the degeneration of the cycle 8 — 2a. In figure 2.2, we show the schematic

of the p-plane of the SW curve.

Figure 2.2: The p-plane of the SW curve for the SU(2) theory.

We now compute the SW periods (2.55) and obtain the (dual) prepotential in both

weak and strong coupling region. When we write the curve (2.49) in the form
4

v =] - e (2.58)

i=1
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where the weak coupling limit corresponds to e; — e3 and e; — e4, we can evaluate the

period integrals 0,11 (2.54), given by

7{ 2dp V2 [ dp
Oya= @ — =

v 2T e [(p—e)(p—e)(p—es)(p — ea)]

2dp V2 [ dp
Bap = ¢ 2L Y= _ 2.60
fé v 2 ) (- e)p—e)p—ea)p— )t (260

where the normalization is chosen such that the asymptotic forms around u = oo are

, (2.59)

N|=

compatible with those in the weak coupling region (2.33) and (2.34). In general, the

period integrals 0,11 can be represented in terms of the hypergeometric function:

= (a)n(b), 2" I(a+n)
F(a,b;c;z) = — n=——-", 2.61
n=0
after changing the variable and using the representation of the hypergeometric function:
I'(c) ' b—1 —b—1
Fla,b;c;2) = ————— [ dtt" (1 —1)° 1—tz)". 2.62
(@.856:2) = Fppy |, A= =) (2.62)
We then obtain
2 ) ) 11
Oua :\/—_(61 —e9) 2(eg3—eq) 2F | =, = L0 (2.63)
2 272
2 ) i 11
Juap :\/—_(62 —e1) 2(eg—eq) 2P (5 51 —w' ), (2.64)
2 272
where
(el —ey) (2.65)
(61 - 62)(63 - 64)
Here the region around w’ = 0 corresponds to the weak coupling region. The point
w’ = 1 corresponds to the massless monopole point and w’ = oo is the massless dyon

point. Since the variable of the hypergeometric function w’ is complicated in general, we

use the quadratic transformation [74, 75]
1 1
F (2&,2b;a+ b+ §,z> =F (a,b;a +b+ 5;42(1 — z)) : (2.66)

and the cubic transformation [74,75]

1 2 z 1 ) 2722
F(3a,a+>:4a+ = :(1——)F a4 242 ) 2.67
(aa+6 a+32) 1 (aa—l—g ot (z—4)3) (2.67)
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such that the new variable becomes symmetric of the root e;, which is given by

27w (1 — w')?
= ) 2.68
v 4(w? —w' +1)3 (2.68)

From these transformation, we obtain the period integrals in the weak coupling region [75]:

\/§ 1 1 5
Vi pyiF(— 2.1 2.69
Oua = —~(=D)™ (12’12’ ’w)’ (2.69)
V2 3 1 5 1 1 5
wap = 1——(—=D) 1| — —, — 1; — —F, ==, —=:1; , 2.
Guap = i5-(=D) 4[2wln12F<12 12 w) o <12 12 w)} (2.70)
where
o 1 2
F.(a,b;1;2) = F(a,b;1;2)1 Jn(0)n — "o (271
it = Fatames SO L 2 e

Here the variable (2.68) can be represented by

27A

where A is the discriminant of the curve (2.58):

A=T](e ¢, (2.73)
1<J
and D is given by
D= Z ejes —6 H e — Z elejer + eieser + eejer). (2.74)
1<j 1<j<k

The integral F' = (—D)% $ % obeys the hypergeometric differential equation:

d*F

w(l - )

+(y—(a+p+ 1)w)2—i —afF =0, (2.75)

. . 1 . 5 . . . .
with a = 15, 8 = 5 and v = 1. Changing the variable from w to u, the hypergeometric

differential equatlon (2.75) for F(L =, ; 1;w) leads to the differential equation with respect

to u which takes the form:

011 011 oIl
% +p1W +p2% = O, (276>
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where p; and py are given by

D1 D) T 9w + w(i = w) Oy, (2.77)
CR(=D)i  9(-D)if Pw y—(l+a+Bw
P T (Coy { Dy wi—w) }
af w)?
"~ el (Bw)?, (2.78)

5
12

equation for 9,11 [76,72,77-79,75]. In the pure SU(2) gauge theory, the Picard-Fuchs
equation (2.76) turns out to be the second order differential equation for IT [76]

where a = %, 8 = 2 and v = 1. This differential equation is called the Picard-Fuchs

o211 1
ou?  4(A§ —u)

I = 0. (2.79)

Let us calculate the prepotential in the weak coupling region for the pure SU(2) gauge
theory by using (2.69) and (2.70). The discriminant A and D for the pure SU(2) gauge
theory are given by

A = 256A5(u® — Ag), D =12A5 — 160>, (2.80)

Substituting (2.80) into (2.69) and (2.70), we obtain the SW periods:

w Ao [A2\*  15A0 A2\ 105A, A2\ 2
o) \/g 24V/2 ( u 210,/2 \ u 214\/2 \ u T (2.81)
3 7
. 1 Su AO Ag 2 47A0 A(Z) 2
(2.82)

by expanding (2.69) and (2.70) around u = oo and integrating over u. Solving u in terms
of a in (2.81) and substituting it into ap, ap becomes a function of a. Then integrating

it over a, we obtain the prepotential [72]

7 CL2 00 A 4k
Fla) = 5—a® (2 log i 6+8log2— > Fi (E) : (2.83)
k=1

where the first several coefficients of Fj are listed in table 2.1. The first term of the
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E|l1 2 3 4 3

1 5 3 1469 4471
Frlgs ou o T gw.s

Table 2.1: The coefficients of the prepotential (2.83) for the pure SU(2) theory.

prepotential (2.83) is the perturbative correction to the prepotential and the last term is
the non-perturbative instanton correction.

We can also study the SW periods in the strong coupling region. Around u = 4A2,
solving the Picard-Fuchs equation (2.79) in terms of hypergeometric function, we can
compute the SW periods [72]. For example, the SW periods around the massless monopole

point u = Ay are given by

aD(ﬁ):z'A()(%A%—%( ) ( ) <X2)4+> (2.84)
aD(u)log%Ag_mo (_% (F) _3 (/@)Z% (A%)S+)]

(2.85)

where @ := u — A3. Inverting ap(4) in terms of @ and inserting it into a(4), we obtain ap
as a function of a. Then the dual prepotential around u = A2 is given by the integration

of ap over a [72]:

e .
Fplap) = % (5(1% log <— 12511\)0) Z]:Dk/\2 (mD> ) : (2.86)

where the first several coefficients of Fp, are hsted in the table 2.2. The first term

of the dual prepotential (2.86) corresponds to the perturbative corrections to the dual
prepotential (2.38). In the next section, we will extend the above discussion to the SU(2)
gauge theory with N¢(= 1,2, 3,4) hypermultiplets.

2.3 Seiberg-Witten solution for SU(2) SQCD

Let us discuss the low-energy effective theory for the SU(2) gauge theory with Ny(=
1...4) hypermultiplets [2]. In the previous section, we obtained the SW curve and the
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L [1 2 3 4 5
3 1 5 11

0o = = = -
For 4 24 99 212.§

Table 2.2: The coefficients of the dual prepotential (2.86) for the pure SU(2) theory.

SW differential for the SU(2) pure Yang-Mills theory. In the next subsection, we will write
down the superpotential for the hypermultiplets in terms of the N’ = 1 superfields and
give the BPS mass formula including the mass of the squarks. In the next subsection, we

will obtain the SW curve for the SU(2) gauge theory with Ny(=1...4) hypermultiplets.

2.3.1 Superpotential for hypermultiplet

In terms of the A/ = 1 superfields, the N' = 2 hypermultiplets consist of two N = 1 chiral
superfields Q¢ and Qq; where i (= 1,2) is the color index and @ (= 1,--- , N ) is the flavor
index. Here the chiral superfields Q¢ and Qi contain (1, q) and (@D:;,Q), respectively,
and belong to the fundamental representation of the SU(2) gauge group. In the N' =1

language, the superpotential is given by

Ny
W =V2Q.,2Q" + >~ m.Q.Q", (2.87)
a=1

where m,, is the bare mass for the N; hypermultiplets and the color indices are suppressed.
When m, = 0, the classical theory has the global symmetry which is the subgroup of
O(2Ny) x SU(2)g x U(1)g. On the classical Coulomb moduli space, which implies that
the vacuum condition is (¢) = ac® and (Q) = (Q> = 0, the SU(2) gauge group is
spontaneously broken to U(1). From the vev of the scalar field (¢) and the superpotential
(2.87), the squarks acquire mass. The squarks are the BPS particles and then the BPS

mass formula including the squarks is give by [70, 2]

M =+/2|Z|, (2.88)
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with

Ny

1
Z:nea+nmaD+Z
a=1

—=S,Mg, 2.89
. m (2.89)

where S, are the U(1) charges corresponding to the additional symmetry, to which the
global symmetry is broken by non-zero masses. One of the squarks has mass as aj:%. The
effective Lagrangian also takes the form (2.14) by integrating out the massive modes, while
the Coulomb moduli space for the SU(2) SQCD is also parameterized by the Coulomb
moduli parameter defined by (2.13). In the next subsection, we will consider the structure
of the Coulomb moduli space and show the SW curve and the SW differential for the SU(2)
gauge theory with Ny hypermultiplets.

2.3.2 Seiberg-Witten curve for SU(2) SQCD

As discussed in the subsection 2.2.4, by deriving the monodromy group generated by the
monodromy around singularities, we can study the (singularity) structure of the quantum

Coulomb moduli space. Furthermore, by taking the decoupling limit where

my;, — 00, An, =0, A?V;JX{H = meA;lV_fo : fixed, (2.90)

with Ay, being a QCD scale parameter for Ny < 3, the number of the hypermultiplets
Ny are reduced to Ny — 1. For Ny = 4, the decoupling limit to the Ny = 3 is defined by

my — o0, q—0, Az:=myq: fixed, (2.91)

with ¢ = exp(2miTyy) where Tyy denotes the UV coupling constant [80,36]. Then we
require that the SW curve and the SW differential for the Ny theory become those for
the Ny — 1 theory in the decoupling limit (2.90) and (2.91). The SW curve for the SU(2)
gauge theory with N;(= 0...4) hypermultiplets, which satisfies the above condition, is
given by [10]

y> = C(p)* — N°G(p), (2.92)
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N

_ _Ny -
where A = A?Vf > for Ny <3 and A = ¢z for Ny =4. C(p) and G(p) are given by

/

p? —u, (Ny=0,1)
2 A3
pPout (Ny=2)
C(p) = P2—U+%<p+ml+722+m3), (N; =3) (2.93)
4
a4y .2 q 4 . _
<1+2>p u+4pZmz+SZmlm], (Ny=4)
L =1 1<j
and
Ny
G(p) = [ [0 +m). (2.94)

i=1

The SW differential is expressed as (2.56). The SW periods II := (a,ap) are

a(u) = f;/\svw ap = %GASW, (2.95)

where v and (3 are the canonical one-cycles on the SW curve. The SW curve (2.92) can

be written into the form [10]

A G_(p
3 (G + ) —co, (2.96)
by introducing
y=AG.(p)z — C(p), (2.97)
where
Ny Ny
Gip)=[w+m), G-w= [ w+m), (2.98)
i=1 i=N4+1
with IV being a fixed integer satisfying 1 < N, < Ny. The SW differential becomes
G_(p)
Asw =D (dlog — 2dlog z) . 2.99
o G 24
The u-derivative of the SW differential becomes the holomorphic differential:
a)\sw 28u2 de

= dp+d(x) = 5 " d(x), (2.100)
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2]

where 0, := 5. Differentiating the SW periods II with respect to u, one obtains the

periods for the curve:

dya(u) = ]{ Zauzdp - j{ Ldpa duap(u) = 7{ Qauzdp = Ldp (2.101)
a Z a Y B < g Y

As discussed in the previous section, the period integrals (2.101) are given by (2.69) and
(2.70) in the weak coupling region. We also find the periods 9,1 obey the Picard-Fuchs
equation (2.76). For the SW curve (2.96) with Ny < 3, the Picard-Fuchs equation (2.76)
agrees with that in [78,79]. Note that for the massless case, the Picard-Fuchs equation
turns out to be the second order differential equation for IT [77].

To solve the Picard-Fuchs equation (2.76) for the Ny theories, we need to derive the
discriminant A (2.73) and D (2.74) for each Ny. In the following Ay,, Dy, and wy;,
stand for A, D and w in (2.73), (2.74) and (2.72) for the N; theory, respectively. In the
case of the Ny = 1 theory, they are given by

Ay = — A(256u° — 256u*m?T — 288umy AS + 256m3A2 + 27AY),

(2.102)
Dy = — 16u® + 12m; A3,
For Ny =2, Ay and D, are obtained by
Ay 10 8 (7,2 2 2 4 4 22
A, T 3A3"myms — A5 (8u® — 36 (m] + m3) u + 27m{ + 27my + 6mim3)
+ 256A5u” (u—m3) (v —m3) — 32ASmymy (10u® — 9 (m] + m3) u + 8mim3)
3
Dy = — ZA% + 12A3mymy — 16u”.
(2.103)

We then consider the Ny = 3 and 4 theories, but Ay, and Dy, are rather complicated in
the generic mass case. So we will write down them for these theories with the same mass

m:=mj; =mg=---=my,. For Ny =3, A3 and D3 become
A2 (8m? + Azm — 8u) 3 (256A3 (8m? — 3mu) + 8A2 (3m? + u) + 3A3m — 2048u?)
4096 ’
N

9m?
_ _ 75 3 2 A 2
D5 = 556 + 12A3m” + A3 (u 1 ) 16u”,

Ag =

(2.104)
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in the same mass case. For Ny = 4, we have
C22¢2 (m? —w)* (m*(q — 16)q + 8mPqu + 16u?)
B (¢ —4)%° ’
16 (—m* —12)%2¢ — 192) — 8m?(q — 8)¢*u — 1 —4 16)u?
q—

We can also solve the Picard-Fuchs equation for general mass case based on Ay, and

Ay

Dy, with Ny = 3,4 but we do not show them here. It is shown that these formulas are
consistent with the decoupling limit: (2.90) and (2.91).

In the weak coupling region, the periods d,a and d,ap are found to be given by (2.69)
and (2.70) with Ay, and Dy,. Expanding them around u = oo and integrating over u,
we have the SW periods in the weak coupling region. The prepotential is derived from
the SW periods at u = co. In chapter 5, we will compute the quantum SW periods for
the SU(2) gauge theory with Ny(=0,--- ,4) by solving the Picard-Fuchs equation.

We next consider the strong coupling region, where the monopole/ dyon particles
become massless. We can also evaluate the SW periods by solving the Picard Fuchs
equation (2.76) around the massless monopole/dyon point on the u-plane. Here we note
that the singularities on the u-plane are obtained by the zero of the discriminant Ay, at
which the SW curve degenerates.

Let us consider the SW periods around the massless monopole point in general Ny,
which the discriminant Ay, becomes zero. Here we define ug as the massless monopole
point. From the BPS mass formula (2.88) with only magnetic charge, we find the dual
SW period ap(u) becomes zero at the massless monopole point u = ug. By solving the
Picard-Fuchs equation around u = ug, the periods around the massless monopole point

take the form as [75]
21 _1 1 5
Ouap = T(—DNf) i (E’ B 1;wa) ; (2.106)
V2 [ 3 1 1 1 5

oa=—(—Dy,) 1| —In12F | —, —; 1; ——F | =, —1 . (2.107
o= (=Dny) 4[% " <12 12 wa) o (12 12 wa)} (2.107)
where wy, and Dy, are given by (2.72) and (2.74), respectively. In general, wy, and

(=D Nf)i are expanded around u = g as follows:

wy, = Y Ani",  (=Dy,)Ti =Y B, (2.108)
n=1

n=0
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where 4 = u — ug. Substituting (2.108) into (2.106) and (2.107) and integrating over u,
the SW periods can be of the form as

ap(it) =Y Ji", (2.109)
n=1

l

X X 103 .
a(t) = gy lap(w) § log(A}4) — 7 log 12 » + ZInu , (2.110)
n=1

where a integral constant for ap is determined such that the deal SW period satisfies the
condition ap(0) = 0. a(u) is given up to independent constant of 4. We define the integer
[ as the smallest integer, giving nonzero A, i.e. A4, =0 (n <1l) and A, # 0. J, and Z,

are given in terms of A,, and B,,. We show the first three terms of A, and B,, as follows:

B
jl = Z\/_%a
Jo = QZW (B + BoAr fV) (2.111)

]

1
B=5 {32 + (BoAs + BiAy) fU + 530A?f(2)} ’
7, = —IB;y,
l Al
IQ _§BQ+ ;;;12314‘21%301419(1), (2112)
[ A1 2 A A\ 1 i 1
T3=—-Bs+——-_B — By + —— < (ByAy + BiAy)gM + =By A2¢?
3 33+A132(Al 2A?31+3\/§(02+11)9+2019 )
where
(n) _ (@)n(B)n
f - n| I
n—1
(n) — (O‘)n(ﬁ)n 1 1 o 2 211
! (nl)? atr Brr 141} (2.113)

with a = 1—12 and = % One can determine the higher order corrections in @ in a similar
way. In chapter 5, by using the above formulas, we will calculate the expansion of the
quantum SW periods around the massless monopole point in some cases: the massless
hypermultiplets and the massive hypermultiplets with the same mass. We note that the

periods around the massless dyon point can be analyzed in the same manner.
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2.4 Generalization to SU(N,) (N. > 3) SQCD

In the previous sections, we had the SW curve and the SW differential for the SU(2) gauge
theory with Ny(=0,--- ,4) hypermultiplets. The construction of the curve for the SU(2)
SQCD can be generalized to the gauge theory with or without hypermultiplets [5-10].
In this section, we will consider the SU(N.) (N, > 3) gauge theory with N;(< 2N,)
hypermultiplets [10].

For the SU(N,) gauge theory with N¢(< 2N.) hypermultiplets, the vev of the scalar
fields (2.8) are given by

(¢) = diaglas, -+, an], (2.114)

where
Ne
> a;=0. (2.115)
=1

Then at generic point on the Coulomb moduli space, the SU(N..) gauge group is broken to
U(1)Ne=! and the Coulomb moduli space is expressed as the N, — 1 complex dimensional

moduli space, parameterized by the gauge invariants:
Nc
up = (Tr¢*) = "af, k=2,---N. (2.116)
i=1

To construct the SW curve and the SW differential for N, > 3, it is convenient to use the

symmetric polynomial s; of a;:
Sk:(—l)k Z Qiy Gy k=2,---,N,, (2.117)

rather than the gauge invariants (2.116). The sets of s, and wy satisfy the Newton’s

formula [6]

k
ks + Z Sp—iu; =0, so=1, s =u; =0. (2.118)

=1

This relation also satisfy at the quantum level.
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The BPS mass formula (2.88) are generalized to the case of the N' =2 SU(N.) SQCD,
given by [2,10]

Ne Ny
7 = Z (néai + nﬁnam) + Z LSama. (2.119)
i=1 a=1 V2

The electric n’ and magnetic n’, charges can be chosen to satisfy

N, Nc
> ni=0, ) nl,=0. (2.120)
=1 i=1

Here ap; (i = 1,---, N.) denotes the vev of the dual scalar fields satisfying vazcl ap; = 0.
The SW curve for the SU(N.) (N, > 3) gauge theory with Ny hypermultiplets is given
by

y? =C(p)* — Ay G(p), (2.121)

where C'(p) and G(p) are given by

NC QNC_Nf Nf—NC
—i N —N.—j
Clp) =p™ =D o™+ —— 3 o™, (2.122)
=2 7=0
Ny
G(p) =@+ my). (2.123)
j=1
Here v; (j =1,---, Ny) are some symmetric polynomial of m;:
Ny Ny
S o =T +my), wv=1 (2.124)
=0 j=1

The SW curve is a Riemann surface of the genus N. — 1. The SW periods II = (a;, ap;)
(l=1,---,N.—1) are given by

a 2]{ Asw, api Zj{ Asw, (2.125)
[e7} B

where a; and [; are the canonical one-cycles on the curve. The SW differential Agw takes

the same form as (2.56). The SW differential satisfies

agiw = w; + d(%), (2.126)
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where w; is the basis of the holomorphic 1-forms given by

w; = Md]), (2.127)
Y

with 0s, 1= (%. In the decoupling limit which is given by

my, — 00, An, =0, A?V]::Nfﬂ = mNCA?V]:C*Nf : fixed, (2.128)
we also find the SW curve and the SW differential for the N; theory go to those for the
N¢ — 1 theory.

Summary

In this chapter, we explained the Seiberg-Witten theory for the SU(N,) gauge theory with
Ny hypermultiplets. We constructed the SW curve and the SW differential for the SU(2)
pure Yang-Mills theory, for example. We then expressed the SW periods in terms of the
hypergeometric function. We calculated the expansions of the SW periods and obtained
the (dual) prepotential around v = oo and u = AZ. The construction in the case of the

SU(2) pure Yang-Mills theory was generalized to the case of SU(N,) SQCD.
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Chapter 3

Argyres-Douglas theory

In this chapter, we will review the Argyres-Douglas (AD) theory [3,4]. The AD theory is
an interacting A" = 2 superconformal field theory (SCFT) where mutually non-local BPS
particles become massless. The BPS spectrum of the AD theory can be studied by the
Seiberg-Witten curve, which is obtained from degeneration of the curve of N' = 2 gauge
theory. We will discuss the general properties of an interacting N/ = 2 superconformal
field theory in the first section of this chapter. In the next section, we will discuss the
SW curve for the AD theory, realized from the SU(2) SQCD, by taking the scaling limit
around the superconformal point on u-plane and then calculate the SW periods around

the superconformal point. In the third section, we generalize the AD theories obtained

from the SU(N,) SQCD.

