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PAPER Special Section on Information Theory and Its Applications

Non-Asymptotic Bounds and a General Formula for
the Rate-Distortion Region of the Successive Refinement Problem∗

Tetsunao MATSUTA†a), Member and Tomohiko UYEMATSU†b), Fellow

SUMMARY In the successive refinement problem, a fixed-length se-
quence emitted from an information source is encoded into two codewords
by two encoders in order to give two reconstructions of the sequence. One
of two reconstructions is obtained by one of two codewords, and the other
reconstruction is obtained by all two codewords. For this coding problem,
we give non-asymptotic inner and outer bounds on pairs of numbers of code-
words of two encoders such that each probability that a distortion exceeds a
given distortion level is less than a given probability level. We also give a
general formula for the rate-distortion region for general sources, where the
rate-distortion region is the set of rate pairs of two encoders such that each
maximum value of possible distortions is less than a given distortion level.
key words: general source, information spectrum, non-asymptotic bound,
rate-distortion region, successive refinement

1. Introduction

The successive refinement problem is a fixed-length lossy
source coding problem with many terminals (see Fig. 1). In
this coding problem, a fixed-length sequence emitted from
an information source is encoded into two codewords by
two encoders in order to give two reconstructions of the se-
quence. One of two reconstructions is obtained by one of two
codewords by using a decoder, and the other reconstruction
is obtained by all two codewords by using the other decoder.

An important parameter of the successive refinement
problem is a pair of rates of two encoders such that each dis-
tortion between the source sequence and a reconstruction is
less than a given distortion level. The set of these pairs when
the length (blocklength) of the source sequence is unlimited
is called the rate-distortion region. Since a codeword is used
in both decoders, we cannot always optimize rates like the
case where each codeword is used for each reconstruction
separately. However, there are some cases where we can
achieve the optimum rates. Necessary and sufficient condi-
tions for such cases were independently given by Koshelev
[3], [4] and Equitz and Cover [5]. The complete character-
ization of the rate-distortion region for discrete stationary
memoryless sources was given by Rimoldi [6]. Yamamoto
[7] also gave the rate-distortion region as a special case of
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Fig. 1 Successive refinement problem.

a more general coding problem. Later, Effros [8] character-
ized the rate-distortion region for discrete stationary ergodic
and non-ergodic sources.

Recently, the asymptotic analysis of the second-order
rates to the blocklength becomes an active target of the
study. Especially, for the successive refinement problem,
No et al. [9] and Zhou et al. [10] gave a lot of results to the
set of second-order rates for discrete and Gaussian station-
ary memoryless sources. No et al. [9] considered separate
excess-distortion criteria such that a probability that a distor-
tion exceeds a given distortion level is less than a given prob-
ability level separately for each reconstruction. On the other
hand, Zhou et al. [10] considered the joint excess-distortion
criterion such that a probability that either of distortions
exceeds a given distortion level is less than a given proba-
bility level. Although they also gave several non-asymptotic
bounds on the set of pairs of rates, they mainly focus on the
asymptotic behavior of the set.

On the other hand, in this paper, we consider non-
asymptotic bounds on pairs of rates in finite blocklengths.
Especially, since a rate is easily calculated by a number of
codewords, we focus on pairs of two numbers of codewords.
Although we adopt separate excess-distortion criteria, our
result can be easily applied to the joint excess-distortion
criterion. We give inner and outer bounds on pairs of num-
bers of codewords. These bounds are characterized by us-
ing the smooth max Rényi divergence introduced by Warsi
[11]. For the point-to-point lossy source coding problem,
we also used the smooth max Rényi divergence to character-
ize the rate-distortion function which is the minimum rate
when the blocklength is unlimited [12]. Proof techniques
are similar to that of [12], but we employ several extended
results for the successive refinement problem. The inner
bound is derived by using an extended version of the previ-
ous lemma [12, Lemma 2]. We give this lemma as a special
case of an extended version of the previous generalized cov-
ering lemma [13, Lemma 1]. The outer bound is derived by
using an extended version of the previous converse bound

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers
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[12, Lemma 4].
In this paper, we also consider the rate-distortion region

for general sources. In this case, we adopt the maximum-
distortion criterion such that the maximum value of possible
distortion is less than a given distortion level for each recon-
struction. By using the spectral sup-mutual information rate
(cf. [14]) and the non-asymptotic inner and outer bounds,
we give a general formula for the rate-distortion region. We
show that our rate-distortion region coincides with the region
obtained by Rimoldi [6] when a source is discrete station-
ary memoryless. Furthermore, we consider a mixed source
which is a mixture of two sources and show that the rate-
distortion region is the intersection of those of two sources.

The rest of this paper is organized as follows. In Sect. 2,
we provide some notations and the formal definition of the
successive refinement problem. In Sect. 3, we give several
lemmas for an inner bound on pairs of numbers of code-
words and the rate-distortion region. These lemmas are ex-
tended versions of our previous results [12, Lemma 2] and
[13, Lemma 1]. In Sect. 4, we give outer and inner bounds
using the smooth max Rényi divergence on pairs of numbers
of codewords. In Sect. 5, we give a general formula for the
rate-distortion region. In this section, we consider the rate-
distortion region for discrete stationary memoryless sources
and mixed sources. In Sect. 6, we conclude the paper.

2. Preliminaries

Let N, R, and R≥0 be sets of positive integers, real numbers,
and non-negative real numbers, respectively.

Unless otherwise stated, we use the following notations.
For a pair of integers i ≤ j, the set of integers {i, i+1, · · · , j}
is denoted by [i : j]. For finite or countably infinite sets
X and Y, the set of all probability distributions over X and
X × Y are denoted by PX and PXY , respectively. The set
of all conditional probability distributions over X given Y
is denoted by PX |Y . The probability distribution of a ran-
dom variable (RV) X is denoted by the subscript notation
PX , and the conditional probability distribution for X given
an RV Y is denoted by PX |Y . The n-fold Cartesian product
of a set X is denoted by Xn while an n-length sequence of
symbols (a1, a2, · · · , an) is denoted by an. The sequence of
RVs {Xn}∞

n=1 is denoted by the bold-face letterX. Sequences
of probability distributions {PXn }∞

n=1 and conditional prob-
ability distributions {PXn |Yn }∞

n=1 are denoted by bold-face
letters PX and PX |Y, respectively.

For the successive refinement problem (Fig. 1), let X,
Y, and Z be finite or countably infinite sets, where X rep-
resents the source alphabet, and Y and Z represent two
reconstruction alphabets. Let X over X be an RV which
represents a single source symbol. Since the source can be
characterized by X , we also refer to it as the source. When
we consider X as an n-fold Cartesian product of a certain
finite or countably infinite set, we can regard the source sym-
bol X as an n-length source sequence. Thus, for the sake
of brevity, we deal with the single source symbol unless
otherwise stated.

Two encoders encoder 1 and encoder 2 are represented
as functions f1 : X → [1 : M1] and f2 : X → [1 : M2],
respectively, where M1 and M2 are positive integers which
denote numbers of codewords. Two decoders decoder 1 and
decoder 2 are represented as functions ϕ1 : [1 : M1] → Y
and ϕ2 : [1 : M1] × [1 : M2] → Z, respectively. We
refer to a tuple of encoders and decoders ( f1, f2, ϕ1, ϕ2) as
a code. In order to measure distortions between the source
symbol and reconstruction symbols, we introduce distortion
measures defined by functions d1 : X × Y → [0,+∞) and
d2 : X ×Z → [0,+∞).

We define two events of exceeding given distortion lev-
els D1 ≥ 0 and D2 ≥ 0 as follows:

E1(D1) , {d1(X, ϕ1( f1(X ))) > D1},

E2(D2) , {d2(X, ϕ2( f1(X ), f2(X ))) > D2}.

Then, we define the achievability under the excess-distortion
criterion.

Definition 1. For positive integers M1, M2, real numbers
D1, D2 ≥ 0, and ε1, ε2 ∈ [0, 1], let M = (M1, M2), D =
(D1, D2), and ε = (ε1, ε2). Then, for a source X , we say
(M, D) is ε-achievable if and only if there exists a code
( f1, f2, ϕ1, ϕ2) such that numbers of codewords of encoder
1 and encoder 2 are M1 and M2, respectively, and

Pr{Ei (Di)} ≤ ε i, ∀i ∈ {1, 2}.

In what follows, for constants M1, M2, D1, D2, ε1, and
ε2, we often use the above simple notations: M = (M1, M2),
D = (D1, D2), and ε = (ε1, ε2). In this setting, we con-
sider the set of all pairs (M1, M2) of numbers of codewords
under the excess-distortion criterion. According to the ε-
achievability, this set is defined as follows:

Definition 2. For a source X , real numbers D1, D2 ≥ 0, and
ε1, ε2 ∈ [0, 1], we define

M (D, ε |X ) , {(M1, M2) ∈ N2 : (M, D) is ε-achievable}.

Basically, this paper deals with a coding for a single
source symbol. However, in Sect. 5, we deal with the coding
for an n-length source sequence. Hence in that section, by
abuse of notation, we regard the above sets X, Y, and Z
as n-fold Cartesian products Xn, Yn, and Zn, respectively.
We also regard source symbol X on X as an n-length source
sequence Xn onXn. Thenwe call the sequenceX = {Xn}∞

n=1
of source sequences the general source that is not required
to satisfy the consistency condition.

