
論文 / 著書情報
Article / Book Information

題目(和文)

Title(English) Computational Complexity of Several Extensions of Kleene Algebra

著者(和文) 中村誠希

Author(English) Yoshiki Nakamura

出典(和文) 学位:博士(理学),
 学位授与機関:東京工業大学,
 報告番号:甲第11065号,
 授与年月日:2019年3月26日,
 学位の種別:課程博士,
 審査員:鹿島 亮,南出 靖彦,伊東 利哉,田中 圭介,森 立平

Citation(English) Degree:Doctor (Science),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第11065号,
 Conferred date:2019/3/26,
 Degree Type:Course doctor,
 Examiner:,,,,

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/

TOKYO INSTITUTE OF TECHNOLOGY

DOCTORAL THESIS

Computational Complexity of Several

Extensions of Kleene Algebra

Author:

NAKAMURA Yoshiki

Supervisor:

Dr. KASHIMA Ryo

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Science

in the

Mathematical and Computing Science

February 26, 2019

https://www.titech.ac.jp/english/
https://educ.titech.ac.jp/is/eng/

iii

Acknowledgements
I am grateful to my supervisor, Ryo Kashima. He supported my research from my

Bachelor degree in many aspects.

I would like to thank Yasuhiko Minamide, Toshiya Ito, Keisuke Tanaka, and Ryuhei

Mori, who refereed this thesis and made remarks and beneficial comments to im-

prove this thesis. I would also like to thank Ryoma Sin’ya, who also made remarks

and beneficial comments to improve this thesis.

v

Contents

Acknowledgements iii

1 Introduction 1

2 Preliminaries 7

2.1 General Notation . 7

2.2 First-order Logic and Second-order Logic 8

2.2.1 Syntax . 8

2.2.2 Semantics . 10

2.3 Kleene Algebra and Relation Algebra 13

2.3.1 Relational Semantics . 13

Proper Relation Algebra . 14

Relational Semantics and FO3 . 16

Axioms of Relation Algebra . 22

2.3.2 Language Semantics . 23

Finite Automata: NFAs and DFAs 24

Derivatives (on Strings) . 26

Axioms of Kleene Algebra . 29

3 Derivatives for Kleene Allegories 31

3.1 Kleene Allegories . 32

3.1.1 (Relational) Semantics . 32

3.1.2 Graph Languages . 34

3.2 Extension with Labels . 36

3.3 Sequential Graph Construction Procedures 39

3.3.1 Labelwidth and Pathwidth . 45

vi

3.4 Left Quotients on Graphs . 46

3.5 Derivatives on Graphs . 52

3.5.1 Upper Bound . 56

3.5.2 A Finite Automaton Construction 57

3.6 Lower Bound: Language and Relations 58

3.7 Future Work . 60

4 Kleene Algebra under Weak Equivalences 63

4.1 p-equivalence in Language Semantics 66

4.1.1 A Robustness . 68

4.1.2 A Logical Characterization of p-equivalence 69

4.1.3 p-equivalence on Prefix-closed Languages 72

A Translation from Universality to p-universality 72

Expressing Prefix-closure Operator 74

4.2 Upper bound: Descriptive Complexity for Automata 76

4.3 Lower Bound: The p-universality Problem 80

4.3.1 The p-emptiness Problem . 84

4.4 p-equivalence in Relational Semantics 88

4.5 Conclusion and Future Work . 90

5 Concluding Remarks 91

A Proof of Theorem 2.3.7 93

B Another Proof of Theorem 4.3.1(4) 97

Bibliography 101

1

Chapter 1

Introduction

Kleene algebra [51] is an algebraic generalization of regular expressions, which con-

sists of two binary operations, union (∪) and concatenation (·), two nullary opera-

tions, the identity of union (0) and the identity of concatenation (1), and one unary

operation, iteration (•∗). Iteration is a basic operation for expressing behaviors of

programs or expressing properties of models. Language semantics and relational se-

mantics are two of principal semantics in Kleene algebra. Each Kleene algebra term in

language semantics is known as a regular expression. Relational semantics of Kleene

algebra is related to relation algebra and logics (e.g., dynamic logic, description logic,

temporal logic, first-order logic). Actually the two equational theories of Kleene al-

gebra defined in language semantics and in relational semantics are equivalent. As

for decidability, the theory (i.e., the equivalence problem for regular expressions)

is decidable and PSPACE-complete [43]. This thesis “Computational Complexity of

Several Extensions of Kleene Algebra” deals with decidability and computational

complexity of several extensions of Kleene algebra.

The relational semantics of Kleene algebra is originated with the calculus of (binary)

relations in the 1870s (according to the paper of Tarski [84]). The calculus of relations

consists of two binary operations, union (∪) and concatenation (·), two nullary oper-

ations, the identity of union (0) and the identity of concatenation (1), and two unary

operations, converse (•⌣) and complement (•−). The calculus of relations is equiva-

lent to FO3 (the three variable fragment of first-order logic) in the sense of expressive

power of binary relations [85] (see also [34]). Unfortunately, as for decidability, the

2 Chapter 1. Introduction

equational theory of the calculus of relations (and also the theory of FO3) is unde-

cidable [85] and RE-complete. In connection with the undecidability result and with

the undecidability of the validity problem for first-order logic (a.k.a. the Entschei-

dungsproblem) [24], many decidable and undecidable variants are studied (we refer

to the book [16] for decidable fragments and undecidable fragments of first-order

logic). The positive fragment [1] (called the positive calculus of relations) is one of

decidable fragments of the calculus of relations, which is the calculus of relations

without complement. The positive fragment is related to the graph homomorphism

problem. Actually the decidability can be shown by reducing to finitely many graph

homomorphism problems.

The positive calculus of relations extended with iteration in Kleene algebra is called

Kleene allegories [18] (or called the positive calculus of relations with transitive closure

[72]). In LICS ’15, it was shown that the identity-free fragment of Kleene allegories

(i.e., Kleene allegories without 1, •⌣, and •∗ and with transitive closure) is decid-

able in EXPSPACE [18], but the decidability of the equational theory was open for

Kleene allegories. In Chapter 3 we solve the problem positively. More precisely, we

show that the equational theory of Kleene allegories is decidable and EXPSPACE-

complete. The equational theory can be characterized by graph homomorphism

problems like for the positive calculus of relations. However we cannot solve the

equational theory by graph homomorphism problems because the number of the

graph homomorphism problems reduced by an equational formula may be infinite.

For that reason, we need an ingenious. For solving this problem, we introduce deriva-

tives on graphs based on derivatives on strings for regular expressions introduced by

Brzozowski [19] and Antimirov [3]. These derivatives reduce the equational theory

of Kleene allegories to the equivalence problem for nondeterministic finite automata.

The lower bound is proved by the EXPSPACE-hardness of the universality problem

for regular expressions with intersection.

The language semantics of Kleene algebra is originated with Kleene’s regular events

(also called regular languages or regular sets) in 1950s [50]. The class of regular

languages is one of well-studied language classes in formal language theory and

is one of well-studied notions in computer science. Each term of Kleene algebra

Chapter 1. Introduction 3

in language semantics is called a regular expression. The equivalence problem for

regular expressions is decidable and PSPACE-complete [43]. (The problem can be

solved, for example, by reducing to the equivalence problem of nondeterministic

finite automata [86].)

As described above, the equivalence problem for Kleene algebra terms under the

normal equivalence is decidable, but the complexity class is PSPACE-hard. It is in-

teresting to study whether there is a weak relation on Kleene algebra terms such

that the equivalence problem under the relation is more effectively solvable than the

one under the normal equivalence. As for first-order logic, it is known that we can

obtain a decidable variant by weakening the validity condition as follows: the finite

validity problem is undecidable (see e.g., [55, Thm. 9.2]), but the “almost surely”

validity problem is decidable and PSPACE-complete [36] (we refer the book [55, Sec.

12]). In Chapter 4, we introduce a weak equivalence, called p-equivalence, as analogy

of the notion of almost surely valid. In other words, the p-equivalence problem in

language semantics is the almost surely validity problem for equational formulas of

Kleene algebra over word (string) structures. (More formally, the p-equivalence is

defined as follows: two languages are p-equivalent if and only if the limit of the den-

sity of the symmetric difference of them is 0.) While the almost surely validity prob-

lem is easier than the validity problem for first-order logic, the equivalence problem

under p-equivalence (more strongly, any binary relation between p-equivalence and

the normal equivalence) is not easier than the equivalence problem for regular ex-

pressions. For example, for regular expressions, we show that the p-equivalence

problem is still PSPACE-hard (note that the normal equivalence problem is PSPACE-

complete). This is shown by modifying the proof of the PSPACE-hardness of the uni-

versality problem for regular expressions. Moreover the emptiness problem under

p-equivalence is also PSPACE-hard, whereas the emptiness problem under the nor-

mal equivalence is effectively solvable (more precisely, NC1-complete). In a nutshell,

the key of the modification is to consider prefix-closed languages (or to reduce to prefix-

closed languages). For showing the upper bounds of the p-equivalence problem, we

first characterize p-equivalence by logical formulas over finite automaton structures and

then we give the upper bounds of the p-equivalence problem for several models of

4 Chapter 1. Introduction

regular languages (regular expressions, nondeterministic finite automata, and deter-

ministic finite automata) by using the results in descriptive complexity theory (we

refer to the book [44]). Finally, we also introduce p-equivalence for Kleene algebra

in relational semantics and compare the two p-equivalences. In other words, the p-

equivalence problem in relational semantics is the almost surely validity problem for

equational formulas of Kleene algebra over structures of binary relations. The two

p-equivalences are incomparable. We also show that, by using the fact that the zero-

one law holds and the almost surely validity problem is decidable for first-order

logic with least-fixed point operator [10], (1) every equational formula of Kleene al-

gebra terms satisfies the zero-one law over structures of binary relations, whereas

it is not the case over word structures (see [80] for the zero-one law of Kleene alge-

bra terms over word structures); and (2) the almost surely equivalence problem for

Kleene algebra terms over structures of binary relations is decidable.

Outline

This thesis consists of five chapters including the chapter of introduction and the

chapter of concluding remarks. We outline the other three chapters as follows:

• Chapter 2 “Preliminaries”: In this chapter we first give the definition of pred-

icate logic, and then we give some fundamental results of Kleene algebra in

relational semantics and language semantics. In the section for Kleene algebra

in relation semantics, we show that it has a connection with relation algebra

and first-order logic and we introduce fundamental results of relation algebra.

In the section for Kleene algebra in language semantics, we introduce deriva-

tives for regular expressions. Actually the two equational theories of Kleene

algebra defined in relational semantics and language semantics are equivalent.

Finally, we introduce an algebraic axiomatization of the equational theory.

• Chapter 3 “Derivatives for Kleene Allegories”: In this chapter we show that

the equational theory of Kleene algebra with relational intersection and rela-

tional converse in relational semantics (called Kleene allegories [18]) is decidable

and EXPSPACE-complete. This problem was open in LICS ’15. The equational

Chapter 1. Introduction 5

theory of Kleene allegories can be characterized by infinitely many graph ho-

momorphism problems. For showing decidability, we introduce derivatives

on graphs based on derivatives on strings for regular expressions introduced

by Antimirov [3]. These derivatives reduce the equational theory of Kleene al-

legories to the equivalence problem for nondeterministic finite automata. The

lower bound is proved by the EXPSPACE-hardness of the universality problem

for regular expressions with intersection.

• Chapter 4 “Kleene Algebra Under Weak Equivalences”: In this chapter we

study the equivalence problem for Kleene algebra in language semantics (i.e.,

regular expressions) under weak equivalences. In particular, we introduce p-

equivalence defined as follows: two languages are p-equivalent if and only if

the limit of the density of the symmetric difference of them is 0. We give sev-

eral logical characterizations for p-equivalence and give the complexity upper

bounds by the results of descriptive complexity theory. For lower bound, we

show that each language problem (e.g., the equivalence problem, the univer-

sality problem) under p-equivalence (more strongly, any binary relation be-

tween p-equivalence and the normal equivalence) is not easier than the one un-

der normal equivalence in several cases. Finally, we introduce p-equivalence

for Kleene algebra in relational semantics and compare the two p-equivalences.

7

Chapter 2

Preliminaries

2.1 General Notation

The symbol N = {0, 1, . . . } denotes the set of non-negative integers and the sym-

bol N+ = {1, 2, . . . } denotes the set of positive integers. [n] denotes the interval

{1, . . . , n} for n ∈ N.

The symbol ∅ (or {}) denotes the empty set. The cardinality of a set X is denoted

by #(X). The powerset of a set X is denoted by ℘(X). Let X1 and X2 be sets. The

symmetric difference of X1 and X2, written X1 △ X2, is defined by X1 △ X2 = (X1 \

X2) ∪ (X2 \ X1). The disjoint union of X1 and X2, written X1 ⊎ X2, is defined by

X1 ⊎ X2 = {(x1, 1) | x1 ∈ X1} ∪ {(x2, 2) | x2 ∈ X2}. When i is clear from the context,

(x, i) may be abbreviated as x. The domain and the codomain of a partial function

f : A → B are denoted by dom(f) and cod(f), respectively.

Let A be an alphabet (a set of characters). A string over A is a finite sequence of char-

acters. A∗ denotes the set of all strings over A, and An denotes the set of all strings

of length n over A. A language over A is a subset of A∗. We use a ∈ A to denote a

character, s ∈ A∗ to denote a string, and L ⊆ A∗ to denote a language. a1a2 . . . an

denotes the sequence (a1, a2, . . . , an). The empty string ε is the empty sequence ().

The length of a string s is denoted by ∥s∥. The concatenation of strings s = a1 . . . an

and s′ = a′1 . . . a′m, written s · s′, is the string a1 . . . ana′1 . . . a′m. The symbol · may be

omitted for short, i.e., ss′ denotes s · s′. The n-th iterate of s, written sn, is inductively

defined as follows: (1) s0 := ε; (2) sn+1 := s · sn.

8 Chapter 2. Preliminaries

A binary relation (relation, for short) R on a set X is a subset of X × X. The iden-

tity relation on a set X, written △(X), is defined by △(X) := {(x, x) | x ∈ X}.

The composition of R1 and R2, written R1 · R2, is defined by R1 · R2 := {(x, x′′) |

∃x′.(x, x′) ∈ R1 ∧ (x′, x′′) ∈ R2}. The functional composition of R1 and R2, writ-

ten R1 ◦ R2, is defined by R1 ◦ R2 := {(x, x′′) | ∃x′.(x, x′) ∈ R2 ∧ (x′, x′′) ∈ R1}, i.e.,

R1 ◦R2 :=R2 ·R1. The relational converse of R, written R⌣, is defined by R⌣ := {(x′, x) |

(x, x′) ∈ R}. The n-th iterate of R, written Rn, is inductively defined as follows:

(1) R0 :=△(X); (2) Rn+1 :=R ·Rn. The reflexive transitive closure of R is denoted by R∗,

i.e., R∗ :=
∪

n≥0 Rn. The transitive closure of R is denoted by R+, i.e., R+ :=
∪

n≥1 Rn.

R(x) denotes the set {x′ ∈ X | (x, x′) ∈ R}.

2.2 First-order Logic and Second-order Logic

In this section we define the syntax and the semantics of first-order logic and second-

order logic by reason of that some notions in this thesis are based on or related to

logic.

2.2.1 Syntax

A ranked alphabet is an alphabet A with a function ar : A → N, where ar(a) denotes

the arity of a. Explicitly ak denotes that the character a has arity k. A signature σ

is a pair of two ranked alphabets, SF and SR, where SF and SR are disjoint. Every

character in SF is called a function symbol and every character in SR is called a relation

symbol. Every nullary function symbol is called a constant symbol. In particular, a

signature with no relation symbols is called an algebraic signature.

Definition 2.2.1 (Term). The set of terms over a signature σ and an alphabet A, writ-

ten T σ
A , is the smallest set satisfying the follows: (1) a ∈ T σ

A for a ∈ A; (2) if t1 , t2,

. . . , tk are terms in T σ
A , then f (t1, t2, . . . , tk) is also a term in T σ

A , for f k ∈ SF
σ .

If f is a nullary function symbol, f denotes the term f (). If f is an unary function

symbol, (t) f denotes the term f (t). If f is a binary function symbol, (t1 f t2) de-

notes the term f (t1, t2). We may denote a unary function symbol f by • f . We omit

2.2. First-order Logic and Second-order Logic 9

parentheses and we use them in ambiguous situations when it is not clear how to

parse.

Example 2.2.2. Let σ be the algebraic structure (+2, 00, •−1), .i.e., +, 0, and −1 are all

function symbols and have arity 2, 0, and 1, respectively. Let A be the alphabet {x}.

Then (x + 0) + x−1 denotes the term +(+(x, 0),−1(x)) ∈ T σ
A .

We now define formulas of first-order logic (FO) and second-order logic (SO).

Definition 2.2.3 (SO formula). The set of SO formulas over a signature σ, an alphabet

A, and a ranked alphabet X , written ΦSO,σ
A,X , is the smallest set satisfying the follows:

(1) If R ∈ SR and t1, . . . , tk ∈ T σ
A , then R(t1, . . . , tk) ∈ ΦSO,σ

A,X .

(2) If t1, t2 ∈ T σ
A , then t1 = t2 ∈ ΦSO,σ

A,X .

(3) If φ1, φ2 ∈ ΦSO,σ
A,X , then φ1 ∧ φ2, φ1 ∨ φ2,¬φ1 ∈ ΦSO,σ

A,X .

(4) If x ∈ A and φ ∈ ΦSO,σ
A,X , then ∃x.φ, ∀x.φ ∈ ΦSO,σ

A,X .

(5) If Xk ∈ X and t1, . . . , tk ∈ T σ
A , then X(t1, . . . , tk) ∈ ΦSO,σ

A,X .

(6) If X ∈ X and φ ∈ ΦSO,σ
A,X , then ∃X.φ, ∀X.φ ∈ ΦSO,σ

A,X .

Every x ∈ A is called a first-order variable and every X ∈ X is called a second-order

variable. The set of first-order free variables of a formula φ is denoted by FV1(φ)

and the set of second-order free variables of a formula φ is denoted by FV2(φ). A

formula φ is called a sentence if φ has no free variables, i.e., FV1(φ) = FV2(φ) = ∅.

We use Q to denote a quantifier, either ∃ or ∀. Then Qx is called a first-order quantifier

and QX is called a second-order quantifier. The following abbreviations are used:

(1) t1 ̸= t2 :≡ ¬(t1 = t2), (2) φ1 → φ2 :≡ (¬φ1) ∨ φ2, (3) φ1 ↔ φ2 :≡ (φ1 →

φ2) ∧ (φ2 → φ1), (4) φ1 ↮ φ2 :≡ ¬(φ1 ↔ φ2), (5) (∀x | φ).ψ :≡ ∀x.(φ → ψ),

(6) (∃x | φ).ψ :≡ ∃x.(φ ∧ ψ), (7) (∀X | φ).ψ :≡ ∀X.(φ → ψ), and (8) (∃X | φ).ψ :≡

∃X.(φ ∧ ψ).

Definition 2.2.4 (FO formula). An SO formula φ is called an FO formula if φ contains

no second-order variables and no second-order quantifiers.

Definition 2.2.5 (Equantional formula). An SO formula φ ∈ ΦSO,σ
A,X is called an equa-

tional formula if φ is of the form t1 = t2, where t1, t2 ∈ T σ
A .

10 Chapter 2. Preliminaries

Definition 2.2.6 (MSO formula). An SO formula φ is called a k-adic SO formula if

every second-order variable occurring in φ has arity at most k. In particular, 1-adic

SO is called monadic SO (MSO).

Definition 2.2.7 (SO∃ and SO∀). Let φ be an SO formula. Then φ is called an SOQ

formula if φ is of the form QX1. · · ·QXn.ψ, where n ≥ 0 and ψ contains no second-

order quantifiers.

Definition 2.2.8 (FO∃ and FO∀). Let φ be an FO formula. Then φ is called an FOQ

formula if φ is of the form Qx1. · · ·Qxn.ψ, where n ≥ 0 and ψ contains no first-order

quantifiers (i.e., ψ is a quantifier-free formula).

We now define the size of terms and formulas, which is used as an induction mea-

sure or a complexity measure.

Definition 2.2.9 (Size). The size of a term t ∈ T σ
A , written ∥t∥, and the size of a

formula φ ∈ ΦSO,σ
A,X , written ∥φ∥, are inductively defined as follows:

(1) ∥a∥ := 1 for a ∈ A;

(2) ∥ f k(t1, . . . , tk)∥ := ∥Xk(t1, . . . , tk)∥ := ∥Rk(t1, . . . , tk)∥ := 1+ ∑k
i=1 ∥ti∥ for f k ∈

SF, Xk ∈ X , and Rk ∈ SR;

(3) ∥t1 = t2∥ := 1 + ∥t1∥+ ∥t2∥;

(4) ∥φ1 ∧ φ2∥ := ∥φ1 ∨ φ2∥ := 1 + ∥φ1∥+ ∥φ2∥;

(5) ∥¬φ∥ := ∥∃x.φ∥ := ∥∀x.φ∥ := ∥∃X.φ∥ := ∥∀X.φ∥ := 1 + ∥φ∥.

2.2.2 Semantics

We now define the semantics of first-order logic and second-order logic.

Definition 2.2.10 (Structure). A structure over a signature σ, written A, is a tuple

(|A|, { fA} f∈SF
σ
, {RA}R∈SR

σ
), where

(1) |A| is a nonempty set,

(2) fA : |A|ar(f) → |A| is a function (if ar(f) = 0, fA() is an element in |A|), and

(3) RA ⊆ |A|ar(R) is a relation.

2.2. First-order Logic and Second-order Logic 11

In particular, a structure without relation symbols is called an algebraic structure (or

called algebra).

Definition 2.2.11 (Model). An interpretation (over A and X) is a tuple ({xM}x∈A, {XM}X∈X),

where (1) xM is an element of |A|; and (2) XM ⊆ |A|ar(X) is a relation. A model over

A and X , written M (or (A, I)), is a structure A with an interpretation I. The size of

a model M, written ∥M∥, is defined as #(|M|).

Definition 2.2.12 (Semantics). The semantics of a term t ∈ T σ
A on a model M, written

JtKM, is an element of |M| inductively defined as follows:

(1) JaKM := aM for a ∈ A;

(2) J f k(t1, . . . , tk)KM := f M(Jt1KM, . . . , JtkKM) for f k ∈ SF
σ .

The semantics of a formula φ ∈ ΦSO,σ
A,X on a model M, written JφKM, is a truth value

(i.e., an element of {true, f alse}). M |= φ (resp. M ̸|= φ) denotes JφKM = true (resp.

JφKM = f alse). M[a/x] denotes the model M in which xM has been replaced by the

element a ∈ |M|. M[R/X] denotes the model M in which XM has been replaced by

the relation R ⊆ |M|ar(X). Then JφKM is inductively defined as follows:

(1) M |= X(t1, . . . , tk) :⇐⇒ (Jt1KM, . . . , JtkKM) ∈ XM for Xk ∈ X ;

(2) M |= R(t1, . . . , tk) :⇐⇒ (Jt1KM, . . . , JtkKM) ∈ RM for Rk ∈ SR
σ ;

(3) M |= t1 = t2 :⇐⇒ Jt1KM = Jt2KM;

(4) M |= φ1 ∨ φ2 :⇐⇒ M |= φ1 or M |= φ2;

(5) M |= φ1 ∧ φ2 :⇐⇒ M |= φ1 and M |= φ2;

(6) M |= ¬φ :⇐⇒ M ̸|= φ;

(7) M |= ∃x.φ :⇐⇒ there is a ∈ |M| such that M[a/x] |= φ;

(8) M |= ∀x.φ :⇐⇒ for any a ∈ |M|, M[a/x] |= φ;

(9) M |= ∃Xk.φ :⇐⇒ there is R ⊆ |M|k such that M[R/X] |= φ;

(10) M |= ∀Xk.φ :⇐⇒ for any R ⊆ |M|k, M[R/X] |= φ.

We also define the semantics of a formula φ on a structure A as follows: JφKA =

{I is an interpretation | (A, I) |= φ}. JφKx⃗
A denotes the set {(I(x1), . . . , I(x∥x⃗∥)) ∈

12 Chapter 2. Preliminaries

|A|∥x⃗∥ | I ∈ JφKA}, where x⃗ is a string over A and xi denotes the i th character of x⃗.

In the same manner JφKX⃗
A denotes the set {(I(X1), . . . , I(X∥X⃗∥)) ∈ ℘(|A|)∥X⃗∥ | I ∈

JφKA}, where X⃗ is a string over X and Xi denotes the i th character of X⃗. We call that

a structure A satisfies a formula φ (denoted by A |= φ) if (A, I) |= φ holds for any

interpretation I. A formula φ is called a theorem if A |= φ holds for any structure A.

We may extend formulas with a strict linear order (<) (see also “<” in [44]). The

symbol < is a special binary relation symbol (like the symbol =) interpreted as a

strict linear order on |M|. Then we also extend formulas with the binary relation

symbol ≤ and the constant symbols, 0 and max to denote the non-strict linear order

of <, the minimum element under <, the maximum element under <, respectively.

SO< (resp. FO<, . . .) denotes the SO (resp. FO, . . .) with the following symbols:

<, ≤, 0, and max. We may also extend formulas with transitive closure (TC) (see

also “TC” in [44]). Then we assume that if φ is a formula, (TCx,x′(φ))(y, y′) is also

a formula, where x, x′, y, and y′ are first-order variables, and (TCX,X′(φ))(Y, Y′) is

also a formula, where X, X′, Y, and Y′ are second-order variables. The semantics of

these formulas on M = (A, I) are defined as follows:

M |= (TCx,x′(φ))(y, y′) ⇐⇒ (JyKM, Jy′KM) ∈ (JφKx,x′
A)+

M |= (TCX,X′(φ))(Y, Y′) ⇐⇒ (JYKM, JY′KM) ∈ (JφKX,X′

A)+

where R+ denotes the transitive closure of a binary relation R. We may also extend

formulas with deterministic transitive closure (DTC) (see also “DTC” in [44]). The

semantics on M = (A, I) of DTCx,x′(φ))(y, y′) is defined as follows:

M |= (DTCx,x′(φ))(y, y′) ⇐⇒


M |= (TCx,x′(φ))(y, y′) (JφKx,x′

A is deterministic)

f alse (otherwise)

where A binary relation R on X is called deterministic if #{x′ ∈ X | (x, x′) ∈ R} = 1

holds for any x ∈ X. SO(TC) (resp. FO<(TC), . . .) denotes the SO (resp. FO<, . . .)

with transitive closure. SO(DTC) (resp. FO<(DTC), . . .) denotes the SO (resp. FO<,

. . .) with deterministic transitive closure.

2.3. Kleene Algebra and Relation Algebra 13

2.3 Kleene Algebra and Relation Algebra

In this section we introduce some fundamental results related to Kleene algebra or

relation algebra. We introduce two semantics for Kleene algebra, language semantics

and relational semantics. The relational semantics of Kleene algebra is also deeply

related with relation algebra. Let σKA be the algebraic signature (00, 10, ·2,∪2, •∗). A

term of Kleene algebra (also called regular expression) is a term over the signature σKA.

T KA
A denotes the set of all Kleene algebra terms over an alphabet A. Φ=,KA

A denotes

the set of all equational formulas over σKA and an alphabet A. Roughly speaking, the

symbol 0 denotes the identity element for the operator ∪, the symbol 1 denotes the

identity element for the operator ·, the symbol · denotes concatenation, the symbol

∪ denotes union, and the symbol •∗ (called Kleene star) denotes iteration. t1t2 is an

abbreviated for t1 · t2. tn denotes the n-th iterate of t, i.e., tn is inductively defined as

follows: (1) t0 :≡ 1; (2) tn+1 :≡ t · tn.

2.3.1 Relational Semantics

The relational semantics of Kleene algebra is originated with the calculus of (binary)

relations in the 1870s (according to the papar of Tarski [84]). A binary relation (relation,

for short) R on a set X is a subset of X × X. First we define some operations on

binary relations. The identity relation on a set X is defined by △(X) := {(x, x) | x ∈

X}. The composition of R1 and R2, written R1 · R2, is defined by R1 · R2 := {(x, x′′) |

∃x′.(x, x′) ∈ R1 ∧ (x′, x′′) ∈ R2}. The functional composition of R1 and R2, written

R1 ◦ R2, is defined by R1 ◦ R2 := {(x, x′′) | ∃x′.(x, x′) ∈ R2 ∧ (x′, x′′) ∈ R1}, i.e.,

R1 ◦R2 :=R2 ·R1. The relational converse of R, written R⌣, is defined by R⌣ := {(x′, x) |

(x, x′) ∈ R}. The n-th iterate of R, written Rn, is inductively defined as follows:

(1) R0 :=△(X); (2) Rn+1 :=R ·Rn. The reflexive transitive closure of R is denoted by R∗,

i.e., R∗ :=
∪

n≥0 Rn. The transitive closure of R is denoted by R+, i.e., R+ :=
∪

n≥1 Rn.

Relational semantics is defined on the following model.

Definition 2.3.1 (Relational model). A relational model M (over an alphabet A) is a

tuple (V, {Ra}a∈A), where V is a set and every Ra ⊆ V2 is a binary relation on V.

14 Chapter 2. Preliminaries

The class of all relational models is denoted by RELA. RELn
A denotes the class of all

relational models of size n, i.e., RELn
A = {M ∈ RELA | #VM = n}.

Definition 2.3.2 (Relational semantics). The relational semantics of a term t in T KA
A

on a relational model M = (V, {Ra}a∈A), written JtKM, is a binary relation on VM,

inductively defined as follows:

(1) JaKM := Ra for a ∈ A;

(2) J0KM := ∅;

(3) J1KM :=△(V);

(4) Jt1 · t2KM := Jt1KM · Jt2KM;

(5) Jt1 ∪ t2KM := Jt1KM ∪ Jt2KM;

(6) Jt∗KM := JtK∗M.

Remark. In fact every relational model M is also a model in Definition 2.2.11 (i.e., an

algebraic structure over σKA on ℘(V2
M) with an interpretation).

