
論文 / 著書情報
Article / Book Information

Title An Information-Theoretical Analysis of the Minimum Cost to Erase
Information

Authors Tetsunao Matsuta, Tomohiko Uyematsu

Citation IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, Vol. E101-A, No. 12, pp. 2099-2109

Pub. date 2018, 12

URL  http://search.ieice.org/

Copyright  (c) 2018 Institute of Electronics, Information and Communication
Engineers

Powered by T2R2 (Tokyo Institute Research Repository)

http://search.ieice.org/
http://t2r2.star.titech.ac.jp/


VOL. E101-A NO. 12
DECEMBER 2018

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.



IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.12 DECEMBER 2018
2099

PAPER Special Section on Information Theory and Its Applications

An Information-Theoretical Analysis of the Minimum Cost to Erase
Information∗

Tetsunao MATSUTA†a), Member and Tomohiko UYEMATSU†b), Fellow

SUMMARY We normally hold a lot of confidential information in hard
disk drives and solid-state drives. When we want to erase such information
to prevent the leakage, we have to overwrite the sequence of informationwith
a sequence of symbols independent of the information. The overwriting
is needed only at places where overwritten symbols are different from
original symbols. Then, the cost of overwrites such as the number of
overwritten symbols to erase information is important. In this paper, we
clarify the minimum cost such as the minimum number of overwrites to
erase information under weak and strong independence criteria. The former
(resp. the latter) criterion represents that the mutual information between
the original sequence and the overwritten sequence normalized (resp. not
normalized) by the length of the sequences is less than a given desired value.
key words: data erasure, distortion-rate function, information erasure,
information spectrum, random number generation

1. Introduction

Since services and activities using various types of infor-
mation have increased, we normally hold a lot of confiden-
tial information. For example, storage devices such as hard
disk drives (HDDs), solid-state drives (SSDs) and USB flash
drives of individuals and companies hold personal addresses,
names, phone numbers, e-mail addresses, credit card num-
bers, etc. When wewant to discard, refurbish or just increase
the security of these devices, we will usually erase informa-
tion to prevent the leakage.

In order to erase information, we have to overwrite the
sequence of information with a sequence of symbols inde-
pendent of the information. Commonly used methods of
erasure are to overwrite information with uniform random
numbers or repeated specific patterns such as all zeros and
all ones. There are several standards [3]–[7] to erase infor-
mation. Although most of these standards propose to repeat
overwriting many times, overwriting data once is adequate
to erase information for modern storage devices (see, e.g.,
[7, Section 2.3]).

The overwriting is needed only at places where over-
written symbols are different from original symbols, e.g., 0
to 1 or 1 to 0 for binary sequences. If there are so many over-
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Fig. 1 Information erasure model.

written symbols, the overwriting damages devices, shortens
the storage life and may also take write time. This is crucial
for devices with a limited number of writes such as SSDs
and USB flash drives. Thus, we want to reduce the number
of overwritten symbols when we erase information. Here
comes a natural question: “What is the minimum number of
overwritten symbols?”.

In this paper, we clarify the minimum cost such as the
minimum number or time of overwrites to erase information.
Aswe stated in the above, for a binary sequence, the overwrit-
ing occurs at places where overwritten symbols are different
from original symbols. In this case, a proper measure of the
cost is the Hamming distance between the original sequence
and the overwritten sequence. From this point of view, the
information erasure can be modeled by correlated sources as
Fig. 1 which actually is a somewhat general model. In this
model, sequences emitted from source 1 and source 2 repre-
sent confidential information and information to be erased,
respectively. For example, source 1 and source 2 are re-
garded as a fingerprint and its quantized image, respectively.
When two correlated sources are identical, the model corre-
sponds to the above mentioned situation. As shown in this
figure, the encoder can observe one of the sequences. The
encoder outputs a sequence that represents the overwritten
sequence. Here, we allow the encoder to observe a uniform
random number of limited size to generate an independent
sequence. Then, the cost can be measured by a function of
the input source sequence and the output sequence of the
encoder.

For this information erasure model, we consider a weak
and a strong independence criteria. The former (resp. the
latter) criterion represents that the mutual information be-
tween the source sequence and the output sequence of the
encoder normalized (resp. not normalized) by the length
(blocklength) of sequences is less than a given desired value.
For the weak independence criterion, we consider the aver-
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age cost and the worst-case cost. The former cost represents
the expectation of the cost with respect to the sequences.
The latter cost represents the limit superior in probability [8]
of the cost. Then, by using information-spectrum quantities
[8], we characterize the minimum average and the mini-
mum worst-case costs for general sources, where the block
length is unlimited. For the strong independence criterion,
by employing a stochastic encoder, we give a single-letter
characterization of the minimum average cost for stationary
memoryless sources, where the blocklength is unlimited. On
the other hand, for the strong (same as the weak in this case)
independence criterion, we also consider the non-asymptotic
minimum average cost for a given finite blocklength. Then,
we give a single-letter characterization of it for stationary
memoryless sources. We show that the minimum average
and the minimum worst-case costs can be characterized by
the distortion-rate function for the lossy source coding prob-
lem (see. e.g., [8]) when the two correlated sources are iden-
tical. This means that our problem setting gives a new point
of view of the lossy source coding problem. We also show
that for stationary memoryless sources, there exists a suf-
ficient condition such that the optimal method of erasure
from the point of view of the cost is to overwrite the source
sequence with repeated identical symbols.

