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INTRODUCTION

The contents of this thesis are divided into these two parts roughly:

(i) cocycle-level constructions of characteristic classes of fiber bundles and
their relations to cohomology of Lie algebras of derivations [32, 20, 31],

(ii) a relation between the dgl of symplectic derivations on a semi-free dgl and
a certain graph complex [30].

Chapter 2 and 3 belong to (i), and Chapter 4 belongs to (ii).

Chapter 2. According to the result of K.T. Chen [5, 6], a Riemannian metric
on a closed manifold X gives a formal homology connection on X via the Hodge
decomposition defined by this metric. A notion of a formal homology connection
on X is equivalent to a notion of a C-algebra model of the de Rham complex of
X [14]. This correspondence implies that a Riemannian metric of a fiber bundle
E — B with fiber X gives a deformation of C'y-algebra models of X, so it defines
the map from the base space B to a certain moduli space of C,-algebra models
of X. Under a certain condition, we can construct a flat connection on the moduli
space. Using the Chern-Weil theory, we can obtain characteristic classes of a fiber
bundle £ — B satisfying a suitable condition as the image of the characteristic map
from the Chevalley-Eilenberg complex of a Lie algebra of derivations on a Chen’s
model of X to the cohomology of the base space B through the map above. As an
example of such characteristic classes, we have Morita-Miller-Mumford classes of
surface bundles. These discussions are described in the papers [32, 20].

Chapter 3. The construction of Chapter 2 implies an existence of its simplicial
enhancement. In this aspect, the moduli space Q(X) defined in Chapter 2 is the
set (space) of connected components of the simplicial set of Cu.-algebra models of
X. In this chapter, we construct characteristic classes of a smooth fiber bundle
X — E — B by obstruction theory for a certain simplicial bundle Q4(E) — So(B)
obtained from the original bundle. The base simplicial set S¢(B) of the simplicial
bundle Q4(FE) — S,(B) is the simplicial set of singular simplices of B and the n-th
set O, (F), of the fiber over an n-simplex o is the set of Chen’s formal homology
connections on ¢*FE. A formal homology connection on a manifold X has rational
homotopical information of X, which is equivalent to a minimal Cy-algebra model
f:(H,m) — A of the reduced de Rham complex A such that m is a minimal Cy.-
algebra structure and the first term of f induces the identity map on cohomologies
(see [14]). The fiber of the bundle is the simplicial set QQ¢(X) of formal homology
connections on X x A" This simplicial set is very close to the Maurer-Cartan
simplicial set of the dgl LW ® A, where (ﬁVV, 9) is the dual of the bar-construction
of the C-algebra (H,m).

We introduce two versions of construction depending on whether the fiber Qo (X)
is connected or not. The homotopy group of the Muarer-Cartan simplicial set is
known in [11, 1, 3]. So the homotopy groups of Qe(X) can be also expressed as
vector spaces by

Tn(Qe(X),7) = Hy,(Der(LW), 8)

for a formal homology connection 7 = (w,d) on X.
In the case that Qe(X) is connected, under certain conditions, an obstruction
class of existence of a partial section over the n-skeleton of Q4(E) — Se(B)

0, € H"(B;11,,)
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is obtained, where II,, is the local system of the n-th homotopy groups of fibers of
Q¢(E) — Se(B). Then we get the characteristic map

(APH,,(Der(LW),6)*)¢ — HP"D(B: R)

for any p > 1. Here G is the structure group of £ — B. As an application, this
yields the Euler class of a sphere bundle.

On the other hand, if Q.(X) is not connected, the local system Il of sets has
a free and transitive action of a certain local system QIAut(E) of groups. Since
this group has a natural filtration, we get the graded Lie algebra gr(QIAut(E)).
The fiber of i-th part can be identified with a certain vector space gr;(QDer(LW)).
Using this vector space in stead of the homotopy groups of Q.(X), we can obtain
the obstruction 0o € H(B;gr,(QIAut(E))) and the characteristic map

(A*gr;(QDer(LW))") — H*(B;R)

according to the stage i of extension of a partial section. Applying for a surface bun-
dle, the obstruction class for ¢ = 0 corresponds the twisted Morita-Miller-Mumford
class and the characteristic map gives the Morita-Miller-Mumford classes.

Chapter 4. The Chevalley-Eilenberg complex of the limit of the Lie algebra of
symmplectic derivations on (graded) free Lie algebras is isomorphic to the graph
complex defined by the cyclic Lie operad (details in [25, 26, 8, 15]). In this paper,
we introduce an extension of (the dual of) the construction to a Lie algebra of
symmplectic derivations on free dgls. Let (W,w) be a graded vector space with
symmetric inner product of even degree N and ¢ a differential of degree —1 on
the completed free Lie algebra LW satisfying the symplectic condition dw = 0.
An important example is the case that (IA/VV7 0) is a Chen’s dgl model of an even
dimensional manifold and w is its intersection form. We construct a W-labeled
graph complex C&* (W) and a chain map

Cn (W) = C(Der, (L)

com

to the Chevalley-Eilenberg (double) complex Cé’}:;(Der:j(]iW)) of the differential

graded Lie algebra (Der) (LW),ad(8)) of positive symplectic derivations on LW .
Furthermore the non-labeled part C22® (N, Z); of the graph complex, which de-
pends on only the integer IV and the set Z of degrees of W, we can obtain a chain

map
c** (]\77 Z)+ C o** (W)iP(W"S) N Cé:é(Derj(i/W))Sp(Wa‘s)’

com com
where Sp(W, d) is the group of graded linear isomorphisms of W preserving w and
d. In the case of N =0 and Z = {0}, the map corresponds to the Kontsevich’s one
(25, 26].

The construction above gives characteristic classes of fibrations. It is known
that characteristic classes of simply-connected fibrations are related to Lie algebras
of derivations [38, 42]. In non-simply connected cases, we got relations between
characteristic classes and Lie algebras of derivations as in [32, 20]. In this paper,
we consider the case that the boundary of a fiber is a sphere. For a simply-connected
compact manifold X with 9X = S"~! let auts(X) be the monoid of self-homotopy
equivalences of X fixing the boundary pointwisely and autso(X) its connected
component containing idy. According to [2], the isomorphism

H*(Bautyo(X); Q) ~ HéE(DerI(LX))
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is obtained. Here Lx is a cofbrant dgl model of X. The underlying Lie algebra of
Lx is generated by the linear dual W of the suspension of the reduced cohomology
of X. So the graph complex above gives the invariant part of the cohomology
H¢ p(Der} (Lx)) with respect to the action of the group Sp(W, §) of automorphisms
of W with intersection form preserving the differential § of Lx. Using the Serre
spectral sequence for the fibration

Bautg o(X) — Bautyg(X) — Bmg(auts (X)),

the image of the natural map H*®(B autg(X); Q) — H*(B auty,o(X); Q) is included
in the invariant part. We give a chain map

Coe (N, Z) 4 — Cop(Derf (Lx))SPV:9),

by the construction above. Considering W-labeled graphs, we can also obtain a
W-labeled version C%2 (W) and a chain map

Com (W) = Caip(Dert (Ly)).

com

Acknowledgment. First, my deepest appreciation goes to my supervisor Prof.
Y. Terashima form Tohoku University whose enormous support and insightful com-
ments were invaluable during the course of my study. I would also like to show
my appreciation to my another supervisor Prof. H.Endo from Tokyo Institute of
Technology for support to get my degree and warm encouragements. I appreci-
ate the feedback offered by Prof. A.Berglund from Stockholm University, Prof.
H.Kajiura from Chiba University, Prof. K.Sakai from Shinshu University and Prof.
T.Watanabe from Shimane University. Finally, I would also like to express my
gratitude to my family for their moral and economic support.

A part of this work was supported by Grant-in-Aid for JSPS Research Fellow
(No.17J01757).



CHARACTERISTIC CLASSES OF FIBER BUNDLES AND GRAPH COMPLEXES 7

Chapter 1. Derivations, homotopy algebras and related concepts

In this chapter, all vector spaces are over a field K with characteristic 0.

1. PERMUTATIONS AND SIGN NOTATIONS

The symmetric group on r letters is denoted by &,.. For an integer 0 < s <r, a
permutation 7 € &, satisfying

)<< s), T+ << )
is called an (s,r — s)-shuffle. On the other hand, 7 is called an (s, — s)-unshuffle
if 771 is (s,r — s)-shuffle. The set of (s,r — s)-shuffles is denoted by Sh(s,r — s)
while the set of (s,r — s)-unshuffles is Ush(s,r — s).
We often denote by |a| the degree of an element a. But we omit the symbol |-| of

the degree when it appears in a power of —1. For example, (—1)%® means (—1)le/l®l
for graded elements a, b.

Definition 1.1. We define the Koszul sign €(7;z1,...,2,) for a permutation
7 € 6, and letters x1,...,z, with degrees by the following axioms:
(i) e(r;x1,...,2,) € {£1} depends on only 7 and the order of degrees of
L1y, Tp,
(ii) e(L;zq,...,z,) = 1 and €(p;21,...,2,) = (—1)%%+1 for a transposition
p=(ii+1),
(iii) e(Tp;1,. .., 2r) = €(T5Tp(1)s - - Tpr) JE(P; T1, - o o T
The sign é(7;21,...,2,) = sgn(r)e(T; 21, ..., 2,) is called the anti-Koszul sign.

Example 1.2. For example,
(1 2); 21,20, w3) = (=1)"*2, €((1 2);21, 2, 3) = —(=1)"1"2,
(12 3); 21, @9, 23) = €((1 2 3); 21, g, w3) = (—1)"2(F2F23),
e((132); 21, w0, 23) = e(1 3 2); 21, 0, 3) = (—1)%s(@1He2),

Remark 1.3. The sign ¢(7;x1,...,2,) is a sign appearing in the equation
Ty Ty = 6(7-; T1y---, mr)xr(l) o Tr(r)
on the graded symmetric algebra generated by x1,...,x,, while &(7;21,...,2,) is

a sign appearing the same equation on the graded exterior algebra generated by
LlyeoesyTp.

Using the Koszul sign, we can describe the right &,-action on V& by
(xl PR xr)‘r = 6(7-;-1717 cee 737T)$‘r(1) - Lr(r)
for x1,...,xz, € Vand 7 € G,..
2. GRADED FREE ALGEBRAS

2.1. Graded vector space. Let V be a Z-graded vector space.

2.1.1. Grading. We denote

e the subspace of elements of V' of cohomological degree i by V?, and
e the subspace of elements of V' of homological degree i by V; = V%

Remark that the linear dual V* = Hom(V, R) of V is graded by (V*)! = Hom(V;, R).
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2.1.2. Suspension. The p-fold suspension Vp] of V for an integer p is defined by
Vip)" == Vite

and elements of V[p]® are presented by the form oz or zo for z € VP using the
symbol o of cohomological degree —p. In the case, we put oz = (—1)P*z0.

2.1.3. Inner products. Let a : V @ V. — K be a non-degenerate bilinear map of
(cohomological) degree n. Out of the two conditions

(i) a(z,y) = (-1)*¥a(y, z) for homogeneous elements x,y € V,

(ii) a(z,y) = —(—1)*Ya(y, z) for homogeneous elements x,y € V,

the pair (V,«) is called (graded) symmetric vector space with degree n if
satisfying (i), and (graded) symplectic vector space with degree n if satisfying
(ii).

For a symmetric vector space (V,a), the desuspension V[—1] has the canonical
symplectic structure & given by

a(oa,ob) = (—1)%«a(a,b)

for a,b € V. So (V[—1], &) is a symplectic vector space. The converse construction
is also possible.

2.2. Free algebra and free coalgebra. We consider the tensor vector space

oo

v

r=0
An element 21 ®- - -®x, is written by 1 - - - - omitting the symbols ® for simplicity,
and 7 is called the (tensor) rank of x; - - - z,. This vector space has two bialgebra
structures:

e the product V and the coproduct A are defined by

V(@) @e g1 @) =210 Ty,

)= D (@) ) © (@) ()

s=0 r€Ush(s,r—s)
for homogeneous elements x1, ..., z, € V, where € is the Koszul sign of the
permutation (z1,...,2) = (Zr(1),.--,Zr()). This bialgebra is denoted by
TV and called the tensor algebra. We often use its completed version
TV = H yer,
r=0

which is called the completed tensor algebra. It can be also described
by the completion of filtered algebra

V = ILDTV/TTJ,_le,

where TV is filtered by T,V = @, ., V®".
e the product A* and the coproduct V* are defined by

A*($1"'$S7$S+1"'(ET): Z € To(1) " To(r),
T€Sh(s,r—s)
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s

V(21 2y) =Z($1'-~$s)®(x3+1-~$7~)

s=0
for homogeneous elements x4, ..., x, € V, where € is the Koszul sign of the
permutation (z1,...,2,) = (Zr(1), ..., %r()). This bialgebra is denoted by

T°V and called the tensor coalgebra.

These structures are dual:
TV* = (T°V)*.

2.3. Free Lie algebra. The primitive part of TV is denoted by LV and called
the (graded) free Lie algebra generated by V. Its rank r part is denoted
byL,V = LVNV®", It is described by the unshuffle sum vanishing like the equation

LV=SAcVe; Y A =0(0<s<r)
7€Ush(s,r—s)

Of course, it is a Lie algebra by the Lie bracket
[A,B] = AB — (-1)"PBA

for A, BeLV.
The free Lie algebra has a canonical filtration derived from rank. The lower
central series {I',,}22  is defined by

T, = éLTV = LVNT,V.

Then the completed free Lie algebra I:V, which is the primitive part of TV, is
described by the completion

LV =lm LV/Ty 1.