The equational theory over relational semantics, written RKAA, is a set of equational

formulas, defined by RKAA := {t1 = t2 ∈ Φ=,KA
A | Jt1KM = Jt2KM for any M ∈ RELA}.

Proper Relation Algebra

The relational semantics for Kleene algebra (Definition 2.3.2) is based on the calculus

of (binary) relations (and relation algebra) [84]. Let σRA = (00, 10,⊤0, ·2, •⌣,∪2,∩2, •−)

be the algebraic signature of relation algebra. T RA
A denotes the set of all terms over

σRA and an alphabet A. Φ=,RA
A denotes the set of all equational formulas over σRA

and an alphabet A. Roughly speaking, the symbols 0, 1, and ⊤ denote the identity

element for the operators ∪, ·, and ∩, respectively, the symbol · denotes concate-

nation, the symbol •⌣ denotes the relational converse, and the symbols ∪, ∩, and

•− denote union, intersection, and complement in set theory. The following is an

algebraic definition of the calculus of relations.

Definition 2.3.3 (Proper relation agebra, see e.g., [62, p.24.]). An algebraic structure

A over σRA is called a proper relation algebra if the following hold:

2.3. Kleene Algebra and Relation Algebra 15

(1) V is a set;

(2) |A| ⊆ ℘(V2);

(3) 0A = ∅;

(4) 1A = △(V);

(5) ⊤A = V2;

(6) R1 ·A R2 = R1 · R2;

(7) R⌣
A
= R⌣;

(8) R1 ∪A R2 = R1 ∪ R2;

(9) R1 ∩A R2 = R1 ∩ R2;

(10) R−A
= V2 \ R;

(11) |A| is closed under ·, •⌣, ∪, ∩, and complement (i.e., V2 \ R), and 0A, 1A,⊤A ∈

|A|,

where each R, R1, and R2 is any binary relation on V.

Remark. We omit the symbol “†” (the dual of ·) in [84] for considering positive frag-

ments of the calculus of relations. However this restriction is not essential for the

(full) calculus of relations because R1 † R2 can be expressed as (R−
1 · R−

2)
− by using

other symbols. In the same manner we can reduce the signature σRA to (1,∪, ·, •⌣, •−)

by the following equations: ⊤ = 1 ∪ 1−; 0 = (1 ∪ 1−)−; and R1 ∩ R2 = (R−
1 ∪ R−

2)
−.

An algebraic structure A over σRA is called a representable relation algebra [62, p.24] if

A is isomorphic to a proper relation algebra. We denote the class of representable

relation algebras by RRA. We are also interested in the following equational theory:

RRAA := {t1 = t2 ∈ Φ=,RA
A | A |= t1 = t2 for any A ∈ RRA}.

Remark. Every proper relation algebra (with an interpretation) is very closed to a

relational model defined in the previous section. The relational semantics of a term t

in T RA
A on a relational model M = (V, {Ra}), written JtKM, is defined like Definition

2.3.2, as follows:

(1) JaKM = Ra for a ∈ A;

16 Chapter 2. Preliminaries

(2) J0KM = ∅;

(3) J1KM = △(V);

(4) J⊤KM = V2;

(5) Jt1 · t2KM = Jt1KM · Jt2KM;

(6) Jt⌣KM = JtK⌣M;

(7) Jt1 ∪ t2KM = Jt1KM ∪ Jt2KM;

(8) Jt1 ∩ t2KM = Jt1KM ∩ Jt2KM;

(9) Jt−KM = V2 \ JtKM.

Actually the equational theory RRAA can be also defined as {t1 = t2 ∈ Φ=,RA
A |

Jt1KM = Jt2KM for any relational model M}.

Relational Semantics and FO3

Let A be an alphabet, let σT RA
A be the signature ({t2}t∈T RA

A
), and let σA be the sig-

nature ({a2}a∈A), where every t (resp. a) is a binary relation symbol. The following

(Figure 2.1) is an axiomatization of the calculus of relations, given by Tarski [84, p.75-

76] (where the axioms for the symbol 1 is replaced from [84, p.75-76] by using the

symbol =).

(R1) ∀x.∀y.((x ⊤ y) ↔ (x = x))
(R2) ∀x.∀y.((x 0 y) ↔ ¬(x = x))
(R3) ∀x.∀y.((x 1 y) ↔ (x = y))
(R4) ∀x.∀y.((x t− y) ↔ ¬(x t y))
(R5) ∀x.∀y.((x t⌣ y) ↔ (y t x))
(R6) ∀x.∀y.((x (t1 ∪ t2) y) ↔ ((x t1 y) ∨ (x t2 y)))
(R7) ∀x.∀y.((x (t1 ∩ t2) y) ↔ ((x t1 y) ∧ (x t2 y)))
(R8) ∀x.∀y.((x (t1 · t2) y) ↔ (∃z.((x t1 z) ∧ (z t2 y))))

FIGURE 2.1: An axiomatization of the calculus of relations [84, p.75-76]

We denote the class of structures over σT RA
A satisfying (R1)-(R8) by RS . Every struc-

ture in RS is essentially equivalent to a model of proper relation algebras.

Proposition 2.3.4. Let (A, I) be any pair of a proper relation algebra and an interpretation,

and let A′ be any structure in RS . If JaK(A,I) = aA
′

holds for any a ∈ A, then

2.3. Kleene Algebra and Relation Algebra 17

(1) for any term t ∈ T RA
A , JtK(A,I) = tA

′
;

(2) for any terms t1, t2 ∈ T RA
A , (A, I) |= t1 = t2 ⇐⇒ A′ |= t1 = t2.

Proof Sketch. (1) is easily proved by induction on the structure of t. (2) is by (1).

From this, RRAA = {t1 = t2 ∈ Φ=,RA
A | A |= t1 = t2 for any A ∈ RS} also holds.

(Note that, for any model (A, I) of proper relation algebras, there is a structure A′

in RS such that JaK(A,I) = aA
′

holds for any a ∈ A, and vice versa.) Actually every

term of relation algebra can be replaced by an FO3 formula by using (R1)-(R8). An

FO formula is called an FO3 (resp. FOk) formula if the number of variables occurring

is at most 3 (resp. k, where k is a natural number). For example, ∀x.∀y.∀z.∀x.x = x

is an FO3 formula, but ∀x.∀y.∀z.∀w.x = x is not. Figure 2.2 gives a translation from

every term of relation algebra to an FO3 formula over the signature σA and a set of

first-order variables of size 3 (denoted by V3).

(R’1) φa(x, y) :≡ (x a y)
(R’2) φ⊤(x, y) :≡ (x = x)
(R’3) φ0(x, y) :≡ ¬(x = x)
(R’4) φ1(x, y) :≡ (x = y)
(R’5) φt−(x, y) :≡ ¬φt(x, y)
(R’6) φt⌣(x, y) :≡ φt(y, x)
(R’7) φt1∪t2(x, y) :≡ φt1(x, y) ∨ φt2(x, y)
(R’8) φt1∩t2(x, y) :≡ φt1(x, y) ∧ φt2(x, y)
(R’9) φt1·t2(x, y) :≡ ∃z.(φt1(x, z) ∧ φt2(z, y))
where x, y ∈ V3 and z is a variable in V3 such that z is not x and is not y.

FIGURE 2.2: From relation algebra terms to FO3 formulas [34, Sec. 8.]

Theorem 2.3.5 (e.g., [34, Sec. 8]). Let u and v be any variables. Then

(1) For any term t in T RA
A , there is an FO3 formula φ′ over σA such that tA = Jφ′Ku,v

A

holds for any A ∈ RS .

(2) For any FO3 formula φ over σT RA
A , there is an FO3 formula φ′ over σA such that

JφKu,v
A = Jφ′Ku,v

A holds for any structure A over σA.

Proof Sketch. (1): JtKM = Jφt(u, v)Ku,v
M is shown by induction on the structure of t. (2):

This part is shown by (1).

18 Chapter 2. Preliminaries

Actually the converse of Theorem 2.3.5 (1) also holds. To prove it, we define a class

of formulas, extended disjunctive normal form (extended DNF). We call that an FO

formula is an extended DNF if the formula is in the set Φ, which is defined by the

following grammar:

φ ∈ Φ ::= φ ∨ φ | ψ

ψ ::= ψ ∧ ψ | ρ | ¬ρ

ρ ::= (x = y) | (x a y) | ∃x.ψ

The only difference from the DNF is that it allows every formula of the form ∃x.ψ as

a literal. We call that a formula of the form ρ or ¬ρ is an extended literal (denoted by

l, l′, . . .). Every extended DNF can be expressed as
∨

i∈[n]
∧

j∈[mi] li,j. The complement

of an extended literal l, written l̄, is defined by l̄ :≡


ρ (l ≡ ¬ρ)

¬ρ (l ≡ ρ)

. Figure 2.3 gives

a translation from every FO formula to an equivalent extended DNF FO formula.

(1) (x = y)T :≡ (x = y)
(2) (x a y)T :≡ (x a y)
(3) (φ1 ∨ φ2)T :≡ φT

1 ∨ φT
2

(4) (φ1 ∧ φ2)T :≡ (¬(¬φ1 ∨ ¬φ2))T

(5) (¬φ)T :≡ ∨
(j1,...,jn)∈[m1]×···×[mn]

∧
i∈[n] l̄i,ji , where φT ≡ ∨

i∈[n]
∧

j∈[mi] li,j,
(6) (∃x.φ)T :≡ ∨

i∈[n](∃x.
∧

j∈[mi] li,j), where φT ≡ ∨
i∈[n]

∧
j∈[mi] li,j.

(7) (∀x.φ)T :≡ (¬∃x.¬φ)T

FIGURE 2.3: From FO formulas to extended DNF formulas

Lemma 2.3.6. Every FO (resp. FO3) formula φ is equivalent to an extended DNF FO (resp.

FO3) formula.

Proof Sketch. For any structure A ∈ RS and any interpretation I, JφTKA,I = JφKA,I

holds. It is easily proved by induction on the structure of φ, where we assume that

φ1 ∧ φ2 is the abbreviation of ¬(¬φ1 ∨¬φ2) and ∀x.φ is the abbreviation of ¬∃x.¬φ.

Explicitly ρ{u,v} (resp. ψ{u,v}) denotes that ρ (resp. ψ) is a formula such that FV1(ρ) ⊆

{u, v} (resp. FV1(ψ) ⊆ {u, v}). Note that the number of free variables of every ρ is at

most 2, and thus every ψ can be expressed as ψ{x,y} ∧ ψ{y,z} ∧ ψ{z,x}, where variables

2.3. Kleene Algebra and Relation Algebra 19

x, y, and z are distinct. For that reason, we can redefine the definition of extended

DNF as the set Φ defined by the following grammar (where x, y, z are all distinct):

φ ∈ Φ ::= φ ∨ φ | ψ

ψ ::= ψ̂{x,y} ∧ ψ̂{y,z} ∧ ψ̂{z,x}

ψ̂{x,y} ::= ψ̂{x,y} ∧ ψ̂{x,y} | ρ{x,y} | ¬ρ{x,y}

ρ{x,y} ::= (x = x) | (x = y) | (x a x) | (x a y) | ∃z.ψ

Remark. The above extended DNF is the key to translate to a term of relation algebra.

Note that Jφ1 ∧ φ2Ku,v
A = Jφ1Ku,v

A ∩ Jφ2Ku,v
A does not always hold. For example, if

Jφ1Ku,v,w
A = {(0, 0, 0)} and Jφ2Ku,v,w

A = {(0, 0, 1)}, then Jφ1 ∧ φ2Ku,v
A = ∅, but Jφ1Ku,v

A ∩

Jφ2Ku,v
A = {(0, 0)}.

Figure 2.4 shows a translation from every extended DNF FO3 formula over σA to a

term of relation algebra. By the translation, the following is shown.

Theorem 2.3.7 (e.g., [34, Sec. 20], [85, Sec. 3.9]). Let u and v be any variables, and let φ

be any FO3 formula over σA. Then there is a term t ∈ T RA
A such that JφKu,v

A = tA holds for

any A ∈ RS .

Proof. See Appendix A.

(1) Tu,u(φ) :≡ (Tu,v(φ) · ⊤) ∩ 1
(2) Tu,v(x = x) :≡ ⊤
(3) Tu,v(x = y) :≡ 1u ̸=z · 1 · 1v ̸=z
(4) Tu,v(x a x) :≡ 1u=x · (a ∩ 1) · 1v=x

(5) Tu,v(x a y) :≡
{

1u ̸=z · a · 1v ̸=z (u = x ∨ v = y)
1u ̸=z · a⌣ · 1v ̸=z (u = y ∨ v = x)

(6) Tu,v(∃z.ψ) :≡
{

Tu,z(ψ) · Tz,v(ψ) (u ̸= z ∧ v ̸= z)
1u ̸=z · Tu,v(ψ) · 1v ̸=z (otherwise)

(7) Tu,v(¬ρ{x,y}) :≡ 1u ̸=z · Tu,v(ρ{x,y})− · 1v ̸=z

(8) Tx,y(ψ̂{x,y} ∧ ψ̂{y,z} ∧ ψ̂{z,x}) :≡ Tx,y(ψ̂{x,y}) ∩ (Tx,z(ψ̂{z,x}) · Tz,y(ψ̂{y,z}))

(9) Tx,y(ψ̂
{x,y}
1 ∧ ψ̂

{x,y}
2) :≡ Tx,y(ψ̂

{x,y}
1) ∩ Tx,y(ψ̂

{x,y}
2)

(10) Tu,v(φ1 ∨ φ2) :≡ Tu,v(φ1) ∪ Tu,v(φ2)
where x, y, and z are all distinct, u and v are distinct, and 1φ denotes the term{

1 (φ holds)
⊤ (otherwise)

.

FIGURE 2.4: From extended DNF FO3 formulas to relation algebra terms

20 Chapter 2. Preliminaries

By Theorem 2.3.5(1) and 2.3.7, FO3 formulas and relation algebra terms are equiva-

lent in the sense of expressive power of binary relations.

Corollary 2.3.8. Let t1 and t2 be any terms in T RA
A and let φ be any FO3 sentence over σA.

(1) t1 = t2 ∈ RRAA ⇐⇒ ∀x.∀y.φt1(x, y) ↔ φt2(x, y) is a theorem.

(2) φ is a theorem ⇐⇒ Tx,y(φT) = ⊤ ∈ RRAA, where x and y are any two variables.

If we assume that #A is infinite, the theory of FO3 over σA is RE-complete as a corol-

lary to the undecidability of the ∀∃∀ case with only binary relation symbols [47]

(see also [16, Thm. 3.1.1]), and thus RRAA is also RE-complete. The upperbound

is shown by that the theory of first-order logic is recursively enumerable by Gödel’s

completeness theorem.) More strongly, the RE-hardness holds even if #A ≥ 1.

Theorem 2.3.9 (cf. [63, p.399]). (1) RRAA is RE-complete for #A ≥ 1.

(2) The theory of FO3 formulas over σA with = is RE-complete for #A ≥ 1.

(3) The theory of FO3 formulas over σA without = is RE-complete for #A ≥ 2.

Proof Sketch. (1): By [63, p.399]. (2): By (1) and Corollary 2.3.8(1). (3): By (2) and that

= can be simulated by adding a binary relation denoting an equivalence relation like

[84, p.75-76].

Remark. In connection with Theorem 2.3.9(3), the theory of FO formulas with just one

binary relation symbol and without = is also RE-complete by the Church-Herbrand

theorem (see e.g., [15, Thm. 21.4]). However, to the best of our knowledge, it is

open whether the theory of FO3 formulas with just one binary relation symbol and

without = (or the equational theory of relation algebra terms with just one variable

and without 1) is RE-complete. 1

Now we consider a decidable fragment of relation algebra terms, called positive rela-

tion algebra terms. Let t be a relation algebra term. We call that t is positive if t does

not contain •− and t is strictly positive if t does not contain •− and does not contain

0. We remark that strictly positive relation algebra terms and (strictly) positive FO3∃

formulas are also equivalent in the sense of expressive power of binary relations.

We call that a formula φ is positive if φ does not contain ¬ and that a formula φ is

1Actually in [71] we have proved that the theory of FO3 formulas with just one binary relation
symbol and without = is RE-complete.

2.3. Kleene Algebra and Relation Algebra 21

positive FO3∃ formula if φ is positive and an FO3 formula and an FO∃ formula. The

following is immediate from the translations in Figure 2.2, 2.3, and 2.4.

Corollary 2.3.10. Let u and v be any variables. Then

(1) For any strictly positive relation algebra term t, there is a positive FO3∃ formula φ

over σA such that tA = JφKu,v
A holds for any A ∈ RS .

(2) For any positive FO3∃ formula φ over σA, there is a strictly positive relation algebra

term t such that JφKu,v
A = tA holds for any A ∈ RS .

Actually the problem to decide whether a given equational formula is a theorem

of (representable) positive relation algebra can be reduced to finitely many graph

homomorphism problems (see e.g., [72, Thm. 16]) by that the graph language of

every positive relation algebra is finite (see e.g., [72, Def. 15]). In Chapter 3, we

consider about the equational theory of positive relation algebra with Kleene star

(but without ⊤). Concerning Kleene star, the following also holds.

Corollary 2.3.11. Let u and v be any variables. Then

(1) For any term t of relation algebra with Kleene star, there is an FO3(TC) formula φ

over σA such that tA = JφKu,v
A holds for any A ∈ RS .

(2) For any FO3(TC) formula φ over σA, there is a term t of relation algebra with Kleene

star such that JφKu,v
A = tA holds for any A ∈ RS .

(3) For any term t of strictly positive relation algebra with Kleene star, there is a positive

FO3∃(TC) formula φ over σA such that tA = JφKu,v
A holds for any A ∈ RS .

(4) For any positive FO3∃(TC) formula φ over σA, there is a term t of strictly positive

relation algebra with Kleene star such that JφKu,v
A = tA holds for any A ∈ RS .

Proof Sketch. Note that Jx TCu,v(φ) yKx,y,z = (JφKu,v
A)+ × |A|, where R+ denotes the

transitive closure of a binary relation R. We add the following rules to the transla-

tions in Figure 2.2, 2.3, and 2.4, respectively.

φt∗(u, v) :≡ u = v ∨ (u TCu,v(φt(u, v)) v)

(u TCs,t(φ) v)T :≡ (u TCs,t(φT) v)

22 Chapter 2. Preliminaries

Tu,v(x TCs,t(φ) x) :≡ 1u=x · (Ts,t(φ)+ ∩ 1) · 1v=x

Tu,v(x TCs,t(φ) y) :≡


1u ̸=z · Ts,t(φ)+ · 1v ̸=z (u = x ∨ v = y)

1u ̸=z · (Ts,t(φ)+)⌣ · 1v ̸=z (u = y ∨ v = x)

where t+ denotes the term t · t∗ and we regard formulas of the form TCx,y(φ) as

a literal in the translation in Figure 2.3. Then JtKA = Jφt(u, v)Ku,v
A and JφKu,v

A =

JTu,v(φT)KA are proved in the same way as the above.

Remark. The translation in Figure 2.4 does not work for FO4 formulas. Actually the

following FO4 formula is not expressible by any term of relation algebra (this result

was published in [56] (according to [85, p.54. (iv)])):

∀x.∀y.∀z.∃w.¬(x = w) ∧ ¬(y = w) ∧ ¬(z = w).

Axioms of Relation Algebra

Finally we remark on the axiomatizability of RRAA. The axioms of relation alge-

bra for the calculus of relations was first introduced by Tarski in 1941 [84, p.76-77].

Subsequently Tarski gave an axiomatization by finitely many equational formulas in

1950s (Figure 2.5). An algebra A over σRA is called a relation algebra if A satisfies all

(r1) a ∪ (b ∪ c) = (a ∪ b) ∪ c
(r2) b ∪ a = b ∪ a
(r3) (a− ∪ b−)− ∪ (a− ∪ b)− = a
(r4) a · (b · c) = (a · b) · c
(r5) a · 1 = a
(r6) (a ∪ b) · c = a · c ∪ b · c
(r7) a⌣⌣ = a
(r8) (a ∪ b)⌣ = a⌣ ∪ b⌣

(r9) (a · b)⌣ = b⌣ · a⌣

(r10) a⌣ · (a · b)− ∪ b− = b−

(r11) a ∩ b = (a− ∪ b−)−

(r12) ⊤ = 1 ∪ 1−

(r13) 0 = ⊤−

FIGURE 2.5: Tarski’s axioms of relation algebra (see e.g., [62, p.21.])

the axioms (r1)-(r13). (r1)-(r3) denotes that (|A|,∪, •−) is a Boolean algebra. (r4)-(r5)

denotes that (|A|, 1, ·) is a monoid (note that the equation 1 · a = a can be derived

by using (r5)(r7)(r9)). (r6) denotes the operation · distributes over the operation ∪

2.3. Kleene Algebra and Relation Algebra 23

from the right. (r7)-(r9) are the axiom for the converse operation •⌣. (r10) is called

Tarski/De Morgan law. (r11) (resp. (r12), (r13)) is the axiom for the symbols ∩ (resp.

⊤, 0). Let RA be the class of relation algebras and let RAA be the equational theory

defined by the class of relation algebras over an alphabet A. Every representable

relation algebra satisfies all the axioms, and thus RRAA ⊇ RAA (resp. RRA ⊆ RA)

holds. In [84, p.87-88], Tarski asked whether his axioms are complete for RRAA (and

also asked whether every algebra satisfying his axioms is isomorphic to a proper re-

lation algebra), but these have been solved negatively by Lyndon [61]. Concerning

axiomatizability of RRAA, Tarski proved that RRA (RRAA) is (infinitely) axiomati-

zable by a set of equational formulas [83] and an explicit set of axioms is given by

Lyndon [60]. Actually RRA (RRAA) is not finitely axiomatizable proved by Monk

[66], where A is an infinite set. For more details about relation algebra, see the book

“Relation Algebras” of Maddux [62].

2.3.2 Language Semantics

The language semantics of Kleene algebra is originated with Kleene’s regular events

(also called regular languages or regular sets) in 1950s [50]. Let L, L1 and L2 be

languages over A. The concatenation of L1 and L2, written L1 · L2, is defined by

L1 · L2 = {s1 · s2 | s1 ∈ L1, s2 ∈ L2}. The n-th iterate of L, written Ln, is inductively

defined as follows: (1) L0 = {ε}; (2) Ln+1 = L · Ln. The Kleene star of L, written L∗,

is defined by L∗ =
∪

n≥0 Ln.

Definition 2.3.12 (Regular language). The class of regular languages over an alphabet

A, written REGA, is the smallest class satisfying the follows:

(1) {a} ∈ REGA for a ∈ A.

(2) ∅ ∈ REGA.

(3) {ε} ∈ REGA.

(4) If L1,L2 ∈ REGA, then L1 · L2 ∈ REGA.

(5) If L1,L2 ∈ REGA, then L1 ∪ L2 ∈ REGA.

(6) If L ∈ REGA, then L∗ ∈ REGA.

24 Chapter 2. Preliminaries

Definition 2.3.13 (Language semantics). The language of a term t in T KA
A , written

L(t), is a language over A, inductively defined as follows:

(1) L(a) := {a} for a ∈ A;

(2) L(0) := ∅;

(3) L(1) := {ε};

(4) L(t1 · t2) := L(t1) · L(t2);

(5) L(t1 ∪ t2) := L(t1) ∪ L(t2);

(6) L(t∗) := L(t)∗.

We call that a language L is recognized by a regular expression if there is a term

t ∈ T KA
A such that L = L(t). It is easy to see that L ∈ REGA if and only if L is

recognized by a term in T KA
A .

The equational theory on the language semantics, written LKAA, is a set of equa-

tional formulas, defined by LKAA := {t1 = t2 ∈ Φ=,KA
A | L(t1) = L(t2)}. Actually

LKAA is equivalent to RKAA.

Theorem 2.3.14 (e.g., [52, Thm. 6], [68, Thm. VI.3], [72, Thm. 4]). LKAA = RKAA.

Finite Automata: NFAs and DFAs

In this subsubsection we define nondeterministic finite automata (NFAs) and deter-

ministic finite automata (DFAs). It is well known that the class of languages recog-

nizable by finite automata is equivalent to the class of regular languages (Kleene’s

theorem [50]).

Definition 2.3.15 (ε-NFA). A nondeterministic finite automation with ε-transition

(ε-NFA) A over an alphabet A is a tuple (Q, δ, qI , F), where

(1) Q is a finite set denoting the set of states;

(2) δ : (A ∪ {ε}) → ℘(Q × Q) denotes the transition function (every δ(a) is a binary

relation on Q);

(3) qI ∈ Q denotes the initial state;

2.3. Kleene Algebra and Relation Algebra 25

(4) F ⊆ Q denotes the set of acceptance states.

δ̂A(s) denotes the transition function of a string s combined with ε-transition. δ̂A(s)

is inductively defined satisfying the follows: (1) δ̂A(ε) = △(QA); (2) δ̂A(a) = δA(ε)
∗ ·

δA(a) for a ∈ A; (3) δ̂A(as′) = δ̂A(a) · δ̂A(s′). The language of an ε-NFA A over an al-

phabet A, written L(A), is defined by L(A) = {s ∈ A∗ | (δ̂A(s) · δA(ε)
∗)(qI) ∩ F ̸=

∅}. We call that a language L is recognized by an ε-NFA if there is an ε-NFA A such

that L = L(A). The size of an ε-NFA A, written ∥A∥, is defined as #(QA).

Definition 2.3.16 (NFA). An ε-NFA is called an NFA if δA(ε) = ∅.

Definition 2.3.17 (DFA). An NFA A is called a deterministic finite automaton (DFA) if

for any a ∈ A, δA(a) is deterministic (i.e., #(δA(a)(q)) = 1).

Remark. Every NFA over an alphabet A can be also regarded as a structure over

the signature ({δa}a∈A, qI , F), where every δa is the binary relation symbol; qI is the

nullary function symbol; and F is the unary relation symbol. In fact we may regard

every NFA as a structure in Chapter 4.

ε-NFAA (resp. NFAA, DFAA) denotes the set of all ε-NFAs (resp. NFAs, DFAs) over

the alphabet A. The following theorem is well known and there are many transla-

tions between these models (see e.g., [38]).

Theorem 2.3.18 (see e.g., [41, Sec. 3.2]). Let A be an alphabet and let L be any language

over A. Then the following are all equivalent:

(1) L is recognized by a regular expression in T KA
A ;

(2) L is recognized by an ε-NFA in ε-NFAA;

(3) L is recognized by an NFA in NFAA;

(4) L is recognized by a DFA in DFAA.

Regular expressions, NFAs, and DFAs all recognize the class of regular languages.

However these models are different with respect to the succinctness. Figure 2.6 sum-

marizes translation bounds for these models. Dotted arrows are used for trivial

translations. Every black arrow denotes that there is a polynomial-time translation,

every red arrow denotes that there is an exponential blowup, every black colored

26 Chapter 2. Preliminaries

term denotes the upperbound of the size, and every red colored term denotes the

lower bound of the size.

T KA
A DFAA

ε-NFAA NFAA

O(n) [41, Thm. 3.7] O(n)

2O(n) [38, Thm. 15]

O(n) [41, Thm. 2.22]

2O(n) [41, Thm. 2.11]
2Ω(n) [64, Prop. 1]

2Ω(n) [37, Thm. 16]

2Ω(n) [29, Thm. 11]

FIGURE 2.6: An overview of translation bounds for models for regu-
lar languages, where #A ≥ 2

Derivatives (on Strings)

The (partial) derivatives on strings developed by Brzozowski [19] and Antimirov

[3] are basis of the (partial) derivatives on graphs in Chapter 3. Derivatives give a

translation from regular expressions to finite automata. In this thesis, we employ

Antimirov’ notation [3] because the algorithm obtained from the derivatives is easy

to analyze computational complexity (see Proposition 2.3.25).

We use T, T′, . . . to denote a set of terms. The concatenation of T1 and T2, is defined

by T1 · T2 = {t1 · t2 | t1 ∈ T1, t2 ∈ T2}. L(T) denotes the language
∪

t∈T L(t).

Derivatives on strings are deeply related to the following operations.

Definition 2.3.19 (Left quotients on strings). The left quotient of a language L over

an alphabet A with respect to a string s, written s−1L, is a language, defined as

{s′ ∈ A∗ | ss′ ∈ L}.

Derivatives on strings consist of empty string property E and partial derivatives on char-

acters Da.

Definition 2.3.20 (Empty string property (Reg1 in [3])). The empty string property of

a term t in T KA
A , written E(t), is a truth value, inductively defined as follows:

(1) E(a) := f alse;

(2) E(0) := f alse;

(3) E(1) := true;

2.3. Kleene Algebra and Relation Algebra 27

(4) E(t1 · t2) := E(t1) ∧ E(t2);

(5) E(t1 ∪ t2) := E(t1) ∨ E(t2);

(6) E(t∗) := true.

Definition 2.3.21 (Derivatives on characters [3]). The derivative with respect to a

character a ∈ A, written Da, is a function T KA
A → ℘(T KA

A) (i.e., a binary relation

on T KA
A), inductively defined satisfying the follows:

(1) Da(a′) :=


{1} (a′ = a)

∅ (otherwise)
;

(2) Da(0) := ∅;

(3) Da(1) := ∅;

(4) Da(t1 ∪ t2) := Da(t1) ∪ Da(t2);

(5) Da(t∗1) := Da(t1) · {t∗1};

(6) Da(t1 · t2) :=


Da(t1) · {t2} ∪ Da(t2) (E(t1))

Da(t1) · {t2} (otherwise)
.

Definition 2.3.22 (Derivatives on strings [3]). The derivative with respect to a string

s ∈ A∗, written Ds, is a function T KA
A → ℘(T KA

A) (i.e., a binary relation on T KA
A),

defined inductively as follows: Ds = △(T KA
A) if s = ε, and Ds = Ds′ · Da if s = s′a.

E(T) denotes the truth value
∨

t∈T E(t), and Ds(T) denotes the set of terms
∪

t∈T Ds(t).

The next proposition shows left quotients can be characterized by the derivatives.

Proposition 2.3.23 ([3, Prop. 2.10]).

(1) E(t) ⇐⇒ ε ∈ L(t).

(2) L(Ds(t)) = s−1L(t).

