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Abstract

A method of decomposing a nonnegative matrix into a product of low rank non-
negative matrices, nonnegative matrix factorization (NMF), is widely applied to
pattern recognition and data analysis. However, mathematical theory of statis-
tical learning and application to multiple data have not been established. In this
thesis, we clarify the accuracy of statistical inference of NMF using variational
Bayes method and construct a method applicable to multiple data with different
granularity. The effectiveness will be clarified by numerical experiment.
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Chapter 1

Introduction

Due to the wide-spread of e-commerce and social networking service and the
development of sensor devices, various types of a large amount of data about
people and things have been collected and accumulated. Organizations and
companies analyze such data in order to, for example, improve their services
and customer satisfaction. Data analysis is now widely recognized as an im-
portant technology directly linked to the company’s strengths [Davenport and
Harris, 2007, Davenport et al., 2010]. It is also estimated that a lot of work is
automated by data analysis related technologies (AI, robots, etc.), and nearly
half of the work force will be substituted [Frey and Osborne, 2017, Nomura
Research Institute, 2015]. The importance of data analysis will further increase
in the future.

It is known that most of data to be analyzed in recent data analysis can be
expressed as a matrix with nonnegative elements, i.e., nonnegative matrix. For
example, a set of documents is represented by a matrix representing the number
of occurrences of words in each document, where rows and columns correspond
to documents and words, respectively. See Figure 1.1. Similarly, purchase logs
are expressed as a matrix representing the number of purchases of items by
users, where the rows and columns correspond to users and items.

Nonnegative Matrix Factorization (NMF) [Lee and Seung, 1999, Lee and
Seung, 2001] is a method that can automatically extract a latent pattern under-
lying data which are represented by nonnegative matrix and that can complete
missing values. More specifically, by applying NMF, the input matrix is decom-
posed into a product of low rank nonnegative matrices as shown in Fig. 1.2.
By using the obtained decomposition result, patterns in data are extracted and
missing values are complemented. By applying it to purchase logs, for instance,
it extracts potential purchasing patterns such as chocolate and coffee lover. It
is also possible to understand which purchasing pattern each user follows.

NMF are applied not only to one input matrix but also to multiple matrices,
fox example, each matrix represents the purchase logs of each month, as shown in
Fig. 1.3. This setting can be seen as the setting of statistical inference where data
which consist a set of samples are available. By applying NMF to such multiple

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Matrix representation of data.

matrices, we could extract a common pattern, e.g., which doesn’t depends on
the month when data are collected.

In this thesis, we report on two studies on NMF. The first study is to propose
an extended NMF that can handle multiple matrices whose granularity of the
rows or columns are different [Kohjima et al., 2015, Kohjima et al., 2017]. Due to
e.g., the difficulty of comprehensive data collection and protection of personal
information, it is required to analyze the data with different granularity, for
example, user individual’s data representing such as a visit count by user and
user group’s data representing such as purchase count by gender/age. Figure 1.4
shows a example of matrices whose granularity of the rows are different. Since
standard NMF shown in Fig. 1.3 cannot be applied in this setting, it is necessary
to construct new method and algorithm.

The second study is to provide a theoretical analysis of variational Bayesian
NMF (VBNMF) [Kohjima and Watanabe, 2017], a representative algorithm for
NMF. The factorization result output by the VBNMF is determined by the
contribution of the hyperparameter to the variational free energy (VFE), which
is the objective function of VBNMF. However, theoretical property of VFE has
not been clarified. This study investigates the property by asymptotic analysis
and clarifies phase transition diagram (Fig. 1.5), which describes the relation
between hyperparameters and factorization result.

The rest of this thesis is organized as follows:

• Chapter 2 introduces the model and algorithms of NMF.

• Chapter 3 is devoted to the proposed NMF models for analyzing multiple
dataset with inconsistent granularity.

• Chapter 4 provides our theoretical result of NMF.
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Figure 1.2: Nonnegative matrix factorization.

Figure 1.3: NMF handling multiple input matrices.

• Chapter 5 summarizes the thesis.
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Figure 1.4: Matrices with different granularities.

Figure 1.5: (unknown) phase transition diagram.



Chapter 2

Statistical Learning of NMF

In this section, we show the statistical model of nonnegative matrix factorization
and the algorithms.

2.1 Nonnegative Matrix Factorization Model

Let ZI×J
+ and RI×J

+ be the sets of I × J matrices whose elements are all non-
negative integers and all nonnegrative real values, respectively. We study a
statistical model of NMF which is represented by a probability distribution of
X = (xij) ∈ ZI×J

+ for a given set of A ∈ RI×R
+ and B ∈ RJ×R

+ ,

P (X|A,B) =
∏I,J

i,j=1
PO

(
xij

∣∣∣∑R

r=1
airbjr

)
, (2.1)

where air and bjr represent the (i, r)-th element of A and the (j, r)-th elements
of B, respectively. PO(z|c) is the Poisson distribution of z ≥ 0 for c ≥ 0,

PO(z|c) = cz exp(−c)
z!

.

Note that, if independent random variables Z1 and Z2 are subject to PO(z1|c1)
and PO(z2|c2) respectively, then Z1 + Z2 is subject to PO(z|c1 + z2).

Let X1,X2, · · · ,Xn ∈ ZI×J
+ be independent random variables and Xn be

the set of them, where n is the number of training data. The (i, j) th element
of the m th matrix Xm is denoted by xm

ij . The likelihood of the NMF is defined
by

P (Xn|A,B) =
∏n

m=1

∏I,J

i,j=1
PO

(
xm
ij

∣∣∣∑R

r=1
airbjr

)
.

We introduce a hidden variable Sn whose element smijr ∈ ZI×J
+ represents the

contribution of the r-th factor to xm
ij . The joint distribution is given by

P (Xn,Sn|A,B) =
∏n

m=1

∏I,J

i,j=1
δ
(
xm
ij − smij·

)∏R

r=1
PO

(
smijr

∣∣airbjr),
5



6 CHAPTER 2. STATISTICAL LEARNING OF NMF

where δ(x) = 1 if x = 0, or δ(x) = 0 otherwise. Note that a dot index means
the corresponding one is summed out:

s·jr =
I∑

i=1

sijr, si·r =
J∑

j=1

sijr, sij· =
R∑

r=1

sijr.

It follows that

P (Xn|A,B) =
∑
Sn

P (Xn,Sn|A,B).

For variational Bayesian estimation, we employ the conjugate gamma priors1

on A and B.

P (A) =
∏I,R

i,r=1
G(air|ϕA, ηA/ϕA),

P (B) =
∏J,R

j,r=1
G(bjr|ϕB, ηB/ϕB),

where ϕA, ηA, ϕB , and ηB are hyperparameters and G denotes Gamma distribu-
tion,

G(x|ϕ, η) = exp
{
(ϕ− 1) log x− x/η − log Γ(ϕ)− ϕ log η

}
.

As shown in Fig. 2.1, air and bjr tend to be smaller as ϕA and ϕB decrease.
Using them together, the joint distribution of A,B,Sn, and Xn is

P (Xn,Sn,A,B) = P (Xn,Sn|A,B)P (A)P (B).

Figure 2.2 shows a graphical model representation.

2.2 Algorithm

This section provides two representative algorithms for NMF: Majorization Min-
imization (MM) and Variational Bayes (VB).

2.2.1 Majorization Minimization (MM)

The Majorization Minimization algorithm for NMF was derived by Lee and
Seung [Lee and Seung, 1999, Lee and Seung, 2001]. They derived the case
where the number of observed matrix n = 1. Here we provide the general
algorithm with arbitral n.

1For more details of conjugate prior, see Appendix A.2.
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Figure 2.1: Poisson and Gamma distributions.

Figure 2.2: Graphical model of NMF.

MM is the algorithm that minimizes negative logarithm of likelihood function
(2.1) 2 :

− logP (Xn|A,B)

= −
∑n

m=1

∑I,J

i,j=1
logPO

(
xm
ij

∣∣∣∑R

r=1
airbjr

)
,

= n
∑I,J

i,j=1

{
x̂ij − x̄ij log(x̂ij)

}
+
∑n

m=1

∑I,J

i,j=1
log(xm

ij !)

(2.2)

where

x̂ij =
∑R

r=1
airbjr, x̄ij =

1

n

∑n

m=1
xm
ij .

We define the function L by removing constant terms of the negative log-

2This is a MM for maximum likelihood estimation. For the definition of maximum likeli-
hood estimation, see Appendix A.3. MM can be used for maximum a posterior estimation.
See Appendix C.
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likelhood function as follows:

L(A,B) =n
∑I,J

i,j=1

{
x̂ij − x̄ij log x̂ij

}
. (2.3)

Let us also define the auxiliary (majorizing) function L+ as

L+(A,B,T ) = n
∑I,J

i,j=1

{
x̂ij − x̄ij

∑
r
tijr log

(
aircjr
tijr

)}
,

where T = {tijr} is auxiliary variables satisfying
∑

r tijr = 1 (∀(i, j)). It can
be verified that the auxiliary function L+ has following two properties:

1. L(A,B) ≤ L+(A,B,T )

2. L(A,B) = minT L+(A,B,T ).

Note that the equality holds if and only if

tijr =
airbjr∑
r′ air′bjr′

. (2.4)

In the scheme of MM [Hunter and Lange, 2004, De Leeuw, 1994], minimization
of the function L is indirectly conducted by minimizing the auxiliary function
L+ as follows:

1. Minimize L+(A,B,T ) w.r.t. A or B.

2. Minimize L+(A,B,T ) w.r.t. T which makes L(A,B) = L+(A,B,T ) .

For the first step, we compute the partial derivative of L+ w.r.t. A. The
necessary condition of the local minima, which satisfies the partial derivative
∂F+

∂air
= 0, is simplified into

n
∑
j

bjr − n
∑
j

x̄ijbjr
air

= 0 ⇔ air =

∑
j x̄ijtijr∑

j bjr
. (2.5)

For the second step, by substituting Eq. (2.4) into Eq. (2.5), we obtain the
update rules of A given by Eq. (2.6). We omit the derivation of the update
rules of B since the derivation are analogous to that of A.

air ← air

∑J
j=1

x̄ij

x̂ij
bjr∑J

j=1 bjr
, (2.6)

bjr ← bjr

∑I
i=1

x̄ij

x̂ij
air∑I

i=1 air
. (2.7)

The above update rules are given by multiplicative form and thus called mul-
tiplicative update rules. We can confirm that the right hand side of the update
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Figure 2.3: Scheme of majorization minimization (MM).

Algorithm 1 Majorization Minimization (MM) for NMF

Input: Xn: input matrices, R: the number of factors
Output: A,B such that objective function in Eq. (2.3) is minimized under the

non-negative constraint.
1: initialization for A and B
2: repeat
3: Update A by Eq. (2.6)
4: Update B by Eq. (2.7)
5: until Converge

equation of A is (I) always non-negative and (II) equals air when x̄ij = x̂ij .
Randomly setting (non-negative) initial values of factor matrices and iteratively
updating the matrices following Eq. (2.6)(2.7), a factorization result is obtained.
Algorithm 1 shows a pseudo code. A tuning parameter such as the learning rate
doesn’t exist. Note that this algorithm can deal with input matrices with miss-
ing elements by slight modification. For more details, see Appendix B.

2.2.2 Variational Bayes (VB)

The variational Bayesian (VB) algorithm is used to estimate the variational dis-
tribution, which approximates a posterior distribution of parameters and hidden
variables [Attias, 1999, Attias, 2000, Jordan et al., 1999]. The VB algorithm
for NMF was derived by Cemgil [Cemgil, 2009], where Cemgil derived the case
when n = 1. For the asymptotic analysis provided in chapter 4, we general-
ize the algorithm for arbitrary n. The variational distribution q(A,B,Sn) is
optimized by minimizing the functional F̄ [q], which is defined by

F̄ [q] = Eq(A,B,Sn)

[
log

q(A,B,Sn)

P (Xn,Sn,A,B)

]
, (2.8)
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under the constraint that variational distribution is independent:

q(A,B,Sn) = q(A)q(B)q(Sn).

Note that Eq(A)q(B)q(Sn) denotes the expectation w.r.t. A,B and Sn which is
subject to the variational distribution. Minimizing the functional F̄ [q] is equiva-
lent to minimizing the Kullback-Leibler (KL) divergence between posterior and
variational distributions because F̄ [q] can be represented as follows:

F̄ [q] = − logP (Xn) + KL(q∥p), (2.9)

where KL(q∥p) is following KL divergence.

KL(q∥p) = Eq(A,B,Sn)

[
log

q(A,B,Sn)

P (A,B,Sn|Xn)

]
.