The induced filtration {I',}°°, on LV is also the lower central series.

2.4. Free symmetric algebra and free exterior algebra.

e The symmetric algebra TV generated by V is the Z-graded commutative
algebra which is the quotient algebra obtained from the Z-graded tensor
algebra T'V by introducing the relation

2y = (~1)ya

for z,5 € V. The image of V& for an integer k in SV is denoted by S*V.
The algebra SV is isomorphic to the image of the symmetrization map
TV - TV

Ty Xy Z (1 )"
TEGS,
e The exterior algebra AV generated by V is the Z-graded anti-commutative
algebra which is the quotient algebra obtained from the Z-graded tensor
algebra T'V' by introducing the relation

zy = —(=1)"yx
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for z,y € V. The image of V®* for an integer k in AV is denoted by AFV.
The algebra AV is isomorphic to the image of the anti-symmetrization
map TV =TV

Ty Ty > Z sgn(7)(zy - x)T.
T€G,
Note the canonical identification
AV ~ S(V[1)]).

3. DERIVATIONS

Definition 3.1. A derivation on each algebras is defined as follows.
e A (algebra) derivation on an algebra (A4,V) is a linear map D: A — A
satisfying
V(ID®1+1® D)= DV.
e A coderivation on a coalgebra (A4, A) is a linear map D : A — A satisfy-
ing
(D®1+1® D)A =AD.
e A Hopf derivation on a bialgebra (A, V,A) is a linear map D : A — A
which is a derivation and a coderivation.
e A Lie derivation on a Lie algebra (A,[, ]) is a linear map D : A — A
satisfying
[, (De®1+1®D)=D[, ].
The vector space of such derivations on A is denoted by Der(A). This is the graded
Lie subalgebra of the graded Lie algebra End(A) of linear endomorphsims A — A.

We mainly consider derivations on free algebras. Let V be a Z-graded vector
space. The Lie algebra of Hopf derivations on TV is isomorphic to the Lie algebra
Der(LV) of Lie derivations on LV. So, in this paper, Der(T'V) always means the
Lie algebra of algebra derivations on TV. Note that Der(LV) is a Lie subalgebra
of Der(TV). We also adapt the same notations Der(TV) and Der(LV) in the
completed case.

3.1. The rank of derivations. The Lie algebra Der(T'V') has two gradings derived
from two gradings of TV, the tensor rank and the grading of V. The degree of a
derivation D with respect to the tensor rank is also called the rank of the derivation
D, and the rank r part of Der(TV) is denoted by Der" (T'V'). A derivation on TV
is determined by only its evaluations on V. So we get the linear isomorphism

Der" (TV) ~ Hom(V, V®+1),

For a linear map f € Hom(V, V®(T+1)), we denote the corresponding derivation by

m . 9
i=1
where 2!, ..., 2™ is a basis of V. Using this grading, Der(T'V) is filtered by

Der”"(TV) = @ Der™(TV)
n=r

and the completion with respect to the filtration is isomorphic to Der(T V).
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We can consider the corresponding grading of Der(LV'). Putting

Homeor (V, VEUT) :={ f € Hom(V,VECH) Y™ 7 =03,

TEG»«+1
we can describe the rank r part of Der(LV) by
Der" (LV) := Der(LV) N Der" (TV) ~ Homeom (V, V®("+1)).

The completion with respect to the filtration Der="(LV') := Der="(TV)NDer(LV)
is isomorphic to Der(LV) in the same way as Der(TV).

3.2. Symplectic derivations. Let w be a symplectic form on V with degree N.
Using non-degeneracy of w, we have the isomorphism V ~ V*[N], so we can regard
w as an element of V®2 through the isomorphism. This element w is described
explicitly by
w= Zwijxixj € LyV,
0,J
where z!,...,2™ is a basis of V and (w;;); ; is the inverse matrix of (w(x?,27)); ;.
The Lie algebra of symplectic derivations on TV is defined by

Der,,(TV) ={D € Der(TV); D(w) = 0}.

The Lie algebra also has the rank of elements and the filtration in the same way as
Der(TV). Furthermore Der,, (LV) is also defined and the same structures exist.
Through the isomorphism Der”(TV) ~ Hom(V,V®r+l)) ~ VEU+2[_N] we
get the correspondence
Dexl,(TV) == (VEU+2)2/ 0+ Z_N] = Vi (1 + 2)[~NV].

Here Z/(r + 2)Z is the subgroup of cyclic permutations in &, 5. Therefore putting

Vieye(r +1) :== < @ € Voye(r + 1); Z T=00<s<r)y,
7€Ush(s,r—s)

where 7 is regarded as a permutation on r + 1 letters by the standard inclusion
S, C 6,41, we have

DGI"L (LV) =~ VLcyc (T‘ + 2)[_N]

4. HOMOTOPY ALGEBRA

4.1. A-algebras. Let us review the notations on A.-algebra.

Definition 4.1 (As-algebra [39, 40]). Let A be a Z-graded vector space and
m = {m, : A®™ — A},;>1 be a family of linear maps with degm,, = 2 — n. The
pair (A4, m) satisfying the A.-relations

> Z DDy 0 ((dY @ m id}" V) =0
k+l=n+1j=0

for n > 1 is called A -algebra. Then m is called A,.-structure on A.
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The multilinear map my, has degree (2—k) indicates the degree of mg(aq, ..., ax)
is |ai| + - + |ag| + (2 — k). The A-relations implies (m;)? = 0 for n = 1, the
Leibniz rule of the differential m; with respect to the product ms for n = 2, and
the associativity of mo up to homotopy for n = 3. These facts further imply that
the cohomology H(A,m1) has the structure of a (non-unital) algebra, where the
product is induced from ms.

Note that the product ms is strictly associative in A if mg=0.

Definition 4.2. Let (A,m) be an A.-algebra.
e If higher products are all zero, i.e. mg =my = --- =0, (A, m) is called

differential graded algebra (DGA).
e If my =0, (A, m) is called minimal.

Remark 4.3 (Bar construction of an Ay-algebra). Let (A, m) be an A, -algebra.
The A,o-structure corresponds to the codifferential m on the coalgebra BA :=
T°(A[1]) as follows. Denote the suspension map by s : A — A[l]. Defining the
suspension of m,, by m,, := s~ om,, 0 s®" for all n > 1, then the degree of m,, is
1 and the A,-relations are rewritten as the simpler equations

k—1
S S o (idi @ m @idg ) =0
k+i=n+1 j=0
(Getzler-Jones [13]). Then m,, : A[1]®" — A[l] extents the unique coderivation
m,, : BA — BA by the co-Leibniz rule A om,, = (m,, ® id + id ® m,,) o A. Setting

m= Z m,, € Der(BA),
n=1
then m is a degree 1 codifferential, i.e. m? = 0, from the A..-relations of m. Thus

an Ay-algebra (A,m) is equivalent to a differential graded coalgebra (DGCA)
(BA,m). The DGCA (BA,m) is called the bar construction of (A, m).

Definition 4.4 (A.-morphism). Let (4, m) and (A’,m') be Ay -algebras. A fam-
ily f = {f, : A9" — A’} of linear maps with deg f,, = 1—n satisfying the equations

Z m; o (fkl ®-- ®fk7) _ Z (71)i+(n7i+1)lfko (ldQﬁZ@ml ®id§(n—i—l))
i>1, i+145=k,
Faeri=n i+l+j=n
is called Aoo-morphism f: (A,m) — (A’,m’).
e If f; is a linear isomorphism, f is called A,.-isomorphism.
o If fo=f3=---=0, f is called linear A.,-morphism.

The defining equation for A..-morphisms for n = 1 implies that f; : A — A’
forms a chain map f; : (A,m;) — (A’,m}). This together with the defining
equation for n = 2 implies that f; : A — A’ induces a (non-unital) algebra map
from H(A,my) to H(A’,m}). We denote it by H(f1) : H(A,m1) — H(A",m}).

Definition 4.5. An A.-morphism f : (A,m) — (A’,m’) is called an A.-quasi-
isomorphism if f; : (A,m1) — (A’;m]) induces an isomorphism between the
cohomologies of these two complexes.

Remark 4.6 (Bar construction of an A.-morphism). Let f : (A,m) — (A", m')
be an A,,-morphism. Defining the suspension of f,, by f, := s om, o (s71)®" :
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A[1]®" — A'[1] for all n > 1, then the degree of f, is 0 and the relations for
As.-morphism are rewritten as the equations

~ _ - 5w . —il
Z mgo(fkl(g)...@fki): Z fko(ld%u@ml@ldf[(ﬁ i )).
i>1, i+14-5=k,

ki4-+ki=n i+l+j=n

Constructing the coalgebra map BA — BA’

fzz Z foo @@ fi,
n=1

i>1,
ki+4-+ki=n
from maps f,,, then § is a DGCA map (BA,m) — (BA’,m’) between bar construc-
tions, i.e. fom =m’ of from the condition of A.,-morphism.

The composition of A,.-morphisms is defined by the composition of bar con-
structions of A..-morphisms. From the definition, any A..-isomorphism has its
inverse A,.-isomorphism uniquely.

On the other hand, it is easy to see that the composition of A,-quasi-isomorphisms
is an Ao-quasi-isomorphism. An A, -quasi-isomorphism has its inverse A..-quasi-
isomorphism in a strict sence if and only if it is an A,,-isomorphism, but always
has its homotopy inverse as in Theorem 4.10. These facts imply that A..-quasi-
isomorphisms define an equivalence relation between A..-algebras.

4.2. Decomposition theorem of A, ,-algebras. A pair of minimal A, -algebra
(H,m™) and an A.-quasi-isomorphism (H,mf) — (A4,m) is called minimal
model of (A, m).

The following theorem was first mentioned in [24], and is called the decompo-
sition theorem. A proof was given in [21] and was presented in [19]. See [7] for a
filtered version.

Theorem 4.7. Any A.-algebra (4, m) is A-isomorphic to the direct sum of a
minimal A.-algebra M and a linear contractible A,.-algebra C. Here, a linear
contractible A, -algebra C' = (C,m?) is an A,.-algebra such that m$ = m§ =

-++ =0 and the cohomology H(C,m{) is trivial.
Especially, we get the inclusion map M — (A4, m) as a minimal model of (A, m).

Proof. We first choose a Hodge decomposition (H, ¢, 7, h) of the complex (A4, mq),
that is, H := H(A,mq) is the cohomology, ¢ : H — A and 7w : A — H are linear
map of degree zero such that mor =idy, h: A — A is a linear map of degree minus
one and they satisfy

mih 4+ hmi + P =idy, h? =0

where P := 1o m. This gives a Hodge decomposition of (BA, m;), as a complex of
vector spaces, such that the cohomology is BH. Actually, ¢+ and 7w extend to the
(linear) coalgebra maps ¢ : BH — BA and 7 : BA — BH and one can construct a
chain homotopy b : BA — BA from h, P and the identity map on A[1].

We put M := Im P and C := Im(mih + hmy). Let us consider a coalgebra

homomorphism §?) : BA — BA defined by fl(z) = idapy,

_2(2) = Bmg — ngh,
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and f(2) = 0. This defines an A.-isomorphism £ : (4,m) — (4,m®),
where m(z) = f(2) omo (f))~1. In particular, it turns out that mg) = Pmy(P®P).

Thus, méQ) defines a bilinear map on M. Inductively, assume now that (A, m(™) is
(n) (n

an Asc-algebra such that my 7, ..., my ’ defines a multilinear map on M. We set a
coalgebra homomorphism §**+1 : BA — BA by f1 ntl) = idap) ( 1) fénﬂ) =
F(n+1) _ 0
n - ’
n+1 n
f( + ) ( ) _ngz—zlh’

and f(nH) f("+2) = 0. Then, one sees that m(n'H)

mf{fll) = Pm f{l)l(P ® -+-® P). Thus, the induction is completed. (For the details

see [19, 21].) O

=mp for k < n and

4.3. A-homotopy.

Definition 4.8. Let (C, A), (C’, A’) be coalgebras, and f : C — C’ be a coalgebra
map. A linear map D : C — C’ satisfying

A'D=(f®D+D® f)A

is a coderivation over f. For example, for a coderivation D on C’, fD is a
coderivation over f. If f is a coalgebra isomorphism, all coderivations over f are
obtained in such way. Similarly for a coderivation D on C, Df is a coderivation
over f and the parallel fact holds.

Definition 4.9 (A.-homotopy). Two A,-morphisms f,g: (A,m) — (A’,m’) are
Aso-homotopic if there exists families of A.-morphisms f(t) : (4, m) — (4’,m/)
and coderivations h(t) : BA — BA’ over f(t) parametrized piecewise algebraically
by t € K such that
d
Bty =m0 b(t) + (1) om
Then we denote f ~ g, and {(f(¢),h(¢))}+ck is called an A -homotopy from f
to g.

The decomposition theorem induces the following theorem along [21]. This the-
orem was first proved in [12] with a different method.

Theorem 4.10. Let (A,m) and (A’,m’) be Ay -algebras. An A,,-morphism f :
(A,m) — (A’,;m’) is an A-quasi-isomorphism if and only if f is an A,.-homotopy
equivalence, i.e. there exists an A,-morphism g : (A’,m’) — (A, m) such that
gofwidA and ngNidA/.

Proof. Given a Hodge decomposition (H = M,t, 7, h) of (A,mq), from the con-
struction in Theorem 4.7 we have an A..-algebra structure on M & C and an
Aso-isomorphism A ~ M @ C. Then, the pair (¢,7) extends to the pair of linear
Aso-quasi-isomorphisms

M—=Ma&C.