(3) E(Ds(t)) ⇐⇒ s ∈ L(t).

The derivatives give some algorithms for language problems. For example, the

membership problem (i.e., given a term t and a string s, s ∈ L(t)?) is determined

by checking whether E(Ds(t)) holds or not. Moreover, problems with searching a

string, for example, the (language) inclusion problem (i.e., given two terms, t1 and t2,

28 Chapter 2. Preliminaries

L(t1) ⊆ L(t2)?) and the universality problem (i.e., given a term t1, L(t1) = A∗?) can

be also determined by using the derivatives. Proposition 2.3.25 enables us to restrict

the search space to be finite.

Definition 2.3.24. The closure of a term t in T KA
A , written cl(t), is a set of terms,

defined inductively as follows:

(1) cl(0) := {0};

(2) cl(1) := {1};

(3) cl(a) := {1, a};

(4) cl(t∗1) := cl(t1) · {t∗1} ∪ {t∗1};

(5) cl(t1 ∪ t2) := cl(t1) ∪ cl(t2) ∪ {t1 ∪ t2};

(6) cl(t1 · t2) := cl(t1) · {t2} ∪ cl(t2) ∪ {t1 · t2}.

cl(T) denotes the set of terms
∪

t∈T cl(t). cl is a closure operator, i.e., cl satisfies (a) T ⊆

cl(T); (b) T1 ⊆ T2 =⇒ cl(T1) ⊆ cl(T2); and (c) cl(cl(T)) = cl(T).

Proposition 2.3.25 ([3, Thm. 3.4]).

(1) Ds(t) ⊆ cl(t).

(2) #(cl(t)) ≤ 1 + ∥t∥.

By Proposition 2.3.25, it is enough to consider terms in cl(t) for calculating Ds(t)

from a given term t. It is because the following hold for any string s = a1 . . . an:

(1) Ds(t) = (Ds↾ cl(t))(t) (by Proposition 2.3.25(1)); (2) Ds↾ cl(t) = Da1↾ cl(t) · . . . ·

Dan↾ cl(t) (by Proposition 2.3.25(1) and that cl is a closure operator), where f ↾X de-

notes the restriction of a (partial) function f . Under the restriction, the number of

patterns of binary relations on cl(t) is at most 2#(cl(t))2
. The finiteness justifies Algo-

rithm 1.

Theorem 2.3.26 (e.g., [3]). The language inclusion problem for T KA
A is in PSPACE.

Proof. By Algorithm 1 and Proposition 2.3.25(2), the problem is in coNPSPACE, and

hence in PSPACE. (Note that coNPSPACE = PSPACE by Savitch’s theorem [77].)

2.3. Kleene Algebra and Relation Algebra 29

Algorithm 1 The language inclusion problem for T KA
A

Ensure: L(t1) ⊆ L(t2)?
CL ⇐ cl(t1) ∪ cl(t2)
(D, d) ⇐ (△(CL), 0)
while d < 2#(CL)2

do
if E(D(t1)) ∧ ¬E(D(t2)) then

return f alse
end if
pickup a ∈ A nondeterministically
(D, d) ⇐ (D · Da, d + 1)

end while
return true

(In fact the problem is PSPACE-complete, see e.g., [43, Prop. 2.4].) By using deriva-

tives on strings, any language of each term applied any left quotient is representable

by finitely many ‘sub’terms, whereas the language may be infinite.

Corollary 2.3.27. LKAA (resp. RKAA) is decidable in PSPACE.

Axioms of Kleene Algebra

Kleene gave some properties for the equational theory LKAA (RKAA) in [50, Sec.

7.2] and posed axiomatization as an open problem. Redko proved that LKAA is not

finitely axiomatizable by equational formulas [73][25, Thm. 9]. A finite axiomatiza-

tion is given by Salomaa [75], but the axiomatization uses a non equational formula

[75, “R2”: (a = a · b ∪ c ∧ ¬(b ≥ 1)) → a = c · b∗]. In 1991, Kozen gave a finite

quasi-equational axiomatization [51], which solves the conjecture posed by Conway

[25, p.103]. Quasi-equational axiomatization is axiomatization using formulas of the

form E1 ∧ E2 ∧ · · · ∧ En → E (called universal horn formula), where each E1, . . . En, E

is an equational formula. Figure 2.7 shows Kozen’s axiomatization for LKAA [51].

Let KA be the class of structures over σKA satisfying the axioms in Figure 2.7. As

mentioned above, this axiomatization is complete.

Theorem 2.3.28 ([51]). KAA = LKAA, where KAA is the equational theory defined by

KA, i.e., KAA := {t1 = t2 ∈ Φ=,KA
A | A |= t1 = t2 for any structure A ∈ KA}.

We remark that there is also an axiomatization for universal horn formulas, and thus

there is a (finite) proof system for Kleene algebra. Figure 2.8 shows the axioms and

the deduction rules for universal horn formulas based on [79, Thm. 2]. (Figure 2.8

30 Chapter 2. Preliminaries

(k1) a ∪ (b ∪ c) = (a ∪ b) ∪ c
(k2) b ∪ a = b ∪ a
(k3) a ∪ 0 = a
(k4) a ∪ a = a
(k5) a · (b · c) = (a · b) · c
(k6) 1 · a = a
(k7) a · 1 = a
(k8) a · (b ∪ c) = a · b ∪ a · c
(k9) (a ∪ b) · c = a · c ∪ b · c
(k10) 0 · a = 0
(k11) a · 0 = 0
(k12) 1 ∪ a · a∗ = a∗

(k13) 1 ∪ a∗ · a = a∗

(k14) a · x ≤ x → a∗ · x ≤ x
(k15) x · a ≤ x → x · a∗ ≤ x

where a ≤ b denotes the equational formula a ∪ b = b.

FIGURE 2.7: The quasi-equational axioms of Kleene algebra [51]

is some modified from [79, Thm. 2] like the sequent calculus for intuitionistic logic,

but not essential. E1 ∧ E2 ∧ · · · ∧ En → E denotes the formula E if n = 0.)

(u1) a = a
(u2) a = a′ → a′ = a
(u3) a1 = a2 ∧ a2 = a3 → a1 = a3
(u4) a1 = a′1 ∧ · · · ∧ aar(f) = a′ar(f) → f (a1, . . . , aar(f)) = f (a′1, . . . , a′ar(f))

(u5) E1 ∧ · · · ∧ En → E
(w)

E1 ∧ · · · ∧ En ∧ E′ → E

(u6) E1 ∧ · · · ∧ En ∧ E′ ∧ E′ → E
(c)

E1 ∧ · · · ∧ En ∧ E′ → E

(u7)
E1 ∧ . . . Ei . . . Ej · · · ∧ En → E

(e)
E1 ∧ . . . Ej . . . Ei · · · ∧ En → E

(u8)
E1 ∧ · · · ∧ En → E E ∧ E′

1 ∧ · · · ∧ E′
m → E′

(cut)
E1 ∧ · · · ∧ En ∧ E′

1 ∧ · · · ∧ E′
m → E′

(u9)
φ

(assignment)
φ[t/a]

where n, m ≥ 0 and [t/a] denotes the assignment (i.e., φ[t/a] denotes φ in
which each occurrence of a has been replaced by t).

FIGURE 2.8: An axiomatization for universal horn formulas

Moreover there is a cut-free proof system for Kleene algebra [27]. The proof system

is non-wellfounded, but enables to construct a proof search.

31

Chapter 3

Derivatives for Kleene Allegories

(This chapter is based on the author’s papers [68, 70].)

In this chapter we show that the equational theory of Kleene allegories is decidable

and EXPSPACE-complete. This problem was open in the paper [18] of Brunet and

Pous. The proof proceeds by designing derivatives on graphs, which are generaliza-

tions of derivatives on strings for regular expressions, called Antimirov’ (partial)

derivatives [3]. The derivatives on graphs give a finite automata construction algo-

rithm as with the derivatives on strings.

The signature of Kleene allegories, written σKAl, consists of the constant symbols

0 and 1, the unary function symbols •∗ and •⌣, and the binary function symbols

·, ∪, and ∩. T KAl
A denotes the set of terms of Kleene allegories. Kleene allegories

subsume (relational) Kleene algebras and (representable distributive) allegories (or

called the positive calculus of relations [72]). Their equational theories are decidable.

(see Section 2.3.2 for Kleene algebras and see [32] for (representable) allegories.) Es-

pecially, identity-free Kleene lattice is decidable and EXPSPACE [17]. The signature

of identity-free Kleene lattice consists of the constant symbol 0, the unary function

symbols •+, and the binary function symbols relations ·, ∪, and ∩. (The symbol

•+ denotes the transitive closure operator.) However the decidability and computa-

tional complexity of Kleene allegories was open. Our main contribution is to resolve

the open question positively. The idea is based on derivatives on strings for regular

expressions, that are tools to obtain the decidability of decision problems for regular

expressions (see Section 2.3.2).

32 Chapter 3. Derivatives for Kleene Allegories

In this work, we extend the derivatives from strings to graphs, and show the de-

cidability of Kleene allegories by the following steps: (1) we extend some existing

definitions with “labels”; this extension is effective for defining partial derivatives on

graphs (Section 3.2); (2) we design procedures for constructing finite graphs (called

“Sequential Graph Construction Procedures”, or SGCPs for short) by using labels

(Section 3.3); (3) we give derivatives on graphs constructed by SGCPs, and show

that the equational theory is also decidable in EXPSPACE (Section 3.5).

3.1 Kleene Allegories

In this section we introduce relational semantics and graph language semantics of

Kleene allegories.

3.1.1 (Relational) Semantics

The (in)equational theory of Kleene allegories is defined by using relational semantics.

Definition 2.3.1 (restated). A relational model M (over an alphabet A) is a tuple (V, {Ra}a∈A),

where V is a set; and every Ra ⊆ V × V is a binary relation on V.

Definition 3.1.1 (Relational Semantics). The relation of a term t in T KAl
A with respect

to a relational model M = (V, {Ra}a∈A), written JtKM is inductively defined as fol-

lows:

(1) JaKM = Ra;

(2) J0KM = ∅;

(3) J1KM = △(V);

(4) Jt1 · t2KM = Jt1KM · Jt2KM;

(5) Jt1 ∪ t2KM = Jt1KM ∪ Jt2KM;

(6) Jt1 ∩ t2KM = Jt1KM ∩ Jt2KM;

(7) Jt∗KM = JtK∗M;

(8) Jt⌣KM = JtK⌣M.

3.1. Kleene Allegories 33

M |= t1 = t2 (resp. M |= t1 ≤ t2) denotes Jt1KM = Jt2KM (resp. Jt1KM ⊆ Jt2KM).

REL |= t1 ≤ t2 denotes that M |= t1 ≤ t2 holds for any relation model M.

Definition 3.1.2 (Homomorphism). Let Mi = (Vi, {Ri
a}a∈A) be a relation model for

i = 1, 2. A function h : V2 → V1 is called a homomorphism from M2 to M1 if, for any

nodes, v, v′ ∈ V2 and any character a,

(v, v′) ∈ R2
a =⇒ (h(v), h(v′)) ∈ R1

a.

M1 ◁ M2 denotes there is a homomorphism from M2 to M1.

Let us recall that the two equational theories defined by language semantics and by

relational semantics are equivalent for terms of Kleene algebra (see Theorem 2.3.14).

However, when we add intersection (∩) or converse (•⌣) to terms of Kleene algebra,

the equivalence does not hold, where the (string) language semantics is defined as

Definition 2.3.13 with the following rules: L(t1 ∩ t2) = L(t1) ∩ L(t2) and L(t⌣) =

{an . . . a1 | a1 . . . an ∈ L(t)}. Let consider the next examples: (a) a ∩ aa = a ∩ aaa;

(b) a = a⌣; and (c) a ≤ aa⌣a . Each of (a) and (b) holds in language semantics,

however does not in relational semantics. In (a), the terms of both sides interpret

the empty language in language semantics, however it is easy to construct a rela-

tion model such that these terms are not equivalent [2, (1.8)]. In (b), the terms of

both sides interpret the singleton language {a}, however the equation does not hold

unless the relation of the character a on a relational model is symmetric [18]. In con-

trast, (c) holds in relational semantics, however does not in language semantics [11,

(10)].

Although the converse •⌣ in relational semantics cannot be completely erased (like

the converse •⌣ in language semantics), any terms can be modified so that •⌣ is only

applied to characters, by using the following rewriting rule [18]:

1⌣ ⇝ 1; 0⌣ ⇝ 0; (t1 · t2)
⌣ ⇝ t⌣2 · t⌣1 ; (t∗)⌣ ⇝ (t⌣)∗;

(t1 ∪ t2)
⌣ ⇝ t⌣1 ∪ t⌣2 ; (t1 ∩ t2)

⌣ ⇝ t⌣1 ∩ t⌣2 ; t⌣⌣ ⇝ t.

For that reason, we assume that the set of terms is defined by the following grammar:

34 Chapter 3. Derivatives for Kleene Allegories

(Terms) t ::= 0 | 1 | a | a⌣ | t1 · t2 | t1 ∪ t2 | t1 ∩ t2 | t∗1

3.1.2 Graph Languages

Each term of Kleene allegories expresses a set of graphs with a single source and a

single target. The inclusion problem for Kleene allegories (REL |= t1 ≤ t2?) can be

solved by comparing their graph languages (Theorem 3.2.9).

We define some mathematical notations needed later. X1 ⊎ X2 denotes the disjoint

union of two sets, X1 and X2, defined by X1 ⊎ X2 = {(x1, 1) | x1 ∈ X1} ∪ {(x2, 2) |

x2 ∈ X2}. When i is clear from the context, (xi, i) may be abbreviated as xi. The

equivalence class of an element x on X with a equivalence relation Θ, written [x]Θ,

is defined by [x]Θ = {x′ ∈ X | (x, x′) ∈ Θ}. When Θ is clear from the context,

the subscript Θ may be abbreviated. Then the quotient set of X by Θ, written X/Θ,

is defined as {[x] | x ∈ X}. [X′] denotes the set {[x] | x ∈ X′}. R= denotes the

equivalence closure (reflexive symmetric transitive closure) of R, i.e., R= = (R ∪ R⌣)∗.

Let ă be a character denoting the converse of a character a and 1 be the special con-

stant character. Ă denotes the set {ă | a ∈ A}, Ă1 denotes Ă ∪ {1}, Ȧ denotes A ∪ Ă,

and Ȧ1 denotes Ȧ ∪ {1}.

Definition 3.1.3. A graph is a tuple G = (V, {Rȧ}ȧ∈Ȧ1
, vs, vt), where V is a nonempty

set of nodes, each Rȧ is a relation on V, vs ∈ V is a node called the source node, and

vt ∈ V is a node called the target node.

A graph G is said to be normal formed if RĂ1
= ∅. G may be denoted as (M, vs, vt)

by using a relation model M. M1 ⊎ M2 denotes the disjoint union of relation models,

defined as (VM1 ⊎ VM2 ,
∪

i∈{1,2}{((vi, i), (v′i, i)) | (vi, v′i) ∈ RMi}) and M/Θ denotes

the quotient relation model, defined as (VM/Θ, {([x], [x′]) | (x, x′) ∈ RM}).

The series-composition of G1 and G2, written G1 · G2, is a graph, defined as ((MG1 ⊎

MG2)/Θ, [vG1
s], [vG2

t]), where Θ = {(vG1
t , vG2

s)}=.

The parallel-composition of G1 and G2, written G1 ∥ G2, is a graph, defined as ((MG1 ⊎

MG2)/Θ, [vG1
s], [vG1

t]), where Θ = {(vG1
s , vG2

s), (vG1
t , vG2

t)}=.

3.1. Kleene Allegories 35

A graph language G is a set of graphs. G1 • G2 denotes the set of graphs {G1 • G2 |

G1 ∈ G1, G2 ∈ G2} for • ∈ {·, ∥}.

Definition 3.1.4 (Graph languages). The graph language of a term G(t) is defined

inductively as follows:

G(1) :=
{

1
}

;G(ȧ) :=
{

ȧ 1
}

;

G(0) := ∅; G(t1 · t2) := G(t1) · G(t2);

G(t∗1) := G(1) ∪ {G1 · . . . · Gn | n ≥ 1, ∀i.Gi ∈ G(t1)};

G(t1 ∪ t2) := G(t1) ∪ G(t2); G(t1 ∩ t2) := G(t1) ∥ G(t2).

Any graph in the graph language of any term is a (directed) series-parallel graph

[30].

Remark. G(ȧ) in the above definition may seem strange since the graph in the defi-

nition have an extra edge with the constant label 1. However, by the modification,

some discussions are simplified because any labelled graph in a labelled graph lan-

guage are “simple” (defined in Definition 3.4.1).

Definition 3.1.5. The normal form of a graph G, written ⟨⟨G⟩⟩, is defined by ⟨⟨G⟩⟩ :=

((VG, {Rȧ}ȧ∈Ȧ1
)/(RG

1)
=, [vG

s], [vG
t]), where Ra = RG

a ∪ RG
ă
⌣ if a ∈ A, and Rȧ = ∅ if

ȧ ∈ Ă ∪ {1}.

⟨⟨G⟩⟩ denotes {⟨⟨G⟩⟩ | G ∈ G}. Note that ⟨⟨G(t)⟩⟩ is coincides with the graph language

of t defined in [18].

Definition 3.1.6 (Homomorphism [18]). Let Gi be a normal formed graph for i = 1, 2.

A function h : VG2 → VG1 is called a homomorphism from G2 to G1 if the following are

satisfied: (a) h is a homomorphism from MG2 to MG1 ; (b) h(vG2
s) = vG1

s ; (c) h(vG2
t) =

vG1
t .

G1 ◁ G2 denotes that there exists a homomorphism from ⟨⟨G2⟩⟩ to ⟨⟨G1⟩⟩, where Gi is

a graph for i = 1, 2. G1 ◁ G2 denotes that, for any graph G1 ∈ G1, there exists a graph

G2 ∈ G2 such that G1 ◁ G2.

Theorem 3.1.7 ([18, Thm. 6] (see also [1, Thm. 1])).

REL |= t1 ≤ t2 ⇐⇒ G(t1) ◁ G(t2).

36 Chapter 3. Derivatives for Kleene Allegories

In the next section, we extend the above theorem with labels.

3.2 Extension with Labels

We extend relation models, terms, and graph languages with labels. In a nutshell, the

extension is for expressing terms and graphs having multiple source nodes. This ex-

tension is effective to define Sequential Graph Construction Procedures and deriva-

tives on graphs in later sections.

Let L be a set of labels, and l ∈ L denotes a label. The set of labelled terms T̃ is defined

by the following grammar:

(Terms) t ::= 0 | 1 | a | a⌣ | t1 · t2 | t1 ∪ t2 | t1 ∩ t2 | t∗1

(Labelled Terms) t̃ ::= @l.t | t̃1 · t2 | t̃1 ∩ t̃2

Intuitively @l.t denotes t in which the start point of t is forcibly regarded as the node

with the label l. This is used for fixing the source nodes of terms and expressing

terms which have multiple source nodes. This notation is derived from the jump

operator in hybrid logics [9, p.49]. A(t̃) denotes the set of all characters occurring

in t̃, and L(t̃) denotes the set of all labels occurring in t̃. We use T̃ to denote a set

of labelled terms. T̃L denotes the set {t̃ ∈ T̃ | L(t̃) ⊆ L}, T̃1 · T2 denotes the set

{t̃1 · t2 | t̃1 ∈ T̃1, t2 ∈ T2}, and T̃1 ⋒ T̃2 denotes the set {t̃1 ∩ t̃2 | t̃1 ∈ T̃1, t̃2 ∈ T̃2}.

Definition 3.2.1 (Labelled relation models). A labelled relation model M̃ is a tuple

(M, m), where M = (V, {Ra}a∈A) is a relation model and m is an injective and par-

tial function from L to V. L(M̃) denotes the domain of m. The relation of a labelled

term t̃ with respect to M̃, written RM̃
t̃ , is defined inductively as follows:

(v, v′) ∈ RM̃
@l.t :⇔ m(l) is defined and (m(l), v′) ∈ RM

t ;

RM̃
t̃1·t2

:= RM̃
t̃1
· RM

t2
; RM̃

t̃1∩t̃2
:= RM̃

t̃1
∩ RM̃

t̃2
.

M̃ |= t̃1 ≤ t̃2 denotes RM̃
t̃1

⊆ RM̃
t̃2

, and REL∼ |= t̃1 ≤ t̃2 denotes that, for any labelled

relation model M̃, M̃ |= t̃1 ≤ t̃2.

It is easy to see the next proposition holds.

3.2. Extension with Labels 37

Proposition 3.2.2. For any label ls,

REL∼ |= @ls.t1 ≤ @ls.t2 ⇐⇒ REL |= t1 ≤ t2.

Sketch. It is shown by that the following hold for any M:

(M, m) |= @ls.t1 ≤ @ls.t2 ⇔ (M, m↾{ls}) |= @ls.t1 ≤ @ls.t2;

M |= t1 ≤ t2 ⇔ ∀vs.(M, {ls 7→ vs}) |= @ls.t1 ≤ @ls.t2.

Definition 3.2.3 (Labelled graphs). A labelled graph G̃ is a tuple (V, {Rȧ}ȧ∈Ȧ1
, m, vt),

where V is a nonempty set of nodes, each Rȧ is a relation on V; m is a partial function

from L to ℘(V) such that m is injective viewed as a binary relation over L and V (i.e.,

if (l, v) ∈ m and (l′, v) ∈ m, then l = l′); and vt ∈ V is a node called the target

node. dom(m) and cod(m) denote the domain and the codomain of m, i.e., dom(m) =

{l | ∃v.(l, v) ∈ m} and cod(m) = {v | ∃l.(l, v) ∈ m}, respectively. L(G̃) denotes

dom(mG̃). G̃ may be denoted as (M, m, vt) by using a relation model M, or denoted

as (M̃, vt) by using a labelled relation model M̃ when mG̃ is functional (i.e., if (l, v) ∈

mG̃ and (l, v′) ∈ mG̃, then v = v′).

The series-composition of G̃1 and G2, written G̃1 · G2, is defined by G̃1 · G2 := ((MG̃1 ⊎

MG2)/{(vG̃1
t , vG2

s)}=, m, [vG2
t]), where m is defined by m(l) = [mG̃1(l)].

The parallel-composition of G̃1 and G̃2, written G̃1 ∥ G̃2, is defined by G̃1 ∥ G̃2 :=((MG̃1 ⊎

MG̃2)/{(vG̃1
t , vG̃2

t)}=, m, [vG̃1
t]), where m is defined by m(l) = [mG̃1(l) ∪ mG̃2(l)].

A labelled graph language G̃ is a set of labelled graphs. G̃1 · G2 denotes {G̃1 · G2 |

G̃1∈G̃1, G2∈G2} and G̃1 ∥ G̃2 denotes {G̃1 ∥ G̃2 | G̃1∈G̃1, G̃2∈G̃2}. G̃ denotes the set of

all labelled graphs and G̃L′ denotes the set {G̃ ∈ G̃ | L(G̃) ⊆ L′}.

Definition 3.2.4. The labelled graph language of a labelled term t̃, written G̃(t̃), is defined

inductively as follows:

G̃(@l.t):={(g, {(l, vs)}, vt)|(g, vs, vt) ∈ G(t)};

G̃(t̃1 · t2) := G̃(t̃1) · G(t2); G̃(t̃1 ∩ t̃2) := G̃(t̃1) ∥ G̃(t̃2).

G̃ is said to be normal formed if RG̃
Ă1

= ∅ and mG̃ is functional.

38 Chapter 3. Derivatives for Kleene Allegories

Definition 3.2.5. The normal form of a labelled graph G̃, written ⟨⟨G̃⟩⟩, is defined as

((VG, {Rȧ}ȧ∈Ȧ1
)/Θ, m, [vG̃

t]), where (a) Θ = (
∪

l∈L(mG̃(l)× mG̃(l)) ∪ RG̃
1)

=; (b) Ra =

RG̃
a ∪ RG̃

ă
⌣

if a ∈ A, and Rȧ = ∅ if ȧ ∈ Ă1; and (c) m(l) = [mG̃(l)].

⟨⟨G̃⟩⟩ may be undefined since m may not be injective in the above definition. ⟨⟨G̃⟩⟩

denotes the set {⟨⟨G̃⟩⟩ | G̃ ∈ G̃}.

Definition 3.2.6. Let G̃i be a normal formed labelled graph for i = 1, 2. A function

h : VG̃2 → VG̃1 is called a homomorphism from G̃2 to G̃1 if the following are satisfied:

(a) h is a homomorphism from MG̃2 to MG̃1 ; (b) L(G̃2) ⊆ L(G̃1); (c) for any label

l ∈ L(G̃2), h(mG̃2(l)) = mG̃1(l); (d) h(vG̃2
t) = vG̃1

t .

G̃1 ◁ G̃2 denotes that, if ⟨⟨G̃1⟩⟩ is defined, ⟨⟨G̃2⟩⟩ is also defined and there exists a

homomorphism from ⟨⟨G̃2⟩⟩ to ⟨⟨G̃1⟩⟩. G̃1 ◁ G̃2 denotes that, for any labelled graph

G̃1 ∈ G̃1, there exists a labelled graph G̃2 ∈ G̃2 such that G̃1 ◁ G̃2.

Now we show a relationship between relation inclusions and homomorphisms of

labelled graphs (Theorem 3.2.9).

Proposition 3.2.7 (cf. [1, Lem. 2]).

(1) (M, vs, vt) ◁ G1 · G2 ⇔ ∃v.(M, vs, v) ◁ G1 ∧ (M, v, vt) ◁ G2.

(2) (M, vs, vt) ◁ G1 ∥ G2 ⇔ (M, vs, vt) ◁ G1 ∧ (M, vs, vt) ◁ G2.

(3) (M̃, vt) ◁ G̃1 · G2 ⇔ ∃v.(M̃, v) ◁ G̃1 ∧ (MM̃, v, vt) ◁ G2.

(4) (M̃, vt) ◁ G̃1 ∥ G̃2 ⇔ (M̃, vt) ◁ G̃1 ∧ (M̃, vt) ◁ G̃2.

Sketch. (1) and (2) are proved in [1, Lem.2]. (3) and (4) are proved in the same way

as the proof of (1) and (2).

Proposition 3.2.8 (cf. [1, Lem. 3]).

(1) (vs, vt) ∈ RM
t ⇐⇒ (M, vs, vt) ◁ G(t).

(2) vt ∈ cod(RM̃
t̃) ⇐⇒ (M̃, vt) ◁ G̃(t̃).

Sketch. (1) is proved in [1, Lem. 3]. (2) is proved by induction on the size of the

labelled term t̃ using (1), and (3) and (4) of Proposition 3.2.7.

3.3. Sequential Graph Construction Procedures 39

Theorem 3.2.9 (cf. Theorem 3.1.7).

REL∼ |= t̃1 ≤ t̃2 ⇐⇒ G̃(t̃1) ◁ G̃(t̃2).

Proof. (⇒): Let G̃ be any labelled graph in G̃(t̃1) such that ⟨⟨G̃⟩⟩ is defined. By

(M̃⟨⟨G̃⟩⟩, v⟨⟨G̃⟩⟩t) ◁ G̃ ((M̃⟨⟨G̃⟩⟩, v⟨⟨G̃⟩⟩t) is equivalent to ⟨⟨G̃⟩⟩) and Proposition 3.2.8, v⟨⟨G̃⟩⟩t ∈

cod(RM̃⟨⟨G̃⟩⟩

t̃1
). By REL∼ |= t̃1 ≤ t̃2, v⟨⟨G̃⟩⟩t ∈ cod(RM̃⟨⟨G̃⟩⟩

t̃2
). By Proposition 3.2.8, (M̃⟨⟨G̃⟩⟩, v⟨⟨G̃⟩⟩t) ◁

G̃(t̃2). Therefore G̃ ◁ G̃(t̃2), and thus G̃(t̃1) ◁ G̃(t̃2). (⇐): Let M̃ be any labelled rela-

tion model and let vt be any node in cod(RM̃
t̃1
). By Proposition 3.2.8, (M̃, vt) ◁ G̃(t̃1).

By G̃(t̃1) ◁ G̃(t̃2) and that ◁ is transitive, (M̃, vt) ◁ G̃(t̃2). By Proposition 3.2.8, vt ∈

cod(RM̃
t̃2
). Therefore REL∼ |= t̃1 ≤ t̃2.

Definition 3.2.10. The labelled graph of G̃ with a target label lt, written G̃lt , is defined

as (VG̃, {RG̃
ȧ }ȧ∈Ȧ1

, mG̃ ∪ {(lt, vt)}, vt). G̃ lt denotes {G̃lt | G̃ ∈ G̃}.

G̃lt may be undefined since mG̃ ∪ {(lt, vt)} may not be functional.

Theorem 3.2.11. G̃(t̃1) ◁ G̃(t̃2) ⇐⇒ ∀lt ∈ L.G̃(t̃1)
lt ◁ G̃(t̃2)lt .

Proof. (⇒): Let G̃1 be any graph such that G̃lt
1 ∈ G̃(t̃1)

lt is defined, and let G̃2 be a

graph such that G̃1 ◁ G̃2. Then, G̃lt
2 is defined and thus G̃lt

1 ◁ G̃lt
2 by using the same

homomorphism. (⇐): Let G̃1 be any labelled graph in G̃(t̃1). When vG̃1
t is labelled

with a label l, there is a labelled graph G̃2 ∈ G̃(t̃2) such that G̃1 ◁ G̃l
2, by G̃1 ∈ G̃(t̃1)

l

and G̃(t̃1)
l ◁ G̃(t̃2)l . Then G̃1 ◁ G̃2 by using the same homomorphism. Otherwise, let

l be a label not in L(t̃1) nor L(t̃2) and let G̃l
2 be a labelled graph such that G̃l

1 ◁ G̃l
2.

Then G̃1 ◁ G̃2 by using the same homomorphism.

3.3 Sequential Graph Construction Procedures

In this section, we define Sequential Graph Construction Procedures. In a nutshell, the

purpose of the procedures is to express graphs by strings. A Sequential Graph Con-

struction Procedure (SGCP) is a string of the following events: (Adding), (Connect-

ing), or (Forgetting). The intuition of each event is as follows:

(Adding: A(l1)) Add a node labelled with l1.

