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Introduction

The contents of this thesis are divided into these two parts roughly:

(i) cocycle-level constructions of characteristic classes of fiber bundles and
their relations to cohomology of Lie algebras of derivations [32, 20, 31],

(ii) a relation between the dgl of symplectic derivations on a semi-free dgl and
a certain graph complex [30].

Chapter 2 and 3 belong to (i), and Chapter 4 belongs to (ii).
Chapter 2. According to the result of K.T. Chen [5, 6], a Riemannian metric

on a closed manifold X gives a formal homology connection on X via the Hodge
decomposition defined by this metric. A notion of a formal homology connection
on X is equivalent to a notion of a C∞-algebra model of the de Rham complex of
X [14]. This correspondence implies that a Riemannian metric of a fiber bundle
E → B with fiber X gives a deformation of C∞-algebra models of X, so it defines
the map from the base space B to a certain moduli space of C∞-algebra models
of X. Under a certain condition, we can construct a flat connection on the moduli
space. Using the Chern-Weil theory, we can obtain characteristic classes of a fiber
bundle E → B satisfying a suitable condition as the image of the characteristic map
from the Chevalley-Eilenberg complex of a Lie algebra of derivations on a Chen’s
model of X to the cohomology of the base space B through the map above. As an
example of such characteristic classes, we have Morita-Miller-Mumford classes of
surface bundles. These discussions are described in the papers [32, 20].

Chapter 3. The construction of Chapter 2 implies an existence of its simplicial
enhancement. In this aspect, the moduli space Q(X) defined in Chapter 2 is the
set (space) of connected components of the simplicial set of C∞-algebra models of
X. In this chapter, we construct characteristic classes of a smooth fiber bundle
X → E → B by obstruction theory for a certain simplicial bundle Q•(E)→ S•(B)
obtained from the original bundle. The base simplicial set S•(B) of the simplicial
bundle Q•(E)→ S•(B) is the simplicial set of singular simplices of B and the n-th
set Qn(E)σ of the fiber over an n-simplex σ is the set of Chen’s formal homology
connections on σ∗E. A formal homology connection on a manifold X has rational
homotopical information of X, which is equivalent to a minimal C∞-algebra model
f : (H,m)→ A of the reduced de Rham complex A such that m is a minimal C∞-
algebra structure and the first term of f induces the identity map on cohomologies
(see [14]). The fiber of the bundle is the simplicial set Q•(X) of formal homology
connections on X × ∆n. This simplicial set is very close to the Maurer-Cartan
simplicial set of the dgl L̂W ⊗A, where (L̂W, δ) is the dual of the bar-construction
of the C∞-algebra (H,m).

We introduce two versions of construction depending on whether the fiber Q•(X)
is connected or not. The homotopy group of the Muarer-Cartan simplicial set is
known in [11, 1, 3]. So the homotopy groups of Q•(X) can be also expressed as
vector spaces by

πn(Q•(X), τ) = Hn(Der(L̂W ), δ)

for a formal homology connection τ = (ω, δ) on X.
In the case that Q•(X) is connected, under certain conditions, an obstruction

class of existence of a partial section over the n-skeleton of Q•(E)→ S•(B)

on ∈ Hn+1(B; Πn)
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is obtained, where Πn is the local system of the n-th homotopy groups of fibers of
Q•(E)→ S•(B). Then we get the characteristic map

(ΛpHn(Der(L̂W ), δ)∗)G → Hp(n+1)(B;R)

for any p ≥ 1. Here G is the structure group of E → B. As an application, this
yields the Euler class of a sphere bundle.

On the other hand, if Q•(X) is not connected, the local system Π0 of sets has
a free and transitive action of a certain local system QIAut(E) of groups. Since
this group has a natural filtration, we get the graded Lie algebra gr(QIAut(E)).

The fiber of i-th part can be identified with a certain vector space gri(QDer(L̂W )).
Using this vector space in stead of the homotopy groups of Q•(X), we can obtain
the obstruction o(i) ∈ H1(B; gri(QIAut(E))) and the characteristic map

(Λ•gri(QDer(L̂W ))∗)G → H•(B;R)

according to the stage i of extension of a partial section. Applying for a surface bun-
dle, the obstruction class for i = 0 corresponds the twisted Morita-Miller-Mumford
class and the characteristic map gives the Morita-Miller-Mumford classes.

Chapter 4. The Chevalley-Eilenberg complex of the limit of the Lie algebra of
symmplectic derivations on (graded) free Lie algebras is isomorphic to the graph
complex defined by the cyclic Lie operad (details in [25, 26, 8, 15]). In this paper,
we introduce an extension of (the dual of) the construction to a Lie algebra of
symmplectic derivations on free dgls. Let (W,ω) be a graded vector space with
symmetric inner product of even degree N and δ a differential of degree −1 on
the completed free Lie algebra L̂W satisfying the symplectic condition δω = 0.
An important example is the case that (L̂W, δ) is a Chen’s dgl model of an even
dimensional manifold and ω is its intersection form. We construct a W -labeled
graph complex C•,•

com(W )+ and a chain map

C•,•
com(W )+ → C•,•

CE(Der+ω (L̂W ))

to the Chevalley-Eilenberg (double) complex C•,•
CE(Der+ω (L̂W )) of the differential

graded Lie algebra (Der+ω (L̂W ), ad(δ)) of positive symplectic derivations on L̂W .
Furthermore the non-labeled part C•,•

com(N,Z)+ of the graph complex, which de-
pends on only the integer N and the set Z of degrees of W , we can obtain a chain
map

C•,•
com(N,Z)+ ⊂ C•,•

com(W )
Sp(W,δ)
+ → C•,•

CE(Der+ω (L̂W ))Sp(W,δ),

where Sp(W, δ) is the group of graded linear isomorphisms of W preserving ω and
δ. In the case of N = 0 and Z = {0}, the map corresponds to the Kontsevich’s one
[25, 26].

The construction above gives characteristic classes of fibrations. It is known
that characteristic classes of simply-connected fibrations are related to Lie algebras
of derivations [38, 42]. In non-simply connected cases, we got relations between
characteristic classes and Lie algebras of derivations as in [32, 20]. In this paper,
we consider the case that the boundary of a fiber is a sphere. For a simply-connected
compact manifold X with ∂X = Sn−1, let aut∂(X) be the monoid of self-homotopy
equivalences of X fixing the boundary pointwisely and aut∂,0(X) its connected
component containing idX . According to [2], the isomorphism

H•(B aut∂,0(X);Q) ≃ H•
CE(Der+ω (LX))



6 TAKAHIRO MATSUYUKI

is obtained. Here LX is a cofbrant dgl model of X. The underlying Lie algebra of
LX is generated by the linear dual W of the suspension of the reduced cohomology
of X. So the graph complex above gives the invariant part of the cohomology
H•

CE(Der+ω (LX)) with respect to the action of the group Sp(W, δ) of automorphisms
of W with intersection form preserving the differential δ of LX . Using the Serre
spectral sequence for the fibration

B aut∂,0(X)→ B aut∂(X)→ Bπ0(aut∂(X)),

the image of the natural map H•(B aut∂(X);Q)→ H•(B aut∂,0(X);Q) is included
in the invariant part. We give a chain map

C•,•
com(N,Z)+ → C•,•

CE(Der+ω (LX))Sp(W,δ).

by the construction above. Considering W -labeled graphs, we can also obtain a
W -labeled version C•,•

com(W )+ and a chain map

C•,•
com(W )+ → C•,•

CE(Der+ω (LX)).
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Chapter 1. Derivations, homotopy algebras and related concepts

In this chapter, all vector spaces are over a field K with characteristic 0.

1. Permutations and sign notations

The symmetric group on r letters is denoted by Sr. For an integer 0 ≤ s ≤ r, a
permutation τ ∈ Sr satisfying

τ−1(1) < · · · < τ−1(s), τ−1(s+ 1) < · · · < τ−1(r)

is called an (s, r−s)-shuffle. On the other hand, τ is called an (s, r−s)-unshuffle
if τ−1 is (s, r − s)-shuffle. The set of (s, r − s)-shuffles is denoted by Sh(s, r − s)
while the set of (s, r − s)-unshuffles is Ush(s, r − s).

We often denote by |a| the degree of an element a. But we omit the symbol | · | of
the degree when it appears in a power of −1. For example, (−1)ab means (−1)|a||b|
for graded elements a, b.

Definition 1.1. We define the Koszul sign ϵ(τ ;x1, . . . , xr) for a permutation
τ ∈ Sr and letters x1, . . . , xr with degrees by the following axioms:

(i) ϵ(τ ;x1, . . . , xr) ∈ {±1} depends on only τ and the order of degrees of
x1, . . . , xr,

(ii) ϵ(1;x1, . . . , xr) = 1 and ϵ(ρ;x1, . . . , xr) = (−1)xixi+1 for a transposition
ρ = (i i+ 1),

(iii) ϵ(τρ;x1, . . . , xr) = ϵ(τ ;xρ(1), . . . , xρ(r))ϵ(ρ;x1, . . . , xr).

The sign ϵ̄(τ ;x1, . . . , xr) = sgn(τ)ϵ(τ ;x1, . . . , xr) is called the anti-Koszul sign.

Example 1.2. For example,

ϵ((1 2);x1, x2, x3) = (−1)x1x2 , ϵ̄((1 2);x1, x2, x3) = −(−1)x1x2 ,

ϵ((1 2 3);x1, x2, x3) = ϵ̄((1 2 3);x1, x2, x3) = (−1)x1(x2+x3),

ϵ((1 3 2);x1, x2, x3) = ϵ̄((1 3 2);x1, x2, x3) = (−1)x3(x1+x2).

Remark 1.3. The sign ϵ(τ ;x1, . . . , xr) is a sign appearing in the equation

x1 · · ·xr = ϵ(τ ;x1, . . . , xr)xτ(1) · · ·xτ(r)
on the graded symmetric algebra generated by x1, . . . , xr, while ϵ̄(τ ;x1, . . . , xr) is
a sign appearing the same equation on the graded exterior algebra generated by
x1, . . . , xr.

Using the Koszul sign, we can describe the right Sr-action on V ⊗r by

(x1 ⊗ · · · ⊗ xr)τ := ϵ(τ ;x1, . . . , xr)xτ(1) ⊗ · · · ⊗ xτ(r)
for x1, . . . , xr ∈ V and τ ∈ Sr.

2. Graded free algebras

2.1. Graded vector space. Let V be a Z-graded vector space.

2.1.1. Grading. We denote

• the subspace of elements of V of cohomological degree i by V i, and
• the subspace of elements of V of homological degree i by Vi = V −i.

Remark that the linear dual V ∗ = Hom(V,R) of V is graded by (V ∗)i = Hom(Vi,R).
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2.1.2. Suspension. The p-fold suspension V [p] of V for an integer p is defined by

V [p]i := V i+p

and elements of V [p]i are presented by the form σx or xσ for x ∈ V i+p using the
symbol σ of cohomological degree −p. In the case, we put σx = (−1)pxxσ.

2.1.3. Inner products. Let α : V ⊗ V → K be a non-degenerate bilinear map of
(cohomological) degree n. Out of the two conditions

(i) α(x, y) = (−1)xyα(y, x) for homogeneous elements x, y ∈ V ,
(ii) α(x, y) = −(−1)xyα(y, x) for homogeneous elements x, y ∈ V ,

the pair (V, α) is called (graded) symmetric vector space with degree n if
satisfying (i), and (graded) symplectic vector space with degree n if satisfying
(ii).

For a symmetric vector space (V, α), the desuspension V [−1] has the canonical
symplectic structure ᾱ given by

ᾱ(σa, σb) = (−1)aα(a, b)

for a, b ∈ V . So (V [−1], ᾱ) is a symplectic vector space. The converse construction
is also possible.

2.2. Free algebra and free coalgebra. We consider the tensor vector space

∞⊕
r=0

V ⊗r.

An element x1⊗· · ·⊗xr is written by x1 · · ·xr omitting the symbols ⊗ for simplicity,
and r is called the (tensor) rank of x1 · · ·xr. This vector space has two bialgebra
structures:

• the product ∇ and the coproduct ∆ are defined by

∇(x1 · · ·xs, xs+1 · · ·xr) = x1 · · ·xr,

∆(x1 · · ·xr) =
r∑

s=0

∑
τ∈Ush(s,r−s)

ϵ · (xτ(1) · · ·xτ(s))⊗ (xτ(s+1) · · ·xτ(r))

for homogeneous elements x1, . . . , xr ∈ V , where ϵ is the Koszul sign of the
permutation (x1, . . . , xr) 7→ (xτ(1), . . . , xτ(r)). This bialgebra is denoted by
TV and called the tensor algebra. We often use its completed version

T̂ V :=

∞∏
r=0

V ⊗r,

which is called the completed tensor algebra. It can be also described
by the completion of filtered algebra

T̂ V = lim←−
r

TV/Tr+1V,

where TV is filtered by TrV =
⊕∞

n=r V
⊗n.

• the product ∆∗ and the coproduct ∇∗ are defined by

∆∗(x1 · · ·xs, xs+1 · · ·xr) =
∑

τ∈Sh(s,r−s)

ϵ · xσ(1) · · ·xσ(r),
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∇∗(x1 · · ·xr) =
r∑

s=0

(x1 · · ·xs)⊗ (xs+1 · · ·xr)

for homogeneous elements x1, . . . , xr ∈ V , where ϵ is the Koszul sign of the
permutation (x1, . . . , xr) 7→ (xτ(1), . . . , xτ(r)). This bialgebra is denoted by
T cV and called the tensor coalgebra.

These structures are dual:

T̂ V ∗ = (T cV )∗.

2.3. Free Lie algebra. The primitive part of TV is denoted by LV and called
the (graded) free Lie algebra generated by V . Its rank r part is denoted
byLrV = LV ∩V ⊗r. It is described by the unshuffle sum vanishing like the equation

LrV =

A ∈ V ⊗r;
∑

τ∈Ush(s,r−s)

Aτ = 0 (0 < s < r)

 .

Of course, it is a Lie algebra by the Lie bracket

[A,B] = AB − (−1)ABBA

for A,B ∈ LV .
The free Lie algebra has a canonical filtration derived from rank. The lower

central series {Γn}∞n=0 is defined by

Γn =

∞⊕
n=r

LrV = LV ∩ TrV.

Then the completed free Lie algebra L̂V , which is the primitive part of T̂ V , is
described by the completion

L̂V = lim←−
r

LV/Γr+1.

The induced filtration {Γ̂n}∞n=0 on L̂V is also the lower central series.

2.4. Free symmetric algebra and free exterior algebra.

• The symmetric algebra TV generated by V is the Z-graded commutative
algebra which is the quotient algebra obtained from the Z-graded tensor
algebra TV by introducing the relation

xy = (−1)xyyx

for x, y ∈ V . The image of V ⊗k for an integer k in SV is denoted by SkV .
The algebra SV is isomorphic to the image of the symmetrization map
TV → TV

x1 · · ·xr 7→
∑
τ∈Sr

(x1 · · ·xr)τ .

• The exterior algebra ΛV generated by V is the Z-graded anti-commutative
algebra which is the quotient algebra obtained from the Z-graded tensor
algebra TV by introducing the relation

xy = −(−1)xyyx
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for x, y ∈ V . The image of V ⊗k for an integer k in ΛV is denoted by ΛkV .
The algebra ΛV is isomorphic to the image of the anti-symmetrization
map TV → TV

x1 · · ·xr 7→
∑
τ∈Sr

sgn(τ)(x1 · · ·xr)τ .

Note the canonical identification

ΛV ≃ S(V [1]).

3. Derivations

Definition 3.1. A derivation on each algebras is defined as follows.

• A (algebra) derivation on an algebra (A,∇) is a linear map D : A→ A
satisfying

∇(D ⊗ 1 + 1⊗D) = D∇.
• A coderivation on a coalgebra (A,∆) is a linear map D : A→ A satisfy-

ing
(D ⊗ 1 + 1⊗D)∆ = ∆D.

• A Hopf derivation on a bialgebra (A,∇,∆) is a linear map D : A → A
which is a derivation and a coderivation.

• A Lie derivation on a Lie algebra (A, [ , ]) is a linear map D : A → A
satisfying

[ , ](D ⊗ 1 + 1⊗D) = D[ , ].