Furthermore, the projection P = ¢ o m also extends to the linear Aoo-(quasi-
iso)morphism P: M @ C — M & C to M and it turns out to be A-homotopic to
the identity Aso-(iso)morphism idyge. In fact, setting Pr := (1 — )P + tidap) :
A[l] — A[1], by

(idap) — P)P, = idapy — P
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and my P, = Pymy we have
d ) _

@Pt@):Pt@@(ldA[l] —P)®Pt®
= P? @ (mih + hiny) @ P?

:[maPt®®B®Pt®]»

where we express as P the coalgebra map corresponding to P;. Thus, idysec and
P is A..-homotopic to each other.
(In particular, the map

1
b= / (PP ®@h® P?)dt: BA— BA
0

gives a chain homotopy from idg4 to P®. Namely, the Hodge decomposition of
(BA, m;) is obtained. )

We also choose a Hodge decomposition (H' = M',J/, ', k') of (A’,m}). Then
we have the following diagram of A.-algebras and A..-(quasi-iso)morphisms

A—" s MeC=——=M=H(Am)

| T

A" M’EBC”?”M’:H(A’,m’l).
X
and here we define fg so that the diagram commutes. Since any composition of A .-
quasi-isomorphisms is an A.,-quasi-isomorphism, so is fg. Furthermore, since M
and M’ are minimal A.-algebras, fg is actually an As.-isomorphism. Thus, there
exists the inverse A.o-isomorphism (fg)~!. Then we define g by the commutative
diagram

A—>MaC M = H(A,m)
A
9 T(fH)l

A s M@ O == M' = H(A',m)).

(Note that, in order to construct this g we need the decomposition theorem only,
not the A,,-homotopy. )

Now one can show gof ~ id4 and fog ~ id 4/ since the correspond to P ~ idp;qc
on M & C and P’ ~idppacr on M’ @ C’, respectively. O

From Theorem 4.10, an A..-quasi-isomorphism has its homotopy inverse.

4.4. Cy-algebra. In this thesis, we use Cy-algebras as generalization of differ-
ential graded commutative algebra rather than A..-algebras. For the concept of
Coo-algebra, we refer to [13].

Definition 4.11 (C-algebra). Let (A, m) be an A-algebra. If
my, € Homeom (A[1], A[1]®¢*+1)
for any k, (A, m) is called a C.-algebra.

Definition 4.12 (Coo-morphism). Let f: (A,m) — (A’,m’) be an A,,-morphism.
If fi € Homeom (A[1], A’[1]®F+D) for any k, f is called a Cso-morphism.
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Remark 4.13 (Bar construction of a Cyo-algebra). Let (A,m) be a C-algebra.
By the definition of a C'-algebra, m is a Hopf differential on the Hopf algebra BA.
For any Cy.-morphism, its bar construction is a Hopf algebra morphism BA — BA'.

The Cy-versions of Theorem 4.7 and 4.10 also hold in the same way.

5. CHEN’S MODEL OF A MANIFOLD

Let X be an oriented manifold with finite-dimensional rational homology. Fix a
base point * of X. We denote the deRham complex on X by A®(X), the reduced
deRham complex and cohomology by

A=A(X):={f € A%X); f(x) =0} ® AT(X), H=Hpp(X)

and the suspension of the reduced real homology by W = H,(X;R)[—1].

5.1. Formal homology connection.
Definition 5.1 (Chen [5, 6]). A formal homology connection on X is a pair
(w, d) satisfying the following conditions:

(i) an LW-coefficient differential form w € A® LW with cohomological degree
1 is described by

o0
W= E E Wiy T ™

k=1141,...,ik

where z',...,2™ is a homogeneous basis of W, such that

/wpzl.
T

P

(ii) a linear map ¢ : LW — LW is a differential with homological degree —1
of LW such that

(S(W) cIs.

(iii) the form w is a Maurer-Cartan element of (A® LW, d+6), i.e., the flatness
condition dw + dw + [w,w] = 0 holds. (Though the sign notation may be
different from Chen’s original definition, they are equivalent.)

We call such a differential 6 Chen’s differential of X. If X is simply connected,
we can replace the free Lie algebra LW and its derivation 6: LW — LW with LW
and 0 : LW — LW respectively.

It is well-known that, given a formal homology connection on X, we can compute
the real cohomology of the loop space QX [5, 6].
Chen proved that a Riemannian metric gives a formal homology connection.

Theorem 5.2 (Chen [5, 6]). Given a Riemannian metric on X, we have uniquely a
formal homology connection w satisfying that w; is harmonic and w;, . ;, for k > 1
is coexact with respect to the metric.
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5.2. Cy-algebra and formal homology connection. We shall mention the re-
lation between a formal homology connection and a C,-algebra.

According to [14], a formal homology connection (w,d) on X is equivalent to a
minimal Cy-algebra model f : (H,m) — A, i.e., a pair of a minimal C-algebra
structure on H and a C-algebra morphism f : (H,m) — A such that the first
term f; induces the identity on H. It is verified as follows: put

w=- Z (=)o (™, . ™)y, - a,
U1seensll
6 =m",
where
€ = |z, |(Jwiy [+ + wa ) + -+ wo_y |2,
fn = ofa(c™H)®™ o H[1]®™ — A[1], 2° is the dual basis of z;, and m is the bar-
construction of m. Then the differential & on the dual (BH)* = TW of the
bar-construction BH can be restricted on LW since § is a coderivation. So the
pair (w,d) is a formal homology connection on X. Conversely we can recover
f:(H,m)— A from (w,d). Note that the condition that f is an A.-morphism
corresponds to the flatness.
Given a Riemannian metric on X, we get a Cy-minimal model associated to
the Hodge decomposition from Theorem 4.7. This model corresponds the formal
homology connection defined in Theorem 5.2.

5.3. The simplicial set of formal homology connections. The set of formal
homology connections on X is denoted by Qo(X).
We define the simplical deRham dga Ae = {4,}52, on X by

A, = A%(X x A™M).

Its face maps and degeneracy maps are induced by the coface maps and codegen-
eracy maps of the cosimplicial space A® = {A"}>2 .

The family Qo(X) = {Qn(X) = Qo(X x A™)}22, of sets is a simplicial set
by the induced structure by A,. Given a Chen’s differential § on X, the set of
formal homology connections (w,d) on X x A™ is denoted by Q,(X,d). Then
Q.(X,0) is also a simplicial set. We denote the set of Maurer-Cartan elements of
(A, ® LW, d+ 0) by MC,,(X,d). We obtain the simplicial set MC,(X,d), and then
Qe (X, ) is a subsimplicial set of MC4(X, ).

Lemma 5.3. For any n-th simplicial Muarer-Cartan element a € MC,, (X, ), if
Oiav € Qp—1(X) for some 0 < i < n, then a € @, (X, 9).

Proof. Regarding o asa Co-map f: H — A,,, f1 : H — H(A,) is the identity map
since 0; for any i gives the standard identification by H®(X x A") ~ H*(X x A"~ 1)
and 0;f1 : H — H(A,—_1) is the identity map under the assumption.

(Il

Since the simplicial set MC(X, §) is a Kan complex (proved in Section 4 of [11]),
the following lemma is obtained immediately from Lemma 5.3:

Lemma 5.4. The simplicial set Qo(X) is a Kan complex. Furthermore the map
induced by the inclusion

T0(Qe(X,0)) = mo(MCoe(X,9))
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is injective, and the map
Tn(Qe(X,0),7) = m(MCo(X, d), T)
for 7 € Qo(X,d) and n > 1 is an isomorphism.
Theorem 5.5. The homotopy groups of the simplicial set Q4(X) are described by
Tn(Qe(X),7) ~ H,(Der(LW), §)

for n > 1 and a formal homology connection 7 = (w, §) on X, where Hy(Der(LW), ¢)
is equipped with the Baker-Campell-Hausdorff product of Hy(A ® I:W)

Proof. From Proposition 5.4 and Theorem 5.5 in [1], we have
Tn(Qe(X),7) ~ m,(MCo (X, 0),7) ~ Hy_1(A® LW,d + 6 + [w, —]).

We shall prove the suspension of (A ® LW,d+ 6 + [w,—]) and the chain complex
Derp(BH, BA) of Hopf derivations over the bar-construction F': BH — BA of the
Cso-morphism corresponding to 7 are isomorphic. Here the differential © of the
latter complex is defined by
D(D)=m?oD—(-1)P’Dom,

where m#4 and m are the bar-constructions of Cu.-structures of A and (H,m) re-
spectively. R

Through the natural identification TW = (BH)*, consider the linear isomor-
phism @ : A[l] ® LW — Derp(BH, BA) C Hom(BH, A[1]) defined by

la® f)(z) = f(x)a
for z € BH. Here the differential on A[1] ® LW is equal to o(d + & + [w, —])o L.
Then, using F' = ®(ow), we have
O(o(d+ 6+ [w,—))o Ha® f))(x)

=daf(z) + (1) adf(z) + olw, 0t a ® f](z)

=daf(z) — (~1)*Hafm(z) + my o (F @ ®(af))(z) +my o (®(af) ® F)(z)

=2®(af)(z).
Thus the map ® is a chain isomorphism.

On the other hand, the map

Fo—: (Der(LW),ad(8)) = (Der(BH),ad(m)) — (Derr(BH, BA),D)
is a quasi-isomorphism because F' is a quasi-isomorphism. So we get the isomor-
phism R K
H, 1(A® LW,d+ 0 + [w, —]) ~ H,(Der(LW),ad(d)).
O

The set Q(X) := 7y(Qe(X)) of connected components can be identified with the
set of homotopy classes of Coo-morphisms f : (H,m) — A such that f; induces
the identity map on H. The group QIAut(H,m) of homotopy classes of Cuo-
automorphisms f : (H,m) — (H,m) such that f; = idyg acts on the right on
Q(X,0) == mo(Qe(X,0)) freely and transitively. We shall investigate the set Q(X)
as space in the next chapter.
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Chapter 2. Characteristic classes through the cohomology of the
moduli of homotopy algebra

Let X be an n-dimensional oriented closed manifold with base point .

6. MODULI SPACE OF Cy-MINIMAL MODELS

For a minimal Cy-algebra structure m on H, the moduli space Q(X,m) of
Co-quasi-isomorphisms over m is the set of C,,-homotopy classes of Co-quasi-
isomorphisms ¢ : (H,m) — A such that ¢; induces the identity map on the their
cohomology H.

The group QIAut(H, m) of homotopy classes of C-automorphisms f : (H,m) —
(H, m) such that f; = idy is a inverse limit of finite-dimensional lie group:

QIAut(H,m) = lim QIAut(H,m)/ QIAuwt="(H,m),

where QIAut="(H,m) is the group consisting of classes of C's,-automorphisms f :
(H,m) — (H,m) such that f; = idg,f> = 0,...,fn—1 = 0. Then each n-th
quotient group is a finite-dimensional Lie group. The Lie ring of QIAut(H,m) is
isomorphic to the Lie algebra QDer™ (H,m), which is the image of Derzl(BH)o N
Ker(ad(m)) in Ho(Der(BH),ad(m)).

The Lie group QIAut(H, m) acts on Q(X,m) by

t-f=tof

for © € Q(X,m), f € QIAut(H, m). This action is free and transitive since an
C'»o-quasi-isomorphism has a homotopy inverse. So Q(X,m) has the inverse limit
of smooth manifolds, which is isomorphic to QIAut(H,m).

The set Coo(X) of minimal Cy-structures m on H such that Coo (X, m) # 0 is
parametrized by the space

TAut(H,m)\TAut(BH).
So the moduli space of C'y,-minimal models of the reduced de Rham complex
Aof X
ex)= I @x,m)

meECqs (X)
is parametrized by the space

Q(X,m) X1aut(H,m) [Aut(BH)

fixing m. It is the space of Cy-homotopy classes of Cy-minimal models ¢ :
(H,m) — A such that ¢; induces the identity map on the de Rham cohomology H.
The mapping class group of X

M(X) :=Diff  (X)/Diffo(X) = mo(Diff 1 (X))
acts on Q(X) as follows:
o] - [e;m] = (povolp| ™, |l omo ™)

for [¢e,m] € Q(X) and [p] € M(X). Here || is the map induced to H by ¢.
This action is well-defined since two isotopic diffeomorphisms ¢q, 1 of X induce
Cso-homotopic dga maps A — A.
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7. CONSTRUCTION

Let E — B be a smooth fiber bundle whose fiber is an oriented closed manifold
X. For simplicity, we set

Q:=Q(X), Cx :=Cx(X), Q(m) :=Q(X,m), M := M(X).

Choose a metric g of E — B. The metric g, on fiber F} for b € B defines the
Hodge composition on A®(E}). Since these Hodge decompositions give Co-minimal
models of fibers, we can obtain the map B — S\@Q, where S is the image of the
structure group of E — B in M. Defining the de Rham complex of S\Q by
A*(8\Q) = A*(Q)®, we have the map Hp(S\Q) — HYHp(B). Since any two
metrics can be connected by a segment, the map is independent of a choice of a
metric.

7.1. Homologically trivial bundles. We consider the case where the structure
group of a fiber bundle acts trivially on the de Rham cohomology group of the
fiber. In other words, suppose S = Z := Ker(M — GL(H)). Then we have
a map q : B — Cy by giving a metric of £ — B. Fix m € C. Since the
topological group IAut(H, m) is contractible, the pullback ¢* IAut(BH) — B of the
principal TAut(H, m)-bundle TAut(BH) — C is trivial. Taking a trivialization of
the principal bundle, we get the Z-equivalent map
5:¢°Q = Q(m) X1au(m,m) ¢ TAut(BH) ~ Q(m) x Cos — Q(m).