From the optimality condition derived from the variational method, the vari-
ational distributions of A and B are gamma distributions and that of S is a
multinomial distribution:

q(A) =
∏
i,r

G(air|αA
ir, β

A
ir), (2.10)

q(B) =
∏
j,r

G(bjr|αB
jr, β

B
jr), (2.11)

q(Sn) =
∏
m,i,j

M
(
sij |xm

ij , {pSijr}
)
. (2.12)

The consistency condition of the variational Bayesian estimation gives the fol-
lowing recursive formula,

αA
ir = ϕA + ns̄i·r,

βA
ir =

(
ϕA/ηA + nb̄·r

)−1
,

αB
jr = ϕB + ns̄·jr,

βB
jr = (ϕB/ηB + nā·r)

−1
,

pSijr ∝ ρijr = exp
(
Eq(A)q(B) [log air + log bjr]

)
,

where the statistics in above equations are computed by

āir = αA
irβ

A
ir,

b̄jr = αB
jrβ

B
jr,

s̄ijr = x̄ijp
s
ijr,

x̄ij =
1

n

n∑
m=1

xm
ij ,

Eq(A) [log air] = Ψ(αA
ir) + log(βA

ir),

Eq(B) [log bjr] = Ψ(αB
jr) + log(βB

jr),
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where Ψ(·) denotes the digamma function. The VB algorithm is the recursive
iteration of Eqs. (2.10), (2.11), and (2.12). Algorithm 2 shows a pseudo code.

Algorithm 2 Variational Bayes for NMF (VBNMF)

Input: Xn: input matrices, R: the number of factors,
ϕA, ηA, ϕB , ηB : hyperparameters

Output: αA
ir, β

A
ir, α

B
jr, β

B
jr, p

S
ijr: variational parameters of A,B, Sn

1: Initialize A, B, Sn.
2: repeat
3: Update αA

ir, β
A
ir following Eq. (2.10).

4: Update αB
jr, β

B
jr following Eq. (2.11).

5: Update pSijr, s̄ijr following Eq. (2.12).

6: until Converge

2.3 Viewpoint from Divergence Minimization

§ 2.1 and § 2.2.1 shows the NMF model and MM algorithm which minimize
negative log-likelihood. This approach can be defined as optimization problem
without a description as a statistical model.

Let us define the divergence between matrices as

DKL(X|X̂) =

I,J∑
i,j=1

dKL(xij ||x̂ij),

where dKL(xij ||x̂ij) is the generalized Kullback Leibler (KL) divergence:

dKL(xij ||x̂ij) = xij log
xij

x̂ij
− xij + x̂ij .

Figure 2.4 shows the shape of the generalized KL. Since DKL is equivalent to
the negative log-likelihood (Eq. (2.2)) when n = 1 by ignoring constant terms,
Algorithms which minimize negative log-likelihood can be seen as the algorithm
for solving following optimization problem:

arg min
A,B

DKL(X|X̂),

s.t.A ≥ 0,B ≥ 0.
(2.13)

where A ≥ 0 means that all elements of A are nonnegative. The algorithm for
arbitral n corresponds to

arg min
A,B

DKL(X̄|X̂),

s.t.A ≥ 0,B ≥ 0,
(2.14)

where X̄ = {x̄ij}I,Ji,j=1 is the average of the input matrices, because the argument
of the minimum of a sum of the divergences to each matrix equals to that of



12 CHAPTER 2. STATISTICAL LEARNING OF NMF

Figure 2.4: Generalized KL divergence.

the minimum of the divergence to the average matrix:

arg min
A,B

∑n

m=1
DKL(Xm|X̂) = arg min

A,B
DKL(X̄|X̂).

When considering the minimization of the negative log likelihood, we can esti-
mate the factor matrices by considering the optimization problem using only the
average matrix of the input matrices. However, when we consider maximum a
posterior estimation whose objective function is defined with both log-likelihood
term and some regularization terms, the number of observed data n affects the
degree of the contributions of each terms. Please see Appendix C for more
details.

2.4 Variational Free Energy (VFE)

§ 2.2.2 shows the variational Bayesian algorithm for NMF. The minimum value
of the objective functional F̄ [q], F̄vb, which referred to as the variational free
energy (VFE) (e.g. [MacKay, 2003]) is important quantity for VBNMF.

F̄vb = min
q(A)q(B)q(Sn)

F̄ [q].

We can interpret F̄vb as the objective value at the (optimal) result of the VB
algorithm. Note that the reason the term “free energy” is used is that the VFE
is an upper bound of free energy, F :

F = − logP (Xn) = − log

∫
P (Xn,Sn,A,B)dAdBdSn.

We have already shown that VFE is the upper bound by Equation (2.9) since KL
divergence KL(q∥p) ≥ 0. Figure 2.5 shows the relation between free energy and
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Figure 2.5: Free energy and variational free energy (VFE).

variational free energy. The smaller VFE indicates that a pair of a statistical
model and a prior is more appropriate for a given training data, according to
the free energy.

The probability density functions q(A) and q(B) that minimize the objective
functional are called the variational posterior distributions. For air and bjr
which are subject to q(A) and q(B), the number of elements of the set{

0 ≤ r ≤ R ; for all (i, j) air → 0, bjr → 0 (n→∞)
}

is referred to as the number of the asymptotic redundant factors Rred, and
R̂ = R − Rred is called the effective number of factors. In general, R̂ depends
on both the true distribution and hyperparameters.

By applying eqs.(2.10), (2.11), and (2.12) to eq.(2.8), it follows that

F̄vb = FA + FB + FX , (2.15)

where

FA =
∑
i,r

{(
αA
ir − ϕA

)
Ψ(αA

ir)− ϕA log(βA
ir) + (

ϕA

ηA
)āir

+ log
Γ(ϕA)

Γ(αA
ir)

+ ϕA log(
ηA
ϕA

)− αA
ir

}
,

FB =
∑
j,r

{(
αB
jr − ϕB

)
Ψ(αB

jr)− ϕB log(βB
jr) + (

ϕB

ηB
)b̄jr

+ log
Γ(ϕB)

Γ(αB
jr)

+ ϕB log(
ηB
ϕB

)− αB
jr

}
,

FX =
∑
i,j

{∑
r

nāir b̄jr +
∑
m

log Γ(xm
ij + 1)− nx̄ij log

(∑
r

ρijr
)}

.
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Hence F̄vb can be numerically calculated for a given training data Xn. In
chapter 4, we show its theoretical behaviors and give the hyperparameter design
method.

2.5 Literature of NMF

At the end of this chapter, we provide literature of NMF.
NMF first gained attention by Lee and Seung’s work [Lee and Seung, 1999].

Lee and Seung shows that NMF can extract the parts-based representation
from facial image, each parts of which corresponds to e.g., eye, nose, etc. This
result could not be obtained by other standard algorithms such as principle
component analysis. Therefore, NMF was recognized as the method that can
extract interpretable, parts-based representation from data. Since then, NMF
was applied to feature extraction [Li et al., 2001, Hoyer, 2004], speech signal
processing [Smaragdis and Brown, 2003, Févotte et al., 2009], and text min-
ing [Xu et al., 2003, Pauca et al., 2004, Shahnaz et al., 2006]. The number
of applications to real world problems is still increasing and we can find, e.g.,
email analysis [Berry and Browne, 2005], recommendation [Zhang et al., 2006],
blog’s network analysis [Chi et al., 2007], community discovery [Wang et al.,
2011], hot topic extraction from social media [Saha and Sindhwani, 2012, Endo
et al., 2015] social curation service analysis [Takeuchi et al., 2013] and analysis
of ideological stance in social network service [Lahoti et al., 2018].

We showed the two representative algorithms for NMF, majorization min-
imization (MM) [Hunter and Lange, 2004, De Leeuw, 1994] and variational
Bayes (VB) [Attias, 1999, Attias, 2000, Jordan et al., 1999]. It is experimen-
tally shown that VB is robust to noise and sparsity [Brouwer et al., 2017]. The
other algorithms such as a variant of gradient descent [Cichocki et al., 2009] and
fully Bayesian method using markov chain monte carlo [Schmidt et al., 2009]
has been developed, although they are not scope of this thesis.

Several relations between NMF and other machine learning algorithms are
also clarified. For example, Ding et al. [Ding et al., 2008] proved that NMF is
equivalent to probabilistic latent semantic indexing [Hofmann, 1999], which is
the basis of latent dirichlet allocation [Blei et al., 2003], a well-known proba-
bilistic model for document analysis. Thus, it is no exaggeration to say that
NMF is a key machine learning algorithm.



Chapter 3

NMF for Inconsistent
Resolution Matrices

This chapter provides a new NMF model for analyzing a combination of datasets
with different granularity. 1

3.1 Motivation

Due to the difficulty of exhaustive data collection and the need to protect per-
sonal information, it is becoming more urgent to be able to analyze multiple
datasets that have different levels of granularity, for example, user-individual
data such as “how many times an item is purchased by a user” and user-group
data such as “how many times a shop is visited by users of the same age”.
Therefore, we consider the problem of inconsistent resolution dataset analysis,
which is to analyze a combination of datasets with different granularity. High
resolution datasets (such as user-individual data) capture the events that oc-
curred in fine detail such as individual visits and purchases and said to have
fine grain size. Low resolution datasets (user group data) offer less detail, i.e.
coarser granularity.

We provide two examples that require inconsistent resolution dataset anal-
ysis. The first example is an analysis of data collected in the retail indus-
try (Fig. 3.1(a)). Currently, many retail shops collect information about users
by issuing them with membership cards. However, since not all shoppers will
have a membership card, exhaustively data collection, some purchase log entries
do not have the identification information (ID) of the membership card; Instead
they contain only information on the sex and age of the user as input by the
shop staff from assessments of the appearance of the user at the sales point.
Therefore, the collected data consists of user-individual data and user-group

1The material in this chapter was presented in part at the IEICE Transactions on Informa-
tion and Systems (Japanese Edition) [Kohjima et al., 2017], and all the figures of this chapter
are reused from [Kohjima et al., 2017] under the permission of the IEICE.

15
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(a) members’ and non-members’ logs

(b) own/other companies’ logs

Figure 3.1: Example of datasets requiring inconsistent resolution analysis.

data. When the purchase log contains little member user data, inconsistent
resolution dataset analysis can be useful by allowing use of the purchase data of
non-member users. The second example is analysis of the combined datasets of
different companies (Fig. 3.1(b)). The social data provided by location infor-
mation services e.g., Foursquare 2 and Yelp 3, omits the data of individual users
to protect personal information; only visit logs of user groups are disclosed, for
example, how many “women” have visited a certain shop. Therefore, inconsis-
tent resolution dataset analysis is required if we are to analyze a dataset created
by combining user-individual data and the above social data.

In this study, we propose a new method for inconsistent resolution dataset
analysis. The proposed method is a probabilistic model based on nonnegative
matrix factorization (NMF) [Lee and Seung, 1999, Lee and Seung, 2001, Ci-
chocki et al., 2009]. First of all, to introduce the basic setting of inconsistent
resolution dataset analysis, we focus on the situation where two assumptions are

2http://gnip.com/sources/foursquare/
3http://www.yelp.com/dataset_challenge
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satisfied: (A1) common user set exists, (A2) data are independent and identi-
cally distributed. We use assumptions (A1) and (A2) and the NMF formulation
to propose probabilistic nonnegative inconsistent resolution matrix factoriza-
tion (pNimf ) that can jointly analyze high and low resolution data. pNimf
makes it possible to analyze data more accurately than the methods that use
a single set of data. For example, applying pNimf to the purchase logs of
the members/non-members mentioned above, improves the accuracy of missing
value complementation in the matrix, making it possible to more accurately
predict the quantities purchased by members / non-members. In addition, it is
possible to extract purchasing patterns that reflect the purchasing tendencies of
both members and non-members.

pNimf is derived by considering the data generative process that covers the
latent high resolution data that underlies the low resolution matrix. Latent high
resolution data can be defined from assumption (A1) and relation between high
resolution data and low resolution data can be deduced from assumption (A2).
While it is not possible to assume that assumptions (A1) and (A2) hold for
all problems, approaches that use the relationship described in this paper can
be the basis for solving a lot of general problems. We also show the situation
that diverges from the above two assumptions, and an extended version of the
proposed method is provided for cases that demand different assumptions.