The vector space of such derivations on A is denoted by Der(A). This is the graded
Lie subalgebra of the graded Lie algebra End(A) of linear endomorphsims A→ A.

We mainly consider derivations on free algebras. Let V be a Z-graded vector
space. The Lie algebra of Hopf derivations on TV is isomorphic to the Lie algebra
Der(LV ) of Lie derivations on LV . So, in this paper, Der(TV ) always means the
Lie algebra of algebra derivations on TV . Note that Der(LV ) is a Lie subalgebra

of Der(TV ). We also adapt the same notations Der(T̂ V ) and Der(L̂V ) in the
completed case.

3.1. The rank of derivations. The Lie algebra Der(TV ) has two gradings derived
from two gradings of TV , the tensor rank and the grading of V . The degree of a
derivation D with respect to the tensor rank is also called the rank of the derivation
D, and the rank r part of Der(TV ) is denoted by Derr(TV ). A derivation on TV
is determined by only its evaluations on V . So we get the linear isomorphism

Derr(TV ) ≃ Hom(V, V ⊗(r+1)).

For a linear map f ∈ Hom(V, V ⊗(r+1)), we denote the corresponding derivation by
m∑
i=1

f(xi)
∂

∂xi
,

where x1, . . . , xm is a basis of V . Using this grading, Der(TV ) is filtered by

Der≥r(TV ) =

∞⊕
n=r

Dern(TV )

and the completion with respect to the filtration is isomorphic to Der(T̂ V ).
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We can consider the corresponding grading of Der(LV ). Putting

Homcom(V, V
⊗(r+1)) :=

f ∈ Hom(V, V ⊗(r+1));
∑

τ∈Sr+1

fτ = 0

 ,

we can describe the rank r part of Der(LV ) by

Derr(LV ) := Der(LV ) ∩Derr(TV ) ≃ Homcom(V, V
⊗(r+1)).

The completion with respect to the filtration Der≥r(LV ) := Der≥r(TV )∩Der(LV )

is isomorphic to Der(L̂V ) in the same way as Der(T̂ V ).

3.2. Symplectic derivations. Let ω be a symplectic form on V with degree N .
Using non-degeneracy of ω, we have the isomorphism V ≃ V ∗[N ], so we can regard
ω as an element of V ⊗2 through the isomorphism. This element ω is described
explicitly by

ω =
∑
i,j

ωijx
ixj ∈ L2V,

where x1, . . . , xm is a basis of V and (ωij)i,j is the inverse matrix of (ω(xi, xj))i,j .
The Lie algebra of symplectic derivations on TV is defined by

Derω(TV ) = {D ∈ Der(TV ); D(ω) = 0}.

The Lie algebra also has the rank of elements and the filtration in the same way as
Der(TV ). Furthermore Derω(LV ) is also defined and the same structures exist.

Through the isomorphism Derr(TV ) ≃ Hom(V, V ⊗(r+1)) ≃ V ⊗(r+2)[−N ], we
get the correspondence

Derrω(TV ) ≃ (V ⊗(r+2))Z/(r+2)Z[−N ] =: Vcyc(r + 2)[−N ].

Here Z/(r+2)Z is the subgroup of cyclic permutations in Sr+2. Therefore putting

VLcyc(r + 1) :=

x ∈ Vcyc(r + 1);
∑

τ∈Ush(s,r−s)

xτ = 0 (0 < s < r)

 ,

where τ is regarded as a permutation on r + 1 letters by the standard inclusion
Sr ⊂ Sr+1, we have

Derrω(LV ) ≃ VLcyc(r + 2)[−N ].

4. Homotopy algebra

4.1. A∞-algebras. Let us review the notations on A∞-algebra.

Definition 4.1 (A∞-algebra [39, 40]). Let A be a Z-graded vector space and
m = {mn : A⊗n → A}n≥1 be a family of linear maps with degmn = 2 − n. The
pair (A,m) satisfying the A∞-relations

∑
k+l=n+1

k−1∑
j=0

(−1)(j+1)(l+1)mk ◦ (id⊗j
A ⊗ml ⊗ id

⊗(n−j−l)
A ) = 0

for n ≥ 1 is called A∞-algebra. Then m is called A∞-structure on A.
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The multilinear mapmk has degree (2−k) indicates the degree ofmk(a1, . . . , ak)
is |a1| + · · · + |ak| + (2 − k). The A∞-relations implies (m1)

2 = 0 for n = 1, the
Leibniz rule of the differential m1 with respect to the product m2 for n = 2, and
the associativity of m2 up to homotopy for n = 3. These facts further imply that
the cohomology H(A,m1) has the structure of a (non-unital) algebra, where the
product is induced from m2.

Note that the product m2 is strictly associative in A if m3=0.

Definition 4.2. Let (A,m) be an A∞-algebra.

• If higher products are all zero, i.e. m3 = m4 = · · · = 0, (A,m) is called
differential graded algebra (DGA).

• If m1 = 0, (A,m) is called minimal.

Remark 4.3 (Bar construction of an A∞-algebra). Let (A,m) be an A∞-algebra.
The A∞-structure corresponds to the codifferential m on the coalgebra BA :=
T c(A[1]) as follows. Denote the suspension map by s : A → A[1]. Defining the
suspension of mn by m̄n := s−1 ◦mn ◦ s⊗n for all n ≥ 1, then the degree of m̄n is
1 and the A∞-relations are rewritten as the simpler equations∑

k+l=n+1

k−1∑
j=0

m̄k ◦ (id⊗j
A[1] ⊗ m̄l ⊗ id

⊗(n−j−l)
A[1] ) = 0

(Getzler-Jones [13]). Then m̄n : A[1]⊗n → A[1] extents the unique coderivation
mn : BA→ BA by the co-Leibniz rule ∆ ◦mn = (mn ⊗ id + id⊗mn) ◦∆. Setting

m =

∞∑
n=1

mn ∈ Der(BA),

then m is a degree 1 codifferential, i.e. m2 = 0, from the A∞-relations of m. Thus
an A∞-algebra (A,m) is equivalent to a differential graded coalgebra (DGCA)
(BA,m). The DGCA (BA,m) is called the bar construction of (A,m).

Definition 4.4 (A∞-morphism). Let (A,m) and (A′,m′) be A∞-algebras. A fam-
ily f = {fn : A⊗n → A′} of linear maps with deg fn = 1−n satisfying the equations∑

i≥1,
k1+···+ki=n

m′
i◦(fk1

⊗· · ·⊗fki
) =

∑
i+1+j=k,
i+l+j=n

(−1)i+(n−i+1)lfk◦(id⊗i
A ⊗ml⊗id⊗(n−i−l)

A )

is called A∞-morphism f : (A,m)→ (A′,m′).

• If f1 is a linear isomorphism, f is called A∞-isomorphism.
• If f2 = f3 = · · · = 0, f is called linear A∞-morphism.

The defining equation for A∞-morphisms for n = 1 implies that f1 : A → A′

forms a chain map f1 : (A,m1) → (A′,m′
1). This together with the defining

equation for n = 2 implies that f1 : A → A′ induces a (non-unital) algebra map
from H(A,m1) to H(A′,m′

1). We denote it by H(f1) : H(A,m1)→ H(A′,m′
1).

Definition 4.5. An A∞-morphism f : (A,m) → (A′,m′) is called an A∞-quasi-
isomorphism if f1 : (A,m1) → (A′,m′

1) induces an isomorphism between the
cohomologies of these two complexes.

Remark 4.6 (Bar construction of an A∞-morphism). Let f : (A,m) → (A′,m′)
be an A∞-morphism. Defining the suspension of fn by f̄n := s ◦ mn ◦ (s−1)⊗n :



CHARACTERISTIC CLASSES OF FIBER BUNDLES AND GRAPH COMPLEXES 13

A[1]⊗n → A′[1] for all n ≥ 1, then the degree of f̄n is 0 and the relations for
A∞-morphism are rewritten as the equations∑

i≥1,
k1+···+ki=n

m̄′
i ◦ (f̄k1 ⊗ · · · ⊗ f̄ki) =

∑
i+1+j=k,
i+l+j=n

f̄k ◦ (id⊗i
A[1] ⊗ m̄l ⊗ id

⊗(n−i−l)
A[1] ).

Constructing the coalgebra map BA→ BA′

f =

∞∑
n=1

∑
i≥1,

k1+···+ki=n

f̄k1
⊗ · · · ⊗ f̄ki

from maps f̄n, then f is a DGCA map (BA,m)→ (BA′,m′) between bar construc-
tions, i.e. f ◦m = m′ ◦ f from the condition of A∞-morphism.

The composition of A∞-morphisms is defined by the composition of bar con-
structions of A∞-morphisms. From the definition, any A∞-isomorphism has its
inverse A∞-isomorphism uniquely.

On the other hand, it is easy to see that the composition ofA∞-quasi-isomorphisms
is an A∞-quasi-isomorphism. An A∞-quasi-isomorphism has its inverse A∞-quasi-
isomorphism in a strict sence if and only if it is an A∞-isomorphism, but always
has its homotopy inverse as in Theorem 4.10. These facts imply that A∞-quasi-
isomorphisms define an equivalence relation between A∞-algebras.

4.2. Decomposition theorem of A∞-algebras. A pair of minimal A∞-algebra
(H,mH) and an A∞-quasi-isomorphism (H,mH) → (A,m) is called minimal
model of (A,m).

The following theorem was first mentioned in [24], and is called the decompo-
sition theorem. A proof was given in [21] and was presented in [19]. See [7] for a
filtered version.

Theorem 4.7. Any A∞-algebra (A,m) is A∞-isomorphic to the direct sum of a
minimal A∞-algebra M and a linear contractible A∞-algebra C. Here, a linear
contractible A∞-algebra C = (C,mC) is an A∞-algebra such that mC

2 = mC
3 =

· · · = 0 and the cohomology H(C,mC
1 ) is trivial.

Especially, we get the inclusion map M → (A,m) as a minimal model of (A,m).

Proof. We first choose a Hodge decomposition (H, ι, π, h) of the complex (A,m1),
that is, H := H(A,m1) is the cohomology, ι : H → A and π : A → H are linear
map of degree zero such that π◦ ι = idH , h : A→ A is a linear map of degree minus
one and they satisfy

m1h+ hm1 + P = idA, h2 = 0

where P := ι ◦ π. This gives a Hodge decomposition of (BA,m1), as a complex of
vector spaces, such that the cohomology is BH. Actually, ι and π extend to the
(linear) coalgebra maps ι : BH → BA and π : BA→ BH and one can construct a
chain homotopy h : BA→ BA from h̄, P̄ and the identity map on A[1].

We put M := ImP and C := Im(m1h + hm1). Let us consider a coalgebra

homomorphism f(2) : BA→ BA defined by f̄
(2)
1 = idA[1],

f̄
(2)
2 := h̄m̄2 − P̄ m̄2h,
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and f̄
(2)
3 = · · · = 0. This defines an A∞-isomorphism f (2) : (A,m) → (A,m(2)),

where m(2) := f(2)◦m◦(f(2))−1. In particular, it turns out that m
(2)
2 = Pm2(P⊗P ).

Thus, m
(2)
2 defines a bilinear map on M . Inductively, assume now that (A,m(n)) is

an A∞-algebra such that m
(n)
2 , . . . ,m

(n)
n defines a multilinear map on M . We set a

coalgebra homomorphism f(n+1) : BA→ BA by f̄
(n+1)
1 = idA[1], f̄

(n+1)
2 = f̄

(n+1)
3 =

· · · = f̄
(n+1)
n = 0,

f̄
(n+1)
n+1 := h̄m̄

(n)
n+1 − P̄ m̄

(n)
n+1h,

and f̄
(n+1)
n+2 = f̄

(n+2)
n+3 = · · · = 0. Then, one sees that m

(n+1)
k = mn

k for k ≤ n and

m
(n+1)
n+1 = Pm

(n)
n+1(P ⊗ · · · ⊗ P ). Thus, the induction is completed. (For the details

see [19, 21].) □

4.3. A∞-homotopy.

Definition 4.8. Let (C,∆), (C ′,∆′) be coalgebras, and f : C → C ′ be a coalgebra
map. A linear map D : C → C ′ satisfying

∆′D = (f ⊗D +D ⊗ f)∆
is a coderivation over f . For example, for a coderivation D on C ′, fD is a
coderivation over f . If f is a coalgebra isomorphism, all coderivations over f are
obtained in such way. Similarly for a coderivation D on C, Df is a coderivation
over f and the parallel fact holds.

Definition 4.9 (A∞-homotopy). Two A∞-morphisms f, g : (A,m)→ (A′,m′) are
A∞-homotopic if there exists families of A∞-morphisms f(t) : (A,m)→ (A′,m′)
and coderivations h(t) : BA → BA′ over f(t) parametrized piecewise algebraically
by t ∈ K such that

df

dt
(t) = m′ ◦ h(t) + h(t) ◦m.

Then we denote f ∼ g, and {(f(t), h(t))}t∈K is called an A∞-homotopy from f
to g.

The decomposition theorem induces the following theorem along [21]. This the-
orem was first proved in [12] with a different method.

Theorem 4.10. Let (A,m) and (A′,m′) be A∞-algebras. An A∞-morphism f :
(A,m)→ (A′,m′) is an A∞-quasi-isomorphism if and only if f is an A∞-homotopy
equivalence, i.e. there exists an A∞-morphism g : (A′,m′) → (A,m) such that
g ◦ f ∼ idA and f ◦ g ∼ idA′ .

Proof. Given a Hodge decomposition (H = M, ι, π, h) of (A,m1), from the con-
struction in Theorem 4.7 we have an A∞-algebra structure on M ⊕ C and an
A∞-isomorphism A ≃ M ⊕ C. Then, the pair (ι, π) extends to the pair of linear
A∞-quasi-isomorphisms

M
ι // M ⊕ C.
π

oo

Furthermore, the projection P = ι ◦ π also extends to the linear A∞-(quasi-
iso)morphism P :M ⊕C →M ⊕C to M and it turns out to be A∞-homotopic to
the identity A∞-(iso)morphism idM⊕C . In fact, setting Pt := (1 − t)P̄ + tidA[1] :
A[1]→ A[1], by

(idA[1] − P̄ )Pt = idA[1] − P̄
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and m1Pt = Ptm1 we have

d

dt
P⊗
t = P⊗

t ⊗ (idA[1] − P̄ )⊗ P⊗
t

= P⊗
t ⊗ (m1h̄+ h̄m1)⊗ P⊗

t

= [m, P⊗
t ⊗ h̄⊗ P⊗

t ],

where we express as P⊗
t the coalgebra map corresponding to Pt. Thus, idM⊕C and

P is A∞-homotopic to each other.
(In particular, the map

h :=

∫ 1

0

(P⊗
t ⊗ h̄⊗ P⊗

t )dt : BA→ BA

gives a chain homotopy from idBA to P⊗. Namely, the Hodge decomposition of
(BA,m1) is obtained. )

We also choose a Hodge decomposition (H ′ = M ′, ι′, π′, h′) of (A′,m′
1). Then

we have the following diagram of A∞-algebras and A∞-(quasi-iso)morphisms

A
∼ //

f

��

M ⊕ C
π // M = H(A,m1)
ι

oo

fH

��
A′ ∼ // M ′ ⊕ C ′ π′

// M ′ = H(A′,m′
1).

ι′
oo

and here we define fH so that the diagram commutes. Since any composition of A∞-
quasi-isomorphisms is an A∞-quasi-isomorphism, so is fH . Furthermore, since M
and M ′ are minimal A∞-algebras, fH is actually an A∞-isomorphism. Thus, there
exists the inverse A∞-isomorphism (fH)−1. Then we define g by the commutative
diagram

A
∼ // M ⊕ C // M = H(A,m1)oo

A′ ∼ //

g

OO

M ′ ⊕ C ′ // M ′ = H(A′,m′
1).oo

(fH)−1

OO

(Note that, in order to construct this g we need the decomposition theorem only,
not the A∞-homotopy. )

Now one can show g◦f ∼ idA and f◦g ∼ idA′ since the correspond to P ∼ idM⊕C

on M ⊕ C and P ′ ∼ idM ′⊕C′ on M ′ ⊕ C ′, respectively. □

From Theorem 4.10, an A∞-quasi-isomorphism has its homotopy inverse.