Thus we can obtain the chain map
A*(Q(m))F = A*(¢*Q)F — A*(B).

Form the action of QIAut(H,m), the space QQ(m) has the Maurer-Cartan form
n € AY(Q(m); QDer™ (H,m)). Then we have the chain map

B : C2p(QDert (H,m)) — A*(Q(m))".

It is constructed as follows: for a cochain ¢ € C% ,(QDer™ (H,m)), we define

D(c) :=c(n) = Z Nig Ao A e(byy Ao ANby)),
1< <ip

n= Zm‘bi

using a (topological) basis {b;} of QDer™ (H,m). The p-form ®(c) is Z-invariant
since Z acts on H trivially. Then & is a chain map by the flatness of n

1
dn + 5[77777} = debi + Zm A n;[bi, b] = 0.

1<J

where we set

So we obtain the following:

Theorem 7.1. Let E — B be a smooth fiber bundle with oriented closed fiber X
whose structure group acts trivially on the real cohomology group of X. Then the
chain map C&(QDert(H,m)) — A*(B) obtained by the construction above in-
duces the map between cohomologies which is independent of a choice of a fiberwise
metric.
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7.2. Formal manifold bundles. We consider the case where X is a formal man-
ifold, i.e. C contains the algebra structure m of H, and there exists a decompo-
sition of S-modules

Dert(BH)y =V @ Der, (BH)y,

where S is the image of S in GL(H).
By the same discussion of Lemma 3.5 in [32], we can obtain the following:

Lemma 7.2. The S-equivariant principal IAut(H, m)-bundle IAut(BH) — Cy is
S-equivariant trivial.

Then there exists an S-equivariant diffeomorphism
Q = Q(m) X1aus(H,m) IAU(BH) ~ Q(m) x Cu.
Since the space Cy, is also contractible, we can obtain the following:
Theorem 7.3. The space @ is S-equivariant homotopic to Q(m).
From the Maurer-Cartan form on Q(m), we have the chain map
Cep(QDer™ (H,m), ) — A*(Q(m))*
in the same way as Subsection 7.1.

Theorem 7.4. Let & — B be a smooth fiber bundle with oriented closed formal
fiber X. Suppose there exists a decomposition of S-modules

Dert(BH)g = V @ Der;, (BH ),
where m is the algebra structure of H and S is the image of the structure group
in GL(H). Then the chain map Cg&(QDer™ (H,m),S) — A®*(B) obtained by the

construction above induces the map between cohomologies which is independent of
a choice of a fiberwise metric.

8. RELATION TO THE CONSTRUCTION USING THE FUNDAMENTAL GROUP

For any [m, (] € Q, we have the dual of the bar construction of ¢
(BA)* — (BH)* =TW,

where TW means the completed tensor product generated by W := H*[—1]. So
composing the chain map Co(Q2X) — (BA)* obtained by iterated integrals from
the cube chain complex of the loop space X, we obtain the chain map

Co(QX;R) — (TW, 4),

where § := m*. The degree 0 part of (the completion of) map induced to homologies
gives
R, = Ho(QX;R) — Ho(TW,8) = TWo/Is,

where 7 := m(X), Wy := H1(X;R)[-1] and I := §(H2(X;R)[—1]). (This map
given by the Co-minimal model defined by a metric g on X is the Chen expansion
defined by g.) So we have the M-equivalent map 0 : Q@ — ©(m). Here the definition
of the space O(m) is obtained by replacing “Hopf algebra” with “algebra” from
O(my) in [32].
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Fixing m, we have the commutative diagram

T.Q(m) Ty QIAut(H, m) === QDer" (H,m)
. B
Tp()O(m1, Is) — Ty TAut(TWy /I5) === Der ™ (IT'Wy/Is).
So we obtain
0" n = 0.1°,

where 7© is the Maurer-Cartan form on ©(m;) by the action of TAut(7TWy/I5).
Thus we obtain the following;:

Theorem 8.1. We have the commutative diagram
H&E(QDQTJF(Ha m)) — Hpp(B)
He.p(Der™ (TWo/I5))

under the assumption in Theorem 7.1 and

He,p(QDer™ (H,m), §) ——= H}, 5 (B)

7

H?,,(Der™ (TW,y /1), S)

under the assumption in Theorem 7.4.
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Chapter 3. Obstruction theoretic construction
9. THE SIMPLICIAL BUNDLE OF FORMAL HOMOLOGY CONNECTIONS

Let X — E — B be a smooth fiber bundle. In the section, we shall define
the simplicial bundle of formal homology connections on fibers corresponding to a
smooth bundle.

Definition 9.1. We define the simplicial bundle Q4 (E) — Se(B) over the simplicial
set Se(B) of singular simplices as follows:

e the fiber over an n-simplex o € S,,(B) is @, (E), := Qo(c*E), and

e the face maps and the degeneracy maps are the induced maps 9, (F), —
Qn-1(FE)s,c and Q,(E)s = OQnt1(F)s,o by the coface maps and the code-
generacy maps of A® respectively.

We can check that Q4(FE) — Se(B) is a bundle of simplicial sets in the sense of
May [33].
Proposition 9.2. The simplicial map Qe(F) — Se¢(B) is a simplicial bundle with
fiber Qo(X).

Proof. For an n-simplex o € S,,(B) and a trivialization ¢, : A" X X ~ ¢*E, we
obtain the trivialization ¢, p : A x X ~ o(P)*E for P € A[n]; by the diagram

A" x X 27 o o*F

fPXidXT T

Al x X 225 o(P)E
regarding o as a simplicial map o : A[n] — Se(B). Here the map fp : A® — A" is
the induced map P : A[i] — Aln].
Then we obtain the simplicial trivialization
Po 1 0" Qe(E) =~ Aln] X Qe(X).
by (P,a) = (P, ¢} pa), where
0" Qi(E) = {(P,a) € Aln]i x Qu(o(P)"E)}.

O

We consider to fix a Chen’s differential on fibers.

Definition 9.3. Fix a Chen’s differential § € Der(LW)_; of X is G-invariant with
respect to the action of the homological structure group G on Der(ﬁW) (induced
by the action on W). Then it gives the section ¢ of the bundle

D(E) — B,

where D(E), := {Chen’s differential of E,} for b € B. We call § a section of
Chen’s differentials. Given this, we can consider the simplicial bundle Q4 (E, 3) —
Se(B) defined by

On(E,8)s = Qo(d"E,d(c))
for o € S, (B). Here §(c) is the Chen’s differential of o* E defined by (o) through
the isomorphism H(0*E) ~ H(E,,). Here o9 = 0; - - - 0,0 is the image of the base
point of A™.
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For example, if X is formal, the differential  corresponding to the cohomology
ring structure of X is Diff (X )-invariant.

10. OBSTRUCTION THEORY

Obstruction theory for simplicial sets is studied in [4, 9]. In Section 10.1 and
10.2, we shall review a part of them and rewrite obstruction theory as in Steenrod
[41] for simplicial sets in order to fit our use briefly. In Section 4.2, we introduce
obstruction classes to extend a section over the O-skeleton stepwisely.

10.1. Local system. We shall define cohomology with local coefficients briefly.
We can see definitions in [4, 9].

Definition 10.1. Let X’ be a Kan complex. We define the fundamental groupoid
IT; (X) of X such that the set of objects is Xy and the set of morphisms from x
to y is the set of homotopy classes of v € &) satisfying dpy = « and 01y = y. A
covariant functor II;(X) — Ab is called a local system on X. Here Ab is the
category of abelian groups.

Let &€ — B be a Kan simplicial bundle with n-simple fiber X, i.e.; X is a Kan
complex and 71 (X, x) acts on 7, (X, x) trivially.

Definition 10.2. We define the local system II,,(£/B) on B as follows: for a vertex
v € By,

I, (E/B)y := mp(v*E).

Note that we need not to choose a base point of v*& because it is n-simple. For a
path v € By such that vy = 01y and v; = 0y, take a trivialization

0yt All] x 95 2 ~*E
such that
All] x i€ — > y*E
51T Tincl.
v =—=1v§¢€.
Here 6° : A[0] — A[1] is the coface maps. Then we have the isomorphism g, :

vyE — vi€, which is called holonomy along ~, defined by

A[l] x vg€ SRATPY

50T Tincl.

Vg€ ——= viE.
v

So we put
L (E/B)(7) = (95 1)w s T (01 E) = ma(05E).

We can prove that it is depend on only the homotopy class of v since £ — B is Kan
fibration. In fact, for another path +' homotopic to v by a homotopy o € Ba, there
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exists a homotopy h satisfying the commutative diagram

by Theorem 7.8 in [33]. Here A%[2] is the (2,2)-horn.

The cochain complex and the cohomology with local coefficients are defined as
follows.

Definition 10.3. Let X be a Kan complex, A a subsimplicial set of X, and
M :1I;(X) — Ab a local system on X. We define the cochain complex with
coefficient M by

C"(X,A; M) := {c X, — H M(v); c(z) € M(xp), c|A= O},
veXp

where xg = 01 - - - O, and its normalized version by

"X, A; M) ﬂKer CC™M(X, A; M) — C"H(X, A; M)).

The differential § : C" (X, A; M) — C™"TY(X, A; M) is defined by
Sc(z) = M(zo1) e(Oox) — c(01x) + - - -+ (=1)" M e(dp112),
where 291 = 0y - - - Opx. Its cohomology is denoted by H™(X, A; M).

10.2. Obstruction cocycles and difference cochains. Let A be a subsimplicial
set of B. We call a simplicial map s satisfying the following diagram an n-partial
section relative to A:
/ |
sk,(B)UA—— B

Given an n-partial section s : sk, (B) U. A — & relative to A, we shall construct
the obstruction cocycle of s

c(s) € N""H(B, A; 11, (€/B))

to extend a partial section sk,4+1(B) UA — & as follows: for an (n + 1)-simplex
o € B, 11, we get the induced section s, such that
o*&
A
So s

sk (Aln +1]) 22 gk (B).

&

So we put
c(5)(0) = g5 ' [s4] € Ta(05E),
where g, : T (03E) — mp(0*E) is an isomorphism induced by the inclusion o5& —

o*€.
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Proposition 10.4. The cochain ¢(s) is a cocycle.

Proof. For an (n + 2)-simplex o € By, 42, we have

(0;0)*E o*&

So the commutative diagrams for i # 0

9o

o€ ot <2 o}E
(0;0)E ——=0*E  (0p0)*E ——=0*¢E
imply the equations
oo 150:0) = 95 (50)[5kn(0)], G 950 [000] = 95 (50)(001) < [skn (6°)].

Here note that [sk,,(6°)] € m,(sk,(A[n+2]),0) and [sk,,(6°)] € m, (skn(A[n+2]),1).
Thus we obtain

(6¢(s))(0) = g5 ' (0 ((001)*[Skn(5°)] + Z(l)i[skn(5i)]> =0,

i£0

using the relation (oo1)«[skn (8°)] 4+ 32, (—1)[skn (6°)] = 0 in 7, (skn (A[n +2]), 0).
(Il

We shall define the difference cochain for n-partial sections sg, s : sk, (B) — &
and a fiberwise homotopy h : sk,_1(B) x A[1] = &€ x A[1] between their restriction
on sk, _1(B). Gluing these maps, we have the map

W : (sk, (B) x sko(A[1]) U (sky_1(B) x A[1]) = € x A[1].
We consider the obstruction cocycle
c(hD) € N""(sk, (B) x A[1], (sky(B) x sko(A[1])) U (sk,_1(B) x A[1]); HE),

where III) = TI,,(€ x A[1]/B x A[1]). Note that faces of non-degenerate simplices
of sk, (B) x A[l] are in (sk,(B) x sko(A[1])) U (skn—1(B) x A[1l]). Through the
Eilenberg-Zilber map

% Nu(B)@N1(AL]) = N (ko (B) x Al1], (ke (B) xsko(A[1])) Uskn_1 (B)x A[1])),
we can define the cochain d(sg, h, s1) € N*(B;11,,(€/B)) by
d(s0, b, 51)(0) i= (—1)"e(hD) (o x 1)
for o € B,,. Here I is the unique non-degenerate simplex in A[l];.
Proposition 10.5. The cochain d(sg, h, s1) satisfies
dd(so, h, 1) = c(s1) — c(so)-
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Proof. 1t is proved by the equations
dd(s0, h,s1)(0) = g;olld(so7 h,s1)(0p0) + Z(—l)id(so, h,s1)(0;0)
i#0
= (—1)"gop c(h7) (@0 @ T) + Y (=1)"e(h) (910 @ 1)
i#0
¢(hB) (o ® OI) — de(hP) (o @ T)

c(s1) — c(so)-

O

The next two propositions hold in the same way as in obstruction theory [41].

Proposition 10.6. An n-partial section s : sk, (B) — £ extends to an (n + 1)-
partial section sk, y1(8) — £ if and only if ¢(s) = 0.

Proposition 10.7. For n-partial sections s, s’ : sk, (B) — &, if obstruction cocy-
cles ¢(s) and ¢(s’) are cohomologue, there is a homotopy between s|sk,_1(B) and
§'| skp—1(B).

Suppose a fiber X of a Kan fiber bundle £ — B is (n — 1)-connected (and
m1(X, x) is abelian if n = 1). Then we can get an n-partial section s : sk, (B) — £.
If we get another n-partial section s, these is a homotopy between s| sk, _1(5) and
§'| skp—1(B). So we obtain an invariant

0n(E) == [e(s)] € H"™ (B 1L,(E/B)).

It is called the obstruction class of £ — B.