3.2 Proposed Method

3.2.1 Formulation

In this section we focus on the problem of inconsistent resolution dataset anal-
ysis in situations where two assumptions are satisfied: (A1) - common user
assumption, (A2) independently and identically distributed assumption. Be-
fore providing a mathematical representation of these assumptions, we give an
intuitive explanation. A certain supermarket issued a members card in Decem-
ber to all users of the store. Clearly then the shop’s sales records contain no
personal details prior to December. As shown in Figure 3.2, the purchase history
for November consists of low resolution data, while that for December contain
high resolution data. Note that user attribute information such as sex and age
(est.) is recorded in the purchase history for November, In this example, as-
sumption (A1) is that the set of all shop users in November and December are
equal (whether or not they purchased any item) Assumption (A2) states that
each user will make the same product purchases in November and December.
We will explain using this example of purchase log analysis, and the symbol
definitions follow this example. However, our research is not limited to this
example, and more general circumstances are explained in §3.4.

Definition of Symbols: Let I, J and K represent the number of users,
items, and attributes, respectively. We define the element of X, xij , as the
number of purchases of item j by user i in Dec. and the element of Y , ykj , is the
number of times item j was purchased by users with attribute k in Nov. Each X
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Figure 3.2: Example of observed and unobserved data.

and Y are taken to be the high-resolution matrix and the low-resolution matrix,
respectively. We also assume that user’s attribute information is available. This
assumption is natural because such data is required, for example, when the user
creates the membership card. V = {vik}I,Ki,k=1, whose element vik ∈ {0, 1} is set
to 1 if the attribute of user i is k, otherwise 0.

Latent High Resolution Matrix: Next, we define the latent high resolu-
tion matrix, Z. This matrix plays an important role in our model. We define
Z as the matrix that corresponds to the high-resolution data in Nov., i.e. data
which would have collected if membership cards had been issued in Nov. Since
only low-resolution data is collected in Nov., Z is the unobserved latent high
resolution data which lies under the low resolution data. We are usually unable
to know the set of users that exist behind Z and the number of rows of Z cannot
be defined. To resolve this, we use (A1), which we formally define as follows:
user population of high-resolution data X and that of latent high-resolution data
Z are identical. (A1) allows us to define the number of the rows of Z as being
identical to X, I. Then, we define element zij as the number of purchases of
item j by user i in Nov. Importantly, this definition yields a relation between Y
and Z, Y = V TZ. This comes from the fact that ykj is equal to the summation
of zij over user i with attribute k, i.e. ykj =

∑
i vikzij .
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3.2.2 Model

This subsection presents the proposed model. Let A := {air}I,Ri,r=1 and B :=

{bjr}J,Rj,r=1 be the user factor matrix and item factor matrix, respectively. R is the
number of factors. Each vector of factor matrices (ai1, · · · , aiR), (bj1, · · · , bjR) is
interpreted as the latent feature of user i and item j. We also define X̂ = ABT ;
its element is written as x̂ij =

∑
r airbjr. Since the Poisson distribution is

frequently used to model count data such as purchase log and visit count, we
adopt it for our model. NMF models the probability of generating matrix X as

P (X|A,B) =

I,J∏
i,j=1

PO(xij |x̂ij), (3.1)

where PO is the Poisson distribution:

PO(xij |x̂ij) = exp{−x̂ij + xij log(x̂ij)− log Γ(xij + 1)}.

Note that our model can be extended, in an analogous manner, to the case that
other probability distributions such as Gaussian are adopted.

We derive the proposed method based on the data generative process sum-
marized as follows: (i) define the probability distribution that generates both
X and Z. (ii) use (A2) iid assumption , which we formally define as follows:
elements of X and Z that have the same indices, xij and zij , follow the iden-
tical probability distribution (in this case, Poisson distribution with parameter
x̂ij as in Eq. (3.1)) and they are mutually independent. (A2) helps to extract
factors which are independent of month. (iii) use the relation between Z and
Y (ykj =

∑
i vikzij) explained in the previous section. Combining these parts,

the joint distribution of X, Z, Y is written as

P (X,Z,Y |A,B,V ) (3.2)

=
∏
i,j

PO(xij |x̂ij)PO(zij |x̂ij)
∏
k,j

δ(ykj −
∑
i

vikzij),

where δ(·) is the delta function. Figure 3.3(a) shows a graphical model repre-
sentation. By explicitly modeling the generation of latent high-resolution matrix
Z, we can naturally define the probability distribution of all matrices. However,
since the size of Z is I × J , which is considerable, it is desirable to work with
more convenient probabilistic models.

The key to practical implementation lies in a characteristic of Poisson dis-
tributions: the sum of Poisson-distributed random variables is also a Poisson-
distributed random variable, i.e., closed under addition. In our model, zij rep-
resents Poisson-distributed random variables and ykj is their summation. Thus,
we can marginalize out Z from Eq. (3.2) which yields the following equation:

P (X,Y |A,B,V ) =

∫
P (X,Z,Y |A,B,V )dZ

=
∏
i,j

PO(xij |x̂ij)
∏
k,j

PO(ykj |ŷkj), (3.3)
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(a) (b)

(c) (d)

Figure 3.3: Graphical models. Shaded nodes indicate observed variables. Figure (a)
presents the original definition of the proposed model described in Eq. (3.2). By
marginalizing out Z, Fig. (b), which is given by Eq. (3.3), is obtained. Figure (c)(d)
represents the generalized model stated in §3.4.

where ŷkj =
R∑

r=1

ckrbjr and ckr =
I∑

i=1

vikair. (3.4)

Figure 3.3(b) shows a graphical model representation. Considering that C :=

{ckr}K,R
k,r=1 is the attribute latent factor matrix, Eq. (3.3) can be interpreted

as factorizing the high-resolution matrix and low-resolution matrix simulta-
neously, while retaining the relation between factor matrices A and C us-
ing V (C = V TA as in Eq. (3.4) ). Thus, we call this proposal proba-
bilistic non-negative inconsistent-resolution matrix factorization (pNimf ). Fig-
ure 3.4 shows the factorization form. Note that removing the linear equal-
ity relation between factor matrices, C = V TA, pNimf is reduced a CMF
method (NMMF) [Takeuchi et al., 2013]. Thus, pNimf can be seen as subsum-
ing NMMF.

The optimization problem for estimating factor matrices A, B and C is
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Figure 3.4: Factorization form that corresponds to Fig. 3.3(b).

summarized as follows:

arg max
A,B,C

logP (X,Y |A,B,V ),

s.t.A ≥ 0,B ≥ 0,C ≥ 0,C = V TA
(3.5)

where A ≥ 0 means that all elements of A are nonnegative. Note that for the
above optimization problem, Eq. (3.5) is equivalent to

arg min
A,B,C

{DKL(X|X̂) +DKL(Y |Ŷ )},

s.t.A ≥ 0,B ≥ 0,C ≥ 0,C = V TA.

(3.6)

Note that the derivation shown in this subsection is valid if a probability distri-
bution which is closed under summation is adopted.

3.2.3 Algorithm

As shown in the next subsection, the following algorithm can be used to solve
the optimization problem posed by Eq. (3.5).

anewir ← air

(∑
j

xij

x̂ij
bjr +

∑
k

∑
j vik

ykj

ŷkj
bjr

)
∑

j bjr +
∑

k

∑
j vikbjr

, (3.7)

bnewjr ← bjr

(∑
i
xij

x̂ij
air +

∑
k

ykj

ŷkj
ckr

)
∑

i air +
∑

k ckr
, (3.8)

cnewkr ←
∑

i
vikair. (3.9)

Update rules for A, B are given in “multiplicative form”. The right hand side
of the update for A is (I) always nonnegative and (II) equals air when xij = x̂ij

and ykj = ŷkj . By iteratively updating the parameters following Eq. (3.7)-(3.9)
from their initial values, the algorithm converges to (local) minima; proof is
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Algorithm 3 probabilistic nonnegative inconsistent resolution matrix factor-
ization (pNimf )

Input: X,Y ,V : input data, R: rank of approximation
Output: A,B,C: factor matrices
1: initialization for A,B and set C = V TA.
2: repeat
3: Update A and C by Eq. (3.7)(3.9)
4: Update B by Eq. (3.8)
5: until a stopping condition is met

provided in §3.3. Pseudo code of the method is shown in Algorithm 3. Note
that an almost analogous algorithm is derived when matrix X and/or Y has
missing values.

3.2.4 Algorithm Derivation

In this subsection, we derive the multiplicative update rules given by Eq. (3.7)(3.8)(3.9).
We define the function L(A,B), where constant terms of the objective function
in Eq. (3.6) are removed and matrix C is replaced by V TA as follows:

L(A,B) =
∑
i,j

{(
x̂ij − xij log(x̂ij)

}
+
∑
k,j

{
ŷkj − ykj log(ŷkj)

}
.

(3.10)

We minimize L(A,B) following the optimization scheme of majorization mini-
mization (MM) [Hunter and Lange, 2004, De Leeuw, 1994], similar to [Lee and
Seung, 2001]. Let us define the auxiliary (majorizing) function L+ as

L+(A,B,S,T ) (3.11)

=
∑
i,j

{(
x̂ij − xij

R∑
r=1

sijr log
(airbjr

sijr

)}

+
∑
k,j

{
ŷkj − ykj

R∑
r=1

tkjr log
((∑

i vikair
)
bjr

tkjr

)}
,

where S = {sijr} and T = {tijr} are auxiliary variables satisfying
∑

r sijr =
1 (∀(i, j)),

∑
r tkjr = 1 (∀(k, j)). It can be verified that auxiliary function L+

has the following two properties:

1. L(A,B) ≤ L+(A,B,S,T )

2. L(A,B) = minS,T L+(A,B,S,T ).
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Note that the equality holds if and only if

sijr =
airbjr∑R

r′=1 air′bjr′
, tkjr =

(∑
i vikair

)
bjr∑R

r′=1

(∑
i vikair′

)
bjr′

. (3.12)

Since the partial derivative of L+ w.r.t. A is given by

∂L+

∂air
=
∑
j

bjr+
∑
k,j

vikbjr−
∑
j

xijsijr
air

−
∑
j,k

vikykjtkjr∑
i′ vi′kai′r

,

the necessary condition of the local minima, ∂L+

∂air
= 0, can be simplified to

air =

∑
j xijsijr +

∑
j,k

vikairykjtkjr∑
i vikair∑

j bjr +
∑

k,j vikbjr
. (3.13)

By substituting Eq. (3.12) into Eq. (3.13), we obtain the multiplicative update
rules for A given by Eq. (3.7). We omit the derivation of the update rules for
B since the derivation is exactly same as that of standard NMF. The update
for C is given by the linear constraint.

3.3 Theoretical Analysis

Here we confirm the convergence property of the algorithm.

Theorem 1 Objective function L(A,B) is monotonically decreasing under the
update by Eq. (3.7)(3.8)(3.9). The divergence is invariant if and only if A,B
are at a stationary point.

This theorem indicates that the algorithm reaches a local minimum by update
iteration. The theorem is proven by showing that L+ decreases with each opti-
mization step. We need to prove the following two lemmas to prove the theorem.

Lemma 1 L+ is a convex function w.r.t. A and thus A satisfying Eq. (3.13)
is the global minimum if the other parameters are fixed.

Proof Since − log(air) is convex and the sum of convex functions is convex,
we need to show − log(

∑
i vikair) is convex. Since its Hessian is given by

−
∂2 log(

∑
i vikair)

∂air∂ai′r′
= δrr′

vikvi′k(∑
i air

)2 ,
where δrr′ = 1 if r = r′ and 0 otherwise, it can be expressed by, using a non-
degenerate matrix W ,WTW . Therefore, Hessian is positive definite, and thus
convex. 2

Lemma 2 The objective L+(A,B,S,T ) is minimized w.r.t. S and T when S
and T equals Eq. (3.12) and L(A,B) = minS,T L+(A,B,S,T ) holds.
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Proof By applying Jensen’s inequality to the term in Eq. (3.10),

− log(x̂ij) ≤ −
∑
r

sijr log(
airbjr
sijr

),

− log(ŷkj) ≤ −
∑
r

tkjr log(
ckrbjr
tkjr

)

holds, and since Eq. (3.12) is the equality condition, this concludes the proof. 2

The theorem follows from the application of the above lemmas.

Proof Let us denote the parameter and the auxiliary variables that satisfy
L(A,B) = L+(A,B,S,T ) as Aold, Bold, Sold, T old. We also denote A after
the first step of the MM given by Eq. (3.13) as Anew and S,T after the second
step given by Eq. (3.12) as Snew,T new. From lemma 1 and lemma 2,

L+(Anew,Sold,T old) ≤ L+(A,Sold,Sold) (∀A),

L+(Anew,Snew,T new) ≤ L+(Anew,S,T ) (∀S,T ).