3.1 Interacting N =2 SCFT

We begin by discussing four-dimensional interacting conformal field theories (CFTs) with-

out supersymmetry. The generators of the conformal algebra satisfy the commutation

43
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relation as follows (see [81] for a textbook):

[D, P =iP,,
(D, K] = — K,
(K, P =2i(1 D — Ly), 3.1)
(K s Lup] =t Ky — 0o Ko),
[P;w Lv,o] :i(nuvpp - UupPV)>
]

[(Myuws Lo =i(MupLo + MuoLup — MupLve — MuoLyp),

with all other commutators vanishing where L, is the Lorentz generator, P, is the transla-
tion generator, D is the dilation generator and K, is the special conformal transformation
generator. All the fields in the CFT belong to the representations of the conformal algebra
which are characterized by the scaling dimension and the SU(2), x SU(2)g Lorentz spin
(s4,5_). For example, we consider the field strength operator F),,. It is convenient to
introduce the two-form as F' := F},,dx* A dz”. The field strength can be separated into
the self and antiself dual parts.

F*=F+*F (3.2)

with the spins (1,0) and (0, 1), respectively, where  is the Hodge dual. F* is the confor-
mal primary operator which is annihilated by K. The descendants are created by acting
P, on the primary states . The norm of the state of the conserved current J* = *dF* is

given by
[175) P =2([F] - 2), (3.3)

where [F] denotes the scaling dimension of the field strength. From (3.3) and unitarity,
we see the field strength satisfies [F] > 2. For [F] = 2, due to the Bianchi identity, we
obtain the free equation of motion dF'" +dF~ = 0 which implies that the theory becomes
the free U(1) theory. For [F] > 2, the theory has the non-zero conserved currents J* # 0
which are the descendants of the primary operators F*. Due to the presence of both the
non-zero electric current J, := J*+.J~ and the non-zero magnetic current .J,, := J*+.J~,
any interacting field strength must couple to both electrons and monopole in CFT. This

statement is also valid in supersymmetric conformal field theories.
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We next consider the NV = 2 SCFT. The superconformal algebra is generated by
the superconformal charge Q! Qsr, S¢, S and the R charge R!; in addition to the
generators of the conformal algebra. The representations of the NV = 2 superconformal
algebra are labeled by not only the scaling dimension and the Lorentz spins but also U(1)g
charge R and SU(2)g spin /. This means that there is an anomaly free U(1)g symmetry,
which is the subalgebra of the N = 2 superconformal algebra, in N' = 2 SCFTs. As
discussed in the previous chapter, in the N' = 2 gauge theory on the Coulomb moduli
space, the classical U(1)g is broken by the anomaly. Thus there appears the accidental
U(1)g symmetry in the IR, if the N = 2 SCFTs appear at a certain point in the Coulomb
moduli space.

In the Coulomb moduli space, the interacting N’ = 2 SCFT arises at the special locus
where mutually non-local BPS particles become massless. This N' = 2 SCFT is called
the Argyres-Douglas theory [3,4]. Here the term “mutually non-local” means there is no
electric-magnetic duality transformation going to the frame such that the fields carry only
electric charge. Since there are both the massless particles with electric charge and those
with magnetic charge, the AD theory has no Lagrangian description.

The relevant operators ;, which deform the superconformal point with their coupling
M;, are regarded as the chiral primary fields with 7 = 0 and (s, s_) = (0,0) in the N’ = 2
vector multiplets. For N = 2 SCFTs, the scaling dimension of the chiral primary field is
determined from the U(1)g charge R and has the bound:

[a;] = %R > 1. (3.4)

When the inequality is saturated, the fields satisfy the null state equations corresponding
to the free Maxwell equations. At the superconformal point, there are no null states so

that [@;] > 1. Furthermore, the operators @; and their coupling M; satisfy the condition
(] + [M;] = 2. (3.5)

From the above, one finds the bound of the scaling dimension of the relevant or marginal

operators:

1< u] <2. (3.6)
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If [@;] > 2, the operator @; is irrelevant. Thus the operators for the AD theory have the
fractional scaling dimension due to the accidental U(1)g symmetry. The scaling dimension
of the operators can be determined from the SW curve of the theory and the fact the SW
differential has the scaling dimension one. In the next section, we will focus on the SU(2)
SQCD and see that the SW curve and the SW periods for the AD theory are given by
those for SU(2) SQCD, taking the scaling limit.

3.2 AD theory realized from SU(2) SQCD

In this section, we study the superconformal point in the Coulomb moduli space for N' = 2
SU(2) SQCD where mutually non-local BPS particles become massless [3,4].
The charges for two dyons to be the mutually non-local satisfy [3]

nWn2 — n@npl) -0, (3.7)

m

where n'? and n!” are the magnetic and electric charges of the 7’th dyon.

For SU(2) gauge theories with Ny = 1,2, 3 hypermultiplets, there is a superconformal
point on the u-plane, where the squark and monopole/dyon are both massless [4]. The
superconformal point are given by choosing the Coulomb moduli parameter and the mass
parameters as v = u* and my = --- = my, =m"* where ©* and m* are given in table 3.1.

The SW curve (2.92) degenerates as
v~ (p—p") (38)
where p* is the branch point of p given in table 3.1.

3.2.1 Seiberg-Witten curve at superconformal point

We study the SW curve and the SW differential around the superconformal point. The
relevant operators and its corresponding couplings are identified by taking the scaling
limit. Omne determines their scaling dimensions from the SW curve and the fact the
differential has the scaling dimensions one.

Let us consider in the Ny = 1 theory at first. If we substitute the branch point
1

p=pp"= —% into the curve (2.96), the curve becomes zero at z = ﬂ:%. We choose the
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N1 2 3

3 Ay As
* _A e —
L e 8

3 3 A2
* ZA2 ZA2 3
R e e A

1 Ay As
% __A _ e _ 2
P Ty Ty

47

Table 3.1: The superconformal point for the SU(2) theory is given by tuning the moduli
parameter and the mass parameter to u = u* and m = m*, respectively. p* is the branch
point of p of the SW curve degenerated from the curve (2.92) at the superconformal point.

1

2
branch point z = —A71 and introduce new variables as
.M i23€> M €p
p=eh——, Z= -~ -
2 Mo A A7

~ 3 ~
u :6312 + €2MA1 + ZA%, my, = 62M +

(3.9)

Expanding around e = 0 with keeping @ and M finite, the leading order of the curve in ¢

corresponds to the curve for the AD theory of (A;, Ay)-type:

The SW differential (2.99) becomes

Njot

1€

- lj\sw—k...,
22 A7

Rsw = — > zdp

SW o= A p-

Asw =

(3.10)

(3.11)

(3.12)

by using (3.9) and taking the scaling limit € — 0. From the curve (3.10), the scaling

dimensions of @ and M are g and %, respectively. Here @ is the relevant operator and M

is the corresponding coupling parameter.
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For Ny = 2, we define the new variables

M Ay 233 ~ _ 2eM
— € - —, z = 1 Z — €EpP — 9
P==3 75 I
M)? - 3AZ
u—€2ﬂ—<€3) +A2€M—|——2,
A ~ A ~
m1:72+€M+€%C~L, MQ:72+€M—€%CNL, (313)

and consider the scaling limit € — 0 of the curve (2.96). At leading order in € the curve
(2.96) becomes
2. 8 -5 (bl

P2 =9 —ap— ~Ma+ —=M> — : 14
F =P —up - g u+27 1 (3.14)

Here u, M and Cy := 2a2 are the relevant operator, the corresponding coupling and the
Casimir invariant of the U(2) flavor symmetry, respectively. The curve (3.14) corresponds
to that of the AD theory of (A, As)-type. In the scaling limit around the superconformal
point, the SW differential (2.99) becomes

njw

1€

Asw = ——Asw + -+ (3.15)
22 A5
up to the total derivatives where
- B B 2 -

4

The scaling dimensions of u, M and C, are 35

% and 2, respectively.

For Ny = 3, introducing the scaling variables as

4 ((6M)2 + 63@> 16(eM)3 A

— 25— el A3
p=ep—eM 31, T TR
o s M 2D S
3A3 A3 A3
_ 4(eM)? ~ 3AseM A2
— 3~ M 2 et Ateind 3

u=€eu 3h, + (eM) 3 + 3

A ~ A . A .
m1:§3+6M+€261, m2:§3+6M+€262, m3:§3+eM—e2(51+62),

(3.17)
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and then taking the scaling limit e — 0 with fixed @, M, ¢ and &, we obtain the curve

of the AD theory of (A;, Dy4)-type:

o a  _[Cy AMu a2 8M3a 16MS  20,M?  Ch
2 3
=p’—p| = - — - — - 3.18
=0 p(2+A3> N, 3AZ T 27AT 3k, 30 (3.18)
where

Co =2 (B +c1ea+c3), Cai=—3(e+e0). (3.19)

Here @ and M are the operator and the corresponding coupling, respectively. Cy and Cs
refer to the Casimir invariants associated with the U(3) flavor symmetry. Then the SW

differential (2.99) around the superconformal point becomes

i€? -
Asw = —1Asw + -, (3.20)
A3
up to the total derivatives where
. 1 OMp AM3 ’
Asw = A3 {Qﬁdlog <zz——p——3—i1> Zpdlog(p—l—mz)} (3.21)
A3 3A; A3 i=1

Here the parameters m; (i = 1,...,3) are interpreted as the mass parameters at the

superconformal point, which defined by

AM? L 402

g C T = C 7 = - C C . 322
e + ¢y, mo 37, + Cog, ms 37 (€1 + &2) ( )

ma

3 1

We see that the scaling dimensions of @, M, Cy and Cj are 5, 5, 2 and 3, respectively.

We summarize the scaling dimensions of the operators for the AD theory realized from
the Ny = 1,2, 3 theories in table 3.2.

3.2.2 The period integrals around the superconformal point

We next discuss the SW periods for the AD theories realized from the SU(2) gauge theory
with Ny hypermultiplets. The SW curves for the Ny AD theory takes the form as

2 =p" —pn,p—ony, (3.23)
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Ny | AD theory | [a] [M] [Cy] [Cs]
6 4
1 A A - = — —
( 1, 2) 251 g
2 A A - = 2 —
( 1, 3) g ?
3 (A1, Dy) 5 3 2 3

Table 3.2: The scaling dimension of the operators for the AD theory of (A1, Ay), (A1, A3)
and (Ay, Dg)-type. [O] denotes the scaling dimension of O.

where py, and oy, are read off from (3.10), (3.14) and (3.18). The SW differentials Asw
(3.12), (3.15) and (3.20) have been normalized such that

9 - 2dp
2 Xy = 22 24
ou W T Tz (3.24)

We then define the SW periods as

11 = (a,ap) = (/a XSW,/éXSW), (3.25)

where & and § are canonical 1-cycles on the curve (3.23). The @-derivative of the SW

periods becomes the period integral of the holomorphic differential defined by

dp dp

w= | 2L w,= 2 (3.26)
a R 5 z

As discussed in the SU(2) SQCD, we express the period integral in terms of the hyper-

geometric functions of w given by

27A 2703
By, = et =1 - = (3.27)
ADY, 4py,

Here ANf and DNf correspond to A in (2.73) and D in (2.74), respectively, which are
given by
Ay, = 4p}, — 270%,, (3.28)
Dy, = =3p;. (3.29)
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By using the quadratic (2.66) and cubic transformation (2.67) [74,75], the periods (3.26)
are obtained by

. Nt /105
WO (@, D) =27 (—D) 4F(12 12,1,w), (3.30)
~ i (3log12 1 5 1 1 5
(i, D) = - 2ir (~D) (L2 e tr(l 2y
wp(, D) " o 212" T\ ) )
(3.31)

around the point w = 0 where F(«, 3;7;2) and F.(a, 3;1; 2) are defined by (2.61) and
(2.71). Here the subscript Nj of @ and D has been omitted for sake of simplicity. Since
the dual period (3.31) has logarithmic behavior around @ = 0, it is not the expression
around the superconformal point with the fractional dimensional @ and M.

From the analytic continuation of the solutions around @w = 0 to those of w = oo, the

periods (3.30) and (3.31) become

0o Y ~7i F(%) ~,% 1 72 1
(&, D) =2r(~D) <m(1—w) F(E i3 ﬂ) .
3.32
I'(-%) s (5 114 1
Tt (B 1—~))’
w%o(ﬁ),D) :2l'7T(—[))7i <%§\((1§_1))(1— W)~ BE (12 12 g —ﬁ;>
, 2o (3.33)
(15T (—3) s (5114
o 7 (BT
respectively. Here we use the connection formula [74]
o TQITB ) (o1
B33 = = 7 F( A e ) (3.34)
T =8) | \-s o —a 1 '
G 7 F (- e es e,

where | arg(1 — z)| < . Similarly, we use the connection formula

(1—2) "7 () (a+F—7)
I'(a)T(B)
L(y)l(—a—B+7)

+ T(v—a)(y - B) Fla,B;a+ 5 —~v+1;1—2),

F(a,B;7;2) =

Fly—ay—8;—a—08+~v+1;1—2)

(3.35)
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in order to perform the analytic connection to the solutions around w = 1. Thus we find

the expansions around w = 1:

W' (b, D) =n~3(~=D) "4 (GF (%) I (%) F (112 152 ; b w)
(1 —®)2T (%)F(%) F(l%’%’; ))
wh(®, D) = —ix~3 (D)1 <6F (%) r (1—2) r <112 DI w) (3.37)

+(1 — )T (%)r(%) F<172 1; ‘;’ 1-@)).

By using these formulas, we will study the SW periods for the AD theories obtained

(3.36)

from the SU(2) theory with Ny = 1,2,3 in the scaling limit as follows:

1. For Ny =1, w; and D, are given by

277>
=1 (3.38)
16A, M3
Dy = —3M M. (3.39)

1

The superconformal point corresponds to @} := ;== = 0. Thus the expansions
1

around the superconformal point are given by using Eqgs. (3.32) and (3.33):

o .~ Oap
% = 2w (U}l,D1>, aﬂ

From the integration of these solution over u, one obtains the SW periods
1,3 ~ N
2 1 1 1 2
oA =) (v (=)r(3)F(- > 74
23 . 5wz \A\] 6 3 12°12’' 3
1 1 5) 1 5 4
15030 (—= | T (= | F | ——=, —; =; 0] A1
+ 571}13 < 6) (3) < 127 12737w1>>7 (3 )
1,3 5
2A? U\ ¢ 1 1 5 1 2
ip =1 e I (X TES D E) o (= ol (e ol RNy
9% . 5rs \ A2 6 3 12°12° 3
2 1 5 1 5 4
15(—1)3w}sT M=) F|——=,—; ;w0 )
HB(-D3a) ( 6) (3) ( 12’12’3’“’1))

= 2w (1, D). (3.40)

(3.42)
Note that the SW periods II satisfy the Picard-Fuchs equation [21]
0* - 2 0 5
1 — m+-(1- M+ —II=0. 3.43
( w].)wla'*/Q +3( w)awl _'_144 ( )
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From (3.41) and (3.42), we see that @ ~ @¢ and dp ~ @6. We also find that the
scaling dimension of @ and M is given by g and %, respectively, by using the fact the

SW periods @ and ap have the scaling dimension one. From (3.41) and (3.42), we

can compute the expansion of the coupling constant 7 := 555 in ). We then find
it does not have logarithmic divergence, which implies that the theory is around
the superconformal point. The SW periods (3.41) and (3.42) are interpreted as the
expansions in the coupling M with fixed @ in the scaling limit. We note that the
present expansions for Ny theories are different from the results in the previous
literature: In [75,38], one have expanded in small @ without taking the scaling
limit, after the coupling and the Casimir invariants have been chosen to be zero.
In [82], the expansion of the SW periods without taking the scaling limit have been

calculated.

2. For Ny = 2, wq and DQ are obtained by

(ZCyAy — 16M° + 36 M11)?
i 43203 ’
D, = —3i. (3.45)

(3.44)

Wy =1—

The superconformal point corresponds to wh := 1 — wy = 0. Applying Egs.(3.36)

and (3.37), we obtain the expansion around the superconformal point:

oa . = Oap R
% = 2w1(w2, Dz), % = lel)(wg, DQ) (346)
After expanding them around @) = 0, where % < 1 and éféu < 1, we integrate
w2

over @. Then the expansions of the SW periods around the superconformal point

are given by

ST (H) T () (m) R (347
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(a2 sk (e (i)
b 2 A% 3%71-% 77'% U
1
i (L LIS TVA
_3 lr(122r(12) (C%é\2> 4+ | (3.48)
T2 u

We see again that the scaling dimensions of @, M and Cs are given by %, % and
2, respectively. The expansions of the periods (3.47) and (3.48) do not contain

logarithmic terms.

3. For Ny = 3, we have
(—9C5A3 + 18C,A2M? — 16 MO + 72A3 M3 + 27A202)?

wy =1-— - —3 , (3.49)
108 (% + 422
- Cy  4Ma
D3y =-3— . 3.50
3 ( 5 + A ) (3.50)
The superconformal point corresponds to ws = oo or W} = 17—111)3 = 0. By using

Egs. (3.32) and (3.33), the periods around the superconformal point are given by
da

dap

— = 2w™(ws, D3), ——= = 2w (s, D3). 3.51
= (i, Dy), 2 = i, Do) (351)
In a similar way as the case of the Ny =1 and 2, we expand them around w5 = 0,
where u&/\z <1, CgAg < 1 and CZ—Q\S’ < 1, and integrate over u. After that, we have

the SW periods:

| =
~_
wn

ot

|

el
W |l
[l R
|
~
ol
SN—"

[\

<o

=

|

W=
SN—"

=
~—~
N[}
SN—"
7N
=

w
N~
W=

71'% 3%71'% fLAg
. (3.52)
P(=5)T(3) (C3A3)\° T (5T (5) [Cshs
+ 1 ~1 + 3 1 =2 ’
2.2 U 22 . 3272 U

W olw
—~
|
—
S~—
ol
7 N
=
~_
wln
ot
=
Nl
W |ovlun
N = | e
|
~
Wl
SN—"
[\»)
<o
|
|
W=
SN—"
|
~—~
N3
S—
/N
<
w

| ) (3.53)
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3 1

The scaling dimensions of , M , C, and Cj are also read off 5, 3, 2 and 3, respec-

tively. Furthermore, we see the expansion of the SW periods includes no logarithmic

behavior.

In the next section, we will generalize the above discussion to the case of the SU(N.)

SQCD and obtain the SW curve and the SW differential around the superconformal point.

3.3 AD theory realized from SU(N.) SQCD

We will consider the curve obtained from the degeneration of the SW curve (2.121) around
the superconformal point of N' = 2 SU(N..) SQCD. For the pure SU(N..) gauge theory, the
SW curve around the superconformal point has been studied in [21]. The superconformal
point for the SU(N.) gauge theory with Ny hypermultiplets has been studied in [20,22].
For SU(N.) SQCD, the curve at the superconformal point are classified as follows:

1. For Ny = 0, the superconformal point is given by s; = s} where
si=sy=-=8y_1 =0, sy =A)" (3.54)
The SW curve (2.121) at the superconformal point becomes
v = (p—p)", (3.55)
where p* = 0 is the branch point of p.

2. For Ny = 1, we can not distinguish squarks from other singularities, but we find the

form of the curve takes

y* = (p—p )N (3.56)
by counting the number of parameters, where p* is the branch point of p. The
theory described by the curve (3.56) belongs to the same universality class as the

theory described by the curve (3.55).

3. For Ny > 2, we can find systematically the superconformal point [20]. We consider

the case that all of the mass is same mass: m :=m; = --- = my,. In the case of
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even hypermultiplets Ny = 2n, the SW curve (2.121) can be split by

y> = y+(p)y—(p),

where

y+(p) = C(p) £ AN""(p+m)".

The discriminant A of the curve (2.121) becomes

A= AA,, (3.57)

where
Ay =Res(yy,y-)* = (Clp = —m))™, (3.58)
Ay, = Res (y4, 0, y1) Res (y-, 0py-) (3.59)

where Res(f, g) denotes the resultant of the two polynomials f(p) and ¢g(p). In a
similar way, we can treat the case of Ny = 2n + 1 and find that the discriminant is

of the form (3.57).

The point where A, = 0 relates to the massless squark point. When we fix sy, = s}
where s7; is the solution of A, = 0, then the function C'(p) and the discriminant

A,, become

where C}(p) is a polynomial of order N. — 1 and A; is (a power of ) the resultant

of Cyi(p) and p +m. The curve becomes
vt =+ m)? (Crp)? = ARy (o m) V2. (3.61)

We next set sy,_1 = sy __; which is the solution of the A; = 0. Then Ci(p) and

Ao, are written as
Ci(p) = (p+m)Colz),  Agm = AgAyp, (3.62)
with a polynomial Cy(p) of order N, — 2. The curve becomes
yﬁ=@+mf<@@V—A$*M@+nWW4) (3.63)

Similarly we obtain the critical values sy , sy _1, Sy, o, and m™ successively.
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Eventually, we classify maximally superconformal point of SU(/N,) theories with N hy-

permultiplets into four groups by degeneration of the curve

Ny =0,1, v = (p—p), { ;z%Jrl g %j:? (3.64)
Ny =2, y* =~ (p+m*)Nett (3.65)
Ny=2n+1, y? =~ (p+m")N7, (3.66)
Ny=2n,(n>2), y*=~(p+m")it, (3.67)

where m* is the superconformal point of m and p* is the branch point of p for the
superconformal point.