10.3. Obstruction for n = 0. We consider an extension of a O-partial section
under the following situation: for a simplicial bundle £ — B, suppose that the local
system IIp(E/B) of sets has a free and transitive right action of a local system G of
groups on B.

At first, we define the non-abelian obstruction class of a 0-partial section. For
that, we remark the definition of the non-abelian cohomology with values in a local
system of non-abelian groups. Here “non-abelian cohomology” is in the sense of
[10].

Definition 10.8. Let X be a simplicial set and G a local system of groups on X.
Define the (non-abelian) cochain complex of X with coefficient G

C"(X;G) = {c 1 X =[] ) elx) € g(xo)}

veXo
for 0 < n < 2 and the following datum:
(i) the affine action ¢ of C°(X;G) on C}(X;G):
(e(N)e) () = FOm)e(G) (o))
for f € C°(X;G) and c € CY(X;G),
(ii) the action ¢ of C°(X;G) on C?*(X;G):

(¥(f)e)(o) = Ad(G(020) 7" f(0020)) (c(0),
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(iii) the map 6 : CH(X;G) — C%(X;G) satisfying 6(1) = 1 and d(¢(f)c) =
P(f)e for f € C°(X;G) and ¢ € CH(X;G):
5c(0) = (G(920) 1 e(0p0))c(D10) L e(Da0)

for c € CY(X;G) and o € X5.

The we get the 0-th cohomology group
H°(X;G) == Ker(C*(X;G) = Aut(C'(X;G)) x C*(X;G) — C'(X;G))
and the 1-st cohomology set
HY(X;G) :=611)/C°(X;q).
Given a 0O-partial section s : sko(B) — &, put
e()(7) = [5(017)] " (Uo(7) " [5(0m)]) € Gy

for v € By, i.e., c(s)(y) € Gy, is the unique element satisfying

[5(017)]e(s)(7) = o (7) " [s(07)]-
By definition, ¢(s) € C*(B;G) is a cocycle. For another section s’ : sko(B) — &, if
we can get f € C°(B;G) uniquely such that
s'(x) = s(x) f(x)
for x € Xo, then ¢(s") = ¢(f)c(s) holds. We denote f by d(s,s’) as in Section 10.2.
Especially the cohomology class
00(&) 1= [e(s)] € HY(B;G)

is independent of a choice of a O-partial section s : sko(B) — £. As with usual
obstructions, 09(£) = 1 if and only if there is a 1-partial section sky(B) — £. It
follows from the following proposition:

Proposition 10.9. If 0¢(£) = 1, there exists a 0-partial section s : sko(B) — &
such that ¢(s) = 1.
Proof. 1f [c(s)] = 1, there exists f € C°(B;G) such that ¢(s) = ¢(f)(1). So replacing
s with sf~!, we get the proposition. ([

The non-abelian obstruction 0g(€) is hard to deal with, we shall replace a certain
abelian cocycle using a filtration {F;G}$2; of G such that

Go = F1Gp > FoGp > -+ -,
[FiGb, FjGb] C FitGp

for b € By, and the map G(v) for v € B; preserves the filtration. Given such a
filtration, we can consider the local system of Lie algebras

gr(g) := @gri(g) = @fig/}—i+1g-

i=1
If the image of c(s) to C1(B;G/F;) is trivial, i.e., c(s)(y) € FiG,, for v € By,
we get its image ¢;(s) to the (abelian) chain complex C*(B;gr;(G)). For another
partial section sko(B) — & satisfying the same condition, we can also get the image
d;(s,s") of d(s,s") to C*(B;gr;(G)). Then it satisfies the equation
ci(s') —ci(s) = dd;i(s,s).
It means o) () := [¢;(s)] € H'(B;gr;(G)) is obtained uniquely.
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Proposition 10.10. If 0()(€) is defined and trivial, there exists a partial section
s : sko(B) — & such that ¢(s)() € Fit1G,, for v € By.

Proof. Supposing 0()(£) = [c;(s)] = 1, we have 1 = [¢(s)] € H (B;G/Fi11G).
Then there exists a O-partial section s’ : sko(B) — & such that ¢(s’) = 1 €
CY(B;G/F;11G). This section satisfies the required condition.

O

11. OBSTRUCTION OF THE BUNDLES OF FORMAL HOMOLOGY CONNECTIONS

Let £ — B be a smooth fiber bundle with homplogical structure group G and
fiber X. Fix a G-invariant Chen’s differential 6 on LW, where W = Hq(X;R)[—1].

11.1. Connected cases. Suppose QDer (LW, §) = 0 and H;(Der(LW),8) = 0 for
n >4 > 0. In addition, suppose, if n = 1, Hy (Der(LW),8) ~ Ho(LW ® A,d+ 6 +
[1,—]) is abelian with respect to the Baker-Campbell-Hausdorff product. Then we
get the obstruction class of the simplicial bundle Q4 (E,$) — So(B)

0=0,(Qu(E,d)) € H"(B;11,,),

where II,, = II,,(Q4(E, §)/S+(B)), and the characteristic maps of a fiber bundle
E—B

(APH,,(Der(LW), 6)*)¢ — HP"FD(B;R)
by ¢ — ¢(o,...,0) for p > 1.

11.2. Example of a sphere bundle. We consider the sphere bundle $? = FE =
3 x g1 8% — 5% associated to the Hopf fibration S — S% — S?, where U(1) = S*
acts on S? = CU{oo} by rotations. Since the action of S* on S? has two fixed points
0 and oo, this fiber bundle has a section S% — S3 x g1 S? defined by [b] — [b, oc].
We fix the section.

Denote the volume form on the fiber $? = C U {oo} by

v—1 dwdw

2r (14 |wl]?)?
and the desuspension of the fundamental form by x € W = Hy(S?)[—1]. Then a
dgl model of S? is given by

LW =L(z) (|z] =1), dz=0

and its Lie algebra of derivations

0 0
Der(LW) = <x8x’ [x,x]ax> .
Note that
Ox

For simplicity, we restrict the bundle Q4(E) — Se(S?) to the Kan complex
defined by

Hy(Der(LW), §) = Der(LW); = <[z,x] 0 >

K, = {(A" sk A™) — (§%,00)} C 5, (5?).
If n <1, K, is described by

Ko ={pc}, Ki=1{V}
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where poo : A% = 52 and 74, : A — S? are constant maps to the point co. We
put Qe := Q¢(E)|k,-
We use the map p : D? — S? defined by

L fa-Er (<
ole) {oo (2= 1),

regarding D? = {z € C;|z| < 1} C C, and trivializations ¢, : D* x S — p*FE

defined by
(z,w) = 2z 1—z2)?
C)OP Z,Ww) = 2, 1+‘Z|271+|Z|2 , W .

Choose an orientation-preserving diffeomorphism A : A2/(9; A2 U0, A?) ~ D? such
that

AL % A2/(0,A% U8,A2%) T D?
is given by t 2™V =1t Then we get the 2-simplex in K,
o A2 5 A2/(0,A2U0,A%) B D2 £ g2

and the trivialization ¢, : A? x §? ~ ¢*F induced by ¢,. The restriction g :
Al x §? 5 4* E = Al x B, ~ Al x 82 of p, on 9yA? is described by

g(t,w) = (95 ([(€>™7,0),w])) = (£, 67> ),

The partial section s : sk; K — Q is defined as follows:

5(Poc) = 00x € Qo(E)p., 8(Voo) =112 € Q1(E),,
where vy := (g ')*v € A%(Ey) and vy := (py ') v € A2(v2 E) if the trivialization
0o :S? ~pi E=FEy and o1 : Al x §2 ~4* E = Al x E, are defined by

e1(t,w) = (¢,[(1,0),w]), ¢o(w)=[(1,0),w].

Since [sy] = [v12] € T1(0* Qe (E), vox), we have

c(s)(0) = g"[so] = g"[v12] = [g"(v1)2] € m1(Qa(S?), v)
under the identification ¢} : 71 (Qe(Eoo), v0x) =~ 71(Qe(S?),vz). Calculating di-
rectly, we get
g*(v) = v +&dt,

where
wdw + wdw 1 1

S e M ARRAC Rl S pra L

Then putting
E = t1&dty — ta€dty + 2fdt1dts,
this satisfies the equation
(U + E)2 = 202 = 4f’l}dt1dt2 = —4f’l)dt0dt2 = —4d(f’l)(t0dt2 — tgdto)).

So we obtain the formal homology connection a = (v+E)x—4 fo(todts—tadty)[z, x| €
Q2(5?) satisfying

doa = (v + &dtg)x, O =vx +4fvdtglz,z], O = va.
Therefore the equation

[¢" (v1)x] = [(v + &dto)x] = [vz + 4 fvdig[z, x]] € m (Q.(Sz), V)
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holds. Furthermore

— _ ) 2 )
/MU:/ Llﬂzl/ _Zrdr dezz/ _dr
g2 g2 ™ (1+|w)2)3d =« J, 14723 ), o (1+z)3

means that the deRham cohomology class [4fv] € H?(S?) is non-trivial. According
to Theorem 4.10 of [1], we have ¢(s)(o) # 0 and
0= [c(s)] # 0 € H*(K; Hy(Der(LW))).
Finally evaluating the class with the dual basis v of [z, x]0/0x € Der(LW)1, we
get the non-trivial characteristic class
v(o) € H*(K) = H*(S?),
which is the Euler class of the sphere bundle E — S? (given in [35]).

11.3. Non-connected cases. If QDer™ (ﬁVV7 0) # 0, we can apply the construction
in Section 10.3. Putting Iy = IIo(Q(E, §)/S«(B)), we have the identification

ITy(b) = {Cx-algebra map (H(Ep), mp) = A(Ep) s.t. (f1)« = idg }/(Cs-homotopic),

where my, is the Cy-algebra structure on H corresponding to S(b) According to
the homotopy theory of Cy.-algebras, the group QIAut(H (E}y), mp) of homotopy
classes of Cu-automorphisms (H(Ey), my) — (H(Ep), mp) such that fi = idg(g,)
acts on the set IIp(b) on the right freely and transitively.

The local system QIAut(E) of groups is defined by

QIAut(E), := QIAut(H(Ey),mp),  7«(f) :=(95") o fo(gy)*
for b € B, v € Si(B) and f € QIAut(E, (), where g, : E ) — E,q) is the
holonomy along . Then we get the non-abelian obstruction class
00 = 00(Q.(E)) € H'(B; QIAut(E))

in Section 10.3.

Furthermore we have the filtration {QIAut=*(E)}>°, of QIAut(E) defined in
Section ??7. By the observations in Section 7?7, there exists the identification as
local system of vector spaces

gr; (QIAut(E)) ~ gr,(QDer™ (E)),
where the local system QDer™ (E) of Lie algebras is defined in the same way as
QIAut(E). Here note that gr(QDert(E)) is defined similarly to gr(QIAut(E))
using its filtration.

Suppose we get the obstruction class 0; # 0 € H(B;gr;(QDer" (E))) with
respect to the filtration. In the same way as in Section 10.2, the characteristic map

(A*gr;(QDert (LW, 6))*)¢ — H*(B;R)

is obtained.
Especially, if X is formal and ¢ corresponds to the product of the cohomology
H of X, we obtain the characteristic map

(A® QDer’ (LW, 6)*)¢ — H*(B;R).
We shall show a relation between the characteristic map constructed in [20] and
the construction above. By discussions in [20], given a metric of the fiber bundle

E — B, we have the map s : B — Qg(FE): for b € B, the metric on E; gives a
Hodge decomposition of Ej, so let s(b) be the Co-minimal model defined by the
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Hodge decomposition. Composing the natural projection Qg(F) — D(E) with s,
we get a section of Chen’s differential §

Theorem 11.1. Let X be a pointed oriented closed manifold and £ — B be a
smooth bundle with section and metric. Suppose the metric gives a section b of
Chen’s differentials corresponding to a G-invariant Chen’s differential § of X. Then
we have the commutative diagram of chain complexes

P

Cep(QDert (LW, 8))¢ A*(B)

| s
(A*gr,(QDer (LW, 5))*)¢ —> C*(B;R),

where the first row map ® is the characteristic map in [20], the second row @, is
the characteristic map defined by

21(0)(7) = Cea(s)(7), -+, eals) (7))

for ¢ € (APgr,(QDer™ (LW, 48))*)¢ and v € Si(B), the first column is the natural
projection and the second column [ is the deRham map.

Proof. Take a base point * of B and put the universal covering of B
B = {v:[0,1] = B;~(0) = %} /(homotopy preserving boundary).

We identify the fiber £, on * with the typical fiber X. ~
The smooth map p : B — Q(X,¢) from the universal cover B of B to the moduli
space Q(X,0) 1= mo(Qe(X,0)) of Co-algebra models of X is defined by

w(]) = g3 - [s(y(D)]-
Here g, : Ex — E,(1) is the holonomy along . Pull-backing the right-invariant
Maurer-Cartan form defined by the right-action of QIAut(LW,¢) on Q(X,J)
n € AYQ(X,6); QDer® (LW, 4)),
we get the flat connection
= p'n € AY(B; QDer™ (LW, 8)).