There are some related studies [9], [10] investigating a
relationship between a cost and statistical independence of
sequences. These studies deal with correlated two sequences
(referred to as confidential sequence and public sequence in
this paper) and consider systems that reveal a sequence (re-
ferred to as revealed sequence) related to the public sequence
while keeping the confidential sequence secret. In [9], the
public sequence is encoded to a codeword and is decoded
to the revealed sequence. In [10], the public sequence is di-
rectly and randomlymapped to the revealed sequence. These
studies adopt the mutual information† between the confiden-
tial sequence and the revealed sequence (or codeword in [9])
in order to measure the independence. Then, these studies
give a trade-off between the mutual information normalized
by the blocklength and the average distortion (i.e., cost) be-
tween the public sequence and the revealed sequence. We
note that in these studies, the uniform random number of lim-
ited size is not assumed. Especially, in [9], the system reveals
the sequence via a codeword without any auxiliary random
number. Thus, system models in [9] and [10] are fundamen-
tally different from our information erasure model. More-
over, these studies only consider sequences emitted from
stationary memoryless sources and a certain limited distor-
tion (cost) function. Thus, problem formulations in these
studies are different especially from that for the weak inde-
pendence criterion in our study. The problem formulation in
the study [10] is rather related to that for the strong indepen-
dence criterion in which we consider a stochastic encoder
and stationary memoryless sources. However, in [10] (and
also [9]), there is not any discussion about the optimality of

†More precisely, the study [9] adopts the conditional entropy
of the confidential sequence given the codeword.

the revealed sequence of repeated identical symbols which
is important in the information erasure for comparison with
a known method.

The rest of this paper is organized as follows. In Sect. 2,
we give some notations and formal definitions of the mini-
mum average and the minimum worst-case costs under the
weak independence criterion. Then, we characterize these
costs for general sources. In Sect. 3, we give the formal
definition of the minimum average cost under the strong in-
dependence criterion. We also give the formal definition
of the non-asymptotic minimum average cost. Then, we
give a single-letter characterization of these costs and some
results obtained from this characterization. In Sect. 4, we
show proofs for characterizations of minimum costs under
the weak independence criterion. In Sect. 5, we conclude
the paper.

2. Minimum Costs to Erase Information under the
Weak Independence Criterion

In this section, we consider the minimum average and the
minimum worst-case costs under the weak independence
criterion, and characterize these costs for general sources.
We show some special cases of these costs in this section.

2.1 Problem Formulation

In this section, we provide the formal setting of the infor-
mation erasure and define the minimum average and the
minimum worst-case costs under the weak independence
criterion.

Unless otherwise stated, we use the following notations
throughout this paper (not just this section). The probabil-
ity distribution of a random variable (RV) X is denoted by
the subscript notation PX , and the conditional probability
distribution for X given an RV Y is denoted by PX |Y . The
n-fold Cartesian product of a set X is denoted by Xn while
an n-length sequence of symbols (a1, a2, · · · , an) is denoted
by an. The sequence of RVs {Xn}∞

n=1 is denoted by the bold-
face letter X. Hereafter, log means the natural logarithm.

Let X,Y and X̂ be finite sets, Mn be a positive integer,
and UMn = {1, 2, · · · , Mn}. Let UMn be an RV uniformly
distributed onUMn , and (Xn,Y n) be a pair of RVs on Xn ×

Yn such that (Xn,Y n) is independent of UMn . The pair
(X,Y) = {(Xn,Y n)}∞

n=1 of a sequence of RVs represents a
pair of general sources [8] that is not required to satisfy the
consistency condition.

For the information erasure model (Fig. 1), let fn :
Xn×UMn → X̂

n be an encoder, and cn : Xn×X̂n → [0,∞)
be a cost function satisfying

sup
n≥1

sup
(xn, x̂n )∈Xn×X̂n

cn(xn, x̂n) , cmax < ∞.

We give two examples of the information erasure model
to better understand it.

Example 1. Let a sequence Y n be confidential n-length bi-
nary data and be observed by some reading device, where
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we define Y , {0, 1}. Let a sequence Xn be the observed
n-length binary data which is actually stored in a storage
device, where we define X , {0, 1}. Now suppose that we
can no longer read Y n, but we can access the storage device
and read the stored data Xn. Then, we want to overwrite Xn

to keep Y n secret. To this end, let us overwrite the data by
all zero sequence. Then, we can define X̂ , {0, 1} and the
encoder as fn(xn, u) , (0, 0, · · · , 0) for any xn ∈ Xn and any
u ∈ UMn . If we only overwrite a half of the data, i.e., we de-
fine the encoder as fn(xn, u) , (x1, x2, · · · , xn/2, 0, 0, · · · , 0)
for any xn ∈ Xn and any u ∈ UMn , the output of the encoder
is no longer independent of Y n, but a cost may be reduced.
Obviously, we can define a more complicated encoder as
follows: Let Mn = 2 and

fn(xn, u) ,




(0, 0, · · · , 0) if x1 = 0, u = 1,
(1, 1, · · · , 1) if x1 = 1, u = 1,
(1, 1, · · · , 1) if x1 = 0, u = 2,
(0, 0, · · · , 0) if x1 = 1, u = 2.

If we wish to count the number of overwrites of binary data,
we define the cost function by the (normalized) hamming
distance, i.e., cn(xn, x̂n) , 1

n

∑n
i=1 1{xi , x̂i }, where 1{·}

denotes the indicator function.

Example 2. Let Y n be a confidential grayscale image with
rather large n dots, and Xn be its quantized binary image†
printed on a paper, where we define Y , {0, 1, 2, · · · 255}
and X , {0, 1}. When we discard the paper of the binary
image Xn, we modify†† it by using an eraser and a black ink
pen in order to keep the grayscale image Y n secret. If the
eraser can erase black dots clearly (probably the eraser or
the black ink is special), the modified image is also a binary
image. Thus, we can define X̂ = {0, 1} and encoders as those
in Example 1. Suppose that the eraser is more expensive than
the pen, and we pay α (yen, dollar, etc.) for writing a black
dot and 2α for erasing a black dot. Then, we may define the
cost function as cn(xn, x̂n) , 1

n

∑n
i=1 c(xi, x̂i), where

c(x, x̂) =



α if (x, x̂) = (1, 0),
2α if (x, x̂) = (0, 1),
0 otherwise.

Before we show several definitions, we introduce the
limit superior and the limit inferior in probability [8].