Note that we omit the notation of B. Since L(Aold) = L+(Aold, Sold,T old)
and L(Anew) = L+(Anew,Snew,T new), L(Anew) ≤ L(Aold) holds. Since proof
for the update of B is analogous, this completes the proof. 2

3.4 Generalization of Algorithms

We now explain the more general scenario that pNimf can be applied to.
In §3.2.1, we gave the example in which both high-resolution data and low-
resolution data are one month purchase logs. However, as long as assump-
tions (A1) and (A2) are satisfied, pNimf could be applied to any problem with
theoretical support. Moreover, pNimf can deal with multiple high-resolution
and low-resolution data by generalizing the data generative process. Let M
be the number of high-resolution data entries and Xm = {xm

ij} is the m-th
high-resolution matrix. Similarly, let N be the number of low-resolution data
entries and Y n = {ynkj} is the n-th low-resolution matrix. Each m(or n) need
not correspond to a period of time, e.g. day, week and month (unlike the previ-
ous example) and it may instead be an indicator of location such as prefecture
and country in which the data was collected. By extending the data generative
process represented by Fig. 3.3(a) to Fig. 3.3(c), the estimation procedure is
obtained by slight modification of the update rules given by Eq. (3.7)(3.8) as
follows:

anewir ← air

(
M

∑
j

x̄ij

x̂ij
bjr +N

∑
k

∑
j vik

ȳkj

ŷkj
bjr

)
M

∑
j bjr +N

∑
k

∑
j vikbjr

, (3.14)

bnewjr ← bjr

(
M

∑
i
x̄ij

x̂ij
air +N

∑
k

ȳkj

ŷkj
ckr

)
M

∑
i air +N

∑
k ckr

, (3.15)
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Figure 3.5: Factorization form that corresponds to Fig. 3.3(d).

where, x̄ij =
1
M

∑M
m=1 x

m
ij , ȳkj =

1
N

∑N
n=1 y

n
kj . Coresponding factorization form

is shown in Fig. 3.5.

3.5 Experiment

3.5.1 Setting

We evaluate the performance of our method using synthetic data.

We constructed matrices with sizes of I = 100, J = 100, K = 10 using the
probabilistic model given by Eq. (3.2). We prepared V whose elements vik = 1
if k is equal to the quotient of i/K and vik = 0 otherwise. Matrices A, B are
generated by Gamma distribution and high/low resolution matrixes X and Y
were prepared with different levels of sparsity.

In our experiments, we used a test set log likelihood to evaluate performance.
We split the elements of matrix X into a training dataset and a test dataset and
computed the log likelihood of the elements in the test. Test data were treated
as missing values in the training phase. Log likelihood of the test data set is
defined as 1

|T |
∑

(i,j)∈T logPO
(
xij

∣∣x̂ij

)
, where T is the set of element indexes in

the test data and | · | indicates the number of elements in the set. We prepared
10 pairs of training and test datasets by randomly extracting 5% of non-zero
elements as the test data.

For comparison, we considered the following methods. (1)NMF [Lee and
Seung, 1999], traditional method which uses only high-resolution matrix X.
(2)NMMF [Takeuchi et al., 2013], an NMF-based state-of-the-art CMF method
that uses both X and Y . The weight parameter of NMMF is chosen from the
candidates α = 0.1, 0.5, 1.0. We report the result for α = 1.0 since it yielded
the best result among the candidates.
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Table 3.1: Results from synthetic data: test log likelihood for X determined with

different sparseness values. Average and standard deviation are shown. Larger values

are better. Scores and standard deviation are divided by ten in the 99% sparseness

setting.

Sparseness R NMF NMMF pNimf

X: 50%
Y : 10%

5 -2.77(±0.17) -2.71(±0.10) -2.66(±0.09)
10 -2.72(±0.18) -2.54(±0.09) -2.42(±0.04)
20 -16.7(±20.1) -3.11(±0.18) -3.09(±0.21)

X: 90%
Y : 40%

5 -6.71(±2.13) -4.11(±0.97) -3.48(±0.69)
10 -5.26(±0.92) -3.28(±0.45) -2.96(±0.23)
20 -21.5(±4.38) -7.57(±1.28) -5.72(±0.48)

X: 99%
Y : 80%

5 -5.44(±1.82) -3.62(±1.73) -2.04(±1.12)
10 -6.64(±3.52) -7.05(±2.62) -4.59(±1.67)
20 -17.0(±32.7) -7.43(±3.37) -6.64(±3.13)

3.5.2 Results

Table 3.1 shows the results for the synthetic data. Although the three methods
have comparable performance when the sparseness of X is 50% and R = 5, 10,
NMMF and pNimf outperform NMF when the sparseness is 90%, and pNimf
is superior to NMMF when the sparseness is 99%. This indicates that proposed
method has better performance when the input matrix is very sparse. It seems
that the linear relation between factor matrices using user’s attribute informa-
tion supports pNimf in handling the difference in resolution and thus achieving
better factorization results.

3.6 Discussion

3.6.1 Application to Real Purchase Log Data

We also evaluated both quantitative and qualitative performance of pNimf us-
ing real purchase log data [Kohjima et al., 2017, Kohjima et al., 2016]. The
result (Table. 2 in [Kohjima et al., 2017]) shows that pNimf outperforms NMF
and NMMF using test set log likelihood as a performance metric. This indicates
the effectiveness of the proposed method for real data. Moreover, the purchase
patterns extracted by the proposed method is shown in Fig. 9 in [Kohjima et al.,
2016]. It is found that e.g., the users whose attributes are “Male 35 to 49 gener-
ations” and “full-time employees” purchase lots of “coffee” and “tobacco” and
the the users whose attributes are “FeMale 35 to 49 generations” and “house-
wife” purchase more “yogurt” and “milk”. This indicates the proposed method
can extract interpretable patterns from real purchase log data.
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(a) (b)

Figure 3.6: An example where (a) members and non-members have almost the same

population and (b) members and non-members have different populations. Proposed

method shown in § 3.2 can be applied to the case of (a). However, it is not appropriate

for the case of (b) since the members and non-members have greatly different purchase

volumes.

Figure 3.7: Factorization form of the extended method.

3.6.2 Further Extension

In the previous section, we focused on inconsistent resolution dataset analysis
with two assumptions (A1) and (A2), proposed a new stochastic model, and
verified its effectiveness. The point to note here is that since the relationship
that can be introduced between the high resolution matrix and the low resolution
matrix can change depending on the problem setting, the proposed probabilistic
model may need some modification for some problems in inconsistent resolution
dataset analysis. Accordingly, we show examples of how new methods can be
developed by extending the proposed model.

Here we consider inconsistent resolution dataset analysis for the case where
the member/non-member purchase logs are created by processes different from
those indicated by § 3.2.1. In the example of § 3.2.1, since we assumed that mem-
bership cards were issued from December, we were able to satisfy (A1) common
user set assumption that users in November and users in December were the
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same. However, for data collected at shops that can be used by non-member
users, such as convenience stores, assumption (A1) no longer holds since the
members and the non-members always exist together and represent different
user groups. An explanation for this is made below using Figure 3.6.

Figure 3.6 shows examples of possible situations when members and non-
member users are different. The difference between Fig. 3.6 (a) and (b) is
whether the population for each attribute in members and non-members is al-
most the same or very different. The proposed method indicated by § 3.2 has
some validity in the case of (a), it loses validity in the case of (b). This is
because assumptions (A1) and (A2) imply that “the total purchase amount of
each item for each attribute is the almost same for members and non-members”
and it is generally appropriate for (a), whereas it is clearly inappropriate in the
setting of (b).

As a new assumption, we consider the approach that introduces a new as-
sumption (A3), the attribute purchase quantity proportionality assumption,
that is, “member purchase history is roughly proportional to non-member pur-
chase history”. Let X and Y be a high resolution matrix representing members’
log, and a low resolution matrix representing non-members’ log, respectively.
Since the members’ purchase log of attribute k is

∑I
i=1 vikxi, and the non-

members’ purchase log is yk, the proportional relation of assumption (A3) is

represented by the equation yk ∝
∑I

i=1 vikxi.
If there are a certain number of members with attribute k, it is considered

quite natural to make this assumption. Therefore, we consider a factorization
form that holds this proportional relation on between X̂, Ŷ . By defining the di-
agonal matrix D := diag({dk}Kk=1) whose elements dk represent the proportion-
ality constant of attribute k, the following equation holds given the proportional
relationship:

Ŷ = DV T X̂. (3.16)

Using factorization form X̂ = ABT for X̂ and substituting it into Eq. (3.16),
the factorization form for Y becomes

Ŷ = DCBT , C = V TA. (3.17)

Summarizing the above yields the following probabilistic model:

p(X,Y |A,B,C,D,V )

=
∏
i,j

PO(xij |x̂ij)
∏
k,j

PO(βykj |βŷkj),

where ŷkj =
R∑

r=1

dkckrbjr and ckr =
I∑

i=1

vikair,

where β is a weight parameter that controls the contribution of non-member
data. Figure 3.7 shows the factorization form of this model. The difference
from the factorization form shown in Fig. 3.4 of §3.2 is the existence of diagonal
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Algorithm 4 extended model of pNimf

Input: X,Y ,V : input data, R: rank of approximation
Output: A,B,C: factor matrices
1: initialization for A,B,D and set C = V TA.
2: repeat
3: Update A and C by Eq. (3.18)(3.20)
4: Update B by Eq. (3.19)
5: Update D by Eq. (3.21)
6: until a stopping condition is met

matrix D and thus the former is an extended factorization form. Parameter
update rules for air, bjr, ckr, dk are derived as follows:

anewir ← air

(∑
j

xij

x̂ij
bjr + β

∑
k dkvik

∑
j

ykj

ŷkj
bjr

)
∑

j bjr + β
∑

k dkvik
∑

j bjr
, (3.18)

bnewjr ← bjr

(∑
i
xij

x̂ij
air + β

∑
k

ykj

ŷkj
dkckr

)
∑

i air + β
∑

k dkckr
, (3.19)

cnewkr ←
∑

i
vikair, (3.20)

dnewk ←
∑

j ykj∑
r ckr(

∑
j bjr)

. (3.21)

Pseudo code is shown in Algorithm 4.

3.6.3 Related Works

In recent years, collective matrix factorization (CMF) or multiple matrix fac-
torization (MMF) techniques have been proposed for multiple dataset analy-
sis [Singh and Gordon, 2008]. A CMF/MMF extension of NMF called Nonneg-
ative Multiple Matrix Factorization (NMMF) [Takeuchi et al., 2013] has been
described [Lee and Choi, 2009, Takeuchi et al., 2013]. Factorization form of
NMMF is shown in Fig. 3.8. These techniques combine multiple matrices and
have been reported to offer better performance than is possible when using only
a single matrix. However, these methods are not designed to handle datasets
that have different resolutions. For a context different from CMF/MMF, Aimoto
et al. proposed a method for combining information of aggregated data (corre-
sponding to low resolution matrix in this paper) in matrix factorization [Aimoto
and Kashima, 2013]. However, this method is specialized for situations where
the datasets with different granularity represent exactly the same data, mak-
ing it unsuitable as a basic method for general inconsistent resolution dataset
analysis.
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Figure 3.8: Factorization form of NMMF [Takeuchi et al., 2013].



Chapter 4

Theoretical Analysis

This chapter provides a theoretical analysis of variational Bayesian NMF (VB-
NMF) [Kohjima and Watanabe, 2017] 1.

4.1 Motivation

The standard algorithms for NMF such as majorization minimization [Lee and
Seung, 2001] and variational Bayes (VB) [Cemgil, 2009], require the setting of
the number of factors. Since the true number of factors of the input matrix is
unknown, the chosen number of factors may be larger than the true one. This
setting frequently appears in practical model selection scenarios. In this case,
the factorization result cannot be uniquely determined, as shown in Fig. 4.1.
Because both Result case 1, in which redundant factors vanish, and Result
case 2, in which redundant factors remain, can exactly reconstruct the input
matrix, we cannot distinguish which result is better from the difference from
the input matrix. In order to compare the results, the factorization results
should be evaluated by the value of hyperparameters.

In this paper, we theoretically prove the following two results. (i) The fac-
torization results of the variational Bayesian NMF algorithm (VBNMF) are
changed according to hyperparameters. (ii) Its critical line is explicitly given by
the size of the input matrix. Figure 4.2 shows our theoretical results. Depend-
ing on whether the hyperparameters are in the area above or below the critical
line ϕAI + ϕBJ = (I + J)/2, the factorization results drastically change, where
I and J are sizes of the input matrix and ϕA and ϕB are hyperparameters. We
call this phenomenon phase transition of the VBNMF. Clarification of the phase
transition structure provides useful insight in the hyperparameter design.