40 Chapter 3. Derivatives for Kleene Allegories

(Connecting: C(l1, l2, a)) Add an edge labelled with a from the node labelled with l1

to the node labelled with l2.

(Forgetting: F(l1)) Remove the label l1.

We use e to denote an event (A(l1), C(l1, l2, a), or F(l1)) and use ρ to denote a string of

events.

Definition 3.3.1. A Sequential Graph Construction Procedure (SGCP) ρ is defined as

follows: (1) A(l1) is a SGCP; (2) if ρ is a SGCP and l1 ̸∈ λ(ρ), then ρA(l1) is a SGCP;

(3) if ρ is a SGCP and l1, l2 ∈ λ(ρ), then ρC(l1, l2, a) is a SGCP; (4) if ρ is a SGCP and

l1 ∈ λ(ρ), then ρF(l1) is a SGCP, where the set of active labels of a SGCP ρ, written

λ(ρ), is defined inductively by: (a) λ(A(l1)) = {l1}; (b) λ(ρA(l1)) = λ(ρ) ∪ {l1};

(c) λ(ρC(l1, l2, a)) = λ(ρ); (d) λ(ρF(l1)) = λ(ρ) \ {l1}.

The set of labels of ρ, written L(ρ), is defined as the set of all labels occurring in ρ.

ρ[l′/l] denotes ρ in which each occurrence of l has been replaced by l′ and ρ[ρ′′/ρ′]

denotes ρ in which each occurrence of ρ′ has been replaced by ρ′′. Note that any

SGCP ρ such that λ(ρ) = ∅ is in form of A(l)ρ′F(l′).

We explain the two main reasons of introducing labels.

(1) Considering strings as relations, any string can be regarded as a path model.

Any path graph can be constructed by repeating adding an edge at target node

from the singleton graph. On the above procedure, given a path graph, it is

enough to know which node is target to continue the procedure. Then we can

assume that the other nodes are invisible. For that reason, we do not need to

use labels for path models because the number of nodes that are needed to

consider continuing the procedure is unique.

However, in general, given a procedure, the number of nodes that are needed

to continue the procedure may not be unique, e.g., procedures constructing

tree graphs. One of the reasons to introduce labels is to distinguishes multiple nodes

in procedures.

(2) Considering decidability or computational complexity, it is important to get

an upperbound for the space complexity. SGCPs can make graphs with many

3.3. Sequential Graph Construction Procedures 41

nodes in low space complexity under some condition related to pathwidth [74]

by forgetting unnecessary labels using Forgetting. That is the second reason

to introduce labels. In fact, any graph of a term of Kleene Allegories can be

constructed in low space complexity (Theorem 3.3.10).

Definition 3.3.2. The labelled graph of an SGCP ρ, written G̃(ρ) = (Vρ, {Rρ
ȧ}ȧ∈Ȧ1

, mρ, vρ
t),

is a normal formed labelled graph, defined inductively as follows:

(1) if ρ = A(l1), G̃(ρ) := ({0}, {∅}ȧ∈Ȧ1
, {(l1, 0)}, 0);

(2) if ρ = ρ′A(l1), G̃(ρ) := (Vρ′ ∪ {#Vρ′}, {Rρ′

ȧ }ȧ∈Ȧ1
, mρ′ ∪ {(l1, #Vρ′)}, 0);

(3) if ρ = ρ′C(l1, l2, a), G̃(ρ) :=(Vρ′ , {Rȧ}ȧ∈Ȧ1
, mρ′ , 0), where Rȧ = Rρ′

ȧ ∪{(mρ′(l1), mρ′(l2))}

if ȧ = a, and Rȧ = Rρ′

ȧ otherwise;

(4) if ρ = ρ′F(l1),

G̃(ρ) := (Vρ′ , {Rρ′

ȧ }ȧ∈Ȧ1
, mρ′↾(dom(mρ′) \ {l1}), 0).

Note that nodes in G̃(ρ) are named by natural numbers (0, 1, . . .) and 0 is always

used for the target node. See Figure 3.1, for a graphical description of Definition

3.3.2.

Definition 3.3.3. The graph of a SGCP ρ such that ρ = ρ′F(ls) and λ(ρ) = ∅, written

G(ρ), is a normal formed graph, defined as (VG̃(ρ′), {RG̃(ρ′)
ȧ }ȧ∈Ȧ1

, mG̃(ρ′)(ls), vG̃(ρ′)
t).

:=G̃(A(l1)) l1

:=G̃(ρA(l1)) G̃(ρ) l1

:=G̃(ρC(l1, l2, a)) G̃(ρ) l1 l2
a

:=G̃(ρF(l1)) G̃(ρ) l1

FIGURE 3.1: Inductive construction of the labelled graph of a SGCP

The next proposition shows a completeness of SGCPs with respect to express finite

relations.

Proposition 3.3.4. For any finite normal formed labelled graph G̃, there is a SGCP ρ such

that G̃(ρ) is isomorphic to G̃.

42 Chapter 3. Derivatives for Kleene Allegories

Proof. Such SGCP can be constructed as follows: (a) make up nodes as many as

the nodes in G̃ by repeating Adding; (b) make the same relation as G̃ by repeating

Connecting; (c) remove labels not in G̃ by repeating Forgetting.

Forgetting may seem inessential to construct graphs. However it is useful for saving

the number of used labels.

Definition 3.3.5 (n-SGCP). The labelwidth of a SGCP ρ = e1 . . . en, written #̃(ρ), is

defined as max{#λ(e1 . . . ek) | 1 ≤ k ≤ n}. A SGCP ρ is called an n-SGCP if the

labelwidth of ρ is less than or equal to n.

Example 3.3.6. We consider a few examples about SGCPs.

• Let ρ1 be A(ln)A(ln−1)C(ln−1, ln, an)F(ln) . . . A(l0)-

C(l0, l1, a1)F(l1). Then ρ1 is a 2-SGCP and G̃(ρ1) is a path graph.

• Let ρ2 be A(l′)A(l1)A(l2)C(l1, l′, a1)C(l2, l′, a2)F(l′)A(l)-

C(l, l1, a1)C(l, l2, a2)F(l1)F(l2)F(l).

Then ρ2 is a 3-SGCP and G(ρ2) is a series-parallel graph.

• Let ρ3 be A(l1) . . . A(l5)C(l1, l2, a) . . . C(l5, l4, a).

Then ρ3 is a 5-SGCP and G̃(ρ3) is the complete directed graph with 5 nodes.

See Figure 3.2 for graphs and labelled graphs expressed by the SGCPs in Example

3.3.6.

:=G̃(ρ1) l0 . . .a1 a2 an

:=G(ρ2)
a1

a2

a1

a2

:=G̃(ρ3) l1

l2

l3

l4l5

FIGURE 3.2: Examples of (labelled) graphs constructed by a SGCP

A labelled relation model G̃ is called n-expressible if there exists an n-SGCP ρ such

that G̃(ρ) and G̃ are isomorphic.

3.3. Sequential Graph Construction Procedures 43

Intuitively, the smaller n that a labelled graph is n-expressible, the more the graph is

“elongated” like path graphs. Theorem 3.3.10 shows that any labelled graph in the

graph language of each term of Kleene allegories is “elongated”.

We call that SGCPs ρ1, . . . , ρn (maybe n = 1) are disjoint if, each event A(l) and F(l)

occur in the SGCPs at most once.

The series-composition of two disjoint SGCPs, ρ1 and ρ2, written ρ1 ⋄ ρ2, is defined as

follows:

• if λ(ρ2) = ∅, ρ1 ⋄ ρ2 := (ρ2[ε/F(ls
2)][l

t
1/ls

2])(ρ1[ε/A(lt
1)]), where ρ1 = A(lt

1)ρ
′
1

and ρ2 = A(lt
2)ρ

′
2F(l

s
2);

• otherwise, ρ1 ⋄ ρ2 is undefined.

The parallel-composition of two disjoint SGCPs, ρ1 and ρ2, written ρ1 ∥ ρ2, is defined

as follows:

• if λ(ρ1) = λ(ρ2) = ∅, ρ1 ∥ ρ2 :=

(ρ1[ε/F(lt
1)][ε/F(ls

1)][l
t
2/lt

1][l
s
2/ls

1])(ρ2[ε/A(lt
2)][ε/A(ls

2)]), where ρ1 = A(lt
1)ρ

′
1F(l

s
1)

and ρ2 = A(lt
2)ρ

′
2F(l

s
2);

• otherwise, ρ1 ∥ ρ2 := (ρ1[ε/F(lt
1)][l

t
2/lt

1])(ρ2[ε/A(lt
2)]), where ρ1 = A(lt

1)ρ
′
1 and

ρ2 = A(lt
2)ρ

′
2.

Proposition 3.3.7. Let ρ1 and ρ2 be disjoint SGCPs.

(1) G(ρ1 ⋄ ρ2) is isomorphic to G(ρ1) · G(ρ2), where λ(ρ1) = λ(ρ2) = ∅.

(2) G̃(ρ1 ⋄ ρ2) is isomorphic to G̃(ρ1) · G(ρ2), where λ(ρ2) = ∅.

(3) G(ρ1 ∥ ρ2) is isomorphic to G(ρ1) ∥ G(ρ2), where λ(ρ1) = λ(ρ2) = ∅.

(4) G̃(ρ1 ∥ ρ2) is isomorphic to ⟨⟨G̃(ρ1) ∥ G̃(ρ2)⟩⟩.

Proposition 3.3.8. Let ρ1 and ρ2 be disjoint SGCPs.

(1) #̃(ρ1 ⋄ ρ2) = max(#̃(ρ1), #̃(ρ2)) if ρ1 ⋄ ρ2 is defined.

(2) #̃(ρ1 ∥ ρ2) = #̃(ρ1) + #̃(ρ2).

44 Chapter 3. Derivatives for Kleene Allegories

Definition 3.3.9 (Intersection width (cf. [35])). The intersection width of a term (or a

labelled term), written iw(t) (or iw(t̃)), is defined inductively as follows:

iw(0) := iw(1) := iw(a) := iw(a⌣) := 1;

iw(t1 ∪ t2) := iw(t1 · t2) := max(iw(t1), iw(t2));

iw(t̃1 · t2) := max(iw(t̃1), iw(t2));

iw(t∗1) := iw(@l.t1) := iw(t1);

iw(t1 ∩ t2) := iw(t1) + iw(t2); iw(t̃1 ∩ t̃2) := iw(t̃1) + iw(t̃2).

It is easy to see that iw(t) ≤ |t| and iw(t̃) ≤ |t̃| hold.

Theorem 3.3.10.

(1) Any graph G ∈ ⟨⟨G(t)⟩⟩ is (iw(t) + 1)-expressible.

(2) Any labelled graph G̃ ∈ ⟨⟨G̃(t̃)⟩⟩ is (iw(t̃) + 1)-expressible.

Proof. (1) is proved by induction on the size of t using Proposition 3.3.7 and 3.3.8. (2)

is proved by induction on the size of t̃ using (1) and Proposition 3.3.7 and 3.3.8.

Corollary 3.3.11. Let lt be any label. Any labelled graph G̃ ∈ ⟨⟨G̃(t̃)lt⟩⟩ is (iw(t̃) + 2)-

expressible.

Proof. Let ρ = A(l)ρ′ be a disjoint (iw(t̃) + 1)-SGCP such that ρ expresses a labelled

graph G̃ ∈ ⟨⟨G̃(t̃)⟩⟩. If G̃lt is defined, ρ[ε/F(lt)] is a (iw(t̃) + 2)-SGCP such that ex-

presses G̃lt .

The labelwidth of a SGCP is closely related with space complexity. Corollary 3.3.11

is useful for analysing computational complexity in Section 3.5.

Remark. Note that the following are equivalent:

(1) G̃ is expressible by a n-SGCP ρ;

(2) G̃ is expressible by a SGCP ρ such that #L(ρ) ≤ n.

(2) ⇒ (1) is obvious. (1) ⇒ (2) is shown by relabelling each label in ρ adequately.

Thus it is enough to prepare at most n labels to express a n-expressible graph G̃.

3.3. Sequential Graph Construction Procedures 45

3.3.1 Labelwidth and Pathwidth

We mention that the labelwidth of a graph can be characterized by the pathwidth in

graph theory [74]. (It has some alternative characterizations, see e.g., [12, Thm. 2]

and [13, Lem. 4.6].) The pathwidth of a graph is determined by an optimal path-

decomposition.

Definition 3.3.12 (cf. [74]). Let G be a normal formed graph. A sequence X1, . . . , Xn

of subsets of VG is a path-decomposition if the following condition are satisfied:

(a) for any (v, v′) ∈ RG
A, there is i such that {v, v′} ⊆ Xi;

(b) for any 1 ≤ i ≤ i′ ≤ i′′ ≤ n, Xi ∩ Xi′′ ⊆ Xi′ ;

(c) vG
t ∈ X1; vG

s ∈ Xn.

(Note that (c) is added from the definition in [74] for the source node and the target

node.) Let the width of a path-decomposition X1, . . . , Xn be the maximum of #X1 −

1, . . . , #Xn − 1. Then the pathwidth of a graph G is defined as the minimum of the

widths of path-decompositions of G.

Example 3.3.13. Figure 3.3 shows examples of path-decompositions for graphs of

Figure 3.2. These path-decompositions are optimal, i.e., the pathwidths are just 1, 2,

and 4 shown by these path-decompositions, respectively.

G̃(ρ1):= . . .a1 a2 an
Xn−1 Xn−2 . . . X1

a1

a2

a1

a2

X2 X1

X1

FIGURE 3.3: Examples of path-decomposition

Proposition 3.3.14. Let G = (V, {Rȧ}ȧ∈Ȧ1
, vs, vt) be any normal formed graph. The

following are equivalent:

(1) G is expressible by a n-SGCP;

46 Chapter 3. Derivatives for Kleene Allegories

(2) the pathwidth of G is at most n − 1.

Proof. (1) ⇒ (2): Let ρ = e1 . . . ek be a n-SGCP such that ρ expresses G, let ρi = e1 . . . ei

be a n-SGCP, let G̃(ρi) = (Vi, {Ri
ȧ}ȧ∈Ȧ1

, mi, 0) be a normal formed labelled graph,

and let Xi = cod(mi). Then X1, . . . , Xk−1 is a path-decomposition of width n − 1 of

G. (Note that the condition (b) in Definition 3.3.12 is justified by that, once a label is

forgotten, the node associated with the label will be never labelled again.) Thus the

pathwidth of G is at most n − 1.

(2) ⇒ (1): Let X1, . . . , Xk be a path-decomposition of width at most n − 1 of G. For

convenience, let X0 be ∅. We construct a SGCP according to the path-decomposition.

The SGCP by repeating the next procedure from i = 0 to i = k − 1 is a n-SGCP that

expresses G:

(i) Forgetting any label associated with nodes in Xi \ Xi+1;

(ii) Adding new nodes as many as the size of Xi+1 \ Xi;

(iii) For any pair (v, v′) ∈ Ra ∩ ((Xi+1 × Xi+1) \ (Xi × Xi)), connecting the pair with

an edge labelled with a,

where vt is added at first when i = 0, and vs is forgotten at last when i = k − 1.

3.4 Left Quotients on Graphs

In this section, we only consider graphs in the following class. The restriction is not

critical because any labelled graph in the labelled graph language of each labelled

term of Kleene allegories is simple.

Definition 3.4.1. A labelled graph G̃ = (V, {Rȧ}ȧ∈Ȧ1
, m, vt) is called simple if the

following are satisfied:

(a) G̃ is acyclic: R+
Ȧ1

∩ ∆(V) = ∅;

(b) any node is reachable to vt: V = dom(R∗
Ȧ1

· ∆({vt}));

(c) ∑ȧ∈Ȧ #{v | (v, v′) ∈ Rȧ} ≤ 1, for any node v′;

3.4. Left Quotients on Graphs 47

(d) any left most node is labelled with some label, and vice versa: V \ cod(RȦ1
) =

cod(m).

Similarly, a graph G = (V, {Rȧ}ȧ∈Ȧ1
, vs, vt) is called simple if (a),(b),(c) and (d’) V \

cod(RȦ1
) = {vs} are satisfied.

It is easy to see that the following hold, where Xl1,l2
a , ρ−1, G̃ ↓ v, and G̃ ↑m are defined

in this section.

Proposition 3.4.2. If G̃ is simple, the following graphs are all simple: (1) any labelled graph

in Xl1,l2
a (G̃); (2) any labelled graph in ρ−1(G̃); (3) G̃ ↓ v; (4) G̃ ↑m.

Now we define left quotients on graphs (generated by SGCPs). In the next section,

derivatives on graphs will be defined based on the left quotients in a natural way.

Definition 3.4.3 (l-empty). A labelled graph G̃ is said to be l-empty if M̃⟨⟨G̃⟩⟩ is iso-

morphic to the labelled relation ({0}, {∅}ȧ∈Ȧ1
, {(0, l)}).

Definition 3.4.4. The lower labelled graph of a labelled graph G̃ in GL with respect

to a node v ∈ VG̃, written G̃ ↓ v, is a labelled graph, defined as (V ′, {RG̃
ȧ ∩ (V ′ ×

V ′)}ȧ∈Ȧ1
, mG̃ ∩ (L × V ′), v), where V ′ = dom((RM̃

Ȧ1
)∗ · ∆({v})).

Definition 3.4.5 (Left quotients on edges). The left quotient of a labelled graph G̃ with

respect to a character a and two labels, l1 and l2, written Xl1,l2
a (G̃), is the smallest set

of labelled graphs that the following are satisfied:

(1) Let v1 and v2 be two nodes such that G̃ ↓ v1 is l1-empty and (v1, v2) ∈ RG̃
a . Then

(VG̃, {R′
ȧ}ȧ∈Ȧ1

, mG̃ ∪ {(l2, v2)}, vG̃
t) ↓ vG̃

t ∈ Xl1,l2
a (G̃), where R′

ȧ = RG̃
ȧ \ {(v1, v2)}

if ȧ = a, and R′
ȧ = RG̃

ȧ otherwise.

(2) Let v1 and v2 be two nodes such that G̃ ↓ v2 is l2-empty and (v2, v1) ∈ RG̃
a⌣ . Then

(VG̃, {R′
ȧ}ȧ∈Ȧ1

, mG̃ ∪ {(l1, v1)}, vG̃
t) ↓ vG̃

t ∈ Xl1,l2
a (G̃), where R′

ȧ = RG̃
ȧ \ {(v2, v1)}

if ȧ = ă, and R′
ȧ = RG̃

ȧ otherwise.

Xl1,l2
a (G̃) denotes

∪
G̃∈G̃ Xl1,l2

a (G̃).

Intuitively, Xl1,l2
a means moving once from left most nodes labelled with l1 (or l2) to

a node connected with an edge labelled with a (or ă), and then erasing the passed

edge. Figure 3.4 is an example of left quotients on edges. The green colored edges

48 Chapter 3. Derivatives for Kleene Allegories

are the edges in which the left quotient Xl1,l2
a can be triggered. The graph on the left

side generates the two graphs on the right side by Xl1,l2
a .

l2

l1

l1l2

1
a

1a

1

1
a1ă

X
l 1,l2
a

−−−→

X l1 ,l2a−−−→

l2

l1

l1l2

1
a

1

1

1
a1ă

l2

l1

l1

1
a

1a

1

1
a1

FIGURE 3.4: An example of left quotients on edges

Now we extend the left quotients from edges to graphs. Let l⊥ be the dummy la-

bel, that is used only to define left quotients. G̃⊥
L denotes the set of labelled graphs

G̃L∪{l⊥}. G̃⊥ denotes the labelled graph (VG̃ ∪ {⊥}, {RG̃
ȧ }ȧ∈Ȧ1

, mG̃
s ∪ {(l⊥,⊥)}, vG̃

t),

where ⊥ ̸∈ VG̃. m[l′/l] denotes m in which each pair (l, v) ∈ m has been replaced

by (l′, v), and G̃[l′/l] denotes (VG̃, {RG̃
ȧ }ȧ∈Ȧ1

, mG̃[l′/l], vG̃
t).

Definition 3.4.6 (Left quotients on graphs). The left quotient of G̃ ∈ G̃⊥ with respect

to a SGCP ρ, written ρ−1(G̃) is a set of labelled graphs, defined inductively as fol-

lows:

if ρ = A(l1), ρ−1 := ∆(G̃⊥
{l1});

if ρ = ρ′A(l1), G̃′ ∈ ρ−1(G̃) :⇔

G̃′[l⊥/l1] ∈ ρ′−1(G̃[l⊥/l1]) ∧ mG̃′
(l1) = mG̃(l1);

if ρ = ρ′C(l1, l2, a), ρ−1 := (ρ′−1 ◦ Xl1,l2
a)∗ ◦ ρ′−1;

if ρ = ρ′F(l1), ρ−1 := ρ′−1 ∩ (G̃⊥
λ(ρ) × G̃⊥

λ(ρ)).

ρ−1(G̃) denotes
∪

G̃∈G̃ ρ−1(G̃). ρ−1 is a closure operator.

Intuitively, ρ−1 means moving zero or more times between labelled nodes, and then

erasing the passed edges, where each moving can be simulated by the relation model

of ρ.

Example 3.4.7. Let ρ1 := A(l1)A(l2)C(l1, l2, a). Then ρ−1
1 of the labelled graph on the

left side of Figure 3.4 is the set of all labelled graphs obtained by applying Xl1,l2
a zero

or more times to the labelled graph.

3.4. Left Quotients on Graphs 49

Let ρ2 := A(l1)A(l2)A(l3)C(l3, l2, a)F(l3). Then ρ−1
2 of the labelled graph on the left side

of Figure 3.4 contains the labelled graphs by applying Xl3,l2
a zero or two times, but

does not contain the labelled graph by applying Xl3,l2
a one time because this graph

has the forgotten label l3.

Now we show a relationship between these left quotients and homomorphisms

(Theorem 3.4.11).

Lemma 3.4.8. Let ρ be any SGCP and G̃ be any simple labelled graph in G⊥
λ(ρ).

(1) if (mG̃(ρ)⊥(l1), mG̃(ρ)⊥(l2)) ∈ RG̃(ρ)⊥

a ,

G̃(ρ)⊥ ◁ Xl1,l2
a (G̃) =⇒ G̃(ρ)⊥ ◁ G̃.

(2) G̃(ρ)⊥ ◁ ρ−1(G̃) =⇒ G̃(ρ)⊥ ◁ G̃.

Proof. (1): Let G̃′ ∈ Xl1,l2
a (G̃) be a labelled graph such that G̃(ρ)⊥ ◁ G̃′. By the defini-

tion of Xl1,l2
a and that any node is reachable to vG̃

t (Definition 3.4.1 (b)), the subgraph

with the nodes eliminated by Xl1,l2
a from G̃ is l1-empty (or l2-empty). Then a homo-

morphism from ⟨⟨G̃′⟩⟩ to ⟨⟨G̃(ρ)⊥⟩⟩ can be extend to a homomorphism from ⟨⟨G̃⟩⟩ to

⟨⟨G̃(ρ)⊥⟩⟩ by mapping each eliminated node to the node labelled with l1 (or l2).

(2): It is proved by induction on the length of ρ.

• if ρ = A(l1), it is obvious since ρ−1(G̃) = {G̃}.

• if ρ = ρ′A(l1), let G̃′ ∈ ρ−1(G̃) be a labelled graph such that G̃(ρ)⊥ ◁ G̃′. Then

G̃(ρ′)⊥ ◁ G̃′[l⊥/l1] since both the node labelled with l⊥ and the node labelled

with l1 in ⟨⟨G̃(ρ)⊥⟩⟩ are isolated from any other node. From this and G̃′[l⊥/l1] ∈

ρ′−1(G̃[l⊥/l1]), G̃(ρ′)⊥ ◁ ρ′−1(G̃[l⊥/l1]). By I.H. and G̃(ρ)⊥ ◁ G̃(ρ′)⊥, G̃(ρ)⊥ ◁

G̃[l⊥/l1].

Let h be a homomorphism from ⟨⟨G̃[l⊥/l1]⟩⟩ to ⟨⟨G̃(ρ)⊥⟩⟩. Then a homomor-

phism from ⟨⟨G̃⟩⟩ to ⟨⟨G̃(ρ)⊥⟩⟩ can be obtained from h by remapping each node

labelled with l1 in ⟨⟨G̃⟩⟩ to the node labelled with l1 in ⟨⟨G̃(ρ)⊥⟩⟩. Therefore,

G̃(ρ)⊥ ◁ G̃.

• if ρ = ρ′C(l1, l2, a), there exists n such that G̃(ρ)⊥ ◁ ((ρ′−1 ◦ Xl1,l2
a)n ◦ ρ′−1)(G̃).

By I.H. and G̃(ρ)⊥ ◁ G̃(ρ′)⊥, G̃(ρ)⊥ ◁ (Xl1,l2
a ◦ ρ′−1)n(G̃). By Lemma 3.4.8 (1),

50 Chapter 3. Derivatives for Kleene Allegories

G̃(ρ)⊥ ◁ ((ρ′−1 ◦Xl1,l2
a)n−1 ◦ ρ′−1)(G̃). By repeating the above inference, G̃(ρ)⊥ ◁

G̃ is proved.

• if ρ = ρ′F(l1), by ρ−1(G̃) ⊆ ρ′−1(G̃), G̃(ρ′)⊥ ◁ G̃(ρ)⊥, and I.H., G̃(ρ′)⊥ ◁ G̃.

Then by using the same homomorphism, G̃(ρ)⊥ ◁ G̃ since l1 ̸∈ L(G̃).

The above lemma shows that, if a graph can be erased by a left quotient ρ−1, there

exists a homomorphism from the graph to ⟨⟨G̃(ρ)⟩⟩. However the converse does not

hold in general. For example, the below right labelled graph can not be erased by

Xl1,l1
a , whereas there exists a homomorphism.

l1a, b ◁ l1
a

b

For that reason, the restriction to simple graphs is meaningful.

Definition 3.4.9. The upper labelled graph of a labelled graph G̃ with respect to a func-

tion m from L to ℘(VG̃), written G̃ ↑m, is a labelled graph, defined as (V ′, {RG̃
ȧ ∩

(V ′×V ′)}ȧ∈Ȧ1
, (mG̃ ∪m)∩ (L×V ′), vG̃

t), where V ′ = cod((RM̃
Ȧ1

∩ (V × (V \ cod(m))))∗ ·

∆(vG̃
t)).

The complement of G̃ ↑m, written (G̃ ↑m)c, denotes the labelled graph (V ′, {RG̃
ȧ \

RG̃ ↑m
ȧ }ȧ∈Ȧ1

, (mG̃ ∪ m) ∩ (L × V ′), v•), where V ′ = (VG̃ \ VG̃ ↑m) ∪ cod(m) and v•

is some node in V ′ (v• is used only for defining the labelled graph).

Lemma 3.4.10. Let ρ be any SGCP, let G̃ be any simple labelled graph in G⊥
λ(ρ), and let m

be any function such that (⋆): m(l) ⊆ cod(RG̃
Ȧ).

M̃G̃(ρ)
⊥
◁ M̃⟨⟨(G̃ ↑m)c⟩⟩ =⇒ G̃ ↑m ∈ ρ−1(G̃).

Proof. It is proved by induction on the pair (the length of ρ, the number of edges in

G̃ ↑m).

• if ρ = A(l1), R(G̃ ↑m)c

Ȧ = ∅ by RG̃(ρ)
⊥

Ȧ = ∅ and the hypothesis. By (⋆) and

Definition 3.4.9, RG̃ ↑m
Ȧ = RG̃

Ȧ, and thus m = ∅. Since G̃ ↑m = G̃, G̃ ↑m ∈

ρ−1(G̃).

3.4. Left Quotients on Graphs 51

• if ρ = ρ′A(l1), since both the node labelled with l1 and the node labelled with

l⊥ are isolated from any other node in G̃(ρ)⊥, M̃G̃(ρ)⊥ ◁ M̃⟨⟨(G̃[l⊥/l1] ↑m[l⊥/l1])c⟩⟩

by the hypothesis, and mG̃ ↑m(l1) = mG̃(l1) by (⋆) and Definition 3.4.9. By I.H.,

G̃[l⊥/l1] ↑m[l⊥/l1] ∈ ρ′−1(G̃[l⊥/l1]), and thus (G̃ ↑m)[l⊥/l1] ∈ ρ′−1(G̃[l⊥/l1]).

Since mG̃ ↑m(l1) = mG̃(l1), G̃ ↑m ∈ ρ−1(G̃).

• if ρ = ρ′F(l1), by M̃G̃(ρ′)⊥ ◁ M̃G̃(ρ)⊥ and I.H., G̃ ↑m ∈ ρ′−1(G̃). Since l1 ̸∈

L(M̃G̃(ρ)⊥) and M̃G̃(ρ)⊥ ◁ M̃⟨⟨(G̃ ↑m)c⟩⟩, l1 ̸∈ L((G̃ ↑m)c). From this and l1 ̸∈ L(G̃),

l1 ̸∈ L(G̃ ↑m). Therefore G̃ ↑m ∈ ρ−1(G̃).

• if ρ = ρ′C(l1, l2, a), Let m′ be the function such that,

(⋆1) m′ satisfies (⋆);

(⋆2) M̃G̃(ρ′)⊥ ◁ M̃⟨⟨(G̃ ↑m′)c⟩⟩;

(⋆3) VG̃ ↑m′ ⊇ VG̃ ↑m is minimized.