Definition 1 (Limit superior/inferior in probability). For an
arbitrary sequence Z = {Zn}∞

n=1 of real-valued RVs, we
respectively define the limit superior and the limit inferior in
probability by

p-lim sup
n→∞

Zn , inf
{
α : lim

n→∞
Pr {Zn > α} = 0

}
,

p-lim inf
n→∞

Zn , sup
{
β : lim

n→∞
Pr {Zn < β} = 0

}
.

†0 and 1 represent black and white dots, respectively.
††When shredding the paper into strips, it may be reassembled.

Thus, we want to modify the original image.

We define the worst-case cost by the limit superior in
probability of the cost, i.e.,

p-lim sup
n→∞

cn(Xn, fn(Xn,UMn )).

Then, we introduce two types of achievability.

Definition 2. For real numbers R, Γ, ε ≥ 0, we say (R, Γ)
is ε-weakly achievable in the sense of the average cost if
and only if there exist a sequence of integers {Mn}

∞
n=1 and a

sequence of encoders { fn}∞n=1 such that

lim sup
n→∞

1
n

log Mn ≤ R, (1)

lim sup
n→∞

1
n

I (Y n; fn(Xn,UMn )) ≤ ε, (2)

lim sup
n→∞

E[cn(Xn, fn(Xn,UMn ))] ≤ Γ,

where I (X ;Y ) denotes the mutual information between RVs
X and Y , and E[·] denotes the expectation.

Definition 3. For real numbers R, Γ, ε ≥ 0, we say (R, Γ)
is ε-weakly achievable in the sense of the worst-case cost if
and only if there exist a sequence of integers {Mn}

∞
n=1 and a

sequence of encoders { fn}∞n=1 such that

lim sup
n→∞

1
n

log Mn ≤ R,

lim sup
n→∞

1
n

I (Y n; fn(Xn,UMn )) ≤ ε, (3)

p-lim sup
n→∞

cn(Xn, fn(Xn,UMn )) ≤ Γ.

We adopt the mutual information normalized by the
blocklength n in these definitions (i.e., (2) and (3)). This
is a somewhat weak criterion of independence compared
with the mutual information itself (not normalized by the
blocklength). The stronger version of this criterion will be
considered in the later section.

Now, we define the minimum average and the minimum
worst-case costs under the weak independence criterion.

Definition 4. We define the minimum average cost as

Ca(ε, R) , inf{Γ : (R, Γ) is ε-weakly achievable
in the sense of the average cost}.

Definition 5. We define the minimum worst-case cost as

Cw(ε, R) , inf{Γ : (R, Γ) is ε-weakly achievable
in the sense of the worst-case cost}.

2.2 Minimum Average and Minimum Worst-Case Costs

In this section, we characterize the minimum average and the
minimum worst-case costs. To this end, for given sequences
(Y,X, X̂) of RVs, we define
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I (Y; X̂) , lim sup
n→∞

1
n

I (Y n; X̂n),

H (X̂|X) , p-lim sup
n→∞

1
n

log
1

PX̂n |Xn (X̂n |Xn)
,

c(X, X̂) , lim sup
n→∞

E[cn(Xn, X̂n)],

c(X, X̂) , p-lim sup
n→∞

cn(Xn, X̂n),

and denote by Y−X− X̂ that the Markov chainY n−Xn− X̂n

holds for all n ≥ 1.
For the minimum costs under the weak independence

criterion, we have the following two theorems.

Theorem 1. For a pair of general sources (X,Y) and any
real numbers ε, R ≥ 0, we have

Ca(ε, R) = inf
X̂:Y−X−X̂,

I (Y;X̂)≤ε,H (X̂ |X)≤R

c(X, X̂).

Theorem 2. For a pair of general sources (X,Y) and any
real numbers ε, R ≥ 0, we have

Cw(ε, R) = inf
X̂:Y−X−X̂,

I (Y;X̂)≤ε,H (X̂ |X)≤R

c(X, X̂).

Since proofs of theorems are rather long, we postpone
these to Sect. 4. The only difference of two theorems is using
a function c(X, X̂) or c(X, X̂).

According to [11, Theorem 8 c), d), and e)], it holds
that H (X̂|X) ≤ log |X̂ |. Hence, the following two corollaries
follow immediately.

Corollary 1. When X = Y and R ≥ log |X̂ |, we have

Ca(ε, R) = inf
X̂:I (X;X̂)≤ε

c(X, X̂).

Corollary 2. When X = Y and R ≥ log |X̂ |, we have

Cw(ε, R) = inf
X̂:I (X;X̂)≤ε

c(X, X̂).

Right-hand sides of Corollaries 1 and 2 can be regarded
as the distortion-rate function for the variable-length coding
under the average distortion criterion (see, e.g., [8, Remark
5.7.2]) and the maximum distortion criterion (see, e.g., the
proof of [8, Theorem 5.6.1]), respectively. This fact allows
us to apply many results of the distortion-rate function to our
study. For example, according to the proof of [8, Theorem
5.8.1], the minimum costs for stationary memoryless sources
are given by the next corollary.

Corollary 3. Let X = Y and R ≥ log |X̂ |. Further, let X
be a stationary memoryless source induced by an RV X on
X, and cn : Xn × X̂n → [0,∞) be an additive cost function
defined by

cn(xn, x̂n) ,
1
n

n∑
i=1

c(xi, x̂i),

where c : X × X̂ → [0,∞). Then, we have

Ca(ε, R) = Cw(ε, R) = min
X̂:I (X;X̂)≤ε

E[c(X, X̂ )].

We also consider a mixed source X of two sources X1
and X2 defined by

PXn (xn) = αPXn
1

(xn) + (1 − α)PXn
2

(xn),

where α ∈ [0, 1]. According to [8, Remark 5.10.2], we have
the next corollary.