4.4. C∞-algebra. In this thesis, we use C∞-algebras as generalization of differ-
ential graded commutative algebra rather than A∞-algebras. For the concept of
C∞-algebra, we refer to [13].

Definition 4.11 (C∞-algebra). Let (A,m) be an A∞-algebra. If

mk ∈ Homcom(A[1], A[1]
⊗(k+1))

for any k, (A,m) is called a C∞-algebra.

Definition 4.12 (C∞-morphism). Let f : (A,m)→ (A′,m′) be an A∞-morphism.
If fk ∈ Homcom(A[1], A

′[1]⊗(k+1)) for any k, f is called a C∞-morphism.
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Remark 4.13 (Bar construction of a C∞-algebra). Let (A,m) be a C∞-algebra.
By the definition of a C∞-algebra, m is a Hopf differential on the Hopf algebra BA.
For any C∞-morphism, its bar construction is a Hopf algebra morphism BA→ BA′.

The C∞-versions of Theorem 4.7 and 4.10 also hold in the same way.

5. Chen’s model of a manifold

Let X be an oriented manifold with finite-dimensional rational homology. Fix a
base point ∗ of X. We denote the deRham complex on X by A•(X), the reduced
deRham complex and cohomology by

A = Ã•(X) := {f ∈ A0(X); f(∗) = 0} ⊕A+(X), H = H̃•
DR(X)

and the suspension of the reduced real homology by W = H̃•(X;R)[−1].

5.1. Formal homology connection.

Definition 5.1 (Chen [5, 6]). A formal homology connection on X is a pair
(ω, δ) satisfying the following conditions:

(i) an L̂W -coefficient differential form ω ∈ A⊗L̂W with cohomological degree
1 is described by

ω =

∞∑
k=1

∑
i1,...,ik

ωi1···ikx
i1 · · ·xik ,

where x1, . . . , xm is a homogeneous basis of W , such that∫
xp

ωp = 1.

(ii) a linear map δ : L̂W → L̂W is a differential with homological degree −1
of L̂W such that

δ(W ) ⊂ Γ̂2.

(iii) the form ω is a Maurer-Cartan element of (A⊗ L̂W, d+δ), i.e., the flatness
condition δω+ dω+ 1

2 [ω, ω] = 0 holds. (Though the sign notation may be
different from Chen’s original definition, they are equivalent.)

We call such a differential δ Chen’s differential of X. If X is simply connected,
we can replace the free Lie algebra LW and its derivation δ : LW → LW with L̂W
and δ : L̂W → L̂W respectively.

It is well-known that, given a formal homology connection on X, we can compute
the real cohomology of the loop space ΩX [5, 6].

Chen proved that a Riemannian metric gives a formal homology connection.

Theorem 5.2 (Chen [5, 6]). Given a Riemannian metric on X, we have uniquely a
formal homology connection ω satisfying that ωi is harmonic and ωi1...ik for k > 1
is coexact with respect to the metric.
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5.2. C∞-algebra and formal homology connection. We shall mention the re-
lation between a formal homology connection and a C∞-algebra.

According to [14], a formal homology connection (ω, δ) on X is equivalent to a
minimal C∞-algebra model f : (H,m) → A, i.e., a pair of a minimal C∞-algebra
structure on H and a C∞-algebra morphism f : (H,m) → A such that the first
term f1 induces the identity on H. It is verified as follows: put

ω = −
∑

i1,...,ik

(−1)ϵσ−1f̄n(x
i1 , . . . , xik)xi1 · · ·xik ,

δ = m∗,

where

ϵ = |xi1 |(|xi2 |+ · · ·+ |xik |) + · · ·+ |xik−1
||xik |,

f̄n = σfn(σ
−1)⊗n : H[1]⊗n → A[1], xi is the dual basis of xi, and m is the bar-

construction of m. Then the differential δ on the dual (BH)∗ = T̂W of the

bar-construction BH can be restricted on L̂W since δ is a coderivation. So the
pair (ω, δ) is a formal homology connection on X. Conversely we can recover
f : (H,m) → A from (ω, δ). Note that the condition that f is an A∞-morphism
corresponds to the flatness.

Given a Riemannian metric on X, we get a C∞-minimal model associated to
the Hodge decomposition from Theorem 4.7. This model corresponds the formal
homology connection defined in Theorem 5.2.

5.3. The simplicial set of formal homology connections. The set of formal
homology connections on X is denoted by Q0(X).

We define the simplical deRham dga A• = {An}∞n=0 on X by

An := Ã•(X ×∆n).

Its face maps and degeneracy maps are induced by the coface maps and codegen-
eracy maps of the cosimplicial space ∆• = {∆n}∞n=0.

The family Q•(X) = {Qn(X) := Q0(X × ∆n)}∞n=0 of sets is a simplicial set
by the induced structure by A•. Given a Chen’s differential δ on X, the set of
formal homology connections (ω, δ) on X × ∆n is denoted by Qn(X, δ). Then
Q•(X, δ) is also a simplicial set. We denote the set of Maurer-Cartan elements of

(An⊗ L̂W, d+ δ) by MCn(X, δ). We obtain the simplicial set MC•(X, δ), and then
Q•(X, δ) is a subsimplicial set of MC•(X, δ).

Lemma 5.3. For any n-th simplicial Muarer-Cartan element α ∈ MCn(X, δ), if
∂iα ∈ Qn−1(X) for some 0 ≤ i ≤ n, then α ∈ Qn(X, δ).

Proof. Regarding α as a C∞-map f : H → An, f1 : H → H(An) is the identity map
since ∂i for any i gives the standard identification by H•(X×∆n) ≃ H•(X×∆n−1)
and ∂if1 : H → H(An−1) is the identity map under the assumption.

□

Since the simplicial set MC(X, δ) is a Kan complex (proved in Section 4 of [11]),
the following lemma is obtained immediately from Lemma 5.3:

Lemma 5.4. The simplicial set Q•(X) is a Kan complex. Furthermore the map
induced by the inclusion

π0(Q•(X, δ))→ π0(MC•(X, δ))
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is injective, and the map

πn(Q•(X, δ), τ)→ πn(MC•(X, δ), τ)

for τ ∈ Q0(X, δ) and n ≥ 1 is an isomorphism.

Theorem 5.5. The homotopy groups of the simplicial set Q•(X) are described by

πn(Q•(X), τ) ≃ Hn(Der(L̂W ), δ)

for n ≥ 1 and a formal homology connection τ = (ω, δ) onX, whereH1(Der(LW ), δ)

is equipped with the Baker-Campell-Hausdorff product of H0(A⊗ L̂W ).

Proof. From Proposition 5.4 and Theorem 5.5 in [1], we have

πn(Q•(X), τ) ≃ πn(MC•(X, δ), τ) ≃ Hn−1(A⊗ L̂W, d+ δ + [ω,−]).

We shall prove the suspension of (A ⊗ L̂W, d + δ + [ω,−]) and the chain complex
DerF (BH,BA) of Hopf derivations over the bar-construction F : BH → BA of the
C∞-morphism corresponding to τ are isomorphic. Here the differential D of the
latter complex is defined by

D(D) = mA ◦D − (−1)DD ◦m,
where mA and m are the bar-constructions of C∞-structures of A and (H,m) re-
spectively.

Through the natural identification T̂W = (BH)∗, consider the linear isomor-

phism Φ : A[1]⊗ L̂W → DerF (BH,BA) ⊂ Hom(BH,A[1]) defined by

Φ(α⊗ f)(x) = f(x)α

for x ∈ BH. Here the differential on A[1] ⊗ L̂W is equal to σ(d + δ + [ω,−])σ−1.
Then, using F = Φ(σω), we have

Φ(σ(d+ δ + [ω,−])σ−1(α⊗ f))(x)
=dαf(x) + (−1)α+1αδf(x) + σ[ω, σ−1α⊗ f ](x)

=dαf(x)− (−1)α+fαfm(x) +mA
2 ◦ (F ⊗ Φ(αf))(x) +mA

2 ◦ (Φ(αf)⊗ F )(x)
=DΦ(αf)(x).

Thus the map Φ is a chain isomorphism.
On the other hand, the map

F ◦ − : (Der(L̂W ), ad(δ)) = (Der(BH), ad(m))→ (DerF (BH,BA),D)

is a quasi-isomorphism because F is a quasi-isomorphism. So we get the isomor-
phism

Hn−1(A⊗ L̂W, d+ δ + [ω,−]) ≃ Hn(Der(L̂W ), ad(δ)).

□
The set Q(X) := π0(Q•(X)) of connected components can be identified with the

set of homotopy classes of C∞-morphisms f : (H,m) → A such that f1 induces
the identity map on H. The group QIAut(H,m) of homotopy classes of C∞-
automorphisms f : (H,m) → (H,m) such that f1 = idH acts on the right on
Q(X, δ) := π0(Q•(X, δ)) freely and transitively. We shall investigate the set Q(X)
as space in the next chapter.
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Chapter 2. Characteristic classes through the cohomology of the
moduli of homotopy algebra

Let X be an n-dimensional oriented closed manifold with base point ∗.

6. Moduli space of C∞-minimal models

For a minimal C∞-algebra structure m on H, the moduli space Q(X,m) of
C∞-quasi-isomorphisms over m is the set of C∞-homotopy classes of C∞-quasi-
isomorphisms ι : (H,m) → A such that ι1 induces the identity map on the their
cohomology H.

The group QIAut(H,m) of homotopy classes of C∞-automorphisms f : (H,m)→
(H,m) such that f1 = idH is a inverse limit of finite-dimensional lie group:

QIAut(H,m) = lim←−
n

QIAut(H,m)/QIAut≥n(H,m),

where QIAut≥n(H,m) is the group consisting of classes of C∞-automorphisms f :
(H,m) → (H,m) such that f1 = idH , f2 = 0, . . . , fn−1 = 0. Then each n-th
quotient group is a finite-dimensional Lie group. The Lie ring of QIAut(H,m) is

isomorphic to the Lie algebra QDer+(H,m), which is the image of Der≥1(BH)0 ∩
Ker(ad(m)) in H0(Der(BH), ad(m)).

The Lie group QIAut(H,m) acts on Q(X,m) by

ι · f := ι ◦ f

for ι ∈ Q(X,m), f ∈ QIAut(H,m). This action is free and transitive since an
C∞-quasi-isomorphism has a homotopy inverse. So Q(X,m) has the inverse limit
of smooth manifolds, which is isomorphic to QIAut(H,m).

The set C∞(X) of minimal C∞-structures m on H such that C∞(X,m) ̸= ∅ is
parametrized by the space

IAut(H,m)\ IAut(BH).

So the moduli space of C∞-minimal models of the reduced de Rham complex
A of X

Q(X) :=
⨿

m∈C∞(X)

Q(X,m)

is parametrized by the space

Q(X,m)×IAut(H,m) IAut(BH)

fixing m. It is the space of C∞-homotopy classes of C∞-minimal models ι :
(H,m)→ A such that ι1 induces the identity map on the de Rham cohomology H.

The mapping class group of X

M(X) := Diff+(X)/Diff0(X) = π0(Diff+(X))

acts on Q(X) as follows:

[φ] · [ι,m] := (φ ◦ ι ◦ |φ|−1, |φ| ◦m ◦ |φ|−1)

for [ι,m] ∈ Q(X) and [φ] ∈ M(X). Here |φ| is the map induced to H by φ.
This action is well-defined since two isotopic diffeomorphisms φ0, φ1 of X induce
C∞-homotopic dga maps A→ A.
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7. Construction

Let E → B be a smooth fiber bundle whose fiber is an oriented closed manifold
X. For simplicity, we set

Q := Q(X), C∞ := C∞(X), Q(m) := Q(X,m), M :=M(X).

Choose a metric g of E → B. The metric gb on fiber Eb for b ∈ B defines the
Hodge composition on A•(Eb). Since these Hodge decompositions give C∞-minimal
models of fibers, we can obtain the map B → S\Q, where S is the image of the
structure group of E → B in M. Defining the de Rham complex of S\Q by
A•(S\Q) := A•(Q)S , we have the map H•

DR(S\Q) → H•
DR(B). Since any two

metrics can be connected by a segment, the map is independent of a choice of a
metric.

7.1. Homologically trivial bundles. We consider the case where the structure
group of a fiber bundle acts trivially on the de Rham cohomology group of the
fiber. In other words, suppose S = I := Ker(M → GL(H)). Then we have
a map q : B → C∞ by giving a metric of E → B. Fix m ∈ C∞. Since the
topological group IAut(H,m) is contractible, the pullback q∗ IAut(BH)→ B of the
principal IAut(H,m)-bundle IAut(BH)→ C∞ is trivial. Taking a trivialization of
the principal bundle, we get the I-equivalent map

s : q∗Q = Q(m)×IAut(H,m) q
∗ IAut(BH) ≃ Q(m)× C∞ → Q(m).

Thus we can obtain the chain map

A•(Q(m))I
s∗→ A•(q∗Q)I → A•(B).

Form the action of QIAut(H,m), the space Q(m) has the Maurer-Cartan form
η ∈ A1(Q(m);QDer+(H,m)). Then we have the chain map

Φ : C•
CE(QDer+(H,m))→ A•(Q(m))I .

It is constructed as follows: for a cochain c ∈ Cp
CE(QDer+(H,m)), we define

Φ(c) := c(ηp) =
∑

i1<···<ip

ηi1 ∧ · · · ∧ ηipc(bi1 ∧ · · · ∧ bip),

where we set

η =
∑
i

ηibi

using a (topological) basis {bi} of QDer+(H,m). The p-form Φ(c) is I-invariant
since I acts on H trivially. Then Φ is a chain map by the flatness of η

dη +
1

2
[η, η] =

∑
i

dηibi +
∑
i<j

ηi ∧ ηj [bi, bj ] = 0.

So we obtain the following:

Theorem 7.1. Let E → B be a smooth fiber bundle with oriented closed fiber X
whose structure group acts trivially on the real cohomology group of X. Then the
chain map C•

CE(QDer+(H,m)) → A•(B) obtained by the construction above in-
duces the map between cohomologies which is independent of a choice of a fiberwise
metric.
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7.2. Formal manifold bundles. We consider the case where X is a formal man-
ifold, i.e. C∞ contains the algebra structure m of H, and there exists a decompo-
sition of S-modules

Der+(BH)0 = V ⊕Der+m(BH)0,

where S is the image of S in GL(H).
By the same discussion of Lemma 3.5 in [32], we can obtain the following:

Lemma 7.2. The S-equivariant principal IAut(H,m)-bundle IAut(BH)→ C∞ is
S-equivariant trivial.

Then there exists an S-equivariant diffeomorphism

Q = Q(m)×IAut(H,m) IAut(BH) ≃ Q(m)× C∞.

Since the space C∞ is also contractible, we can obtain the following:

Theorem 7.3. The space Q is S-equivariant homotopic to Q(m).

From the Maurer-Cartan form on Q(m), we have the chain map

C•
CE(QDer+(H,m), S)→ A•(Q(m))S

in the same way as Subsection 7.1.

Theorem 7.4. Let E → B be a smooth fiber bundle with oriented closed formal
fiber X. Suppose there exists a decomposition of S-modules

Der+(BH)0 = V ⊕Der+m(BH)0,

where m is the algebra structure of H and S is the image of the structure group
in GL(H). Then the chain map C•

CE(QDer+(H,m), S) → A•(B) obtained by the
construction above induces the map between cohomologies which is independent of
a choice of a fiberwise metric.

8. Relation to the construction using the fundamental group

For any [m, ι] ∈ Q, we have the dual of the bar construction of ι

(BA)∗ → (BH)∗ = T̂W,

where T̂W means the completed tensor product generated by W := H∗[−1]. So
composing the chain map C•(ΩX) → (BA)∗ obtained by iterated integrals from
the cube chain complex of the loop space ΩX, we obtain the chain map

C•(ΩX;R)→ (T̂W, δ),

where δ := m∗. The degree 0 part of (the completion of) map induced to homologies
gives

R̂π1 = Ĥ0(ΩX;R)→ H0(T̂W, δ) = T̂W0/Iδ,

where π1 := π1(X), W0 := H1(X;R)[−1] and Iδ := δ(H2(X;R)[−1]). (This map
given by the C∞-minimal model defined by a metric g on X is the Chen expansion
defined by g.) So we have theM-equivalent map θ : Q→ Θ(π1). Here the definition
of the space Θ(π1) is obtained by replacing “Hopf algebra” with “algebra” from
Θ(π1) in [32].
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Fixing m, we have the commutative diagram

TιQ(m)

θ∗

��

// T1 QIAut(H,m)

θ∗
��

QDer+(H,m)

Tθ(ι)Θ(π1, Iδ) // T1 IAut(T̂W0/Iδ) Der+(T̂W0/Iδ).