For short, we write G̃ ↑m′ as G̃′. From (⋆2) and I.H., G̃′ ∈ ρ′−1(G̃). When m′ =

m, it is immediately proved. Otherwise, by m′ ̸= m, (⋆3), and (⋆1), there exists

two nodes, v1 and v2, such that (v1, v2) ∈ RG̃′

Ȧ and v2 ∈ V(G̃ ↑m)c . From this, the

hypothesis, (⋆2), and that G̃′ is acyclic, there exist two nodes v1, v2 ∈ VG̃′
such

that (i) (v1, v2) ∈ RG̃′
a ; (ii) v2 ∈ V(G̃ ↑m)c ; and (iii) G̃′ ↓ v1 is l1-empty, (or that

(i) (v2, v1) ∈ RG̃′
ă ; (ii) v1 ∈ V(G̃ ↑m)c ; and (iii) G̃′ ↓ v2 is l2-empty.). Then there

exists a labelled graph G̃′′ ∈ Xl1,l2
a (G̃′) such that G̃(ρ)⊥ ◁ M̃⟨⟨(G̃′′ ↑m)c⟩⟩. Note

that G̃′′ is simple and the number of edges in G̃′′ ↑m is strictly smaller than

the number in G̃ ↑m. By I.H., G̃′′ ↑m ∈ ρ−1(G̃′′). Since (ii), G̃′′ ↑m = G̃′ ↑m.

Since (⋆3), G̃′ ↑m = G̃ ↑m. Also ρ−1(G̃′′) ⊆ ρ−1(Xl1,l2
a (ρ′−1(G̃))) ⊆ ρ−1(G̃).

Therefore G̃ ↑m ∈ ρ−1(G̃).

Theorem 3.4.11. Let ρ be any SGCP, let G̃ be any simple labelled graph in Gλ(ρ), and let lt

be any label such that G̃lt is defined. The following are equivalent:

(1) there exists an lt-empty labelled graph in ρ−1(G̃);

(2) G̃(ρ) ◁ G̃lt .

52 Chapter 3. Derivatives for Kleene Allegories

Proof. (1) ⇒ (2): There also exists an lt-empty labelled graph in ρ−1(G̃lt) because it

does not matter whether the target node is labelled or not in the operation ρ−1. By

Lemma 3.4.8 (2), G̃(ρ)⊥ ◁ G̃lt . Therefore G̃(ρ) ◁ G̃lt since l⊥ ̸∈ L(G̃lt).

(2) ⇒ (1): Let mt = {lt 7→ cod(RG̃
Ȧ)∩ ((R∗

1)
G̃ ·∆({vG̃

t }))}. Then, since ⟨⟨(G̃ ↑mt)c⟩⟩ =

⟨⟨G̃lt⟩⟩ and l⊥ ̸∈ L(G̃), MG̃(ρ) ◁ M⟨⟨(G̃ ↑mt)c⟩⟩. By Lemma 3.4.10, G̃ ↑mt ∈ ρ−1(G̃). Since

G̃ ↑mt is lt-empty, (1) is proved.

3.5 Derivatives on Graphs

In this section, we define derivatives on graphs (generated by SGCPs). The deriva-

tives on graphs characterize the left quotient on graphs just like the derivative on

strings characterize the left quotient on strings. The derivatives on graphs consist of

l-empty graph property El and partial derivatives on edges Dl1,l2
a .

Definition 3.5.1 (l-empty graph property). Let l be a label. The l-empty graph property

of a labelled term, written El(t̃), is a truth value, defined inductively as follows:

El(@l.ȧ) := El(@l.0) := f alse;

El(@l′.t) := f alse for l′ ̸= l;

El(@l.1) := El(@l.t∗1) := true;

El(@l.t1 ∪ t2) := El(@l.t1) ∨ El(@l.t2);

El(@l.t1 · t2) := El(@l.t1 ∩ t2) := El(@l.t1) ∧ El(@l.t2);

El(t̃1 · t2) := El(t̃1) ∧ El(@l.t2);

El(t̃1 ∩ t̃2) := El(t̃1) ∧ El(t̃2).

El(T̃) denotes the truth value
∨

t̃∈T̃ El(t̃).

The next proposition shows that Elt characterizes lt-empty. It is shown by simple

induction on the size of t̃.

Proposition 3.5.2. The following are equivalent:

(1) Elt(t̃) is true;

(2) there exists a lt-empty labelled graph in G̃(t̃).

3.5. Derivatives on Graphs 53

Definition 3.5.3 (Derivatives on edges). The derivatives on edges of a labelled term

t̃ with respect to a character a and two labels, l1 and l2, written Dl1,l2
a (t̃), is a set of

labelled terms, defined inductively as follows:

Dl1,l2
a (@l.0) := Dl1,l2

a (@l.1) := ∅;

Dl1,l2
a (@l1.a) := {@l2.1}; Dl1,l2

a (@l2.ă) := {@l1.1};

Dl1,l2
a (@l.a′) := ∅ for a′ ̸= a or l ̸= l1;

Dl1,l2
a (@l.ă′) := ∅ for a′ ̸= a or l ̸= l2;

Dl1,l2
a (@l.t1 ∪ t2) := Dl1,l2

a (@l.t1) ∪ Dl1,l2
a (@l.t2);

Dl1,l2
a (@l.t1 · t2) := Dl1,l2

a ((@l.t1) · t2);

Dl1,l2
a (@l.t∗1) := Dl1,l2

a (@l.t1) · {t∗1};

Dl1,l2
a (@l.t1 ∩ t2) := Dl1,l2

a ((@l.t1) ∩ (@l.t2));

Dl1,l2
a (t̃1 ∩ t̃2) := (Dl1,l2

a (t̃1)⋒ {t̃2}) ∪ ({t̃1}⋒Dl1,l2
a (t̃2));

Dl1,l2
a (t̃1 · t2) is the smallest set such that

(1) Dl1,l2
a (t̃1) · {t2} ⊆ Dl1,l2

a (t̃1 · t2),

(2) if Eli(t̃1), Dl1,l2
a (@li.t2) ⊆ Dl1,l2

a (t̃1 · t2), for i = 1, 2.

Dl1,l2
a (T̃) denotes the set of labelled terms

∪
t̃∈T̃ Dl1,l2

a (t̃).

The above derivatives can characterize the left quotient on edges. The next proposi-

tion is shown by case analysis on where an erased edge by Xl1,l2
a is derived from.

Proposition 3.5.4. Let G̃1 and G̃2 be any simple labelled graphs and let G2 be any simple

graph.

(1) Xl1,l2
a (G̃1 ∥ G̃2) = (Xl1,l2

a (G̃1) ∥ G̃2) ∪ (G̃1 ∥ Xl1,l2
a (G̃2)).

(2) Xl1,l2
a (G̃1 · G2) is the smallest set such that

(a) Xl1,l2
a (G̃1) · {G2} ⊆ Xl1,l2

a (G̃1 · G2);

(b) if Eli(G̃1), Xl1,l2
a (Gli

2) ⊆ Xl1,l2
a (G̃1 · G2), for i = 1, 2, where G̃li

2 denotes the labelled

graph (VG2 , {RG2
a }ȧ∈Ȧ1

, {(li, vG2
s)}, vG2

t).

Theorem 3.5.5. G̃(Dl1,l2
a (t̃)) = Xl1,l2

a (G̃(t̃)).

54 Chapter 3. Derivatives for Kleene Allegories

Proof. It is proved by induction on the size of t̃ using Proposition 3.5.4.

Next we extend the derivatives from edges to graphs.

Definition 3.5.6 (Derivatives on graphs). Let e be an event and let D be a partial

function from T̃ to ℘(T̃). Then e(D) is a partial function from T̃ to ℘(T̃), defined

as follows:

• if e = A(l1) and l1 ̸∈ L(D),

– e(D)(t̃1) is undefined if t̃1 ̸∈ T̃L(D)∪{l1},

– e(D)(t̃1) := D(t̃1) if t̃1 ∈ T̃L(D),

– e(D)(t̃1 ∩ t̃2) := e(D)(t̃1)⋒ e(D)(t̃2),

– e(D)(@l1.t) = {@l1.t},

– e(D)(t̃1 · t2) := e(D)(t̃1) · {t2};

• if e = C(l1, l2, a) and l1, l2 ∈ L(D),

e(D) := (D ◦ Dl1,l2
a)∗ ◦ D;

• if e = F(l1) and l1 ∈ L(D),

e(D) := D ∩ (T̃L(D)\{l1} × T̃L(D)\{l1});

• otherwise, e(D) is undefined.

(•∗ in the definition of the case ρ = ρ′C(l1, l2, a) is the reflexive transitive closure

viewed as a relation.)

The derivative with respect to a SGCP ρ of a labelled term t̃, written Dρ(t̃), is defined

inductively as follows:

• if ρ = A(l1), Dρ := {t̃ 7→ {t̃} | t̃ ∈ T̃{l1}};

• if ρ = ρ′e, Dρ := e(Dρ′).

Dρ(T̃) denotes the set of terms
∪

t̃∈T̃ Dρ(t̃).

Example 3.5.7. We list a few examples of derivatives on graphs.

(1) DA(l0)A(l1)C(l0,l1,a)(@l0.a) = {@l0.a, @l1.1}.

3.5. Derivatives on Graphs 55

(2) DA(l0)A(l1)C(l0,l1,a)C(l1,l0,b)(@l0.ab ∩ 1)

= {@l0.ab ∩ 1, @l1.b ∩ @l0.1, @l0.1 ∩ @l0.1}.

(3) DA(l0)A(l1)C(l0,l1,a)(@l0.aa⌣a)

= {@l0.aa⌣a, @l1.a⌣a, @l0.a, @l1.1}.

Proposition 3.5.8. Let ρ = ρ′A(l) be a SGCP. For any simple labelled graphs G̃1 and G̃2,

(1) ρ−1(G̃1 ∥ G̃2) = ρ−1(G̃1) ∥ ρ−1(G̃2).

(2) if l ∈ L(G̃1), ρ−1(G̃1 · G2) = ρ−1(G̃1) · G2.

(3) if L(G̃1) = {l}, ρ−1(G̃1) = {G̃1}.

Sketch. These are proved by considering the range under the influence of ρ′−1.

Theorem 3.5.9. G̃(Dρ(t̃)) = ρ−1(G̃(t̃)).

Sketch. It is proved by induction on the pair (the length of ρ, the size of t̃) using

Theorem 3.5.5 for C(l1, l2, a) and using Proposition 3.5.8 for A(l1).

Theorem 3.5.10. The following are equivalent:

(1) Elt(Dρ(t̃));

(2) G̃(ρ) ◁ G̃(t̃)lt .

Proof. By Proposition 3.5.2 and Theorem 3.4.11 and 3.5.9.

Summarizing the above discussion, the inclusion problem for Kleene allegories can

be characterized by the derivatives on graphs as follows: REL |= t1 ≤ t2 ⇔ REL∼ |=

@ls.t1 ≤ @ls.t2 (Proposition 3.2.2) ⇔ ∀lt∈L. G̃(@ls.t1)
lt ◁ G̃(@ls.t2)lt (Theorem 3.2.9

and 3.2.11) ⇔ ∀lt∈L.∀ρ. G̃(ρ) ◁ G̃(@ls.t1)
lt → G̃(ρ) ◁ G̃(@ls.t2)lt (◁ is transitive and

any labelled graph in G̃(@ls.t1)
lt can be expressed by a SGCP by Corollary 3.3.11)

⇔ ∀lt∈L.∀ρ. Elt(Dρ(@ls.t1)) → Elt(Dρ(@ls.t2)) (Theorem 3.5.10). Algorithm 2 is for

deciding the above formula, where the domain of ρ is restricted to (|t1|+ 2)-SGCPs

by Corollary 3.3.11 and clL is defined in the next subsection.

56 Chapter 3. Derivatives for Kleene Allegories

Algorithm 2 The inclusion problem for Kleene Allegories

Ensure: REL |= t1 ≤ t2?
Let L be a set of size |t1|+ 2 and let ls, lt ∈ L.
CL ⇐ clL(@ls.t1) ∪ clL(@ls.t2)
(D, d) ⇐ ({t̃ 7→ {t̃} | t̃ ∈ CL}, 0)
while d < 2#CL2

do
if Elt(D(@ls.t1)) ∧ ¬Elt(D(@ls.t2)) then

return f alse
end if
pickup an event e nondeterministically
(D, d) ⇐ (e(D), d + 1)

end while
return true

3.5.1 Upper Bound

Definition 3.5.11. The closure of a labelled term t̃ with respect to a set of labels L,

clL(t̃), is defined inductively as follows. (For convenience, we also define clL(t) for

term t.)

clL(0) :=
∪

l′∈L{@l′.0}; clL(1) :=
∪

l′∈L{@l′.1};

clL(a) :=
∪

l′∈L{@l′.a, @l′.1}; clL(ă) :=
∪

l′∈L{@l′.ă, @l′.1};

clL(t1 ∪ t2) :=
∪

l′∈L{@l′.t1 ∪ t2} ∪ clL(t1) ∪ clL(t2);

clL(t1 · t2) :=
∪

l′∈L{@l′.t1 · t2} ∪ clL(t1) · {t2} ∪ clL(t2);

clL(t∗1) :=
∪

l′∈L{@l′.t∗1} ∪ clL(t1) · {t∗1};

clL(t1 ∩ t2) :=
∪

l′∈L{@l′.t1 ∩ t2} ∪ (clL(t̃1)⋒ clL(t̃2));

clL(@l.t1) := clL(t1); clL(t̃1 · t2) := clL(t̃1) · {t2} ∪ clL(t2);

clL(t̃1 ∩ t̃2) := clL(t̃1)⋒ clL(t̃2).

clL(T̃) denotes
∪

t̃∈T̃ clL(t̃) and clL is a closure operator.

Theorem 3.5.12.

(1) Dl1,l2
a (t̃) ⊆ clL(t̃), where {l1, l2} ∪ L(t̃) ⊆ L.

(2) Dρ(t̃) ⊆ clL(t̃), where L(ρ) ∪ L(t̃) ⊆ L.

(3) # clL(t) ≤ (2 × |t| × #L)iw(t).

(4) # clL(t̃) ≤ (2 × |t̃| × #L)iw(t̃).

Proof. (1) is proved by induction on the length of t̃. (2) is proved by induction on ρ

using (1).

3.5. Derivatives on Graphs 57

(3) is proved by induction on the length of t. (4) is proved by induction on the length

of t̃ using (3). For example, when t̃ = t̃1 ∩ t̃2, it is proved as follows:

clL(t̃) ≤ # clL(t̃1)× # clL(t̃2)

≤ (2 × |t̃1| × #L)iw(t̃1) × (2 × |t̃2| × #L)iw(t̃2)

≤ (2 × |t̃| × #L)iw(t̃1) × (2 × |t̃| × #L)iw(t̃2)

≤ (2 × |t̃| × #L)iw(t̃1)+iw(t̃2)

≤ (2 × |t̃| × #L)iw(t̃)

By #L ≤ |t̃1|+ 2, iw(t̃) ≤ |t̃|, and Theorem 3.5.12, #CL is an exponential of (|t1|+

|t2|). Therefore, the space complexity of Algorithm 2 is an exponential of the sum

of the length of t1 and t2. Thus, the next theorem is derived in the same way as

Theorem 2.3.26.

Theorem 3.5.13. The inclusion problem for Kleene allegories is in EXPSPACE.

3.5.2 A Finite Automaton Construction

The derivatives on graphs derive an algorithm turning labelled terms into finite au-

tomata like that derivatives on strings derive algorithm turning regular expressions

into finite automata.

A deterministic finite automaton (DFA) A is a five tuple (Q, A, δ, qI , F), where Q is

a set of states, A is an alphabet, δ : Q × A → Q is a transition function, qI ∈ Q is a

initial state, and F ⊆ Q is a set of accepting states. For a string s, δ(q, s) denotes that,

δ(q, s) = {q} if s = ε, and δ(q, s) = δ(δ(q, s′), a) if s = s′a. we call that A accepts a

string s if δ(qI , s) ∈ F.

Definition 3.5.14 (DFA of a labelled term). Let lt be a label and let L be a set of labels

such that {lt}∪ L(t̃) ⊆ L. Then the DFA of a labelled term A(t̃, L, lt) = (Q, A, δ, qI , F)

is defined as follows: (a) Q = ℘(clL(t̃))clL(t̃) ∪ {⊥}; (b) A = {A(l1) | l1 ∈ L} ∪

{C(l1, l2, a) | l1, l2 ∈ L and a ∈ A} ∪ {F(l1) | l1 ∈ L}; (c) δ(D, e) = e(D)↾ clL(t̃) if

58 Chapter 3. Derivatives for Kleene Allegories

e(D) is defined, and δ(D, e) = ⊥ otherwise; (d) qI = ∆(T̃{lt})↾ clL(t̃); (e) F = {D |

Elt(D(t̃)) is true}.

Proposition 3.5.15. Let ρ be any SGCP in the form of A(lt)ρ′.

δA(t̃,L,lt)(qA(t̃,L,lt)
I , ρ′) = Dρ↾ clL(t̃).

Proof. It is proved by induction on the length of ρ using Theorem 3.5.12 (2).

Theorem 3.5.16. Let ρ be any SGCP in the form of A(lt)ρ′. The following are equivalent:

(1) Elt(Dρ(t̃)) is true;

(2) A(t̃, L, lt) accepts ρ′.

Remark. The automata can be regarded as an extension of the automata for Kleene

algebra with converse (Kleene allegories without intersection) in [11, Thm. 5.14]

from path graphs to general graphs, when G in [11] is regarded as a path graph.

3.6 Lower Bound: Language and Relations

In the previous section, it is shown that the inclusion problem for Kleene allegories

is in EXPSPACE. In this section, we show that the inclusion problem for Kleene

allegories is EXPSPACE-complete. In the language model, a lowerbound of the uni-

versality problem is shown by the next theorem.

Theorem 3.6.1 ([33, Thm. 2]). The language universality problem for terms without •⌣ is

EXPSPACE-complete.

Also the next proposition shows that the equational theory over relation models is

smaller than the equational theory on the language model.

Theorem 3.6.2 (cf. [2]). Let t1 and t2 be any terms without •⌣.

REL |= t1 ≤ t2 =⇒ L(t1) ⊆ L(t2).

We now show the next theorem, that is a bit stronger claim of Theorem 2.3.14.

3.6. Lower Bound: Language and Relations 59

Theorem 3.6.3. Let t1 and t2 be any terms without •⌣ such that ∩ does not occur in t1.

REL |= t1 ≤ t2 ⇐⇒ L(t1) ⊆ L(t2).

Definition 3.6.4 (Tree unwound model (see e.g., [39, p.132])). The tree unwound model

of a relation model M = (V, {Ra}a∈A), written Mt, is the relation model (V · (A ·

V)∗, {{(vv, vvav′) | (v, v′) ∈ Ra}}a∈A).

The string expressed by v, written s(v), is inductively defined as follows: s(v) = ε if

v = ε, s(v) = s(v′)a if v = v′a, and s(v) = s(v′) if v = v′v.

For tree unwound models, the next propositions hold.

Proposition 3.6.5. Let t be any term without •⌣.

(1) (vv, vvv′) ∈ RMt

t ⇐⇒ (v, vv′) ∈ RMt

t .

(2) If (v, v′) ∈ RMt

t , there exists v′′ such that v′ = vv′′.

Lemma 3.6.6.

(1) Let t be any term without •⌣ nor ∩.

(v, v′) ∈ RM
t =⇒ ∃v ∈ (V · A)∗.(v, vv′) ∈ RMt

t .

(2) Let t be any term without •⌣.

∃v ∈ (V · A)∗.(v, vv′) ∈ RMt

t =⇒ (v, v′) ∈ RM
t .

(3) Let t be any term without •⌣.

(v, v) ∈ RMt

t ⇐⇒ (v, v) ∈ RMt

A∗ ∧ s(v) ∈ L(t).

Proof. These are proved by simple induction on the length of t using Proposition

3.6.5.

Proof of Theorem 3.6.3. (⇒): By Theorem 3.6.2. (⇐): We show the contraposition.

Let M be a counter relation model and let (v, v′) be a pair of nodes in RM
t1
\ RM

t2
. By

60 Chapter 3. Derivatives for Kleene Allegories

Lemma 3.6.6 (1) (2), there exists v ∈ (V · A)∗ such that (v, vv′) ∈ RMt

t1
and (v, vv′) ̸∈

RMt

t2
. By Lemma 3.6.6 (3), (v, vv′) ∈ RMt

A∗ , s(vv′) ∈ L(t1), and s(vv′) ̸∈ L(t2) hold.

Therefore s(vv′) is a counter string of L(t1) ⊆ L(t2). Thus L(t1) ̸⊆ L(t2).

Corollary 3.6.7. Let A = {a1, . . . , an} and let t be any term without •⌣. The following are

equivalent:

(1) L(A∗) = L(t);

(2) REL |= A∗ ≤ t.

Proof. It is proved by letting t1 be (a1 ∪ · · · ∪ an)∗ and letting t2 be t in Theorem 3.6.3.

Note that L(A∗) = L(t) and L(A∗) ⊆ L(t) are equivalent.

Theorem 3.6.8.

(1) The universality problem for Kleene allegories is EXPSPACE-complete.

(2) The equational theory of Kleene allegories is EXPSPACE-complete.

Proof. (1): By Corollary 3.6.7 and Theorem 3.6.1, the problem is EXPSPACE-hard.

From this and Theorem 3.5.13, the problem is EXPSPACE-complete. (2): By (1) and

Theorem 3.5.13.

3.7 Future Work

The derivatives on graphs allow us to obtain a finite automata construction algo-

rithm for Kleene allegories. There are some natural directions for future work.

For instance, it would be interesting to apply the derivatives on graphs and the

SGCPs to modal logics. The SGCPs in this paper would may be applicable to modal

logics when the pathwidths of theirs models are restricted by a parameter. It would

be desired some extensions of SGCPs related with treewidth. Also it would be inter-

esting to extend Kleene allegories with the negation operator in (representable) rela-

tion algebra. The following are related work in regard to extend Kleene allegories

with negation. (a) The undecidability of Kleene allegories with the negation oper-

ator is an immediate consequence of the undecidability of the relation algebra that

3.7. Future Work 61

has the operations, negation, union, and composition [85]. (b) The fragment of the

relation algebra where the negation operator is only applied to characters is decid-

able [57]. (c) PDL (Propositional Dynamic Logic) with intersection and negation of

characters is undecidable [35]. To the best our knowledge it is open whether Kleene

allegories with negation of characters is decidable.

63

Chapter 4

Kleene Algebra under Weak

Equivalences

(This chapter is based on the author’s paper [69], but some results not written in [69]

are included.)

In this chapter we introduce p-equivalence for Kleene algebra in language semantics,

that is a weak almost-equivalence based on the asymptotic probability (also called

density) in formal language theory. We call that the equivalence problem (resp. uni-

versality problem, emptiness problem) under p-equivalence is p-equivalence prob-

lem (resp. p-universality problem, p-emptiness problem). For models for regu-

lar languages (terms of Kleene algebra (REGs), nondeterministic finite automata

(NFAs), and deterministic finite automata (DFAs)), we show the following:

(1) For upper bound, we give a general algorithm on some equivalences character-

ized by logical formulas relying on descriptive complexity theory. In particular

we show that the p-equivalence problem for REGs is PSPACE-complete (more

precisely, NLINSPACE-complete).

(2) For lower bound, we show that the equivalence problem under every weak

equivalence subsuming p-equivalence is computationally hard as the equiv-

alence problem under the normal equivalence. Moreover we give a trans-

lation from every universality problem under the normal equivalence to an

universality problem (resp. an emptiness problem) under the p-equivalence.

As a corollary, the p-universality problem (resp. the p-emptiness problem)

64 Chapter 4. Kleene Algebra under Weak Equivalences

for context-free grammars is undecidable, whereas the emptiness problem for

context-free grammars is decidable (see e.g., [42, Thm. 4.1]).

In recent years some weak (almost) equivalences are introduced. The following are

examples of weak-equivalences.

(1) L1 and L2 are f-equivalent [4, 5] if L1△L2 is finite.

(2) L1 and L2 are L-equivalent (“E-equivalent” in [40]) if L1△L2 ⊆ L, where L is

a language.

For the equivalence problem for NFAs, the problem under the f-equivalence is PSPACE-

complete and the problem under the L-equivalence is PSPACE-complete, where L

is given by a DFA ([40, Thm. 1]).

Remark. If L is fixed, the L-equivalence problem for NFAs is not always PSPACE-

hard. The language L = A∗ is a simple counterexample.

In this chapter we define a weak equivalence based on the asymptotic probability,

p-equivalence. Let µn(L) be

µn(L) =
the number of strings of length n that are in L

the number of strings of length n
.

That is, µn(L) is the probability that a randomly chosen string of length n is in L.

The asymptotic probability of L, µ(L), is defined as µ(L) = limn→∞ µn(L). Then L1

and L2 are p-equivalent if µ(L1△L2) = 0.

The definition of p-equivalence is based on the asymptotic probabilities in finite

model theory, which are defined (for finite graphs) as follows. Let M be a set of

finite graphs. Let µn(M) be

µn(M) =
the number of finite graphs with n nodes that are in M

the number of finite graphs with n nodes
.

That is, µn(M) is the probability that a randomly chosen graph with n nodes is in

M. (Note that this definition can be naturally extended to any finite σ-structures

from finite graphs.) The asymptotic probability of M, written µ(M), is defined as

µ(M) = limn→∞ µn(M). Then we define that M is almost surely valid if µ(M) = 1.

Chapter 4. Kleene Algebra under Weak Equivalences 65

The class of models satisfying a formula φ is denoted by M(φ). φ is almost surely

valid if µ(M(φ)) = 1. The following two results show that there is a decidability

gap between validity and almost surely validity.

Theorem 4.0.1 (Trakhtenbrot’s Theorem, see e.g., [55, Thm. 9.2]). For every signature

σ with at least one binary relation symbol, it is undecidable whether a first order sentence

φ is valid over finite σ-structures.

Theorem 4.0.2 (see e.g., [55, Cor. 12.11]). Let σ be a fixed signature. Then, for every first

order sentence φ, it is decidable whether φ is almost surely valid over finite σ-structures.

More precisely, the problem in Theorem 4.0.2 is PSPACE-complete [36], whereas the

problem in Theorem 4.0.1 is coRE-complete.

One of our main motivation to introduce p-equivalence was as follows: Is there some

difference in decidability or computational complexity between the normal equiva-

lence and p-equivalence (like the relationship between Theorem 4.0.1 and Theorem

4.0.2)? In contrast with that the almost surely validity problem is easier than the va-

lidity problem for first-order logic, this paper shows that many language problems

under p-equivalence are not computationally easier than them under the normal

equivalence.

The upper bound is shown by giving logical characterizations of p-equivalence and

several results in descriptive complexity. In particular we show the following for

DFAs.

Lemma 4.0.3. For every DFA A = (Q, δ, qI , F) over a (nonempty finite) alphabet A, the

following are equivalent:

(1) µ(L(A)) ̸= 0;

(2) A |= (∃q | F(q) ∧ Reach(qI , q)).(∀q′ | Reach(q, q′)). Reach(q′, q)

where Reach(q, q′) means that there is a string s such that δ(q, s) = q′.

The lower bound cannot be shown straightforward from the computational hard-

ness under the normal equivalence, but can be shown by modifying the proofs of

the hardness under the normal equivalence. We also give a translation on languages

from the universality problem to the p-universality problem. This translation shows

66 Chapter 4. Kleene Algebra under Weak Equivalences

that both the p-universality problem and the p-emptiness problem for context-free

grammars are undecidable.

Finally we also introduce p-equivalence in relational semantics in the same way. In

this case every equational formula of Kleene algebra terms satisfies the zero one law

because it is expressed by an FO(TC) formula. We remain open the computational

complexity of language problems under the p-equivalence in relational semantics.

4.1 p-equivalence in Language Semantics

In this section we define p-equivalence in language semantics and some fundamen-

tal results of p-equivalence.

Let A be a (nonempty finite) alphabet and let L be a language over A. Let µn(L) be

µn(L) =
#(L ∩ An)

#(An)

That is, µn(L) is the probability that a string of n length given by uniform randomly

is in L. The asymptotic probability of L as µ(L) = limn→∞ µn(L).

Definition 4.1.1 (p-equivalence). Let L1 and L2 be languages. We call that L1 and

L2 are p-equivalent if µ(L1△L2) = 0.

L1 ≃p L2 denotes that L1 and L2 are p-equivalent. t1 ≃p t2 denotes that L(t1) ≃p

L(t2), where t1 and t2 are regular expressions.

We give some examples of the asymptotic probability µ and the p-equivalence.

Example 4.1.2 (asymptotic probability µ).

• Obviously, µ(A∗) = 1 and µ(∅) = 0.

• Let A = {a, b} and let L1 be the language of all strings not including the char-

acter b (i.e., L1 = L(a∗)). Then µn(L1) =
1
2n and thus µ(L1) = 0. Note that, if

let A = {a}, µ(L1) = 1. As this example, the asymptotic probability is depend

on the alphabet A.

4.1. p-equivalence in Language Semantics 67

• Let L1 be the language of all strings of even length. L1 is regular since L1 =

L((A · A)∗). Then µn(L1) = 1 if n is even and µn(L1) = 0 if n is odd, and thus

µ(L1) does not exist. Note that µ(L) does not always exist.

Example 4.1.3 (p-equivalence). Let t1 = (a ∪ b)∗, t2 = a · (a ∪ b)∗, and t3 = 0.

• Let A = {a, b}. Then µn(L(t1)△L(t2)) =
#(b·An−1)

#(An)
= 1

2 , and thus µ(L(t1)△L(t2)) =

1
2 . Therefore t1 ̸≃p t2.

• Let A = {a, b}. Then µn(L(t1)△L(t3)) = 1, and thus µ(L(t1)△L(t3)) = 1.

Therefore t1 ̸≃p t3.

• Let A = {a, b, c}. Then µn(L(t1)△L(t3)) =
2n

3n , and thus µ(L(t1)△L(t3)) = 0.

Therefore t1 ≃p t3.

p-equivalence is indeed an equivalence relation.

Proposition 4.1.4. p-equivalence satisfies the following:

(1) reflexive: L ≃p L;

(2) symmetric: L1 ≃p L2 =⇒ L2 ≃p L1;

(3) transitive: L1 ≃p L2 and L2 ≃p L3 =⇒ L1 ≃p L3.

Proof. (1) and (2) are immediate from the definition of p-equivalence. For (3), 0 ≤

µn(L1△L3) ≤ µn(L1△L2)+µn(L2△L3) holds. Then, by the assumption µ(L1△L2) =

µ(L2△L3) = 0 and the squeeze theorem, µ(L1△L3) = 0 holds.

We show a relationship between p-equivalence and f-equivalence.