We study the SW curve for the AD theory obtained from the SU(N.) SQCD in the
scaling limit. In order to obtain the SW curve around the superconformal point, we define
the scaling variables from the moduli parameters s; (i = 1,--- , N,.), the mass parameters

m; (j =1,---,Ny) and the coordinate p of the SW curve as
p=p" +epo+ €P,

hi—1
* k h; ~ -
s; =s; + E €"soik + €78, (i=2,---N.),
k=1

(3.68)
hpy—1 R
m; =m"* + Z Ekmojk+€hMM+6hcéj, (]:17 ,Nf),
k=1
where h;, hyr and h,. are given by
2(5i] 2[M] 2
hi - P hM = Y= hc = T (3.69)
7] 7] 7]
with [O] being the scaling dimension of O. Here, ¢y, is defined by
Ny-1
iy, == G (3.70)
j=1

The parameters pg, sp;; and mgj;, are determined such that the leading term of the SW
curve becomes
417
yzze[%gQ—F---’ (371)
after expanding around € = 0 where g corresponds to the SW curve for the AD theory
realized from the SU(N.) gauge theory with N, hypermultiplets in the scaling limit.
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3.3.1 N;=0

For Ny = 0, we define h; = 2i in the scaling variables (3.68). Substituting (3.68) into
(2.122) and (2.123), we find

C(p) = — Ay + eNC(p), (3.72)
G(p) =1, (3.73)
where
~ Nc
Cp) =p" = & (3.74)
1=2

The SW curve (2.121) and the SW differential (2.56) become
y? = Ve 4 NC(p)?, (3.75)
Asw = €V hqw + - (3.76)

where the leading order term of the SW curve and the SW differential are

7 = —20°C(p), (3.77)
- 2
Age
Since the scaling dimension of the SW differential is one, we find
N, o2 2

3.32 N;=1

For the SU(N,.) gauge theory with Ny = 1 hypermultiplet, we use the scaling parameters
(3.68) with

hi =2 (i=2---N.—1), hy, =2(Ne+1), hy=2N.,. (3.80)

Substituting (3.68) into (2.122) and (2.123), we find

_ Ne
_ IN.—1 (, ot ool (AT %A (= 2(Ne+1)
C(p) ==+ (A] (p*+m"))? - [ —— p+Z€ Ci(p) — € SN, ,

2 \p*+m* P
(3.81)
Ne—1
AT G(p) =M (7 )+ €P+ Y AT TS 4 SN AT, (3.82)

1=2



3.3. AD THEORY REALIZED FROM SU(N¢) SQCD 99

where o (i = 2,---, N, — 1) are some coefficients determined by the scaling variables
(3.68). Cy(p) (i = 2,---,N,) are the functions of j determined such that the leading
terms of the SW curve (2.121) and the SW differential (2.56) become

Q(NC‘H)?] + .. , (383)

Asw = 6NC+3S\SW + - (384)

y =

In the scaling limit ¢ — 0, we find the form of the curve § and the SW differential Agw

given by
Ne+1
7= aopV Y aptt (3.85)
1=2
s b
Asw = ~y-Jdp. (3.86)
A.l ¢

where g is proportional to ANe™! and @; := @;(5;, M) (i = 2,--- , N, 4+ 1) is the moduli
parameter. The first several by, ’s are shown as follow:
0 4 9
bQ = —4, b3 - 25, b4 - — 1 b5 - (-) PER (387)
57
The scaling dimensions of the parameters are read off from (3.85):

7] = N.+1 7] = 2 ] = 21
y_NC+37 p_Nc‘i‘?), z_Nc+37
The SW curve and the SW differential correspond to those for the AD theory which
obtained from the scaling limit of the pure SU(N, + 1) theory: (3.77) and (3.78).

(i=2-N.+1).  (3.88)

3.3.3 Ny=2
For Ny = 2, substituting the scaling variables (3.68) with

hi=2%  hy=2  ho=N,+1, (3.89)
into (2.122) and (2.123), we obtain

Clp) = — €AY (p+ M)+ NC(p), (3.90)
(64(15 + M) + eQNc“éQ) , (3.91)

2
=
I



60 CHAPTER 3. ARGYRES-DOUGLAS THEORY

where Cy = ¢,¢5 and

N
Cp)=p™ =Y 5p" " (3.92)
=2
By taking the scaling limit € — 0, the SW curve (2.121) and the SW differential (2.56)
become
y2 — €2Nc+2g2 + €4Ncé(ﬁ)2, (393)
Agw = ENcilj\sw + - (394)
where
. ANe—1
§? = —2AN! ((]5 + M)C(p) + 22 02> , (3.95)
- 2 -

2
By using the fact that the SW differential has the scaling dimension one, we find

2 2 N 9 i
N.+1 [5i] N.+1 [M] N.+1 2]

=1, I[p =2 (3.97)

The AD theories associated with the N; = 2 theories have the U(2) flavor symmetry.

3.3.4 Nf:2n+1

In the Ny = 2n+1 (n > 1) theory, using the scaling variables (3.68) with

_ L, (2<i< N, —n),
hi_{Q(—Nc—i—n—i-i)—l—l, (N.—n+1<i<N,), (3.98)
g=1 h.=2, (3.99)
then we obtain
Clp)=MCH) +---,  Gp) =VG(p), (3.100)
in the scaling limit ¢ — 0 where C (p) and G (p) are given by
n Ny
Cp)=>_wp"',  GH =][G+é). (3.101)
1=0 j=1
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with @ := @/(3;, M) (l=0,---,n). In the scaling limit ¢ — 0, the SW curve and the SW

differential are given by

y? =N 4 (3.102)
Asw = dsw + -, (3.103)
where
7 =C(p)? — Ay, G(p), (3.104)
< CB) -7
Asw =pd log ——~—2 3.105
sw =pdlog )10 ( )

The Ny = 2n + 1 theories have the U(Ny) flavor symmetry with ¢; being interpreted as
the mass parameters where the scaling dimension is one. Since the power of C (p)? is less
than that of G(p) and the SW differential has the scaling dimension one, we find
. N _ . 1 _
M= B=1 [@=i+; [@E=1 (3.106)
If we restrict ; to the relevant operator and its coupling, there exist only two parameters

fip and @, where [ig] + [@1] = 2 and then C(p) becomes

C(p) = top™ + wp" . (3.107)

Thus their theories are the SCFTs with the U (V) flavor symmetry, which have a relevant

operator and its coupling.

3.3.5 Ny=2n (n>2)

For Ny = 2n (n > 2), there are two different subsectors obtained in different scaling limit
where the scaling dimension of ¢; is one. These sectors have been studied in [22]. In order
to study two sectors, we introduce two scales € = €4,ep5 < 1. In the A sector (¢ = €4),

we define the scaling variables (3.68) with
hi=2(n—N.4i) (N<i<N.), hy=2he=2, (3.108)

and 5; (2 <i < N) setting to be zero where N := N, — n + 2. In the B sector (¢ = €p),

we use

hi=2(2<i<N,), hy=2  h.=N=N.—n+2, (3.109)
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of the scaling variables (3.68). Since ¢ has the scaling dimension one in both sectors, we

derive the relation

4 = ey, €4 < €p. (3.110)

It is possible to obtain the SW curve and the SW differential for the A and B subsectors
by expanding around €4 = 0 and e = 0, respectively.

For € = €4, substituting (3.68) with (3.108) into (2.122) and (2.123), we obtain

Clp) =€y C(p) + 5 ™, (3.111)
G(p) =4 ' G(p), (3.112)
where
Cp) == AN = Y 5 on s (3.113)
N, =2
G(p) =H<ﬁ+M+6Z—). (3.114)
=1

Then the SW curve (2.121) and the SW differential (2.56) become

PP =R 4 O () + € R (3.115)
Asw :Gi:\sw + e (3116)
where
§=C(p)* - Ay, G(), (3.117)
S —i110e CB) =
) +y
By using the fact that the SW differential has scaling dimension one, we find
[ =n, [pl=1, [&6]=-N+2+i, [M]=1, [& =1 (3.119)
For i = N, the parameter 5 has the scaling dimension two: [55] = 2.
For € = ep, by applying (3.68) with (3.109) to (2.122) and (2.123), we obtain
Clp) = — AN (]3 + M) + 2NeC(p), (3.120)

N2 G N2 -
G(p) =ep (13 + M) + Z GJB(NC_MH" (~ + M> Cj, (3.121)
=2
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where
- NC
Cp)=p" = sp", (3.122)
i=2

and C’j is the symmetric polynomial of ¢;:

Nf Nf
Zéjﬁfvf—j = H(ﬁ+ &), Co=1, Cp:=0. (3.123)
=0 j=1

Expanding in ep, the SW curve (2.121) and the SW differential (2.56) become

2n

~ . n n ne—om { ~ ~\2n—j .
Y=g+ e C(p)? = et T AR (p+ M) Gy (3.124)
j=3
Asw =€n "Asw + (3.125)
where
9 N B ~\ N ~ A%;_n B ~\n—2 .
P =— 20N <p v M) C(p) + — <p n M) Gy |, (3.126)
- 2 7
Asw = = s e d. (3.127)
The scaling dimensions of the parameters are give by
- Ne.+n ~ 2
="  Bl=5—
N,—n—+2 N,—n+2
0i ) 9 ) (3.128)
5| =———, M =——, Cy] = 2.
Sl M=y [

For i = N, the scaling dimension of § & is given by [55] = 2. We note the operators 3,
(N 41 < j < N,) are the irrelevant operators due to [5;] > 2. If we assume that there

are only the relevant operators and their couplings, C (p) becomes

N
Cp)=p" = s (3.129)
=2

These sectors A and B are coupled by an infrared-free SU(2) [22]. For the A sector,
the curve (3.117) has the operator which represents the squared mass parameter of the
SU(2) flavor symmetry. Similarly, the curve of the B sector (3.126) also has the squared

mass parameter of the SU(2) flavor symmetry.
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Summary

In this chapter, we introduced the Seiberg-Witten curve and the Seiberg-Witten differ-
ential for a class of Argyres-Douglas theories obtained from N = 2 SU(N,) SQCD. For
SU(2) SQCD, the SW curves of the corresponding AD theories become a common cubic
form but the SW differentials take a different form due to the flavor symmetry. The
SW periods around the superconformal point is expressed in terms of the hypergeomet-
ric function and have no logarithmic divergence which implies the theory is around the
superconformal point. The AD theories associated with SU(N,.) SQCD are classified by
the flavor symmetry as in table 3.3. We also find the SW differentials take a different
form due to the flavor symmetry. The Ny = 2n theory has two different subsectors in two

different scaling limit and both sectors are coupled by SU(2) flavor symmetry.

Ny SW curve SW differential
N;=0,1 7~ o e Asw ~ G
5 B ~ o~ ANe—1 ~ ~ B B ~
Ny =2 g o~ (p+ M)C(p) + =5—C Aswfvydlog( +M
. N N (5 —
Np=2n+1 P~ O — A6 ) Row ~ pdlog S2) =9
C(p)
. N - - C(p
Ny =2n(n>2)A P~ G — ARV Ep) Rew ~ fdlog é?ﬂ;
p
~\ " - ANe—n ~\n—2 . - 1/
~ ~ ~ ~ Y
Ny=2n(n>2)B|¢*~ (p+ M (C’(p)+ M (p+ M C'2> Asw ~ ———=——
(1) = (p+ 1) TS

Table 3.3: The SW curve and the SW differential for the AD theory obtained from the
N =2 SU(N.) SQCD.



Chapter 4

()-deformed N = 2 supersymmetric
gauge theory

In this chapter, we will introduce the Q-deformation for the N' = 2 supersymmetric
gauge theories. The four-dimensional theory in the (2-background is constructed from
the dimensional reduction of the six-dimensional theory in R'? x T2, where the metric is

defined by [83, 35]
dsg = N, (dz" + Q* 2Pda™) (dx” + QY o de™) — (do*)? — (da®)?, (4.1)

with p,v,p = 0,1,2,3 and n,m = 4,5. 2% and 2° are the coordinates of the two-

dimensional torus T?:
ot ~ 2t + 21 Ry, 2° ~ 2° 4 27 Rs, (4.2)

where R4 and Rj are the radii of compactification. Here €2,#, are the matrices of Lorentz

rotations, where the complex linear combinations Q* and Q" are defined by

0 a 0 0
1 X 1 —€1 O 0 O
pvo._ v Wy T
= (i) = —= | T 0 (4.3)
0 0 - 0
0 a 0 0
| | N 0
QY e (= i) = — i 14
VoA AR (44)
0 0 —& 0

with (€1, €5) being the deformation parameters of the torus action. In the limit: Ry, Rs —

0, the four-dimensional theory in the (2-background is appeared. The (2-background

65
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O-background

flat spacetime

Figure 4.1: The deformation from the flat spacetime to the (2-background.

deforms the four-dimensional spacetime by the torus action with €; and 5. The schematic
of the Q2-background is described as in figure 4.1.

In the weak coupling region of the four-dimensional AN/ = 2 supersymmetric gauge
theory, one can compute the Nekrasov partition function Zye(a; €1, €2) with help of the
localization method [34,35]. In the next section, we will write down the full form of
the partition function for the N/ = 2 SU(2) SQCD in the Q-background. In the second
section, we will take the Nekrasov-Shatashvili limit of the 2-background and give the
()-deformed prepotential in the NS limit.

4.1 Nekrasov partition function

The Nekrasov partition function for the AN/ = 2 supersymmetric gauge theory can be

written in terms of the prepotential Fnex(a; €1, €2):

1
ZNek(a; 61762) = €Xp <——]:Nek(a; 61762)) . (4~5>

€1€2
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It is separated into the perturbative and non-perturbative contributions:

ZNCk(a; €1, 62) = port(a; €1, 62)Zinst(a; €1, 62)7 (46)

where Z,er(a; €1, €2) is the perturbative part of the partition function and Zi(a; €1, €2)
is the instanton part.
In the N = 2 U(2) gauge theory with Ny (= 0,...,4) hypermultiplets, the perturbative

and instanton parts of the Nekrasov partition function are written down as follows:

e The perturbative part Zye(a; €1, €2) is given by [83,35]

2

2
Zpert(a; €1, 62) = €exXp Z 761,62 (al — An; ANf) - Z Z 761,62 (al + Mg ANf) )

l,n=1 =1 a=1
(4.7)
where a := a; = —ay is the vev of the scalar field and
d A?\f 0o e—tx
ae@Ay,)=—| =% dtt=* . 4.8
el = 3T ey 69

e The instanton partition function is given by [34-36]

Zlnst CL €1, 62 § ql |Zvector Y Hzantlfund H qund b)

b=Ny+1
(4.9)
where @ := (a1, as) and ¢ := €*™™V is the instanton factor. ¥ = (Yy,Y,) is the set

of the Young tableaux where

Y, =Y, Yo, ), Yii2>2Ye> - 2Y,>0=Y 41 =Y 42 =""",

(4.10)
with ¥}, being the number of the boxes of the i-th column. The total number of
the boxes |)7| 1= >, Y1 refers to the instanton number. The contribution of the
vector multiplet zyector (@, 37') is defined by

~1
2
Zeetor(@Y) = | [[ T El@—an Yu Yuii5) [] (6@ +e—E(an—a, Yo, Yisi,5)|
i.7)

Z,TLZI (l»J)GYl (‘7 j GY

(4.11)
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where E(a,Y1,Y2;1,j) is given by
E(a,Y1,Y9;0,5) =a— e Ly,(i,j) + e2(Ay, (4,7) + 1). (4.12)
Ay (i,7) and Ly (i,j) are the arm-length and leg-length for a box in the tableau Y,
defined by
Av(i,)) =Y =34, Ly(i,5) = (Y"); -4, (4.13)

respectively, where (i, j) is the coordinate of the box and (Y7T); denotes the number
of the boxes of the i-th column for the transpose of Y. The schematic of the Young

tableau is shown in figure 4.2.

Ly (4,])

Figure 4.2: The arm-length and leg-length for a box in the Young tableau.

The contributions of the fundamental and anti-fundamental hypermultiplets zgnq(@, }7, m)

and Zguna(d, }7, m) are defined by

2
qund(av}_}?m) :H H (¢(CL,Z,]) - m—|-€1 +€2)7 (414)
I=1 (i,j)€Y
Zantifund<67 ?7 m) :qund(a) }77 €1 + € — m)7 (415>
where ¢(a;i,7) is given by
dlayij) =a+e(i—1)+e(j—1). (4.16)

The instanton partition function (4.9) includes the U(1) gauge group contribution,

given by the U(1) factor:

ZVW) = (1 — g)?Molate—th), (4.17)
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where M, = %(ml + mg) and M; := %(mg + my4). Thus the instanton partition

function for the SU(2) SQCD is given by

7590 = 7. (a6, e)/2VD. (4.18)

inst

In the limit €, e — 0, the Nekrasov partition function reproduces the Seiberg-Witten
prepotential Fsw(a) in the weak coupling region [35]:
Fswla) = lm —ejeaZnek(as e, €a). (4.19)
61,62—)0
In the next section, we will take the special limit of the 2-background, called the Nekrasov-

Shatashvili limit [44].

4.2 Nekrasov-Shatashvili limit of (2-background

In the Nekrasov-Shatashvili (NS) limit [44] of the Q-background where one of the defor-
mation parameters €, is set to be zero, the prepotential at the weak coupling is derived

from the Nekrasov partition function (4.5) as
Fns(a;e) = limO —€1€6210g Znex(a; €1, €2). (4.20)
€9 —>

The Q-deformed prepotential in the NS limit consists of the perturbative and the instanton

parts:
Fus(a;e1) :=FRg" (a; €1) + Fis®(a; 1), (4.21)

where
]:f\)lgrt(m €) 1= €1gi£n>0 —e16210g Zperi (a5 €1, €2), (4.22)
]:f\?sSt(a; €1) = 61213) —e165 log Zinst(a; €1, 62)- (4.23)

We firstly consider the perturbative part of the {2-deformed prepotential in the NS limit.

In this limit, the function (4.8) becomes

Ve (, ANf) = 6121310 €162Ye16 (T, ANf)

A?Vf /oo 2 e—t(Hﬁ)
s=0 €11(s) Jo (1—e™)

1 : (4.24)

=€

a4
ds
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Differentiating it with respect to x, we find

0

1 x Ay T €1
%’761(37; Ay;) =€ (5 + a) log ?f —€1logT (1 + g) + ) log 27. (4.25)

From the above formula, the a-derivative of the perturbative part of the deformed prepo-

tential in the NS limit becomes [46]

0 pert _ 2a B €1 2k
o PR () = 8a<10gANf 1+Z% ) (5:) )

a+mg (21_2k — 1)ng €1
D -1
+Z (a+m (0g Ax, +z_; 2k(2k — 1) a—i—ma
4.26)

k=
where By, is the k-th Bernoulli number. Here we shift the mass parameter as m, — ma+%.
Integrating it over a, we obtain the perturbative part of the prepotential.

We next consider the instanton part of the {2-deformed prepotential in the NS limit.
For the instanton partition function (4.18), we shift the mass parameters: m, — m, +
% for a fundamental hypermultiplet or m, — % — m, for an anti-fundamental
hypermultiplet. In the N' =2 SU(2) SQCD, the instanton part of the prepotential in the
NS limit is given by

Fast(a;e) = hm0 —e16210g Z28P (az ey, 63). (4.27)

inst

Then expanding it around €; = 0, we obtain the expansion of the instanton contribution
of the prepotential.

The low-energy effective theory in the NS limit of the (2-background arises in the
two-dimensional 2 background with €;. The prepotential Fns(a;e€;) leads to the twisted
superpotential for the two-dimensional N/ = 2 supersymmetric gauge theory, which is
expanded in €; as

W(a;e) ~ é]-"Ns(a; €1) = 6—11]:5\)\/(@) +- (4.28)
where Fgw(a) is the SW prepotential. In the limit ¢, — 0, the twisted superpotential
Wi(a) := lim, ;o W(a; €;) satisfies the two-dimensional supersymmetric vacua condition:

oW (a)
da

= 2min (4.29)
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with n being an integer. Since the a-derivative of the SW prepotential is given by the
integration of the SW differential, the deformed periods in the NS limit is found to satisfy
the Bohr-Sommerfeld (BS) quantization condition [44] :

7{ Asw = 2mi (n + %) 6, (nez), (4.30)

where the deformation parameter €; is a roll of the Planck constant A. Mironov and
Morozov gave a different interpretation to the BS condition (4.30) [45]. The BS condition
means that the SW curve is quantized by introducing the canonical quantization of the
holomorphic symplectic structure induced by dAsw. The quantum SW curve becomes the
ordinary differential equation. Solving the differential equation, the quantum correction
to the SW periods is obtained from the WKB solution. In the next chapter, we will check
that the Q-deformed prepotential for the N' = 2 SU(2) SQCD in the NS limit agrees
with that obtained from the quantum SW periods in the weak coupling region up to
fourth order in €;. Then we will compute the quantum prepotential around the massless

monopole point.

Summary

In this chapter, we reviewed the N/ = 2 supersymmetric gauge theory in the Q-background.
In the weak coupling region, the Nekrasov partition function reproduces explicitly the
full form of the prepotential including the instanton contribution. In the NS limit, the
low-energy effective theory becomes a two-dimensional (2-deformed theory with one de-
formation parameter ¢;. From the two-dimensional supersymmetric vacua condition, it
is found that the SW periods in the NS limit satisfy the Bohr-Sommerfeld quantization

condition.
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Chapter 5

Quantum periods for N =2 SU(2)
SQCD

In this chapter, we will study the effect of the {2-deformation at the massless monopole
point for the SU(2) gauge theory with Ny(= 1,2,3,4) hypermultiplets. In particular,
we will take the Nekrasov-Shatashvili limit: €; := h and e — 0. In the NS limit, the
SW periods satisfy the BS quantization condition (4.30) and the SW curve becomes a
differential equation, obtained by the canonical quantization of the symplectic structure
defined by dAsw. The quantum corrections to the SW periods are obtained from the
WKB solution of the quantum SW curve. Interestingly they can be represented by acting
Oy, on the SW periods where O, denotes some differential operator with respect to the
moduli parameter and the mass parameters. In the weak coupling region, the quantum
prepotential obtained from the quantum SW periods agrees with that obtained from the

Nekrasov partition function (4.20) [45].