We use the superscript (n) for a code, dis-
tortion measures, and numbers of codewords (e.g.,
( f (n)

1 , f (n)
2 , ϕ(n)

1 , ϕ(n)
2 )) to make clear that we are dealing with

source sequences of length n. For a code, we define rates
R(n)

1 and R(n)
2 as

R(n)
i ,

1
n

log M (n)
i , ∀i ∈ {1, 2}.

Hereafter, log means the natural logarithm.
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We introduce maximum distortions for a sequence of
codes. To this end, we define the limit superior in probability
[14].

Definition 3 (Limit superior in probability). For an arbitrary
sequence S = {Sn}∞

n=1 of real-valued RVs, we define the limit
superior in probability by

p-lim sup
n→∞

Sn , inf
{
α : lim

n→∞
Pr {Sn > α} = 0

}
.

Now we introduce the maximum distortions:

p-lim sup
n→∞

d (n)
1 (Xn, ϕ(n)

1 ( f (n)
1 (Xn))),

p-lim sup
n→∞

d (n)
2 (Xn, ϕ(n)

2 ( f (n)
1 (Xn), f (n)

2 (Xn))).

Then, we define the achievability under the maximum dis-
tortion criterion.

Definition 4. For real numbers R1, R2 ≥ 0, let R = (R1, R2).
Then, for a general source X, and real numbers D1, D2 ≥ 0,
we say a pair (R, D) is fm-achievable if and only if there exists
a sequence {( f (n)

1 , f (n)
2 , ϕ(n)

1 , ϕ(n)
2 )} of codes satisfying

p-lim sup
n→∞

d (n)
1 (Xn, ϕ(n)

1 ( f (n)
1 (Xn))) ≤ D1,

p-lim sup
n→∞

d (n)
2 (Xn, ϕ(n)

2 ( f (n)
1 (Xn), f (n)

2 (Xn))) ≤ D2,

and

lim sup
n→∞

R(n)
i ≤ Ri, ∀i ∈ {1, 2}.

In what follows, for constants R1 and R2, we often use
the above simple notation: R = (R1, R2). In this setting,
we consider the set of all rate pairs under the maximum
distortion criterion. According to the fm-achievability, this
set, usually called the rate-distortion region, is defined as
follows:

Definition 5 (Rate-distortion region). For a general source
X and real numbers D1, D2 ≥ 0, we define

R (D |X) , {(R1, R2) ∈ R2
≥0 : (R, D) is fm-achievable}.

Remark 1. We can show that the rate-distortion region
R (D |X) is a closed set by the definition and using the diag-
onal line argument (cf. [14]).

We note that when we regard X as n-length sequence
in the definition of M (D, ε |X ), it gives a non-asymptotic
region of pairs of rates for a given finite blocklength.

3. Covering Lemma

In this section, we introduce some useful lemmas and corol-
laries for an inner bound on the setM (D, ε |X ) and R (D |X).

The next lemma is the most basic and important result
in the sense that all subsequent results in this section are
given by this lemma.

Lemma 1. Let A ∈ A be an arbitrary RV, and B̃ ∈ B and
C̃ ∈ C be RVs such that the pair (B̃, C̃) is independent of A.
For an integer M1 ≥ 1, let B̃1, B̃2, · · · , B̃M1 be RVs which
are independent of each other and of A, and each distributed
according to PB̃. For an integer i ∈ [1 : M1] and M2 ≥ 1, let
C̃i,1, C̃i,2, · · · , C̃i,M2 be RVs which are independent of each
other and of A, and each distributed according to PC̃ |B̃ (·|B̃i).
Then, for any set F ⊆ A × B × C, we have

Pr



M1⋂
i=1

M2⋂
j=1
{(A, B̃i, C̃i, j ) < F }




= E
[
E

[
E

[
1{(A, B̃, C̃) < F }���A, B̃

]M2 ����A
]M1

]
, (1)

where 1{·} denotes the indicator function, E [·] denotes the
expectation operator, and E [·]M denotes the M-th power of
the expectation, i.e., E [·]M = (E [·])M .

Proof. We have

Pr



M1⋂
i=1

M2⋂
j=1
{(A, B̃i, C̃i, j ) < F }




=
∑
a∈A

∑
(b̃1 · · · ,b̃M1 )∈BM1

∑
(c̃1,1, · · · , c̃1,M2,c2,1 · · · , c̃M1,M2 )∈CM1M2

×
*.
,
PA(a)

M1∏
i=1

PB̃ (b̃i)
M2∏
j=1

PC̃ |B̃ (c̃i, j |b̃i)
+/
-

×
*.
,

M1∏
i=1

M2∏
j=1

1{(a, b̃i, c̃i, j ) < F }
+/
-

=
∑
a∈A

∑
(b̃1 · · · ,b̃M1 )∈BM1

∑
(c̃1,1, · · · , c̃1,M2,c2,1 · · · , c̃M1,M2 )∈CM1M2

× PA(a)
M1∏
i=1

PB̃ (b̃i)
M2∏
j=1

PC̃ |B̃ (c̃i, j |b̃i)

× 1{(a, b̃i, c̃i, j ) < F }

=
∑
a∈A

PA(a)
M1∏
i=1

∑
b̃i ∈B

PB̃ (b̃i)
M2∏
j=1

∑
c̃i, j ∈C

PC̃ |B̃ (c̃i, j |b̃i)

× 1{(a, b̃i, c̃i, j ) < F }

=
∑
a∈A

PA(a)
M1∏
i=1

∑
b̃∈B

PB̃ (b̃)
M2∏
j=1

∑
c̃∈C:

(a,b̃, c̃)<F

PC̃ |B̃ (c̃ |b̃)

=
∑
a∈A

PA(a)
*....
,

∑
b̃∈B

PB̃ (b̃)
*....
,

∑
c̃∈C:

(a,b̃, c̃)<F

PC̃ |B̃ (c̃|b̃)
+////
-

M2

+////
-

M1

.

By recalling that (B̃, C̃) is independent of A, this coincides
with the right-hand side (RHS) of (1). �

This lemma implies an exact analysis of the error prob-
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ability of covering a set A in terms of a given condi-
tion F by codewords {B̃i } and {C̃i, j } of random coding.
Hence, this lemma can be regarded as an extended version
of [15, Theorem 9].

Although the above lemma gives an exact analysis, it is
difficult to use it for characterizing an inner bound on pairs of
numbers of codewords and the rate-distortion region. Instead
of it, we will use the next convenient lemma.

Lemma 2. Let A ∈ A, B ∈ B, and C ∈ C be arbitrary RVs,
and B̃ ∈ B and C̃ ∈ C be RVs such that the pair (B̃, C̃) is
independent of A. Let ψ1 : A × B → [0, 1] be a function
and α1 ∈ [0, 1] be a constant such that

PA(a)PB̃ (b) ≥ α1ψ1(a, b)PAB (a, b),
∀(a, b) ∈ A × B. (2)

Furthermore, let ψ2 : A ×B × C → [0, 1] be a function and
α2 ∈ [0, 1] be a constant such that

PAB (a, b)PC̃ |B̃ (c |b) ≥ α2ψ2(a, b, c)PABC (a, b, c),

∀(a, b, c) ∈ A × B × C. (3)

Then, for any set F ⊆ A × B × C, we have

E
[
E

[
E

[
1{(A, B̃, C̃) < F }���A, B̃

]M2 ����A
]M1

]

≤ 1 − E[ψ1(A, B)ψ2(A, B,C)] + Pr {(A, B,C) < F }

+ e−α2M2−logα1 + e−α1M1 . (4)

Proof. We have

E
[
E

[
E

[
1{(A, B̃, C̃) < F }���A, B̃

]M2 ����A
]M1

]

=
∑
a∈A:

PA (a)>0

PA(a) *
,

∑
b∈B

PB̃ (b)

×
*...
,

1 −
∑
c∈C:

(a,b,c)∈F

PC̃ |B̃ (c|b)
+///
-

M2

+///
-

M1

(a)
≤

∑
a∈A:

PA (a)>0

PA(a) *
,

∑
b∈B

PB̃ (b)

×

*.......
,

1 − α2
∑
c∈C:

(a,b,c)∈F ,
PB |A (b |a)>0

ψ2(a, b, c)PC |AB (c|a, b)

+///////
-

M2

+///////
-

M1

(b)
≤

∑
a∈A:

PA (a)>0

PA(a)

*.......
,

∑
b∈B

PB̃ (b)

*.......
,

1 −
∑
c∈C:

(a,b,c)∈F ,
PB |A (b |a)>0

ψ2(a, b, c)

×PC |AB (c |a, b) + e−α2M2
))M1

(c)
≤

∑
a∈A:

PA (a)>0

PA(a)
*....
,

1 −
∑
b∈B:

PB |A (b |a)>0

α1ψ1(a, b)PB |A(b|a)

×
∑
c∈C:

(a,b,c)∈F

ψ2(a, b, c)PC |AB (c |a, b) + e−α2M2
+///
-

M1

=
∑
a∈A:

PA (a)>0

PA(a)

*.......
,

1 − α1

*.......
,

∑
(b,c)∈B×C:
(a,b,c)∈F ,
PB |A (b |a)>0

ψ1(a, b)ψ2(a, b, c)

× PBC |A(b, c|a) − e−α2M2−logα1
))M1

,

where (a) comes from (3), (b) follows since (1 − x y)M ≤
1 − y + e−xM for 0 ≤ x, y ≤ 1 and M > 0 (cf.
[16, Lemma 10.5.3]), and (c) comes from (2). Since the
probability is not greater than 1, we have