On the other hand, we can regard s as the 0-partial section s : sko(Se(B)) — Q(E).
Its non-abelian obstruction cocycle is described by

c(s)(v) = [s(v(0))] " g5 [s(v(1))] = gu ()~ 1((¥)),
where [ is a path from * to (0) and a path 7 : [0,1] — B is the lift of v such that
7(0) = [I]. The map ¥ : Q(X,8) — Q(X, ) defined by ¥(a) = u([l]) " a satisfies
the differential equation d¥ = Wrn. Thus, solving the equation over the path u?y,
we have

() (1) = (5 (1) = 3 / T

]
Therefore we get the description using iterated integrals

0(5)(7)gz'Z/mnmngz'ZAn,f~m.
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Its projection to gr, (QDer™ (LW, §)) is equal to ¢1(s)(y) = g f;y 7, and

[o@ = [etn s(/m,...,/m)<1>1<5>ecp<é>

for € € CgE(QDer (LI/V, §))¢, where € is the projection of £&. Since the element is
71 (B, *)-invariant, we can regard it as element in CP(B).
O

Furthermore if ¢;(s) = - - = ¢;_1(s) = 0, we get the (cocycle-level) characteristic
map ®; : (A*gr;,(QDer™ (LW, 6))*)¢ — C*(B;R) defined by
25O () = Cleils)(7)s -5 eils) (7))

for ¢ € (APgr,(QDert (LW, 8))*)C and v € S1(B) sincen,, € A'(B; QDer=* (LW, §)).
Then the same commutative diagram holds. So the construction above using ob-
structions is the “leading term” of the characteristic map obtained in [20]

@ : C8p(QDer™ (LW, 6))¢ — A*(B).
11.4. Example of surface bundles. We consider the case of X = ¥, which is

the closed oriented surface with genus g > 2. This is a formal manifold, so we can
put

0
0=w—,
ov
where v € W; is the fundamental form of ¥, and w € [Wy, W] is the intersection
form, i.e., w =7 ,[z",y"] for a symmplectic basis {z*,y"} of W, with respect to

the intersection form of ¥.

11.4.1. The first obstruction for surface bundles. For a oriented surface bundle
(with section), its homologically structure group is in the symplectic group Sp(Wpy)
of Wo.

Proposition 11.2. We have the identification as Sp(Wj)-vector space
QDer! (LW, §) ~ A3W,.

Proof. An element D € Der! (LW)g is described by the form
0
D=D .

o+[v,2] v
for Dy € Der'(LW,) and z € Wy. Then we can calculate the image by ad(4):
0
0,D] =—-D —.
[ ’ } 0(&)) + [UJ,Z] By

So, D is in the kernel if and only if Dy(w) € (w), where (w) is the Lie ideal in
LW, generated by w. This condition is equivalent to the condition: Dg induces a

derivation on LWy/(w)
On the other hand, an element P € Der®(LW); is described by

for b; € R, where {z;}>, is a basis of Wp. Its image of ad() is

0 0
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Since we can prove [v, Wy] = {P(w); P € Der’(LW);} by direct calculus, for any
D € Der! (LW ), there exists P € Der?(LW); such that

Dp := D + [0, P] € Der' (LW).

Furthermore for another P’ € Der®(LW); such that Dp, = D+[5, P'] € Der' (LW,),
their difference [§, P — P'] is in Hom(Wp, Rw) C Der(LW;). So if D is in the ker-
nel, Dp and Dp: induce the same derivation on LWy /(w). Therefore we get the
isomorphism

QDer! (LW, §)¢ ~ Der' (LW, /(w)).

According to [36], we have the isomorphism Der' (LW /(w)) ~ A>W. O

By the proposition above, for a oriented surface bundle E — B with section, we
get the obstruction class

o) = 0)(Q(E,0)/S.(B)) € H'(B; A*Wy(E)).
Here A3Wy(E) is the local system of vector spaces such that
AWy (E)(b) = A*Hy (Ey; R)[-1].

This local system is defined in the same way as QIAut(E) and QDer" (E). Then
we also get the characteristic map

(A*(A3W,)*)5P(Wo) s H*(B;R).

11.4.2. Twisted Morita-Miller-Mumford class. We shall show that the obstruction
o) can be regarded as one of the twisted Morita-Miller-Mumford classes. For the
purpose, we use notations as follows:

e the mapping class group M, . of the oriented closed surface ¥, with a
base point,

e the space Met, of Riemannian metrics which has constant curvature —1
on Xg,

o the Teichmiiller space 7y ., which is the orbit space of Met, by the action
of the group Diffg(X,, *) of diffeomorphisms of (X, *) isotopic to identity,

o the moduli space M . = T, /M, . of Riemann surfaces with a base point,
and

e the universal family C, . = Met, Xpif(s, +) 2y of Riemann surfaces with
a base point.

Applying the construction in Section 11.4.1 for the “universal surface bundle”
Cg,« — My, we get the obstruction

oM € HY(M,.; A*Wy(C,.0)).

Theorem 11.3. The obstruction class 0! is equal to the minus of the twisted
Morita-Miller-Mumford class
—mg,3 € H! (Mg’*; A3W0).

Proof. Take the canonical metric of (Cg « — Mg .. According to the proof of Theo-
rem 11.1, we have p: Ty« — Q(X,,9) and the cocycle

/7];1 /7717
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where 7, is the QDer'-part of 7,. So by the same discussion in [22], the coho-
mology class o) = [c1(s)] is equal to the twisted Morita-Miller-Mumford class in
HY (M, .; A3Wp). (The discussion is also used in Section 4 of [32].)

O

So the obtained characteristic map
A*(APW)SP(Wo) 5 H* (M, .;R) = H*(M,.;R)
gives Morita-Miller-Mumford classes by the result of [23].
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Chapter 4. Graph complex and characteristic classes of fibrations
12. GRAPH COMPLEX

12.1. Orientation and ordering of graded sets. The set of orderings on a set
U is defined by

Ord(U) := {(u1,...,ux) € U* U = {us,...,ur}},
where k := #U.

Definition 12.1. Let U be a Z-graded set, i.e. a finite set U given a map | - | :
U—Z.

e The graded vector space generated by U is denoted by RU.

e The symmetric algebra generated by U is denoted by SU := S(RU).

e The exterior algebra generated by U is denoted by AU := A(RU).

For an element (u1,...,u;) € Ord(U), we denote the image of u; ® --- ® ug in
AU by [uq,...,ux]. The 1-dimensional vector space generated by this element is
written by

OU) :={[u1,...,ug]) C AU.

Definition 12.2. Let V be a Z-graded vector space. We define the subspace Vc(fc)
of cyclic tensors in V®* by the image of the map [—,..., —]cyc : V&K — VO
obtained by
x1®®xk}_) Z E.x‘r(l)®"'®x‘r(k,);
TEL/KL
where Z/kZ is identified with the group of cyclic permutations and e is the Koszul
sign of (z1,...,2k) = (T;1),. .., Tr(k)). For a Z-graded set U, we denote

Cyc(U) == ([u1, - ., Uk]eye; (U1, ..., up) € Ord(U)) C (RU)((:’;,?:

12.2. Definition of graph complex. Let W be a finite-dimensional symplectic
vector space with form w of degree N and suppose that N is even and Z := {a €
Z;W, #0} C {0,...,N}. Our labeled graph complex depends on (W,w).

12.2.1. Definition of graphs.

Definition 12.3. An N-graded graph I' consists of the following information:

e The set H(I') of half-edges.
o The set V(I') of vertices. It is a partition of the set H(T'), i.e.

HT)= J[ v, v#0@ev(I).

veV (T)

The number #v of elements of any v € V(I') is called the valency of
v. A vertex with valency > 1 is called an internal vertex and one with
valency 1 is called an external vertex. The set of internal (resp. external)
vertices is denoted by V;(T') (resp. V.(I)).

e The set E(I") of edges. It is a partition of the set H(I') such that the
number of elements of any e € E(I') is two, i.e.

HT)= [ e #e=2(ecE)).

ecE(T)
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e The cohomological degree of half-edges. It is a map |-|: H(I') —» Z
such that |hi| 4+ |he| = N for an edge e = {h1,ho} € E(I'). Then the
cohomological degrees of vertices and edges are defined by

o] i= [ha| + -+ [y | = N, |e] = N
for v ={hy,...,h.} € V(T') and e € E(T).
e The division of the set V;(I') of internal vertices to two disjoint sets
V() = Vo (D) TV (1)

such that all elements in V,(I') have cohomological degree —1 and the
valency > 3. An element of V,(T") is called normal vertex, and one of
Vs(T) is called special vertex.
The set of isomorphism classes of such graphs is denoted by G(IN). Here an iso-
morphism between N-graded graphs is a bijection between the sets of half-edges
preserving all information of N-graded graphs.

Example 12.4. In the case of N =4 and Z = {0, 1,2, 3,4}, we can give examples
of 4-graded graphs in Figure 1. In these figures,
e a black vertex e means a normal vertex, a white vertex o a special vertex
and a square vertex B a univalent vertex, and
e a number drawn beside a half-edge is its degrees.

FiGURE 1. Examples of 4-graded graphs

12.2.2. Decoration on vertices. We shall give the relation equivalent to the dual of
vertices defined by the cyclic Lie operad as in [8, 15, 28].

Definition 12.5. Let I be an N-graded graph.
e We introduce to Cyc(v)[N] for v € V;(I') the commutativity relation

(v,hy)
Sohpis(0) 1= Z o’ =0,

T€Sh(s,r—s—1)

T(Uwhr)

= e[hr(l)a cees h‘r('rfl)7 hr]cyco'a
forr—1>s>0and o= [hi,...,h]cyco € Cyc(v)[N], where Sh(p, q) is
the set of (p,q)-shuffles, o is the symbol of the N-fold suspension, and
€ is the Koszul sign. Then we denote the obtained space by C(v) =
Cyc(v)[N]/(com. rel.). (In the case of r = 3, it is the AS-relation for
Jacobi diagrams.)
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FIGURE 2. Commutativity (r = 3,4). (Koszul signs are omitted in figures.)

12.2.3. Decoration on N-graded graphs. Set

Ocom(W,T):= () O(e)® () W[-Ne A c@)e A Cw

ecE(T) u€Ve(T) ve eV (T) veV, (T)
where
@ V(u) = {Uul vy, € SF <@ V(u)) iU, € V(ug), (u1,...,ug) € Ord(U)} ,
uelU uelU
N\ V() = {% cevy, € AF (@ V(u)> vu, € V(ug), (u1,...,ug) € Ord(U)}
uelU uelU

for a family (V(u))uev of Z-graded vector spaces indexed by a finite set U. This
tensor product consists of four factors: the first factor means directions of edges of
I, the second factor W-labels of external vertices of I', the third factor (equivalence
classes of) cyclic orderings on special vertices of I', and the fourth factor the same
on normal vertices of I'. Note that W[—N]j,| = W[N] for an external vertex

u={h}.

We need to identify elements of Ocom(W,T) by the symmetry of I. An au-
tomorphism « of an N-graded graph I' € G(N) induces the linear isomorphism
C(v) = C(a(v)) for v € V;(I') described by

[Py hideye = [a(ha), .. . a(hg)]eye,
and the identity map W[—N], = W[=N] o) = W[N]y for u € Vo (T'). There-
fore the automorphism group of I' acts on the vector space Ocom(VV, F)~by the in-
duced permutation of half-edges. Then the coinvariant vector space of Ocom(W,T")

by this action is denoted by Ocom(W,T). We often consider an element o of
Ocom (W, T') described by the form

0= [017-~~,01;w1,~~',wkEECi'~~a0255017~~~a0kn]~
:(01...Ol)®(w1...wke)®(c‘i...c‘;s)®(01...ckn)
where w; € W[—N]|,,| and
0 = [62]7 Cf = [éf]cyca'7 Cy = [éz’}cycgy

for 6; € Ord(e;), ¢ € Ord(v;) and é& € Ord(vf). Such element o is called an
orientation of T', a pair (T, 0) is an oriented graph, and the information

A (A 5. Y 55 .4 A
6= (01,...,05W1,..., Wk ;C],...,Ch5C1,. ., Cry)



CHARACTERISTIC CLASSES OF FIBER BUNDLES AND GRAPH COMPLEXES 39

is called a lift of an orientation o = [0] on I'. The vector space Ogom(W,T") is
generated by orientations.

Example 12.6. In the case of N =4 and Z = {0, 1,2, 3,4}, we can give examples
of decorated 4-graded graphs in Figure 3 and 4. In these figures,

e an arrow on an edge means a direction, and
e an arc drawn around a vertex is an ordering of half-edges incident to this
vertex.

ordering of VU1 Vg U3 Uy V1 Vg V4 U3

vertices

FIGURE 3. Non-labeled examples: the left (I, 01) and the right (T, 03)

ordering of —1 —1
vertices and labels (wl g )(UJQO' ) V3U4Vs

FIGURE 4. A labeled example

In Figure 3, the degrees of vertices are v; = —1, v =4, v3 =5, and v4 = 4. In
the space O(T'), we have

o1 = (—1)P I (1)PCH g = g,
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where the signs (—1)>4*1, (=1)3141 (=1)3G+1+1) are coming from changes of the
ordering of vertices, the direction of the edge between vy and v4 and the ordering
of half-edges incident to v4 respectively.

In Figure 4, elements w; € W3 and wy € W, are labels of univalent vertices
v1,v2 (their names vy, v9 of vertices are omitted in the figure). Note their degrees
1] = |wio ™Y = =1, |va| = Jwao ™| = 0.

12.2.4. Definition of the bigraded vector space C%® (W). The cohomological bide-
gree (p,q) € Z x Z of T' € G(N) is defined by

p=#Va(D), q= 3 ol =#V(D)+ NHET) - #V(IT) - Y lul,

veV,L(T) ueVe(I)

and bidegree of elements in Ocom (W,T") is defined by that of I'. We define the
space of N-graded ribbon graphs by

Cc.o;n @ Ocom(W, 1), Cgo(r]n( )= @ Ocom(W, 1),
CeG(N) regr.a(W)

where gM(W) is the subset of G(IV) consisting N-graded graphs of degree (p, q).