In this chapter, we will construct O and O, explicitly for N = 2 SU(2) SQCD and
compute the second and fourth order corrections to the SW periods in A around u ~ oo
and the massless monopole point u ~ ugy. In the following, II := (a,ap) denotes the
quantum SW periods while II¥ := (a(®) ag)) refers to the “undeformed” (or classical)

SW periods defined by (2.95) as discussed previously.

73
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5.1 Quantum SW curve

The SW curve and the SW differential for the SU(2) gauge theory with the Ny hyper-
multiplets are given by (2.96) and (2.99), respectively. By introducing z = €™, the SW
curve (2.92) is

A
2
and the SW differential (2.99) becomes

C(p) — 5 (G (p)e™ + G_(p)e™™) =0 (5.1)

Asw =P (d log g;g; — 2idaz> : (5.2)

The differential gives a symplectic form dAsw = dp A dz on the (p, z) space. By regarding
the coordinate p as the differential operator —ih%, we obtain the quantum SW curve,

taking the form of the differential equations
. Ay : v iz . iz
[C(—zh@x) -5 (e Gy (—ihd,)e® + e~ FG_(—ihd,)e 3 )] V(z)=0, (53)

where 9, = 2. C(p) and G4(p) are given by (2.93) and (2.98), respectively. Here we

take the ordering prescription of the differential operators as in [46]:
e (—ihd, + m;)e! 0T = (—ihd, + m; — th)e', (5.4)

where ¢ = 1 in the second term in (5.3), for example.

We will choose the number of the hypermultiplet N in G (p) such that (5.3) becomes

the second order differential equation:
(02 + J(@)0, + 9(2)) W(a) = 0, (5.5

By introducing ¥(z) = exp (—3 [ f(z)dz) ¢(x), this equation becomes the Schrodinger

type equation:
(1202 + Q(x)) ¥(x) =0, (5.6)

where Q(z) = —h%(—%axf — %fz + ¢g). In the case of SU(2) SQCD, the potential Q(x)

becomes the expansions in A as

Q(z) = Qo(x) + h*Qs(2). (5.7)
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The quantum SW periods are defined by the WKB solution of the equation (5.6):

vlo) = (5 [ otdn). (5:5)
where
Oy) = héu(y), (5.9)

and ¢o(y) = p(y). Substituting the expansion (5.9) into (5.6), we obtain the recursion

relation of ¢,(x)’s:

Qo(@) + do(x)* = 0, (5.10)
Qu(@) + 2000 + Y A1 — i0pn1 =0, forn > 1, (5.11)
l+k=n

where Q,(z) = 0 for n # 0,2 and [,k > 1. We separate ®(x) into odd and even order

corrections as
O(x) = Poqa(z) + Peyen (), (5.12)
where
Doqa(x) = D W7o 1(x),  Deven(®) = D W7 oj(x). (5.13)
Jj=0 320

We then find that ®,4q becomes a total derivative:

i 0
Doqq(z) = 392 log ®eyen. (5.14)

There is only ¢, () as the contribution to the period integrals. The first three ¢9,’s are

given by
do(z) = i\/Qo, (5.15)
() = %j% + %aéigo, (5.16)
ba(z) = ——1L (92Q0)* | i 0:Q0 _ Qe03Q0  i0:Qs ngg’ (5.17)

B 7 5 5 3 3
036 gp T Qi x0f 4808 sQg
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up to total derivatives. The leading order term ¢q(z) leads to the SW periods oo =
$ ¢o(x). The quantum correction to the SW periods is given by the integration of ¢, ().

Then one can expand the quantum periods II = § ®(z)dz = (a,ap) in h as
=19 4+ z211® 4+ 1@ 4+ ... (5.18)

where 1" := [ ¢y, (2)dx.

The SW periods II® can be evaluated by solving the Picard-Fuchs equation (2.76) as
discussed previously. The higher correction II*®) to the SW periods I1(”) can be computed
by using the expressions as [38,47,58,39]:

n® = 0,0, (5.19)

where Oy, is some differential operators, represented in various ways. For example, I1(*)

can be expressed in terms of a basis 9,11 and §211();

| O

F ou2

n® = (X + X7 0 > . (5.20)

" ou
Let us study the simplest example, the Ny = 0 theory. The quantum SW curve (5.6)

becomes the Schrédinger type equation with the sine-Gordon potential:

2

AZ .
(e 4 7). (5.21)

Q) = —u -

The SW periods I19 satisfy the Picard-Fuchs equation (2.79). By applying the WKB

method we find the second and fourth order quantum corrections, given by [38,45, 58]

1 02 10
&) I AT B | ()
I (12u3u2 + 5d au) I, (5.22)

— — .2
760 (12 — AD)2 w2 2830 (u2 — Ad)20u (5.23)

By using the Picard-Fuchs equation (2.79), it is found that a simpler formula for IT® is
obtained by

7,00 1 & 5
% = —u?— + — o, 5.24
(1440“ ot T 18" T 384 W) (5.24)
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In the weak coupling region where u is large, the expansions of the SW periods
(a(o),ag)) are given by (2.81) and (2.82), respectively. Applying (5.22) and (5.24) on

(a(u),ap(u)), the expansions of the quantum SW periods around u = oo are given by
3 5 9
A A2\ 2 R? 1 A3\ 2 A2\ 2
a(u): \/E_—O(_O) +... +_ - (_0) _i(_o) +...
2 16v2 \ u Ao\ 64v2 \ u 2048v2 \ u
z 1
N nt 1 <Ag>2 273 (Ag) 2 N N
A§\ 256v2 \ u 16384y/2 \ u ’
1

8u A 12 1 13 [A2\?
= — —44/2 log — 0 4. =20
el Niw[ Vet on g+ (- L+ )*Ao( w0 ()

R 63 (A2 5+ .
A3\ 72003 1280 \ u

up to the fourth order in A. It has been showed that the prepotential obtained from them

(5.25)

agrees with that obtained from the NS limit of the Nekrasov partition function [45, 58].
We can also study the quantum SW periods in the strong coupling region. We have
the expansions of the SW periods around the massless monopole point u = AZ: (2.84)
and (2.85). In order to analyze the quantum SW periods around the massless monopole
point, it is convenient to use (5.24) rather than (5.23) since the coefficients in (5.23) have
singularities at u = AZ. Then the expansions of the quantum SW periods around u = A2

are given by [58]:
ap(i) =i [~ T (L 5 (A
PRV 20, 32A3 Ao \64 1024 \ A2
N int 17 N 721 a N N
A3\ 65536 2097152 \ A2 ’
a(@)lo Lﬂ—i _i_3_ﬁ2+ _f_@ i E 71_|_i_|_
DU 5502 oN,  64A3 Ao \ 24 \ A2 192

+z'h4 7 (a1 a*2+ N
A3 \ 1440 \ A2 2560 \ AZ

where @ := u — A2 up to fourth order in h. In the following sections, we consider the

. l
a(t) =3

(5.26)

quantum corrections to the SW periods at strong coupling for Ny = 1,2, 3,4 cases.
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5.2 Quantum SW periods for Ny > 1

We discuss the quantum SW periods for the SU(2) theory with Ny > 1 hypermultiplets.
We will take N of (2.98) such that the differential equation (5.3) becomes the second
order differential equation. The quantum SW curve takes the form of the Schrodinger
type equation (5.6) by the redefinition of the wave function. The higher order corrections
to the SW periods are given by the integration of (5.16) and (5.17) over x along « and
[ cycles. The expressions are represented as O, 1O with some differential operators O.

In this section, we will find the second and fourth order corrections to the SW periods.

Ny =1 theory

For Ny =1, we can take N, = 1 in the SW curve (2.96) without loss of generality. We
have the quantum curve as the Schrodinger type equation with the Tzitzéica-Bullough-

Dodd type potential

Q(zx) = —§A12m16 —u— 1—6/\?62 ~ 5

= olw

Aze ™ (5.27)

where Qy(z) = 0. The SW periods I1¥) satisfy not only the Picard-Fuchs equation (2.76)
with (2.102) but also the differential equation:

911 011 o1
omiou - OuZ ta ou ’ (5.28)
where
16miu — 9A3 my
b M 5.29
PTT8Wm —3u) T am? —3u (5.29)

The second and fourth order corrections are given by the integration of (5.16) and (5.17)
over z, respectively [39]. In terms of the basis 9,I1®) and 92I1”), we obtain the expressions

of these corrections:

ou? 2 0u

2
n“ = (Xi% + X 0 ) o, (5.31)
u

2
n® = (lea— + X3 0 ) o, (5.30)
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where the coefficients in (5.30) are given by

_ —9AImy — 16miu + 24u’

X, = :
2 48 (4m? — 3u) (5.32)
e Bu- 2m3 '
2 12(4m? - 3u)’
and the coefficients in (5.31) are given by
1= AP (—864ATmy (4350miu + 1192m7 + 441u?)
1440(4m? — 3u)A?
— 49152Amyu’® (—455miu® + 609miu — 204mS + 267u’) (5.33)
+ 768A¢ (—19593miu® + 42348miu® — 22624mSu + 6400m; + 8235u*)
+131072u* (16miu® 4 6miu — 2mS + 9u®) — 729A1% (615u — 1792m7)),
Ay s
X? = T —30A2 (24A% (—1080miu® + 4254miu — 800mS + 1215u”)
— T68A3myu (—185m2u? + 267miu — 80mS + 159u°) (5.34)

+ 2048u* (15m%u2 + 6miu — 2mS + 9u3) — 81AYm, (235m% + 6u))

In the weak coupling region, the quantum SW periods reproduce the deformed prepo-
tential obtained from the NS limit of the Nekrasov partition function as will show in
the next section. From the above representation of the period integrals, it is possible to
investigate the decoupling limit to the pure SU(2) theory, which defined by (2.90) with
Ny = 1. When we take the decoupling limit (2.90) with Ny = 1, the second and fourth
order corrections (5.30) and (5.31) become (5.22) and (5.23).

In section 5.5, we will compute the deformed period integrals in the strong coupling
region, where the monopole/dyon becomes massless. In this case, the coefficients in (5.30)
and (5.31) become singular since the discriminant A; = 0 at the massless BPS point. With
help of the Picard-Fuchs equation (2.76) and the differential equation (5.28), the higher
order corrections can be expressed such that all coefficients are regular with A; = 0. We

note that the coefficients of the differential operator for II® can be written as

1 1 1 1
X21 = gu + gmlbl, XQQ == E + émlcl- (535)

From the Picard-Fuchs equation (2.76) and the differential equation (5.28), the second
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and fourth order corrections to the SW periods can be expressed as

1 02 o a0 0
o® == (2u— +2m;— — + — | I1® 5.36
12 ( Yo T " 9my ou * au) ’ (5.36)
1 ot ok 02
oW =—— [ 28u®>— + 124u—— + 81—
1440( Cour T s T g
56 2 rosmi 1132 Z @,
+ “mlaml ous + mlam% ou? +Leam omy 8u2)

We can easily analyze the quantum SW periods at the various strong coupling points in

the Coulomb moduli space since all the coefficients have no singularities when A; = 0.

Ny = 2 theory

In the case of Ny = 2, we can choose N; =1 or Ny = 2 in (2.98) for the SW curve (2.96).
Although in either case, we have the quantum curves with the form of the Schrodinger

type equations, they have apparently different Q(x):

2

A . , A
Qlzr)=—u— 72 (mae™ + moe™™) — gz cos2x, (Ny=1) (5.38)

AT+ AS(P (i — ma)® — 2) + 8Age™ (mimy — u) + 16u
4(=2 + e \y)?

eixAQ

2 A
LT ey e

(N, =2) (5.39)

where for the N, = 2 case Q(z) has the second order correction in . The quantum curves
look quite different but it is shown that they give the same period integrals. One of the
reasons is that the SW periods in both cases satisfy the same Picard-Fuchs equation with

(2.103) and the differential equations

72 VAN ARGl § L BNG) §

=—1|b 4
OmiOu Lo ( 2 ou2 @ ou ) ’ (5-40)
IO 1 (501 5 o1

S— 5.41
OmeOu Lo ( 2 ou2 < ou ) ’ ( )
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where

Ly = — A3 4 8mimoAJ + 32[4mim3 — 3u(mi + m3) + 2u?],

bgl) =3A3m1 — 4A2my(3m? — Im32 + 8u) — 64mou(m? — u),

cgl) =4A3my + 32my(m3 — u),

bf) =3Aymy — 4A3my (3m3 — 93 + 8u) — 64miu(ms — u),

cél) =4A3m; + 32my(m? — u). (5.42)

Since the SW periods are uniquely determined by solving the Picard-Fuchs equation
around some singularities on the wu-plane, we obtain the solutions of the SW periods
which do not depend on the choice of N,. The second reason is that one can also obtain

the second and fourth order corrections with the independent of N, which are given by

2
@ 1 <2u3_ L3 (mliﬁ N m2iﬁ) 4 ) 1o, (5.43)

6 ou? om, Ou Ome Ou ou
1 ot 03 0?
4) — T - -
11 360{28u64+120u83+758
Yom, oud > Oms Ous 4 Yomy ouz T Omey Ou?

Mz o T 2B 20w ) T T M g Gy 02 (5-44)

63 ( , 02 0? , 02 02 ) 126 g 90 0 }H(O).
Here we required that all the coefficients of the expression do not have any singularity
with Ay = 0. Thus we conclude that the quantum SW periods do not depend on the
choice of N, at least up to the fourth order in A. [46].

As explained in the previous sections, there are various way to represent the quantum
corrections and the expressions (5.43) and (5.44) can be convert by using the Picard-Fuchs
equation (2.76) and the differential equation (5.40). For example the expression of the
second order correction (5.43) becomes that in terms of a basis 211 and 9,11

1 1 0? 1 1 0
2 _ _ 1) T (1) @y Y 00
11 [<3u+4L2(m1b + mabl )) 902 —|—( +4L2(m 163 4+ macy )> 8U1H :
(5.45)

where Lo, bél), - -cg) are given in (5.42). In the decoupling limit (2.90) with N; = 2,

the SW periods is reduced to that of the Ny = 1 theory. It can be also checked that
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the higher order corrections to the SW periods become those of the Ny = 1 theory up to

fourth order in A.

Ny = 3 theory

For Ny = 3, we should choose N. =1 or 2 in (5.3) since the quantum SW curve becomes
the third order differential equation if we take other N,.. We will take N, = 2 without
loss of generality. The quantum SW curve becomes the form of the Schrodinger type
equation (5.6) with

6—27,90

= 16 (—2 n eixA§>

. 1 .
5 (—4A3 — 4€* A2 (msAs + 8mymy — Su) — e (A§ — 24msAs + 64u)

1
e A2

N2
2 (—2+ew/\§>

. , 1
— 4 (my — ma) 2 Ay + 4e™AZ (Ag — 8m3)> + 1
(5.46)

where the potential () has the second order corrections in h. As explained in the Ny =1
and 2 theories, the SW periods satisfy the Picard-Fuchs equation and the differential
equations with respect to the mass parameter m; (i = 1,2,3) and the moduli parameter
u. We consider the same mass m := my; = my = mg for simplicity. The Picard-Fuchs

equation is given by (2.76) with (2.104) and the differential equation takes the form

o211 ) o211 o110
omou  ° ou? “ ou

(5.47)

where

~ 3m (A3 4 24As3m — 128u) 12m

by = = . 4
° 16 (16m? — Agm — 4u) A (A3 — 16m) + 4u (5.48)

In general mass case, it can be checked that the quantum corrections to the SW periods
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I are expressed as

5 ’ 5 0
@ _|(5,_ o 1 O 4
il (6“ 384 )au2 Z a 2ou|" (5.49)
7 (5 1 ot 4T (2411 1 0% 571 02
m® = | L2y —a2) L2200, g2 O 0T
10 <6“ 384 3) ot T 20 <47 6" 381 3) 0 T 180 02
3
7 (5 1 o 9 131 9 O
— [ Sy = — A2 P Rl o S
+; (10 (6“ 384 3) M s oad 120" o, au2> (5.50)

3 3
7 g 9 0 0)
+ZZ (Em jam om; 0u2>]H ‘

=1 j=1

where all the coefficients are regular when Az = 0. By using the Picard-Fuchs equation
and the differential equation with respect to the mass parameters, the quantum SW
periods (5.49) and (5.50) can be expressed in terms of a basis 9,11 and 92I1(°). For the

same mass case, we find that

1 1 0? 5 1 0
n® = {<5u — A2+ mb ) 92 + (12 + m03) (%J e, (5.51)

This representation is suitable to discuss the decoupling limit to the Ny = 0 theory, which
is defined by m — oo and Az — 0 with m3A3 = AJ being fixed. By taking the decoupling
limit, the SW periods for Ny = 3 theory are reduced to those for the Ny = 0 theory.
Moreover, it can be shown that, in this limit, the second and fourth order corrections to

the SW periods agree with those of the Ny = 0 theory.

Ny =4 theory

In the case of Ny = 4, we will take Ny = 2 in (5.3). Otherwise, the quantum SW curve

becomes the third or fourth order differential equation. The quantum curve is the form
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of the Schrodinger type equation with

6722‘:1: ]
Q(z) = (4\/563”3 (m%q +miqg — mima(q + 8) — mamuq + 8u)

4 (—4/qcos(z) + q + 4)2
+ 4y/qe™ (m3q + miq — mamy(qg + 8) — mymaq + 8u)

—e® (q ((m7 +m3 +mj +m3) g — 24 (myma + mamy)) + 16(q + 4)u)
_ 4qe4ix (ml — TTLQ) 2 _ 4q (m3 — m4) 2)

e \/ae_m (qewC — 8\/66”6 +q + 4e*® + 4) '
2 (—4\/gcos(z) + q + 4)2

(5.52)

Due to complication in the general mass case, we consider the simpler case: massive
hypermultiplets with the same mass: m := m; = my = m3 = my. In this case, the

potential Q(z) becomes

~ ((m? +u) (—16y/gcos(x) + (¢ — 4)q + 32) — (g — 4)u)
Qz) = - :
(—4y/Gcos(x) +q +4)
L VBT (a6 = 8y/Ge" + g+ 4P 4 4)
2 (Ctygeos(s) -+ 1)

(5.53)

As discussed previously, the SW periods I1(”) satisfy the Picard-Fuchs equation (2.76)
with (2.105). In terms of a basis 9,110 and 9?T1(”), the higher order corrections to the
SW periods in A are given up to fourth order in A as follows: The second order correction

is expressed as

n® = Xla—2 +x2 2\ o (5.54)
2 Ou? 2 0u ’ '
where
1 —18m*q + m*¢® — 8m2u + 10m3qu + 24u?
A= 96m? ’
s m (5.55)
N2 —2m*~ +m?q + 6bu
2 48m?2 '

The fourth order correction is given by

@ _ (1.9 29\ o
I Xjoms + Xi = ) 1O, (5.56)
u u
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where

1
46080m2 (m?2 — u)? (m2q — 4m?,/q + 4u)2 (m2q + 4m?,/q + 4u)2
X <7m14q8 — 399mMq" 4 8484mM ¢ — 80616m *¢° 4 312480m ! *¢* — 284544m*¢?

X, =

+ 153600m' ¢ 4+ 175m ¢ u — 7196m 2¢%u + 96504m*?¢°u — 436320m ¢ u

+ 266496m 2 ¢*u — 789504m 2 ¢*u + 1848m'¢%u? — 51624m ¢’ u? + 403488m PV gtu?
— 896256m ' ¢*u? + 2328576m'°¢*u? + 313344m ™ qu® + 10648m>¢°u®

— 190176mBq*u® + 820224m8¢>u® — 1501184mB¢*u® — 921600m3qu® + 35968m°q¢*u?
— 377984m5Put + 881664mS¢°u* — 26624mSqut — 8192mSu* + 70656m* ¢>u®

— 344064m*¢*u® — 325632m*qu’® + 24576m*u® + 73728m?¢*u’ + 12288m>qu

+ 319488m2u® + 30720qu” + 122880u )
(5.57)

1
23040m? (m? — u)2 (m2q —4m?2,/q + 4u)2 (m2q +4m?2,/q + 4u)2
X (7m12q7 — 287m!%¢°® + 3780m 2 ¢® — 15816m'2¢* + 1440m!?¢> — 38400m'%¢?

Xji=

+ 147m ¢ — 4032m*°¢°u 4 29736m gtu — 55872m ¢ u + 225408m ' ¢*u + 30720m P qu
+ 1260mBg°u® — 21768mBq*u? + 88704mP¢*u? — 221952m3¢*u® — 133632m3qu?

+ 5608m°qtu?® — 56768m ¢ u + 147456m°¢*u® + 7168mCqu® — 2048mSu?

+ 13536m*¢>ut — 64512m* ¢*ut — 58368m* qut + 6144m*u? + 16512m*¢*u® + 3072m%qu’®

+ 79872m*u® + 7680qu’ + 3072Ou6).
(5.58)

These expressions are useful to discuss the decoupling limit to Ny = 0: m — oo and ¢ — 0
with m%q = A} being fixed. In the decoupling limit, the SW periods agree with those for
the Ny = 0 theory. We can also show that the second and fourth order corrections of the
quantum SW periods (5.54) and (5.56) are reduced to those for the Ny = 0 theory in this
limit.