E
[
E

[
E

[
1{(A, B̃, C̃) < F }���A, B̃

]M2 ����A
]M1

]

≤
∑
a∈A:

PA (a)>0

PA(a)

*.......
,

1 − α1

�������������

∑
(b,c)∈B×C:
(a,b,c)∈F ,
PB |A (b |a)>0

ψ1(a, b)ψ2(a, b, c)

× PBC |A(b, c|a) − e−α2M2−logα1 ���
+
)M1

(a)
≤

∑
a∈A:

PA (a)>0

PA(a)

*.......
,

1 −

�������������

∑
(b,c)∈B×C:
(a,b,c)∈F ,
PB |A (b |a)>0

ψ1(a, b)ψ2(a, b, c)

×PBC |A(b, c |a) − e−α2M2−logα1 ���
+
+ e−α1M1

)
≤ 1 −

∑
(a,b,c)∈A×B×C:

(a,b,c)∈F ,PAB (a,b)>0

ψ1(a, b)ψ2(a, b, c)PABC (a, b, c)

+ e−α2M2−logα1 + e−α1M1

(b)
≤ 1 − E[ψ1(A, B)ψ2(A, B,C)] + Pr {(A, B,C) < F }

+ e−α2M2−logα1 + e−α1M1,

where |x |+ = max{0, x}, (a) follows since (1 − x y)M ≤

1 − y + e−xM for 0 ≤ x, y ≤ 1 and M > 0, and (b) comes
from the fact that ψ1(a, b)ψ2(a, b, c) ≤ 1. �

The importance of this lemma is to be able to change
RVs from (A, B̃, C̃) to arbitrary correlated RVs (A, B,C).
Thismakes it possible to characterize an inner bound on pairs
of numbers of codewords and the rate-distortion region.
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Lemma 2 can be regarded as an extended version of our
previous lemma [13, Lemma 1] to multiple correlated RVs.
Hence, like the previous lemma, by changing functions and
constants, it givesmany types of bounds such as the following
two corollaries.

Corollary 1. For any set F ⊆ A×B×C, any real numbers
γ1, γ2 ∈ R, and any integers M1, M2 ≥ 1 such that M1 ≥
exp(γ1) and M2 ≥ exp(γ2), we have

E
[
E

[
E

[
1{(A, B̃, C̃) < F }���A, B̃

]M2 ����A
]M1

]

≤ Pr
{

log
PB |A(B |A)

PB̃ (B)
> log M1 − γ1

or log
PC |AB (C |A, B)

PC̃ |B̃ (C |B)
> log M2 − γ2

}
+ Pr {(A, B,C) < F } + e− exp(γ2)−γ1+log M1 + e− exp(γ1) .

Proof. Let α1 =
exp(γ1)
M1

, α2 =
exp(γ2)
M2

,

ψ1(a, b) = 1
{

log
PB |A(b|a)

PB̃ (b)
≤ log M1 − γ1

}
,

ψ2(a, b, c) = 1
{

log
PC |AB (c|a, b)

PC̃ |B̃ (c|b)
≤ log M2 − γ2

}
.

Then, we can easily check that these constants and functions
satisfy (2) and (3). Plugging these functions and constants
into (4), we have the desired bound. �

This corollary can be regarded as a bound in terms
of the information spectrum (cf. [14]). To the best of our
knowledge, this type of bound has not been reported so far
(although, there are some converse bounds [10, Lemma 15]
and [17, Theorem 3]).

On the other hand, the next corollary gives a bound
in terms of the smooth max Rényi divergence Dδ

∞(P‖Q)
defined as

Dδ
∞(P‖Q) , inf

ψ:A→[0,1]:∑
a∈A ψ(a)P(a)≥1−δ

�����
log sup

a∈A

ψ(a)P(a)
Q(a)

�����

+

,

where |x |+ = max{0, x}.

Corollary 2. For any set F ⊆ A×B×C, any real numbers
δ1, δ2 ≥ 0, and any integers M1, M2 ≥ 1, we have

E
[
E

[
E

[
1{(A, B̃, C̃) < F }��A, B̃

]M2 ���A
]M1

]

≤ δ1 + δ2 + Pr {(A, B,C) < F }

+ e− exp(−Dδ2
∞ (PABC ‖PAB×PC̃ |B̃ ))M2+D

δ1
∞ (PAB ‖PA×PB̃ )

+ e− exp(−Dδ1
∞ (PAB ‖PA×PB̃ ))M1 .

Proof. For an arbitrarily fixed ε > 0, let ψ1 and ψ2 be
functions such that E[ψ1(A, B)] ≥ 1 − δ1, E[ψ2(A, B,C)] ≥
1 − δ2,

D̄δ1
∞ (PAB ‖PA × PB̃ |ψ1) ≤ Dδ1

∞ (PAB ‖PA × PB̃) + ε,
(5)

and

D̄δ2
∞ (PABC ‖PAB × PC̃ |B̃ |ψ2)

≤ Dδ2
∞ (PABC ‖PAB × PC̃ |B̃) + ε, (6)

where

D̄δ
∞(P‖Q |ψ) =

�����
log sup

a∈A

ψ(a)P(a)
Q(a)

�����

+

.

Then, we have

E[ψ1(A, B)ψ2(A, B,C)]
(a)
≥ E[ψ1(A, B)] + E[ψ2(A, B,C)] − 1
≥ 1 − δ1 − δ2, (7)

where (a) follows since x y ≥ x + y − 1 for x, y ∈ [0, 1].
On the other hand, let α1 and α2 be constants such that

α1 = exp
(
−D̄δ1
∞ (PAB ‖PA × PB̃ |ψ1)

)
,

α2 = exp
(
−D̄δ2
∞ (PABC ‖PAB × PC̃ |B̃ |ψ2)

)
.

Then, for any (a, b, c) ∈ A × B × C, we have

α1ψ1(a, b)PAB (a, b)

≤

(
inf

(a,b)∈A×B

PA(a)PB̃ (b)
ψ1(a, b)PAB (a, b)

)
ψ1(a, b)PAB (a, b)

≤ PA(a)PB̃ (b),

and

α2ψ2(a, b, c)PABC (a, b, c)

≤

(
inf

(a,b,c)∈A×B×C

PAB (a, b)PC̃ |B̃ (c|b)

ψ2(a, b, c)PABC (a, b, c)

)
× ψ2(a, b, c)PABC (a, b, c)
≤ PAB (a, b)PC̃ |B̃ (c|b).

Thus, ψ1, ψ2, α1, and α2 satisfy (2) and (3).
Plugging these functions and constants into (4), we have

E
[
E

[
E

[
1{(A, B̃, C̃) < F }��A, B̃

]M2 ���A
]M1

]

≤ δ1 + δ2 + Pr {(A, B,C) < F }

+ e− exp(−Dδ2
∞ (PABC ‖PAB×PC̃ |B̃ )−ε )M2

× eD
δ1
∞ (PAB ‖PA×PB̃ )+ε

+ e− exp(−Dδ1
∞ (PAB ‖PA×PB̃ )−ε )M1,

where we use inequalities (5), (6), and (7). Since ε > 0 is
arbitrary, this completes the proof. �

Remark 2. The original definition of the smooth max Rényi
divergence (cf. [12]) is as follows:
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Dδ
∞(P‖Q)− , inf

ψ:A→[0,1]:∑
a∈A ψ(a)P(a)≥1−δ

log sup
B⊆A

∑
b∈B ψ(b)P(b)∑

b∈B Q(b)
.

Since for non-negative real valued functions f (b) and g(b),
it holds that (cf. e.g. [16, Lemma 16.7.1])∑

b∈B f (b)∑
b∈B g(b)

≤ sup
b∈B

f (b)
g(b)

,

Dδ
∞(P‖Q)− can be simply defined as

Dδ
∞(P‖Q)− , inf

ψ:A→[0,1]:∑
a∈A ψ(a)P(a)≥1−δ

log sup
a∈A

ψ(a)P(a)
Q(a)

.

In this definition, it may be a negative value depending on
δ. Since this case is meaningless in this study, we adopt
Dδ
∞(P‖Q). Here we also note that

Dδ
∞(P‖Q) = ���D

δ
∞(P‖Q)−���

+
. (8)

4. Inner and Outer Bounds on the Set of Pairs of Num-
bers of Codewords

In this section, we give outer and inner bounds onM (D, ε |X )
by using the smooth max Rényi divergence.

First of all, we show a bound on the probability of the
two events E1(D1) and E2(D2) for the successive refinement
problem. In what follows, let U be an arbitrary finite or
countably infinite set.

Theorem 1. For a source X , let (Ũ, Ỹ, Z̃ ) ∈ U ×Y ×Z be
RVs such that (Ũ, Ỹ, Z̃ ) is independent of X . Then, for any
real numbers D1, D2 ≥ 0, there exists a code ( f1, f2, ϕ1, ϕ2)
such that numbers of codewords of encoder 1 and encoder 2
are M1 and M2, respectively, and

Pr{E1(D1) ∪ E2(D2)}

≤ E
[
E

[
E

[
1{(X, Ũ, Ỹ, Z̃ ) < D}���X, Ũ, Ỹ

]M2 ����X
]M1

]
,

where

D = {(x, u, y, z) ∈ X ×U ×Y ×Z :
d1(x, y) ≤ D1, d2(x, z) ≤ D2} .