Then CC’O:H( ) can be regarded as bigraded vector space. We often denote an

element in C%% (W) corresponding to 0 € Ocom (W, T') for T' € G(N) by (T, 0).

com

12.2.5. Definition of the first differential d. We define the linear map deZl R

Ocom(W,T) — C%* (W) for an N-graded graph I' € G(N), a normal vertex v €
Vo (T), two distinct half-edges h', h? incident to v, a,b € Z satisfying a +b = N.
For an order hi,...,h, of half-edges incident to v such that k' = h, and h? = h;,
put

d?,21 hz( [_7_7_7[h177h7‘]07_])
(FZ Zl h2 [ ) [hl7 h”]; — [h17 ey hi7 h/](T, [h//7 hi+17 ceey hr]O', _D
Here o is the N-fold suspension, and the N-graded graph FZ?ZI p2 is defined by
H(D0, ) = HO) IR, VTS, L) = (VD) \ {o}) {0},

VS(FZ;?LLW) =V,(I), E(FZ;?LLW) = E(I') I {eo},

where v = {hy,...,h;, W'}, 0" = {h' hiy1,..., b}, e0 = {B, 0"}, |B] = a and
|h”"| = b. Note that the equation above is enough to define the operator deZl B2
and the operator is well-defined.

h,]

FIGURE 5. The operator dv b by
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Then we obtain the linear map d : C%° (W) — C%° (W) by

com

dy(T,0) := }: > di 2(T0), d,0):= Y dyT,o0).

a+b N hl#h2¢cv veV,(T)

The map d can be also described by

dy(I',0) = Z Z dvh (L5 0),

a+b=N 0<s<t<r
where 0 = [—; —; —; [h1, ..., hy]o,—] and v = {hq,..., h,-}. Remark the relation

di’hl pe (L' 0) = df, ZQ w(T0)

for half-edges h' # h? € v. Here well-definedness of d is proved by the relation with
the commutativity relation:

Proposition 12.7. Using the notations above, dy,Sy p,.i(T, 0) is equal to zero under
the commutativity relation.

Proof. For integers p, q, we define the linear ordered set [p,q] by {p < p+1<--- <
g—1<gq}. If p>gq, put [p,q] = 0. For partial ordered sets P;, P>, we denote
their direct sum by P; + P» (in the category of posets), and their ordinal sum by
P, ® P,. Then a (p, q)-shuffle is equivalent to the inverse of an order-preserving
bijection [1,p] +[p+1,p+¢] — [1,p + g

Let 771 : [1,4]+[i4+1,7—1] = [I,r—1] be an (i,r—i—1)-shufleand 0 < s < t < r
integers. Put L =7([s+ 1,¢]) and I =t — s.

If 7(s+1),...,7(t) are < 4, then we have 7(s +m) = 7(s + 1) + (m — 1) for
1 <m < t— ssince [1,i] — 771([1,i]) is an isomorphism between posets. Put
a=7(s+ 1) — 1. Then we obtain the shuffle 7, by 7:

-1

Li—l+1+[i—1+27—] ik 1,7 — 1]
canonical isom.T Tcanonical isom.
Lao{x}dla+li+[i+1,r—1]—=[s]o{x}@[t+1,r—1]

T ]

T

[Ld+[¢4+1,r—1] [1,r—1]
The shuffle 7 can recover from a pair (a,l,72), where {a+1,...,a+1} C [1,i] and
an (¢ — 1+ 1,7 — i — 1)-shuffle 7.
Similarly, if 7(s +1),...,7(t) are > i+ 1, we can obtain a triple (a,l, 72), where

{a+1,...;a+1}Ci+1,r—1]and an (i — I+ 1,r — i — 1)-shuffle 7.
Otherwise, put p = #(L N [1,]). Then we obtain the shuffle 7y by restricting 7:

—1

[Lp] + [p+1,]] ——[1,1]

canonical isom. icanonical isom.
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We consider L = ([1,i] 4+ [i + 1,7 — 1]) \ L and the order-preserving bijection
p~t: L — [1,s] @[t + 1,7 — 1] defined by the restriction of 77!. The shuffle 7
recovers from a pair (p,71), where p=! : L — [1,s] @ [t + 1,7 — 1] is an order-
preserving bijection and 71 is a (p,l — p)-shuffle.

Thus we have

(v ,n")

r—1 /1-1 "o
dvsv,hr;i<[h1,...7h,,]a>:Z(Zzzop LYY o )>

I=1 \p=1 p 71 a T2
r—1 /1-1

= E § ,§ S hip(0p) + § Svrt hpsi—14+1(0a,1) | 5
=1 \p=1 p a

where L = {1,...,7r =1} \ L = {u1 < -+ < u, as integers},

0p = 6[[hul, ey hup, h/}O', [hp(l), ey hp(s)a h//, hp(t+1)a ey hp(,«_l), hT]O'],
Oa,l - E/HhaJrl, ey haJrlv hl}o—» [hlv ey haa h//v ha+l+17 ey hr]o—]a

and ¢, €’ are appropriate Koszul signs. (In these equations, the subscriptions cyc
are omitted.) O

12.2.6. Definition of the second differential L. For T' € G(N), let i, (T") be the N-
graded graph obtained by converting a normal vertex v of degree —1 to a special ver-
tex. We define the linear map i, : Ocom (W, ") = Ocom (W, i, (') for 0 € Ocom (W, T)
such that

(I [= =6 =]) = (@), [=5 == 6 —))
for ¢ € C(v) if v has degree —1 and valency > 3, and i,(I',0) = 0 if v does not.
Since the relation

vy Svg sk (L' 0) = Svg sk, (I 0)

for v1,ve € V(') holds clearly, the map i, is well-defined. Then the linear map
L:C%e (W) — C%2 (W) is defined by

L :=id—di,
where the linear map i : C%% (W) — C%2, (W) is obtained by
iT,0):= > iy(T,0).
'Ue‘/n(r)

The map L is also described by
LT,0)= > (i +ip)dy(T,0)
veV,(T')

since i,,d, = dy,i, for normal vertices u # v.
Then d, ¢, and L have (cohomological) bidegree (1,0), (—1,1) and (0,1) respec-
tively.

12.2.7. Definition of the underlying bigraded vector space C%% (W). The space
Co» (W) is the quotient space of Co (W) by

com com

e (A-relation)
R,(T,0) :=iyiyrdy(L,0) =0
for I' € G(N) and a normal vertex v (of degree —2).
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hiv1

e

FIGURE 6. Ao -relation.

e (Cut-off relation) For I' € G(N) and e = {h1, ho} € E(T), we define the
N-graded graph I', as follows:
H(Te) = H(T) I {hq, ho},
B(L) = (B > \ e T ({1 B} {ha, B},
V@) = VIO L {{h) ().
|h1|: 7|h1|—. a, |h2|:N7‘h2|:2 b
Then

(I, [[ha, ho], = == —]) = Z wij(Le, [[h1, bl [ha, hol, = ato ™t alo ™t — — —

ot |=a.|ed | =b

where {z'} is a homogeneous basis of W and (w;;) is the inverse matrix of

(w(a',27)).

> = E Wij —>— -*
; . AR
|zt|=a,|zd |=b ’

FIGURE 7. Cut-off relation.

Remark that C2:* (W) is generated by W-labeled graphs with only one internal

com
vertex by cut-off relation.

12.2.8. On well-deﬁnedness of three operators d,i,L on C%* (W). The endomor-

com

phisms d, i and L of %%, (W) induce endomorphisms of C%:%, (W) by the equations

com com
0) =Y Rydy(T,0), iR,(T,0)=> Ryiu(T,0)
uFv uFv
for a normal vertex v of an N-graded graph T'.

12.2.9. On two differentials d, L on C2.(W).

Proposition 12.8. The bigraded vector space Co» (W) is a double complex with

com

respect to differentials d and L. We call C%2 (W) double graph complex.

com

Proof. First, we show the equation d?> = 0. It is proved in the same way as Kontse-
vich’s original graph complex. For a normal vertex v of an N-graded graph (T, 0),
let v’, v be new vertices obtained by splitting at v. Then

dydy(T,0) = —dyrdy(T,0) dydy(T,0) = —d,d, (T, 0)

for u # v holds. The first equation is shown by Figure 8. In the figure, v" and v”
are defined such that the direction of the new edge is from v’ to v” in Figure 8, and
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(", (", ("), (v")" are also defined in the same way. So we obtain d?(T",0) = 0
by cancellation.

FIGURE 8. dyd, (T, 0) = —dyd, (T, 0).

Next, we show L? = 0. From the equation in C'%;® (W)

com

(iL — Li)(T,0) = | Y duliv + v )dy — Y (i + ivr)duin | (T, 0)

u uFv
=3 (iwriv + iy )dy (T, 0)

=2 Ry(T,0),

we obtain the relation iL — Li = 0 in Cg», (W). So the equations

L? = (id — di)L = idL — diL = idL — dLi = idid — didji,

L? = L(id — di) = Lid — Ldi = iLd — Ldi = —idid + didi
hold. Then we obtain L? = 0. Since Ld + dL = —did + did = 0 holds by definition
of L, we get the proposition. [

12.3. Construction of the map to Chevalley-Eilenberg complexes. Let
(W,w) and Z be as Section 12.2 and § be a symplectic and quadratic differen-
tial of homological degree —1 on LW. In this section, the Lie algebra Derw(ﬁW)
of symplectic derivations is denoted by D. We construct a double chain map

Oz (W) = CE(D)

com

from the graph complex C%9 (W) to the Chevalley-Eilenberg complex of the dgl
(D, ad(9)).
Let (T, 0) be an oriented graph and 6 be a lift of 0. Put

k= #V(F)v ke = #V@(F), ks = #‘/S(F)v kn = #Vn(r)a

(ri,...,re):=(1,...,ay,...,ak,+k,)
——
ke
= (13"'713#7);7'"7#vzsa#vla"'a#vkn,)
——
ke

We denote by 7(6) the linear isomorphism (the permutation of factors of the tensor
product)

W®7‘1 ®..'®W®Tk %W®2®...®W®2 — (W®2)®l
corresponding to the permutation of half-edges

(hl,...,hke,éi,...,ézs,él,...,ckn)l—)(Ol,...,Ol).
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Then we define the linear map «(T,6) of cohomological degree (I — k)N by com-
posing these maps

: ks+kn R
Oé(F, 6) : I/I/[—]\/v}(gkE ® Derw(ﬁW)(@(ks‘*‘k’n) pg‘ W[_N}@ke ® ® DGI'ZiJ'_z(LW)
i=1
e g y on P 7(6)
~ W[-N|#g ® W(a;)[-N] C ®(W®” [-N]) — ®W®m Q) (wezyet e g
=1 =1 i=1

where ® := id%k[‘iN] ® (I)S?(ks-i-kn),

WE = We, ® - @ we, and w,, = W(RST RS ) if
ej = {h{’,hy’}. Here we denote by wg, a,) for integers dy,dy the composition of
the projection W @ W — Wy, ® Wy, and the restriction of w to Wy, ® Wy,. The
map «(T,6) is independent of a choice of linear orders of half-edges representing
cyclic orders, and compatible with the commutativity relation.

We define the map 9(I, 6) : D®*» — R by
O(0,6)(Dy, ..., Dy.) = (T, 0)(wy,. .., w,,0,...,8,D1,...,Dp)
——
ks

for D; € D. Restricting the map® on the exterior algebra, we can get the map

(T, 0) = (T, 0) o Alty, : A*»D — R.
The map is independent of a representation 6 of o by the definition of an orientation.
So we obtain the map ¢ : C35, (W) — Con(D).

com

2| =a
w(z,y) = a b lyl = b

"/’(F7 6)(D1, D2) =

FIGURE 9. An example of ¢(I',6)(Dy,Ds) (I' is the decorated
graph in Figure 4.)

Well-definedness of ¢ is proved by the correspondence through 1 between rela-
tions in the graph complex C2:* (W) correspond to properties of derivations as the
following table:

By definition, it is clear except for the A,.-relation. The correspondence for the
Ao-relation is proved in the end of the proof of the following theorem.

1For a graded vector space V, the injective map Alt,, : AV — V®™" is defined by
1 _
Altn(v1---vn) = — D &)1y © - D V()
4SS

for v1,...,vn € V, where €(o) is the corresponding anti-Koszul sign.
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graph complex derivations
cyclicity symplectic derivation
commutativity Lie derivation
Ao-relation 52 =0
cut-off symplectic form

Theorem 12.9. The map ¢ : C3% (W) — CLL(D) is a double chain map.

Proof. First, we shall show that dogy = 1d on C%% (W). To prove this, we need
Lemma ?7.