We then consider the massless limit. The Picard-Fuchs equation turns out a simple
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form:

o | 1eno

ou? +2u ou (5.59)

We note that the expressions (5.54) and (5.56) have the coefficients which become singular
in m — 0. In the massless case, it is found that the second and fourth order corrections
to the SW periods convert into

@_ (_ug 9  (a=4q9\
I ( R T (5.60)

T — (—26q +11¢% 62 (g —4)(=52¢+35¢%) 0 (q—4)*¢* 9?

— |19 (5.61
2304  Ou? 4608u? dq 288u2 8q2) - (5:61)

with help of the Picard-Fuchs equation. We note that these formulas include the derivative
with respect to ¢ as well as u.
In the following sections, we will compute the quantum SW periods both in the weak

and strong coupling regions and evaluate the deformed (dual) prepotentials.

5.3 Deformed SW periods in the weak coupling

In this section, we will study the expansion of the quantum SW periods in the weak
coupling region for the completeness. We expand the quantum SW periods at u = oo and
then obtain the deformed prepotential for the Ny theories [39,84]. Then we will check that
obtained prepotential agrees with that obtained from the Nekrasov partition function in
the NS limit [46]. The SW periods in the weak coupling region are given by integrating
the expansions of the periods (2.69) and (2.70) over u [75]. The quantum SW periods are

given by acting the differential operators on the SW periods a(®) and ag).

5.3.1 N;<3

For Ny = 1, the discriminant A; and D; are given by (2.102). Substituting them into
(2.69) and (2.70) and expanding around u = oo, we obtain the expansions of the periods
9,a® and Guag) in the weak coupling region. The expansions of the SW periods are

obtained by the integration of them over u. Then applying (5.36) and (5.37) to the SW
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periods, the expansions of the quantum SW periods around u = oo are given by

U Ny (1) 3A9 (L)
a(u):\/;— /3 + 210\/3

At (3)F 15AF (D) sApmi(d)F

261/2 212,/ 211,/2 (5.62)

L [ A () esAT(L)F 2m3apme (4)*
28\/_ 214\/§ 214\/§

9
2

+ hK?

16w m?2 i
ap(u) = V2a ir—3log— |+ |6Vu+—=+-4—4 -~ 4
b(w) m[ () (im ~ 3105 37 ) (f s
m}
2 1 mi | —ghAimi -
+ - - §+ 5 —'l—"'
4\/6 12u2 uz
7m‘11 127A?m1

—|—h4< 1 i 7m%5+W_ 2560 +-~->+---

S

160uz  240u3 u
(5.63)

Inverting the series of a(u) in (5.62), we obtain the expansion of u in terms of a. Substi-

tuting it into ap, ap becomes a function of a. The integration of ap over a derives the
deformed prepotential:
Fiah) =2 | 7o + 305 e (1) (5.64)
2mi — = a
where the first few coefficients of Fl(Zk’n) (k = 0,1,2) are listed in the table 5.1. The
perturbative part F7 ert(a, h) of the prepotential takes the form

2
FPa,h) = — §a *log P + ]:1 —a*loga — —3T1
1 1 PF 1 1 7 OF!
B (——loga— . s
i < 12 8¢ 9682+16) < 5760a2 21032 5 0a4>+
(5.65)

where F! is defined as [78]

.7:51:(a+%)2log(a+%)—i—(a—%)QlOg(a—%)- (5.66)
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(2k,1) (2k,2) (2k,3) (2k,4)
k| F F Fi Fi

0 LAS . ?)AS3 5A§3m% . 7A?m1
8192 16384 393216

L A3, | — 15A8 | 21ASm?2

1 0 256A 65536 65536
A3mgq 63A8
2 0 0 2048 " 524288

Table 5.1: The coefficients of the prepotential for the Ny = 1 theory

Similarly, the expansions of the deformed prepotentials for Ny = 2 and 3 theories are

given by

Fn,(a,h) = 212 [ﬁvj“ +ZZh2’“ (@2h.m) (—)21 , (5.67)

k=0 n=1

(2k,n)

where some coefficients .7-" (k = 0,1,2) are shown in appendix B. The perturbative

parts are expanded as

3
Fr™a,h) =—a logP—I— ]—“2_2a210ga—4—1(mf+m§)

1 1 2 12 1 1 4 2
+h2<——loga o7, +—)+h4(— + ! 8f5)+

12 96 da2 = 8 576002 ' 210.32.5 Qq?
(5.68)

a2
ert o 2
FY"a,h) =—-a log 2T }" 3a*loga — Z “m?

+ R? —ilo a— — 62}—33—1—3 +ht (- = + ! 07 +
12 %97 96 0a2 " 16 576002 ' 210.32.5 9g!
(5.69)

where F2' (N; = 2,3) is defined as [79]

g () () () ) o

It can be shown that these deformed prepotentials are reduced to those for the theory

with less number of the hypermultiplets in the decoupling limit.



5.3. DEFORMED SW PERIODS IN THE WEAK COUPLING 89

We now compare the prepotentials for Ny = 1,2,3 theories, which obtained from
the Nekrasov partition function in the NS limit. When we rescale the parameters h, m;

(1=1,2,3), and Ay, as
2
omiF(a,h) — Fla,er), Ay, = 25V2Ay,,  h— V26,  m;— V2m,

and then shift the mass parameters : m; — m; + % for a fundamental matter or m; —
5 —m, for an anti-fundamental matter, we find that the prepotential coincides with that

with the NS limit of the Nekrasov partition [34], which is given in chapter 4.

5.3.2 N;=4

In the theory with the Ny = 4 hypermultiplets, we will rescale the coordinates y and p
in the form of the SW curve (2.92) by a factor of 1 — £, so that we can use the formulas
(2.69) and (2.70). In the weak coupling region, the SW periods a(®) and a([())) are obtained
by expanding the periods around ¢ = 0 and integrating over u.

For simplicity, we consider the same mass case m := m; = my = mg = my. The

discriminant A4 and Dy are given in (2.105). The deformed prepotential takes the form:

1 ert o 2k —~(2k,n) n
]-"4:%[}"35 (a, )+ Y R*FEMg] (5.71)

k=0 n=1

where the perturbative part is
1
FP(a, h) =a®log q + 5]—“;1 —4a*loga

1 1 92F! 1 7 O'F!
h2 —1 o S h4 o s
i ( °8(4) = 56 Fq2 ) * ( 5760a2 | 210-32 5 dat ) te
(5.72)

fj:4<(a+%)zlog(a+%)+(a—%)Qlog(a—%)>- (5.73)

The first several coefficients ]-"fk’n) for k = 0,1,2 are given in appendix B.3. After

where

rescaling the parameters h, m and q as

2miF (a,h) = F(a, 1), q — 4q, h— V2, m — v/2m, (5.74)
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it can be checked that (5.71) coincides with the prepotential with the NS limit of the
Nekrasov partition function of the theory with the same mass. Here we note that the
mass parameter in the Nekrasov partition function are shifted as m; — m; + 5 for a
fundamental matter or m; — 4 — m; for an anti-fundamental matter (i = 1,---4).

For the massless case m = 0, the solution of the Picard-Fuchs equation (5.59) is given

by
O = f(q)uz, (5.75)

where

= V2 1.5 . 108(¢—4)*
f<q> N ((q - 4)q + 16)i (12, 12777 (q2 —4q + 16)3) : (576)

Then, applying (5.60) and (5.61), the second and fourth order corrections to the SW

periods are obtained by

e :ﬁ (qf(q) +2(q - 4)%?) : (5.77)
) —— L ((11g-26) ) + 20— ) (160~ 00712 + (350 - 59200 ) ).
(5.78)

After using (5.75), (5.77) and (5.78), we obtain the expansion of the prepotential around
g = 0, which agree with (5.71) for m = 0. From the above discussions, it is found that
the deformed periods explicitly coincide with those with the Nekrasov partition function

in the NS limit up to the fourth order in A.

5.4 Deformed effective coupling constant

The deformed effective coupling can be computed by using the relation (5.20) and the
Picard-Fuchs equation (2.76). By applying the Picard-Fuchs equation (2.76), the u-
derivative of the quantum corrections to the SW periods (5.20) is given by the form

as

9w

ou

Y o + Y2 9 o (5.79)
2k aUQ 2k ou ) .



5.4. DEFORMED EFFECTIVE COUPLING CONSTANT 91

where
0X1
Vb = —p XD + —a;k + X2, (5.80)
0X2
Y3 = — po X + aik‘ (5.81)

with p; and py being the coefficients of the Picard-Fuchs equation (2.77) and (2.78). Then
we have the u-derivative of the quantum SW period II = >"/7 R?FT1F)  which is of the

form:
0 0? 0
—I= (V= +Y,— | OI® 82
ou ( Bzt 28u) ’ (5.82)
where
i=) B, Ya=1+Y RMYE. (5.83)
n=1 n=1

The deformed effective coupling is defined by

auaD

Oy

T

(5.84)

Substituting (5.82) into it and expanding in A, we obtain the expansions of the deformed

coupling constant, given by

7 =70 (1 + K2V}, log 7@ + O(RY) . (5.85)

0y _ 8ua(D0>
IO

functions at the weak coupling, the second order correction to the effective coupling

up to second order in A where 7 Since 9, log 7 is proportional to the beta
constant in % is determined by a dimensionless constant Y3! in (5.80).

We will compute the coefficient Y,' for some simple cases, where all hypermultiplets
have the same mass m. For Ny = 0, the coefficient of the Picard-Fuchs equation (2.77)
is given by p; = —**=, while the coefficients X} and X3 read off (5.22). From them, one

0
finds

y, =1 v
1

8 6(u2—AY) (5:86)

In a similar way one can evaluate the coefficient Y} for N ¢+ > 1. The results are the

followings:
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1. For Ny =1, we have

1 1 3 1
Yy =1 + <—m—|— —bl> =g (u+ mby) (

AN 3
2 16 '

A + T (5.87)

2. For Ny = 2, we have

1 3m 1 m Oulo 8(3m? — 2u) ¢y
1_ 1 om N L w2 2]
Yy _2+ ( 4 2b2> & ( ut b2) ( A, 8m2 —8u+A3m )’ (5:88)

1
by = — (b +87), = — (Y + 2. (5.89)

3. For Ny = 3, we have

5 3 1 5 1 1 AN 24m? + S8u 4+ mAs c3
V=20 (Zm— by ) = (20— A2+ sy ) [ 222 il
2 4+<2m 63) <6“ 34 T ™M 3><A3 —8m2 +8u—mhsm)’

(5.90)

where b3 and c¢; is given by (5.48).

4. For Ny =4, we find

1-— Su 1 24 VAN 3
Y'le—q——Q——(2(4—5q)u—m2(q—18)q— 2><A44+ 5 )

m ms —u

(5.91)

The above formulas are consistent with the decoupling limit.

5.5 Deformed periods around massless monopole point

In this section, we consider the quantum SW periods at the strong coupling of the theories
with Ny = 1,2,3 hypermultiplets, where a BPS monopole/dyon becomes massless. In
particular, we will discuss the massless monopole point of the deformed theories where
ap(u) = 0. At the massless (“classical”) monopole point where the dual SW period ag)
becomes zero, the discriminant Ay, of the SW curve and also wy, become zero. In the

following, we will compute the expansion of the quantum SW periods around the classical
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massless monopole point. We can analyze the periods around the dyon massless in the
same way.

In general Ny, we gave the expansions of the SW periods around the massless monopole
point u = wg, which are expressed as (2.109) and (2.110). Once the SW periods around
the massless monopole point are obtained, the quantum SW periods can be computed by
applying the relations between the SW periods and the quantum corrections as discussed
at the weak coupling. Since the coefficients of (2.109) and (2.110) are read off the series
expansions of wy, and (—DNf)% around u = wug: (2.108), we should expand wy, and
(—DNf)i around u = ug which is one of the solution of Ay, = 0. In the following, we
will only evaluate the expansion of the quantum SW periods in simpler cases; massless
hypermultiplets and massive hypermultiplets with the same mass because the expression
of ug is rather complicated for general mass parameters.

After analyzing the quantum SW periods around u = ug, we find an interesting phe-
nomenon by the quantum corrections. Although the undeformed SW period a(DO) (u) is zero
at 4 = 0, the deformed SW period ap(u) does not become zero at same point. This means
that the massless monopole point is shifted on the u-plane by the quantum correction.

Indeed, the quantum correction to the SW periods around u = wug is expressed as

ap? =" g, (5.92)

n=0

Here \7750) = Jp in (2.109) with \70(0) =0 and jl(o), \70(2) and ‘70(4) take non-zero values by
explicit calculation. Then we find the massless monopole point Uy of the deformed theory

is expanded as
UO = Ug + h2u1 + h4'LL2 + -, (593)

where u; and uy are determined by

(2)
up = —%, (5.94)
Ji
(4) (2) (0)
Uy = R/ Lu - jiu% (5.95)

1
‘-71(0) ‘-71(0) ‘71(0)

We will explicitly calculate these corrections in the following examples.
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5.5.1 Massless hypermultiplets

We consider the Ny theories with massless hypermultiplets. Since the Coulomb moduli
space has some discrete symmetry, this case is a simple and interesting example. We will
consider the massless monopole point of the u-plane. The SW periods around the massless

monopole point uy have been studied in [77] by solving the Picard-Fuchs equation.

Ny=1

2
For Ny = 1, the massless monopole point is given by ug = —32—/;1. The expansions of w;
3

1
and (—D;)”1 around u = ug are expressed as

2% 2% .5 47104 5
__u —_— —u —_— —u DI
AT T3A 27AS ’

) 23 922 23
—Dy)"1 = —i + i+ 04 5.97
(=D ' (séAl 3EA3 3EAT ) (5.97)

(5.96)

w1 =

Here the coefficients A, and B, in the expansions (2.108) can be read off from above

expansions.

The SW periods around the massless monopole point are obtained by substituting
these coefficients into (2.109) and (2.110). Applying the relations (5.36) and (5.37), the

quantum SW periods around @ = 0 are expanded as

3
2 5 35 i 665 i\
+ — _ 4+ — )+ =] +- 5.98
Ay (2169 .35 92%.33 <A%> 0% 3% (A%) > (5.98)

+_§f 2471_+ 144347 (@ +_1964347 i 2%_ .
A\ 6% 2% .3% \A?2 2% .3% \A? ’
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(2k,1) (2k,2) (2k,3) (2k,4)

k Fpi1 Fp1 Fp1 Fpi
. 5 1 515 1

0 0 3 12 (1) 1152 &(1)2
1 25 1 425 1 3275 1 50645 1

96 a E6) 1608 &(1)2 110592 &(1)3 294912 &(1)7
o | 104263 _1 757333 1 | _ 7173929 1 | _ 4749125675 1

5308416 &(1)3 | 28311552 &(1)% 1019215872 &(1)° 32614907904 &(1)0

Table 5.2: The coefficients of the dual prepotentials for the Ny = 1 theory, where ¢(1) =
—32.2% [77].

. . U , U 542 29843
ap (i) <_m+10g—2§ 33A%>+Z<_2é-35A1_23~33A?_ 5 32A5+ )
+i< R <ﬁ>1+i+ﬂ<£)+...>

A 2% . A2 2% .35 63 \A?
+E<#(ﬁ)3+i<£)2+ﬂ(ﬁ)1+...>

A\ 2% .35.5 \A? 2% .33 .5 \ A2 2% .33 \Af

(5.99)

Solving @ in terms of ap and substituting it into a, we have a as a function of ap. Then

the integration of a over ap reproduces the dual prepotential:

. 2 2 4
. 7 ap h Th
Foulap, h) =g [af’ log (Al) ~ 1p log(an) — 576003

EEn() ()

k=0 n=1

(5.100)

Y

where the first several coefficients f;lk "™ (k=0,1,2) are listed in the table 5.2.

N;=2
In the case of the Ny = 2 theory, the massless monopole point is given by ug = %%. Then

we have the expansions of wy and (—Ds)™1 as

108, 4325 3456,
1 1 o 302
—Dy) it = — — — — —— 4. 5.102
CR) = g (5.102)
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The expansions of the quantum SW periods around @ = 0 are given by
(u) =i ] a2 N 3a3 n
ap(u) =i | — — e
i 250, 23A3  25A3
iR (1 5 (4 35 (a4
+— 5 =\t ) + 5.103
As (25 23 (A%) 2% (A%) ) (0109

L (1T T2 A 10941 2+ N
A3\ 2% 2% \A3 2% \A3 ’

() =2 |2ap(@)log o 44 (2 _ 38 1287
alu) =— |2ap(u — t+1| — —
or | “PN 8 AT 2%, 23A3  25A3
B S S0 S (U <u>+
Ay \ 23 .3 \ A2 25 -3 23-.3 \A3

3
+m4 7 A a)2+ 53 (a)1+ N
A3\ 2% .32.5 \ A2 2% .5 \ A3 9% .3.5 \ A2

(5.104)

From the above formulas, one finds the deformed dual prepotential for the Ny = 2 theory

takes the forms as

. 2 2 4
1 ap h Th
Fpolap,h) =— |2a% 1o (— + —log(ap) — === +
p2(ap, 1) 87r[ D8\ A, 6 1o8lan) ~ 5e50.2
o = P 2 (5.105)
n ap
e>>u () A (52)
k=0 n=1

where the first several coefficients F },22’“ ) are listed in the table 5.3.

Ny=3
For the Ny = 3 theory, the massless monopole point is ug = 0. Then the expansions of
ws and (—Dg)’i are given by

_222.33A4 231_33A5 234'35'5A6

w3 = 0 u - (5.106)
A§ AL AL?
_1 4 256, 36864
(Do) = g gt Ty (.107)
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(2k,1) (2k,2) (2k,3) (2k,4)
k| Fpo F o F Do F Do
_ 11 5 _1
0 0 6 2 &(2) 64 &(2)2
1 3 1 17 1 205 1 315 1
16 &(2) 256 &(2)2 6144 £(2)3 16384 &(2)7
9| 135 _1 2043 1 69001 1 1422949 1
32768 &(2)3 | 524288 &(2) | 10485760 &(2)° | 201326592 &(2)°

Table 5.3: The coefficients of the dual prepotential for the Ny = 2 theory, where ¢(2)
—i273 [77).

Then we obtain

P g () g (B 2+ (5.108)
Az \ 23 A:)Q) A% .
(2ot () w2t ()
+—(22-5+27 43— ) +27 1141 — | +--- |,
A%( A3 A3

(@ i, (@)1 160 254 2%-3a2+2%9-3a3+

a(u) =— |4a og——5 +1| —

W Ty |FAPN08 e As A3 AS

+m2 1 /4 *1+2%+2%29 m N
Az \ 23 \ A2 3 3 A2

~

Ll (T (a1 (aNT LT T
Az \ 2% .32.5 \ A2 23.3.5 \ A2 925 .5 \ A2 '

(5.109)

We then have the expansions of the dual prepotential around the massless monopole point:

1 a h Th
Fos(ap,h) =g [4“% o8 <A_D> 3 loelan) = 5 o
D

3
oo 00 A 2k (2hm) ap n
2 2kn
3 oai(y) A (R)

k=0 n=1

(5.110)

where the first several coefficients of F }j:f "™ are listed in the table 5.4.
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(2k,1) (2k,2) (2k,3) (2k,4)
k| Fps FDs FDs FDs
_ 1 5 _1
0 0 12 Z@3) 32 &(3)2
1 _1 1 5 1 19 1 _ 8 _1
8 &(3) 128 &(3)2 1024 &(3)3 8192 #(3)4
9| 31__1 239 1 5221 1 102949 1
19152 (3)3 | 262144 #(3)7 | 5242880 &(3)° | 100663296 &(3)°

Table 5.4: The coefficients of the dual prepotential for the Ny = 3 theory, where ¢(3) =
272 [77].

The dual prepotentials have the perturbative corrections as (5.65), (5.68) and (5.69) in
the weak coupling region. These terms also arise in the SU(2) pure Yang-Mills theory [58].

The deformed massless monopole point Uy in the u-plane can be computed from the

expansion of ap. We then have

1 9
Ao 24— piq .. Ny =0
0" 3" Taoresaz T !
302 5 1571
- §1_ﬁh2_2—72h4+"" Ny=1
Uy = 2;’\2 1 2; 3TAY (5.111)
2 2 4
2 g B N =2
g 8" Tomeaz’ T !
1 4
—-h— R Ny = 3.
\ D v d

In the next subsection, we will compute the expansion around the massless monopole

point ug for the theory where all the hypermultiplets have the same mass.



5.5. DEFORMED PERIODS AROUND MASSLESS MONOPOLE POINT 99

5.5.2 Massive hypermultiplets with the same mass

For the same mass case m :=m; = --- = my,, one of the solutions of the discriminant

An, = 0 corresponds to the classical massless monopole point g, given by

 —64m* — 216A3m + 8Sm>H} — HY

Uy = T : for Ny =1, (5.112)
24H?
A3
Uy = — g + Agm, for Nf — 2, (5113)
1
uo =77 <A§ — 96A5m + /A5 (As + 64m) 3) . for N;=3 (5.114)
where
Hy = 729A% — 512m° 4 4320A%3m® + 3v/3 (27A% — 64A,m?) 2. (5.115)

These points are consistent in the decoupling limit to the Ny = 0 theory: m — oo and

Ay

, — 0 with meAgé_Nf ) = AJ being fixed, where the massless monopole point for
f

the Ny = 0 theory is A2. In the massless limit m — 0, the massless monopole points
correspond to those for the massless Ny theories.