These results are derived by analyzing the minimum value of the objective

1Reprinted by permission from Springer Nature: Springer Nature, Artificial Neural Net-
works and Machine Learning -ICANN 2017, 26th International Conference on Artificial Neural
Networks, Phase Transition Structure of Variational Bayesian Nonnegative Matrix Factoriza-
tion, Masahiro Kohjima and Sumio Watanabe, Springer (2017)
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Figure 4.1: An example of NMF’s factorization results when redundant factor
exists.

function of the VBNMF, which is called the variational free energy (VFE).
In this paper, we consider the setting that the amount of data (the number of
observed matrices) is sufficiently large and identify the optimal number of factors
through an asymptotic analysis. Note that the setting where multiple matrices
are observed arises in recent application, e.g., purchase data analysis [Kohjima
et al., 2015] and traffic data analysis [Deng et al., 2016].

4.2 Theoretical Result

This section provides our main theoretical result. In the proof of the theorem,
we assume that the following assumption is satisfied.

Assumption 1 The set of training data Xn is independently generated by

P (X|X∗) =

I,J∏
i,j=1

PO
(
xij

∣∣∣ (X∗)ij

)
,

where X∗ is a true nonnegative matrix. The nonnegative rank [Cohen and
Rothblum, 1993] of X∗ is denoted by R∗. Nonnegative rank is defined as the
smallest rank of the nonnegative matrix factorization, which it is not smaller
than the standard rank. For more details, see [Vavasis, 2009].

Our main theorem clarifies the effect of hyperparameters on the result of the
VBNMF.

Main Theorem Suppose assumption 1 is satisfied and R ≥ R∗. Then, as the
number of observed matrices n → ∞, the asymptotic form of the VFE is given
by2

F̄vb = E + λvb log(n) +Op(1), (4.1)

2Op is the order notation of random variables. A sequence of random variables Xn is said
to be Op(1) if it is bounded in probability [Van der Vaart, 2000].
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Figure 4.2: Phase transition diagram obtained by our analysis

where E is the empirical entropy defined by

E = −
n∑

m=1

log p(Xm|X∗), (4.2)

and

λvb =

{
(ϕAI + ϕBJ) (R−R∗) + I+J

2 R∗ ( if ϕAI + ϕBJ < (I+J)
2

)
I+J
2 R

(
othewise

)
.

(4.3)

The effective number of factors R̂ satisfies

R̂ =

{
R∗ (

if ϕAI + ϕBJ < (I + J)/2
)
,

R
(
otherwise

)
.

(4.4)

The proof is shown in the following sections. Here, we provide an interpreta-
tion of the theorem. Equation (4.4) shows the mathematical law that the opti-
mal number of factors R̂ is determined by the hyperparameters. Figure 4.2 is the
diagram that describes the relation between hyperparameters and R̂, which we
call phase transition. In the area under the critical line ϕAI+ϕBJ = (I+J)/2,
R̂ equals the true number of true factors, R∗. On the other hand, above the
critical line, the optimal number of factors equals the number of factors of the
statistical model, R. Since ϕA and ϕB are the parameters of the gamma prior,
our result coincides with the fact smaller values make A and B sparse. Anal-
ogous to the optimal number of factors, Equation (4.1) and (4.3) show that
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the behavior of VFE is also changed whether the hyperparameters are above or
under the critical line.

Figure 4.3 visualizes the optimal number of factors, R̂, and the VFE when
I = J = 5. The critical line is the straight line connecting (ϕA, ϕB) = (0.0, 1.0)
and (1.0, 0.0). Figure 4.4 also shows the VFE varying the size of input matrices.
As the number of columns, J , increases, the angle of the critical line changes
and then the region under the line changes. For example, (ϕA, ϕB) = (0.2, 0.6)
is under the line when I = J = 5 but is above the line when I = 5, J =
20. Therefore, our theorem shows that the hyperparemters should be carefully
chosen considering the size of input matrices. We discuss the application of the
theorem for hyperaparameter design in § 4.5.1

4.3 Experiment

In this section, we confirm the validity of the main theorem through numeri-
cal experiment. We prepared the true matrix X∗ = {x∗

ij} ∈ R5×J
+ as x∗

ij =
max (4− (j%5), 1) if i = 0, 1, 2 and otherwise, x∗

ij = max ((j%5)− 1, 1). Note
that c%d denotes the remainder when c is divided by d. Obviously, nonnegative
rank of X∗, R∗ = 2. Using this matrix, we generated matrices Xn following
Eq. (1) and applied the VBNMF. Using the matrices and the result of the VB-
NMF, we computed the empirical entropy, E , and the experimental value of the
VFE, F̄vb. To obtain the experimental values, we ran the VBNMF 2000 times
with a random initialization and set the maximum number of iterations to 1000.
We checked whether the asymptotic value of VFE in the main theorem was sat-
isfied since it is the key of our theoretical results. We conducted an experiment
involving varying the size of input matrices and the number of factors.

Figure 4.5 shows the results when the hyperparameters were set to ϕA =
ηA = ϕB = ηB = 1.0. The horizontal axis represents the number of observed
matrices with log scale. The solid line represents the theoretical value λvb log(n),
and the angle corresponds to λvb. The marked point represents the experimental
value F̄vb − E . The dashed line represents the linear regression line to the
experimental values. Since Eq. (4.1) contains the Op(1) constant term, there
exists a small difference between the solid and dashed lines. Therefore, we need
to focus on the angle of the solid and dashed lines since it indicates the coefficient
with respect to log(n). We can easily confirm that the angles of the lines are
almost the same. This means our theory effectively explains the experimental
results.

4.4 Proof of Main Theorem

Finally, this section provides the proof of main theorem.

Theorem 2 As the number of matrices n → ∞, the asymptotic form of the
VFE F̄vb is given by F̄vb = E + {minR∗≤R̂≤R Λ(R, R̂)} log(n) + Op(1), where

Λ(R, R̂) = (ϕAI + ϕBJ)R−
(
ϕAI + ϕBJ − I+J

2

)
R̂.
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Note that R̂ is the effective number of factors, which does not vanish. The main
theorem is immediately obtained from theorem 2.

Proof of Main Theorem From the definition of Λ(R, R̂), in the case of ϕAI+
ϕBJ < (I + J)/2, the smaller R̂ is, the smaller F̄vb. Therefore, R∗

vb = R∗. In

the another case, a larger R̂ is better, and R∗
vb = R. Substituting R∗

vb into R̂,
Eq. (4.3) is obtained. 2

Thus, we need to prove theorem 2. It requires following three lemmas, Lem-
mas 3, 4, and 5. The proofs of these lemmas are provided in the end of this
chapter.

Lemma 3 As the number of matrices n → ∞, the first and second terms of
Eq. (2.15), FA and FB, are given by FA =

{
ϕAIR−

(
ϕA− 1

2

)
IR̂

}
log(n)+Op(1)

and FB =
{
ϕBJR−

(
ϕB − 1

2

)
JR̂

}
log(n) +Op(1).

Lemma 4 FX in Eq. (2.15) is given by FX = − logP (Xn|Ā, B̄) +Op(1).

Lemma 5 Suppose assumption 1 is satisfied and R is not less than R∗. Then,
F [q] is minimized if and only if R̂ satisfies R∗ ≤ R̂ ≤ R. Moreover, as the
number of matrices n → ∞, the asymptotic form of FX is given by FX =
E +Op(1).

By applying Lemmas 3, 4, 5, theorem 2 is proven.

Proof (Theorem 2) From Eq. (2.15), F̄vb = FA+FB +FX holds. Using the
lemma 3, 4 and 5, we can obtain the asymptotic form with R̂. Since the VFE
with R̂ is minimized when R̂ minimizes the Λ(R, R̂), we complete the proof. 2

4.5 Discussion

4.5.1 Hyperparameter Design

We introduce the hyperparameter design method based on the main theorem.
Here we discuss three examples and provide corresponding recommended set-
tings.

Design Method 1: It is required that the redundant factors vanish.

From our theorem, if ϕAI +ϕBJ < (I+J)
2 is satisfied, i.e., (ϕA, ϕB) is within

the region under the critical line, the redundant factors vanish. However, as we
discussed in the previous section, the region depends on the size of the input
matrices, I, J . Therefore, we recommend that both hyperparameters are set
to be smaller than 0.5, ϕA, ϕB < 0.5. Because it is always under the critical
line regardless of the size of the input matrix. Figure. 4.6(a) shows the area of
recommended setting.

Design Method 2: It is required that (i) the redundant factors vanish and
(ii) matrix A is more sparse than matrix B.

The second condition (ii) is sometimes necessary in practical data analysis,
for example, when NMF is applied to the clustering problem [Xu et al., 2003,
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Shahnaz et al., 2006]. In the clustering, either matrix A or B is regarded as
a cluster assignment indicator matrix and it is preferable that the indicator
matrix is more sparse than the other. In this case, ϕAI + ϕBJ < (I + J)/2 and
ϕA < ϕB should be satisfied. As similar to the example 1, if ϕA, ϕB < 0.5 then
ϕAI + ϕBJ < (I + J)/2, we recommend the hyperparameters are set to a value
within the red triangle region in Fig. 4.6(b).

From above examples, it is confirmed that the result of our theorem is useful
for hyperparameter design.

4.5.2 Related Works

A statistical model is called a singular model if the mapping from parameter
to distribution is not one to one and Fisher information matrix is not positive
definite [Watanabe, 2009]. It is known that not only NMF but also a lot of
modern statistical models such as Gaussian mixture models, Bernoulli mixture
model, hidden Markov models, Bayesian networks are singular models [Watan-
abe, 2009].

In the field of learning theory, free energy has been regarded as an impor-
tant quantity to be clarified. Since it was shown that their asymptotic be-
haviors depend on a model and differ in Bayesian estimation of singular mod-
els [Watanabe, 2001a, Watanabe, 2001b], unlike the behavior of regular sta-
tistical model [Akaike, 1974, Schwarz, 1978], the theoretical analysis has been
actively conducted [Yamazaki and Watanabe, 2003, Yamazaki and Watanabe,
2002, Yamazaki and Watanabe, 2005, Aoyagi and Watanabe, 2005, Aoyagi,
2010].

Variational free energy, which we focus on this chapter, have also been
the targets of theoretical analysis in learning theory [Watanabe and Watan-
abe, 2006, Watanabe and Watanabe, 2007, Kaji et al., 2010, Hosino et al.,
2005, Watanabe et al., 2009, Nakajima et al., 2014]. The existence of the phase
transition structure is also confirmed in aforementioned modern statistical mod-
els. However, theoretical analysis of NMF has not been conducted. Our study
will contribute to the field of learning theory by proving the existence of phase
transition structure in the case of the NMF.

4.6 Proof of Lemmas

In the proof of lemmas, we use the following two inequalities of the digamma
and log-digamma functions [Alzer, 1997], for x > 0,

1

2x
< log(x)−Ψ(x) <

1

x
., (4.5)

0 ≤ log Γ(x)−
{
(x− 1

2
) log(x)− x+

1

2
log 2π

}
≤ 1

12x
. (4.6)

The inequality (4.5) indicates that the difference by substituting log(x) for Ψ(x)
can be bounded. The substitution for log Γ(x) is analogous.
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Proof (Lemma 3) Using the inequality (4.5)(4.6),

FA =
∑
(i,r)

{
−
(
ϕA −

1

2

)
log(αA

ir)− ϕA log(βA
ir) + (ϕA/ηA)āir

+ log Γ(ϕA) + ϕA log(ηA/ϕA)
}
+Op(1).

(4.7)

We denote the effective number of factors as R̂. Without loss of generality, we
can assume that s̄i·r = s̄·jr = 0 is satisfied for all r, R̂ < r ≤ R. By substituting
Eq. (2.10) into Eq. (4.7), we obtain

FA =

I∑
i

R̂∑
r=1

{
−
(
ϕA −

1

2

){
log(n) + log(

ϕA

n
+ s̄i·r)

}}
+

I∑
i

R∑
r=R̂

{
−
(
ϕA −

1

2

)
log

(
ϕA

)}
+
∑
(i,r)

{
ϕA log(n) + ϕA log(b̄·r) + (ϕA/ηA)āir

}
+IR log Γ(ϕA) + IRϕA log(ηA/ϕA) +Op(1)

=
{
ϕAIR−

(
ϕA −

1

2

)
IR̂

}
log(n) +Op(1).