For an oriented graph (T, 0), we define the two lifts 6!, 62 on th by, a8 follows:

ot = (W', "), =5 —; =501, vl vl ),
62 = ((h//’h/)? 7y U1, .. avz{/7vga ce. 7Up)7
V= (B, BB, ) = (B BB BB,

where r; = #v;. The signs ¢; defined by the equations

ol :=e1[6'], 0% = e[0?], diihy,huo = (=1)"1o! = (—1)7 1%

So we obtain

k
d(F,o):ZZ > (_1)i*1(rg;§’hwh“,ol)
k
=33 > YN, L 0P

i=1 v<pa+b=N
Note that

dep(x o Alty) = (=)o (1% '@ [, | @ 1%P7%) 0 Altyi1

N |
(=

@
Il

o

for a linear map x : W®™[-N]®---@ W®"»[—~N] — R and the anti-symmetrization
Alt, for p-components. So we should prove

d(I,0)0 (1% e[, Jo1®7h)
= Z Z (511&(113;(;%’}1”’ 61) + 621&(112;?%’}1“7 62) oT),

v<pa+b=N
where the map 7 means the permutation
X1®...®(Ilj+1...xux/)®(xl...a:yx”xu+1...eri)®...®Xp
'_>G-Xl®“.®(1.1.“‘%”1./‘%#4’1“'xri)®(xv+1"'xy,x/,)®"'®Xp

and € is the Koszul sign. It follows from the equations

D(I,0)0 1% @ 07 (1@ wiep)mhy 0% @ 197771 = (07, 0Y),

Vi

D(D,6)0 (1971 @ 07 (1 ® wiap))mhy" 022 @ 197771 = b0, 6% o,

forr' =pu—v+1, 7" =r—p+v+1,and t = v+ 1. The first equation is verified
as follows: we have by the definition of v

w(x’,x/’)l/;(r,é)(Xl» sy Xp) = €1¢(F3;?hu,hu,6l)(X1, cee Xz{sz{/a ce 7Xp)
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for Xy € WO 2/ € W,, and 2" € W,. Here we put X! = xp41---z,2'07"
and X! = z1 - x,2"x,41 20t for X; = 1 - 2,071 So we obtain the first
equation from
aXw(x' z") =o' (1@ w)r, tr ® 0% (X! @ X!
The second is also verified in the same way.
Next, we shall prove is¢) = ¥i on C%° (W). The ordering

com
Oi == (=3 =3 =3 Vi, V15, Uiy o oo, Up)
is a lift of €; - 0, where €; is the anti-Koszul sign of the permutation
(V1,5 0p) = (Vi V1, oy Dy e e, Up).
So we have
z/;i(l",o)(Xl7 ey Xpo1)

-

€ a(ivi(l“)ﬁi)(wh ey Wy Oy ,5,Altp,1(X1, . ,prl))
——

s=1 kot 1
J
:Z wl,...,wkﬁ75,...,5,X,r(1),...,(5,...7X,r(p_1))
s=1me6, 1 T
(F7 )(’U)l,.. 5,...75,A1tp(5,X1,...7Xp,1))
——

ks
:i(;'ll)(r, 0)(X17 cee 7Xp—1)
where € is the anti-Koszul sign of
(5, Xq,... ,Xp_l) — (X.n.(l), ceey 5, c 7X7T(p—1))'
From the discussion above, the relation (R, (T, 0)) = 0 follows from

¢(RU(F70)) = ¢(iv’iv"d (F,O)) = ¢(F70)([57 6}7 _) =0

Thus ¢ induces the map ¢ : Ce (W) — CGL(D). Furthermore, since ¢ is com-
mutative with d and 4, so is L. So we complete the proof. O
The group Sp(W, d) acts on C2:* (W) by the action on the their labels. Then, the

com

chain map ¢ : C2 (W) — Cyn(D) is Sp(W, §)-equivariant clearly. Especially we
can consider the Sp(W, §)-invariant part C%% (W)SP(W:9) of the complex C%% (W).

com

It has the double subcomplex C%;* (N, Z) consisting of N-graded graphs which have

com

no external vertex. This complex C%® (N, Z) does not depend on the symplectic
vector space W. It depends only a range Z of degrees and a degree N of a symplectic

inner product.

Remark 12.10. We can define the associative version of C%;2 (W) as follows. Set

Ouss(W,T) = () Oe)® () W[-NJy® J\ Cyc(w’)[Nl® /\ Cyc(v)[N]

ecE(T) ueVe (T') vseVy(T) veVy(T)

Cass (W @ Oass(W,T),  Oass(W,T) := Oass(‘/va 1_‘)Aut(l“)~
T'eG(N)
Then (C3:2(W),d, L) is also a double Sp(W, ¢)-chain complex and the chain map

C22 (W) — Cgim(Der,, (TW))

ass
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can be defined in the same way. In this case, we can also consider the double sub-
complex C:2(N, Z) which consists of N-graded graphs without external vertices.

ass

13. APPLICATIONS AND EXAMPLES

Examples of relations between our chain map and a known notion are written
in the following two Examples.

Example 13.1. For a cyclic minimal A.-algebra (H,I,m) with even degree,
putting W := H*[—1], we have the map C:2(W) — Cin(Der,,(TW)). Here TW

is the dual of the bar construction of (H, I, m). The map induced by the chain map

C% (N, Z) — OYp(Der, (TW)) =R

ass
is known as the Kontsevich cocycle ([25, 37, 17]) of a cyclic As-algebra (H, I, m).

Example 13.2. In the case of Z = {0} and § = 0, the chain map

C22(0,{0}) — Cgip(Der, (TW))SPW)

ass

is equal to Kontsevich’s chain map [25, 26].

In the case that W is positively graded, we define a chain complex C&» (W)
by

Com (W) = ot (W) (positivity),
where the positivity relation is as follows:

e (positivity) (i) a graph which has a normal vertex v satisfying |v| < 0
is zero, and (ii) (i, + 4y )dy (T, 0) = 0 for an oriented graph (T',0) and a
normal vertex v of degree 0.

The differentials d, L are also defined on C%;2, (W), while 4 is not.

com

Proposition 13.3. The operators d, L induce the differentials on C%® (W) .

com

Proof. Tt is clear that these operators are compatible with the former condition (i)
of the positivity relation. Note that, to prove compatibility with L for a graph
including a vertex with degree 0, we need to use (ii).

We shall prove they are compatible with (ii). First, we shall calculate the image
of (ii) by the operator d. For I' € G(N) and a normal vertex v of degree 0, we have

iy + iy )dy = dyrivrdy + dyiyedy + Y duy (i + iur)dy
uv’ v’
= dyriy dy + dyriprdy — Z(iv’ =+ Z.v“)dvdu-
uFv

Here we used the equations in the proof of Theorem 12.8. For a splitting of v such
that |v'| = —1, dy»id, must have a non-positive vertex since |v/| = 1. In the
same way, d,i,~d, also have a non-positive vertex. So d(i, + i,)d, is equal to
zero under the positivity relation.
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Next, we shall calculate the image of (ii) by the operator L:
Ll + iy )dy =Y (i + tur )du(in + iy )dy

:(i(vll)/ + Z‘(/U//)//)dv//ixuld/u + (Z‘(/Ul)/ + i(U/)//)dv,iU//dU
- Z Gyt G )y (o + Gy )dy
uFv
:(7:(,0//)/ + Z’(’U”)”)i’uldv”dv —|— (i(v/)/ + i(v’)”)i’u”d’uldv
_ Z Zv + ZU// Z'u.’ + Zu”)du
uFv
By changing names of vertices like the proof of Theorem 12.8, we get
(7;(”//)/ + i(v//)//)iv/dvlldv = _(i(v’)” + iv”)i(q)’)’dv’dv = —Rv/dvldv - i(v’)’iv”dv’dv7
and
(i(vlz)/ + i(vz/)//)iv/dvlldv —+ (i(v’)’ —+ i(v’)")i’u”dv'dv
= — R’U'dv’d’u —|— i(v/)//iv//d,uldv
= — vadv/dv — i(v”)’i(’u”)”dv”dv
- — Rv'dv/ dv — R’U”dv”dv
Using the Ay-relation, L(i, + i,~)d, is equal to zero under the positivity relation.

O

Then we can also get the chain map
U4 2 Coona(W) 4 — C*(Der [ (LW))

induced by .

Example 13.4. Suppose X = #,(S"x.S™)\Int D*". Its Quillen model is described
by:

Lx = L(u1,v1,...,uq,vq) (degu; =degv; =n—1), §=0,
w(ui, vj) = 65, w(us, u;) = w(vi,vj) = 0.

It means N = 2n — 2, W = (uq,v1,...,uq,vg) and Z = {n — 1}. Then the dgl
(Der (Lx),0) is a Quillen model of Bautg o(X) (which is proved in [2]). In the

case, we can forget all special vertices in the graph complex sicne § = 0. So we
have the chain map

Co2 (2n — 2, {n — 1}) /(special vertices) — Ceyp(Der] (Lx))SPW).
This map is constructed by [2] and it is proved that the map is an isomorphism
under the limit g — oo.
Example 13.5. Suppose X = CP?\ Int DS. Tts Quillen model is described by:
1 0
Lx = L(uy,ug) (degu; =2i —1), 6= [ul,ul]
(9’[1,2
w(ug,uz) = w(ug,ur) = 1.
It means N = 4, W = (uj,us) and Z = {1,3}. Then the dgl (Der (Lx),d) is a
Quillen model of B auty o(X). Since Sp(W, ) = 1, we have the chain map

Coin (W) = Cep(Der (L)) = O (Dert (L)),
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We shall define a certain sub dgl 9 of Der,(Lx). Put

A = %[Ul,uﬂaiw, Ay = %[W,W]aiul
By = %[ul,ul]% + [Ul,Ug]aiuz7 By = [ul,u2]aiu1 + %[UQ,UQ]ai’UQ.
Then we have
6(A1) = 0(B1) = d(B2) =0,
5(Az) = Lur, i), us) =2 + s, us], i)~ = [Ar, As] = —[By, Ba] = C
2 ’ ’ (9’[1,1 2 ’ ’ au2 ’ ’ ’

[Ath} = [AlvAZ] = [BjﬂBj] =0 (7”] = 1’2)7
deg Ay = —1, deg A; =5, deg By =1, deg B2 =3, degC = 4.
Here we put §(Z) := [, Z] for simplicity. By the relation above,
0:= <A1, AQ, Bl, BQ, C> = DeI‘i}(Lx) EB Del‘i(Lx)
is a sub dgl of Der, (Lx). Its positive truncation ?% is described by
b+ = <A27 Bla 327 C> )
(5(A2) S —[Bl,BQ] = C, (S(Bl) = 5(32) = (5(C) = 0,
[A2, B;] = [A2, A2] = [B;, B;] = [A2,C] = [B;,C] =0 (i =1,2).
Let z,y1,y2,2 be the suspension of the dual basis of As, By, Bo,C. Then the
Chevalley-Eilenberg complex of the dgl 9T is written by
08'7[’.5(0+) = A(x7ylay272) (degx = 67 degyl = 27 degy2 = 47 degz = 5)7
dr=dy1 =dys =0, dz =2 — Y192
and its total cohomology
Hep(07) = Az, y1, v2) /(2 — y12)-
Since 07 is the rank < 2 part of Der] (Lx), the map H¢,,(Der) (Lx)) — H&p(d)
induced by the inclusion has a section. So non-trivial classes in H&;(d) gives
non-trivial classes in He ;(Der (Lx)).

The relation dz =  — y1y2 in the Chevalley-Eilenberg complex is corresponding
to the relation in the graph complex C® (W), described in Figure 10. Here the
classes = and y;y2 corresponds to the first term and the sum of the second and
third terms in the figure. Remark that y; and yo do not correspond to graphs
without external vertices. According to the positivity relation, all the trivalent
graphs appearing in the right hand side are cycles since the degrees of two half-

edges incident to a permitted bivalent vertex in C%2 (W), must be 3.

FIGURE 10. the relation of graphs (the orientations are omitted)
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Example 13.6. Suppose X = CP*\ Int D®. Its Quillen model is described by:

1
LX :L(UhUQ,’U,g) (degul:%fl), 5:§[U17U1]8u2

w(ug,us) = wlug,ug) = 1.
It means N = 6, W = (uy,u,u3) and Z = {1,3,5}. Then the dgl (Der] (Lx),d) is
a Quillen model of Bautgo(X). Defining the linear transformation 7 by 7(u1) =
—uy, T(uz) = uy and 7(uz) = —us, we have Sp(W, ) = {1,7}. So C%2 (W)SP(W:9)
is generated by graphs labeled by uy, us, uz satisfying #{u1, ug-labeled vertex} is
even. For simplicity, we put

0
Jr[ul,uz]aTLB,

k

[uil . uzk] = [’u/il st auik]cyc — Z(il>8(kis)uis+1 e Uikuil P uis e W(f:yc'
s=1

Using notations in Section 12.3, we can take a basis of W (2)
[uiuj] ({i <j} c{1,2,3}),
a basis of W (3)
1

g[uiuiui], [wiwjug], [uuug] ({i < j} C{1,2,3}), [urusus] + [uiugus]

and a basis of W (4)
[usuiujug] (i < j),
[U1U1U2U3] + [U1U1U3’LL2], [U1UQUQU3] - [U1U3UQUQL [U1UQU3U3] — [U1U3’LL3U2].
We put the corresponding rank 0, rank 1 and rank 2 basis of Der,,(Lx)
Pij, Aiii, Aijj, Aiij, A123, Biijj, Bii2s, B1223, Biass,

and these dual basis p;;, xijr and y;j, of Pij, Aijr and Bjji. Then by direct
calculation we have the equations in Cg/g(Der (Lx))

dy1122 = T222 — 27123 + T122T113 — T122T122,

dy2233 = 73337122 + T233T222 — T223T223 — 2T123T233 + T133T223 + 2P23Y1233,

dy1133 = T233 — T133T113 — T123T123 — 2P23Y1123,

dy1123 = T223 — T133 — P23Y1122,

dy1223 = T233 + T223T 122 + T123T123 — T223T113 — T123T222 — T133T122 + P23Y1123,

dy1233 = T333 + T233T122 — T123T223 — T233T113 — T123T122 + P23Y1133-

Here all terms appearing in the right-hand side of the equations are cocycles. For
example, the fifth relation is corresponding to the relation in the graph complex
C2:2 (W), described in Figure 11. In Figure 11, the image by ¢ of each graph
appearing the last term of the right hand side is zero.
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