Proof. Wegenerate (ũ1, ỹ1), (ũ2, ỹ2), · · · , (ũM1, ỹM1 ) ∈ U×
Y independently subject to the probability distribution PŨỸ ,
and define the set C1 , {(ũ1, ỹ1), (ũ2, ỹ2), · · · , (ũM1, ỹM1 )}.
For any i ∈ [1 : M1], we generate z̃i,1, z̃i,2, · · · , z̃i,M2 ∈

Z independently subject to the probability distri-
bution PZ̃ |ŨỸ (·|ui, yi), and define the set C2,i ,
{ z̃i,1, z̃i,2, · · · , z̃i,M2 }. We denote {C2,1, C2,2, · · · , C2,M1 } as
C2. For a given set C1, C2 and a given symbol x ∈ X, we
choose i ∈ [1 : M1] and j ∈ [1 : M2] such that

d1(x, ỹi) ≤ D1 and d2(x, z̃i, j ) ≤ D2.

If there does not exist such pair, we set (i, j) = (1, 1). For

this pair, we define encoders f1 and f2 as

f1(x) = i and f2(x) = j .

On the other hand, we define decoders ϕ1 and ϕ2 as

ϕ1(i) = ỹi and ϕ2(i, j) = z̃i, j .

By taking the average over the random selection of C1
and C2, the average probability of Pr{E1(D1) ∪ E2(D2)} is
as follows:

E[Pr{E1(D1) ∪ E2(D2)}]

= Pr



M1⋂
i=1

M2⋂
j=1
{d1(X, Ỹi) > D1 or d2(X, Z̃i, j ) > D2}




= Pr



M1⋂
i=1

M2⋂
j=1
{(X, Ũi, Ỹi, Z̃i, j ) < D}



,

where {(Ũi, Ỹi, Z̃i, j )} denote randomly selected sequences in
C1 and C2. Now, by noting that Z̃i, j is generated for a given
(Ũi, Ỹi), the theorem follows from Lemma 1 by setting that
A = X , B̃ = (Ũ, Ỹ ), and C̃ = Z̃ . �

Remark 3. This proof is valid even without the RV Ũ. This
auxiliary RV is introduced merely for consistency with the
outer bound. However, the following intuitive interpretation
is possible: Ũ is partial information of Z̃ transmitted to two
decoders. In an extreme case, if we set Ũ = Z̃ , M2 has no
effect on the bound of Theorem 1. Hence, we can make
M2 = 1. On the other hand, M1 must be increased to satisfy
a given probability level. If we set Ũ , Z̃ , M1 may be
decreased by increasing M2. In other words, Ũ manages the
balance of the numbers of codewords. This intuition may be
useful to set the numbers of codewords in the actual code
construction.

We use the next notation for the sake of simplicity.

Definition 6. For RVs (A, B,C), we define

Iδ∞(A; B) , Dδ
∞(PAB ‖PA × PB),

Iδ∞(A; B |C) , Dδ
∞(PABC ‖PAC × PB |C ).

We also define the following set of probability distribu-
tions for a given source X and constants D and ε .

P (D, ε |X ) , {PUYZ |X ∈ PUYZ|X :
Pr{d1(X,Y ) > D1} ≤ ε1,

Pr{d2(X, Z ) > D2} ≤ ε2}.

We note that P (D, ε |X ) depends on the setU .
Now, by using the above theorem, we give an inner

bound onM (D, ε |X ).

Theorem 2 (Inner bound). For a source X , real numbers
D1, D2 ≥ 0 and ε1, ε2 > 0, and any setU , we have

M (D, ε |X )⊇
⋃

(δ,β,γ)∈S(ε )

⋃
PUYZ |X ∈P (D,γ |X)

MI(δ, β, PUYZ |X ),
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where δ = (δ1, δ2), β = (β1, β2), γ = (γ1, γ2),

S(ε ) ,
{
(δ, β, γ) ∈ (0, 1]6 : δ1 + δ2 + γ1 + γ2

+β1 + β2 ≤ min{ε1, ε2}} , (9)

MI(δ, β, PUYZ |X ) ,
{
(M1, M2) ∈ N2 :

log M1 ≥ Iδ1
∞ (X ; U,Y ) + log log

1
β1
,

log M2 ≥ Iδ2
∞ (X ; Z |U,Y )

+ log
(
Iδ1
∞ (X ; U,Y ) + log

1
β2

)}
, (10)

and (X,U,Y, Z ) is a tuple of RVs with the probability distri-
bution PX × PUYZ |X .

Proof. We only have to show that (M, D) is ε-achievable
for (δ, β, γ) ∈ S(ε ), PUYZ |X ∈ P (D, γ |X ), and M1, M2 ≥ 1
such that

M1 =

⌈
exp

(
Iδ1
∞ (X ; U,Y )

)
log

1
β1

⌉
, (11)

M2 =

⌈
exp

(
Iδ2
∞ (X ; Z |U,Y )

) (
Iδ1
∞ (X ; U,Y ) + log

1
β2

)⌉
.

(12)

To this end, let (Ũ, Ỹ, Z̃ ) ∈ U × Y × Z be RVs that
is independent of X and has the same marginal distribution
as (U,Y, Z ), i.e., PŨỸ Z̃ = PUYZ . Then, according to Theo-
rem 1, there exists a code ( f1, f2, ϕ1, ϕ2) such that numbers
of codewords of encoder 1 and encoder 2 are M1 and M2,
respectively, and

max{Pr{E1(D1)}, Pr{E2(D2)}}

≤ E
[
E

[
E

[
1{(X, Ũ, Ỹ, Z̃ ) < D}���X, Ũ, Ỹ

]M2 ����X
]M1

]
.

(13)

On the other hand, according to Corollary 2, we have

E
[
E

[
E

[
1{(X, Ũ, Ỹ, Z̃ ) < D}��X, Ũ, Ỹ

]M2 ���X
]M1

]

≤ δ1 + δ2 + Pr {(X,U,Y, Z ) < D}

+ e− exp(−I δ2
∞ (X;Z |U,Y ))M2+I

δ1
∞ (X;U,Y )

+ e− exp(−I δ1
∞ (X;U,Y ))M1

(a)
≤ δ1 + δ2 + γ1 + γ2 + β1 + β2
(b)
≤ min{ε1, ε2}, (14)

where (a) follows from (11), (12) and the fact that PUYZ |X ∈

P (D, γ |X ), and (b) comes from (9). This implies that (M, D)
is ε-achievable. �

Remark 4. The proof is also valid if we do not restrict
(Ũ, Ỹ, Z̃ ) to be the same distribution as (U,Y, Z ). However,
for the sake of simplicity, we consider the restricted case.

An outer bound on M (D, ε |X ) is given in the next
theorem.

Theorem3 (Outer bound). For a source X , real numbers D1,
D2 ≥ 0 and ε1, ε2 > 0, and any set U such that |U | ≥ |X|,
we have

M (D, ε |X ) ⊆
⋃

PUYZ |X ∈P (D,ε |X)

⋂
δ∈(0,1]2

MO(δ, PUYZ |X ),

where

MO(δ, PUYZ |X ) ,
{
(M1, M2) ∈ N2 :

log M1 ≥ Iδ1
∞ (X ; U,Y ) + log δ1,

log M2 ≥ Iδ2
∞ (X ; Z |U,Y ) + log δ2

}
.

Remark 5. The outer bound can be further bounded as⋃
PUYZ |X ∈P (D,ε |X)

⋂
δ∈(0,1]2

MO(δ, PUYZ |X )

⊆
⋃

(δ,β,γ)∈S(ε )

⋃
PUYZ |X ∈P (D,ε |X)

MO(δ, PUYZ |X ),

where we note that β and γ do not affect the bound. Al-
though this bound is looser than that of Theorem 3, it may
be easier to compare with the inner bound of Theorem 2.
In fact, it can be immediately noticed that the difference
between this loose bound and the inner bound comes from
the difference between P (D, γ |X ) and P (D, ε |X ), and the
difference betweenMI(δ, β, PUYZ |X ) andMO(δ, PUYZ |X ).

Before proving the theorem, we show some necessary
lemmas.

Lemma 3. Suppose that a pair of RVs (A, B) on A × B
satisfies

|{a ∈ A : PA|B (a |b) > 0}| ≤ M,

∀b ∈ B s.t. PB (b) > 0, (15)

for some M > 0. Then, for any ε ∈ (0, 1], we have

Pr
{

PA |B (A|B) ≥
ε

M

}
> 1 − ε .

Proof. Since the lemma can be proved in a similar manner
as [14, Lemma 2.6.2], we omit the proof. �

The next lemma is an extended version of
[12, Lemma 4], which gives a bound on the size of the image
of a function.

Lemma 4. For a function g : A → B × C and c ∈ C, let
‖g‖c denote the size of the image of g when one output is
fixed to c, i.e.,

‖g‖c = |{b ∈ B : g(a) = (b, c), ∃a ∈ A}|.

Then, for any δ ∈ (0, 1], any RV A ∈ A, and (B,C) = g(A),
we have
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log sup
c∈C
‖g‖c ≥ Iδ∞(A; B |C) + log δ.

Proof. Let M = supc∈C ‖g‖c . Define a subset Dδ ⊆ B × C

and the function ψo : A × B × C → [0, 1] as

Dδ ,

{
(b, c) ∈ B × C : PB |C (b|c) ≥

δ

M

}
, (16)

ψo (a, b, c) , 1{(a, b, c) ∈ A × Dδ }. (17)

Since PBC (b, c) =
∑

a∈A PA(a)1{(b, c) = g(a)},
PB |C (b|c) > 0 for c ∈ C such that PC (c) > 0 if and only if
there exists a ∈ A such that (b, c) = g(a) and PA(a) > 0.
Thus, for c ∈ C such that PC (c) > 0, we have

|{b ∈ B : PB |C (b|c) > 0}
= |{b ∈ B : (b, c) = g(a), ∃a ∈ A s.t. PA(a) > 0}
≤ ‖g‖c

≤ M .