Derivation for FB is analogous. 2

Proof (Lemma 4) It is sufficient to show∑
i,j

x̄ij log
(∑

r

ρijr
)
=

∑
i,j

x̄ij log
(∑

r

āir b̄jr
)
+Op(1). (4.8)

Since ρijr is given by Eq. (2.12), we complete the proof by constructing the
upper and lower bounds using inequality (4.5). The upper bound can be derived
as follows:∑

(i,j)
x̄ij log

(∑
r

ρijr
)

<
∑
(i,j)

x̄ij log
{∑

r

αA
ir exp

(
− 1

2αA
ir

)
·βA

ir · αB
jr exp

(
− 1

2αB
jr

)
·βB

jr

}
=

∑
(i,j)

x̄ij log

{∑
r

āir b̄jr exp
(
− 1

2αA
ir

)
exp

(
− 1

2αB
jr

)}

≤
∑
(i,j)

x̄ij log
(∑

r

āir b̄jr
)
+Op(1).

Similarly, we can also derive the lower bound,∑
(i,j)

x̄ij log
(∑

r

ρijr
)
≥

∑
(i,j)

x̄ij log
(∑

r

āir b̄jr

)
+Op(1).

This completes the proof. 2
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Proof (Lemma 5) The proof is completed by showing the upper and lower
bounds. We first show the upper bound. Let us denote the optimal number of
factors that minimizes the VFE as R∗

vb. From the definition of the VFE and the
results of Lemmas 3 and 4, the VFE can be written as

F̄vb = Λ(R,R∗
vb) log(n)− logP (Xn|Ā, B̄) +Op(1).

Let us consider that R∗
vb is larger than R∗. In this case, Ā, B̄ can reconstruct the

true matrix X∗. Since the VFE is defined as the minimum value of functional
F̄ [q], the VFE satisfies

F̄vb = Λ(R,R∗
vb)− logP (Xn|Ā, B̄) +Op(1)

≤ Λ(R,R∗
vb)− logP (Xn|X∗) +Op(1)

= Λ(R,R∗
vb) + E +Op(1).

Then, − logP (Xn|Ā, B̄) ≤ E is shown. When R∗
vb is less than R∗,

logP (Xn|Ā, B̄)− logP (Xn|X∗) = Op(n)

holds then the VFE in this case is larger than that in the previous case. Thus, we
can consider that R∗

vb is larger than R∗. Next, we show the lower bound by using
the classical statistical learning theory. Let us define the probabilistic model that
has a parameter of Poisson distribution for all the elements of matrix (i, j),

µ̃ = {µ̃ij}I,Ji,j=1. By using this model, the probability of generating matrix Xn

can be written as P̃ (Xm|µ̃) =
∏

(i,j) PO(xm
ij |µ̃ij). From the statistical learning

theory, the maximum likelihood estimator (MLE) µ̃ML satisfies

1

n

n∑
m=1

log
P (Xm|X∗)

P̃ (Xm|µ̃ML)
=

C

n
+Op(

1

n
),

where C is a constant term. From the definition of the MLE,

1

n

n∑
m=1

log
P (Xm|X∗)

P (Xm|Ā, B̄)
≥ 1

n

n∑
m=1

log
P (Xm|X∗)

P̃ (Xm|µ̃ML)

holds, then we can obtain the lower bound as follows.

− logP (Xn|Ā, B̄) ≥ − logP (Xn|X∗) + C +Op(1)

= E +Op(1).
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(a) R̂

(b) V FE (λvb)

Figure 4.3: Visualization of the optimal number of factors, R̂, and VFE (or equiva-
lently, the main term of VFE, λvb) when I = J = 5.
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(a) I = 5, J = 5

(b) I = 5, J = 10

(c) I = 5, J = 20

Figure 4.4: Visualization of VFE varying the size of input matrices.
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(a) I = 5, J = 5

(b) I = 5, J = 10

(c) I = 5, J = 20

Figure 4.5: Comparison of experimental and theoretical values of VFE.
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(a) Example 1

(b) Example 2

Figure 4.6: Recommended hyperparameters for Example 1 and 2.



Chapter 5

Summary

This thesis provides our fruits of work on statistical learning theory of nonnega-
tive matrix factorization (NMF) and multiple data analysis. The contributions
of our works are summarized as follows:

• We proposed a new method for inconsistent resolution dataset analysis.
By considering the data generative process using the latent high resolu-
tion matrix, we constructed a new probabilistic model based on NMF.
We also derive majorization minimization (MM) algorithm for the model
and provides the proof that the algorithm converges to (local) minima.
Experimental results show that the effectiveness of the proposed method.

• We theoretically clarified the phase transition structure of Variational
Bayesian NMF (VBNMF) through the asymptotic analysis of variational
free enerygy (VFE). The numerical experiments support the validity of
our analysis.

For the inconsistent resolution dataset analysis, the remaining research top-
ics include further expansion of the model by, for example, introducing sea-
sonality. It is also important to analyze how the difference of the grain sizes
between the high and low resolution matrices affects the degree of performance
improvement.

For the theoretical analysis, future work of this research includes an exten-
sion of our analysis to the case where some different factorization form such as
tri-factorization [Cichocki et al., 2009] is adopted. Analysis of nonparametric
(variational) Bayesian NMF [Hoffman et al., 2010] is also promising research
direction.
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Appendix

A Terminology of Statistical Learning

Let us define a (statistical) model and a prior distribution as f(x|θ) and g(θ;ϕ),
respectively. We denote data as Xn = {xi}ni=1, where n is the number of data
and xi ∈ Rdx . We assume that the each data x1, · · · , xn is independently
identically distributed (i.i.d).

Based on the above definitions, the probability that data Xn is distributed
from the model given a parameter θ, P (Xn|θ), can be written as

P (Xn|θ) =
n∏

i=1

f(xi|θ). (5.1)

This is called likelihood. The hyperparameter ϕ is usually set by manually.
Then, we omit the notion of ϕ and denote a prior probability of a parameter as

P (θ) = g(θ;ϕ). (5.2)

The a posterior probability of a parameter given data, P (θ|Xn), is derived from
Bayes rule:

P (θ|Xn) =
P (Xn|θ)P (θ)∫
P (Xn|θ)P (θ)dθ

. (5.3)

Minus logarithm of the denominator of this equation is the free energy :

F = − logP (Xn) = − log
(∫

P (Xn|θ)P (θ)dθ
)
. (5.4)

A.1 Model

Here we show some examples of model f .
Example 1.1 (Gaussian): The parameter of (1-dimensional) Gaussian dis-

tribution consists of mean parameter µ ∈ R and variance patemeter σ2 ∈ R+,
i.e., θ = (µ, σ). The probability density function is defined as follows:

fN (x|µ, σ2) =
1√
2πσ2

exp
(
− (x− µ)2

2σ2

)
.

45



46 CHAPTER 5. SUMMARY

For ease of calculation, following precision parameter representation is often
used.

fN (x|µ, τ−1) =

√
τ

2π
exp

(
−τ(x− µ)2

2

)
.

Example 2.1 (Poisson): Poisson distribution has the rate parameter λ ∈ R+

and is defined as

fPO(x|λ) =
λx exp(−λ)

x!
.

It is known that the above Gaussian distribution and Poisson distribution
belongs to exponential family, whose probability distribution is defined as

fE(x|η) = h(x) exp
(
η · T (x)−A(η)

)
, (5.5)

where η is the natural parameter, T (x) is sufficient statistics and A(η) is the
log-normalizer.

Let us confirm that Gaussian distribution belongs to exponential family.
Since

fN (x|µ, σ2) =
1√
2π

exp
( µ

σ2
x− 1

2σ2
x2 − µ2

2σ2
− log σ

)
,

setting h(x) = 1/
√
2π, η = (µ/σ2,−1/2σ2), T (x) = (x, x2), A(η) = µ2/2σ2 +

log σ = −η21/4η2 − 1/2 log(−2η2) leads the form of Eq. (5.5). Similarly, Pois-
son distribution can be represented by the form by setting h(x) = 1/x!, η =
log λ, T (x) = x,A(η) = λ = exp(η) because

fPO(x|λ) =
λx exp(−λ)

x!
=

1

x!
· exp

(
log λ · x− λ).

Although exponential family can express broader family of probability dis-
tributions, it doesn’t include many modern statistical models which has hier-
archical structure such as mixture models. A representative mixture model is
Gaussian mixture model (GMM).

Example 3.1 (Gaussian Mixture Model): The parameter of (1-dimensional)
GMM consists of mixing ratio πk ∈ [0, 1] (

∑
k πk = 1.0), mean parameter µk ∈

R and precision patemeter τk ∈ R+, i.e., θ = (π,µ, τ ),π = {πk}Kk=1,µ =
{µk}Kk=1, τ = {τk}Kk=1) where K is the number of component. The probability
density function is defined below:

fGMM(x|π,µ, τ ) =
∑K

k=1
πkfN (x|µk, τ

−1
k ).

Note that NMF shown in this thesis is also one of the model by considering a
input matrix X ∈ ZI×J

+ is IJ-dimensional vector, x ∈ RIJ . and factor matrices
A,B is the parameter.
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A.2 Conjugate Prior

A prior distribution g is called conjugate prior of model f if the prior and the
posterior probability (Eq.(5.3)) is the same family of distribution. This property
enables us to obtain e.g., analytic form of predictive distribution explained later.
We show two examples: conjugate prior of Poisson and Gaussian.

Example 2.2 (Prior and posterior of Poisson distribution model): As we
stated in chapter 2, Gamma distribution is conjugate prior of Poisson distribu-
tion. We rewrite a definition of Gamma distribution below:

gG(λ|a0, b0) =
ba0
0

Γ(a0)
λa0−1 exp

(
−b0λ

)
,

where a0 and b0 is the hyperparameters. We can easily check that a posterior
distribution is also Gamma distribution. From Eq.(5.3),

P (λ|Xn) ∝ fPO(X
n|λ)gG(λ|a0, b0) ∝ λa0+

∑
i xi−1 exp

{
−(b0 + n)λ

}
,

and then a posterior distribution is

P (λ|Xn) = gG(λ|a, b), a = a0 +
∑

i
xi, b = b0 + n. (5.6)

Example 1.2 (Prior and posterior of Gaussian distribution model): For
Gaussian distribution (with precision parameter representation), Gaussian-gamma
distribution is the conjugate prior. Gaussian-gamma distribution is defined as
the product of Gaussian and gamma distribution with hyperparameter µ0, τ0, a0, b0:

gNG(µ, τ |µ0, τ0, a0, b0)

=

√
τ0τ

2π
exp

(
−τ0τ

2
(µk − µ0)

2
)

︸ ︷︷ ︸
N (µk|µ0,(τ0τ)−1)

1

Γ(a0)
ba0
0 τa0−1 exp(−b0τ)︸ ︷︷ ︸
G(τ |a0,b0)

∝ exp
(
−τ

{
b0 +

τ0
2
(µ− µ0)

2
})
· τ 1

2+a0−1.

From Eq.(5.3),

P (µ, τ |Xn) ∝ fG(X
n|µ, τ−1)gNG(µ, τ |µ0, τ0, a0, b0)

∝ τ
n
2 exp

(
−
∑
i

τ(xi − µ)2

2

)
exp

(
−τ

{
b0 +

τ0
2
(µ− µ0)

2
})
· τ 1

2+a0−1

∝ exp
(
−τ

{
b0 +

1

2

∑
i

x2
i +

τ0 + n

2
µ2 − (τ0µ0 +

∑
i

xi)µ+
τ0
2
µ2
0

})
· τ 1

2+a0+
n
2 −1

∝ exp
(
−τ

{
b0 +

1

2

∑
i

x2
i −

τ0 + n

2
µ̄2 +

τ0
2
µ2
0 +

τ0 + n

2

(
µ− µ̄

)2}) · τ 1
2+a0+

n
2 −1
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and then a posterior distribution is also Gaussian-gamma distribution.

P (µ, τ |Xn) = gNG(µ, τ |µ̄, τ̄ , a, b), µ̄ =
τ0µ0 +

∑
i xi

τ0 + n
, (5.7)

τ̄ = τ0 + n, a = a0 +
n

2
, b = b0 +

1

2

(∑
i

x2
i − nµ̄2

)
+

τ0
2
(µ2

0 − µ̄2).

More generally, if a model f belongs to exponential family, its conjugate
prior exists and is given by

gE(η|ξ0, ν0) = Z(ξ0, ν0) exp
(
η · ξ0 − ν0A(η)

)
,

where ξ0 and ν0 are hyperparameters and Z(ξ0, ν0) is the normalizer. Since

P (η|Xn) ∝ fE(X
n|η)gE(η) ∝ exp

{
η ·

(
ξ0 +

∑n

i=1
T (xi)

)
− (ν0 + n)A(η)

}
,

and

P (η|Xn) = gE

(
η
∣∣∣ξ0 +∑n

i=1
T (xi), ν0 + n

)
,

it is confirmed that gE is the conjugate prior of fE .