Corollary 4. Let X = Y and R ≥ log |X̂ |. For a subadditive
cost function c̃n : Xn × X̂n → [0,∞) that satisfies

c̃n+m((xn1, xm2 ), ( x̂n1, x̂m2 )) ≤ c̃n(xn1, x̂n1 ) + c̃m(xm2 , x̂m2 ),

let cn(xn, x̂n) = 1
n c̃n(xn, x̂n) and Ca(ε, R|X) be the mini-

mum average cost when X = Y. Then, for a mixed source X
of two stationary sources X1 and X2, we have

Ca(ε, R|X)
= inf

(ε1,ε2)∈[0,∞)2:
αε1+(1−α)ε2≤ε

(αCa(ε1, R|X1) + (1 − α)Ca(ε2, R|X2)) .

3. Minimum Costs to Erase Information under the
Strong Independence Criterion

In this section, we consider the minimum average cost un-
der the strong independence criterion. In order to clarify
the fundamental limit of average costs, we assume that an
encoder is a stochastic encoder in this section. In other
words, we consider the case where the size of the uniform
random number is sufficiently large. We also assume that
a source is a stationary memoryless source. Then, we give
a single-letter characterization of the minimum average cost
and some results obtained from this characterization.

3.1 Problem Formulation

In this section, we define minimum average cost under the
strong independence criterion.

Let (X,Y) be the pair of stationarymemoryless sources,
i.e., {(Xi,Yi)}∞n=1 be independent copies of a pair of RVs
(X,Y ) on X ×Y. For the sake of brevity, we simply express
the sources as (X,Y ). Let fn : Xn → X̂n be a stochastic en-
coder, and cn : Xn×X̂n → [0,∞) be an additive cost function
as defined in Corollary 3, i.e., cn(xn, x̂n) , 1

n

∑n
i=1 c(xi, x̂i),

where c : X × X̂ → [0,∞) is an arbitrary function.
The achievablility under the strong independence crite-

rion is defined as follows.

Definition 6. For real numbers Γ, ε ≥ 0, we say Γ is ε-
strongly achievable in the sense of the average cost if and
only if there exists a sequence of stochastic encoders { fn}∞n=1
such that

lim sup
n→∞

I (Y n; fn(Xn)) ≤ ε, (4)
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lim sup
n→∞

E[cn(Xn, fn(Xn))] ≤ Γ,

where the expectation is with respect to the sequence Xn and
the output of the stochastic encoder fn.

The difference from the previous section is to use the
strong independence criterion in (4).

The minimum average cost under the strong indepen-
dence criterion is defined as follows.

Definition 7. We define the minimum average cost as

C∗a (ε ) , inf{Γ : Γ is ε-strongly achievable
in the sense of the average cost}.

Remark 1. We only consider the average cost in this section.
This is because the minimum worst-case cost coincides with
theminimum average cost after all for stationarymemoryless
sources. This is similar to Corollary 3.

We also consider the non-asymptotic version of the
achievablity defined as follows.

Definition 8. For an integer n ≥ 1, and real numbers Γ, ε ≥
0, we say Γ is (n, ε )-strongly achievable in the sense of the
average cost if and only if there exists a stochastic encoder
fn such that

I (Y n; fn(Xn)) ≤ ε, (5)
E[cn(Xn, fn(Xn))] ≤ Γ.

Remark 2. Definition 8 adopts the strong independence
criterion in (5). However, this is not important in the non-
asymptotic setting because this criterion is regarded as the
weak criterion if we set ε as nε .

The non-asymptotic minimum average cost is defined
as follows.

Definition 9. We define the non-asymptotic minimum aver-
age cost for a given finite blocklength n ≥ 1 as

C∗a (n, ε ) , inf{Γ : Γ is (n, ε )-strongly achievable
in the sense of the average cost}.

Remark 3. When we employ a stochastic encoder, we can
give amulti-letter characterization even for general cost func-
tions and general sources as

C∗a (ε ) = inf
X̂:Y−X−X̂,

lim supn→∞ I (Yn ;X̂n )≤ε

c(X, X̂),

C∗a (n, ε ) = inf
X̂n :Yn−Xn−X̂n,
I (Yn ;X̂n )≤ε

E[cn(Xn, X̂n)].

However, since this characterization is quite obvious from
these definitions, we focus on the single-letter characteri-
zation of basic stationary memoryless sources and additive
cost functions in this paper.

3.2 Minimum Average Costs

In this section, we give a single-letter characterization of
minimum average costs C∗a (ε ) and C∗a (n, ε ). Since this
characterization is given by employing usual information-
theoretical techniques, this might not be of the main interest.
However, results obtained from it are interesting and insight-
ful.

First of all, we show a single-letter characterization of
the non-asymptotic minimum average cost C∗a (n, ε ).

Theorem 3. For a pair of stationary memoryless sources
(X,Y ), any integer n ≥ 1, and any real number ε ≥ 0, we
have

C∗a (n, ε ) = min
X̂:Y−X−X̂,
I (Y ;X̂)≤ ε

n

E[c(X, X̂ )].

Proof. First, we show the converse part. If Γ is (n, ε )-
strongly achievable in the sense of the average cost, there
exists fn such that

I (Y n; X̂n) ≤ ε,

E[cn(Xn, X̂n)] ≤ Γ, (6)

where X̂n = fn(Xn). We note that

I (Y n; X̂n) =
n∑
i=1

I (Yi; X̂n |Y i−1)

=

n∑
i=1

I (Yi; X̂n,Y i−1)

≥

n∑
i=1

I (Yi; X̂i), (7)

where the second equality comes from the fact that Yi is
independent of Y i−1, i.e., I (Yi;Y i−1) = 0. On the other hand,
let Q be an RV on {1, 2, · · · , n} and (Q,Y, X, X̂ ) be RVs
on {1, · · · , n} × Y × X × X̂ such that PQYXX̂ (i, y, x, x̂) =
1
n PYiXi X̂i

(y, x, x̂). Then, we have

ε ≥

n∑
i=1

I (Yi; X̂i) = nI (Y ; X̂ |Q) ≥ nI (Y ; X̂ ), (8)

where the first inequality comes from (7) and the last in-
equality comes from the fact that Q is independent of Y .
Thus, from (6), we have

Γ ≥
1
n

n∑
i=1

E[c(Xi, X̂i)] ≥ min
X̂:Y−X−X̂,
I (Y ;X̂)≤ ε

n

E[c(X, X̂ )], (9)

where the last inequality comes from (8) and the fact that
Y −X − X̂ . Since this inequality holds for any (n, ε )-strongly
achievable Γ, we have
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C∗a (n, ε ) ≥ min
X̂:Y−X−X̂,
I (Y ;X̂)≤ ε

n

E[c(X, X̂ )].