Then, by using Lemma 3, it is easy to see that∑
(a,b,c)∈A×B×C

ψo (a, b, c)PABC (a, b, c)

= Pr
{

PB |C (B |C) ≥
δ

M

}
> 1 − δ.

Thus, we have

Iδ∞(A; B |C)

≤

������
log sup

(a,b,c)∈A×B×C

ψo (a, b, c)PABC (a, b, c)
PAC (a, c)PB |C (b|c)

������

+

=

������
log sup

(a,b,c)∈A×Dδ

PB |AC (b|a, c)
PB |C (b|c)

������

+

(a)
≤

������
log sup

(a,b,c)∈A×Dδ

PB |AC (b|a, c)
δ/M

������

+

≤ log M − log δ,

where (a) comes from the definition (16). This completes
the proof. �

Remark 6. For a triple of RVs (A, B,C) on A × B × C, let
M = |B|. Then, in the same way as the above proof, we can
easily show that

Iδ∞(A; B |C) ≤ log |B| − log δ.

Now, we give the proof of Theorem 3.

Proof of Theorem 3. Let ‖ f1‖ be the size of the image of an
encoder f1. Since ‖ f1‖ ≤ |X| and |X| ≤ |U | by the assump-
tion, there exists an injective function id : [1 : ‖ f1‖] → U .
For this function, let Uid ⊆ U be the image of id and
id−1 : Uid → [1 : ‖ f1‖] be the inverse function of id onUid.

Suppose that (M, D) is ε-achievable. Then, there exists

a code ( f1, f2, ϕ1, ϕ2) such that

Pr {d1(X, ϕ1( f1(X ))) > D1} ≤ ε1,

Pr {d2(X, ϕ2( f1(X ), f2(X ))) > D2} ≤ ε2.

Thus, by setting U = id( f1(X )), Y = ϕ1( f1(X )), and Z =
ϕ2( f1(X ), f2(X )), we have

Pr {d1(X,Y ) > D1} ≤ ε1, (18)
Pr {d2(X, Z ) > D2} ≤ ε2. (19)

For a constant value c, let g1(x) = (id( f1(x)),
ϕ1( f1(x)), c), A = X , B = (U,Y ), and C = c. Accord-
ing to Lemma 4, for any δ1 ∈ (0, 1], we have

log ‖g1‖c ≥ Iδ1
∞ (X ; U,Y |C) + log δ1

= Iδ1
∞ (X ; U,Y ) + log δ1. (20)

On the other hand, we have

‖g1‖c = |{(u, y) ∈ Uid × Y : g1(x) = (u, y, c), ∃x ∈ X}|

=
∑

u∈Uid

∑
y∈Y

1{g1(x) = (u, y, c), ∃x ∈ X}

=
∑

u∈Uid

1{g1(x) = (u, ϕ1(id−1(u)), c), ∃x ∈ X}

≤ M1, (21)

where the last inequality follows since the size of Uid is at
most ‖ f1‖ and ‖ f1‖ ≤ M1. Combining (20) and (21), we
have

log M1 ≥ Iδ1
∞ (X ; U,Y ) + log δ1. (22)

Let g2(x) = (ϕ2( f1(x), f2(x)), id( f1(x)), ϕ1( f1(x))),
A = X , B = Z , and C = (U,Y ). Then, according to Lemma
4, for any δ2 ∈ (0, 1], we have

log sup
(u, y)∈U×Y

‖g2‖(u, y) ≥ Iδ2
∞ (X ; Z |U,Y ) + log δ2.

(23)

On the other hand, for any (u, y) ∈ Uid × Y, we have

‖g2‖(u, y) =
∑
z∈Z

1{z = ϕ2(id−1(u), f2(x)),

id−1(u) = f1(x), y = ϕ1(id−1(u)), ∃x ∈ X}

≤
∑
z∈Z

1{∃x ∈ X, z = ϕ2(id−1(u), f2(x))}

≤
∑
z∈Z

1{∃ j ∈ [1 : M2], z = ϕ2(id−1(u), j)}

≤
∑

j∈[1:M2]

∑
z∈Z

1{z = ϕ2(id−1(u), j)}

= M2. (24)

We note that for any (u, y) ∈ {U \ Uid} × Y, it holds that
‖g2‖(u, y) = 0. Combining (23) and (24), we have
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log M2 ≥ Iδ2
∞ (X ; Z |U,Y ) + log δ2. (25)

Since δ1 ∈ (0, 1] and δ2 ∈ (0, 1] are arbitrary, (22) and (25)
imply that

(M1, M2) ∈
⋂

δ∈(0,1]2

MO(δ, PUYZ |X ).

Now, by recalling that (X,U,Y, Z ) satisfy (18) and (19),
for any ε-achievable pair (M, D), we have

(M1, M2) ∈
⋃

PUYZ |X ∈P (D,ε |X)

⋂
δ∈(0,1]2

MO(δ, PUYZ |X ).

This completes the proof. �

Remark 7. If we do not employ the RVU which has a role in
fixing the RV f1(X ) to a certain codeword, we cannot bound
‖g2‖(u, y) by M2 in (24). Thus in this proof, introducing U is
quite important.

Remark 8. In [1], we gave inner and outer bounds on
M (D, ε |X ) by using the α-mutual information of order in-
finity [18], where the α-mutual information is a generalized
version of the mutual information. In this paper, however,
we use the smooth max Rényi divergence. This is because it
is compatible with the information spectrum quantity which
is well studied and useful to analyze rates of a code.

Finally, we discuss the difference between our inner and
outer bounds of Theorems 2 and 3.

If cardinalities of sets X, Y,Z,U are small, the outer
bound and the inner bound may be given by computing their
boundaries. Thus, the difference between these two bounds
is actually evaluated. On the other hand, if cardinalities of
the sets are large, it is difficult to compute their boundaries.
However, we can evaluate the difference roughly.

Let |U | = |X| for the sake of simplicity. Since the
main interest is in the case where ε1, ε2 > 0 are sufficiently
small, we assume that for a small real number ρ ∈ (0, 1/2],
ε1 = ε2 = ρ. Then, we can set that δi = βi = γi ≈ ε i
(i = 1, 2) in the inner bound. Thus, the inner bound can be
approximated as⋃

(δ,β,γ)∈S(ε )

⋃
PUYZ |X ∈P (D,γ |X)

MI(δ, β, PUYZ |X )

≈
⋃

PUYZ |X ∈P (D,ε |X)

MI(ε, ε, PUYZ |X ).

On the other hand, the outer bound can be bounded as⋃
PUYZ |X ∈P (D,ε |X)

⋂
δ∈(0,1]2

MO(δ, PUYZ |X )

⊆
⋃

PUYZ |X ∈P (D,ε |X)

MO(ε, PUYZ |X ).

Thus, the difference between the outer bound and the
inner bound can be evaluated by the difference be-
tweenMI(ε, ε, PUYZ |X ) andMO(ε, PUYZ |X ) for each fixed

PUYZ |X ∈ P (D, ε |X ).
According to the definitions of MI(ε, ε, PUYZ |X ) and

MO(ε, PUYZ |X ), the difference comes from boundary
pairs (MI,1, MI,2) of MI(ε, ε, PUYZ |X ) and (MO,1, MO,2) of
MO(ε, PUYZ |X ), where

MI,1 =

⌈
exp

(
Iρ∞(X ; U,Y ) + log log

1
ρ

)⌉
,

MI,2 =

⌈
exp

(
Iρ∞(X ; Z |U,Y )+log

(
Iρ∞(X ; U,Y )+log

1
ρ

))⌉
,

MO,1 =
⌈
exp

(
Iρ∞(X ; U,Y ) + log ρ

)⌉
,

MO,2 =
⌈
exp

(
Iρ∞(X ; Z |U,Y ) + log ρ

)⌉
.

Clearly, the difference between MI,1 and MO,1 can be
evaluated by second terms of exponents, i.e, log log 1

ρ −

log ρ. Similarly, the difference between MI,2 and MO,2
can be evaluated by second terms of exponents, i.e,
log

(
Iρ∞(X ; U,Y ) + log 1

ρ

)
− log ρ. Since Iρ∞(X ; U,Y ) ≥ 0,

the differences are at most log
(
Iρ∞(X ; U,Y ) + log 1

ρ

)
− log ρ.

Especially, for a finite set X, since Iρ∞(X ; U,Y ) ≤
log |X| − log ρ (see Remark 6), the differences are at most
log

(
log |X| + 2 log 1

ρ

)
− log ρ. Furthermore, when we re-

gard X as an n-fold Cartesian product Xn, the differences
of exponents are at most log

(
n log |X| + 2 log 1

ρ

)
− log ρ.

Dividing it by n, it obviously vanishes as n tends to infinity.
This implies that the inner bound and the outer bound asymp-
totically coincide with each other in terms of rate (which is
the exponent of the number of codewords divided by n) as
n tends to infinity. In fact, in the next section, the rate-
distortion region can be given by using our inner and outer
bounds.

5. General Formula for the Rate-Distortion Region

In this section, we deal with the coding for an n-length source
sequence and give a general formula for the rate-distortion
region.