So we obtain
θ∗η = θ∗η

Θ,

where ηΘ is the Maurer-Cartan form on Θ(π1) by the action of IAut(T̂W0/Iδ).
Thus we obtain the following:

Theorem 8.1. We have the commutative diagram

H•
CE(QDer+(H,m)) // H•

DR(B)

H•
CE(Der+(T̂W0/Iδ))

OO 66mmmmmmmmmmmm

under the assumption in Theorem 7.1 and

H•
CE(QDer+(H,m), S) // H•

DR(B)

H•
CE(Der+(T̂W0/Iδ), S)

OO 66lllllllllllll

under the assumption in Theorem 7.4.
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Chapter 3. Obstruction theoretic construction

9. The simplicial bundle of formal homology connections

Let X → E → B be a smooth fiber bundle. In the section, we shall define
the simplicial bundle of formal homology connections on fibers corresponding to a
smooth bundle.

Definition 9.1. We define the simplicial bundleQ•(E)→ S•(B) over the simplicial
set S•(B) of singular simplices as follows:

• the fiber over an n-simplex σ ∈ Sn(B) is Qn(E)σ := Q0(σ
∗E), and

• the face maps and the degeneracy maps are the induced maps Qn(E)σ →
Qn−1(E)∂iσ and Qn(E)σ → Qn+1(E)siσ by the coface maps and the code-
generacy maps of ∆• respectively.

We can check that Q•(E)→ S•(B) is a bundle of simplicial sets in the sense of
May [33].

Proposition 9.2. The simplicial map Q•(E)→ S•(B) is a simplicial bundle with
fiber Q•(X).

Proof. For an n-simplex σ ∈ Sn(B) and a trivialization φσ : ∆n × X ≃ σ∗E, we
obtain the trivialization φσ,P : ∆i ×X ≃ σ(P )∗E for P ∈ ∆[n]i by the diagram

∆n ×X
φσ // σ∗E

∆i ×X

fP×idX

OO

φσ,P // σ(P )∗E

OO

regarding σ as a simplicial map σ : ∆[n]→ S•(B). Here the map fP : ∆i → ∆n is
the induced map P : ∆[i]→ ∆[n].

Then we obtain the simplicial trivialization

φ̂σ : σ∗Q•(E) ≃ ∆[n]×Q•(X).

by (P, α) 7→ (P,φ∗
σ,Pα), where

σ∗Qi(E) = {(P, α) ∈ ∆[n]i ×Q0(σ(P )
∗E)}.

□
We consider to fix a Chen’s differential on fibers.

Definition 9.3. Fix a Chen’s differential δ ∈ Der(L̂W )−1 of X is G-invariant with

respect to the action of the homological structure group G on Der(L̂W ) (induced

by the action on W ). Then it gives the section δ̂ of the bundle

D(E)→ B,

where D(E)b := {Chen’s differential of Eb} for b ∈ B. We call δ̂ a section of

Chen’s differentials. Given this, we can consider the simplicial bundleQ•(E, δ̂)→
S•(B) defined by

Qn(E, δ̂)σ := Q0(σ
∗E, δ̂(σ))

for σ ∈ Sn(B). Here δ̂(σ) is the Chen’s differential of σ∗E defined by δ̂(σ0) through
the isomorphism H(σ∗E) ≃ H(Eσ0). Here σ0 = ∂1 · · · ∂nσ is the image of the base
point of ∆n.
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For example, if X is formal, the differential δ corresponding to the cohomology
ring structure of X is Diff(X)-invariant.

10. Obstruction theory

Obstruction theory for simplicial sets is studied in [4, 9]. In Section 10.1 and
10.2, we shall review a part of them and rewrite obstruction theory as in Steenrod
[41] for simplicial sets in order to fit our use briefly. In Section 4.2, we introduce
obstruction classes to extend a section over the 0-skeleton stepwisely.

10.1. Local system. We shall define cohomology with local coefficients briefly.
We can see definitions in [4, 9].

Definition 10.1. Let X be a Kan complex. We define the fundamental groupoid
Π1(X ) of X such that the set of objects is X0 and the set of morphisms from x
to y is the set of homotopy classes of γ ∈ X1 satisfying ∂0γ = x and ∂1γ = y. A
covariant functor Π1(X ) → Ab is called a local system on X . Here Ab is the
category of abelian groups.

Let E → B be a Kan simplicial bundle with n-simple fiber X , i.e., X is a Kan
complex and π1(X , x) acts on πn(X , x) trivially.

Definition 10.2. We define the local system Πn(E/B) on B as follows: for a vertex
v ∈ B0,

Πn(E/B)v := πn(v
∗E).

Note that we need not to choose a base point of v∗E because it is n-simple. For a
path γ ∈ B1 such that v0 = ∂1γ and v1 = ∂0γ, take a trivialization

φγ : ∆[1]× v∗0E ≃ γ∗E

such that

∆[1]× v∗0E
φγ // γ∗E

v∗0E

δ1

OO

v∗0E .

incl.

OO

Here δi : ∆[0] → ∆[1] is the coface maps. Then we have the isomorphism gγ :
v∗0E → v∗1E , which is called holonomy along γ, defined by

∆[1]× v∗0E
φγ // γ∗E

v∗0E

δ0

OO

gγ
// v∗1E .

incl.

OO

So we put

Πn(E/B)(γ) := (g−1
γ )∗ : πn(v

∗
1E)→ πn(v

∗
0E).

We can prove that it is depend on only the homotopy class of γ since E → B is Kan
fibration. In fact, for another path γ′ homotopic to γ by a homotopy σ ∈ B2, there
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exists a homotopy h satisfying the commutative diagram

Λ2[2]× v∗0E
φγ∪φγ′

//

��

σ∗E

��
∆[2]× v∗0E

h

99

// ∆[2]

by Theorem 7.8 in [33]. Here Λ2[2] is the (2, 2)-horn.

The cochain complex and the cohomology with local coefficients are defined as
follows.

Definition 10.3. Let X be a Kan complex, A a subsimplicial set of X, and
M : Π1(X) → Ab a local system on X. We define the cochain complex with
coefficient M by

Cn(X,A;M) :=

{
c : Xn →

⨿
v∈X0

M(v); c(x) ∈M(x0), c|A = 0

}
,

where x0 = ∂1 · · · ∂nx, and its normalized version by

Nn(X,A;M) :=

n∩
i=0

Ker(s∗i : Cn(X,A;M)→ Cn−1(X,A;M)).

The differential δ : Cn(X,A;M)→ Cn+1(X,A;M) is defined by

δc(x) =M(x01)
−1c(∂0x)− c(∂1x) + · · ·+ (−1)n+1c(∂n+1x),

where x01 = ∂2 · · · ∂nx. Its cohomology is denoted by Hn(X,A;M).

10.2. Obstruction cocycles and difference cochains. Let A be a subsimplicial
set of B. We call a simplicial map s satisfying the following diagram an n-partial
section relative to A:

E

��
skn(B) ∪ A

s

::tttttttttt
// B

Given an n-partial section s : skn(B) ∪ A → E relative to A, we shall construct
the obstruction cocycle of s

c(s) ∈ Nn+1(B,A; Πn(E/B))
to extend a partial section skn+1(B) ∪ A → E as follows: for an (n + 1)-simplex
σ ∈ Bn+1, we get the induced section sσ such that

σ∗E // E

skn(∆[n+ 1])

sσ

OO

skn(σ) // skn(B).

s

OO

So we put

c(s)(σ) := g−1
σ [sσ] ∈ πn(σ∗

0E),
where gσ : πn(σ

∗
0E)→ πn(σ

∗E) is an isomorphism induced by the inclusion σ∗
0E →

σ∗E .
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Proposition 10.4. The cochain c(s) is a cocycle.

Proof. For an (n+ 2)-simplex σ ∈ Bn+2, we have

(∂iσ)
∗E // σ∗E // E

skn(∆[n+ 1])
skn(δ

i)

//

s∂iσ

OO

skn(∆[n+ 2])
skn(σ)

//

sσ

OO

skn(B).

s

OO

So the commutative diagrams for i ̸= 0

σ∗
0E

##H
HH

HH
HH

HH

��
(∂iσ)

∗E // σ∗E

σ∗
1E

��

σ∗
0E

��

gσ01oo

(∂0σ)
∗E // σ∗E

imply the equations

g−1
∂iσ

[s∂iσ] = g−1
σ (sσ)∗[skn(δ

i)], g−1
σ01
g−1
∂0σ

[s∂0σ] = g−1
σ (sσ)∗(σ01)∗[skn(δ

0)].

Here note that [skn(δ
i)] ∈ πn(skn(∆[n+2]), 0) and [skn(δ

0)] ∈ πn(skn(∆[n+2]), 1).
Thus we obtain

(δc(s))(σ) = g−1
σ (sσ)∗

(σ01)∗[skn(δ
0)] +

∑
i̸=0

(−1)i[skn(δi)]

 = 0,

using the relation (σ01)∗[skn(δ
0)]+

∑
i ̸=0(−1)i[skn(δi)] = 0 in πn(skn(∆[n+2]), 0).

□

We shall define the difference cochain for n-partial sections s0, s1 : skn(B) → E
and a fiberwise homotopy h : skn−1(B)×∆[1]→ E ×∆[1] between their restriction
on skn−1(B). Gluing these maps, we have the map

h□ : (skn(B)× sk0(∆[1])) ∪ (skn−1(B)×∆[1])→ E ×∆[1].

We consider the obstruction cocycle

c(h□) ∈ Nn+1(skn(B)×∆[1], (skn(B)× sk0(∆[1])) ∪ (skn−1(B)×∆[1]); Π□
n ),

where Π□
n = Πn(E ×∆[1]/B ×∆[1]). Note that faces of non-degenerate simplices

of skn(B) × ∆[1] are in (skn(B) × sk0(∆[1])) ∪ (skn−1(B) × ∆[1]). Through the
Eilenberg-Zilber map

× : Nn(B)⊗N1(∆[1])→ Nn+1(skn(B)×∆[1], (skn(B)×sk0(∆[1]))∪(skn−1(B)×∆[1])),

we can define the cochain d(s0, h, s1) ∈ Nn(B; Πn(E/B)) by

d(s0, h, s1)(σ) := (−1)nc(h□)(σ × I)

for σ ∈ Bn. Here I is the unique non-degenerate simplex in ∆[1]1.

Proposition 10.5. The cochain d(s0, h, s1) satisfies

δd(s0, h, s1) = c(s1)− c(s0).
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Proof. It is proved by the equations

δd(s0, h, s1)(σ) = g−1
σ01
d(s0, h, s1)(∂0σ) +

∑
i̸=0

(−1)id(s0, h, s1)(∂iσ)

= (−1)ng−1
σ01
c(h□)(∂0σ ⊗ I) +

∑
i̸=0

(−1)n+ic(h□)(∂iσ ⊗ I)

= c(h□)(σ ⊗ ∂I)− δc(h□)(σ ⊗ I)
= c(s1)− c(s0).

□

The next two propositions hold in the same way as in obstruction theory [41].

Proposition 10.6. An n-partial section s : skn(B) → E extends to an (n + 1)-
partial section skn+1(B)→ E if and only if c(s) = 0.

Proposition 10.7. For n-partial sections s, s′ : skn(B) → E , if obstruction cocy-
cles c(s) and c(s′) are cohomologue, there is a homotopy between s| skn−1(B) and
s′| skn−1(B).

Suppose a fiber X of a Kan fiber bundle E → B is (n − 1)-connected (and
π1(X , x) is abelian if n = 1). Then we can get an n-partial section s : skn(B)→ E .
If we get another n-partial section s′, these is a homotopy between s| skn−1(B) and
s′| skn−1(B). So we obtain an invariant

on(E) := [c(s)] ∈ Hn+1(B; Πn(E/B)).

It is called the obstruction class of E → B.

10.3. Obstruction for n = 0. We consider an extension of a 0-partial section
under the following situation: for a simplicial bundle E → B, suppose that the local
system Π0(E/B) of sets has a free and transitive right action of a local system G of
groups on B.

At first, we define the non-abelian obstruction class of a 0-partial section. For
that, we remark the definition of the non-abelian cohomology with values in a local
system of non-abelian groups. Here “non-abelian cohomology” is in the sense of
[10].

Definition 10.8. Let X be a simplicial set and G a local system of groups on X.
Define the (non-abelian) cochain complex of X with coefficient G

Cn(X;G) :=

{
c : Xn →

⨿
v∈X0

G(v); c(x) ∈ G(x0)

}
for 0 ≤ n ≤ 2 and the following datum:

(i) the affine action φ of C0(X;G) on C1(X;G):

(φ(f)c)(γ) = f(∂1γ)c(γ)(G(γ)−1f(∂0γ)
−1)

for f ∈ C0(X;G) and c ∈ C1(X;G),
(ii) the action ψ of C0(X;G) on C2(X;G):

(ψ(f)c)(σ) = Ad(G(∂2σ)−1f(∂0∂2σ))(c(σ)),
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(iii) the map δ : C1(X;G) → C2(X;G) satisfying δ(1) = 1 and δ(φ(f)c) =
ψ(f)c for f ∈ C0(X;G) and c ∈ C1(X;G):

δc(σ) = (G(∂2σ)−1c(∂0σ))c(∂1σ)
−1c(∂2σ)

for c ∈ C1(X;G) and σ ∈ X2.

The we get the 0-th cohomology group

H0(X;G) := Ker(C0(X;G)→ Aut(C1(X;G))⋉ C1(X;G)→ C1(X;G))
and the 1-st cohomology set

H1(X;G) := δ−1(1)/C0(X;G).

Given a 0-partial section s : sk0(B)→ E , put
c(s)(γ) = [s(∂1γ)]

−1(Π0(γ)
−1[s(∂0γ)]) ∈ Gγ0

for γ ∈ B1, i.e., c(s)(γ) ∈ Gγ0
is the unique element satisfying

[s(∂1γ)]c(s)(γ) = Π0(γ)
−1[s(∂0γ)].

By definition, c(s) ∈ C1(B;G) is a cocycle. For another section s′ : sk0(B) → E , if
we can get f ∈ C0(B;G) uniquely such that

s′(x) = s(x)f(x)

for x ∈ X0, then c(s
′) = φ(f)c(s) holds. We denote f by d(s, s′) as in Section 10.2.

Especially the cohomology class

o0(E) := [c(s)] ∈ H1(B;G)
is independent of a choice of a 0-partial section s : sk0(B) → E . As with usual
obstructions, o0(E) = 1 if and only if there is a 1-partial section sk1(B) → E . It
follows from the following proposition:

Proposition 10.9. If o0(E) = 1, there exists a 0-partial section s : sk0(B) → E
such that c(s) = 1.

Proof. If [c(s)] = 1, there exists f ∈ C0(B;G) such that c(s) = φ(f)(1). So replacing
s with sf−1, we get the proposition. □

The non-abelian obstruction o0(E) is hard to deal with, we shall replace a certain
abelian cocycle using a filtration {FiG}∞i=1 of G such that

Gb = F1Gb ▷ F2Gb ▷ · · · ,
[FiGb,FjGb] ⊂ Fi+jGb

for b ∈ B0, and the map G(γ) for γ ∈ B1 preserves the filtration. Given such a
filtration, we can consider the local system of Lie algebras

gr(G) :=
∞⊕
i=1

gri(G) :=
∞⊕
i=1

FiG/Fi+1G.

If the image of c(s) to C1(B;G/Fi) is trivial, i.e., c(s)(γ) ∈ FiGγ0 for γ ∈ B1,
we get its image ci(s) to the (abelian) chain complex C1(B; gri(G)). For another
partial section sk0(B)→ E satisfying the same condition, we can also get the image
di(s, s

′) of d(s, s′) to C1(B; gri(G)). Then it satisfies the equation

ci(s
′)− ci(s) = δdi(s, s

′).