Next, we show the direct part. Let X̂ be an RV on X̂
such that Y − X − X̂ and

I (Y ; X̂ ) ≤
ε

n
.

Then, the direct part is obvious, if we define the encoder as

fn(xn) = x̂n with probability
n∏
i=1

PX̂ |X ( x̂i |xi).

For this encoder, we have

I (Y n; fn(Xn)) = nI (Y ; X̂ ) ≤ ε,

E[cn(Xn, fn(Xn))] = E[c(X, X̂ )].

Thus, E[c(X, X̂ )] is (n, ε )-strongly achievable for any X̂ such
that Y − X − X̂ and I (Y ; X̂ ) ≤ ε

n . This implies that

C∗a (n, ε ) ≤ min
X̂:Y−X−X̂,
I (Y ;X̂)≤ ε

n

E[c(X, X̂ )]. �

Remark 4. In the converse part, the single-letter charac-
terization in the most right-hand sides of (8) and (9) are
largely dependent on the assumption that sources are sta-
tionary memoryless and the cost function is additive.

Remark 5. Since we do not use the finiteness of X, Y, and
X̂, Theorem 3 holds even if these sets are countably infinite.

Next, we give a single-letter characterization of themin-
imum average costC∗a (ε ) which shows that it is impossible to
reduce the minimum cost by allowing information leakage.

Theorem 4. For a pair of stationary memoryless sources
(X,Y ) and any ε ≥ 0, we have

C∗a (ε ) = min
X̂:Y−X−X̂,
I (Y ;X̂)=0

E[c(X, X̂ )].

Proof. If Γ is ε-strongly achievable in the sense of the av-
erage cost, there exists fn such that for any δ > 0 and all
sufficiently large n > 0,

I (Y n; X̂n) ≤ ε + δ,

E[cn(Xn, X̂n)] ≤ Γ + δ,

where X̂n = fn(Xn). By noting that δ > 0 is arbitrary and
minX̂:Y−X−X̂,I (Y ;X̂)≤ε E[c(X, X̂ )] is continuous at ε = 0 (see
Appendix), the rest of the proof can be done in the same way
as the proof of Theorem 3. Hence, we omit the details. �

Remark 6. The finiteness of sets Y and X̂ is necessary to
show the continuity at ε = 0 in Appendix.

According to Theorem 3 and Theorem 4, it holds that
for any n ≥ 1 and ε ≥ 0,

C∗a (ε ) = C∗a (n, 0).

Hence, we only consider C∗a (n, ε ) because C∗a (ε ) is a special
case of it.

As in the previous section, the next corollary follows
immediately.

Corollary 5. When X = Y , we have

C∗a (n, ε ) = min
X̂:I (X;X̂)≤ ε

n

E[c(X, X̂ )]. (10)

According to this corollary and Corollary 3, when X =
Y and X is a stationary memoryless source, it holds that for
any ε ≥ 0,

Ca(ε, R) = Cw(ε, R) = C∗a (1, ε ).

Since the right-hand side of (10) is the distortion-
rate function, we have some closed-form expressions of the
minimum cost (see. e.g., [8] and [12]). For example, let
X = X̂ = {0, 1}, PX (0) = p, and c(x, x̂) = 1{x , x̂}, where
p ∈ [0, 1/2] and 1{·} denotes the indicator function. Then,
we have

C∗a (n, ε ) = h−1( |h(p) − ε/n|+), (11)

where |x |+ = max{0, x}, h(p) = −p log p− (1−p) log(1−p),
and h−1 : [0, log 2]→ [0, 1/2] is the inverse function of h.

Furthermore, according to Corollary 5, when X = Y , it
holds that

C∗a (n, 0) = min
x̂∈X̂

E[c(X, x̂)] , Γmin, ∀n ≥ 1,

where the first equality comes from the fact that X and
X̂ are independent. Interestingly, this can be achieved
by a certain deterministic encoder as follows: Let x̃ =
argminx̂∈X̂ E[c(X, x̂)] and define an encoder f (r)

n as

f (r)
n (xn) , ( x̃, · · · , x̃), ∀xn ∈ Xn.

Then, this encoder achieves C∗a (n, 0) (= Γmin), i.e., we have

I (Y n; f (r)
n (Xn)) = 0, (12)

E[cn(Xn, f (r)
n (Xn))] =

1
n

n∑
i=1

E[c(Xi, x̃)]

= E[c(X, x̃)] = Γmin. (13)

This means that when X = Y , the optimal method of erasure
is to overwrite the source sequence with repeated identical
symbols using f (r)

n . We note that f (r)
n gives the minimum

average cost among encoders using repeated identical sym-
bols.

Next, we give a sufficient condition such that C∗a (n, 0)
can be achieved by the encoder f (r)

n . Then, we show that the
case where X = Y is a special case of the sufficient condition.
To this end, we define the weak independence introduced by
Berger and Yeung [13].

Definition 10 (Weak independence). For a pair (X,Y ) of
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RVs, let PY |X (·|x) = (PY |X (y |x) : y ∈ Y) be the xth row
of the stochastic matrix PY |X . Then, we say Y is weakly
independent of X if the rows PY |X (·|x) (x ∈ X) are linearly
dependent.

Remark 7. If X is binary, then Y is weakly independent of
X if and only if Y and X are independent [13, Remark 3].