We start by discussing the Ny = 1 theory. Here we consider the small mass |m| < Ay,
around which ug is expanded as [85]

3A2 Aym  m?
- 2%1— 21% ot (5.116)

Uy =

From (2.109), the expansion of the SW period ag) around u = wug is given by

1 22m> 1 2% m
) (i) =i |~ = b | F @ e e e | e, (5.117)
26 -337\; 323 22 -32A3  32Af

where & = u — ug. By using the relations (5.36) and (5.37), we obtain the second and

fourth order corrections to the SW periods around u = uyg:

a(2)(1})— o — m +--- | 4+a 35 + om R R
b 9% .33A, 2¢.3iA 25-33A3 25 .37 A2 ’

(5.118)

w .. (2471 613m (144347 26495m
‘(1) = 6%a7 2% .aiar ) T\ gE A ot sEa ) T

=N

(5.119)
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From above expansions, we have the quantum SW period ap = > hka%) up to fourth

order in A. Then the monopole massless point Uy is found to be (5.93) where

C3AY Am om?

Un = I —I.— R _|_ SN
’ 25 23 3
5 Lom 5m? N
1 23.32 ' 93,337, 2%,34/\% )
1571 613m 11329m?
Up = — —5 + + = e 5.120
’ 2% .37TA2  2°-3TA} 23 . 39A4 ( )

for the small mass.
In a similar way, we can obtain the massless monopole point Uy in the deformed theory

for Ny =2 and 3. For N; = 2, the massless monopole point Uj is given by (5.93) where

A2
Uy = — —2 +A2m7

8
_ m — 2A2
T 39m — 167,
QA3 3 2 2
" :9( 8A5 +m? — 2Aom 26A2m). (5.121)
2048A2 (AQ - Zm) 4

In the case of the small mass |m| < Ag, we find

A2
Ug = — ?2 =+ Agm,
1 3m 3m?
U =—2— o — ;
8 16A, SAZ
9 405 2385m?
o KLE (5.122)

Y277 056A2 T 1024A3  1024A}

For Ny = 3 with |m| < As, the massless monopole point Uy is (5.93) where

3A
wy = SN g
L, 6m 336m?
U =—=+-——-—5 .
T4t A A2 ’
4 888m  131904m?>
Uy = — — + - +--- (5.123)
A3 A3 Aj

Note that the first terms in the expansions of u; and us agree with those in the massless

limit.
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In a similar calculation, we can obtain Uy up to the fourth order in A for general m.
We find that the massless monopole point is modified by the quantum correction in h.
In Fig. 5.1 , we have shown the graphs of the deformed massless monopole point as a
function of AmTf with A = 1. For Ny = 2, Uy has singular at the superconformal point
where 1 = 1. This is because the ratios of T in (5.94) and (5.95) are divergent.
However, for Ny = 1 and 3 their ratios remain finite. In order to study precisely the
quantum SW periods around the superconformal point, we need to take the scaling limit
of the Coulomb moduli and the mass parameters around the superconformal point. In the

next chapter, we will discuss the quantum SW periods for the Argyres-Douglas theory.

Uo UO
N2 N3
4,
-0.5 — Uo
-0.6 ol Uo+u4
J— Up+Uq+U2
-0.7 Uo _//_ m
_ Uo+U n | . L —
08 0:2 04 06 08 10 o
-0.9 Up+uq+Uz
_2t
-1.0F
m
. . . . L — _al
0.2 04 0.6 0.8 1.0 M
Nyp=1 Nf=2
Uo
2
N3 m
0.4 0.6 0.8 1.0 A3
-0.5
-1.0¢
-1.5] — Uo
Up+U1
-2.0¢ Up+Uq+Uz

N;=3

Figure 5.1: The graphs of ug, uo + i, and ug + h2u; + hluy with respect to 2 for
!
Ny =1,2 and 3 where we choose h = 1.
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Summary

In this chapter, we argued the quantization of the SW curve for the SU(2) gauge theory
with Ny(= 1,...4) hypermultiplets. The quantum SW curve becomes the Schrédinger
type equation. The quantum corrections to the SW periods are obtained by acting some
differential operators on the SW periods. We calculated the expansion of the quantum
SW periods in the weak coupling region and confirmed that the quantum prepotential
agrees with that obtained from the NS limit of the Nekrasov partition function up to
fourth order in 2. We also computed the expansion of the quantum SW periods around
the massless monopole point up to fourth order in ~. We find that the massless monopole

point is shifted by the quantum correction.



Chapter 6

Quantum periods for
Argyres-Douglas theory

In the previous chapter, we have shown that the WKB solutions of the quantum SW
curve at the weak coupling correspond to those for the (2-deformed theory in the NS
limit. We computed the quantum SW periods around the massless monopole point for
SU(2) SQCD. We then found the massless monopole point is shifted by the quantum
correction. In this chapter, we will extend the above discussion to the Argyres-Douglas
(AD) theory and obtain the quantum SW periods in terms of hypergeometric function up
to the fourth order in .

6.1 SU(2) SQCD around superconformal point

We will study the quantum SW periods around the superconformal point of the moduli
space of N =2 SU(2) SQCD with Ny = 1,2,3 hypermultiplets. Around the supercon-
formal point, the SW curve for Ny theories degenerates into a curve of a common cubic
form (3.23), corresponding to the SW curve for the AD theory. From (3.12), (3.15) and
(3.20), however, their SW differentials take different forms due to the flavor symmetry.
This means that we need to introduce different quantization conditions for each Ny. In
the following, we will quantize the SW curve for each Ny and construct the higher order

corrections to the SW periods up to fourth order in h.

103
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6.1.1 N;=1

For Ny = 1, the differential (3.12) gives a symplectic form dhsw = dz A dp on the (2, )
space. The quantization of the SW curve, given by (3.10), is performed by replacing the

coordinate Z by the differential operator:

Z= —zhagp (6.1)

Then the quantum SW curve is given by the Schrodinger type equation:

(- s+l ) (i) o (62)

where

Qp) = (p WA - %u) | (6.3)

The WKB solution to the equation (6.2) takes the same form as (5.9) in terms of p. In a
similar way to the previous chapter, we also find the second and fourth order corrections
are of the same form as (5.16) and (5.17) with Q2 = 0 up to total derivatives. The
quantum SW periods are defined by

Il = (a,ap) = (}i@(ﬁ)dﬁ,/@@(ﬁ)dﬁ) , (6.4)

with & and B being the canonical 1-cycles. The periods are expanded in A as
=119 + R210® + AW 4 ... (6.5)

where TI®" := § ¢, (p)dp with TI) denoting the classical SW period.

We will consider the differential equation which the quantum SW period obeys. It is
found that the SW periods 19 satisfy not only the Picard-Fuchs equation (3.43) but also
the differential equation with respect to M and a:

2
aﬂgaaﬁ(m = —3—]\“4%11 — leain : (6.6)
Substituting (6.3) into (5.16) and (5.17) and integrating over p, we obtain the second and

fourth order corrections to the SW periods in A. We then find

- 1 0 0=
(2 —
1 A2 oM O g (6.7)

~10AT o2 02
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We note that the higher order corrections can be obtained from those for the Ny =1
SU (2) theory in the scaling limit around the superconformal point. The second and fourth
order corrections to the SW periods for the Ny = 1 theory have been obtained by (5.36)
and (5.37), respectively. It can be checked that, by taking the scaling limit (3.9), the
leading orders in € to the quantum SW periods (5.36) and (5.37) correspond to (6.7) and
(6.8), respectively. Since the quantization conditions for the AD theories become different
to those for the SQCD, it is nontrivial to check that the quantum SW periods of the AD
theories agree with those of the SQCD in the scaling limit. In the subsection 6.1.4, we
will compute the quantum SW periods around the superconformal point by applying the

relations (6.7) and (6.8) up to fourth order.

6.1.2 N;=2

For Ny = 2, since the SW differential is given by (3.16), we need to introduce a new
variable & by
L e 2.

such that the SW differential (3.15) takes a canonical form

Asw = ZdE. (6.10)
Then the SW curve (3.14) becomes
7 — <e3f — 2Me* + ¢f (4@42 — u> — AZOQ) =0. (6.11)
The quantum SW curve is obtained by

( h2a—§2 (¢ (6.12)

Q(f)z—( — 2Me* + ef <4M2 ) AfZ). (6.13)

by replacing Z by the differential operator

where

= —ma%, (6.14)
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The WKB solution of the quantum SW curve takes (5.9) in terms of £, in which the
leading term in % gives the classical SW periods I = [ ¢o(€)d€. The period integrals
(—=D3)19;11© can be found to satisfy the Picard-Fuchs equation (2.75). TI(® also obeys

the differential equation

” no=r 4@8—211(0) + 9 o (6.15)
M 2\ o2 O ’ '
where
4 <4M2 - 311)
Lo : (6.16)

T 927TALCh + 2401 — 32003
By applying (5.16) and (5.17), the second and fourth order corrections are given by
- 10 0  M&»*\ -
nm» (- = 4+ == 7110 6.17
(43Maa+ 3 aa2> ’ (6:.17)
S [TMPO 100 T P9 TM PP D
I = —— t = =t == ~— + = =~
90 ou*  200w* 1600u?9M2 60 0ud oM

) no. (6.18)

Note that (6.17) and (6.18) are given up to the Picard-Fuchs equations. We also find that,
after taking the scaling limit (3.13), the second and fourth order formulas of the Ny = 2
theory (5.43) and (5.44) agree with (6.17) and (6.18), respectively.

6.1.3 N;=3

Finally we discuss the quantum SW curve for the Ny = 3 theory. The SW differential

(3.20) takes the canonical form

Asw = il\s (ﬁd£+ iﬁdlog(ﬁjtmi)), (6.19)
i=1
by introducing a new coordinate &:
s i (e 5t 1), (6:20)
where we define
. . . . 2
fo =4Af, fi= 8M§ 2—” 9(B) =P’ — psp — o3 + (QM? + 4M§3 + ﬂ)
A2 3A; A3 A3 3N A3

(6.21)
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Here the coefficients p3 and o3 are read off from (3.18). Then the SW curve (3.18) becomes
e* + (fop + fr)e + g(p) = 0. (6.22)

Since the SW differential is defined a symplectic form dAgw ~ dp A d€, we quantize the

SW curve by replacing the coordinate £ as the differential operator

= —ma%. (6.23)

However, we need to consider the ordering of the operators, which defined by
tpe~ "W (p) + e (1= )p¥(p)) = (b — i(1 — t)h)e "W (p), (6.24)

with the parameter ¢ (0 <t < 1). After taking the t = % prescription as in the previous
section [46], we obtain the quantum SW curve (6.22 )

(cxp(-2iny) + (Gt ) exp(-indp) + exp(-indp)3 o + 9(4) ) ) = 0. (6:25)

We consider the WKB solution to the quantum curve, where the leading term ¢y (p) :=
£(p) leads to the SW periods. In order to obtain the higher order terms in &, we convert
the quantum SW curve (6.25) into

72) + (fo (15 - %h) + fl) J(1) + g(z) = 0, (6.26)
by introducing

J(a) = exp (-% / ’ @(y)dy> exp (-m%) exp (% / ﬁq)(y)dy) | (6.27)

After taking ®(p) in (6.26) as the form (5.9) in terms of p we obtain the recursion relation
of ¢,’s. The leading correction ¢y (p) is given by

- 1 - -
onl) =1og (5 (~fof — fi-+20)) (629
whose integration corresponds to the SW period. Here g is defined by

P = b+ £~ 9(p). (6:29)
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¢1(p) becomes the total derivative:
61(5) = o= ( L60(5) + - log 47 (6.30)
1\p) = 95 \ 2 o\p 1 gay | . .

¢3(p) is also shown to be a total derivative. ¢o and ¢, are obtained by

(—fop ;6?9"@) f2 ({91;; ) (6.31)

ou(p) =g ) (LEEIAD IR o) (BolD) o)

18057 | 7205
+¢"() (_7fg (fop + A1) g(p) 75 (fop + f1)>

®2 (ﬁ) =

307247 76307°
wo—a TP+ f1)g(®) | T(foD+ f1) 715 (fop+ f1)g®) | Tf5 (fop + f1)
+9'() < 507257 | 76805 ) + 1228857 | 3072057
(6.32)

up to the total derivative.
For the classical SW periods I1(?, (—[Dg)i&;ﬂ(o) obeys the Picard-Fuchs equation
(2.75). we also find I1(*) satisfies the differential equation with respect to M and :
52
OM 0Ot

=(0) 0% =) 9 =)

where

AN (3A3 310 + AN — 303pg ) py + 27A3i0r

by = , (6.34)

3A3 <9A3M0'3 — 4M3p3 — 3A311p3)

<4M3 n 3A3a> 2 19A2M2p,
C3 = — — . (635)
3A3 <9A3MO'3 — 4M3p3 — 3A371,03)

Substituting (6.21) into (6.31) and (6.32) we find that the second and fourth order cor-

rections in A can be computed by applying the relations as

- M?> 9> As 0 0 )=
me (== 287 Y o )
( 12 9u®> 16 0u 8M> ’ (6.36)

- TM* 94 AsM 93 TA2 92 9% TASMZ 3P 0
nw = + 3 — + g
1440 0a* ' 192 933 | 2560 02 912 960 a3 9N

) o, (6.37)
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These formulas coincide with those of the scaling limit (3.17) for the SU(2) gauge theory
with Ny = 3 hypermultiplets: (5.49) and (5.50).

In the next subsection, we will compute the expressions of the quantum corrections to

the SW periods around the superconformal point up to fourth order in .

6.1.4 Calculation of Quantum SW periods around superconfor-
mal point

In the previous subsection, we have investigated the quantum SW curves and the relation
between the quantum SW periods and the classical SW periods in the AD theory. In this
subsection, we will compute explicitly the quantum corrections to the SW periods around
the superconformal point up to the fourth order in A. We will study the expansion in the

coupling constant of the relevant operator and the mass parameters for the AD theory.

Ny =1 theory

We first discuss the Ny = 1 theory around the superconformal point. The SW peri-
ods around the superconformal point are expressed as (3.41) and (3.42). Substituting
them into (6.7) and changing the variables (i, M) to (@,i@}), we obtain the second order

corrections to the SW periods in terms of hypergeometric function as

5
) 1 i\ ) )
= (P) (R = B ah) (6:38)
2% . 33rbA7 \ A
5
. 1 '\ © 2 N 1 -
i ———— () (VIR o), 6s)
22 - 322 A7 N\
where
2\ (5 5 11 4 1117 4
FO@@) =25 3T ()T (=) (F (=, =5 ) —5F (=, —=; = 6.40
v ) =2 3) \6 1271237 2izh)), (640

2 1 1 13 19 5
FP (@) = — 75T (6 r (5) F (E o g;uv’l) : (6.41)



110 CHAPTER 6. QUANTUM PERIODS FOR ARGYRES-DOUGLAS THEORY

Similarly, applying (6.8) and changing the variables (, M) to (u,w}), the fourth order

corrections to the SW periods (6.5) are expressed as

5
N 7 w4 3 w\ 2 - 4), ~
= e @ -1 (A—) (—F@h) + FO @) (6.42)
6 2 T2\
5
_ 7 wys w\ 2 1 - 2 -
“%):_243 3.5miAg @ 1) (A_) (03RO @) + (13 @), (6.43)
6 2 T2\
where
@, 1y o3 1 7 i 19 25 5 _, 13 19 5 _,
=23 7. 130 (=)D (=) (11, +13)F [ =, = 2o ) —5F | ==, = =,
F& @Uﬂ 7 3 (3> <6> << 1U1+_:ﬂ (12,12,3,Uh 5 12712737w1 )
(6.44)
2 5 23 29 7 17 23 7
FW @) =25 .5- 11 -1t 3T (2 )T ( 2 P InF (2 L) F = 2w ) ).
p () 5+5 w3 3 6 (7w +17) 12712a3aw1 1271273,1‘)1
(6.45)

Expanding the quantum SW periods around @] = 0, we have the expansions of them as

G =A? (i) <_25F PG TEDIE) +>

A2 3373 6272
LR (N E(TEDTE)
A% A% 2%-3%W%
B fa N\ F (72180 (=T (4) .
A e A 6.46
s <A%) ( ST L (6:46)

wlon
RS
-3
N
—
w
~~
|
—_
N~—
ol
—
—
|
[}
—
=
—~
Wl
SN—"
R
<

A 1

+T(%) w13+--->+-~-. (6.47)
2 1
1

Let us define the effective coupling constant! 7 of the deformed theory by

_ Ouap
Ti=—
(%a’

(6.48)

!Note that the present definition of the effective coupling constant is inverse of the one in [3].
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where the expansion in A is given by
F =70 4 p27® L ptF@® 4. (6.49)

From (6.46) and (6.47), the deformed effective coupling constant (6.48) is expanded around

the superconformal point as

D)
e G
r

m(2 s TG ()
(T (8) ) o

6 6 3

7 can be expressed in terms of @ by inverting (6.46). We then obtain the free energy
by integrating 7 over @ twice. We find that the free energy at M = 0 coincides with
that obtained from the E-string theory [86]. We note that the present expansions for N
theories in the coupling parameter are different from those in the self-dual {2-background
[38], which are expanded in the operator have been done with the zero coupling and

without taking the scaling limit.

Ny = 2 theory

In the case of the Ny = 2 theory, applying (6.17) to (3.46), we obtain the second order

corrections in terms of the hypergeometric function as

3
) 1 AN ) :
am:_T(P) (R () F2(4)) (6.51)
24. 302 A3 2

3
) i i\
= (P) GRS (6.52)

2

with @wh = 1 — wy. Here F( )( 5) and F(Q)( v4) are defined by

M2\ 2 5 13 1 13 17 3
F® (@) =3°T 922.32 [ — =2 il ) — Bl F
() : i 12'12° 22 iy 12122

(6.53)

7 11 3 11 19 3
F? () =6°T ( ) < )( <—2 ;5;1115)+7X(2)F<E7E;§;U~)§))7 (6.54)

!

~,) 7



CHAPTER 6. QUANTUM PERIODS FOR ARGYRES-DOUGLAS THEORY

112
where
%
(6.55)

MQ
X® = 3423202 (—)
u

The expansions of the second order terms in @) are given by

3 1 ~ 3
1 /fa\ " [ 30(S)r(H) (LT () (m2\°
a® - <%> 4 o (12)l (1 ) (iZ) . (12) (7> + , (6.56)
A22 5 Q2 2% . 3472
~\ -3 1 Y 2
dm:j;<g) T3 () D) () D) (M) (6.57)
D A2% A% 27r% 24 . 3%71'% ﬂ '

U

Here we note that the expansion around w), = 0 corresponds to that in M2 1 and

CILN S
w2
In a similar way, the fourth order corrections are given by

9
~ 1 1 a\ 1 o o
A (p) <F1()<wl2>_F2()<w/2)>; (6.58)
29.3% - 522 Wy (Wh — 1)? 2
_o
(1) _ i 1 (ﬂ)4((®w (Mw)
“p = i vl Fy7 (wh) + Fy () ) 6.59
D= e ) (e ) e
where
1 5 1 _ 4 5 13 1 _
' 9“);) +X2( 'F (E’l_;ﬁ;w/z>)’

(4) (=7 1 b (4)
F (=) (=)(-14xPF (=, ==
1 () (12) <12)( ! (12’12’2
7 11 7 11 3 11 19 3
FM @) =14y T (= )T (= ) (—2XIF (=, =25 ) + XF (=, =205 ) )
2 (wQ) w22 12 12 1 127 1272? + 2 12712727w2
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Here the coefficients X; and X5 are defined by

2
1

M 2
XW = 223542 (10@, + 11) + 3 (—) (377w + 127)

u
(6.62)
M? \ M2\*
—23.32 (—) wh (13wh + 113) + 28 (—) (134 4 11),
Uu Uu
() 8 -1 = M2\ 12 y
X, =—32wyz (1345wh + 671) + 6 | — | (520w5” + 4639w5 + 889)
u
(6.63)

M? M2\ *
—22.33 (—) @7 (593 + 1423) + 56 (—) (2114, + 77) .

u u

The fourth order corrections to the SW periods are expanded in wj around @ = 0 as

i\ "1 (s o570 (VT (XY /a2 2
a® ig <%> ! _11F§12)5FS12) 3105 7F8 ILZ)F(H) MT + , (6.64)
A22 5 29 .3172 2872 u
9 1 ~ 3
a\ 7 [1LD(H)0(5)  31-5-70 (5)T () (M2’
L (L) (R ) o () <1><£) o] (669)
Az \2 2% - 3am> 252 Y

TR (@)qwér(@r(a <@§A3>2+

srErE\a)  ErErE \ @

+h_2(1)3 B ()T (B) | 30 ()T (1) (3)"

A3\ A2 29T (2) T (£2) p(%%(%)? a 6.66)
N — 2 2 ’

4 (1) 3(_3zr<1—2>2r<%>2

A ()T ()

1 3 3 1

35 (30 ()T (1) 197 ()T (1) <%>+ X

207 ()T (1)’ i

It would be interesting to compare the free energy with that of the E-string theory, which

is left for future work.
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Ny = 3 theory

We now investigate the Ny = 3 case. Substituting (3.51) into (6.36), the second order

corrections to the SW periods are obtained by

where 0} 1= —. F1(2) (w}) and F2(2)(u?g) are given by

1—w3

1 1 1 7 2 7132
F® —18T r(=)(F(= =24 ) -XxOF i 6.69
(%) 6 3 12'12°3" " 12123’ - (6.69)
! 1 1 11 4 1117 4.
FO@) = 2Sr (D p (L) (2 2 45 sxerF L))
92 6 3 12'12° 3’ 12'12° 3

(6.70)

where

25 - 3MAs
(3aAs + 4M3)

X® =14 (—o3) 545 (6.71)

We expand the second order corrections to the SW periods in 14, where 22— A < 1, 5 <1

and 3A3 < 1. Then we have
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It can be also found that the effective coupling constant is given by

N . 24’ MENT O 2in? C3A2 §+...
PETE) I\, )T E)

(6.74)

The fourth order corrections to the effective coupling constant can be obtained in a similar

manner as will shown in appendix C. The result is

In summary, for the AD theories of (A;, As), (A1, A3) and (Ay, Dy)-types, we have the
explicit form of the quantum corrections to the SW periods in terms of the hypergeometric

functions up to the fourth orders in hA.