It means o(i)(E) := [ci(s)] ∈ H1(B; gri(G)) is obtained uniquely.



CHARACTERISTIC CLASSES OF FIBER BUNDLES AND GRAPH COMPLEXES 29

Proposition 10.10. If o(i)(E) is defined and trivial, there exists a partial section
s : sk0(B)→ E such that c(s)(γ) ∈ Fi+1Gγ0 for γ ∈ B1.

Proof. Supposing o(i)(E) = [ci(s)] = 1, we have 1 = [c(s)] ∈ H1(B;G/Fi+1G).
Then there exists a 0-partial section s′ : sk0(B) → E such that c(s′) = 1 ∈
C1(B;G/Fi+1G). This section satisfies the required condition.

□

11. Obstruction of the bundles of formal homology connections

Let E → B be a smooth fiber bundle with homological structure group G and
fiber X. Fix a G-invariant Chen’s differential δ on L̂W , where W = H̃•(X;R)[−1].

11.1. Connected cases. Suppose QDer+(L̂W, δ) = 0 and Hi(Der(L̂W ), δ) = 0 for

n > i > 0. In addition, suppose, if n = 1, H1(Der(L̂W ), δ) ≃ H0(L̂W ⊗ A, d+ δ +
[τ,−]) is abelian with respect to the Baker-Campbell-Hausdorff product. Then we

get the obstruction class of the simplicial bundle Q•(E, δ̂)→ S•(B)

o = on(Q•(E, δ̂)) ∈ Hn+1(B; Πn),

where Πn = Πn(Q•(E, δ̂)/S•(B)), and the characteristic maps of a fiber bundle
E → B

(ΛpHn(Der(L̂W ), δ)∗)G → Hp(n+1)(B;R)
by ψ 7→ ψ(o, . . . , o) for p ≥ 1.

11.2. Example of a sphere bundle. We consider the sphere bundle S2 → E =
S3 ×S1 S2 → S2 associated to the Hopf fibration S1 → S3 → S2, where U(1) = S1

acts on S2 = C∪{∞} by rotations. Since the action of S1 on S2 has two fixed points
0 and ∞, this fiber bundle has a section S2 → S3 ×S1 S2 defined by [b] 7→ [b,∞].
We fix the section.

Denote the volume form on the fiber S2 = C ∪ {∞} by

v =

√
−1
2π

dwdw̄

(1 + |w|2)2

and the desuspension of the fundamental form by x ∈ W = H2(S
2)[−1]. Then a

dgl model of S2 is given by

LW = L(x) (|x| = 1), δx = 0

and its Lie algebra of derivations

Der(LW ) =

⟨
x
∂

∂x
, [x, x]

∂

∂x

⟩
.

Note that

H1(Der(LW ), δ) = Der(LW )1 =

⟨
[x, x]

∂

∂x

⟩
.

For simplicity, we restrict the bundle Q•(E) → S•(S
2) to the Kan complex

defined by

Kn = {(∆n, sk1 ∆
n)→ (S2,∞)} ⊂ Sn(S

2).

If n ≤ 1, Kn is described by

K0 = {p∞}, K1 = {γ∞},
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where p∞ : ∆0 → S2 and γ∞ : ∆1 → S2 are constant maps to the point ∞. We
put Q• := Q•(E)|K• .

We use the map ρ : D2 → S2 defined by

ρ(z) =

{
2z/(1− |z|2) (|z| < 1)

∞ (|z| = 1),

regarding D2 = {z ∈ C; |z| ≤ 1} ⊂ C, and trivializations φρ : D2 × S2 → ρ∗E
defined by

φρ(z, w) =

(
z,

[(
2z

1 + |z|2
,
1− |z|2

1 + |z|2

)
, w

])
.

Choose an orientation-preserving diffeomorphism h : ∆2/(∂1∆
2 ∪∂2∆2) ≃ D2 such

that

∆1 δ0→ ∆2/(∂1∆
2 ∪ ∂2∆2)

h→ D2

is given by t 7→ e2π
√
−1t. Then we get the 2-simplex in K•

σ : ∆2 → ∆2/(∂1∆
2 ∪ ∂2∆2)

h→ D2 ρ→ S2

and the trivialization φσ : ∆2 × S2 ≃ σ∗E induced by φρ. The restriction g :
∆1 × S2 → γ∗∞E = ∆1 × E∞ ≃ ∆1 × S2 of φσ on ∂0∆

2 is described by

g(t, w) = (t, φ−1
0 ([(e2π

√
−1t, 0), w])) = (t, e−2π

√
−1tw).

The partial section s : sk1K → Q is defined as follows:

s(p∞) := v0x ∈ Q0(E)p∞ , s(γ∞) := v1x ∈ Q1(E)γ∞ ,

where v0 := (φ−1
0 )∗v ∈ A2(E∞) and v1 := (φ−1

0 )∗v ∈ A2(γ∗∞E) if the trivialization
φ0 : S2 ≃ p∗∞E = E∞ and φ1 : ∆1 × S2 ≃ γ∗∞E = ∆1 × E∞ are defined by

φ1(t, w) = (t, [(1, 0), w]), φ0(w) = [(1, 0), w].

Since [sσ] = [v1x] ∈ π1(σ∗Q•(E), v0x), we have

c(s)(σ) = g∗[sσ] = g∗[v1x] = [g∗(v1)x] ∈ π1(Q•(S
2), vx)

under the identification φ∗
0 : π1(Q•(E∞), v0x) ≃ π1(Q•(S

2), vx). Calculating di-
rectly, we get

g∗(v) = v + ξdt,

where

ξ = − w̄dw + wdw̄

(1 + |w|2)2
= df, f(w) =

1

2

1

1 + |w|2
.

Then putting

Ξ = t1ξdt2 − t2ξdt1 + 2fdt1dt2,

this satisfies the equation

(v + Ξ)2 = 2vΞ = 4fvdt1dt2 = −4fvdt0dt2 = −4d(fv(t0dt2 − t2dt0)).

So we obtain the formal homology connection α = (v+Ξ)x−4fv(t0dt2−t2dt0)[x, x] ∈
Q2(S

2) satisfying

∂0α = (v + ξdt0)x, ∂1α = vx+ 4fvdt0[x, x], ∂2α = vx.

Therefore the equation

[g∗(v1)x] = [(v + ξdt0)x] = [vx+ 4fvdt0[x, x]] ∈ π1(Q•(S
2), vx)
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holds. Furthermore∫
S2

4fv =

∫
S2

√
−1
π

dwdw̄

(1 + |w|2)3
=

1

π

∫ ∞

0

2rdr

(1 + r2)3

∫ 2π

0

dθ = 2

∫ ∞

0

dx

(1 + x)3
= 1

means that the deRham cohomology class [4fv] ∈ H2(S2) is non-trivial. According
to Theorem 4.10 of [1], we have c(s)(σ) ̸= 0 and

o = [c(s)] ̸= 0 ∈ H2(K;H1(Der(LW ))).

Finally evaluating the class with the dual basis ν of [x, x]∂/∂x ∈ Der(LW )1, we
get the non-trivial characteristic class

ν(o) ∈ H2(K) = H2(S2),

which is the Euler class of the sphere bundle E → S2 (given in [35]).

11.3. Non-connected cases. If QDer+(L̂W, δ) ̸= 0, we can apply the construction

in Section 10.3. Putting Π0 = Π0(Q(E, δ̂)/S•(B)), we have the identification

Π0(b) = {C∞-algebra map (H(Eb),mb)→ A(Eb) s.t. (f1)∗ = idH}/(C∞-homotopic),

where mb is the C∞-algebra structure on H corresponding to δ̂(b). According to
the homotopy theory of C∞-algebras, the group QIAut(H(Eb),mb) of homotopy
classes of C∞-automorphisms (H(Eb),mb) → (H(Eb),mb) such that f1 = idH(Eb)

acts on the set Π0(b) on the right freely and transitively.
The local system QIAut(E) of groups is defined by

QIAut(E)b := QIAut(H(Eb),mb), γ∗(f) := (g−1
γ )∗ ◦ f ◦ (gγ)∗

for b ∈ B, γ ∈ S1(B) and f ∈ QIAut(Eγ(0)), where gγ : Eγ(0) → Eγ(1) is the
holonomy along γ. Then we get the non-abelian obstruction class

o0 = o0(Q•(E)) ∈ H1(B; QIAut(E))

in Section 10.3.
Furthermore we have the filtration {QIAut≥i(E)}∞i=1 of QIAut(E) defined in

Section ??. By the observations in Section ??, there exists the identification as
local system of vector spaces

gri(QIAut(E)) ≃ gri(QDer+(E)),

where the local system QDer+(E) of Lie algebras is defined in the same way as
QIAut(E). Here note that gr(QDer+(E)) is defined similarly to gr(QIAut(E))
using its filtration.

Suppose we get the obstruction class oi ̸= 0 ∈ H1(B; gri(QDer+(E))) with
respect to the filtration. In the same way as in Section 10.2, the characteristic map

(Λ•gri(QDer+(L̂W, δ))∗)G → H•(B;R)
is obtained.

Especially, if X is formal and δ corresponds to the product of the cohomology
H of X, we obtain the characteristic map

(Λ• QDeri(L̂W, δ)∗)G → H•(B;R).
We shall show a relation between the characteristic map constructed in [20] and

the construction above. By discussions in [20], given a metric of the fiber bundle
E → B, we have the map s : B → Q0(E): for b ∈ B, the metric on Eb gives a
Hodge decomposition of Eb, so let s(b) be the C∞-minimal model defined by the
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Hodge decomposition. Composing the natural projection Q0(E) → D(E) with s,

we get a section of Chen’s differential δ̂

Theorem 11.1. Let X be a pointed oriented closed manifold and E → B be a

smooth bundle with section and metric. Suppose the metric gives a section δ̂ of
Chen’s differentials corresponding to a G-invariant Chen’s differential δ of X. Then
we have the commutative diagram of chain complexes

C•
CE(QDer+(L̂W, δ))G

Φ //

��

A•(B)

∫
��

(Λ•gr1(QDer+(L̂W, δ))∗)G
Φ1 // C•(B;R),

where the first row map Φ is the characteristic map in [20], the second row Φ1 is
the characteristic map defined by

Φ1(ζ)(γ) = ζ(c1(s)(γ), . . . , c1(s)(γ))

for ζ ∈ (Λpgr1(QDer+(L̂W, δ))∗)G and γ ∈ S1(B), the first column is the natural
projection and the second column

∫
is the deRham map.

Proof. Take a base point ∗ of B and put the universal covering of B

B̃ = {γ : [0, 1]→ B; γ(0) = ∗}/(homotopy preserving boundary).

We identify the fiber E∗ on ∗ with the typical fiber X.
The smooth map µ : B̃ → Q(X, δ) from the universal cover B̃ of B to the moduli

space Q(X, δ) := π0(Q•(X, δ)) of C∞-algebra models of X is defined by

µ([γ]) = g−1
γ · [s(γ(1))].

Here gγ : E∗ → Eγ(1) is the holonomy along γ. Pull-backing the right-invariant

Maurer-Cartan form defined by the right-action of QIAut(L̂W, δ) on Q(X, δ)

η ∈ A1(Q(X, δ);QDer+(L̂W, δ)),

we get the flat connection

ηµ := µ∗η ∈ A1(B̃; QDer+(L̂W, δ)).

On the other hand, we can regard s as the 0-partial section s : sk0(S•(B))→ Q•(E).
Its non-abelian obstruction cocycle is described by

c(s)(γ) = [s(γ(0))]−1g−1
γ [s(γ(1))] = gl(µ([l])

−1µ([γl])),

where l is a path from ∗ to γ(0) and a path γ̃ : [0, 1]→ B̃ is the lift of γ such that
γ̃(0) = [l]. The map Ψ : Q(X, δ) → Q(X, δ) defined by Ψ(α) = µ([l])−1α satisfies
the differential equation dΨ = Ψη. Thus, solving the equation over the path µγ̃,
we have

µ([l])−1µ([γl]) = Ψ(µγ̃(1)) =
∑∫

µγ̃

η · · · η.

Therefore we get the description using iterated integrals

c(s)(γ) = gl ·
∑∫

µγ̃

η · · · η = gl ·
∑∫

γ̃

ηµ · · · ηµ.
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Its projection to gr1(QDer+(L̂W, δ)) is equal to c1(s)(γ) = gl
∫
γ̃
ηµ and∫

Φ(ξ) =

∫
ξ(ηµ, . . . , ηµ) = ξ̄

(∫
ηµ, . . . ,

∫
ηµ

)
= Φ1(ξ̄) ∈ Cp(B̃)

for ξ ∈ Cp
CE(QDer+(L̂W, δ))G, where ξ̄ is the projection of ξ. Since the element is

π1(B, ∗)-invariant, we can regard it as element in Cp(B).
□

Furthermore if c1(s) = · · · = ci−1(s) = 0, we get the (cocycle-level) characteristic

map Φi : (Λ
•gri(QDer+(L̂W, δ))∗)G → C•(B;R) defined by

Φi(ζ)(γ) = ζ(ci(s)(γ), . . . , ci(s)(γ))

for ζ ∈ (Λpgri(QDer+(L̂W, δ))∗)G and γ ∈ S1(B) since ηµ ∈ A1(B; QDer≥i(L̂W, δ)).
Then the same commutative diagram holds. So the construction above using ob-
structions is the “leading term” of the characteristic map obtained in [20]

Φ : C•
CE(QDer+(L̂W, δ))G → A•(B).

11.4. Example of surface bundles. We consider the case of X = Σg, which is
the closed oriented surface with genus g ≥ 2. This is a formal manifold, so we can
put

δ = ω
∂

∂v
,

where v ∈ W1 is the fundamental form of Σg and ω ∈ [W0,W0] is the intersection
form, i.e., ω =

∑g
i=1[x

i, yi] for a symmplectic basis {xi, yi} of W0 with respect to
the intersection form of Σg.

11.4.1. The first obstruction for surface bundles. For a oriented surface bundle
(with section), its homologically structure group is in the symplectic group Sp(W0)
of W0.

Proposition 11.2. We have the identification as Sp(W0)-vector space

QDer1(L̂W, δ) ≃ Λ3W0.

Proof. An element D ∈ Der1(L̂W )0 is described by the form

D = D0 + [v, z]
∂

∂v

for D0 ∈ Der1(LW0) and z ∈W0. Then we can calculate the image by ad(δ):

[δ,D] = −D0(ω) + [ω, z]
∂

∂v
.

So, D is in the kernel if and only if D0(ω) ∈ (ω), where (ω) is the Lie ideal in
LW0 generated by ω. This condition is equivalent to the condition: D0 induces a
derivation on LW0/(ω)

On the other hand, an element P ∈ Der0(L̂W )1 is described by

P =
∑

biv
∂

∂xi

for bi ∈ R, where {xi}2gi=1 is a basis of W0. Its image of ad(δ) is

[δ, P ] =
∑

biω
∂

∂xi
− P (ω) ∂

∂v
.
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Since we can prove [v,W0] = {P (ω);P ∈ Der0(L̂W )1} by direct calculus, for any

D ∈ Der1(L̂W )0, there exists P ∈ Der0(L̂W )1 such that

DP := D + [δ, P ] ∈ Der1(LW0).

Furthermore for another P ′ ∈ Der0(L̂W )1 such thatDP ′ = D+[δ, P ′] ∈ Der1(LW0),
their difference [δ, P − P ′] is in Hom(W0,Rω) ⊂ Der1(LW0). So if D is in the ker-
nel, DP and DP ′ induce the same derivation on LW0/(ω). Therefore we get the
isomorphism

QDer1(L̂W, δ)0 ≃ Der1(LW0/(ω)).

According to [36], we have the isomorphism Der1(LW0/(ω)) ≃ Λ3W0. □

By the proposition above, for a oriented surface bundle E → B with section, we
get the obstruction class

o(1) = o(1)(Q(E, δ̂)/S•(B)) ∈ H1(B; Λ3W0(E)).