The weak independence has a useful property for inde-
pendence of a triple of RVs satisfying a Markov chain. This
property is shown in the next lemma.

Lemma 1 ([13, Theorem 4]). LetX,Y, and X̂ be finite sets,
and |X̂ | ≥ 2. Then, for a pair (X,Y ) of RVs, there exists an
RV X̂ satisfying

1. Y − X − X̂
2. Y and X̂ are independent
3. X and X̂ are not independent

if and only if Y is weakly independent of X .

Now, we give a sufficient condition.

Theorem5. IfY is notweakly independent of X , the optimal
method of erasure is to overwrite the source sequence with
repeated identical symbols using f (r)

n , i.e., it holds that

I (Y n; f (r)
n (Xn)) = 0,

E[cn(Xn, f (r)
n (Xn))] = C∗a (n, 0).

Proof. Since we immediately obtain that I (Y n; f (r)
n (Xn)) =

0 and E[cn(Xn, f (r)
n (Xn))] = Γmin (see (12) and (13)), we

only have to show that C∗a (n, 0) = Γmin.
Since Y is not weakly independent of X , there does not

exist an RV X̂ simultaneously satisfying three conditions in
Lemma 1. This implies that for any X̂ such that Y − X − X̂
and I (Y ; X̂ ) = 0, it must satisfy that I (X ; X̂ ) = 0. This
is because if I (X ; X̂ ) > 0, X̂ simultaneously satisfies three
conditions in Lemma 1.

Thus, we have

C∗a (n, 0) = min
X̂:Y−X−X̂,
I (Y ;X̂)=0

E[c(X, X̂ )]

(a)
= min

X̂:Y−X−X̂,
I (Y ;X̂)=0,I (X;X̂)=0

E[c(X, X̂ )]

(b)
= min

X̂:Y−X−X̂,
I (Y ;X̂)=0,I (X;X̂)=0

∑
x̂∈X̂

PX̂ ( x̂)E[c(X, x̂)]

≥ Γmin,

where (a) comes from the above argument and (b) follows
since X and X̂ are independent.

Since the opposite direction is obvious by setting X̂ = x̃
with probability 1, this completes the proof. �

If X = Y , Y is not weakly independent of X . Thus, this
is a special case of this sufficient condition. According to
Remark 7, we can also show that if X is binary, the encoder

Table 1 This table shows that f (r)
n is optimal or not in the sense that it

whenever can achieve the minimum average cost C∗a (n, ε ) or not for each
corresponding condition. WI is an abbreviation for “weakly independent”.

Y is not WI of X Y is WI of X
ε = 0 optimal not optimal
ε > 0 not optimal not optimal

f (r)
n is optimal as long as Y and X are not independent.

On the other hand, if Y is weakly independent of X ,
C∗a (n, 0) cannot be achieved by the repeated symbols using
the encoder f (r)

n in general. To show this fact, we give
an example such that C∗a (n, 0) < Γmin. Let Y = {0, 1},
X = X̂ = {0, 1, 2}, c(x, x̂) = 1{x , x̂}, PX (x) = 1/3 for all
x ∈ {0, 1, 2}, and

PY |X =



1 0
0 1
0 1


,

where the xth row and the yth column denotes the condi-
tional probability PY |X (y |x). Then, we have Γmin = 2/3.
We note that Y is weakly independent of X . On the other
hand, we consider an RV X̂ such that Y − X − X̂ , and

PX̂ |X =



1/3 1/3 1/3
1/6 2/3 1/6
1/2 0 1/2


,

where the xth row and the x̂th column denotes the conditional
probability PX̂ |X ( x̂ |x). Then, one can easily check that Y is
independent of X̂ , and

C∗a (n, 0) ≤ E[c(X, X̂ )] = 1/2 < Γmin. (14)

Hence, the encoder f (r)
n is no longer optimal.

Further, if we allow a little bit of leakage of information,
i.e., ε > 0, the encoder f (r)

n is no longer optimal even if Y is
not weakly independent of X . This is because in general, it
holds that C∗a (n, ε ) < Γmin for ε > 0 (see (11) and also (14)).

The optimality of the encoder f (r)
n is summarized in

Table 1.

4. Proofs of Theorems

In this section, we prove Theorems 1 and 2.

4.1 Fundamental Lemmas for the Random Number Gen-
eration

In this section, we introduce some lemmas to prove Theo-
rems 1 and 2. Since proofs of these lemmas are similar to
the proofs in [8, Section 2], we will omit the details.

For two probability distributions P and Q on the same
set X, we define the variational distance d(P,Q) as

d(P,Q) ,
∑
x∈X

|P(x) −Q(x) |.

For all lemmas in this section, let (X,Y,Z) =
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{(Xn,Y n, Zn)}∞
n=1 be a triple of sequences of RVs, where

(Xn,Y n, Zn) is a triple of RVs on Xn × Yn × Zn. For this
triple, we define

Sn(α) ,
{
(xn, zn) ∈ Xn ×Zn :
1
n

log
1

PXn |Zn (xn |zn)
≥ α

}
,

Tn(β) ,
{
(yn, zn) ∈ Yn ×Zn :
1
n

log
1

PYn |Zn (yn |zn)
≤ β

}
.

The next lemma is an extended version of [8, Lemma
2.1.1].

Lemma2. For any integer n ≥ 1 and any real numbers γ > 0
and a ∈ R, there exists a mapping ϕn : Xn × Zn → Yn

satisfying

d(PYnZn, PỸnZn ) ≤ 2 Pr{(Xn, Zn) < Sn(a + γ)}
+ 2 Pr{(Y n, Zn) < Tn(a)} + 2e−nγ,

where Ỹ n = ϕn(Xn, Zn).

Proof. Since this lemma can be easily proved in the same
manner as the proof of [8, Lemma 2.1.1], we omit the details.

�

The next lemma gives a sufficient condition to simulate
the correlation of a pair of RVs from another RV.