6.2 SU(N.) SQCD around superconformal point

In this section, we will study the quantum SW periods for the AD theory realized from
the SU(N.) SQCD. The SW curve and the SW differential around the superconformal
point were discussed in section 3.3. We have seen the SW differentials for each Ny take
the different form due to flavor symmetry. Therefore we need to introduce different
quantization condition in each Ny. In the following, we will discuss the quantum SW
curve around the superconformal point and construct the differential operator on the SW

periods to represent the quantum correction to the SW periods.
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6.2.1 N;=0,1

For N; = 0 and N; = 1, the SW differential (3.78) and (3.86) are defined by disw ~
dy A dp. The quantum SW curve for the Ny = 0 and 1 theories is given by

0
( #——+Q(0 V(p) =0. (6.76)
The potential Q(p) is given by the SW curve (3.77) and (3.85):

Q(p) = —7*. (6.77)

where () = 0. The quantum SW periods can be obtained by the WKB solution of
the quantum SW curve (6.76), which takes the form as (5.9) in terms of p. We note
the quantum corrections to the SW periods agree with the leading term of those for the

corresponding N = 2 SQCD in the scaling limit up to total derivatives ?. For N; = 0, we
find

Ne
@ — ¢Net2 < 3/\2 TI¢ )) - T4 — —3Ne+2 (_AchﬁM)) I (6.78)

For Ny = 1, we also find that the second and fourth order corrections correspond to those

in the scaling limit up to total derivatives at least N, < 5:

) — (D@ AN | [0 = N2 O NN L (6.70)
where the first several coefficients 65\2,2 and bg{‘}c) are given by
3 e 3 @ 357 5 375
bg):_ZJ b§)=—2—%, bz(L): o bg):_2%77...7 (6.80)
3 1
y 1 1 1 1 57 N
=g B =g W= = (6.81)

Since the SW curve for the AD theory realized from the pure SU(N.+1) gauge theory
agrees with that obtained from the SU(N.) gauge theory with N; = 1 hypermultiplet in
the scaling limit, we obtain same quantum corrections from both cases. Thus we will

choose the case of the SU(N,) gauge theory with N; = 1 hypermultiplet and then obtain

2In appendix D, we perform the WKB approximation of the quantum SW curve for the SU(N,)
SQCD. We then obtain the second and fourth order corrections to the SW periods.
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the relation between the quantum corrections and the SW periods. The relation formulas
between 1) (k=2,4) and I© are not unique and there are various ways to represent
the differential operator O,. For example, the second and fourth order corrections to the

SW periods can be expressed as

| [Nt o o
n®-=_ Uip———T11 6.82
12 (; ? i, 11 O ’ (6.82)
Ne+1 Ne+1
~ 7 5'x 9?0 - ? 9 0
@) — 2 o 4 Ui U 1 (6.83)
4 A~ ~ i2 2~ ~ ~ y .
1440 (7 ; QU3 4, 0U; l;) Cou3, . 0u; 0u;
where
(Ne+1—i+g)

Ui' =

. 6.84
(N, 114 (6:84)

For the SU(2) gauge theory with the Ny = 1 hypermultiplet, these relations are shown
to agree with (6.7) and (6.8) up to the Picard-Fuchs equations.

6.2.2 Nj=2

For Ny =2, the SW curve (3.95) and the SW differential (3.96) become

Ne+1

92 _ Z fle(NCH_l)g, (6.85)
=0
A _ 2 d
SW — — ANf_ly 57 (686>

2

where &, = £;(M,5;) (I =0,---,N,+ 1) by introducing p = ¢ — M. The SW differential
defines the symplectic one-form dsw = dy N\ d¢. The quantum SW curve takes the form

as

<—h2§—52 + Q(S)) (€)= 0, (6.87)

where

Ne+1
Q) = ~7* = - (Z fze“vc“—”f) . (6.58)
=0
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The quantum corrections to the SW periods are given by the WKB solutions of the quan-
tum curve (6.87). Since the quantum SW curve (6.87) is the Schrodinger type equation,
the second and fourth order terms are of the form as (5.16) and (5.17) in terms of £, re-
spectively. The quantum corrections are shown to agree with those of the scaling limit of
the Ny = 2 theory. When we change the variables £ to p, then the second order correction
to the SW periods becomes

n® = j{(d)z( p) dp, (6.89)

p+ M)
where
— i+ M) (Q(B) | b+ M)Q"(H)
2= <@<ﬁ>3+ Q) ) .

This correction agrees with the second order correction to the SW periods for the original
Ny = 2 theory by taking the scaling limit € — 0. Similarly, we also find that the fourth
order correction obtained by the quantum SW curve (6.87) agrees with that for the N; = 2

theory in the scaling limit:

3 (N1 _3(N.— 3(Ne—1) 7
I — —(Ne+3) A( @ . T4 — —3(Ne—1)+2 (_A2( )H(4)> NI
(6.91)
The second and fourth order corrections to the SW periods are obtained by acting the

differential operators on the SW periods as

1 Nq+1 a a
L —— N, +2— D% ——T1© 6.92
12 ;( + Vi Yof oy, (6.92)
N 7 SN NS
H(4) e (4)H(0) (4)H(0) )
100 <7(’)A + O , (6.93)
where
N.+1
R c o 0 0
oW — N,o+2 - D% 6.94
A ;< A YO8 Oty O 1 (6.94)
Nge+1 No+1
A ~ % g 0 0
oW — N, +2 D3N, +2— k)%, i 6.95
B ( )7( )llklﬁtlﬁtkc?t (6.95)

These formulas are consistent in the case of the SU(2) gauge theory with N; = 2 theory:
(6.17) and (6.18) up to the Picard-Fuchs equation.
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6.2.3 N;=2n+1

By introducing § = Z—C/(p), the SW curve (3.104) and the SW differential (3.105) become

ON.—Ny =/ ~
N 1 AV TG (p
C(p) — = (2 + Nf—“) ~0, (6.96)
2 z
Asw = p (d log G(5) — 2dlog z) . (6.97)
Rewriting the coordinates as
Z = exp (—zh%) : (6.98)

the quantum SW curve for the Ny = 2n + 1 is given by

(6.99)

To discuss the higher order corrections to the SW periods, we rewrite the quantum SW

curves as

% (J(l) +Ay VG <;5 + zg) J(—l)) +C(p) =0, (6.100)

where J(«) is defined by (6.27). Note that we take the different ordering of the operators
from the case of the SU(2) gauge theory with N; = 3 hypermultiplets as in the previous
section. Although we look like quite different quantization, we can obtain the same results
of quantum SW periods in each case. Expanding the quantum SW curve in A, we obtain
the second and fourth order corrections to the SW periods. Note the second and fourth
order corrections to the SW periods for Ny = 2n 4 1 agree with the scaling limit of those
for the SU(N,) gauge theory with Ny = 2n + 1:

I — 2O 4. 0 = 2@ 4 ... | (6.101)

Define

. (n—i+j)!. . (Ny—a+b)! ~
Usj = Wui—ja Vap = WC'Q_Z,7 (6.102)
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where
Ny Ny
Y CpM =10+ ) (6.103)
a=0 a=1

We also find the relations between the quantum corrections and the SW periods as

n

s 1 . _ “ -
1@ :ﬁ Z (UiOUjQ + UilUﬂ) o4, (9u + Z Ulz + Z Z UzOV H(O )
,j=0 =0 a=2
(6.104)
- 1 ~ o 0 0 6 o 0 0
(4) _ (1)
= 27.32.5 ( Z Aikge ou; 3u] Oy, 8ul U Z A”k o1, 0t 8ukH
,7,k,1=0 ,5,k=0
(3)__
+”ZO A ot E)UJH ZAZ 3uz )
1 ”fl)aaaa(o)” g 0 0 0 0
. — A (
Ty ;0; ik i, Oty Ot OC, +”ZOMZZ b 9, 0t; 9C, O,

" 10 0 0 i, NnxE 0 0D d
+ZZ zjaau au 86’ +ZZ laba_u%a_cb +ZZBm8 80 H(O) )

4,j=0 a=2 i=0 a=2
(6.105)
up to fourth order in A where

Afgjl‘i)cz =7 <Uioﬁj0ﬁk2ﬁzz + UnUj Upa Un + QUmUﬂﬁmUzz> (6.106)
AL =510300;502 + 84031 U1 Uy + 3603001 U + 50300 50U (6.107)
AP =810,50;5 + 78031 Uy + 390004, (6.108)
AW =360, (6.109)
BY), =1405001 U031 Viz + 1403000 Usz Vi, (6.110)
Bi(jab =TUioUjoVa2 Vpz, (6.111)
BE) =280 U1 Vs + 6401002 Vao + 1603001 Vs + 500U 10 Vi, (6.112)
B =210,4V,a Vo, (6.113)
Bia =36Ui2Vao + 16U Vi + 19050V (6.114)
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It can be shown that the above formulas are consistent with the case of the SU(2) theory
with Ny = 3 hypermultiplets up to the Picard-Fuchs equation. We note the second and
fourth order corrections (6.104) and (6.105) include the differential operators with respect
to the irrelevant operators of which the scaling dimensions are greater than 2. In order
to obtain the second and fourth order correction for the AD theory associated with the
Ny = 2n + 1 theory, we should use the relation (6.104) and (6.105) with keeping the

irrelevant operators finite and then take the limit where these operators go to zero.

6.2.4 Ny=2n (n>2)

For Ny = 2n (n > 2), we need to introduce the different quantization condition in each
two sector € = €4 and ep since the SW differential in the A sector (3.118) is different form
from that in the B sector (3.127). We will first discuss the quantum SW periods in the A
sector.

For € = €4, the SW curve (3.117) and the SW differential (3.118) are same form as
those for the Ny = 2n + 1 theory (3.104) and (3.105), respectively. The quantum SW
curve is given by (6.99) where C(p) and G(p) are defined by (3.113) and (3.114). Here

we shift the coordinate from p to p; as

pri=p— M. (6.115)

Then the functions (3.113) and (3.114) become
C(p) = Z " (6.116)
1=
Nf
Gp) =] +é.) = ZC(;NJ‘ “ Coi=1, C:=0, (6.117)
a=1

where @ = @/(M,3;) (I =0,---,n) are the moduli parameters and C, (a = 2,--- , Ny)
are the Casimir invariants of U(Ny) flavor symmetry. As discussed in the case of the
N¢ = 2n + 1 theory, by using the WKB method and solving the recursion relation of
qgk (k=0,1,---) on the p;-plane, we find the relation between the SW periods and the
quantum corrections to the SW periods are given by (6.104) and (6.105) up to forth order

in h. By taking the scaling limit e4 — 0, we also find the leading order terms of the
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second and fourth order corrections for the Ny = 2n theory agree with those obtained

from the quantum SW curve for the A sector:
n® =aEn® ... nw =&aw ... . (6.118)
For € = €p, we introduce new variables ¢ as
1 ~
p=& 1 —M, (6.119)
so that the SW curve (3.126) and the SW differential (3.127) become
Ne Nc—l+
P b (6.120)
1=0

2 1
A%;’" (—n+1)

Asw = yde, (6.121)

where &, = #;(M,3;) (I = 0,--- ,N,). The SW differential defines the symplectic form
ddsw ~ di A d€. By introducing § = —iha%, we obtain the quantum SW curve:

<—h2§—; + Q(é)) (&) =0, (6.122)
with Q(§) = Qo(&) + h*Qa(€) where
Qo(§) = — (Z fzf_w> ;o Qa8 = —ﬁg‘? (6.123)

The second and fourth order corrections are obtained by applying (5.16) and (5.17) in
terms of . These corrections agree with those for the Ny = 2n (n > 2) theory by taking

the scaling limit ez — 0 up to total derivatives:

m® — e];(NC_”)+2(n _ 1)A]]¥;fnﬁ(2) T e :egg(Nc_")”(n _ 1)3A§’V(;Vc_")ﬁ(4) b
(6.124)

This is reason why we add Q2 (6.123) in (6.122).
In order to obtain the relation between the higher order correction and the SW periods,

it 1s convenient to introduce some functions as

N, —i -
p(i) = —#, N:=N.—n+2, ¥ =
n_

(6.125)
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Then we find the second and fourth order corrections are given by

N,
~ 1 < 6n \~ 0 0 6n \~ 0 0 =
o == (Y (1 - b= 1O 4 (T —  —— | {C)
12 (.: ( =n—1) lar 0ty n—1) ™oty iy ’

(6.126)
~ 7 5 A )~ .~
(4 __ " @) 77(0) (0) ORIO)
I1 1440 (7(9 IT —I—O a1 O il +ODH ), (6.127)
where
e 6n o o9 0
A pa 171_‘_”_1 + 1( ) 16tz‘8tN_1 at]\}, ( )
N. N.
A - 0 0 0?
oW — TATE) + dy it 6.129
b 1-21321( ()> Yok oy 0%, (6.129)
N.
A 2n(2n — 1), .0 9 o
oW = (—T( ) +d ) i ol , 6.130
C Zz:; (n —_ 1) + 3( ) 2 Ncat atNC 8t2 B ( )
A 0% 02
OW —d,(n)in.t . 6.131
p =da(n)tn, Vo, oz (6.131)
The coefficients d;(n) (i = 1,...,4) are given by
2 4n(1l4n — 23
1 2 16n(3n —7)
do(n) := (—6T}V43 + (T](\Z)_1> + WT}@) : (6.133)
4n(n —+ 1) (2)
dg(n) = —W N, > (6134)
— @) 2 \?_ n(62n —T77)
d4(n) = 6TNL - (TNC—1> - W N, * (6135)

As discussed in the case of the Ny = 2n + 1 theory, we should use (6.126) and (6.127)
with keeping the irrelevant operator finite since these formulas have the differential oper-
ator with respect to the irrelevant operator on the SW periods. After using (6.126) and
(6.127), we obtain the quantum correction for the AD theory in the B sector by taking

the limit where the irrelevant operators go to zero.
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Summary

In this chapter, we studied the quantum SW periods for the Argyres-Douglas theories
associated with SU(N.) SQCD. The quantum SW curve takes the different form for each
N¢. The SW differential also takes the different form, which introduces the different
quantization condition. In the case of SU(2) SQCD, we obtained the relation between
the quantum corrections and the classical SW periods. We computed the quantum SW
periods around the superconformal point up to fourth order in A. We then wrote down
the explicit form of the quantum correction to the SW periods in terms of hypergeometric
function up to the fourth order in A. The quantum SW periods of the AD theory are
shown to agree with those of the original SQCD by taking the scaling limit. We found the
general formulas for the second and fourth order corrections in the AD theories realized
from the SU(N..) SQCD, which are obtained from the SW periods by acting the differential

operators.



Chapter 7

Conclusions and Discussions

In this thesis, we studied the low-energy effective theory of SU(N,.) SQCD in the NS
limit of the (2-background. In chapter 2, we reviewed the basic idea of the Seiberg-Witten
theory by adopting the N' = 2 supersymmetric SU(2) Yang-Mills theory as an example.
We then introduced the Seiberg-Witten curve and the SW differential for the SU(N,)
gauge theory with Ny hypermultiplets. In chapter 3, we obtained the SW curve for the
AD theory by taking the scaling limit of the corresponding N/ = 2 gauge theory. For
SU(2) theory, the corresponding SW curves take the form of the cubic elliptic curve for
all Ny, but the SW differentials take the different form. For SU(N.) SQCD, the AD

theories are classified four groups by the number of the hypermultiplets.

In chapter 4, we introduced the Q-deformed N = 2 supersymmetric gauge theories
in the four-dimensional spacetime. In the weak coupling region, the Nekrasov partition
function provides an exact formula of the prepotential including the instanton contribu-
tion. We then took the Nekrasov-Shatashvili limit of the 2-background. In this limit,
the low-energy effective theories appear in the two-dimensional (2-background with one
deformation parameter ¢;. The two-dimensional supersymmetric vacua condition is found

to induce that the SW periods satisfy the Bohr-Sommerfeld quantization condition.

In chapter 5, we studied the low-energy effective theory of SU(2) gauge theories with
Ny hypermultiplets in the NS limit of the (-background. The deformed SW periods are
given by the quantum SW curve, which is the ordinary differential equation and can be
solved by the WKB method. By using the quantum SW curve and the Picard-Fuchs

equation, it is possible to solve the series expansion with respect to the Coulomb moduli

125
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parameter and the deformation parameter A. We found that the second and fourth order
corrections to the SW periods are represented by simple formulas which are obtained by
applying the differential operators on the SW periods. In the weak coupling region, we
evaluated the quantum SW periods up to fourth order in A. By using the quantum SW
periods, we obtained the same prepotential as that given from the NS limit of the Nekrasov
partition function. We then investigated the expansion of the quantum correction to
the SW periods around the massless monopole point. The quantum corrections to the
dual SW periods ap are given by solving the Picard-Fuchs equation for the SW periods.
Then we found the massless monopole points on the u-plane are shifted by the quantum
corrections.

We also studied the quantum SW periods around the superconformal point in chapter
6. Since the SW differentials take the different form for each Ny, we need to introduce
the different quantization condition. We also have the simple formulas to represent the
second and fourth order corrections, which obtained from the classical periods by acting
the differential operator with respect to operators and their corresponding coupling. They
are shown to agree with the scaling limit of the formulas for the quantum SW periods
of the original SQCD. For SU(2) SQCD, we computed the quantum correction to the
SW periods up to fourth order in A in terms of hypergeometric functions. Around the
superconformal point, the SW periods and the effective coupling constant are expanded
in the Coulomb moduli parameter with the fractional scaling dimension. We also find the
general formulas for the second and fourth order corrections in AD theories associated
with N =2 SU(N,) SQCD.

It is interesting to explore the higher order corrections and how the structure of the
moduli space is modified by the quantum corrections. In particular non-perturbative
structure of the h-corrections can be studied with the help of the resurgence method
[60-63].

Although the SW differential for the AD theory associated with certain gauge theory
takes the different form to that associated with other gauge theory, there are cases that
both AD theories belong to same universality class [20,23]. For example, the pure SU(4)
gauge theory associated with the AD theory of the (A;, A3)-type, which corresponds to
the SU(2) gauge theory with N; = 2 hypermultiplets. Around the superconformal point
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of the pure SO(8) gauge theory, the curve describes the same AD theory, which is (A;, Dy)
type, as the SU(2) gauge theory with N; = 3 hypermultiplets. It would be interesting to
study the universality classes of N/ =2 SCFT in the NS limit of the Q-background.

For AD theory, there are the singularities on the moduli space where one of the periods
becomes the logarithmic behavior. It would be interesting to describe the theory around
this point by the Nekrasov partition function.

The Q-deformed theories in the NS limit are described by certain quantum integrable
systems. The quantum SW curve yields the same data as the integrable systems. For
the AD theory obtained from the SU(NN,) Yang-Mills theory, the quantum curve takes
the form of the Schrédinger equation with the polynomial potential. In [64], from the
viewpoint of the ODE/IM correspondence (for a review see [65]), the exponential of the
quantum period have been shown to be regarded as the Y-function of the quantum inte-
grable model associated with the Yang-Lee edge singularity. It is interesting to investigate
this relationship further by computing higher order corrections via the ODE/IM corre-

spondence.
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Appendix A

Short introduction to
supersymmetry

A.1 Supersymmetry algebra

In this section, let us introduce the supersymmetry algebra in four-dimensional space-
time. The Poincaré symmetry is generated by the translations in R'® and the Lorentz
transformations with the generators P, and L, , respectively (where the indices run over
w, v =0,1,2,3). The Lorentz group SO(3, 1) is isomorphic to SU(2);, x SU(2)g, labeled
by two positive (or zero) spins (s;,s_) where si € Z/2. We show the representations

with si in the four-dimensional theory in the table A.1.

Representation ($4,5-) Representation (s4,5-)
Scalar (0,0) Left chiral fermion
4-vector (%, %) Right chiral fermion
Symmetric tensors (rank 2) | (1,1) Self-dual anti-symmetric tensor (rank 2)

Anti-selfdual anti-symmetric tensor (rank 2)

Table A.1: The finite dimensional representations of SL(2,C) ~ SU(2), x SU(2)r

The supersymmetry enlarges the Poincaré algebra by introducing the supercharge:

Q. left Weyl spinor  (sy,s_) = (%, 0) : A1)
Qar = (QOCI)T right Weyl spinor (sy,s_) = (()’ %) 7 :
04,0.521,27 ‘[:1727”'7'/\/'7 (Az)

129
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where o and & are the Weyl spinor indices and the label I = 1,--- A is the number of the
independent supersymmetry. The supercharges transform as the Weyl spinors of SO(3, 1)
and are translation invariant [P,, Q.| = 0. The relevant relations of the supersymmetry

algebra generators are given by

{Qer Qps} = 207, Pud), (A.3)

{QL, Q%) = 2v2eap 2", (A.4)

{Qo'ch QBJ} = 2\/5%5'2;]7 (A.5)

where ¢" . is the Pauli matrices and €,4 is the anti-symmetric tensor where €19 = —€9 =
af B y

—1. The generators Z'/ and Zj; are the anti-symmetric in the indices I and J and

commute with all generators of the supersymmetric algebra, called central charges:
A AL [Z!7 anything] = 0. (A.6)

The central charge vanishes for the N/ = 1 supersymmetry.
Let us study the representation of supersymmetry algebra. We firstly discuss the
irreducible massless representation in which one can choose a Lorentz frame with P* =

E(—1,0,0,1). Then the supersymmetry algebra becomes
= 4F 0
@.a0- (" 1) o (A7)
ap

The unitarity of the theory implies {Q%, Qs } = O0i.e. Q) = 0and Z!/ = 0. The remaining
supercharges Q! and Qj; play a role of lowering and raising operators for helicity of the
state by % We define the Clifford vacuum |€2,) with the lowest helicity A which satisfy
Q1 19,) = 0. All the states in the massless representation can be constructed by acting the
supercharge @Qj; on [€2,). In CPT invariant theories, a fundamental multiplet contains
the constructed state and its CPT conjugate. For N' = 1 and 2, the state in theories
without gravity are listed in table A.2. For A/ = 1, the multiplet with A\ = % is called a
chiral multiplet while that with A = 0 is a vector multiplet. For N’ = 2, the multiplets
with A = —% and 0 are called a vector multiplet and a hypermultiplet, respectively.