First of all, we introduce the spectral (conditional) sup-
mutual information rate [14].

Definition 7. For a sequence (X,Y,Z) = {(Xn,Y n, Zn)}∞
n=1

of RVs, we define

I (X; Y) , p-lim sup
n→∞

1
n

log
PYn |Xn (Y n |Xn)

PYn (Y n)
,

I (X; Y|Z) , p-lim sup
n→∞

1
n

log
PYn |XnZn (Y n |Xn, Zn)

PYn |Zn (Y n |Zn)
.

The smoothmaxRényi divergence is related to the spec-
tral sup-mutual information rate as shown in the corollary of
the next lemma.

Lemma 5. Consider two sequences X and Y of RVs over
the same set. Then, we have

lim
δ↓0

lim sup
n→∞

1
n

Dδ
∞(PXn ‖PYn ) = p-lim sup

n→∞

1
n

log
PXn (Xn)
PYn (Xn)

.
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Proof. For a sequence {an}
∞
n=1 of real numbers, it holds that

lim supn→∞ |an |
+ = | lim supn→∞ an |

+. Thus, according to
(8), we have

lim
δ↓0

lim sup
n→∞

1
n

Dδ
∞(PXn ‖PYn )

=
�����
lim
δ↓0

lim sup
n→∞

1
n

Dδ
∞(PXn ‖PYn )−

�����

+

. (26)

According to [11, Lemma 3], it holds that

lim
δ↓0

lim sup
n→∞

1
n

Dδ
∞(PXn ‖PYn )−

= p-lim sup
n→∞

1
n

log
PXn (Xn)
PYn (Xn)

. (27)

Furthermore, according to [14, Lemma 3.2.1], the RHS of
(27) is non-negative. Thus, by combining (26) and (27), we
have the lemma. �

Corollary 3. For a sequence (X,Y,Z) of RVs, we have

lim
δ↓0

lim sup
n→∞

1
n

Iδ∞(Xn;Y n) = I (X; Y),

lim
δ↓0

lim sup
n→∞

1
n

Iδ∞(Xn;Y n |Zn) = I (X; Y|Z).

Proof. Since this corollary immediately follows from
Lemma 5 and Definition 7, we omit the proof. �

Let PUYZ |X be a sequence of conditional probability
distributions PUnYnZn |Xn ∈ PUnYnZn |Xn . We define

PG(D |X) , {PUYZ |X : D1(X,Y) ≤ D1,

D2(X,Z) ≤ D2},

D1(X,Y) , p-lim sup
n→∞

d (n)
1 (Xn,Y n),

D2(X,Z) , p-lim sup
n→∞

d (n)
2 (Xn, Zn),

RG(PUYZ |X |X) , {(R1, R2) ∈ R2 : R1 ≥ I (X; U,Y),

R2 ≥ I (X; Z|U,Y)},

where (X,U,Y,Z) is a sequence of RVs (Xn,Un,Y n, Zn)
induced by PUYZ |X and a general source X. We note that
PG(D |X) depends onU .

Themain result of this section is the next theoremwhich
gives a general formula for the rate-distortion region.

Theorem 4. For a general source X, real numbers D1, D2 ≥
0, and any setU such that |U | ≥ |X|, we have

R (D |X) =
⋃

PUYZ|X∈PG (D |X)

RG(PUYZ |X |X). (28)

Remark 9. We can show that the RHS of (28) is a closed set
by using the diagonal line argument (cf. [14, Remark 5.7.5]).

Remark 10. We are not sure whether a sequence U of aux-
iliary RVs is really necessary or not. It may be possible to

characterize the region without it.

The proof of this theorem is presented in the subsequent
two sections. In these sections, for a code, we denote

Ŷ n = ϕ(n)
1 ( f (n)

1 (Xn)),

Ẑn = ϕ(n)
2 ( f (n)

1 (Xn), f (n)
2 (Xn)).

5.1 Direct Part

In this section, we show

R (D |X) ⊇
⋃

PUYZ|X∈PG (D |X)

RG(PUYZ |X |X). (29)

Let PUYZ |X ∈ PG(D |X) and suppose that I (X; U,Y) <
∞ and I (X; Z|U,Y) < ∞. Then, for any ε, ε1, ε2 > 0 such
that ε1 = ε2 = ε , any (δ, β, γ) ∈ S(ε ) in (9), and every
sufficiently large n, we have

Pr{d (n)
1 (Xn,Y n) > D1 + ε } ≤ γ1,

Pr{d (n)
2 (Xn, Zn) > D2 + ε } ≤ γ2.

Hence, according to Theorem 2, there exists a sequence of
codes {( f (n)

1 , f (n)
2 , ϕ(n)

1 , ϕ(n)
2 )} such that for sufficiently large

n,

Pr{d (n)
1 (Xn, Ŷ n) > D1 + ε } ≤ ε,

Pr{d (n)
2 (Xn, Ẑn) > D2 + ε } ≤ ε,

and

1
n

log M (n)
1 =

1
n

log
⌈
exp

(
Iδ1
∞ (Xn; Un,Y n)

)
log

1
β1

⌉
,

1
n

log M (n)
2 =

1
n

log
⌈
exp

(
Iδ2
∞ (Xn; Zn |Un,Y n)

)
×

(
Iδ1
∞ (Xn; Un,Y n) + log

1
β2

)⌉
.

Thus, we have

lim sup
n→∞

R(n)
1 ≤ lim sup

n→∞

1
n

Iδ1
∞ (Xn; Un,Y n)

(a)
≤ I (X; U,Y),

and

lim sup
n→∞

R(n)
2

≤ lim sup
n→∞

1
n

log
(
exp

(
Iδ2
∞ (Xn; Zn |Un,Y n)

)
×

(
Iδ1
∞ (Xn; Un,Y n) + log

1
β2
+ 1

))
≤ lim sup

n→∞

1
n

log
(
exp

(
Iδ2
∞ (Xn; Zn |Un,Y n)

)
× n

(
lim sup
n→∞

1
n

Iδ1
∞ (Xn; Un,Y n) + δ2

))
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(a)
≤ lim sup

n→∞

1
n

log
(
exp

(
Iδ2
∞ (Xn; Zn |Un,Y n)

)
× n

(
I (X; U,Y) + δ2

))
(b)
= lim sup

n→∞

1
n

Iδ2
∞ (Xn; Zn |Un,Y n)

(a)
≤ I (X; Z|U,Y),

where (a) comes from Corollary 3 and the fact that Iδ∞
is a non-increasing function of δ, and (b) follows since
I (X; U,Y) < ∞.

Now, by using the usual diagonal line argument, we can
construct a sequence of codes {( f (n)

1 , f (n)
2 , ϕ(n)

1 , ϕ(n)
2 )} such

that

lim sup
n→∞

R(n)
1 ≤ I (X; U,Y),

lim sup
n→∞

R(n)
2 ≤ I (X; Z|U,Y).

and for any ε > 0,

lim
n→∞

Pr{d (n)
1 (Xn, Ŷ n) > D1 + ε } = 0,

lim
n→∞

Pr{d (n)
2 (Xn, Ẑn) > D2 + ε } = 0.

This implies that

p-lim sup
n→∞

d (n)
1 (Xn, Ŷ n) ≤ D1,

p-lim sup
n→∞

d (n)
2 (Xn, Ẑn) ≤ D2.

Thus, for any PUYZ |X ∈ PG(D |X) such that I (X; U,Y) ∈ R
and I (X; Z|U,Y) ∈ R, we have

(I (X; U,Y), I (X; Z|U,Y)) ∈ R (D |X).

This implies (29).

5.2 Converse Part

In this section, we show that

R (D |X) ⊆
⋃

PUYZ|X∈PG (D |X)

RG(PUYZ |X |X). (30)

Suppose that (R, D) is fm-achievable. Then, there exists
a sequence of codes satisfying

p-lim sup
n→∞

d (n)
1 (Xn, Ŷ n) ≤ D1,

p-lim sup
n→∞

d (n)
2 (Xn, Ẑn) ≤ D2,

and

lim sup
n→∞

1
n

log M (n)
i ≤ Ri, ∀i ∈ {1, 2}. (31)

Thus, we have for any γ > 0

lim
n→∞

Pr{d (n)
1 (Xn, Ŷ n) > D1 + γ} = 0,

lim
n→∞

Pr{d (n)
2 (Xn, Ẑn) > D2 + γ} = 0.

This implies that there exists a sequence {γn}∞n=1 such that
limn→∞ γn = 0 and

Pr{d (n)
1 (Xn, Ŷ n) > D1 + γn} ≤ γn,

Pr{d (n)
2 (Xn, Ẑn) > D2 + γn} ≤ γn.

This means that (M (n), D + γn) is γn-achievable. Ac-
cording to Theorem 3, there exists a sequence PUYZ |X =
{PUnYnZn |Xn }∞

n=1 of conditional probability distributions
such that PUnYnZn |Xn ∈ P (D + γn, γn |Xn) and for any
δ ∈ (0, 1]2,

lim sup
n→∞

1
n

log M (n)
1 ≥ lim sup

n→∞

1
n

Iδ∞(Xn; Un,Y n),

lim sup
n→∞

1
n

log M (n)
2 ≥ lim sup

n→∞

1
n

Iδ∞(Xn; Zn |Un,Y n).