Lemma 3. If H (X|Z) > H (Y|Z), there exists a mapping
ϕn : Xn ×Zn → Yn satisfying

lim
n→∞

d(PYnZn, PỸnZn ) = 0,

where Ỹ n = ϕn(Xn, Zn) and

H (X|Z) = p-lim inf
n→∞

1
n

log
1

PXn |Zn (Xn |Zn)
.

Proof. Since this lemma can be easily proved by using
Lemma 2 and the same manner as the proof of [8, Theo-
rem 2.1.1], we omit the details. �

The next lemma is an extended version of [8, Lemma
2.1.2].

Lemma 4. For any integer n ≥ 1, any real numbers γ > 0
and a ∈ R, and any mapping ϕn : Xn × Zn → Yn, it holds
that

d(PYnZn, PỸnZn ) ≥2 Pr{(Y n, Zn) < Tn(a + γ)}
− 2 Pr{(Xn, Zn) ∈ Sn(a)}−2e−nγ,

where Ỹ n = ϕn(Xn, Zn).

Proof. Since this lemma can be easily proved in the same
manner as the proof of [8, Lemma 2.1.2], we omit the details.

�

According to this lemma, we have the next lemmawhich
is an information spectrum version of the fact that

H (X |Z ) ≥ H (ϕ(X, Z ) |Z )

for any function ϕ, where H (X |Z ) is the conditional entropy
of X given Z .

Lemma 5. Let ϕn : Xn×Zn → Yn be an arbitrarymapping
and set Ỹ n = ϕn(Xn, Zn) and Ỹ = {Ỹ n}∞

n=1. Then, it holds
that

H (X|Z) ≥ H (Ỹ|Z).

Proof. Since this lemma can be easily proved by using
Lemma 4 and the same manner as the proof of [8, Corollary
2.1.2], we omit the details. �

4.2 Direct Part

In this section, we first show that

Ca(ε, R) ≤ inf
X̂:Y−X−X̂,

I (Y;X̂)≤ε,H (X̂ |X)≤R

c(X, X̂). (15)

In other words, we show the direct part of the proof of
Theorem 1.

For given R and ε , let X̂ be a sequence of RVs such that

Y − X − X̂, (16)

H (X̂|X) ≤ R, (17)
I (Y; X̂) ≤ ε . (18)

For an arbitrarily fixed δ > 0, let {Mn}
∞
n=1 be a sequence of

integers such that

Mn =
⌈
en(R+δ)

⌉
. (19)

Then, we have

H (U|X) = R + δ > H (X̂|X),

where U = {UMn }
∞
n=1 and the inequality comes from (17).

Thus, according to Lemma 3, there exists a sequence of
functions fn : Xn ×UMn → X̂

n such that

lim
n→∞

d(PX̂nXn, PX̃nXn ) = 0,

where X̃n = fn(Xn,UMn ). Since Y n − Xn − X̂n and Y n −

Xn − X̃n, we also have

lim
n→∞

d(PX̂nXnYn, PX̃nXnYn ) = lim
n→∞

d(PX̂nXn, PX̃nXn ) = 0.

Hence from the continuity of the mutual information (see,
e.g., [14, Lemma 2.7]), we have

I (Y; X̃) = I (Y; X̂) ≤ ε, (20)

where X̃ = {X̃n}∞
n=1 and the last inequality comes from (18).
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We also have

c(X, X̃) − c(X, X̂)

= lim sup
n→∞

E[cn(Xn, X̃n)] − lim sup
n→∞

E[cn(Xn, X̂n)]

≤ lim sup
n→∞

(E[cn(Xn, X̃n)] − E[c(Xn, X̂n)])

≤ lim sup
n→∞

d(PX̂nXn, PX̃nXn )cmax = 0. (21)

According to (19), (20), and (21),

lim sup
n→∞

1
n

log Mn ≤ R + δ,

I (Y; X̃) ≤ ε,

c(X, X̃) ≤ c(X, X̂)

for any sequence X̂ of RVs satisfying (16), (17), and (18).
This means that (R + δ, c(X, X̂)) is ε-weakly achievable for
any δ > 0. Then, by using the usual diagonal line argu-
ment [8], we can show that (R, c(X, X̂)) is also ε-weakly
achievable. This implies (15).

For any given α ≥ 0 and the same RV X̃n =

fn(Xn,UMn ) as above, we have

lim sup
n→∞

Pr{cn(Xn, X̃n) > α} − lim sup
n→∞

Pr{cn(Xn, X̂n) > α}

≤ lim sup
n→∞

(
Pr{cn(Xn, X̃n) > α} − Pr{cn(Xn, X̂n) > α}

)
= lim sup

n→∞

∑
(xn, x̂n )∈Xn×X̂n

(
PXn X̃n (xn, x̂n) − PXn X̂n (xn, x̂n)

)
× 1{cn(xn, x̂n) > α}

≤ lim sup
n→∞

∑
(xn, x̂n )∈Xn×X̂n

|PXn X̃n (xn, x̂n) − PXn X̂n (xn, x̂n) |

× 1{cn(xn, x̂n) > α}

≤ lim sup
n→∞

d(PX̂nXn, PX̃nXn ) = 0.

Thus, we have

lim sup
n→∞

Pr{cn(Xn, X̃n) > α} ≤ lim sup
n→∞

Pr{cn(Xn, X̂n) > α}.

(22)

Similarly, we also have

lim sup
n→∞

Pr{cn(Xn, X̂n) > α} ≤ lim sup
n→∞

Pr{cn(Xn, X̃n) > α}.

(23)

By combining (22) and (23), we have

lim sup
n→∞

Pr{cn(Xn, X̃n) > α} = lim sup
n→∞

Pr{cn(Xn, X̂n) > α}.