Proposition 4.1.5.

(1) = ⊆ ≃f ⊆ ≃p.

(2) If #A ≥ 2, then ≃f ⊊ ≃p.

(3) If #A = 1, then ≃p is equal to ≃f.

Proof. (1) ≃f ⊆ ≃p is shown by that µ(L1△L2) = 0 if if L1△L2 is finite. (2) The

second example in Example 4.1.3 is a counterexample. (3) By (1), it is enough to

prove ≃f ⊇ ≃p. We prove the contraposition , i.e., if L1 ̸≃f L2, then L1 ̸≃p

L2. Note that µn(L1△L2) is always 0 or 1, since #An = 1 holds by #A = 1. If

68 Chapter 4. Kleene Algebra under Weak Equivalences

L1 ̸≃f L2, then L1△L2 is infinite, i.e., µn(L1△L2) = 1 occurs infinitely. Therefore

limn→∞ µn(L1△L2) ̸= 0. Hence L1 ̸≃p L2.

4.1.1 A Robustness

Some other definitions of the asymptotic probability of L are considerable such as

follows:

µn(L) =
#(L ∩ An)

#(An)

µ∗
n(L) =

#(L ∩ A<n)

#(A<n)

δn(L) =
∑n−1

k=0 µk(L)
n

where A<n =
∪

0≤k<n Ak. Let µ∗(L) (resp. δ(L)) be the limit of µ∗
n(L) (resp. δn(L))

as n approaches infinitely. These three definition has been used in previous works:

µn [7, 76, 80], µ∗
n [7], and δn [8] (see [80, Sec. 2.4] for more details).

In this subsection we prove that the three p-equivalences defined by µ, µ∗, or δ are

all equivalent over regular languages (Proposition 4.1.8). To prove it, we introduce

the following two theorems.

Theorem 4.1.6 (Stolz-Cesàro theorem, see e.g., [67, Thm. 1.22]). If limn→∞
an+1−an
bn+1−bn

=

l, then limn→∞
an
bn

= l, where {an}∞
n=0 is a sequence of integers, {bn}∞

n=0 is a sequence of

integers and strictly monotone, and l is a real number.

Theorem 4.1.7 ([58, Thm. 1.2]). For every regular language L, there is a positive integer

a such that, for any integer 0 ≤ b < a, limn→∞ µan+b(L) = lb exists.

Proposition 4.1.8. For every regular language L, the following are all equivalent:

(1) µ(L) = 0;

(2) µ∗(L) = 0;

(3) δ(L) = 0.

Proof. (1) ⇒ (2) and (1) ⇒ (3) are directly derived from Stolz-Cesàro Theorem (The-

orem 4.1.6). (These parts hold even if L is not a regular language.)

We now prove the converse using Theorem 4.1.7 and Theorem 4.1.6.

4.1. p-equivalence in Language Semantics 69

(3) ⇒ (1): Let us consider the following inequality.

δn(L) =
n−1

∑
k=0

µk(L)
n

≥
a−1

∑
b=0

m−1

∑
k′=0

µak′+b(L)
n

=
a−1

∑
b=0

∑m−1
k′=0 µak′+b(L)

am
× am

n

where m = ⌊ n
a ⌋ and a is an integer in Theorem 4.1.7. Then the limit of the right-hand

side as m approaches infinity is ∑a−1
b=0

lb
a by Theorem 4.1.6 (let am = ∑m−1

k′=0 µak′+b(L)

and bm = am). By that limn→∞ δn(L) = 0, lb is equal to 0 for any 0 ≤ b < a. Therefore

limn→∞ µn(L) = 0.

(2) ⇒ (1): Let us consider the following inequality.

µ∗
n(L) =

n−1

∑
k=0

µk(L)× #(Ak)

#(A<n)
≥

a−1

∑
b=0

m−1

∑
k′=0

µak′+b(L)× #(Aak′+b)

(#A)<n

=
a−1

∑
b=0

∑m−1
k′=0 µak′+b(L)× #(Aak′+b)

∑m−1
k′=0 #(Aak′+b)

× ∑m−1
k′=0 #(Aak′+b)

#(A<n)

where m = ⌊ n
a ⌋ and a is an integer in Theorem 4.1.7. Then the limit of the right-

hand side as m approaches infinity is ∑a−1
b=0 lb × #(Ab)

#(A<a)
by Theorem 4.1.6 (let am =

∑m−1
k′=0 µak′+b(L)× #(Aak′+b) and bm = ∑m−1

k′=0 #(Aak′+b)). By that limn→∞ µ∗
n(L) = 0, lb

is equal to 0 for any b. Therefore limn→∞ µn(L) = 0.

Remark. In Proposition 4.1.8, (3) ⇒ (1) (resp. (2) ⇒ (1)) does not hold for arbitrary

languages. The language L = {s ∈ A∗ | ∃n ∈ N.|s| = 2n} is a counterexample.

Then µ∗(L) = δ(L) = 0, but µ(L) does not exist.

4.1.2 A Logical Characterization of p-equivalence

In this subsection we give a logical characterization of p-equivalence. In addition,

we also give a logical characterization of f-equivalence. These characterizations

are useful to give the computational upper bound of language problems under p-

equivalence. As related work, Sin’ya gave some characterizations of that a regular

language satisfies the zero-one law [80, Thm. 2.3.1]. The proof of Lemma 4.0.3 also

gives an elementary proof of the main part of [80, Thm. 2.3.1].

Lemma 4.0.3 (restated). For every DFA A = (Q, δ, qI , F), the following are equivalent:

(1) µ(L(A)) ̸= 0;

70 Chapter 4. Kleene Algebra under Weak Equivalences

(2) (∃q | Reach(qI , q)).(F(q) ∧ (∀q′ | Reach(q, q′)). Reach(q′, q)).

Intuitively, (∀q′ | Reach(q, q′)). Reach(q′, q) in (2) means that the SCC (Strongly Con-

nected Component [26, Sec. 22.5]) of q is a sink SCC.

Proof. Let µn(q) = #{s∈An|δ(qI ,s)=q}
#An , let µn(Q′) = ∑q∈Q′ µn(q), and let µ(Q′) be the

limit of µn(Q′) as n → ∞. Note that µn(L(A)) = µn(F) holds.

(1) ⇒ (2): We prove the contraposition, i.e., if (∀q | Reach(qI , q) ∧ F(q)).(∃q′ |

Reach(q, q′)).¬Reach(q′, q), then µ(F) = 0. •Qq ⊆ Q denotes the set of all nodes

that are reachable to q and qQ• ⊆ Q denotes the set of all nodes that are reachable

from q, where q is a state in Q. qQq′ denotes qQ• ∩ •Qq′ .

We first show the following: (♡) for any q ∈ qI Q• ∩ F and any k ≥ #Q, the in-

equality µk(qI Qq) ≤ (1 − 1
#A#Q)× µk−#Q(qI Qq) holds. By the assumption (i.e., (∃q′ |

Reach(q, q′)).¬Reach(q′, q)), for every q′′ ∈ qI Qq, there is a string s′ such that δ(q′′, s′) ̸∈

qI Qq. Then we can assume that |s′| = #Q. (It is because the shortest length of string

s′ satisfying δ(q′′, s′) ̸∈ qI Qq is at most #Q and δ(q′′, s′) ̸∈ qI Qq =⇒ δ(q′′, s′s′′) ̸∈ qI Qq

holds for any string s′′.) Therefore (♡) holds.

Let us come back to the proof of (1) ⇒ (2).

µk(F) = ∑
q∈F∩qI Q•

µk(q) ≤ ∑
q∈F

µk(qI Qq) ≤ ∑
q∈F

(1 − 1
(#A)#Q)⌊

k
#Q ⌋ × µ(k mod #Q)(qI Qq)

(by applying (♡) repeatedly)

≤#F × (1 − 1
(#A)#Q)⌊

k
#Q ⌋ × 1

In the above inequality, the limit of the right-hand side as k → ∞ is 0. Therefore

µ(F) = 0.

(2) ⇒ (1): Let q be a state satisfying (2), let s0 be a string such that δ(qI , s0) = q,

and let Sq be the SCC of q. Note that Sq is a sink SCC by the assumption (i.e., (∀q′ |

Reach(q, q′)). Reach(q′, q)), and thus, µk(Sq) ≥ 1
#A|s0 |

holds for any k ≥ |s0|. By the

pigeon hole principle and that Sq is a sink SCC, for any k ≥ |s0|, there is a state

q′ ∈ Sq such that µk(q′) ≥ µk(Sq)
#Sq

. Let sq′ be a string such that δ(q′, sq′) = q. We can

assume that |sq′ | ≤ #Sq. (It is because that we can reach to q from any state q′ ∈ Sq at

4.1. p-equivalence in Language Semantics 71

most #Sq steps.) Let consider the following inequality for every k ≥ |s0|.

µk+|sq′ |(F) ≥ µk+|sq′ |(q) ≥ µk(q′)×
1

(#A)|sq′ |
≥

µk(Sq)

#Sq
× 1

(#A)#Sq

≥ 1
(#A)|s0|

× 1
#Sq

× 1
(#A)#Sq

Then µ(F) = 0 (i.e., ∀ε > 0.∃N.∀n > N.|µn(F)| < ε) does not hold because

ε = 1
(#A)|s0 |

× 1
#(Sq)

× 1
(#A)#(Sq) is a counter example by the above inequality. There-

fore µ(F) ̸= 0.

We also give a logical characterization for f-equivalence. (Let us recall that p-equivalence

is equivalent to f-equivalence if #A = 1.)

Lemma 4.1.9. For every NFA A = (Q, {δa}a∈A, qI , F), the following are equivalent:

(1) L(A) ̸≃f ∅;

(2) (∃q | Reach(qI , q)).F(q) ∧ Reach+(q, q).

where Reach(q, q′) means that there is a string s such that δ(q, s) = q′ and Reach+(q, q′)

means that there is a non-empty string s such that δ(q, s) = q′ .

Proof. (2) ⇒ (1): Easy.

(1) ⇒ (2): Let us consider the contraposition. Then it is easy to see that, if (∀q |

Reach(qI , q) ∧ F(q)).¬Reach+(q, q), then #L(A) is finite.

(Note that this characterization is also applicable to NFAs in contrast to the charac-

terization in Lemma 4.0.3).

By Proposition 4.1.5, the formula in Lemma 4.1.9 also characterizes the p-emptiness

for the unary case. Finally we remark that every p-equivalence problem over any

alphabet is reducible to the p-equivalence problem over the binary alphabet.

Proposition 4.1.10. Let A be a fixed nonempty finite alphabet. Then there is a log-space

reduction from every p-equivalence problem for NFAs (resp. DFAs, REGs) over A to an

p-equivalence problem for NFAs (resp. DFAs, REGs) over the alphabet {0, 1}.

Proof Sketch. It is easily proved by encoding every character A to a binary string in

the same manner as [48, Fig. 2.].

72 Chapter 4. Kleene Algebra under Weak Equivalences

4.1.3 p-equivalence on Prefix-closed Languages

In this subsection we investigate prefix-closed languages under p-equivalence. We

show that every universality problem of a language can be translated to an univer-

sality problem of a prefix-closed language (Lemma 4.1.15). Moreover, for prefix-

closed languages, the p-universality problem is same as the universality problem

(Proposition 4.1.12(3)). Combining these, we can translate every universality prob-

lem to a p-universality problem (Corollary 4.1.17).

Definition 4.1.11 ([20, 48]). A language L is prefix-closed if the following holds: for

any string s in L, every prefix string of s is also in L.

For the asymptotic probability, the following holds.

Proposition 4.1.12. Let L be a prefix-closed language over a nonempty finite alphabet A.

Then,

(1) The sequence (µ0(L), µ1(L), . . .) is monotonically decreasing, i.e., µ0(L) ≥ µ1(L) ≥

· · · ≥ µn(L) ≥ · · · .

(2) µ(L) always exists.

(3) L = A∗ ⇐⇒ µ(L) = 1.

Proof. (1): An+1 ∩ L ⊆ (An ∩ L) · A holds by that L is a prefix-closed language.

Therefore, µn+1(L) = #(An+1∩L)
#(A)n+1 ≤ #((An∩L)·A)

#(A)n+1 ≤ #(An∩L)
#(A)n = µn(L).

(2): By (1).

(3)⇒: By = ⊆ ≃p.

(3)⇐: We prove the contraposition. Let s be a string not in L. Then every string

s′ such that s is a prefix of s′ is also not in L by that L is a prefix-closed language,

and thus sA∗ ∩ L = ∅. Therefore, by that µn(L) ≤ 1 − 1
(#A)|s|

holds for any n ≥ |s|,

µ(L) ̸= 1.

A Translation from Universality to p-universality

For NFAs, it is known that the universality problem is hard even if we assume that

every language is prefix-closed by the following two theorems.

4.1. p-equivalence in Language Semantics 73

Theorem 4.1.13 ([48, Thm. 8.(a)]). A nonempty regular language L is prefix-closed if and

only if L is recognized by some NFA such that every state is an acceptance state.

Theorem 4.1.14 ([48, Thm. 1] (cf. [43, Prop. 2.4])). The universality problem for NFAs

that have a prefix-closed language is PSPACE-hard.

Let A be a nonempty finite alphabet. In this subsection, we assume that A∩{#} = ∅

and A# denotes A ∪ {#}. L◁ denotes the prefix-closure of a language L, i.e., L◁ is the

smallest prefix-closed language subsuming L. We define L◁1 as follows:

L◁1 := (L#)∗L◁.

This construction is an analogy of [48, Fig.1.] for NFAs, but this can applies to the

case of REGs and cases beyond regular languages.

Lemma 4.1.15. Let L be any language over A. Then,

(1) L◁1 is prefix-closed;

(2) L = A∗ ⇐⇒ L◁1 = A∗
.

Proof. (1): We prove the following by induction on the length of a string s (♡): if

s is in L◁1 , then every prefix s′ of s is in L◁1 . First, by the construction of L◁1 , s is

denoted by s1#s2# . . . #sn#sn+1, where si ∈ L for i ∈ [n] and sn+1 ∈ L◁. If sn+1 ̸= ε,

then s1#s2# . . . #sn#s′n+1 ∈ L◁1 by s′n+1 ∈ L◁, where s′n+1 is the prefix of sn+1 of length

|sn+1| − 1. If sn+1 = ε, then s1#s2# . . . #sn ∈ L◁1 by sn ∈ L◁. Therefore, by the

induction hypothesis, (♡) holds for s.

(2) ⇒:

L◁1 = (L#)∗L◁ (L◁1 def)

= (A∗#)∗A∗ (L = L◁ = A∗)

= (A ∪ #)∗

(2) ⇐: It is shown by the contraposition. It is easy to see that, if there is a string

s ̸∈ L, then s# ̸∈ L◁1 also holds.

Lemma 4.1.16. Let L be any language over A. Then the following hold.

74 Chapter 4. Kleene Algebra under Weak Equivalences

(1) L◁1 = A∗
⇐⇒ µ(L◁1) = 1.

(2) L◁1 ̸= A∗
⇐⇒ µ(L◁1) = 0.

Proof. (1): By Proposition 4.1.12 (3).

(2)⇐: By = ⊆ ≃p.

(2)⇒: Let s be a string not in L (such s always exists by Lemma 4.1.15(2)). Then one

can see that for any two string, s′ and s′′, s′#s#s′′ ̸∈ L◁1 holds by the construction of

L◁1 . Therefore, by the infinite monkey theorem (i.e., for any string s, µ(A∗sA∗) = 1

holds. see e.g., [80, Sec. 4.2.3]), µ(L◁1) = 1− µ(A∗ \L◁1) ≤ 1− µ(A∗#s#A∗) = 0.

Corollary 4.1.17. Let L be any language over A. Then the following hold.

(1) L = A∗ ⇐⇒ L◁1 = A∗
⇐⇒ L◁1 ≃p A∗

.

(2) L ̸= A∗ ⇐⇒ L◁1 ≃p ∅.

Proof. By Lemma 4.1.15(2) and Lemma 4.1.16.

Corollary 4.1.17 gives a general approach to reduce from the universality problem

to the p-universality (resp. p-emptiness) problem.

Expressing Prefix-closure Operator

In this subsubsection, we give several reductions from universality problems to p-

universality (and p-emptiness) problems using Corollary 4.1.17. We give a transla-

tion from every REG t to a REG t◁ such that L(t◁) = L(t)◁ holds.

Definition 4.1.18. The prefix-closed REG t◁ of a REG t is a REG, inductively defined

as follows:

(1) a◁ := 1 ∪ a;

(2) 1◁ := 1;

(3) 0◁ := 0;

(4) (t1 · t2)◁ := [t◁1]L(t2) ̸=∅ ∪ t1 · t◁2 ;

(5) (t1 ∪ t2)◁ := t◁1 ∪ t◁2 ;

4.1. p-equivalence in Language Semantics 75

(6) (t∗)◁ := t∗ · t◁.

where [t◁1]L(t2) ̸=∅ denotes the term t◁1 if L(t2) ̸= ∅ and the term 0 otherwise.

Theorem 4.1.19. L(t◁) = L(t)◁.

Proof. It is proved by induction on the structure of t. The cases of (1), (2), (3), and (5)

are easy.

(4): By the induction hypothesis, L((t1 · t2)◁) = [L(t1)
◁]L(t2) ̸=∅ ∪ L(t1) · L(t2)◁. If

s′1 ∈ L(t1)
◁ and L(t2) ̸= ∅, let s1 ∈ L(t1) be a string such that s′1 is a prefix of s1 and

let s2 be a string in L(t2). Then s′1 is a prefix of s1s2 and s1s2 ∈ L(t1 · t2). Therefore

s′1 ∈ L(t1 · t2)◁. If s1 ∈ L(t1) and s′2 ∈ L(t2)◁, let s2 ∈ L(t2) be a string such that

s′2 is a prefix of s2. Then s1s′2 is a prefix of s1s2 and s1s2 ∈ L(t1 · t2). Therefore

s1s2 ∈ L(t1 · t2)◁. Conversely, if s′ ∈ L(t1 · t2)◁, let s ∈ L(t1 · t2) be a string such

that s′ is a prefix of s. Let s1 ∈ L(t1) and s2 ∈ L(t2) be strings such that s = s1s2. If

s′ = s1s′2, then s′ ∈ L(t1) · L(t2)◁, and thus s′ ∈ L((t1 · t2)◁). Otherwise, s′ ∈ L(t1)
◁

and L(t2) ̸= ∅ hold, and thus s′ ∈ L((t1 · t2)◁).

(6): By the induction hypothesis, L((t∗)◁) = L(t∗) · L(t)◁. If s1s′2 ∈ L(t∗) · L(t)◁, let

s2 be a string such that s′2 is a prefix of s2. Then s1s′2 is a prefix of s1s2 and s1s2 ∈ L(t∗).

Therefore s1s′2 ∈ L(t∗)◁. Conversely, if s′ ∈ L(t∗)◁, then there is a number n such

that s′ ∈ L(tn)◁. Let s1 ∈ L(tn−1) and s′2 ∈ L(t)◁ such that s′ = s1s′2. Then s1 ∈ L(t∗).

Therefore s1s′2 ∈ L(t∗) · L(t)◁, and thus s′ ∈ L((t∗))◁.

Corollary 4.1.20.

(1) There is a polynomial-time construction from every REG t to a REG t◁ such that

L(t◁) = L(t)◁ holds.

(2) There is a polynomial-time construction from every REG t to a REG t◁1 such that

L(t◁1) = L(t)◁1 holds.

Corollary 4.1.21.

(1) The p-universality problem for REGs (resp. NFAs) is PSPACE-hard.

(2) The p-emptiness problem for REGs (resp. NFAs) is PSPACE-hard.

76 Chapter 4. Kleene Algebra under Weak Equivalences

Proof. By Corollary 4.1.17 and that the universality problem for REGs is PSPACE-

complete.

We remark that this translation works for context-free grammars (CFGs) because

there is a computable construction of context-free grammars for expressing the op-

erations, concatenation (·), Kleene-star (•∗), and prefix closure (•◁).

Corollary 4.1.22.

(1) The p-universality problem for CFGs is undecidable (coRE-hard).

(2) The p-emptiness problem for CFGs is undecidable (RE-hard).

Proof. (1): By Corollary 4.1.17 (1) and that the universality problem for CFGs is coRE-

hard [42][43, Lem. 3.1 (8)]. (2): By (1) and Corollary 4.1.17 (2).

4.2 Upper bound: Descriptive Complexity for Automata

In this section we investigate about the computational complexity upper bounds of

equational theories of Kleene algebra under some equivalences, where we assume

each equivalence is defined by a logical formula. In particular we give the upper

bound of the equational theory under p-equivalence using Lemma 4.0.3 and 4.1.13.

We now define the product of two NFAs. In this section we deal with equivalence

relations on NFAs defined by logical formulas on such structures. In this section we

assume that each NFA A has a total order < on |A| because we rely on results of

the descriptive complexity theory. (More formally, an NFA A over A is a structure

over the signature (<, {δa}a∈A, qI , F), where <A is a total order on |A|; each δAa is a

binary relation on |A|; (qI)A ∈ |A|; and FA ⊆ |A|.)

Definition 4.2.1 (Product). The product of two NFAs A1 and A2, written A1 ×A2, is

the structure (|A1 ×A2|,<, {(δ1)a}a∈A, {(δ2)a}a∈A, qI , F1, F2), where

(1) |A1 ×A2| = QA1 × QA2 ;

(2) < = {((q1, q2), (q′1, q′2)) | q1 < q′1 ∨ (q1 = q′1 ∧ q2 < q′2)};

(3) (δ1)a = {((q1, q2), (q′1, q2)) | (q1, q′1) ∈ (δA1)a};

4.2. Upper bound: Descriptive Complexity for Automata 77

(4) (δ2)a = {((q1, q2), (q1, q′2)) | (q2, q′2) ∈ (δA2)a};

(5) qI = (qI
A1

, qI
A2
);

(6) F1 = FA1 × QA2 ;

(7) F2 = QA1 × FA2 .

Let us denote the formula
∨

a∈A ∃q′′.δ1a(q, q′′)∧ δ2a(q′′, q′) by Reach1(q, q′), for short.

Definition 4.2.2 (L-definable). Let A be a nonempty finite alphabet and let C be a

class of finite automata (e.g., DFA, unary NFA, . . .). Let L be a logic (e.g., FO<(TC),

SO<∀, . . .). A relation ≃ on ℘(A∗) w.r.t. C is called L-definable if there is a L-sentence

φ such that, for any two automata A1 and A2 in C, L(A1) ≃ L(A2) if and only if

A1 ×A2 |= φ holds.

Example 4.2.3. The normal equivalence = w.r.t. DFAA is FO(TC)-definable by the

following sentence:

(∀q | Reach(qI , q)).F1(q) ↔ F2(q)

where Reach(q, q′) denotes the formula TCq0,q′0
(Reach1(q0, q′0) ∨ q0 = q′0)(q, q′).

Example 4.2.4. The normal equivalence = w.r.t. NFAA is MSO(TC)-definable by the

following sentence:

(∀Q | Reach(QI , Q)).F1(Q) ↔ F2(Q)

where QI(q) denotes the formula q = qI ; Fi(Q) denotes the formula (∃q | Q(q)).Fi(q)

for i = 1, 2; Reach(Q, Q′) denotes the formula TCQ0,Q′
0
(Reach1(Q0, Q′

0)∨∀q.Q0(q) ↔

Q′
0(q))(Q, Q′); and Reach1(Q0, Q′

0) denotes the formula ∀q′.Q′
0(q

′) ↔ ((∃q | Q0(q)). Reach1(q, q′)).

Note that the structure A1 × A2 can be constructed from A1 and A2 in log-space.

The following is immediate from results in descriptive complexity (see e.g., [44]).

Lemma 4.2.5 (e.g., [44]). For any equational equivalence problem for an automata class C

under a relation ≃, the following hold:

(1) If ≃ w.r.t. C is FO<(DTC)-definable, then the equivalence problem (for C under ≃) is

in L;

(2) If ≃ w.r.t. C is FO<(TC)-definable, then the equivalence problem is in NL;

78 Chapter 4. Kleene Algebra under Weak Equivalences

(3) If ≃ w.r.t. C is SO<∀-definable, then the equivalence problem is in coNP;

(4) If ≃ w.r.t. C is SO<(TC)-definable (resp. MSO<(TC)-definable), then the equivalence

problem is in PSPACE (resp. NLINSPACE).

Proof Sketch. (1): By [44, Thm. 9.11]. (2): By [44, Cor. 9.22]. (3): By [44, Thm. 7.8]

(called Fagin’s theorem [31]). (4): By [44, Thm. 10.27 and Cor. 10.29].

Remark. In descriptive complexity, logics ordinary have the predicate BIT [44, Pro-

viso 1.14]. However we omit the predicate by reason that the predicate is not needed

in this thesis.

As a corollary to Lemma 4.2.5, the equivalence problem for DFAA (resp. NFAA) is

decidable in NL (resp. NLINSPACE) by Example 4.2.3 and 4.2.4. In connection with

Lemma 4.2.5, the following holds. Intuitively, the following lemma formalizes the

technique to generate an algorithm for NFAs from an algorithm for DFAs based on

the powerset construction.

Lemma 4.2.6. Let A be a nonempty finite alphabet and let ≃ be a relation on A∗. If ≃ w.r.t.

DFAA is FO<(TC)-definable, then ≃ w.r.t. NFAA is MSO<(TC)-definable.

Proof. We define a translation from an FO<(TC)-formula φ to an MSO<(TC)-formula

φT as follows:

(i) QqI (q) :≡ q = qI ;

(ii) (q0 = q′0)
T :≡ ∀q.Qq0(q) ↔ Qq′0

(q);

(iii) (q0 < q′0)
T :≡ (∃q′ | Qq′0

(q′)).(∀q | ¬(q < q′)).¬Qq0(q);

(iv) Fi(q0)T :≡ (∃q | Qq0(q)).Fi(q) for i = 1, 2;

(v) (δa)i(q0, q′0)
T :≡ ∀q′.Qq′0

(q′) ↔ (∃q | Qq0(q)).(δa)i(q, q′) for i = 1, 2;

(vi) (∀q.φ)T :≡ ∀Q1
q.φT;

(vii) (∃q.φ)T :≡ ∃Q1
q.φT;

(viii) (φ ∧ ψ)T :≡ φT ∧ ψT;

(ix) (φ ∨ ψ)T :≡ φT ∨ ψT;

(x) (¬φ)T :≡ ¬φT;

4.2. Upper bound: Descriptive Complexity for Automata 79

(xi) TCq,q′(φ)(q0, q′0)
T :≡ TCQq,Qq′

(φT)(Qq0 , Qq′0
).

Then, A1 ×A2 |= φT iff ℘(A1)×℘(A2) |= φ holds, where the total order on ℘(A1)×

℘(A2) is defined according to the definition (iii).) It is easily proved by induction on

the structure of φ. Therefore, A1 ×A2 |= φT iff ℘(A1)× ℘(A2) |= φ iff L(℘(A1)) ≃

L(℘(A2)) iff L(A1) ≃ L(A2). Therefore ≃ w.r.t. NFAs is defined by the MSO<(TC)-

formula φT.

Theorem 4.2.7. The following hold.

(1) The p-equivalence problem for unary DFAs is in L.

(2) The p-equivalence problem for DFAs is in NL.

(3) The p-equivalence problem for unary NFAs (resp. unary REGs) is in coNP.

(4) The p-equivalence problem for NFAs (resp. REGs) is in PSPACE (more precisely, in

NLINSPACE).

Proof. (1)(3): Let us recall the formula in Lemma 4.1.9. For (1), p-equivalence w.r.t.

unary DFAs is defined by the following FO(DTC)-formula:

¬((∃q | F1(q) ↮ F2(q)).(Reach+(qI , q) ∨ qI = q) ∧ Reach+(q, q))

where Reach+(q0, q′0) denotes the formula DTCq,q′(Reach1(q, q′))(q0, q′0).

For (3), p-equivalence w.r.t. unary NFAs is defined by the following SO<∀-formula1:

¬((∃Q1 | (∃q.Q(q)∧ F1(q)) ↮ (∃q.Q(q)∧ F2(q))).(Reach+(QI , Q)∨QI = Q)∧Reach+(Q, Q))

where QI(q) denotes the formula qI = q and Reach+(Q0, Q′
0) denotes the following

formula:

∃X3.((∀i | i < max).Xi+1 = Xi ·Xi ∨Xi+1 = Xi ·Xi ·X0)∧ ((∃i | i ≤ max).Q′
0 = Xi(Q0)

where (i) the symbol · denotes the composition of binary relations (actually we

can easily replace the above formula by an FO formula without the symbol ·, see

1This formula is not an SO<∀-formula, but its prenex normal form is.

80 Chapter 4. Kleene Algebra under Weak Equivalences

Theorem 2.3.5); (ii) Xi(q, q′) denotes X(i, q, q′); (iii) X0(q, q′) denotes Reach1(q, q′);

(iv) Q′
0 = Xi(Q0) denotes the formula ∀q′.Q′

0(q
′) ↔ (∃q | Q0(q)).Xi(q, q′)).

Reach+(Q0, Q′
0) is defined to satisfy that Reach+(Q0, Q′

0) holds if and only if (∃k |

1 ≤ k).Q′
0 = Xk

0(Q0). In the right hand of the above formula, without loss of gen-

erality, we can assume that k ≤ 2max because the pattern of Q′
0 (i.e., the number of

monadic predicates) is at most 2max. In fact every Xk
0 (1 ≤ k ≤ 2max) can be expressed

by a binary relation Xi of a sequence (X0, . . . , Xmax). Every Xi denotes one of the bi-

nary relations X2i

0 , X2i+1
0 , . . . , X2i+1−1

0 . Therefore Reach+(Q0, Q′
0) holds if and only if

(∃k | 1 ≤ k ≤ 2max).Q′
0 = Xk

0(Q0) if and only if (∃k | 1 ≤ k).Q′
0 = Xk

0(Q0). By

Lemma 4.2.6 and Lemma 4.2.5 (1)(3), these parts are proved.

(2)(4): Let us recall the formula in Lemma 4.0.3. By using this, p-equivalence w.r.t.