Since this holds for any δ ∈ (0, 1]2, we have

lim sup
n→∞

1
n

log M (n)
1 ≥ lim

δ↓0
lim sup
n→∞

1
n

Iδ∞(Xn; Un,Y n)

(a)
= I (X; U,Y), (32)

lim sup
n→∞

1
n

log M (n)
2 ≥ lim

δ↓0
lim sup
n→∞

1
n

Iδ∞(Xn; Zn |Un,Y n)

(a)
= I (X; Z|U,Y). (33)

where (a) are comes from Corollary 3. On the other
hand, since PUnYnZn |Xn ∈ P (D + γn, γn |Xn), PUYZ |X
must satisfy D1(X; Y) ≤ D1 and D2(X; Z) ≤ D2, i.e.,
PUYZ |X ∈ PG(D |X).

By combining (31), (32), and (33), we can conclude
that for any fm-achievable pair (R, D),

(R1, R2) ∈
⋃

PUYZ|X∈PG (D |X)

RG(PUYZ |X |X).

This implies (30).

5.3 Discrete Stationary Memoryless Sources

In this section, we show that the rate-distortion region given
in Theorem 4 coincides with the region by Rimoldi [6] when
a source X is a discrete stationary memoryless source.

Let X, Y, andZ be finite sets. Since X = {Xn}∞
n=1 is a

discrete stationary memoryless source, we assume that Xn =

(X1, X2, · · · , Xn) is a sequence of independent copies of an
RV X on X. We also assume that distortion measures d (n)

1
and d (n)

2 are additive, i.e., for two functions d1 : X × Y →
[0,+∞) and d2 : X ×Z → [0,+∞), distortion measures are
represented as

d (n)
1 (xn, yn) =

1
n

n∑
i=1

d1(xi, yi),
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d (n)
2 (xn, zn) =

1
n

n∑
i=1

d2(xi, zi).

We define

PM(D |X ) , {PYZ |X ∈ PYZ|X : E[d1(X,Y )] ≤ D1,

E[d2(X, Z )] ≤ D2},

and for PYZ |X ∈ PYZ|X ,

RM(PYZ |X |X ) , {(R1, R2) ∈ R2
≥0 : R1 ≥ I (X ;Y ),

R1 + R2 ≥ I (X ;Y, Z )},

where (X,Y, Z ) is the tuple of RVs induced by a conditional
probability distribution PYZ |X ∈ PYZ|X and a given RV X .
Then, we have the next theorem.

Theorem 5. For a discrete stationary memoryless source
X, additive distortion measures, and any set U such that
|U | ≥ |Z| + 1, we have⋃

PUYZ|X∈PG (D |X)

RG(PUYZ |X |X)

=
⋃

PYZ |X ∈PM (D |X)

RM(PYZ |X |X ). (34)

Remark 11. According to Theorem 4, the above theorem
holds even if |U | ≥ |Z|. However, we assume that |U | ≥
|Z| + 1 in order to prove the above theorem without the help
of Theorem 4.

Remark 12. The RHS of (34) can be written as

{(R1, R2) ∈R2
≥0 : R1 ≥ R1(D1), R1 + R2 ≥ Rb(R1, D1, D2)},

(35)

where R1(D1) is the rate-distortion function and
Rb(R1, D1, D2) gives the boundary for a given R1, which
are defined as (see, e.g., [19, Corollary 1], [10, (22)])

R1(D1) , min
PY |X ∈PY|X :E[d1 (X,Y )]≤D1

I (X ;Y ),

Rb(R1, D1, D2) , min
PYZ |X ∈PYZ|X :

E[d1 (X,Y )]≤D1,E[d2 (X,Z)]≤D2,
I (X;Y )≤R1

I (X ;Y, Z ).

We note that R1(D1) and Rb(R1, D1, D2) are convex and
continuous functions of a triple (R1, D1, D2) (see, e.g.,
[14, Remark 5.2.1] and [20, Lemma 4]).

We will prove the theorem by two parts separately.

Proof: The left-hand side (LHS) of (34) ⊆ The RHS of (34).
We have ⋃

PUYZ|X∈PG (D |X)

RG(PUYZ |X |X)

⊆
⋃

PUYZ|X∈PG (D |X)

{(R1, R2) : R1 ≥ I (X; U,Y),

R1 + R2 ≥ I (X; U,Y) + I (X; Z|U,Y)}

(a)
⊆

⋃
PUYZ|X∈PG (D |X)

{(R1, R2) : R1 ≥ I (X; U,Y),

R1 + R2 ≥ I (X; U,Y,Z)}
(b)
⊆

⋃
PYZ|X:

D1 (X,Y)≤D1,D2 (X,Z)≤D2

{(R1, R2) : R1 ≥ I (X; Y),

R1 + R2 ≥ I (X; Y,Z)}, (36)

where (a) and (b) respectively come from the fact that

I (X; U,Y) + I (X; Z|U,Y) ≥ I (X; U,Y,Z),

I (X; U,Y) ≥ I (X; Y).

For a sequence (X,Y,Z) = {(Xn,Y n, Zn)} of
RVs induced by PYZ |X and a given source X, let
(X, Ȳ, Z̄) = {(Xn, Ȳ n, Z̄n)} be a sequence of RVs such
that (X1, Ȳ1, Z̄1), (X2, Ȳ2, Z̄2), · · · , (Xn, Ȳn, Z̄n) are indepen-
dent and

PXiȲi Z̄i
(x, y, z) = PXiYiZi (x, y, z),

where PXiYiZi (x, y, z) is the i-th marginal distribu-
tion of (Xn,Y n, Zn). Then, according to [14,
Lemma 5.8.1 and 5.8.2], we have D1(X,Y) ≥ D1(X, Ȳ),
D2(X,Z) ≥ D2(X, Z̄), I (X; Y) ≥ I (X; Ȳ), and I (X; Y,Z) ≥
I (X; Ȳ, Z̄). Thus, by introducing the setI of probability dis-
tributions for independent RVs as

I ,



PYZ |X = {PYnZn |Xn } : PYnZn |Xn =

n∏
i=1

PYiZi |Xi ,

∃PYiZi |Xi ∈ PYZ|X, i ∈ [1 : n]
}
,

we have ⋃
PYZ|X:

D1 (X,Y)≤D1,D2 (X,Z)≤D2

{(R1, R2) : R1 ≥ I (X; Y),

R1 + R2 ≥ I (X; Y,Z)}

⊆
⋃

PYZ|X∈I:
D1 (X,Y)≤D1,D2 (X,Z)≤D2

{(R1, R2) : R1 ≥ I (X; Y),

R1 + R2 ≥ I (X; Y,Z)}. (37)

On the other hand, in the same way as [14, p.372], for
any δ > 0, γ > 0, and any PYZ |X ∈ I such that D1(X,Y) ≤
D1 and D2(X,Z) ≤ D2, there exists PYZ |X ∈ PYZ|X such
that

I (X; Y) ≥ I (X ;Y ) − δ,

I (X; Y,Z) ≥ I (X ;Y, Z ) − δ,

and

D1 ≥ E[d1(X,Y )] − γ,
D2 ≥ E[d2(X, Z )] − γ.
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Thus, we have⋃
PYZ|X∈I:

D1 (X,Y)≤D1,D2 (X,Z)≤D2

{(R1, R2) : R1 ≥ I (X; Y),

R1 + R2 ≥ I (X; Y,Z)}

⊆
⋂
γ>0

⋂
δ>0

⋃
PYZ |X ∈PM (D+γ |X)

{(R1, R2) :

R1 ≥ I (X ;Y ) − δ, R1 + R2 ≥ I (X ;Y, Z ) − δ}

=
⋂
γ>0

⋂
δ>0
{(R1, R2) : R1 + δ ≥ R1(D1 + γ),

R1 + R2 + δ ≥ Rb(R1 + δ, D1 + γ, D2 + γ)}, (38)

where the last equality comes from (35).
Since R1(D1) and Rb(R1, D1, D2) are convex and con-

tinuous functions of a triple (R1, D1, D2) (see Remark 12), it
holds that for any ε > 0, there exist sufficiently small γε > 0
and δε > 0 such that⋂

δ>0

⋂
γ>0
{(R1, R2) : R1 + δ ≥ R1(D1 + γ),

R1 + R2 + δ ≥ Rb(R1 + δ, D1 + γ, D2 + γ)}

⊆
⋂

δε>δ>0

⋂
γε>γ>0

{(R1, R2) : R1 + δ ≥ R1(D1 + γ),

R1 + R2 + δ ≥ Rb(R1 + δ, D1 + γ, D2 + γ)}

⊆
⋂

δε>δ>0

⋂
γε>γ>0

{(R1, R2) : R1 ≥ R1(D1) − δ − ε,

R1 + R2 ≥ Rb(R1, D1, D2) − δ − ε }

=
⋂

δε>δ>0
{(R1, R2) : R1 ≥ R1(D1) − δ − ε,

R1 + R2 ≥ Rb(R1, D1, D2) − δ − ε }. (39)

By combining (36), (37), (38), and (39), we have⋃
PUYZ|X∈PG (D |X)

RG(PUYZ |X |X)

⊆
⋂
ε>0

⋂
δε>δ>0

{(R1, R2) : R1 ≥ R1(D1) − δ − ε,

R1 + R2 ≥ Rb(R1, D1, D2) − δ − ε }
= {(R1, R2) : R1 ≥ R1(D1), R1 + R2 ≥ Rb(R1, D1, D2)}.