(24)

Hence, we have

c(X, X̃) = inf{α : lim
n→∞

Pr{cn(Xn, X̃n) > α} = 0}

= inf{α : lim
n→∞

Pr{cn(Xn, X̂n) > α} = 0}

= c(X, X̂), (25)

where the second equality comes from (24). By replacing
(21), c(X, X̃), and c(X, X̂) with (25), c(X, X̃), and c(X, X̂),
respectively, and repeating the same argument as above, we
also have

Cw(ε, R) ≤ inf
X̂:Y−X−X̂,

I (Y;X̂)≤ε,H (X̂ |X)≤R

c(X, X̂).

This is the direct part of the proof of Theorem 2.

Remark 8. Since I (Y; X̃) and I (Y; X̂) are mutual infor-
mation normalized by the blocklength, the first equality in
(20) holds by using the continuity. However, for the mu-
tual information itself, the equality lim supn→∞ I (Y n; X̃n) =
lim supn→∞ I (Y n; X̂n) is no longer guaranteed. Thus, the
above proof may be invalid under the strong independence
criterion. This is one of the reasons why we employ a
stochastic encoder in Sect. 3.

Remark 9. Since [14, Lemma 2.7] holds only for finite
sets, the finiteness of sets Y and X̂ is necessary to show the
first equality in (20). If Y and X̂ are countably infinite sets
and the equality holds even for these sets, the direct part also
holds for these sets. We also note that the finiteness of X is
actually unnecessary.

4.3 Converse Part

In this section, we first show that

Ca(ε, R) ≥ inf
X̂:Y−X−X̂,

I (Y;X̂)≤ε,H (X̂ |X)≤R

c(X, X̂). (26)

In other words, we show the converse part of the proof of
Theorem 1.

If (R, Γ) is ε-weakly achievable, there exist sequences
of integers {Mn}

∞
n=1 and encoders { fn}∞n=1 such that

lim sup
n→∞

1
n

log Mn ≤ R, (27)

I (Y; X̂) ≤ ε, (28)
c(X, X̂) ≤ Γ, (29)

where X̂ = {X̂n}∞
n=1 and X̂n = fn(Xn,UMn ).

According to Lemma 5, we have

H (U|X) ≥ H (X̂|X).

On the other hand, due to (27), we have

H (U|X) ≤ R.

Thus, we have

H (X̂|X) ≤ R. (30)

Now, by combining (28), (29), (30), and the fact that X̂
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satisfies Y − X − X̂, we have

Γ ≥ c(X, X̂) ≥ inf
X̂:Y−X−X̂,

I (Y;X̂)≤ε,H (X̂ |X)≤R

c(X, X̂).

Since this inequality holds for any Γ such that (R, Γ) is ε-
weakly achievable, we have (26).

By replacing c(X, X̂) with c(X, X̂) and repeating the
same argument as above, we also have

Cw(ε, R) ≥ inf
X̂:Y−X−X̂,

I (Y;X̂)≤ε,H (X̂ |X)≤R

c(X, X̂). (31)

This is the converse part of the proof of Theorem 2.

Remark 10. Unlike the direct part, we do not use the conti-
nuity of the mutual information in the converse part. Thus,
the proof of this part is valid even if we adopt the strong
independence criterion.

Remark 11. Since we do not use the finiteness of sets X,
Y, and X̂ in the converse part, this part holds even if these
sets are countably infinite.

5. Conclusion

In this paper, we introduced the information erasure model
and consideredminimumcosts under theweak and the strong
independence criteria. For the weak independence criterion,
we characterized the minimum average and the minimum
worst-case costs for general sources by using information-
spectrum quantities. On the other hand, for the strong in-
dependence criterion, we gave a single-letter characteriza-
tion of the minimum average cost for stationary memoryless
sources. By using this characterization, we gave a sufficient
condition such that the optimal method of erasure is to over-
write the source sequence with repeated identical symbols.
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Appendix: Continuity at ε = 0

In this appendix, we show that

lim
ε ↓0

min
X̂:Y−X−X̂,
I (Y ;X̂)≤ε

E[c(X, X̂ )] = min
X̂:Y−X−X̂,
I (Y ;X̂)=0

E[c(X, X̂ )]. (A· 1)

Let {εn}∞n=1 be a sequence such that εn > 0 and εn → 0.
Then, we have

lim
ε ↓0

min
X̂:Y−X−X̂,
I (Y ;X̂)≤ε

E[c(X, X̂ )] = lim
n→∞

min
X̂:Y−X−X̂,
I (Y ;X̂)≤εn

E[c(X, X̂ )].

(A· 2)

Let PX̂ (n) |X : X → X̂ be a conditional probability
distribution such that

E[c(X, X̂ (n))] = min
X̂:Y−X−X̂,
I (Y ;X̂)≤εn

E[c(X, X̂ )], (A· 3)

I (Y ; X̂ (n)) ≤ εn. (A· 4)

Then, for the sequence {PX̂ (n) |X }
∞
n=1, there exists a convergent

subsequence {PX̂ (nk ) |X }
∞
k=1 such that PX̂ (nk ) |X → PX̃ |X (k →

∞), where PX̃ |X : X → X̂ is also a conditional probability
distribution. Then, by the continuity, we have

E[c(X, X̃ )] = lim
k→∞

E[c(X, X̂ (nk ))]

(a)
= lim

ε ↓0
min

X̂:Y−X−X̂,
I (Y ;X̂)≤ε

E[c(X, X̂ )],

and

I (Y ; X̃ )
(b)
= lim

k→∞
I (Y ; X̂ (nk ))

(c)
≤ lim

k→∞
εnk = 0,
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where (a) comes from (A· 2) and (A· 3), (b) comes from [14,
Lemma 2.7] and the finiteness of Y and X̂, and (c) comes
from (A· 4). Thus, we have

min
X̂:Y−X−X̂,
I (Y ;X̂)=0

E[c(X, X̂ )] ≤ E[c(X, X̃ )]

= lim
ε ↓0

min
X̂:Y−X−X̂,
I (Y ;X̂)≤ε

E[c(X, X̂ )]. (A· 5)

Since the opposite direction is obvious, we have (A· 1)
from (A· 5).
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