DFAs is defined by a FO(TC)-formula as follows:

¬((∃q | F1(q) ↮ F2(q)). Reach(qI , q) ∧ (∀q′ | Reach(q, q′)). Reach(q′, q))

where Reach(q, q′) ≡ TCq,q′(Reach1(q, q′) ∨ q = q′). By Lemma 4.2.6 and Lemma

4.2.5(2)(4), these parts are proved.

For the cases of REGs, it is shown by translating from REGs to NFAs (see Figure 2.6).

(Be slightly careful to show that the problem for REGs is in NLINSPACE because the

length of the encoded string of the (fully) translated NFA is not linear of the size of

a regular expression.)

4.3 Lower Bound: The p-universality Problem

In this section, we prove that every weak equivalence subsuming p-equivalence is

computationally hard. The key idea is to construct a reduction to ones recognizing

(regular) languages L1 and L2 satisfying the following: L1 = L2 ⇐⇒ L1 ≃p L2.

Such reduction is applicable to any binary relation between the normal equivalence

and the p-equivalence. In particular, we prove the complexity results in Theorem

4.2.7 are tight. More precisely, we prove the hardness for the p-universality prob-

lem, that is the problem to decide whether a given language L is equivalent to the

4.3. Lower Bound: The p-universality Problem 81

language A∗ under p-equivalence. (As one can see, this problem is a subproblem of

the p-equivalence problem.)

Theorem 4.3.1.

(1) The p-universality problem for unary DFAs is L-complete.

(2) The p-universality problem for DFAs is NL-complete.

(3) The p-universality problem for unary REGs (resp. unary NFAs) is coNP-complete.

(4) The p-universality problem for REGs (resp. NFAs) is PSPACE-complete.

Proof. The upper bounds have already been shown in Theorem 4.2.7. We now prove

the lower bounds.

(1)(2): A finite unlabelled digraph (graph, for short) G is a structure G = (|G|, E, s, t),

where E ⊆ |G|2 and s, t ∈ |G|. G is called deterministic if #{v′ | (v, v′) ∈ E} = 1 holds

for any v ∈ |G|. In this proof we assume that (a) s ̸= t; (b) for any v ∈ |G|, (v, v) ̸∈ E.

(These restrictions do not loss the hardness of the reachability problem.)

(1): We reduce from the deterministic graph reachability problem [44, Sec 3.3.]. Let

REACHd be the set of deterministic graphs such that (s, t) ∈ E∗ holds.

We construct a first-order reduction (see [44, Ch 3.]) from a deterministic graph G

to an unary DFA AG such that G ∈ REACHd ⇐⇒ L(AG) ̸≃p ∅. Let AG be the

unary DFA defied as AG = (|AG|, δ, qI , F), where (i) |AG| = |G|; (ii) δ(v) = v′ if

v ̸= t, where v′ is the unique node such that (v, v′) ∈ E; (iii) δ(t) = s; (iv) qI = s;

(v) F = {t}. AG and the complemented DFA AC
G = (|AG|, δ, qI , |AG| \ F) are first-

order reducible from G. Then G ∈ REACHd ⇐⇒ L(AG) ̸= ∅ and L(AG) is empty

or infinite. Then,

G ∈ REACHd ⇐⇒ L(AG) ̸= ∅ (By the construction of AG)

⇐⇒ L(AG) ̸≃f ∅ (L(AG) is empty or infinite)

⇐⇒ L(AG) ̸≃p ∅ (Propopsition 4.1.5)

⇐⇒ L(AC
G) ̸≃p A∗ (AC

G is the complemented DFA of AG)

82 Chapter 4. Kleene Algebra under Weak Equivalences

By that REACHd is L-complete and that the class L is obviously closed under com-

plement, this part is proved.

(2): We reduce from the graph reachability problem [44, Sec. 3.3] (the proof of this part

is based on [46, Thm. 26]). Let REACH be the set of graphs G such that (s, t) ∈ E∗

holds. We construct a DFA AG from a graph G such that G ∈ REACH ⇐⇒

L(AG) ̸≃p ∅ holds. Let AG be the DFA over |G| defied as AG = (|AG|, {δv}v∈|G|, qI , F),

where (i) |AG| = |G| ∪ {Err}; (ii) δv′(v) = v′ if v ̸= t and (v, v′) ∈ E; δv′(t) = t;

δv′(v) = Err otherwise; (iii) qI = s; (iv) F = {t}. Then G ∈ REACH if and only if

L(AG) ̸= ∅, and L(AC
G) is prefix-closed. Then,

G ∈ REACH ⇐⇒ L(AG) ̸= ∅ (By the construction of AG)

⇐⇒ L(AC
G) ̸= A∗ (AC

G is the complemented DFA of AG)

⇐⇒ L(AC
G) ̸≃p ∅ (L(AC

G) is prefix-closed and Prop.4.1.12(3))

where AC
G is the complemented DFA of AG. By that REACH is NL-complete and

that AC
G is log-space reducible from G, this part is proved. Note that the class NL is

closed under complement by Immerman-Szelepcsényi Theorem [45, 82].

(3): We reduce from the 3-SAT problem [49, p.95 11]. This part is proved by using

the same reduction as [81, Thm. 6.1]. Let p1, p2, . . . , pn be the sequence of prime

numbers (i.e., 2, 3, 5, . . .), and let A = {0}. Let Eφ be the regular expression of a

3-CNF formula φ defined as Eφ = E0 ∪
∪m

k=1 Ek, where E0, . . . , Em are defined in [81,

Thm. 6.1]. Then the following holds by the construction of Eφ (♡): A∗ \ L(Eφ) ̸= ∅

⇐⇒ #(A∗ \ L(Eφ)) is infinite. It is because, 0i1 ∈ L(Eφ) ⇐⇒ 0i2 ∈ L(Eφ) holds

for any two integers, i1 and i2, such that i1 ≡ i2(mod ∏n
k=1 pk), where n is defined in

[81, Thm. 6.1]. Then,

φ is not satisfiable ⇐⇒ L(Eφ) = A∗ ([81, Thm. 6.1])

⇐⇒ L(Eφ) ≃f A∗ (♡)

⇐⇒ L(Eφ) ≃p A∗ (Proposition 4.1.5)

By Theorem 4.2.7(3) and that the 3-SAT problem is NP-complete, this part is proved.

4.3. Lower Bound: The p-universality Problem 83

(4): It has already been shown in Corollary 4.1.21. Appendix B gives another re-

duction, that is a log-lin space reduction from the membership problem for nonde-

terministic linear-space bounded Turing machines. This reduction shows that the

p-universality problem for REGs is also NLINSPACE-hard (under log-lin space re-

ductions).

More strongly, the proof of Theorem 4.3.1 is applicative to every weak equivalence

subsuming p-equivalence.

Corollary 4.3.2. Let ≃ be a binary relation such that = ⊆ ≃ ⊆ ≃p.

(1) The universality problem for unary DFAs under ≃ is L-hard.

(2) The universality problem for DFAs under ≃ is NL-hard.

(3) The universality problem for unary NFAs (resp. unary REGs) under ≃ is coNP-hard.

(4) The universality problem for NFAs (resp. REGs) under ≃ is PSPACE-hard.

Proof. We only prove for (4). Let us recall the REG t◁1 in Corollary 4.1.21. Note that

L(t◁1) ≃p A∗
=⇒ L(t◁1) = A∗

by Proposition 4.1.12. Then, by = ⊆ ≃ ⊆ ≃p,

L(t◁1) = A∗
=⇒ L(t◁1) ≃ A∗

=⇒ L(t◁1) ≃p A∗
=⇒ L(t◁1) = A∗

. Therefore, the

reduction is also applicable to the universality problem under ≃. (1), (2), and (3) are

also proved in the same way as (4).

For example, ≃f and ≃L satisfies the condition in Corollary 4.3.2 if L satisfies µ(L) =

0. From this, the hardness of the universality problem under ≃f (resp. ≃L) is also

given by Corollary 4.3.2.

As a corollary to Theorem 4.2.7 and 4.3.1, the p-equivalence problem is also hard.

Corollary 4.3.3.

(1) The p-equivalence problem for unary DFAs is L-complete.

(2) The p-equivalence problem for DFAs is NL-complete.

(3) The p-equivalence problem for unary REGs (resp. unary NFAs) is coNP-complete.

(4) The p-equivalence problem for REGs (resp. NFAs) is PSPACE-complete.

84 Chapter 4. Kleene Algebra under Weak Equivalences

The proof of Theorem 4.3.1 is also applicable to show the hardness of testing the

zero-one law for finite word structures (see e.g., [80, p. 9]). Let us denote the problem

by the zero-one problem (i.e., the zero-one problem to decide whether a given language

L satisfies that µ(L) = 0 ∨ µ(L) = 1, or not).

As related work, the zero-one problem for DFAs is solvable in linear time [80, Thm.

5.1.1], where the alphabet A is fixed. We can show the computational complexity of

this problem as a corollary.

Corollary 4.3.4.

(1) The zero-one problem for unary DFAs is L-complete.

(2) The zero-one problem for DFAs is NL-complete.

(3) The zero-one problem for unary NFAs (resp. unary REGs) are coNP-complete.

(4) The zero-one problem for NFAs (resp. REGs) is PSPACE-complete.

Proof. Note that the zero-one problem can be solved by the two p-equivalence prob-

lems as L ≃p ∅ ∨ L ≃p A∗. Therefore the upper bounds are derived from Theorem

4.2.7. For lower bound, we suffice to show that, if every language L in Theorem 4.3.1

satisfies the zero-one law (i.e., µ(L) = 0 or µ(L) = 1), then µ(L) ̸= 0.

(1): Recall the reduction in Theorem 4.3.1(1). Then µ(L(AC
G)) ̸= 0 because, there are

infinitely many i such that the position in i th step is not equal to t (note that s ̸= t).

(2): Recall the reduction in Theorem 4.3.1(2). Then L(sA∗) ⊆ L(AC
G) holds by that

(s, s) ̸∈ E and s ̸= t. Therefore µ(L(AC
G)) ̸= 0.

(3): Recall the reduction in Theorem 4.3.1(3). Then µ(L(E)) ̸= 0 holds by that #L(E)

is always infinite.

(4): Recall the reduction in Theorem 4.3.1(4). Then µ(L(ts
M)) ̸= 0 holds by that

L(##A∗) ⊆ L(ts
M).

4.3.1 The p-emptiness Problem

In this subsection we show that the p-emptiness problem is also as hard as the p-

universality problem, whereas the emptiness problem is easier than the universality

4.3. Lower Bound: The p-universality Problem 85

problem under the normal equivalence. The following holds for the emptiness prob-

lem under the normal equivalence.

Proposition 4.3.5.

(1) The emptiness problem for REGs (resp. unary REGs) is (DLOGTIME-uniform) NC1-

complete.

(2) The emptiness problem for unary DFAs is L-complete.

(3) The emptiness problem for DFAs (resp. NFAs, unary NFAs) is NL-complete.

Proof. (1): This problem is solved by the following function Ex from T KA
A to {true, f alse}:

(i) Ex(a) := true;

(ii) Ex(1) := true;

(iii) Ex(0) := f alse;

(iv) Ex(t1 ∪ t2) := Ex(t1) ∨ Ex(t2);

(v) Ex(t1 · t2) := Ex(t1) ∧ Ex(t2);

(vi) Ex(t∗1) := true.

It is easy to see that Ex(t) ⇐⇒ L(t) ̸= ∅ holds by induction on the structure of t.

Recall that the membership problem for every parenthesis context-free language

is in L [59, Thm. 1]. More precisely, this problem is in ALOGTIME [22, Thm. 8]

(ALOGTIME is equivalent to DLOGTIME-uniform NC1 [65, Lem. 6.2]). Also recall

that the BSVP (boolean sentence value problem) is a NC1-complete problem [22,

Thm. 9] [23, Thm. 5]. The BSVP is the problem to decide whether the value of

a given boolean sentence (i.e., a formula formed from 1 (for true), 0 (for f alse), ∧,

∨, and ¬) is true or f alse. The BSVP is also NC1-complete even if the problem is

restricted to connectives ∧ and ∨ (see e.g., [21]).

The above function Ex can be expressed by a parenthesis context-free grammar like

as [22, Sec.6], and thus this problem is in NC1. Conversely, there is a first-order

reduction (i.e., DLOGTIME-uniform AC0 reduction [65, Thm. 8.1]) from every BSVP

86 Chapter 4. Kleene Algebra under Weak Equivalences

to an emptiness problem for REGs. Let consider the following translation from every

boolean sentence φ to an regular expression tφ inductively defined as follows:

(1) t0 := 0;

(2) t1 := 1;

(3) tφ1∨φ2 := tφ1 ∪ tφ2 ;

(4) tφ1∧φ2 := tφ1 · tφ2 .

Then φ is true if and only if L(tφ) ̸= ∅. Therefore this problem is NC1-complete.

(2)(3): Each problems is essentially equivalent to the (deterministic or nondetermin-

istic) graph reachability problems by forgetting labels of transitions.

Now we consider about the p-emptiness problem.

Theorem 4.3.6 (cf. Proposition 4.3.5).

(1) The p-emptiness problem for unary REGs is NC1-complete.

(2) The p-emptiness problem for unary DFAs is L-complete.

(3) The p-emptiness problem for unary NFAs is NL-complete.

(4) The p-emptiness problem for DFAs is NL-complete.

(5) The p-emptiness problem for REGs (resp. NFAs) is PSPACE-complete.

Proof. (2)(4): These have already been proved in Theorem 4.3.1(1)(2).

(3): The NL-hardness is shown by using the graph reachability problem. Moreover

this problem is in NL because the formula in Lemma 4.1.9 is easily written in FO(TC).

(5): By Theorem 4.2.7(4) and Corollary 4.1.21(2).

(1): Let us recall that L ̸≃p ∅ if and only if #L is infinite by Proposition 4.1.5. We

define the three functions from T KA
A to {true, f alse}, denoted by Ex, Ex+, Ex∞, satis-

fying the following:

4.3. Lower Bound: The p-universality Problem 87

Ex(t) ⇐⇒ L(t) ̸= ∅;

Ex+(t) ⇐⇒ L(t) \ {ε} ̸= ∅;

Ex∞(t) ⇐⇒ #(L(t)) is infinite.

The function Ex has already been defined in Proposition 4.3.5(1). The function Ex+

and Ex∞ can be defined as follows:

(i) Ex+(a) = true;

(ii) Ex+(1) = f alse;

(iii) Ex+(0) = f alse;

(iv) Ex+(t1 ∪ t2) = Ex+(t1) ∨ Ex+(t2);

(v) Ex+(t1 · t2) = (Ex+(t1) ∧ Ex(t2)) ∨ (Ex(t1) ∧ Ex+(t2));

(vi) Ex+(t∗1) = Ex+(t1);

(i) Ex∞(a) = f alse;

(ii) Ex∞(1) = f alse;

(iii) Ex∞(0) = f alse;

(iv) Ex∞(t1 ∪ t2) = Ex∞(t1) ∨ Ex∞(t2);

(v) Ex∞(t1 · t2) = (Ex∞(t1) ∧ Ex(t2)) ∨ (Ex(t1) ∧ Ex∞(t2));

(vi) Ex∞(t∗1) = Ex+(t1).

Let F(t) = (Ex(t), Ex+(t), Ex∞(t)). Then the function F can be expressed by a paren-

thesis context-free grammar like as [22, Sec.6], and thus the problem is in NC1. More-

over there is a first-order reduction from the BSVP. Let us consider the translation

from a given boolean sentence φ to a regular expression tφ inductively defined as

follows:

(1) t0 := 0∗;

(2) t1 := a∗;

88 Chapter 4. Kleene Algebra under Weak Equivalences

(3) tφ1∨φ2 := (tφ1 ∪ tφ2)
∗;

(4) tφ1∧φ2 := (tφ1 · tφ2)
∗.

It is easy to see that φ is true if and only if #L(tφ) is infinite (i.e., L(tφ) ̸≃p ∅)

by induction on the structure of φ. Actually this translation induces a first-order

reduction. Therefore the p-emptiness problem for unary REGs is NC1-complete.

Table 4.1 is the summary of the computational complexity results.

#A = 1 #A ≥ 2
REG DFA NFA REG DFA NFA

= [81][46, Thm. 26] coNP L coNP PSPACE NL PSPACE

≃p (Cor. 4.3.3) coNP L coNP PSPACE NL PSPACE

universality [81][46, Thm. 26] coNP L coNP PSPACE NL PSPACE

p-universality (Thm. 4.3.1) coNP L coNP PSPACE NL PSPACE

emptiness [81][46, Thm. 26] NC1 L NL NC1 NL NL

p-emptiness (Thm. 4.3.6) NC1 L NL PSPACE NL PSPACE

TABLE 4.1: The results for p-equivalence in language semantics

Remark. If A is finite, every language problem can be reduced to the case of #A = 2

by Proposition 4.1.10. Be slightly careful in Theorem 4.3.1 (3) because the size of the

alphabet of reduced DFAs is not bounded, but the reduction works all right in log-

space by that the size of the alphabet of every reduced DFA is linear of the size of

the DFA.

4.4 p-equivalence in Relational Semantics

In this section we investigate the p-equivalence of Kleene algebra in relational se-

mantics. ≃L
p denotes the p-equivalence ≃p defined in Definition 4.1.1 for the sake of

clarity. We define µR
n as follows:

µR
n (t1 = t2) =

#{M ∈ RELA
n | M |= t1 = t2}

#RELA
n

.

µR(t1 = t2) denotes limn→∞ µR
n (t1 = t2). This definition is just the asymptotic prob-

ability used for the zero-one law in finite model theory (see e.g., [55, Sec.12]). Then

4.4. p-equivalence in Relational Semantics 89

the p-equivalence in relational semantics, written ≃R
p , is defined as t1 ≃R

p t2 ⇐⇒

µ(t1 = t2) = 1. The following are shown in the same manner as Proposition 4.1.4.

Proposition 4.4.1. ≃R
p is an equivalence relation.

The two p-equivalences in language semantics and relational semantics are different,

whereas the two normal equivalences in these semantics are equivalent (Theorem

2.3.14).

Proposition 4.4.2. ≃L
p and ≃R

p are incomparable, i.e., both ≃L
p ⊆ ≃R

p and ≃R
p ⊆ ≃L

p fail.

Proof. ≃L
p ⊈ ≃R

p : The equational formula φ ≡ A = 0 is a counterexample. It is

easy to see that A ≃L
p 0 holds. However A ≃R

p 0 does not hold because µR
n (φ) =

#{M∈RELA
n |(RM)a = ∅ for any a ∈ A}

#RELA
n

= 1
#RELA

n
.

≃R
p ⊈ ≃L

p: The equational formula φ ≡ (AA)∗ = A∗ is a counterexample. It is

easy to see that (AA)∗ ≃L
p A∗ does not hold. However (AA)∗ ≃R

p A∗ holds. For

the sake of brevity, we assume that #A = 1 and A = {a}. We prove that the fol-

lowing holds for almost any digraph: for any two nodes, s and t, if t is reachable

from s, then t is also reachable form s by an even length path. Let ψ be the formula

(∀v.∀v′.((RM)a)∗(v, v′)) ∧ (∃v′′.(RM)a(v′′, v′′)). Intuitively, ψ denotes that the struc-

ture M is strongly connected and there is a self-loop in M. Then we show the fol-

lowing: (i) M |= ψ =⇒ M |= φ, and thus µR
n (φ) ≥ µR

n (ψ); (ii) µR(ψ) = 1. (i): Let v′′

be a node having self-loop. Then there is always an even length path from any node

v to any node v′ by considering a path via the node v′′. (ii): This is an analogy of that

almost all digraphs are strongly connected (more strongly, almost all digraphs have

diameter 2, see e.g., [14, Cor. 7.1]). Therefore µR(φ) = 1.

In relational semantics, every equational formula of Kleene algebra satisfies the zero-

one law and the equivalence problem under ≃R
p is decidable.

Proposition 4.4.3. In relational semantics, the following hold.

(1) Every equational formula φ of Kleene algebra satisfies the zero-one law (i.e, µR(φ) = 0

or µR(φ) = 1 holds).

(2) The equivalence problem for Kleene algebra terms under ≃R
p is decidable in PSPACE.

90 Chapter 4. Kleene Algebra under Weak Equivalences

Proof. Let us recall that every equational formula of Kleene algebra can be expressed

by an FO3(TC) sentence (Corollary 2.3.11). Therefore these are immediate from [10,

Cor. 3.2 and Thm. 6.1].

The following question remains open: in relational semantics, what is the complexity

of the equivalence problem for Kleene algebra under ≃R
p? (Is the problem much

easier than the normal equivalence problem?)

4.5 Conclusion and Future Work

In this chapter we introduced p-equivalence and gave the computational complexity

of the equational theory for several models of regular languages under p-equivalence.

Moreover we showed that the p-universality problem (resp. the p-emptiness prob-

lem) for context-free grammars is undecidable. As shown in Table 4.1, in the class

of regular languages, the equational theory under p-equivalence is not easier than

one under the normal equivalence. One of the possible future works is to study the

p-equivalence problem in relational semantics. Another direction is to characterize

hyper-minimization under p-equivalence like [5, Thm. 3.4].

91

Chapter 5

Concluding Remarks

In this thesis, we studied decidability and computational complexity of several ex-

tensions of Kleene algebra.

In chapter 3, we showed that the equational theory of Kleene allegories (Kleene al-

gebra in relational semantics with relational intersection and relational converse) is

decidable and EXPSPACE-complete. In connection with this, several extensions are

considerable as future work. One extension is to add the universal relation symbol

⊤ in [17]. We remarked that Kleene allegories with ⊤ is equivalent to existential pos-

itive FO3(TC) in the sense of expressive power of binary relations (Corollary 2.3.11).

Concerning this, it is interesting to study the query equivalence problem of existen-

tial positive FO(TC). Another extension is to add restricted negations preserving

decidability, e.g., boolean tests in Kleene algebra with tests [53], atomic negation

(see e.g., [57]), antidomain [28], unary negation [78], or guarded negation [6]. It may

be also interesting to extend with other operators used in logic and (finite) model

theory like least fixed point operator (LFP) or second-order quantifier.

In chapter 4, we studied the almost surely equivalences (called p-equivalences) on

Kleene algebra terms over word structures and over structures of binary relations.

We showed that, for Kleene algebra terms over word structures, the almost surely

equivalence problem is still PSPACE-hard (more precisely, NLINSPACE-hard) as same

as the equivalence problem. Moreover we gave a reduction from every almost surely

equivalence problem to an equivalence problem (Corollary 4.1.17). This reduction

implies that the almost surely equivalence (resp. universality, emptiness) problem

92 Chapter 5. Concluding Remarks

is not easier than the universality problem in some language classes (e.g., the class

of regular languages, the class of context-free languages) over word structures. This

negative fact is in contrast to the following fact for first-order logic: the almost surely

validity problem is decidable, whereas the finite validity problem is undecidable. In

this chapter, we also investigated the almost surely equivalence on Kleene algebra

terms over structures of binary relations. Over structures of binary relations, every

equational formula of Kleene algebra terms satisfies the zero-one law, whereas it is

not the case over word structures. The almost surely equivalence problem for Kleene

algebra terms over structures of binary relations is decidable, but the computational

complexity remains open.

93

Appendix A

Proof of Theorem 2.3.7

We prove the following by induction on the pair (∥φ∥,−#({s, t})): JφKs,t
A = Ts,t(φ)A.

(1) s = t (= u):

(mu, m′
u) ∈ JφKu,u

A

⇐⇒ (∃mv.(mu, mv) ∈ JφKu,v
A) ∧ mu = m′

u

⇐⇒ (∃mv.(mu, mv) ∈ JφKu,v
A ∧ (mv, m′

u) ∈ |A|2) ∧ (mu, m′
u) ∈ 1A

⇐⇒ (mu, m′
u) ∈ (JφKu,v

A ·⊤A) ∩ 1A

⇐⇒ (mu, m′
u) ∈ ((Tu,v(φ) · ⊤) ∩ 1)A (I.H.)

⇐⇒ (mu, m′
u) ∈ (Tu,u(φ))A

(2) φ ≡ x = x: Jx = xKx,y,z
A = |A|3, and hence Jx = xKu,v

A = ⊤A.

(3) φ ≡ x = y: This part is proved by Jx = yKx,y,z
A = △(|A|)× |A|. For example,

Jx = yKx,y
A = △(|A|) = 1A and Jx = yKx,z

A = |A|2 = ⊤A.

(4) φ ≡ x a x: This part is proved by Jx a xKx,y,z
A = {m ∈ |A| | (m, m) ∈ aA} × |A|2.

For example,

(mx, my) ∈ Jx a xKx,y
A ⇐⇒ ∃mz.(mx, my, mz) ∈ {m ∈ |A| | (m, m) ∈ aA} × |A|2

⇐⇒ ∃mz.(mx, mz) ∈ (a ∩ 1)A ∧ (mz, my) ∈ |A|2

⇐⇒ (mx, my) ∈ (a ∩ 1)A ·⊤A

⇐⇒ (mx, my) ∈ ((a ∩ 1) · ⊤)A

94 Appendix A. Proof of Theorem 2.3.7

(5) φ ≡ x a y: This part is proved by Jx a yKx,y,z
A = aA × |A|. For example,

(mx, mz) ∈ Jx a yKx,z
A ⇐⇒ ∃my.(mx, my, mz) ∈ aA × |A|

⇐⇒ ∃my.(mx, my) ∈ aA ∧ (my, mz) ∈ |A|2

⇐⇒ (mx, my) ∈ (a · ⊤)A

(my, mx) ∈ Jx a yKy,x
A ⇐⇒ ∃mz.(mx, my, mz) ∈ aA × |A|

⇐⇒ (mx, my) ∈ aA

⇐⇒ (my, mx) ∈ (a⌣)A

(6) φ ≡ ∃z.φ: This part is proved by J∃z.φKx,y,z
A = JφKx,y

A × |A|. For example,

(mx, mz) ∈ J∃z.φKx,z
A ⇐⇒ ∃my.(mx, my, mz) ∈ JφKx,y

A × |A|

⇐⇒ ∃my.(mx, my) ∈ JφKx,y
A ∧ (my, mz) ∈ |A|2

⇐⇒ (mx, mz) ∈ JφKx,y
A ·⊤A

⇐⇒ (mx, mz) ∈ (Tx,y(φ) · ⊤)A (I.H.)

(mx, my) ∈ J∃z.φKx,y
A ⇐⇒ ∃mz.(mx, my, mz) ∈ JφKx,y

A × |A|

⇐⇒ ∃mz.(mx, mz) ∈ JφKx,z
A ∧ (mz, my) ∈ JφKz,y

A

⇐⇒ (mx, my) ∈ JφKx,z
A · JφKz,y

A

⇐⇒ (mx, my) ∈ (Tx,z(φ) · Tz,y(φ))A (I.H.)

Appendix A. Proof of Theorem 2.3.7 95

(7) φ ≡ ¬ρ{x,y}: This part is proved by J¬ρ{x,y}Kx,y,z
A = (|A|2 \ Jρ{x,y}Kx,y

A) × |A|.

For example,

(mx, mz) ∈ J¬ρ{x,y}Kx,z
A ⇐⇒ ∃my.(mx, my, mz) ∈ (|A|2 \ Jρ{x,y}Kx,y

A)× |A|

⇐⇒ ∃my.(mx, my) ∈ (|A|2 \ Jρ{x,y}Kx,y
A) ∧ (my, mz) ∈ |A|2

⇐⇒ (mx, mz) ∈ (|A|2 \ Jρ{x,y}Kx,y
A) ·⊤A

⇐⇒ (mx, mz) ∈ (Tx,y(ρ
{x,y})− · ⊤)A (I.H.)

(8) φ ≡ ψ̂{x,y} ∧ ψ̂{y,z} ∧ ψ̂{z,x}:

(mx, my) ∈ Jψ̂{x,y} ∧ ψ̂{y,z} ∧ ψ̂{z,x}Kx,y
A

⇐⇒ ∃mz.(mx, my, mz) ∈ Jψ̂{x,y} ∧ ψ̂{y,z} ∧ ψ̂{z,x}Kx,y,z
A

⇐⇒ ∃mz.(mx, my, mz) ∈ Jψ̂{x,y}Kx,y
A × |A| ∧ (mx, my, mz) ∈ Jψ̂{y,z} ∧ ψ̂{z,x}Kx,y,z

A

⇐⇒ (mx, my) ∈ Jψ̂
{x,y}
A Kx,y ∧ ∃mz.(mx, mz, my) ∈ (Jψ̂{z,x}Kx,z

A × |A|) ∩ (|A| × Jψ̂{y,z}Kz,y
A)

⇐⇒ (mx, my) ∈ Jψ̂
{x,y}
A Kx,y ∧ (∃mz.(mx, mz) ∈ Jψ̂{z,x}Kx,z

A ∧ (mz, my) ∈ Jψ̂{y,z}Kz,y
A)

⇐⇒ (mx, my) ∈ Jψ̂
{x,y}
A Kx,y ∧ (mx, my) ∈ Jψ̂{z,x}Kx,z

A · Jψ̂{y,z}Kz,y
A

⇐⇒ (mx, my) ∈ Jψ̂
{x,y}
A Kx,y ∩ (Jψ̂{z,x}Kx,z

A · Jψ̂{y,z}Kz,y
A)

⇐⇒ (mx, my) ∈ (Tx,y(ψ̂
{x,y}) ∩ (Tx,z(ψ̂

{z,x}) · Tz,y(ψ̂
{y,z})))A (I.H.)

(9) φ ≡ ψ̂
{x,y}
1 ∧ ψ̂

{x,y}
2 :

(mx, my) ∈ Jψ̂
{x,y}
1 ∧ ψ̂

{x,y}
2 Kx,y

⇐⇒ ∃mz.(mx, my, mz) ∈ Jψ̂
{x,y}
1 ∧ ψ̂

{x,y}
2 Kx,y,z

A

⇐⇒ ∃mz.(mx, my, mz) ∈ (Jψ̂
{x,y}
1 Kx,y

A ∩ Jψ̂
{x,y}
2 Kx,y

A)× |A|

⇐⇒ (mx, my) ∈ Jψ̂
{x,y}
1 Kx,y

A ∧ (mx, my) ∈ Jψ̂
{x,y}
2 Kx,y

A

⇐⇒ (mx, my) ∈ (Tx,y(ψ̂
{x,y}
1) ∩ Tx,y(ψ̂

{x,y}
2))A (I.H.)