We next consider the irreducible massive representation. One can choose the rest

frame with P* = (M, 0,0,0) so that the supersymmetry algebra (A.3) becomes

{(QL, (@'Y = 2006767, (A.8)



A.2. N =1 SUPERFIELD 131

Helicity [N =1 | N=1|N=2| N =2
(€1) [ A=3|A=0|A=0 | =—3
1 1 0 1 0
: 1 1 2 2
0 0 | 1+1 | 1+1 4
—3 1 1 2 2
—1 1 0 1 0

Table A.2: Massless representations for N’ = 1,2 supersymmetry.

In this case, we have two sets of ladder operators for helicity. We consider the case of
N = 2 supersymmetry. Under the unitary transformation, the central charge can be

chosen the form:
71 =7, (A.9)

with Z being the real values. We define the linear combinations of the supercharge, given

by

(Qa — cap(@3)7) - (A.10)

N | —

1
Q=5 (Qu+es@))), Q=
Using the supersymmetry algebra, they satisfy
{QL (@0} =dus (M +v2Z),  {@(Q@)} =bus (M=v22),  (A1D)

with all other anticommutators vanishing. Since all physical states should be the positive
norm, we find a bound on the mass M > v/2|Z|, called the BPS bound. For the saturation
of the BPS bound, the states belong to a smaller representation of the supersymmetry

algebra. The massive representation for the A" =1 and 2 is listed in table A.3.

A.2 N =1 superfield

To study the N/ = 1 supersymmetric theories, it is convenient to introduce the Grassmann
spinors 6% and 6, in addition to the space-time coordinate ##. The Grassmann coordinates

of superspace are defined by

(6°,6°} = {04, 0,} = {6°,6,} =0 (A.12)
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S [ N1 N=1|N=2] N= N =
(<) A=2]x=0|A=0|BPSA=0|BPS A= —1
1 1 0 1 1 0
1 2 1 2 2 2
0 1 2 5 1 4

Table A.3: Massive representation for ' = 1 and 2 supersymmetry. A is the lowest spin
of the Clifford vacuum.

In the following, we use the contraction conventions for the Grassmann spinors:

00 = 0“0, 00 =040 (A.13)
0ot0 = 0°c" 0% 05" = 055"**0,. (A.14)

The integration over § and @ is defined by
/ 2000 — / 2600 = / 00066 — 1. (A.15)

The supercharges acting on the superspace are given by

Qo = % —ich0°0,, Q= —% + 10707404, (A.16)
which satisfy
{Qa; Qp}t = 2i0% ;0. (A.17)
We also introduce the supercovariant derivatives:
D, = a%v +i0".,0%0,,  Ds= —% —i0%c".0,, (A.18)

which satisfy {D,, DB} = —2io" Ba“ and also anticommute with @ and Q.
A superfield is defined by a function of z*, 8, and #%. From the anticommutativity of
the Grassmann coordinates, the superfield can be written as the finite series expansions

in powers of the Grassmann variables § and 6:
S(z,0,0) =¢(x) + 0¢(z) + Ox(x) + 00F (x) + 00G*(x)

_ - i - (A.19)
+ 00"GA,(x) + 000X (z) + 000p(x) + 009D (x).
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Under infinitesimal supersymmetry transformation, the superfield S(z, 6, ) transforms as
0¢S(x,0,0) = (6*Qa + EaQ)S, (A.20)

where the parameters €% and &, are anticommuting parameters. This can lead to the
supersymmetric transformation of component fields including in the superfield. We then
find that the variation of the top component D(x) become a total derivative. The com-
ponent fields belonging to the representation of the supersymmetry can be constructed
from superfield S(z,6,6), but it is highly reducible. The irreducible components can be
derived by imposing the constraints on the superfield.

A chiral superfield ® is defined by imposing the condition
qu) == 0 (AQl)

We introduce the coordinate y* = x# + ifo*0, satisfying

Dyt =0, Dgb° = 0. (A.22)
Then the chiral superfield can be written by the function (y, 6):

D(y,0) = d(y) + V200(y) + 00F (y). (A.23)

If @ is a scalar superfield, the components ¢ and 1 are the scalar and spinor fields respec-
tively and F is an auxiliary field. Thus the A" = 1 chiral multiplet can be represented by
the chiral superfield. Similarly an antichiral superfield ®' satisfies D,®" = 0 and can be

expanded as
o (y',0) = ¢'(y") + V200 (y") + 00F' (), (A.24)

where y'* = 2# — ifo*0.
Here we consider the function constructed by chiral superfields ®;: W(®;). In general

the function W(®;) is also a chiral superfield. The term with the highest power of 6 of

W(®;) is given by

ow P 1 *W

i 200,00

[ o) - b (A.25)
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Under infinitesimal supersymmetry transformation (A.20), this term becomes total deriva-
tives. The function W(®;) is called the superpotential.
Any arbitrary function of ® and ®' is neither the chiral nor antichiral superfields. In

the component fields, it is written by

1 O’°K 1 K 1 Ir*K
T RF — oS F
20:0) 200,00,00]

/ d'0K (@;,01) = iU

8 96,00,;06100)]
(A.26)

We also find that the variation of it becomes total derivatives. K(®;, <I>j) is referred as
the Kahler potential.

A vector superfield satisfies the reality condition
V=V (A.27)

In a similar way, the vector superfield is expanded as

V(z,0,0) =C(x) + i0x(z) — i0x(z)

+%66[M(x)+iN( )~ S8 () — iN ()]

— 00"0A,(x )—HGG@{ (:j+ aﬂapx( )} (A.28)
_ 1090 [m) n %auamx)] + Lo0s0 {D@;) N %auauc(x)} |

where the component field C, D, M, N are the real fields and A, is regarded as the vector
field.

We firstly consider in the case of the Abelian gauge theory. We find A and D are

invariant under the Abelian gauge transformation:
Vo V4o, + 0 (A.29)

where ®, and (IDL are the chiral and antichiral superfield. Thus A and D are regarded as
the gaugino and the auxiliary field, respectively. The Abelian field strength is defined by

Wo=—1DDD.V. Wo=—DDD,V. (A.30)
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so that W, is a gauge invariant chiral superfield. Under the gauge transformation, we
choose a special gauge fixing: C' =y = M = N = 0, called the Wess-Zumino gauge. In
component fields, the Abelian field strength becomes

W, = —ida(y) + 0, D — %(U“&”H)QFW + 020 0y N, (A.31)

where F),, is the Abelian field strength. For the non-Abelian gauge, the vector superfield
V' belongs to the adjoint representation of the gauge group. The field strength is given
by

1= = 1 _
Wo =—7DD (e Doe®), Wy = -DD (e Doe™) . (A.32)
Under the gauge transformation:
eV — e’i‘bz’ewei@g, (A.33)

the field strength becomes W, — e *®sW,e'®s. In the Wess-Zumino gauge, the field
strength is expanded as

Wy = —ida(y) + 0aD — %(a“&”@)aFW + 020" DN\, (A.34)

where F,, and D,, are the non-Abelian field strength and the covariant derivative.
Now we can write down the N = 1 supersymmetric Lagrangian in terms of the su-
perfields. In the non-Abelian gauge theory with the chiral and vector multiplets, the

renormalizable Lagrangian is given by

1 _
L :8—Im(TTr / dQQWaWa)+ / d9dTe 2V + / 0w + / d*ow, (A.35)

™

where 7 is the complex gauge coupling: 7 = % + %.

A.3 N =2 superfield

For N' = 2 supersymmetric field theories, we introduce the coordinates of the N' = 2

superspace as

zH, Ot = (0a1,0a2), 0% = (9*,0%%), (I,J=1,2) (A.36)
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with {0,0} = {0,0} = 0. The generic superfield is defined as a function of (z#,6;,0”),

expanded as

As in the case of NV = 1, this is reducible. We need to impose the constraint on the
superfields.
A N = 2 chiral superfield is defined by imposing

DyrV =0, (A.38)
where Dy is the N' = 2 supercovariant derivative:

0 = = 0
DI - ; N.eal DI - _ -
« 80? + LIPS 8}“ « aed[

+ 0%, (A.39)

Since the A/ = 2 chiral superfield is reducible, we impose the constraint on the superfields,

which given by
D'D'Vv = D'D'w = 0. (A.40)
The expansion of ¥ in powers of 0y takes the form:
V(y,0) = VO (y,00) + V2050 (y, 61) + 056,09 (y, 61), (A.41)

where y* = 2* + i0,0"0, + i030"0,. The N’ = 2 multiplets can be expressed in terms of

N = 1 multiplets:

) = P(y, 6,), v@ = Waly,601), o) = /d29_1 df(y — 2-9108—1791751)6721/(@,71’91051,91,61)7
(A.42)

where ® is the N = 1 chiral superfield while W, is the N' = 1 field strength. We then
find that the component fields of ¥ are those of the N' = 2 vector multiplet.
By using the N = 2 chiral superfield, the Lagrangian for the N' = 2 pure Yang-Mills

theory can be written down as

1 1
L= ~ImTr / d*6,d*0, 57\1/2. (A.43)
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In terms of the N' = 1 superfield, it takes the form

1 1
L :4—ImTr [7’ </ d'0 dte 2V + 3 /d29 WaWa)} ; (A.44)

7

where 6 := ¢;. We then introduce the function of ¥ as F(¥), which is also the N' = 2
chiral superfield. For the A/ = 2 pure Yang-Mills theory, the generic Lagrangian is given
by

1
L =—TImTr / d*0,d*0y F(0)
47

_L 19 pie-2v 97 (P) 1/2 PF(D) 1o
—47TImTr[/d9¢)e 50 —1—2 d=0 52 WeW, | . (A.45)

where the function F (W) is called the prepotential.



138 APPENDIX A. SHORT INTRODUCTION TO SUPERSYMMETRY



Appendix B
(2F,n)

Coefficients J for Ny =2,3 and 4
f

theories

In this appendix we explicitly write down some coefficients in the expansion of the pre-

potentials for Ny = 2,3, 4 theories in the weak coupling region.

B.1 N;=2

For the Ny = 2 theory, the first four coefficients of the classical part of the prepotential

in (5.67) are

A5 1

2
2 T T 3p MM

‘/__.2(072) _ 3A§m% . 3A§‘m§’
8192 8192
03) 5A8 5A3m2m3  5ASmimy
2 7134217728 16384 196608
FOO _ _ 63A5m? B 63A53m3 B 7TASm3ms B 7ASmym3

The coefficients in the second order correction to the prepotential are

FPY =0,

A4
]5@2)::__3_ A2
2 Tglog T o5 2™

9 =

65536 65536
139

134217728 134217728 393216 393216
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8 4,22 6
Y G e T i ®3
For the fourth order corrections, they are

Fit =0,

F =0,

]_-2(4,3) _ A3 A%m1m2’

16384 2048
F _ _ 63A3m7  63A3mj (B.3)

524288 524288
B.2 N;=3
For Ny = 3, the coefficients of the prepotential in the expansion (5.67) are given by

AL AZm? 1
(0,1) _ 3 3770 A
b Ta3554432 | £ 006 | g2

3
(02) _ Z 3A§mf Z 3/\?2,77%27713 B AgmlQOg

f - - )
3 — 33554432 = 8192 32768
©03) 5A% i 5ASm? n 5A3m? n 5A3mimamam?
5 4503599627370496 — 103079215104 134217728 196608
Z 25A5mim?  5A2m3mim3  TASmymoms
= 33554432 16384 268435456
ﬂw_i__ 63A5m? - m%g_ﬁm%%mm3+zfmm%§
5 2251799813685248 103079215104 268435456 oy 134217728
Z B 35A§mim? B TAZmImimymams _ 3AImamamg  14TAgmimim3
34359738368 393216 137438953472 33554432
(B.4)

for the classical part,

A2
f’(2,1) _ 3
’ 16384
4 3 2 9
(2,2) :5—/\3 Agm; LA
5 T 134217728 2 8192 | 256 82,

1=1
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412316860416 268435456 65536 786432
F24) _ 105A8 N i 35A5m? n 21A3m} N 35A3mymamam?
5 9007199254740992 — \ 103079215104 = 134217728 786432
N Z 147A5mim5  63A3mymoms  21A2m2m3m3 (B.5)
= 67108864 236870912 65536 ’ '

for the second order in A and

Fit =0,

a2 _ A

3 32768’
,/—"(4’3) . 141/\% 23: A%mf A3m1m2m3

72147483648 4~ 16384 2048

3 2, 1201,2
]__?54,4) _ 133A% B Z 147A3m; Z 63AZmim; 343/\%7711mgmg7 (B.6)
1649267441664 < 268435456 524288 6291456

for the fourth order in A.

B.3 N;=4

For the Ny = 4 theory, the coeflicients of the prepotential (5.71) are given by

4

(o1 _a m
P Eg T e
]_.io,2):13a2 N 11m* B 3m?S N 5m® |
1024 2048a®  2048a* = 16384aS
03) 23a? n 17m* mb N 15m® 7m0 n Im!'?
47712288 0 1638442 2048a* ' 6553648  98304a® | 262144410’
04) 2701a? n 1791m* 1125mS n 6095m® 1673m!°
1 778388608 ' 8388608a2  8388608at  67108864aS 3355443248
2727m!? 715m 1469m 6 (B.7)

134217728410 134217728a12 o 2147483648a'*’
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for the classical part,

4

(21 __ ™M
P = J5gar
]__2272):_ m? N 5m? B 15mS N 21m?8 7
4096a% = 4096a*  16384a® = 6553642
£ _ m? N s5m*  5m° N 9Im®  43m" N 55m!?
Y 1638402 16384a*  12288a5 = 26214408 26214440  1572864a'2’
FO _ 235m? . 2487m* B 8935mS . 11235m® B 38337m!°
Y 1677721602 33554432a%  67108864aS  67108864a® 268435456410
N 43505m!? B 29549m!4 n 18445m/16 (B.9)
536870912a'2  1073741824a'4 = 4294967296416’ '
for the second order in A, and
4,1 m*
7 ):2048646’
(4,2) 1 m? Tm? 63mS 219m?8
4 T 6553602 819244 + 1638445 13107248 + 1048576a10’
(4,3) 1 m? 119m? 133m$ 1689m?® 253m/1° 1495m'?
4 T 26214442 3276842 * 78643245 39321645 * 4194304aX  1048576a12 * 25165824a14’
Fd) 235 B 973m? n 24571m* B 9457mS n 68835m®
126843545642 134217728a* 53687091248  67108864a8 268435456410
625537m° 1765673m!? 353325m! 985949m !¢

B _ B.9
2147433648412 T 8589934592411 _ 1294067296070 | 6719476736 )

for the fourth order in A.
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Fourth order corrections in (A, Dy)
theory

In this appendix, we will write down the fourth order corrections to the SW periods
for AD theory of (A;, D4) type, associated with the SU(2) gauge theory with Ny = 3
hypermultiplets. Using (6.37) and (3.51), we obtain the fourth order corrections to the
SW periods, which are given by

x (RO () + B () (1)
~ 3 3
() ? 1 ( U ) s 4 M
ap” =33 i5 i 2100\ o —o3) 2 |1+ s—
P o% 3% p . traag (g — 1)3 A \ A3 (=os) 3 iAs
< ((“DFRY @) + (-1)F FO(@)). (€.2)

(5
1 1 11 1
X (X§4>F (—1 = g;wg) +X\VF (3 ;g;wg» . (C.4)
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Here the coefficients X¢(4) (1 =1,2,3,4) are defined as follows:

126 - 23 Agiy3 (14234 + 593) M
AM?3 + 3A30

(—03)

X{Y = — 23 P (77w, + 211) — (~03)3

2522 (i), (8894, + 4639) -+ 520) M2
~ 2
(4M3 n 3A3ﬂ>

(VIS

756 - 23 A, 3 <189A3(wg — 1)i — (419, + 1597)M3)

+ N 3 (—0'3)
(4M3 n 3A3a)
1134 - 25 A4 (@l — 1)whs (95 + 157)M( )8
N 3 —03 )
(4M3 n 3A3a)

462 - 23 A gy (34710} + 157) M

X = — 3234 23403 (@, + 3) — k& —03)8
> 53 (w5 + 3) A 1 30ad (—03)

504A2 (04 (381404 4 2131) + 260) M? Y

_ - ; oy
(4M3 + 3A3a>

2079 - 25 A, 3 (63A3(wg —1)d — 32(44 + 17)M3)

+ ~ 3 (-O'g)
<4M3 + 3A3a>
1 ~ ~, 1 ~ ~
N 486 - 23 A3 () —~ 1)w}s (190;U§ + 349)M(_03)%’
(4M3 + 3A37j)
168A3(11344 + 13) M
XM =49 - 25405 (114, 4 13) + (L1305 + 13) (—03)3

AM3 + 3Azi
126 - 25 A2} (12740 + 377) M2

(4M3 + 3A3a) ’

win

(—03)

189 - 25 A3l (4(6771;3 +101) M3 — 6375 (0, — 1)@)
+ _ 3 (_03)
<4M3 + 3A3a>

162A%(, — 1)(95@), + 52)M
- N 3
<4M3 + 3A3a)

(_03) )
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@ Lol 42\ g (4 (381740 + 2179) + 52) M 1
X, =—49-23w;3 (11w, (6w, + 19) + 13) — = —03)3
i 53 (11w (6 4 19) + 13) I 4 300 (—o3)
378 - 25 A2 3 (wh(25440 + 1463) + 299) M2 (oo}
_ ] : o
(4M3 + 3A3a>
189 - 25 Adu 3 (4(@5(352@5 +1563) + 101) M3 — 63A5(a@, — 1)(114, + 1)@)
- N 3 <_U3)
(4M3 + 3Aga>
324 N5 (Wl — 1) (wh (285w} 4 571) + 26) M .y
- 3 —Y3)"
(4]\/[3 + 3A3a>
(C.8)
Expanding (C.1) and (C.2) in é\%, % and CUMQ , the forth order corrections become
2 . 1
1 (i) = (10+137-DF) T )T E) [}
As A3 92.35. 513 As
) ) (C.9)
(1241 - 907(-1)F) T ()T (3) (2}
— T — + P ,
23672 a3
1 (i) (D! (1o+ 137(—1)5) OO
b § A3 922.35. 53 a3
(C.10)

The A* correction to the effective coupling constant is expanded as

1 _8
~ —1s [ @ 3 23 - 327w
= (A_) 5
3 3 52" (—5)
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Appendix D
Quantum periods of SU(N.) SQCD

The SW curve (2.121) and the SW differential (2.56) become

2N.—N
1 Ay, G
C(p) — = (z—i—Nf—U) =0, (D.1)
2 z
Asw = p(dlog G(p) — 2dlog ), (D.2)
by introducing
y=2-C) (D.3)

The SW differential defines the holomorphic symplectic form dAsw = dp A dx where

x ~ log z. Define

Z = exp (—zh(%) : (D.4)

then we obtain the quantum SW curve

B (exp (—ih%) + exp (—ig(%) Axr Y G(p) exp (—i%‘%)) - C(p)] U(p) =0.
(D.5)

Here we take the ordering prescription of the differential operators as [46]. By using
J(a) = e i/pfjh%ud exp ( —iha-2- ) ex i/pfjh%()d
a)=exp | —= xp | —tha— =
p 2 2 k\p)ap p ap p 7 £ k\p)ap | ,
(D.6)
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the quantum SW curve becomes

% (J(l) + Ay, G (zo + g) J(—l)) +C(p) =0. (D7)

Expanding the quantum SW curve in A, we obtain the recursion relation of ¢,. Solving
the recursion relation, we find ¢9,11(p) (n = 0,1) become the total derivatives. The first

three ¢91’s are given by

Po(p) =log (C(p) £ y), (D.8)
oulp) =L TN D9
61(0) _C'(p)’C"(p)  TC(P)C"(p)*  C(p)C'(p)C® (p)

WP =068y 1536y° 38443

C(p)C'(p)*  (11C(p)? 11 y y (17C(p)  5C(p)°*\ e
+< 256t T\ sz 15362 W)Y\ T5360 65 ) Y

C(p)? 1 10N (3) 11 3C(P)*\ 3C(p)°  5C(p)\
+<128y4 3s12 ) OO+ (3072 ~T0aa7 ) € P \Tonay7 " T02a7 ) Y

(D.10)
where 3/ := g—‘z. The integration of ¢y is interpreted as the quantum correction to the SW
periods:

n® .= j{(bk(p)dp. (D.11)

It can be checked that the second order correction to the SW periods agrees with that
in [46] up to total derivatives. The second and fourth order corrections to the SW periods
for the AD theory are obtained from not only the WKB solutions of the quantum SW
curve for the AD theory, but also the scaling limit ¢ — 0 of the second and fourth order
corrections for the corresponding SU(N.) SQCD: (D.9) and (D.10) .
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