A.3 Point Estimation

This subsection provides a approach called point estimation. Purpose of point
estimation is to find an optimum point of parameter. There are two represen-
tative methods, maximum likelihood estimation and maximum a posterior esti-
mation. In maximum likelihood estimation, a target point of parameter is the
one which maximizes likelihood. In maximum a posterior estimation, a target
point of parameter is the one which maximizes posterior probability. Estimated
parameters by the methods are called maximum likelihood estimator (MLE) or
maximum a posterior estimator (MAP). By substituting an MLE/MAP for a
parameter of a model, predictive distribution, which is used for predicting the
distribution of a new data, is constructed.

Given a model, a prior and data, the maximum likelihood estimator (MLE),
θMLE , the maximum a posterior estimator (MAP), θMAP , are formally defined
as follows:

θMLE = arg max
θ

LMLE(θ),

θMAP = arg max
θ

LMAP (θ),

where LMLE(θ) and LMAP (θ) are the following log-likelihood and log-posterior
probability,

LMLE(θ) = logP (Xn|θ) =
∑n

i=1
log f(xi|θ),

LMAP (θ) = logP (θ|Xn) =
∑n

i=1
log f(xi|θ) + log g(θ) + Const.
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We show two examples: MLE and MAP of Gaussian and that of Poisson.
Example 1.3 (MLE and MAP of Gaussian distribution model): Using

Eq. (5.7),

LMAP (µ, τ) =
(1
2
+ a0 +

n

2
− 1

)
log τ

− τ
{
b0 +

1

2

∑
i

x2
i −

τ0 + n

2
µ̄2 +

τ0
2
µ2
0 +

τ0 + n

2

(
µ− µ̄

)2}
Solving ∂LMAP (µ,τ)

∂µ = 0 and ∂LMAP (µ,τ)
∂τ = 0, MAP is given by

µMAP = µ̄, τMAP =
1
2 + a0 +

n
2 − 1

b0 +
1
2

∑
i x

2
i −

τ0+n
2 µ̄2 + τ0

2 µ
2
0

.

Similarly, MLE can be derived as follows:

µMLE =
1

n

∑
i

xi, σ
2
MLE =

1

n

∑
i

(xi − µMLE)
2.

Example 2.3 (MLE and MAP of Poisson distribution model): Using Eq. (5.6),

LMAP (λ) = logP (λ|Xn) =
(
a0 +

∑
i

xi − 1
)
log λ− (b0 + n)λ.

Solving ∂LMAP (λ)
∂λ = 0, MAP is

λMAP =
a0 +

∑
i xi − 1

b0 + n
.

Similarly, MLE is given by

λMLE =

∑
i xi

n
.

We confirmed that MLE and MAP for Gaussian and Poisson distribution
has analytic form. In general, MLE and MAP of a model which belongs to
exponential family is computed using sufficient statistics. This can be confirmed
that the log-posterior of exponential family is given by

LMAP (η) = η ·
(
ξ0 +

∑
i
T (xi)

)
− (ν0 + n)A(η),

and that solving ∂LMAP (η)
∂η = 0 leads

µ̃MAP =
ξ0 +

∑
i T (xi)

ν0 + n
,

where µ̃ is the mean value parameter defined as µ̃ = EfE(x|η)[T (x)](=
∂A(η)
∂η ).

Similarly, MLE is given by

µ̃MAP =

∑
i T (xi)

n
.
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As we stated, many modern statistical models such as GMM are not expo-
nential family and don’t have analytic form of MLE/MAP. For such models, an
iterative algorithms such as Expectation Maximization (EM) algorithm [Demp-
ster et al., 1977] is frequently used. The key of EM algorithm is introducing
latent variable and complete likelihood, which indicates the joint probability of
data and latent variable. In the case of GMM, latent variable Zn = {zik}n,Ki,k=1 is
used,where zik = {0, 1} represents whether i-th data belongs to k-th component
or not. A complete likelihood is defined as follows:

P (Xn, Zn|π,µ, τ ) =
n∏

i=1

K∏
k=1

{
πkfN (xi|µk, τ

−1
k )

}zik
.

Note that
∑

Zn P (Xn, Zn|π,µ, τ ) =
∏n

i=1 fGMM(xi|π,µ, τ ). For more details,
see e.g., [Bishop, 2006].

Predictive distribution of point estimation is constructed by substituting
MLE or MAP, i.e.,

PMLE(x|Xn) = f(x|θMLE),

PMAP (x|Xn) = f(x|θMAP ).
(5.8)

A.4 Bayesian Estimation

This subsection provides a approach called Bayesian estimation. In Bayesian
estimation, a posterior probability of parameter (which is derived by Bayes rule!
See Eq. (5.3)) has a central role. For example, (Bayesian) predictive distribution
is constructed by taking the expectation of a model w.r.t. a posterior probability
of parameter:

PBayes(x|Xn) =

∫
f(x|θ)P (θ|Xn)dθ. (5.9)

Unlike the predictive distribution in point estimation (Eq. (5.8)), this predictive
distribution is not same family of model and that of prior in general. Let us
show examples.

Example 2.4 (Bayesian predictive distribution of Poisson distribution model):
Bayesian predictive distribution of Poisson model is given by negative binomial
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distribution. Using Eq. (5.6)(5.9)

PBayes(x|Xn) =

∫
fPO(x|λ)gG(λ|a, b)dλ

=
1

x!

ba

Γ(a)

∫
λa+x−1 exp

{
−(b+ 1)λ

}
dλ

=
1

x!

ba

Γ(a)

Γ(a+ x)

(b+ 1)a+x

=
Γ(a+ x)

x!Γ(a))

( 1

b+ 1

)x( b

b+ 1

)a

= NB

(
x
∣∣∣a, 1

b+ 1

)
,

where NB is the negative binomial distribution:

NB(k|r, p) = Γ(k + r)

k!Γ(r)
pk(1− p)r.

Example 1.4 (Bayesian predictive distribution of Gaussian distribution
model): Following the derivation by Murphy [Murphy, 2007],

PBayes(x|Xn) =

∫
fN (x|µ, τ)gNG(µ, τ |µ̄, τ̄ , a, b)dλ

= St

(
x
∣∣∣µ̄k,

( aτ̄

bk(τ̄ + 1)

)−1
, 2a

)
,

where St is the Student-t’s distribution:

St(x|µ, σ2, ν) =
Γ(ν/2 + 1/2)

Γ(ν/2)

1

σ
√
πν

[
1 +

1

ν

(x− µ

σ

)2
]−ν/2−1/2

.

We discuss a bit more detail on student-t’s distribution. As shown in Fig. 5.1,
student-t has a long tail in comparison to Gaussian distribution and converges
to Gaussian in the limit ν →∞. Therefore, when the number of data n is small
and 2a is small, the distribution has a long tail reflecting parameter uncertainty,
and converges to Gaussian as n goes to infinity.

More generally, the predictive distribution of exponential family is repre-
sented by following form:

PBayes(x|Xn) =

∫
fE(x|η)gE(η|ξ, ν)dη =

Z(ξ, ν)
Z(ξ + T (x), ν + 1)

h(x). (5.10)

We confirmed that the Bayesian prediction of Gaussian and Poisson is rep-
resented by known, analytic distributions. The other examples of models whose
a posterior and predictive distribution have analytic form can be found in
e.g. [Bernardo and Smith, 2009]. However, for many modern statistical model,
both a posterior distribution and predictive distribution don’t have such analyt-
ical form and it is necessary to use some sampling method such as markov chain
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Figure 5.1: Comparison of Gaussian and Student-t.

monte carlo (MCMC) [Andrieu et al., 2003]. By using sampled parameters from
a posterior distribution, predictive distribution is numerically constructed. It is
known that MCMC usually requires high computational cost and long running
time. Then, the use of extended variant of MCMC such as exchange monte
carlo [Hukushima and Nemoto, 1996] is also investigated for Bayesian estima-
tion [Nagata and Watanabe, 2008].

A.5 Variational Bayesian Estimation

This subsection provides a approach called variational Bayesian (VB) estima-
tion. As we stated in previous subsection, for many modern statistical model,
a posterior distribution is not represented by analytic distribution. Then, VB
is used to estimate the variational distribution, which approximates a posterior
distribution of parameters and hidden variables [Attias, 1999, Attias, 2000, Jor-
dan et al., 1999]. For deriving tractable algorithm, it is needed to adopt some
restricted family of distribution. Then, as we have done in Eq. (2.2.2) for NMF,
a factorized distribution, where some parameters and latent variables are inde-
pendent, is adopted.

Here we show the example of GMM. following factorized distribution often
used:

q(Zn,π,µ, τ ) = q(Zn)q(π)q(µ, τ ).

Estimation is done by minimizing following functional,

F̄ [q] = Eq(Zn)q(π)q(µ,τ )

[
log

q(Zn)q(π)q(µ, τ )

P (Xn, Zn|π,µ, τ )P (π,µ, τ )

]
,
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(a) (b)

Figure 5.2: Examples of matrix with (a) many zero elements (blue) and with
(b) many missing elements (red).

and predictive distribution is constructed as follows.

PV B(x|Xn) =

∫
f(x|θ)q(θ)dθ.

For more details, see e.g., [Bishop, 2006].

B Practical Implementation of NMF

This section describes a practical implementation of NMF for large size matrix.

Data which are analyzed by recent data analysis are often represented by a
matrix whose size (the number of rows and columns) are very large, and thus
naive implementation may take a long time for estimation. Therefore, it is
necessary to use practical implementations where some property of such large
matrix are taken into account.

There are two representative properties that a large matrix holds: (i) ex-
istence of many zero elements and (ii) existence of many missing elements, as
shown in Fig. 5.2. The matrix which has either or both property is often called
sparse matrix. A example of (i) is purchase logs which are represented by a
matrix whose size corresponds to the number of users and items. Each element
indicates purchase amount of an item by a user. Although the size may be large
like more than ten thousand, the variety of items which are bought by a single
users is not so many like less than 1% of the total number of items. Therefore,
there are many zero elements in the matrix. A example of (ii) is movie rating
logs which are represented by a matrix whose size corresponds to the number of
users and movies. Each element indicates a rating of a movie by a user. Since
the variety of movies watched and rated by a single user is very limited, there
are many missing elements, which indicate the corresponding ratings are not
given. These two properties can be incorporated for practical implementation.
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B.1 Handling Zero Elements

Here we show how the “many zero” property can be incorporated into the
algorithm implementation. For the simplicity, we consider the case that number
of input matrices n = 1 and then input matrix is X = {xij}I,Ji,j=1.

Let us define the set of indexes of which elements are non-zero values as
Ωnz, i.e., xij ̸= 0 if (i, j) ∈ Ωnz. Moreover, we denote Ωnz

i and Ωnz
j the set of

non-zero columns of i-th row and that of non-zero rows of j-th column. From
this definition, objective function of NMF (Eq. (2.3)) can be written as follows.

L(A,B) =
∑I,J

i,j=1

{
x̂ij − xij log x̂ij

}
=

∑I,J

i,j=1
x̂ij −

∑
(i,j)∈Ωnz

xij log x̂ij .

The second term of the above final equation contains only summation over non-
zero elements. Following the derivation of MM algorithm, the update equations
are given as follows:

air ← air

∑
j∈Ωnz

i

xij

x̂ij
bjr∑J

j=1 bjr
,

bjr ← bjr

∑
i∈Ωnz

j

xij

x̂ij
air∑I

i=1 air
.

Since we can skip the zero elements in the computation, computational cost of
the each step of the algorithm is O(LR), where L is the total number of non-zero
elements in X.

B.2 Handling Missing Elements

Here we show how the “many missing” property can be incorporated into the
algorithm implementation. Similar to the previous subsection, we consider the
case that number of input matrices n = 1 and then input matrix is X =
{xij}I,Ji,j=1 for simplicity.

Let us define the set of indexes of which elements are observed (non-missing)
as Ωo. Moreover, we denote Ωo

i and Ωo
j the set of non-missing columns of i-th

row and that of non-zero rows of j-th column. When the missing elements exist,
objective function of NMF can be designed by ignoring missing elements:

L(A,B) =
∑

(i,j)∈Ωo

{
x̂ij − xij log x̂ij

}
Note that the summation is taken only over non-missing elements. Following
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the derivation of MM algorithm,

air ← air

∑
j∈Ωo

i

xij

x̂ij
bjr∑

j∈Ωo
i
bjr

,

bjr ← bjr

∑
i∈Ωo

j

xij

x̂ij
air∑

i∈Ωo
j
air

.