Here Λ3W0(E) is the local system of vector spaces such that

Λ3W0(E)(b) = Λ3H̃1(Eb;R)[−1].

This local system is defined in the same way as QIAut(E) and QDer+(E). Then
we also get the characteristic map

(Λ•(Λ3W0)
∗)Sp(W0) → H•(B;R).

11.4.2. Twisted Morita-Miller-Mumford class. We shall show that the obstruction
o(1) can be regarded as one of the twisted Morita-Miller-Mumford classes. For the
purpose, we use notations as follows:

• the mapping class group Mg,∗ of the oriented closed surface Σg with a
base point,

• the space Metg of Riemannian metrics which has constant curvature −1
on Σg,

• the Teichmüller space Tg,∗, which is the orbit space of Metg by the action
of the group Diff0(Σg, ∗) of diffeomorphisms of (Σg, ∗) isotopic to identity,

• the moduli space Mg,∗ = Tg,∗/Mg,∗ of Riemann surfaces with a base point,
and

• the universal family Cg,∗ = Metg ×Diff(Σg,∗) Σg of Riemann surfaces with
a base point.

Applying the construction in Section 11.4.1 for the “universal surface bundle”
Cg,∗ →Mg,∗, we get the obstruction

o(1) ∈ H1(Mg,∗; Λ
3W0(Cg,∗)).

Theorem 11.3. The obstruction class o(1) is equal to the minus of the twisted
Morita-Miller-Mumford class

−m0,3 ∈ H1(Mg,∗; Λ
3W0).

Proof. Take the canonical metric of Cg,∗ →Mg,∗. According to the proof of Theo-
rem 11.1, we have µ : Tg,∗ → Q(Σg, δ) and the cocycle

c1(γ) =

∫
γ̃

ηµ =

∫
γ̃

η1,
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where η1 is the QDer1-part of ηµ. So by the same discussion in [22], the coho-

mology class o(1) = [c1(s)] is equal to the twisted Morita-Miller-Mumford class in
H1(Mg,∗; Λ

3W0). (The discussion is also used in Section 4 of [32].)
□

So the obtained characteristic map

Λ•(Λ3W ∗
0 )

Sp(W0) → H•(Mg,∗;R) = H•(Mg,∗;R)
gives Morita-Miller-Mumford classes by the result of [23].
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Chapter 4. Graph complex and characteristic classes of fibrations

12. Graph complex

12.1. Orientation and ordering of graded sets. The set of orderings on a set
U is defined by

Ord(U) := {(u1, . . . , uk) ∈ U×k;U = {u1, . . . , uk}},

where k := #U .

Definition 12.1. Let U be a Z-graded set, i.e. a finite set U given a map | · | :
U → Z.

• The graded vector space generated by U is denoted by RU .
• The symmetric algebra generated by U is denoted by SU := S(RU).
• The exterior algebra generated by U is denoted by ΛU := Λ(RU).

For an element (u1, . . . , uk) ∈ Ord(U), we denote the image of u1 ⊗ · · · ⊗ uk in
ΛU by [u1, . . . , uk]. The 1-dimensional vector space generated by this element is
written by

O(U) := ⟨[u1, . . . , uk]⟩ ⊂ ΛU.

Definition 12.2. Let V be a Z-graded vector space. We define the subspace V
(k)
cyc

of cyclic tensors in V ⊗k by the image of the map [−, . . . ,−]cyc : V ⊗k → V ⊗k

obtained by

x1 ⊗ · · · ⊗ xk 7→
∑

τ∈Z/kZ

ϵ · xτ(1) ⊗ · · · ⊗ xτ(k),

where Z/kZ is identified with the group of cyclic permutations and ϵ is the Koszul
sign of (x1, . . . , xk) 7→ (xτ(1), . . . , xτ(k)). For a Z-graded set U , we denote

Cyc(U) := ⟨[u1, . . . , uk]cyc; (u1, . . . , uk) ∈ Ord(U)⟩ ⊂ (RU)(k)cyc.

12.2. Definition of graph complex. Let W be a finite-dimensional symplectic
vector space with form ω of degree N and suppose that N is even and Z := {a ∈
Z;Wa ̸= 0} ⊂ {0, . . . , N}. Our labeled graph complex depends on (W,ω).

12.2.1. Definition of graphs.

Definition 12.3. An N-graded graph Γ consists of the following information:

• The set H(Γ) of half-edges.
• The set V (Γ) of vertices. It is a partition of the set H(Γ), i.e.

H(Γ) =
⨿

v∈V (Γ)

v, v ̸= ∅ (v ∈ V (Γ)).

The number #v of elements of any v ∈ V (Γ) is called the valency of
v. A vertex with valency > 1 is called an internal vertex and one with
valency 1 is called an external vertex. The set of internal (resp. external)
vertices is denoted by Vi(Γ) (resp. Ve(Γ)).

• The set E(Γ) of edges. It is a partition of the set H(Γ) such that the
number of elements of any e ∈ E(Γ) is two, i.e.

H(Γ) =
⨿

e∈E(Γ)

e, #e = 2 (e ∈ E(Γ)).



CHARACTERISTIC CLASSES OF FIBER BUNDLES AND GRAPH COMPLEXES 37

• The cohomological degree of half-edges. It is a map | · | : H(Γ) → Z
such that |h1| + |h2| = N for an edge e = {h1, h2} ∈ E(Γ). Then the
cohomological degrees of vertices and edges are defined by

|v| := |h1|+ · · ·+ |hr| −N, |e| := N

for v = {h1, . . . , hr} ∈ V (Γ) and e ∈ E(Γ).
• The division of the set Vi(Γ) of internal vertices to two disjoint sets

Vi(Γ) = Vn(Γ)⨿ Vs(Γ)
such that all elements in Vs(Γ) have cohomological degree −1 and the
valency ≥ 3. An element of Vn(Γ) is called normal vertex, and one of
Vs(Γ) is called special vertex.

The set of isomorphism classes of such graphs is denoted by G(N). Here an iso-
morphism between N -graded graphs is a bijection between the sets of half-edges
preserving all information of N -graded graphs.

Example 12.4. In the case of N = 4 and Z = {0, 1, 2, 3, 4}, we can give examples
of 4-graded graphs in Figure 1. In these figures,

• a black vertex • means a normal vertex, a white vertex ◦ a special vertex
and a square vertex ■ a univalent vertex, and

• a number drawn beside a half-edge is its degrees.

1
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3

1

2

2

0

4

Figure 1. Examples of 4-graded graphs

12.2.2. Decoration on vertices. We shall give the relation equivalent to the dual of
vertices defined by the cyclic Lie operad as in [8, 15, 28].

Definition 12.5. Let Γ be an N -graded graph.

• We introduce to Cyc(v)[N ] for v ∈ Vi(Γ) the commutativity relation

Sv,hr;s(o) :=
∑

τ∈Sh(s,r−s−1)

oτ
(v,hr)

= 0,

oτ
(v,hr)

:= ϵ[hτ(1), . . . , hτ(r−1), hr]cycσ,

for r − 1 > s > 0 and o = [h1, . . . , hr]cycσ ∈ Cyc(v)[N ], where Sh(p, q) is
the set of (p, q)-shuffles, σ is the symbol of the N -fold suspension, and
ϵ is the Koszul sign. Then we denote the obtained space by C(v) =
Cyc(v)[N ]/(com. rel.). (In the case of r = 3, it is the AS-relation for
Jacobi diagrams.)
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Figure 2. Commutativity (r = 3, 4). (Koszul signs are omitted in figures.)

12.2.3. Decoration on N -graded graphs. Set

Õcom(W,Γ) :=
⊙

e∈E(Γ)

O(e)⊗
⊙

u∈Ve(Γ)

W [−N ]|u| ⊗
∧

vs∈Vs(Γ)

C(vs)⊗
∧

v∈Vn(Γ)

C(v),

where⊙
u∈U

V (u) :=

{
vu1
· · · vuk

∈ Sk

(⊕
u∈U

V (u)

)
; vui

∈ V (ui), (u1, . . . , uk) ∈ Ord(U)

}
,

∧
u∈U

V (u) :=

{
vu1 · · · vuk

∈ Λk

(⊕
u∈U

V (u)

)
; vui ∈ V (ui), (u1, . . . , uk) ∈ Ord(U)

}
for a family (V (u))u∈U of Z-graded vector spaces indexed by a finite set U . This
tensor product consists of four factors: the first factor means directions of edges of
Γ, the second factorW -labels of external vertices of Γ, the third factor (equivalence
classes of) cyclic orderings on special vertices of Γ, and the fourth factor the same
on normal vertices of Γ. Note that W [−N ]|u| = W|h|[−N ] for an external vertex
u = {h}.

We need to identify elements of Õcom(W,Γ) by the symmetry of Γ. An au-
tomorphism α of an N -graded graph Γ ∈ G(N) induces the linear isomorphism
C(v)→ C(α(v)) for v ∈ Vi(Γ) described by

[h1, . . . , hk]cyc 7→ [α(h1), . . . , α(hk)]cyc,

and the identity map W [−N ]|u| →W [−N ]|α(u)| =W [−N ]|u| for u ∈ Ve(Γ). There-
fore the automorphism group of Γ acts on the vector space Õcom(W,Γ) by the in-

duced permutation of half-edges. Then the coinvariant vector space of Õcom(W,Γ)
by this action is denoted by Ocom(W,Γ). We often consider an element o of
Ocom(W,Γ) described by the form

o = [o1, . . . , ol;w1, . . . , wke ; c
s
1, . . . , c

s
ks
; c1, . . . , ckn ].

:= (o1 · · · ol)⊗ (w1 · · ·wke
)⊗ (cs1 · · · csks

)⊗ (c1 · · · ckn
)

where wi ∈W [−N ]|ui| and

oi = [ôi], csi = [ĉsi ]cycσ, ci = [ĉi]cycσ,

for ôi ∈ Ord(ei), ĉi ∈ Ord(vi) and ĉsi ∈ Ord(vsi ). Such element o is called an
orientation of Γ, a pair (Γ, o) is an oriented graph, and the information

ô = (ô1, . . . , ôl;w1, . . . , wke
; ĉs1, . . . , ĉ

s
ks
; ĉ1, . . . , ĉkn)
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is called a lift of an orientation o = [ô] on Γ. The vector space Ocom(W,Γ) is
generated by orientations.

Example 12.6. In the case of N = 4 and Z = {0, 1, 2, 3, 4}, we can give examples
of decorated 4-graded graphs in Figure 3 and 4. In these figures,

• an arrow on an edge means a direction, and
• an arc drawn around a vertex is an ordering of half-edges incident to this
vertex.
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Figure 3. Non-labeled examples: the left (Γ, o1) and the right (Γ, o2)
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Figure 4. A labeled example

In Figure 3, the degrees of vertices are v1 = −1, v2 = 4, v3 = 5, and v4 = 4. In
the space O(Γ), we have

o1 = (−1)5·4+1(−1)3·1+1(−1)3·(3+1+1)o2 = o2,
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where the signs (−1)5·4+1, (−1)3·1+1, (−1)3·(3+1+1) are coming from changes of the
ordering of vertices, the direction of the edge between v2 and v4 and the ordering
of half-edges incident to v4 respectively.

In Figure 4, elements w1 ∈ W3 and w2 ∈ W4 are labels of univalent vertices
v1, v2 (their names v1, v2 of vertices are omitted in the figure). Note their degrees
|v1| = |w1σ

−1| = −1, |v2| = |w2σ
−1| = 0.

12.2.4. Definition of the bigraded vector space Ĉ•,•
com(W ). The cohomological bide-

gree (p, q) ∈ Z× Z of Γ ∈ G(N) is defined by

p = #Vn(Γ), q =
∑

v∈Vn(Γ)

|v| = #Vs(Γ) +N(#E(Γ)−#V (Γ))−
∑

u∈Ve(Γ)

|u|,

and bidegree of elements in Ocom(W,Γ) is defined by that of Γ. We define the
space of N-graded ribbon graphs by

Ĉ•,•
com(W ) :=

⊕
Γ∈G(N)

Ocom(W,Γ), Ĉp,q
com(W ) :=

⊕
Γ∈Gp,q(W )

Ocom(W,Γ),

where Gp,q(W ) is the subset of G(N) consisting N -graded graphs of degree (p, q).

Then Ĉ•,•
com(W ) can be regarded as bigraded vector space. We often denote an

element in Ĉ•,•
com(W ) corresponding to o ∈ Ocom(W,Γ) for Γ ∈ G(N) by (Γ, o).

12.2.5. Definition of the first differential d. We define the linear map da,bv;h1,h2 :

Ocom(W,Γ) → Ĉ•,•
com(W ) for an N -graded graph Γ ∈ G(N), a normal vertex v ∈

Vn(Γ), two distinct half-edges h1, h2 incident to v, a, b ∈ Z satisfying a + b = N .
For an order h1, . . . , hr of half-edges incident to v such that h1 = hr and h2 = hi,
put

da,bv;h1,h2(Γ, [−;−;−; [h1, . . . , hr]σ,−])

= (Γa,b
v;h1,h2 , [−, [h′, h′′];−;−; [h1, . . . , hi, h′]σ, [h′′, hi+1, . . . , hr]σ,−]).

Here σ is the N -fold suspension, and the N -graded graph Γa,b
v;h1,h2 is defined by

H(Γa,b
v;h1,h2) = H(Γ)⨿ {h′, h′′}, V (Γa,b

v;h1,h2) = (V (Γ) \ {v})⨿ {v′, v′′},

Vs(Γ
a,b
v;h1,h2) = Vs(Γ), E(Γa,b

v;h1,h2) = E(Γ)⨿ {e0},

where v′ = {h1, . . . , hi, h′}, v′′ = {h′′, hi+1, . . . , hr}, e0 = {h′, h′′}, |h′| = a and

|h′′| = b. Note that the equation above is enough to define the operator da,bv;h1,h2

and the operator is well-defined.

→

…

……

…

Figure 5. The operator da,bv;hs,ht
.
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Then we obtain the linear map d : Ĉ•,•
com(W )→ Ĉ•,•

com(W ) by

dv(Γ, o) :=
1

2

∑
a+b=N

∑
h1 ̸=h2∈v

da,bv;h1,h2(Γ, o), d(Γ, o) :=
∑

v∈Vn(Γ)

dv(Γ, o).

The map d can be also described by

dv(Γ, o) =
∑

a+b=N

∑
0≤s<t<r

da,bv;hs,ht
(Γ, o),

where o = [−;−;−; [h1, . . . , hr]σ,−] and v = {h1, . . . , hr}. Remark the relation

da,bv;h1,h2(Γ, o) = db,av;h2,h1(Γ, o)

for half-edges h1 ̸= h2 ∈ v. Here well-definedness of d is proved by the relation with
the commutativity relation:

Proposition 12.7. Using the notations above, dvSv,hr;i(Γ, o) is equal to zero under
the commutativity relation.

Proof. For integers p, q, we define the linear ordered set [p, q] by {p < p+1 < · · · <
q − 1 < q}. If p > q, put [p, q] = ∅. For partial ordered sets P1, P2, we denote
their direct sum by P1 + P2 (in the category of posets), and their ordinal sum by
P1 ⊕ P2. Then a (p, q)-shuffle is equivalent to the inverse of an order-preserving
bijection [1, p] + [p+ 1, p+ q]→ [1, p+ q].

Let τ−1 : [1, i]+[i+1, r−1]→ [1, r−1] be an (i, r−i−1)-shuffle and 0 ≤ s < t < r
integers. Put L = τ([s+ 1, t]) and l = t− s.

If τ(s + 1), . . . , τ(t) are ≤ i, then we have τ(s + m) = τ(s + 1) + (m − 1) for
1 ≤ m ≤ t − s since [1, i] → τ−1([1, i]) is an isomorphism between posets. Put
a = τ(s+ 1)− 1. Then we obtain the shuffle τ2 by τ :

[1, i− l + 1] + [i− l + 2, r − l]
τ−1
2 // [1, r − l]

[1, a]⊕ {∗} ⊕ [a+ l, i] + [i+ 1, r − 1]
bij. //

canonical isom.

OO

[1, s]⊕ {∗} ⊕ [t+ 1, r − 1]

canonical isom.