According to Remark 12, this completes the proof. �

Proof: The LHS of (34) ⊇ The RHS of (34). Since |U | ≥
|Z| + 1, there exists an injective function id : Z → U .
For this function, let Uid ⊆ U be the image of id and
id−1 : Uid → Z be the inverse function of id on Uid. Let
u∗ ∈ U be a symbol such that u∗ < Uid.

For any PYZ |X ∈ PM(D |X ) and any α ∈ [0, 1], we
define PUYZ |X ∈ PUYZ|X as

PUYZ |X (u, y, z |x) ,



αPYZ |X (y, z |x) if u = id(z),
(1 − α)PYZ |X (y, z |x) if u = u∗,
0 otherwise.

Since

PXUY (x, u, y) =



αPXYZ (x, y, id−1(u)) if u ∈ Uid,

(1 − α)PXY (x, y) if u = u∗,
0 otherwise,

PX |UY (x |u, y) =



PX |YZ (x | y, id−1(u)) if u ∈ Uid,

PX |Y (x | y) if u = u∗,
0 otherwise,

we have

I (X ; U,Y ) = H (X ) − αH (X |Y, Z ) − (1 − α)H (X |Y )
= αI (X ;Y, Z ) + (1 − α)I (X ;Y ).

Furthermore, since

PX |UYZ (x |u, y, z) =



PX |YZ (x | y, z) if u = id(z),
PX |YZ (x | y, z) if u = u∗,
0 otherwise,

we have

I (X ; Z |U,Y ) = H (X |U,Y ) − H (X |U,Y, Z )
= αH (X |Y, Z )+(1 − α)H (X |Y )−H (X |Y, Z )
= (1 − α)I (X ; Z |Y ).

Now by defining PUYZ |X as

PUnYnZn |Xn (un, yn, zn |xn) =
n∏
i=1

PUYZ |X (ui, yi, zi |xi),

(X,U,Y,Z) becomes a sequence of independent copies of
RVs (X,U,Y, Z ). Thus, we have

I (X; U,Y) = I (X ; U,Y ) = αI (X ;Y, Z ) + (1 − α)I (X ;Y ),

I (X; Z|U,Y) = I (X ; Z |U,Y ) = (1 − α)I (X ; Z |Y ),

D1(X,Y) = E[d1(X,Y )] ≤ D1,

D2(X,Z) = E[d2(X, Z )] ≤ D2,

where we use the fact that for i.i.d. RVs {Ai }
∞
i=1 taking values

in a finite set, p-lim sup
n→∞

1
n

∑n
i=1 Ai = E[A1]. Hence, by

noting that PUYZ |X ∈ PG(D |X), we have for any α ∈ [0, 1],

(αI (X ;Y, Z ) + (1 − α)I (X ;Y ), (1 − α)I (X ; Z |Y ))

∈
⋃

PUYZ|X∈PG (D |X)

RG(PUYZ |X |X). (40)

This implies that for any (R1, R2) ∈ RM(PYZ |X |X ), it
holds that (R1, R2) ∈

⋃
PUYZ|X∈PG (D |X) RG(PUYZ |X |X). This

is because for any (R1, R2) ∈ RM(PYZ |X |X ) such that
I (X ;Y, Z ) ≥ R1, there exists α ∈ [0, 1] such that

R1 = αI (X ; Z |Y ) + I (X ;Y )
= αI (X ;Y, Z ) + (1 − α)I (X ;Y ).

Then, we have
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R2 ≥ I (X ;Y, Z ) − R1

= I (X ;Y, Z ) − αI (X ;Y, Z ) − (1 − α)I (X ;Y )
= (1 − α)I (X ; Z |Y ). (41)

According to (40), such pair (R1, R2) is included in
the region

⋃
PUYZ|X∈PG (D |X) RG(PUYZ |X |X). On the other

hand, for any (R1, R2) ∈ RM(PYZ |X |X ) such that R1 >
I (X ;Y, Z ), we have R2 ≥ 0. Since it holds that
(I (X ;Y, Z ), 0) ∈

⋃
PUYZ|X∈PG (D |X) RG(PUYZ |X |X) due to

(40), such pair (R1, R2) is also included in the region⋃
PUYZ|X∈PG (D |X) RG(PUYZ |X |X).

Therefore, we have⋃
PUYZ|X∈PG (D |X)

RG(PUYZ |X |X) ⊇ RM(PYZ |X |X ).

Since this holds for any PYZ |X ∈ PM(D |X ), this completes
the proof. �

Remark 13. Unlike the rate-distortion region by Rimoldi,
our region includes a sequence U of auxiliary RVs. This
comes from the fact that the time-sharing argument as in
(41) cannot be employed because it holds that in general,

I (X; Y,Z) , I (X; Y) + I (X; Z|Y).

5.4 Mixed Sources

In this section, we give the rate-distortion region for mixed
sources.

The mixed source X is defined by X1 = {Xn
1 }
∞
n=1 and

X2 = {Xn
2 }
∞
n=1 as

PXn (xn) = α1PXn
1

(xn) + α2PXn
2

(xn),

where α1, α2 ∈ [0, 1] and α1 + α2 = 1.
The next lemma shows a fundamental property of the

information spectrum of mixed sources.

Lemma 6. For sequences of RVs (X1,Y1,Z1) and
(X2,Y2,Z2), let (X,Y,Z) be defined by

PXnYnZn (xn, yn, zn) = α1PXn
1 Y

n
1 Zn

1
(xn, yn, zn)

+ α2PXn
2 Y

n
2 Zn

2
(xn, yn, zn).

Then, we have

I (X; Y) = max{I (X1; Y1), I (X2; Y2)},

I (X; Y|Z) = max{I (X1; Y1 |Z1), I (X2; Y2 |Z2)}.

Proof. Since this lemma can be proved in the same way as
[14, Lemma 7.9.1] by using [14, Lemma 1.4.2], we omit the
details. �

The next theorem shows that the rate-distortion region
for a mixed source is the intersection of those of two sources.

Theorem 6. For a mixed source X defined by X1 and X2,
and any real numbers D1, D2 ≥ 0, we have

R (D |X) = R (D |X1) ∩ R (D |X2).

Proof. For PU1Y1Z1 |X1 and PU2Y2Z2 |X2 , we define a mixture
PŨỸZ̃ |X of these two components by

PŨnỸn Z̃n |Xn (un, yn, zn |xn)

=
α1PXn

1
(xn)PUn

1 Yn
1 Zn

1 |X
n
1

(un, yn, zn |xn)

PXn (xn)

+
α2PXn

2
(xn)PUn

2 Yn
2 Zn

2 |X
n
2

(un, yn, zn |xn)

PXn (xn)
.

In order to prove the theorem, we give an equivalent
expression of the rate-distortion region using PU1Y1Z1 |X1 ,
PU2Y2Z2 |X2 , and the mixture PŨỸZ̃ |X.

When PU1Y1Z1 |X1 = PU2Y2Z2 |X2 = PUYZ |X, we have
PŨỸZ̃ |X = PUYZ |X by the definition. This implies that for
any PUYZ |X, there exist PU1Y1Z1 |X1 and PU2Y2Z2 |X2 such that
PUYZ |X = PŨỸZ̃ |X. On the other hand, for anyPU1Y1Z1 |X1 and
PU2Y2Z2 |X2 , there trivially exists PUYZ |X such that PUYZ |X =
PŨỸZ̃ |X. Thus, we have an equivalent expression:⋃

PUYZ|X∈PG (D |X)

RG(PUYZ |X |X)

=
⋃

PU1Y1Z1 |X1,PU2Y2Z2 |X2 :
D1 (X,Ỹ)≤D1,D2 (X,Z̃)≤D2

RG(PŨỸZ̃ |X |X).

Thus, according to Theorem 4, we have

R (D |X)

=
⋃

PU1Y1Z1 |X1,PU2Y2Z2 |X2 :
D1 (X,Ỹ)≤D1,D2 (X,Z̃)≤D2

RG(PŨỸZ̃ |X |X)

(a)
=

⋃
PU1Y1Z1 |X1,PU2Y2Z2 |X2 :

max{D1 (X1,Y1),D1 (X2,Y2) }≤D1,

max{D2 (X1,Z1),D2 (X2,Z2) }≤D2

{(R1, R2) :

R1 ≥ max{I (X1; U1,Y1), I (X2; U2,Y2)}

R2 ≥ max{I (X1; Z1 |U1,Y1), I (X2; Z2 |U2,Y2)}}

=
⋃

PU1Y1Z1 |X1 ∈PG (D |X1)

⋃
PU2Y2Z2 |X2 ∈PG (D |X2)

RG(PU1Y1Z1 |X1 |X1) ∩ RG(PU2Y2Z2 |X2 |X2)
= R (D |X1) ∩ R (D |X2).

where (a) comes from [14, Lemma 1.4.2], Lemma 6 and the
fact that

PXnŨnỸn Z̃n (xn, un, yn, zn)
= α1PXn

1 U
n
1 Yn

1 Zn
1

(xn, un, yn, zn)

+ α2PXn
2 U

n
2 Yn

2 Zn
2

(xn, un, yn, zn).

This completes the proof. �

6. Conclusion

In this paper, we have dealt with the successive refinement
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problem. We gave inner and outer bounds using the smooth
max Rényi divergence on the set of pairs of numbers of
codewords. These bounds are obtained by extended versions
of our previous covering lemma and converse bound. By
using these bounds, we also gave a general formula using the
spectral sup-mutual information rate for the rate-distortion
region. Further, we showed some special cases of our rate-
distortion region for discrete stationary memoryless sources
and mixed sources.
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