Since we can skip the missing elements in the computation, computational cost
of the each step of the algorithm is O(LR), where L is the total number of
observed elements in X.

We showed that the computation cost depends on the number of non-zero/missing
elements. If it is still large, use of distributed processing may be promising way
for faster estimation [Liu et al., 2010, Yin et al., 2014]. Online algorithm [Cao
et al., 2007, Guan et al., 2012] is also good choice for estimation with limited
memory.

C MAP Estimation of NMF

Majorization Minimization (MM) algorithm provided in § 2.2.1 is designed for
MLE. The MM algorithm can be used for MAP.

We consider the setting the conjugate gamma priors are employed, analogous
to chapter 2.

P (A) =
∏I,R

i,r=1
G(air|ϕA, ηA/ϕA), P (B) =

∏J,R

j,r=1
G(bjr|ϕB, ηB/ϕB),

where ϕA, ηA, ϕB , and ηB are hyperparameters.
Using the negative log-likelihood (Eq. (2.2)) and the above prior, the objec-

tive function LMAP can be written as follows:

LMAP (A,B) =n
∑I,J

i,j=1

{
x̂ij − x̄ij log x̂ij

}
+
∑I,R

i,r=1

{
(ϕA − 1) log air −

ϕA

ηA
air

}
+
∑J,R

j,r=1

{
(ϕB − 1) log bjr −

ϕB

ηB
bjr

}
.

(5.11)

Let us also define the auxiliary (majorizing) function L+
MAP as

L+
MAP (A,B,T ) =n

∑I,J

i,j=1

{
x̂ij − x̄ij

∑
r
tijr log

(
airbjr
tijr

)}
−
∑I,R

i,r=1

{
(ϕA − 1) log air −

ϕA

ηA
air

}
−
∑J,R

j,r=1

{
(ϕB − 1) log bjr −

ϕB

ηB
bjr

}
.

where T = {tijr} is auxiliary variables satisfying
∑

r tijr = 1 (∀(i, j)). It can
be verified that the auxiliary function L+ has following two properties:
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1. L(A,B) ≤ L+(A,B,T )

2. L(A,B) = minT L+(A,B,T ).

Note that the equality holds if and only if

tijr =
airbjr∑
r′ air′bjr′

. (5.12)

Since the partial derivative of L+
MAP is computed as

∂

∂air
L+
MAP (A,B,T ) =n

∑J

j=1
bjr − n

∑J

j=1
x̄ijtijr

tijr
airbjr

bjr
tijr
− ϕA − 1

air
+

ϕA

ηA

=n
∑J

j=1
bjr − n

∑J

j=1

x̄ijtijr
air

− ϕA − 1

air
+

ϕA

ηA

=n
∑J

j=1
bjr +

ϕA

ηA
−

n
∑J

j=1 x̄ijtijr + ϕA − 1

air
,

setting ∂
∂air
L+
MAP (A,B,T ) = 0 leads

air =
n
∑J

j=1 x̄ijtijr + ϕA − 1

n
∑J

j=1 bjr +
ϕA

ηA

. (5.13)

By substituting Eq. (5.12) into Eq. (5.13), following update rules for MAP is
obtained.

air =
air

∑J
j=1

x̄ij

x̂ij
bjr +

ϕA−1
n∑J

j=1 bjr +
1
n

ϕA

ηA

(5.14)

bjr =
bjr

∑I
i=1

x̄ij

x̂ij
air +

ϕB−1
n∑I

i=1 air +
1
n

ϕB

ηB

(5.15)

Algorithm 5 shows a pseudo code. As the number of input matrices n → ∞,
the above update rules are equivalent to that for MLE (Eq.(2.6)(2.7)).
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Algorithm 5 Majorization Minimization (MM) for MAP of NMF

Input: Xn: input matrices, R: the number of factors, ϕA, ηA, ϕB , ηB : hyper-
parameters

Output: A,B such that objective function in Eq. (5.11) is minimized under
the non-negative constraint.

1: initialization for A and B
2: repeat
3: Update A by Eq. (5.14)
4: Update B by Eq. (5.15)
5: until Converge





List of Symbols

Symbol Description
I the number of rows
J the number of columns
K the number of rows
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Xn set of input matrices, X1, · · · ,Xn
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n

∑
m Xm

Y K × J input matrix
Y m set of input matrices, Y1, · · · ,Ym

Ȳ average of input matrices, 1
m

∑
ℓ Yℓ

A factor matrix
B factor matrix
C factor matrix
S latent/auxiliary variable
T latent/auxiliary variable
L objective function to be minimized using MM
F̄ objective functional to be minimized using VB
F̄vb Variational free energy (VFE)
E Empirical entropy.
R∗ Nonnegative rank of true matrix X∗

R∗
vb Optimal number of factors that minimize VFE

59





List of Figures

1.1 Matrix representation of data. . . . . . . . . . . . . . . . . . . . 2
1.2 Nonnegative matrix factorization. . . . . . . . . . . . . . . . . . 3
1.3 NMF handling multiple input matrices. . . . . . . . . . . . . . . 3
1.4 Matrices with different granularities. . . . . . . . . . . . . . . . 4
1.5 (unknown) phase transition diagram. . . . . . . . . . . . . . . . 4

2.1 Poisson and Gamma distributions. . . . . . . . . . . . . . . . . . 7
2.2 Graphical model of NMF. . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Scheme of majorization minimization (MM). . . . . . . . . . . . 9
2.4 Generalized KL divergence. . . . . . . . . . . . . . . . . . . . . . 12
2.5 Free energy and variational free energy (VFE). . . . . . . . . . . 13

3.1 Example of datasets requiring inconsistent resolution analysis. . . . . 16
3.2 Example of observed and unobserved data. . . . . . . . . . . . . . . 18
3.3 Graphical models. Shaded nodes indicate observed variables. Fig-

ure (a)presents the original definition of the proposed model described

in Eq. (3.2). By marginalizing out Z, Fig. (b), which is given by

Eq. (3.3), is obtained. Figure (c)(d)represents the generalized model

stated in §3.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Factorization form that corresponds to Fig. 3.3(b). . . . . . . . . . . 21
3.5 Factorization form that corresponds to Fig. 3.3(d). . . . . . . . . . . 25
3.6 An example where (a) members and non-members have almost the

same population and (b) members and non-members have different

populations. Proposed method shown in § 3.2can be applied to the

case of (a). However, it is not appropriate for the case of (b) since the

members and non-members have greatly different purchase volumes. 27
3.7 Factorization form of the extended method. . . . . . . . . . . . . . 27
3.8 Factorization form of NMMF [Takeuchi et al., 2013]. . . . . . . . . . 30

4.1 An example of NMF’s factorization results when redundant factor
exists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Phase transition diagram obtained by our analysis . . . . . . . . 33
4.3 Visualization of the optimal number of factors, R̂, and VFE (or equiv-

alently, the main term of VFE, λvb) when I = J = 5. . . . . . . . . 39

61



62 LIST OF FIGURES

4.4 Visualization of VFE varying the size of input matrices. . . . . . . 40
4.5 Comparison of experimental and theoretical values of VFE. . . . . 41
4.6 Recommended hyperparameters for Example 1 and 2. . . . . . . 42

5.1 Comparison of Gaussian and Student-t. . . . . . . . . . . . . . . 52
5.2 Examples of matrix with (a) many zero elements (blue) and with

(b) many missing elements (red). . . . . . . . . . . . . . . . . . . 53



List of Tables

3.1 Results from synthetic data: test log likelihood for X determined with

different sparseness values. Average and standard deviation are shown.

Larger values are better. Scores and standard deviation are divided

by ten in the 99% sparseness setting. . . . . . . . . . . . . . . . . 26

63





List of Publications

Journal Articles

1. Kohjima, M., Matsubayashi, T., and Sawada, H. (2017). Probabilistic
models based on non-negative matrix factorization for inconsistent res-
olution dataset analysis. The IEICE Transactions on Information and
Systems (Japanese Edition), 100(4):520–529 (This paper was selected for
IEICE 2017 Best Paper Award)

Survey Articles

1. Kohjima, M., Matsubayashi, T., and Sawada, H. (2016). Multiple data
analysis and non-negative matrix/tensor factorizaiton [I]: Multiple data
analysis and its advances. The Journal of the Institute of Electronics,
Information and Communication Engineers, 99(6)

2. Matsubayashi, T., Kohjima, M., and Sawada, H. (2016). Multiple data
analysis and non-negative matrix/tensor factorizaiton [II・finish]: Tensor
data analysis and applications. The Journal of the Institute of Electronics,
Information and Communication Engineers, 99(7)

International Conference Proceedings

1. Kohjima, M., Matsubayashi, T., and Sawada, H. (2015). Probabilistic non-
negative inconsistent-resolution matrices factorization. In 24th ACM In-
ternational Conference on Information and Knowledge Management (CIKM),
pages 1855–1858

2. Kohjima, M. and Watanabe, S. (2017). Phase transition structure of vari-
ational bayesian nonnegative matrix factorization. In International Con-
ference on Artificial Neural Networks (ICANN), pages 146–154. Springer
(This paper was selected for ICANN 2017 Best Paper Award)

65





Acknowledgement

This work has been carried out at Watanabe Laboratory, Department of Math-
ematical and Computing Science, Tokyo Institute of Technology. I would like to
express my gratitude to supervisor Professor Sumio Watanabe for his help, sup-
port and encouragement. I learned the importance of probing the true nature
of a thing from Prof. Watanabe. I would like to thank to Dr. Hiroshi Sawada
and Dr. Tatsushi Matubayashi for fruitful comments on the study at NTT Ser-
vice Evolution Laboratories. I learned the fun of researching at company from
Dr. Sawada and Dr. Matubayashi. I am grateful to Prof. Yumiharu Nakano,
Prof. Makoto Yamashita, Prof. Takafumi Kanamori, and Prof. Yoshiyuki Kabashima
for reviewing this thesis and providing comments on it. I am also grateful to for-
mer and present members of Watanabe Lab. and Proactive Navigation Project
at NTT Service Evolution Labs. for lively discussion with them. Finally, I ap-
preciate to my family for their warm encouragement.

Masahiro Kohjima

67





Bibliography

69





[Aimoto and Kashima, 2013] Aimoto, Y. and Kashima, H. (2013). Matrix fac-
torization with aggregated observations. In Advances in Knowledge Discovery
and Data Mining, pages 521–532. Springer.

[Akaike, 1974] Akaike, H. (1974). A new look at the statistical model identifi-
cation. IEEE transactions on automatic control, 19(6):716–723.

[Alzer, 1997] Alzer, H. (1997). On some inequalities for the gamma and psi
functions. Mathematics of Computation of the American Mathematical Soci-
ety, 66(217):373–389.

[Andrieu et al., 2003] Andrieu, C., De Freitas, N., Doucet, A., and Jordan, M. I.
(2003). An introduction to mcmc for machine learning. Machine learning,
50(1-2):5–43.

[Aoyagi, 2010] Aoyagi, M. (2010). Stochastic complexity and generalization
error of a restricted boltzmann machine in bayesian estimation. Journal of
Machine Learning Research, 11(Apr):1243–1272.

[Aoyagi and Watanabe, 2005] Aoyagi, M. and Watanabe, S. (2005). Stochas-
tic complexities of reduced rank regression in bayesian estimation. Neural
Networks, 18(7):924–933.

[Attias, 1999] Attias, H. (1999). Inferring parameters and structure of latent
variable models by variational bayes. In Proceedings of the Fifteenth confer-
ence on Uncertainty in artificial intelligence, pages 21–30. Morgan Kaufmann
Publishers Inc.

[Attias, 2000] Attias, H. (2000). A variational baysian framework for graphical
models. In Advances in neural information processing systems, pages 209–215.

[Bernardo and Smith, 2009] Bernardo, J. M. and Smith, A. F. (2009). Bayesian
Theory, volume 405. John Wiley & Sons.

[Berry and Browne, 2005] Berry, M. W. and Browne, M. (2005). Email surveil-
lance using non-negative matrix factorization. Computational & Mathematical
Organization Theory, 11(3):249–264.

[Bishop, 2006] Bishop, C. M. (2006). Pattern recognition and machine learning.
springer.

71



72

[Blei et al., 2003] Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent
dirichlet allocation. Journal of machine Learning research, 3(Jan):993–1022.

[Brouwer et al., 2017] Brouwer, T., Frellsen, J., and Lió, P. (2017). Compara-
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