OO

[1, i] + [i+ 1, r − 1]

OOOO

τ−1
// [1, r − 1]

OOOO

The shuffle τ can recover from a pair (a, l, τ2), where {a+ 1, . . . , a+ l} ⊂ [1, i] and
an (i− l + 1, r − i− 1)-shuffle τ2.

Similarly, if τ(s+ 1), . . . , τ(t) are ≥ i+ 1, we can obtain a triple (a, l, τ2), where
{a+ 1, . . . , a+ l} ⊂ [i+ 1, r − 1] and an (i− l + 1, r − i− 1)-shuffle τ2.

Otherwise, put p = #(L ∩ [1, i]). Then we obtain the shuffle τ1 by restricting τ :

[1, p] + [p+ 1, l]

canonical isom.

��

τ−1
1 // [1, l]

canonical isom.

��
L� _

�

τ−1
// τ−1(L)� _

�
[1, i] + [i+ 1, r − 1]

τ−1
// [1, r − 1]
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We consider L̄ = ([1, i] + [i + 1, r − 1]) \ L and the order-preserving bijection
ρ−1 : L̄ → [1, s] ⊕ [t + 1, r − 1] defined by the restriction of τ−1. The shuffle τ
recovers from a pair (ρ, τ1), where ρ−1 : L̄ → [1, s] ⊕ [t + 1, r − 1] is an order-
preserving bijection and τ1 is a (p, l − p)-shuffle.

Thus we have

dvSv,hr;i([h1, . . . , hr]σ) =

r−1∑
l=1

(
l−1∑
p=1

∑
ρ

∑
τ1

o
τ
(v′,h′)
1

ρ +
∑
a

∑
τ2

o
τ
(v′′,hr)
2

a,l

)

=

r−1∑
l=1

(
l−1∑
p=1

∑
ρ

Sv′,h′;p(oρ) +
∑
a

Sv′′,hr;i−l+1(oa,l)

)
,

where L = {1, . . . , r − 1} \ L̄ = {u1 < · · · < up as integers},

oρ = ϵ[[hu1 , . . . , hup , h
′]σ, [hρ(1), . . . , hρ(s), h

′′, hρ(t+1), . . . , hρ(r−1), hr]σ],

oa,l = ϵ′[[ha+1, . . . , ha+l, h
′]σ, [h1, . . . , ha, h

′′, ha+l+1, . . . , hr]σ],

and ϵ, ϵ′ are appropriate Koszul signs. (In these equations, the subscriptions cyc
are omitted.) □

12.2.6. Definition of the second differential L. For Γ ∈ G(N), let iv(Γ) be the N -
graded graph obtained by converting a normal vertex v of degree −1 to a special ver-
tex. We define the linear map iv : Ocom(W,Γ)→ Ocom(W, iv(Γ)) for o ∈ Ocom(W,Γ)
such that

iv(Γ, [−;−;−; c,−]) = (iv(Γ), [−;−;−, c;−])
for c ∈ C(v) if v has degree −1 and valency ≥ 3, and iv(Γ, o) = 0 if v does not.
Since the relation

iv1Sv2,hr;k(Γ, o) = Sv2,hr;kiv1(Γ, o)

for v1, v2 ∈ Vi(Γ) holds clearly, the map iv is well-defined. Then the linear map

L : Ĉ•,•
com(W )→ Ĉ•,•

com(W ) is defined by

L := id− di,

where the linear map i : Ĉ•,•
com(W )→ Ĉ•,•

com(W ) is obtained by

i(Γ, o) :=
∑

v∈Vn(Γ)

iv(Γ, o).

The map L is also described by

L(Γ, o) =
∑

v∈Vn(Γ)

(iv′ + iv′′)dv(Γ, o)

since iudv = dviu for normal vertices u ̸= v.
Then d, i, and L have (cohomological) bidegree (1, 0), (−1, 1) and (0, 1) respec-

tively.

12.2.7. Definition of the underlying bigraded vector space C•,•
com(W ). The space

C•,•
com(W ) is the quotient space of Ĉ•,•

com(W ) by

• (A∞-relation)

Rv(Γ, o) := iv′iv′′dv(Γ, o) = 0

for Γ ∈ G(N) and a normal vertex v (of degree −2).
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……

…

Figure 6. A∞-relation.

• (Cut-off relation) For Γ ∈ G(N) and e = {h1, h2} ∈ E(Γ), we define the
N -graded graph Γe as follows:

H(Γe) = H(Γ)⨿ {h̄1, h̄2},
E(Γe) = (E(Γ) \ {e})⨿ {{h1, h̄1}, {h2, h̄2}},

V (Γe) = V (Γ)⨿ {{h̄1}, {h̄2}},
|h̄1| = N − |h1| =: a, |h̄2| = N − |h2| =: b.

Then

(Γ, [[h1, h2],−;−;−;−]) =
∑

|xi|=a,|xj |=b

ωij(Γe, [[h1, h̄1], [h̄2, h2],−;xiσ−1, xjσ−1,−;−;−]),

where {xi} is a homogeneous basis of W and (ωij) is the inverse matrix of
(ω(xi, xj)).

Figure 7. Cut-off relation.

Remark that C•,•
com(W ) is generated by W -labeled graphs with only one internal

vertex by cut-off relation.

12.2.8. On well-definedness of three operators d, i, L on C•,•
com(W ). The endomor-

phisms d, i and L of Ĉ•,•
com(W ) induce endomorphisms of C•,•

com(W ) by the equations

dRv(Γ, o) =
∑
u̸=v

Rvdu(Γ, o), iRv(Γ, o) =
∑
u ̸=v

Rviu(Γ, o)

for a normal vertex v of an N -graded graph Γ.

12.2.9. On two differentials d, L on C•,•
com(W ).

Proposition 12.8. The bigraded vector space C•,•
com(W ) is a double complex with

respect to differentials d and L. We call C•,•
com(W ) double graph complex.

Proof. First, we show the equation d2 = 0. It is proved in the same way as Kontse-
vich’s original graph complex. For a normal vertex v of an N -graded graph (Γ, o),
let v′, v′′ be new vertices obtained by splitting at v. Then

dv′dv(Γ, o) = −dv′′dv(Γ, o) dudv(Γ, o) = −dvdu(Γ, o)
for u ̸= v holds. The first equation is shown by Figure 8. In the figure, v′ and v′′

are defined such that the direction of the new edge is from v′ to v′′ in Figure 8, and
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(v′)′, (v′)′′, (v′′)′, (v′′)′′ are also defined in the same way. So we obtain d2(Γ, o) = 0
by cancellation.

……

…

…

…

……

…

…

…

Figure 8. dv′dv(Γ, o) = −dv′′dv(Γ, o).

Next, we show L2 = 0. From the equation in Ĉ•,•
com(W )

(iL− Li)(Γ, o) =

∑
u

iu(iv′ + iv′′)dv −
∑
u ̸=v

(iv′ + iv′′)dviu

 (Γ, o)

=
∑
v

(iv′′iv′ + iv′iv′′)dv(Γ, o)

= 2
∑
v

Rv(Γ, o),

we obtain the relation iL− Li = 0 in C•,•
com(W ). So the equations

L2 = (id− di)L = idL− diL = idL− dLi = idid− didi,
L2 = L(id− di) = Lid− Ldi = iLd− Ldi = −idid+ didi

hold. Then we obtain L2 = 0. Since Ld+ dL = −did+ did = 0 holds by definition
of L, we get the proposition. □
12.3. Construction of the map to Chevalley-Eilenberg complexes. Let
(W,ω) and Z be as Section 12.2 and δ be a symplectic and quadratic differen-

tial of homological degree −1 on L̂W . In this section, the Lie algebra Derω(L̂W )
of symplectic derivations is denoted by D. We construct a double chain map

C•,•
com(W )→ C•,•

CE(D)
from the graph complex C•,•

com(W ) to the Chevalley-Eilenberg complex of the dgl
(D, ad(δ)).

Let (Γ, o) be an oriented graph and ô be a lift of o. Put

k = #V (Γ), ke = #Ve(Γ), ks = #Vs(Γ), kn = #Vn(Γ),

(r1, . . . , rk) := (1, . . . , 1︸ ︷︷ ︸
ke

, a1, . . . , aks+kn
)

:= (1, . . . , 1︸ ︷︷ ︸
ke

,#vs1, . . . ,#v
s
ks
,#v1, . . . ,#vkn

)

We denote by τ(ô) the linear isomorphism (the permutation of factors of the tensor
product)

W⊗r1 ⊗ · · · ⊗W⊗rk →W⊗2 ⊗ · · · ⊗W⊗2 = (W⊗2)⊗l

corresponding to the permutation of half-edges

(h1, . . . , hke
, ĉs1, . . . , ĉ

s
ks
, ĉ1, . . . , ĉkn

) 7→ (ô1, . . . , ôl).
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Then we define the linear map α(Γ, ô) of cohomological degree (l − k)N by com-
posing these maps

α(Γ, ô) :W [−N ]⊗ke ⊗Derω(L̂W )⊗(ks+kn) proj.→ W [−N ]⊗ke ⊗
ks+kn⊗
i=1

Derai+2
ω (L̂W )

Φ≃W [−N ]⊗ke⊗
ks+kn⊗
i=1

W (ai)[−N ] ⊂
k⊗

i=1

(W⊗ri [−N ])
σ⊗k

→
k⊗

i=1

W⊗ri τ(ô)→ (W⊗2)⊗l ωE→ R,

where Φ := id⊗ke

W [−N ] ⊗ Φ
⊗(ks+kn)
ω , ωE := ωe1 ⊗ · · · ⊗ ωel and ωej := ω

(|h
ej
1 |,|h

ej
2 |) if

ej = {hej1 , h
ej
2 }. Here we denote by ω(d1,d2) for integers d1, d2 the composition of

the projection W ⊗W → Wd1
⊗Wd2

and the restriction of ω to Wd1
⊗Wd2

. The
map α(Γ, ô) is independent of a choice of linear orders of half-edges representing
cyclic orders, and compatible with the commutativity relation.

We define the map ψ̂(Γ, ô) : D⊗kn → R by

ψ̂(Γ, ô)(D1, . . . , Dkn
) := α(Γ, ô)(w1, . . . , wke

, δ, . . . , δ︸ ︷︷ ︸
ks

, D1, . . . , Dkn
)

for Di ∈ D. Restricting the map1 on the exterior algebra, we can get the map

ψ(Γ, o) = ψ̂(Γ, ô) ◦Altkn
: ΛknD → R.

The map is independent of a representation ô of o by the definition of an orientation.
So we obtain the map ψ : C•,•

com(W )→ C•,•
CE(D).

1
1

1

3

3 3
3

1 2

204

Figure 9. An example of ψ̂(Γ, ô)(D1, D2) (Γ is the decorated
graph in Figure 4.)

Well-definedness of ψ is proved by the correspondence through ψ between rela-
tions in the graph complex C•,•

com(W ) correspond to properties of derivations as the
following table:

By definition, it is clear except for the A∞-relation. The correspondence for the
A∞-relation is proved in the end of the proof of the following theorem.

1For a graded vector space V , the injective map Altn : ΛnV → V ⊗n is defined by

Altn(v1 · · · vn) =
1

n!

∑
σ∈Sn

ϵ̄(σ)vσ(1) ⊗ · · · ⊗ vσ(n)

for v1, . . . , vn ∈ V , where ϵ̄(σ) is the corresponding anti-Koszul sign.
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graph complex derivations
cyclicity symplectic derivation

commutativity Lie derivation
A∞-relation δ2 = 0

cut-off symplectic form

Theorem 12.9. The map ψ : C•,•
com(W )→ C•,•

CE(D) is a double chain map.

Proof. First, we shall show that dCEψ = ψd on Ĉ•,•
com(W ). To prove this, we need

Lemma ??.
For an oriented graph (Γ, o), we define the two lifts ô1, ô2 on Γs,t

vi;hν ,hµ
as follows:

ô1 = ((h′, h′′),−;−;−; v1, . . . , v′i, v′′i , . . . , vp),

ô2 = ((h′′, h′),−;−;−; v1, . . . , v′′i , v′i, . . . , vp),
v′i = (hiν+1, . . . , h

i
µ, h

′), v′′i = (hi1, . . . , h
i
ν , h

′′, hiµ+1, . . . , h
i
ri),

where ri = #vi. The signs ϵi defined by the equations

o1 := ϵ1[ô
1], o2 := ϵ2[ô

2], ds,tvi,hν ,hµ
o = (−1)i−1o1 = (−1)i−1o2.

So we obtain

d(Γ, o) =

k∑
i=1

∑
ν<µ

∑
a+b=N

(−1)i−1(Γa,b
vi;hν ,hµ

, o1)

=

k∑
i=1

∑
ν<µ

∑
a+b=N

(−1)i−1(Γa,b
vi;hν ,hµ

, o2).

Note that

dCE(χ ◦Altp) =
1

2

p∑
s=1

(−1)s−1χ ◦ (1⊗s−1 ⊗ [ , ]⊗ 1⊗p−s) ◦Altp+1

for a linear map χ :W⊗r1 [−N ]⊗· · ·⊗W⊗rp [−N ]→ R and the anti-symmetrization
Altp for p-components. So we should prove

ψ̂(Γ, ô) ◦ (1⊗i−1 ⊗ [ , ]⊗ 1⊗p−i−1)

=
∑
ν<µ

∑
a+b=N

(ϵ1ψ̂(Γ
a,b
vi;hν ,hµ

, ô1) + ϵ2ψ̂(Γ
a,b
vi;hν ,hµ

, ô2) ◦ τ),

where the map τ means the permutation

X1 ⊗ · · · ⊗ (xν+1 · · ·xµx′)⊗ (x1 · · ·xνx′′xµ+1 · · ·xri)⊗ · · · ⊗Xp

7→ ϵ ·X1 ⊗ · · · ⊗ (x1 · · ·xνx′xµ+1 · · ·xri)⊗ (xν+1 · · ·xµx′′)⊗ · · · ⊗Xp

and ϵ is the Koszul sign. It follows from the equations

ψ̂(Γ, ô) ◦ (1⊗i−1 ⊗ σ−1(1⊗ ω(a,b))π
r′,r′′

1;t σ⊗2 ⊗ 1⊗p−i−1) = ϵ1ψ̂(Γ
a,b
vi;hν ,hµ

, ô1),

ψ̂(Γ, ô) ◦ (1⊗i−1 ⊗ σ−1(1⊗ ω(a,b))π
r′,r′′

2;t σ⊗2 ⊗ 1⊗p−i−1) = ϵ2ψ̂(Γ
a,b
vi;hν ,hµ

, ô2) ◦ τ,
for r′ = µ− ν + 1, r′′ = r − µ+ ν + 1, and t = ν + 1. The first equation is verified

as follows: we have by the definition of ψ̂

ω(x′, x′′)ψ̂(Γ, ô)(X1, . . . , Xp) = ϵ1ψ̂(Γ
a,b
vi;hν ,hµ

, ô1)(X1, . . . , X
′
i, X

′′
i , . . . , Xp)
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for Xs ∈ W⊗rs , x′ ∈ Wa, and x′′ ∈ Wb. Here we put X ′
i = xν+1 · · ·xµx′σ−1

and X ′′
i = x1 · · ·xνx′′xµ+1 · · ·xrσ−1 for Xi = x1 · · ·xrσ−1. So we obtain the first

equation from

ϵ1Xiω(x
′, x′′) = σ−1(1⊗ ω)πr′,r′′

1;t ⊗ σ⊗2(X ′
i ⊗X ′′

i )

The second is also verified in the same way.
Next, we shall prove iδψ = ψi on Ĉ•,•

com(W ). The ordering

ôi := (−;−;−; vi, v1, . . . , v̂i, . . . , vp)
is a lift of ϵ̄i · o, where ϵ̄i is the anti-Koszul sign of the permutation

(v1, . . . , vp) 7→ (vi, v1, . . . , v̂i, . . . , vp).

So we have

ψi(Γ, o)(X1, . . . , Xp−1)

=

j∑
s=1

ϵ̄i · α(ivi(Γ), ôi)(w1, . . . , wke
, δ, . . . , δ︸ ︷︷ ︸

ks+1

,Altp−1(X1, . . . , Xp−1))

=

j∑
s=1

∑
π∈Sp−1

ϵ̄ · α(Γ, ô)(w1, . . . , wke
, δ, . . . , δ︸ ︷︷ ︸

ks

, Xπ(1), . . . , δ, . . . ,Xπ(p−1))

=α(Γ, ô)(w1, . . . , wke
, δ, . . . , δ︸ ︷︷ ︸

ks

,Altp(δ,X1, . . . , Xp−1))

=iδψ(Γ, o)(X1, . . . , Xp−1)

where ϵ̄ is the anti-Koszul sign of

(δ,X1, . . . , Xp−1) 7→ (Xπ(1), . . . , δ, . . . ,Xπ(p−1)).

From the discussion above, the relation ψ(Rv(Γ, o)) = 0 follows from

ψ(Rv(Γ, o)) = ψ(iv′iv′′dv(Γ, o)) = ψ(Γ, o)([δ, δ],−) = 0.

Thus ψ induces the map ψ : C•,•
com(W ) → C•,•

CE(D). Furthermore, since ψ is com-
mutative with d and i, so is L. So we complete the proof. □

The group Sp(W, δ) acts on C•,•
com(W ) by the action on the their labels. Then, the

chain map ψ : C•,•
com(W ) → C•,•

CE(D) is Sp(W, δ)-equivariant clearly. Especially we

can consider the Sp(W, δ)-invariant part C•,•
com(W )Sp(W,δ) of the complex C•,•

com(W ).
It has the double subcomplex C•,•

com(N,Z) consisting of N -graded graphs which have
no external vertex. This complex C•,•

com(N,Z) does not depend on the symplectic
vector spaceW . It depends only a range Z of degrees and a degreeN of a symplectic
inner product.

Remark 12.10. We can define the associative version of C•,•
com(W ) as follows. Set

Õass(W,Γ) :=
⊙

e∈E(Γ)

O(e)⊗
⊙

u∈Ve(Γ)

W [−N ]|u|⊗
∧

vs∈Vs(Γ)

Cyc(vs)[N ]⊗
∧

v∈Vn(Γ)

Cyc(v)[N ],

C•,•
ass (W ) :=

⊕
Γ∈G(N)

Oass(W,Γ), Oass(W,Γ) := Õass(W,Γ)Aut(Γ).

Then (C•,•
ass (W ), d, L) is also a double Sp(W, δ)-chain complex and the chain map

C•,•
ass (W )→ C•,•

CE(Derω(T̂W ))
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can be defined in the same way. In this case, we can also consider the double sub-
complex C•,•

ass (N,Z) which consists of N -graded graphs without external vertices.

13. Applications and examples

Examples of relations between our chain map and a known notion are written
in the following two Examples.

Example 13.1. For a cyclic minimal A∞-algebra (H, I,m) with even degree,

putting W := H∗[−1], we have the map C•,•
ass (W ) → C•,•

CE(Derω(T̂W )). Here T̂W
is the dual of the bar construction of (H, I,m). The map induced by the chain map

C0,•
ass (N,Z)→ C0,•

CE(Derω(T̂W )) = R

is known as the Kontsevich cocycle ([25, 37, 17]) of a cyclic A∞-algebra (H, I,m).

Example 13.2. In the case of Z = {0} and δ = 0, the chain map

C•,0
ass (0, {0})→ C•,0

CE(Derω(T̂W ))Sp(W )

is equal to Kontsevich’s chain map [25, 26].

In the case that W is positively graded, we define a chain complex C•,•
com(W )+

by

C•,•
com(W )+ = C•,•

com(W )/(positivity),

where the positivity relation is as follows:

• (positivity) (i) a graph which has a normal vertex v satisfying |v| ≤ 0
is zero, and (ii) (iv′ + iv′′)dv(Γ, o) = 0 for an oriented graph (Γ, o) and a
normal vertex v of degree 0.

The differentials d, L are also defined on C•,•
com(W )+, while i is not.

Proposition 13.3. The operators d, L induce the differentials on C•,•
com(W )+.

Proof. It is clear that these operators are compatible with the former condition (i)
of the positivity relation. Note that, to prove compatibility with L for a graph
including a vertex with degree 0, we need to use (ii).

We shall prove they are compatible with (ii). First, we shall calculate the image
of (ii) by the operator d. For Γ ∈ G(N) and a normal vertex v of degree 0, we have

d(iv′ + iv′′)dv = dv′′iv′dv + dv′iv′′dv +
∑

u̸=v′,v′′

du(iv′ + iv′′)dv

= dv′′iv′dv + dv′iv′′dv −
∑
u̸=v

(iv′ + iv′′)dvdu.

Here we used the equations in the proof of Theorem 12.8. For a splitting of v such
that |v′| = −1, dv′′iv′dv must have a non-positive vertex since |v′′| = 1. In the
same way, dv′iv′′dv also have a non-positive vertex. So d(iv′ + iv′′)dv is equal to
zero under the positivity relation.
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Next, we shall calculate the image of (ii) by the operator L:

L(iv′ + iv′′)dv =
∑
u

(iu′ + iu′′)du(iv′ + iv′′)dv

=(i(v′′)′ + i(v′′)′′)dv′′iv′dv + (i(v′)′ + i(v′)′′)dv′iv′′dv

−
∑
u ̸=v

(iv′ + iv′′)dv(iu′ + iu′′)du

=(i(v′′)′ + i(v′′)′′)iv′dv′′dv + (i(v′)′ + i(v′)′′)iv′′dv′dv

−
∑
u≠v

(iv′ + iv′′)dv(iu′ + iu′′)du.

By changing names of vertices like the proof of Theorem 12.8, we get

(i(v′′)′ + i(v′′)′′)iv′dv′′dv = −(i(v′)′′ + iv′′)i(v′)′dv′dv = −Rv′dv′dv − i(v′)′iv′′dv′dv,

and

(i(v′′)′ + i(v′′)′′)iv′dv′′dv + (i(v′)′ + i(v′)′′)iv′′dv′dv

=−Rv′dv′dv + i(v′)′′iv′′dv′dv

=−Rv′dv′dv − i(v′′)′i(v′′)′′dv′′dv

=−Rv′dv′dv −Rv′′dv′′dv

Using the A∞-relation, L(iv′ + iv′′)dv is equal to zero under the positivity relation.
□

Then we can also get the chain map

ψ+ : C•,•
com(W )+ → C•(Der+ω (LW ))

induced by ψ.

Example 13.4. SupposeX = #g(S
n×Sn)\IntD2n. Its Quillen model is described

by:

LX = L(u1, v1, . . . , ug, vg) (deg ui = deg vi = n− 1), δ = 0,

ω(ui, vj) = δij , ω(ui, uj) = ω(vi, vj) = 0.

It means N = 2n − 2, W = ⟨u1, v1, . . . , ug, vg⟩ and Z = {n − 1}. Then the dgl

(Der+ω (LX), 0) is a Quillen model of B aut∂,0(X) (which is proved in [2]). In the
case, we can forget all special vertices in the graph complex sicne δ = 0. So we
have the chain map

C•,•
com(2n− 2, {n− 1})+/(special vertices)→ C•,•

CE(Der+ω (LX))Sp(W ).

This map is constructed by [2] and it is proved that the map is an isomorphism
under the limit g →∞.

Example 13.5. Suppose X = CP 3 \ IntD6. Its Quillen model is described by:

LX = L(u1, u2) (deg ui = 2i− 1), δ =
1

2
[u1, u1]

∂

∂u2
,

ω(u1, u2) = ω(u2, u1) = 1.

It means N = 4, W = ⟨u1, u2⟩ and Z = {1, 3}. Then the dgl (Der+ω (LX), δ) is a
Quillen model of B aut∂,0(X). Since Sp(W, δ) = 1, we have the chain map

C•,•
com(W )+ → C•,•

CE(Der+ω (LX)) = C•,•
CE(Der+ω (LX))Sp(W,δ).
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We shall define a certain sub dgl d of Derω(LX). Put

A1 =
1

2
[u1, u1]

∂

∂u2
, A2 =

1

2
[u2, u2]

∂

∂u1

B1 =
1

2
[u1, u1]

∂

∂u1
+ [u1, u2]

∂

∂u2
, B2 = [u1, u2]

∂

∂u1
+

1

2
[u2, u2]

∂

∂u2
.

Then we have
δ(A1) = δ(B1) = δ(B2) = 0,

δ(A2) =
1

2
[[u1, u1], u2]

∂

∂u1
+

1

2
[[u2, u2], u1]

∂

∂u2
= [A1, A2] = −[B1, B2] =: C,

[Ai, Bj ] = [Ai, Ai] = [Bj , Bj ] = 0 (i, j = 1, 2),

degA1 = −1, degA2 = 5, degB1 = 1, degB2 = 3, degC = 4.

Here we put δ(Z) := [δ, Z] for simplicity. By the relation above,

d := ⟨A1, A2, B1, B2, C⟩ = Der1ω(LX)⊕Der2ω(LX)

is a sub dgl of Derω(LX). Its positive truncation d+ is described by

d+ = ⟨A2, B1, B2, C⟩ ,

δ(A2) = −[B1, B2] = C, δ(B1) = δ(B2) = δ(C) = 0,

[A2, Bi] = [A2, A2] = [Bi, Bi] = [A2, C] = [Bi, C] = 0 (i = 1, 2).

Let x, y1, y2, z be the suspension of the dual basis of A2, B1, B2, C. Then the
Chevalley-Eilenberg complex of the dgl d+ is written by

C•,•
CE(d

+) = Λ(x, y1, y2, z) (deg x = 6, deg y1 = 2, deg y2 = 4, deg z = 5),

dx = dy1 = dy2 = 0, dz = x− y1y2
and its total cohomology

H•
CE(d

+) = Λ(x, y1, y2)/(x− y1y2).
Since d+ is the rank ≤ 2 part of Der+ω (LX), the map H•

CE(Der+ω (LX))→ H•
CE(d

+)
induced by the inclusion has a section. So non-trivial classes in H•

CE(d
+) gives

non-trivial classes in H•
CE(Der+ω (LX)).

The relation dz = x− y1y2 in the Chevalley-Eilenberg complex is corresponding
to the relation in the graph complex C•,•

com(W )+ described in Figure 10. Here the
classes x and y1y2 corresponds to the first term and the sum of the second and
third terms in the figure. Remark that y1 and y2 do not correspond to graphs
without external vertices. According to the positivity relation, all the trivalent
graphs appearing in the right hand side are cycles since the degrees of two half-
edges incident to a permitted bivalent vertex in C•,•

com(W )+ must be 3.

d          =            +          -213

13

13

1

13

3

1

1

1

3

3

3 1

1

1

3

3

3

Figure 10. the relation of graphs (the orientations are omitted)
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Example 13.6. Suppose X = CP 4 \ IntD8. Its Quillen model is described by:

LX = L(u1, u2, u3) (deg ui = 2i− 1), δ =
1

2
[u1, u1]

∂

∂u2
+ [u1, u2]

∂

∂u3
,

ω(u2, u2) = ω(u1, u3) = 1.

It means N = 6, W = ⟨u1, u2, u3⟩ and Z = {1, 3, 5}. Then the dgl (Der+ω (LX), δ) is
a Quillen model of B aut∂,0(X). Defining the linear transformation τ by τ(u1) =

−u1, τ(u2) = u2 and τ(u3) = −u3, we have Sp(W, δ) = {1, τ}. So C•,•
com(W )Sp(W,δ)

is generated by graphs labeled by u1, u2, u3 satisfying #{u1, u3-labeled vertex} is
even. For simplicity, we put

[ui1 · · ·uik ] := [ui1 , · · · , uik ]cyc =
k∑

s=1

(−1)s(k−s)uis+1
· · ·uikui1 · · ·uis ∈W k

cyc.

Using notations in Section 12.3, we can take a basis of W (2)

[uiuj ] ({i < j} ⊂ {1, 2, 3}),
a basis of W (3)

1

3
[uiuiui], [uiujuj ], [uiuiuj ] ({i < j} ⊂ {1, 2, 3}), [u1u2u3] + [u1u3u2]

and a basis of W (4)
[uiuiujuj ] (i < j),

[u1u1u2u3] + [u1u1u3u2], [u1u2u2u3]− [u1u3u2u2], [u1u2u3u3]− [u1u3u3u2].

We put the corresponding rank 0, rank 1 and rank 2 basis of Derω(LX)

Pij , Aiii, Aijj , Aiij , A123, Biijj , B1123, B1223, B1233,

and these dual basis pij , xijk and yijkl of Pij , Aijk and Bijkl. Then by direct

calculation we have the equations in C•,•
CE(Der+ω (LX))

dy1122 = x222 − 2x123 + x122x113 − x122x122,
dy2233 = x333x122 + x233x222 − x223x223 − 2x123x233 + x133x223 + 2p23y1233,

dy1133 = x233 − x133x113 − x123x123 − 2p23y1123,

dy1123 = x223 − x133 − p23y1122,
dy1223 = x233 + x223x122 + x123x123 − x223x113 − x123x222 − x133x122 + p23y1123,

dy1233 = x333 + x233x122 − x123x223 − x233x113 − x123x122 + p23y1133.

Here all terms appearing in the right-hand side of the equations are cocycles. For
example, the fifth relation is corresponding to the relation in the graph complex
C•,•

com(W )+ described in Figure 11. In Figure 11, the image by ψ+ of each graph
appearing the last term of the right hand side is zero.
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d        =           +            +
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-          -         -         +
15

33
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①
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graphs including 

bivalent vertices+(          )

Figure 11. the relation of graphs ( 1⃝, 2⃝ mean the orientation of
vertices and the other orientations are omitted)
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[10] J. Frenkel, Cohomology non abélienne et espaces fibrés, Bull. Soc. Math. France, 85, 2 (1957),

135-220.

[11] E. Getzler, Lie theory for nilpotent L∞-algebras, Ann. of Math. (2) 170 (2009), no.1, 271-301.
[12] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian intersection Floer theory - anomaly

and obstruction, AMS/IP Studies in Advanced Mathematics, 46. American Mathematical

Society, Providence, RI; International Press, Somerville, MA, 2009.
[13] E. Getzler and J. D. S. Jones, A∞-algebras and the cyclic bar complex, Illinois J. Math. 34,

(1990), 256-283.

[14] V. K. A. M. Gugenheim, L. A. Lambe, and J. D. Stasheff, Algebraic aspects of Chen’s twisting
cochain, Illinois J. Math. 34 (1990), no. 2, 485–502.

[15] A. Hamilton, A super-analogue of Kontsevich’s theorem on graph homology, Letters in Math-
ematical Physics 76 (2006), 37-55.

[16] A. Hamilton and A Lazarev, Homotopy algebras and noncommutative geometry,

arXiv:0410621.
[17] A. Hamilton and A Lazarev, Characteristic classes of A∞-algebras, J. Homotopy Relat.

Struct. 3 (2008), no. 1, 65-111.



CHARACTERISTIC CLASSES OF FIBER BUNDLES AND GRAPH COMPLEXES 53

[18] T. Kadeishvili, Cohomology C∞-algebra and rational homotopy type, Banach Center Publi-
cations 85, 2009, 225-240,

[19] H. Kajiura, Noncommutative homotopy algebras associated with open strings, Rev. Math.
Phys. 19 (1) (2007), 1-99.

[20] H. Kajiura, T. Matsuyuki and Y. Terashima, Homotopy theory of A∞-algebras and charac-

teristic classes of fiber bundles, arXiv:1605.07904.
[21] H. Kajiura and Y. Terashima, Homotopy equivalence of A∞-algebras and gauge transforma-

tion, preprint, 2003.

[22] N. Kawazumi, Harmonic Magnus expansion on the universal family of Riemann surfaces,
arXiv preprint math/0603158 (2006).

[23] N. Kawazumi and S. Morita, The primary approximation to the cohomology of the moduli
space of curves and cocycles for the stable characteristic classes, Math. Res. Lett. 3 (1996),

no. 5, 629-641.
[24] M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys., 66(3):157-

216, 2003.

[25] M. Kontsevich, Feynman diagrams and low-dimensional topology, First European Congress
of Mathematics, Vol. II (Paris, 1992), 97-121, Progr. Math., 120, Birkhauser, Basel, 1994.

[26] M. Kontsevich, Formal (non)commutative symplectic geometry, The Gel’fand Mathematical
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