96 Appendix A. Proof of Theorem 2.3.7

(10) φ ≡ φ1 ∨ φ2:

(mu, mv) ∈ Jφ1 ∨ φ2Ku,v
A

⇐⇒ ∃mw.(mu, mv, mw) ∈ Jφ1 ∨ φ2Ku,v,w
A

⇐⇒ ∃mw.(mu, mv, mw) ∈ Jφ1Ku,v,w
A) ∨ (mu, mv, mw) ∈ Jφ2Ku,v,w

A

⇐⇒ (∃mw.(mu, mv, mw) ∈ Jφ1Ku,v,w
A) ∨ (∃mw.(mu, mv, mw) ∈ Jφ2Ku,v,w

A)

⇐⇒ (mu, mv) ∈ Jφ1Ku,v
A ∨ (mu, mv) ∈ Jφ2Ku,v

A

⇐⇒ (mu, mv) ∈ Jφ1Ku,v
A ∪ Jφ2Ku,v

A

⇐⇒ (mu, mv) ∈ (Tu,v(φ1) ∪ Tu,v(φ2))
A (I.H.)

97

Appendix B

Another Proof of Theorem 4.3.1(4)

The proof of this part is based on [43, Proposition 2.4]. We reduce from the mem-

bership problem for nondeterministic linear-space bounded Turing machines. It suffices

to prove this part because, if a language L is NLINSPACE-hard under log-lin space

reductions, then L is also PSPACE-hard under log space reductions [43, Lem 1.10.]

(the class “CSL” in [43, Lem 1.10.] is equivalent to NLINSPACE [54]).

Let M = (Q, AM, δ, qI , qa) be a nondeterministic linear-space bounded Turing ma-

chine and s = a1 . . . an−1 be an input string, where (i) Q is a finite set of states;

(ii) AM is a finite set of alphabet, where AM always contains the blank symbol ␣;

(iii) δ : Q × AM → ℘(Q × AM × {L, R}) is a transition function; (iv) qI ∈ Q is the

initial state; and (v) qa ∈ Q is the acceptance state. We also require that once the

machine enters its acceptance states, it never leaves it. M accepts a string s if the ma-

chine can reach an acceptance state qa from the initial configuration (i.e, the header

is at the leftest, the state is q0, and the tape is a1 . . . an) by finitely transitions. L(M)

denotes the set of all accepting strings.

We now construct a regular expression ts
M such that s ̸∈ L(M) if and only if L(ts

M) ≃p

A∗. Let A be the alphabet A = {#} ∪ AM ∪ (Q × AM). q
a denotes the character (q, a)

in Q × AM. Moreover A\A′ denotes A \ A′ and the finite set {s1, . . . , sk} denotes the

regular expression s1 ∪ · · · ∪ sk. Let fM : A3 → ℘(A3) (i.e., fM ⊆ A3 × A3) be the

function denoting the transition on M. fM is defined as the smallest binary relation

on A3 satisfying the follows:

(i) If (q′, a′1, R) ∈ δ(q, a1), (a′1, q′
a2

, c3) ∈ fM(q
a1

, a2, c3);

98 Appendix B. Another Proof of Theorem 4.3.1(4)

(ii) If (q′, a′1, L) ∈ δ(q, a1), (a′1, c2, c3) ∈ fM(q
a1

, c2, c3);

(iii) If (q′, a′2, R) ∈ δ(q, a2), (c1, a′2, q′
a3
) ∈ fM(c1, q

a2
, a3);

(iv) If (q′, a′2, L) ∈ δ(q, a2), (
q′
a1

, a′2, c3) ∈ fM(a1, q
a2

, c3);

(v) If (q′, a′3, R) ∈ δ(q, a3), (c1, c2, a′3) ∈ fM(c1, c2, q
a3
);

(vi) If (q′, a′3, L) ∈ δ(q, a3), (c1, q′
a2

, a′3) ∈ fM(c1, a2, q
a3
);

(vii) If (c1, c2, c3) ∈ ({#} ∪ AM)3, (c1, c2, c3) ∈ fM(c1, c2, c3).

Let cI
0 . . . cI

n−1 = # qI

a1
a2 . . . an−1.

Then we define the following three regular expressions t1, t2 and t3:

(1) (input error) t1 = (A\{cI
0}
∪ cI

0(A\{cI
1}
∪ cI

1(. . . (A\{cI
n−1}

∪ cI
n−1A\{cI

n}) . . .)))A∗;

(2) (acceptance error) t2 = (A\{qa}×AM
)∗;

(3) (transition error) t3 =
∪

c1,c2,c3∈A(A\{qa}×AM
)∗c1c2c3An−2(A3)\ fM(c1,c2,c3)A∗.

One can see the following hold:

(1) A∗ \ L(t1) = {s ∈ A∗ | cI
0 . . . cI

n is a prefix of s};

(2) A∗ \ L(t2) = {s ∈ A∗ | s contains a character in {qa} × AM};

(3) c0 . . . ck ∈ A∗ \ L(t3) if any only if, for any i such that n + i + 3 ≤ k and i ≤

min{0 ≤ j ≤ k | cj ∈ {qa} × AM}, cn+i+1cn+i+2cn+i+3 ∈ fM(ci+1ci+2ci+3).

Let ts
M be the regular expression defined as ts

M = t1 ∪ t2 ∪ t3. By the above three

characterization for t1, t2, and t3, A∗ \ L(ts
M) is the set of the strings in the form of

#c0
1 . . . c0

n−1#c1
1 . . . c1

n−1# . . . #cm
1 . . . cm

k s′ (♡)

where (i) c0
1 . . . c0

n−1 = cI
1 . . . cI

n−1 denotes the initial configuration; (ii) ci
1 . . . ci

n−1 de-

notes a i-th configuration such that it is obtained from the i − 1-th configuration

denoted by ci−1
1 . . . ci−1

n−1 for i ≤ k − 1; (iii) cm
k ∈ {qa} × AM, where 1 ≤ k ≤ n − 1 is

a natural number; (iv) cm
1 . . . cm

k denotes the k-length prefix of a m-th configuration

such that it is obtained from the m − 1-th configuration denoted by cm−1
1 . . . cm−1

n−1 .

(v) s′ denotes an arbitrary string. Note that the language L(ts
M) is prefix-closed.

Appendix B. Another Proof of Theorem 4.3.1(4) 99

Then,

s ∈ L(M) ⇐⇒ L(ts
M) ̸= A∗ (♡)

⇐⇒ L(ts
M) ̸≃p A∗ (L(ts

M) is prefix-closed (Proposition 4.1.12(3)))

(♡) is followed by that, if there is a string in A∗ \ L(ts
M), an accepting run of s on M

can be constructed from the string, and vice versa. By that ts
M is reduced from s (and

M, but M is fixed) in log-space, this part is proved. Moreover, by the length of ts
M

is linear of the length of s, this reduction is a log-lin space reduction. Therefore the

p-universality problem for REGs is PSPACE-hard under log space reductions (more

precisely, NLINSPACE-hard under log-lin space reductions).

Remark. The key modification from the reduction in [43, Prop.2.4] is (transition er-

ror). Let t′3 be the following regular expression (see also “β3” in [43, p.230]): t′3 =∪
c1,c2,c3∈A A∗c1c2c3 An−2(A3)\ fM(c1,c2,c3)A∗. Then c0 . . . ck ∈ A∗ \ L(t′3) if any only if,

for any i such that n + i + 3 ≤ k, cn+i+1cn+i+2cn+i+3 ∈ fM(ci+1ci+2ci+3). If t3 is

replaced by t′3, L(ts
M) is not prefix-closed and the statement L(ts

M) ≃p A∗ ⇐⇒

L(ts
M) = A∗ does not hold.

The above reduction also shows that the universality problem for regular expres-

sions recognizing a prefix-closed language is NLINSPACE-complete under log-lin

space reductions.

101

Bibliography

[1] Hajnal Andréka and D. A. Bredikhin. “The equational theory of union-free

algebras of relations”. In: Algebra Universalis 33.4 (1995), pp. 516–532. DOI: 10.

1007/BF01225472.

[2] Hajnal Andréka, Szabolcs Mikulás, and István Németi. “The equational theory

of Kleene lattices”. In: Theoretical Computer Science 412.52 (2011), pp. 7099–7108.

DOI: 10.1016/J.TCS.2011.09.024.

[3] Valentin Antimirov. “Partial derivatives of regular expressions and finite au-

tomaton constructions”. In: Theoretical Computer Science 155.2 (1996), pp. 291–

319. DOI: 10.1016/0304-3975(95)00182-4.

[4] Andrew Badr. “Hyper-Minimization in O(n2)”. In: International Journal of Foun-

dations of Computer Science 20.04 (2009), pp. 735–746. DOI: 10.1142/S012905410900684X.

[5] Andrew Badr, Viliam Geffert, and Ian Shipman. “Hyper-minimizing mini-

mized deterministic finite state automata”. In: RAIRO - Theoretical Informatics

and Applications 43.1 (2009), pp. 69–94. DOI: 10.1051/ita:2007061.

[6] Vince Bárány, Balder Ten Cate, and Luc Segoufin. “Guarded Negation”. In:

Journal of the ACM 62.3 (2015), pp. 1–26. DOI: 10.1145/2701414.

[7] Jean Berstel. “Sur la densité asymptotique de langages formels (in French)”.

In: International Colloquium on Automata, Languages and Programming (ICALP,

1972). North-Holland, 1973, pp. 345–358.

[8] Jean Berstel, Dominique Perrin, and Christophe Reutenauer. Codes and Au-

tomata. Vol. 125. Cambridge University Press, 2009, p. 597.

[9] Patrick Blackburn, Johan van Benthem, and Frank Wolter. Handbook of Modal

Logic. 1st ed. Vol. 3. Studies in Logic and Practical Reasoning. Elsevier, 2006,

p. 1231.

https://doi.org/10.1007/BF01225472
https://doi.org/10.1007/BF01225472
https://doi.org/10.1016/J.TCS.2011.09.024
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1142/S012905410900684X
https://doi.org/10.1051/ita:2007061
https://doi.org/10.1145/2701414

102 Bibliography

[10] Andreas Blass, Yuri Gurevich, and Dexter Kozen. “A zero-one law for logic

with a fixed-point operator”. In: Information and Control 67.1-3 (1985), pp. 70–

90. DOI: 10.1016/S0019-9958(85)80027-9.

[11] S. L. Bloom, Z. Ésik, and Gh. Stefanescu. “Notes on equational theories of rela-

tions”. In: Algebra Universalis 33.1 (1995), pp. 98–126. DOI: 10.1007/BF01190768.

[12] Hans L. Bodlaender. “A partial k-arboretum of graphs with bounded treewidth”.

In: Theoretical Computer Science 209.1-2 (1998), pp. 1–45. DOI: 10.1016/S0304-

3975(97)00228-4.

[13] Mikołaj Bojańczyk and Michał Pilipczuk. “Definability equals recognizability

for graphs of bounded treewidth”. In: Proceedings of the 31st Annual ACM/IEEE

Symposium on Logic in Computer Science (LICS ’16). ACM Press, 2016, pp. 407–

416. DOI: 10.1145/2933575.2934508.

[14] Bela Bollobas. “The Diameter of Random Graphs”. In: Transactions of the Amer-

ican Mathematical Society 267.1 (1981), p. 41. DOI: 10.2307/1998567.

[15] George S. Boolos, John P. Burgess, and Richard C. Jeffrey. Computability and

Logic. 5th ed. Cambridge: Cambridge University Press, 2007, p. 350. DOI: 10.

1017/CBO9780511804076.

[16] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem.

Springer, 1997, p. 482.

[17] Paul Brunet and Damien Pous. “Petri automata”. In: Logical Methods in Com-

puter Science 13.3 (2017). DOI: 10.23638/LMCS-13(3:33)2017.

[18] Paul Brunet and Damien Pous. “Petri Automata for Kleene Allegories”. In:

30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS’ 15).

IEEE, 2015, pp. 68–79. DOI: 10.1109/LICS.2015.17.

[19] Janusz A. Brzozowski. “Derivatives of Regular Expressions”. In: Journal of the

ACM 11.4 (1964), pp. 481–494. DOI: 10.1145/321239.321249.

[20] Janusz A. Brzozowski, Jeffrey Shallit, and Zhi Xu. “Decision problems for con-

vex languages”. In: Information and Computation 209.3 (2011), pp. 353–367. DOI:

10.1016/j.ic.2010.11.009.

[21] Samuel R. Buss. “Algorithms for Boolean Formula Evaluation and for Tree

Contraction”. In: Arithmetic, Proof Theory, and Computational Complexity. Vol. 23.

Oxford Logic Guides. 1993, pp. 96–115.

https://doi.org/10.1016/S0019-9958(85)80027-9
https://doi.org/10.1007/BF01190768
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1145/2933575.2934508
https://doi.org/10.2307/1998567
https://doi.org/10.1017/CBO9780511804076
https://doi.org/10.1017/CBO9780511804076
https://doi.org/10.23638/LMCS-13(3:33)2017
https://doi.org/10.1109/LICS.2015.17
https://doi.org/10.1145/321239.321249
https://doi.org/10.1016/j.ic.2010.11.009

Bibliography 103

[22] Samuel R. Buss. “Boolean Formula Value Problem is in ALOGTIME”. In: Con-

ference Proceedings of the Annual ACM Symposium on Theory of Computing (STOC’

87). ACM Press, 1987, pp. 123–131. DOI: 10.1145/28395.28409.

[23] Samuel R. Buss, Stepane A. Cook, Anshul Gupta, and Vijaya Ramachandran.

“An Optimal Parallel Algorithm for Formula Evaluation”. In: SIAM Journal on

Computing 21.4 (1992), pp. 755–780. DOI: 10.1137/0221046.

[24] Alonzo Church. “A note on the Entscheidungsproblem”. In: The Journal of Sym-

bolic Logic 1.01 (1936), pp. 40–41. DOI: 10.2307/2269326.

[25] John H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971,

p. 153.

[26] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms. 3rd ed. The MIT Press, 2009, p. 1313.

[27] Anupam Das and Damien Pous. “A Cut-Free Cyclic Proof System for Kleene

Algebra”. In: International Conference on Automated Reasoning with Analytic Tableaux

and Related Methods (TABLEAUX 2017). Vol. 10501 LNCS. Springer, 2017, pp. 261–

277. DOI: 10.1007/978-3-319-66902-1_16.

[28] Jules Desharnais and Georg Struth. “Internal axioms for domain semirings”.

In: Science of Computer Programming 76.3 (2011), pp. 181–203. DOI: 10.1016/J.

SCICO.2010.05.007.

[29] Keith Ellul, Bryan Krawetz, Jeffrey Shallit, and Ming-wei Wang. “Regular ex-

pressions: new results and open problems”. In: Journal of Automata, Languages

and Combinatorics 9.2-3 (2004), pp. 233–256.

[30] David Eppstein. “Parallel recognition of series-parallel graphs”. In: Information

and Computation 98.1 (1992), pp. 41–55. DOI: 10.1016/0890-5401(92)90041-D.

[31] Ronald Fagin. “Generalized first-order spectra and polynomial-time recogniz-

able sets”. In: Complexity of Computation. Ed. by Richard M. Karp. Vol. 7. SIAM-

AMS Proceedings, 1974, pp. 27–41.

[32] Peter J. Freyd and Andre Scedrov. Categories. Vol. 39. North-Holland Mathe-

matical Library. North-Holland, 1990, pp. 2–192. DOI: 10.1016/S0924-6509(08)

70048-5.

[33] Martin Fürer. “The complexity of the inequivalence problem for regular ex-

pressions with intersection”. In: International Colloquium on Automata, Languages,

https://doi.org/10.1145/28395.28409
https://doi.org/10.1137/0221046
https://doi.org/10.2307/2269326
https://doi.org/10.1007/978-3-319-66902-1_16
https://doi.org/10.1016/J.SCICO.2010.05.007
https://doi.org/10.1016/J.SCICO.2010.05.007
https://doi.org/10.1016/0890-5401(92)90041-D
https://doi.org/10.1016/S0924-6509(08)70048-5
https://doi.org/10.1016/S0924-6509(08)70048-5

104 Bibliography

and Programming (ICALP ’80). Vol. 85 LNCS. Springer, Berlin, Heidelberg, 1980,

pp. 234–245. DOI: 10.1007/3-540-10003-2_74.

[34] Steven Givant. “The Calculus of Relations as a Foundation for Mathematics”.

In: Journal of Automated Reasoning 37.4 (2007), pp. 277–322. DOI: 10 . 1007 /

s10817-006-9062-x.

[35] Stefan Göller, Markus Lohrey, and Carsten Lutz. “PDL with intersection and

converse: satisfiability and infinite-state model checking”. In: The Journal of

Symbolic Logic 74.01 (2009), pp. 279–314. DOI: 10.2178/jsl/1231082313.

[36] Etienne Grandjean. “Complexity of the first-order theory of almost all finite

structures”. In: Information and Control 57.2-3 (1983), pp. 180–204. DOI: 10 .

1016/S0019-9958(83)80043-6.

[37] Hermann Gruber and Markus Holzer. “Finite Automata, Digraph Connectiv-

ity, and Regular Expression Size”. In: the 35th International Colloquium on Au-

tomata, Languages and Programming (ICALP ’08). Berlin, Heidelberg: Springer

Berlin Heidelberg, 2008, pp. 39–50. DOI: 10.1007/978-3-540-70583-3_4.

[38] Hermann Gruber and Markus Holzer. “From Finite Automata to Regular Ex-

pressions and Back—A Summary on Descriptional Complexity”. In: the Pro-

ceedings 14th International Conference on Automata and Formal Languages (AFL

2014). Vol. 151. 2014, pp. 25–48. DOI: 10.4204/EPTCS.151.2.

[39] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic logic. MIT Press, 2000,

p. 459.

[40] Markus Holzer and Sebastian Jakobi. “From equivalence to almost-equivalence,

and beyond - Minimizing automata with errors (extended abstract)”. In: De-

velopments in Language Theory (DLT 2012). Vol. 7410 LNCS. Springer, Berlin,

Heidelberg, 2012, pp. 190–201. DOI: 10.1007/978-3-642-31653-1_18.

[41] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Au-

tomata Theory, Languages, and Computation. 3rd. Addison Wesley, 2006, p. 535.

[42] John E. Hopcroft and Jeffrey D. Ullman. Formal languages and their relation to

automata. Addison-Wesley Longman Publishing Co., Inc., 1969, p. 262.

https://doi.org/10.1007/3-540-10003-2_74
https://doi.org/10.1007/s10817-006-9062-x
https://doi.org/10.1007/s10817-006-9062-x
https://doi.org/10.2178/jsl/1231082313
https://doi.org/10.1016/S0019-9958(83)80043-6
https://doi.org/10.1016/S0019-9958(83)80043-6
https://doi.org/10.1007/978-3-540-70583-3_4
https://doi.org/10.4204/EPTCS.151.2
https://doi.org/10.1007/978-3-642-31653-1_18

Bibliography 105

[43] Harry B. Hunt III, Daniel J. Rosenkrantz, and Thomas G. Szymanski. “On the

equivalence, containment, and covering problems for the regular and context-

free languages”. In: Journal of Computer and System Sciences 12.2 (1976), pp. 222–

268. DOI: 10.1016/S0022-0000(76)80038-4.

[44] Neil Immerman. Descriptive Complexity. Springer, 1999, p. 268. DOI: 10.1007/

978-1-4612-0539-5.

[45] Neil Immerman. “Nondeterministic Space is Closed under Complementation”.

In: SIAM Journal on Computing 17.5 (1988), pp. 935–938. DOI: 10.1137/0217058.

[46] Neil D. Jones. “Space-bounded reducibility among combinatorial problems”.

In: Journal of Computer and System Sciences 11.1 (1975), pp. 68–85. DOI: 10.1016/

S0022-0000(75)80050-X.

[47] A. S. Kahr, Edward F. Moore, and Hao Wang. “Entscheidungsproblem re-

duced to the AEA case”. In: Proceedings of the National Academy of Sciences 48.3

(1962), pp. 365–377. DOI: 10.1073/pnas.48.3.365.

[48] Jui Yi Kao, Narad Rampersad, and Jeffrey Shallit. “On NFAs where all states

are final, initial, or both”. In: Theoretical Computer Science 410.47-49 (2009), pp. 5010–

5021. DOI: 10.1016/j.tcs.2009.07.049.

[49] Richard M. Karp. “Reducibility among Combinatorial Problems”. In: Complex-

ity of Computer Computations. Springer, 1972, pp. 85–103. DOI: 10.1007/978-1-

4684-2001-2_9.

[50] Stephen C. Kleene. “Representation of Events in Nerve Nets and Finite Au-

tomata”. In: Automata Studies. Ed. by Claude Shanon and Jhon McCarthy. Prince-

ton University Press, 1956, pp. 3–41.

[51] Dexter Kozen. “A completeness theorem for Kleene algebras and the algebra

of regular events”. In: Proceedings Sixth Annual IEEE Symposium on Logic in

Computer Science (LICS ’91). IEEE Comput. Sco. Press, 1991, pp. 214–225. DOI:

10.1109/LICS.1991.151646.

[52] Dexter Kozen. “Kleene algebra with tests”. In: ACM Transactions on Program-

ming Languages and Systems 19.3 (1997), pp. 427–443. DOI: 10.1145/256167.

256195.

[53] Dexter Kozen and Frederick Smith. “Kleene algebra with tests: Completeness

and decidability”. In: International Workshop on Computer Science Logic (1996).

https://doi.org/10.1016/S0022-0000(76)80038-4
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1137/0217058
https://doi.org/10.1016/S0022-0000(75)80050-X
https://doi.org/10.1016/S0022-0000(75)80050-X
https://doi.org/10.1073/pnas.48.3.365
https://doi.org/10.1016/j.tcs.2009.07.049
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1109/LICS.1991.151646
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/256167.256195

106 Bibliography

[54] S.-Y. Kuroda. “Classes of languages and linear-bounded automata”. In: Infor-

mation and Control 7.2 (1964), pp. 207–223. DOI: 10.1016/S0019- 9958(64)

90120-2.

[55] Leonid Libkin. Elements of Finite Model Theory. Springer, 2012, p. 318. DOI: 10.

1007/978-3-662-07003-1.

[56] Leopold Löwenheim. “Über Möglichkeiten im Relativkalkül”. In: Mathematis-

che Annalen 76.4 (1915), pp. 447–470. DOI: 10.1007/BF01458217.

[57] Carsten Lutz and Dirk Walther. “PDL with negation of atomic programs”. In:

Journal of Applied Non-Classical Logics 15.2 (2005), pp. 189–213. DOI: 10.3166/

jancl.15.189-213.

[58] James F. Lynch. “Convergence laws for random words”. In: Australasian Jour-

nal of Combinatorics 7 (1993), pp. 145–156.

[59] Nancy Lynch. “Log Space Recognition and Translation of Parenthesis Lan-

guages”. In: Journal of the ACM 24.4 (1977), pp. 583–590. DOI: 10.1145/322033.

322037.

[60] Roger C. Lyndon. “The Representation of Relation Algebras, II”. In: The Annals

of Mathematics 63.2 (1956), pp. 294–307. DOI: 10.2307/1969611.

[61] Roger C. Lyndon. “The Representation of Relational Algebras”. In: Annals of

Mathematics 51.3 (1950), pp. 707–729. DOI: 10.2307/1969375.

[62] Roger D. Maddux. Relation Algebras. Vol. 150. Studies in Logic and the Foun-

dations of Mathematics. Elsevier, 2006, p. 758. DOI: 10.1016/S0049-237X(06)

80023-6.

[63] Roger D. Maddux. “Undecidable semiassociative relation algebras”. In: The

Journal of Symbolic Logic 59.02 (1994), pp. 398–418. DOI: 10.2307/2275397.

[64] A. R. Meyer and M. J. Fischer. “Economy of description by automata, gram-

mars, and formal systems”. In: 12th Annual Symposium on Switching and Au-

tomata Theory (SWAT 1971). IEEE, 1971, pp. 188–191. DOI: 10.1109/SWAT.1971.

11.

[65] David A. Mix Barrington, Neil Immerman, and Howard Straubing. “On uni-

formity within NC1”. In: Journal of Computer and System Sciences 41.3 (1990),

pp. 274–306. DOI: 10.1016/0022-0000(90)90022-D.

https://doi.org/10.1016/S0019-9958(64)90120-2
https://doi.org/10.1016/S0019-9958(64)90120-2
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/BF01458217
https://doi.org/10.3166/jancl.15.189-213
https://doi.org/10.3166/jancl.15.189-213
https://doi.org/10.1145/322033.322037
https://doi.org/10.1145/322033.322037
https://doi.org/10.2307/1969611
https://doi.org/10.2307/1969375
https://doi.org/10.1016/S0049-237X(06)80023-6
https://doi.org/10.1016/S0049-237X(06)80023-6
https://doi.org/10.2307/2275397
https://doi.org/10.1109/SWAT.1971.11
https://doi.org/10.1109/SWAT.1971.11
https://doi.org/10.1016/0022-0000(90)90022-D

Bibliography 107

[66] Donald Monk. “On representable relation algebras.” In: The Michigan Mathe-

matical Journal 11.3 (1964), pp. 207–210. DOI: 10.1307/mmj/1028999131.

[67] Marian Muresan. A Concrete Approach to Classical Analysis. CMS Books in Math-

ematics. Springer, 2009, p. 433. DOI: 10.1007/978-0-387-78933-0.

[68] Yoshiki Nakamura. “Partial Derivatives on Graphs for Kleene Allegories”. In:

32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’17).

IEEE, 2017, pp. 1–12. DOI: 10.1109/LICS.2017.8005132.

[69] Yoshiki Nakamura. “The Almost Equivalence by Asymptotic Probabilities for

Regular Languages and Its Computational Complexities”. In: Proceedings of the

Seventh International Symposium on Games, Automata, Logics and Formal Verifica-

tion (GandALF ’16). Vol. 226. EPTCS. 2016, pp. 272–286. DOI: 10.4204/EPTCS.

226.19.

[70] Yoshiki Nakamura. “The KAT-like Fragment of PDL with Intersection”. In: 8th

Conference: Non-Classical Logics. Theory and Applications. 2016, pp. 96–100.

[71] Yoshiki Nakamura. “The Undecidability of FO3 and the Calculus of Relations

with Just One Binary Relation”. In: Logic and Its Applications: 8th Indian Confer-

ence (ICLA ’19). Springer, 2019, pp. 108–120. DOI: 10.1007/978-3-662-58771-

3_11.

[72] Damien Pous. “On the Positive Calculus of Relations with Transitive Clo-

sure”. In: 35th Symposium on Theoretical Aspects of Computer Science (STACS

’18). Vol. 96. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, 3:1–

3:16. DOI: 10.4230/LIPICS.STACS.2018.3.

[73] V. N. Redko. “On defining relations for the algebra of regular events”. In:

Ukrain. Mat. Z (1964), 16:120–126.

[74] Neil Robertson and P. D. Seymour. “Graph minors. I. Excluding a forest”. In:

Journal of Combinatorial Theory, Series B 35.1 (1983), pp. 39–61. DOI: 10.1016/

0095-8956(83)90079-5.

[75] Arto Salomaa. “Two Complete Axiom Systems for the Algebra of Regular

Events”. In: Journal of the ACM 13.1 (1966), pp. 158–169. DOI: 10.1145/321312.

321326.

[76] Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of Formal Power

Series. Springer, 1978, p. 88. DOI: 10.1007/978-1-4612-6264-0.

https://doi.org/10.1307/mmj/1028999131
https://doi.org/10.1007/978-0-387-78933-0
https://doi.org/10.1109/LICS.2017.8005132
https://doi.org/10.4204/EPTCS.226.19
https://doi.org/10.4204/EPTCS.226.19
https://doi.org/10.1007/978-3-662-58771-3_11
https://doi.org/10.1007/978-3-662-58771-3_11
https://doi.org/10.4230/LIPICS.STACS.2018.3
https://doi.org/10.1016/0095-8956(83)90079-5
https://doi.org/10.1016/0095-8956(83)90079-5
https://doi.org/10.1145/321312.321326
https://doi.org/10.1145/321312.321326
https://doi.org/10.1007/978-1-4612-6264-0

108 Bibliography

[77] Walter Savitch. “Relationships between nondeterministic and deterministic

tape complexities”. In: Journal of Computer and System Sciences 4.2 (1970), pp. 177–

192. DOI: 10.1016/S0022-0000(70)80006-X.

[78] Luc Segoufin and Balder Cate. “Unary negation”. In: Logical Methods in Com-

puter Science 9.3 (2013). Ed. by Erich Grädel. DOI: 10.2168/LMCS-9(3:25)2013.

[79] Alan Selman. “Completeness of calculii for axiomatically defined classes of al-

gebras”. In: Algebra Universalis 2.1 (1972), pp. 20–32. DOI: 10.1007/BF02945004.

[80] Ryoma Sin’ya. “Zero-One Law for Regular Languages”. PhD thesis. Tokyo In-

stitute of Technology, 2016, p. 51.

[81] L. J. Stockmeyer and A. R. Meyer. “Word problems requiring exponential time

(Preliminary Report)”. In: Proceedings of the fifth annual ACM symposium on

Theory of computing (STOC ’73). ACM, 1973, pp. 1–9. DOI: 10.1145/800125.

804029.

[82] Robert Szelepcsényi. “The method of forcing for nondeterministic automata”.

In: Acta Informatica 26.3 (1988), pp. 279–284. DOI: 10.1007/BF00299636.

[83] Alfred Tarski. “Contributions to the theory of models. III”. In: Indagationes

Mathematicae (Proceedings) 58 (1955), pp. 56–64. DOI: 10.1016/S1385-7258(55)

50009-6.

[84] Alfred Tarski. “On the Calculus of Relations”. In: The Journal of Symbolic Logic

6.3 (1941), pp. 73–89. DOI: 10.2307/2268577.

[85] Alfred Tarski and Steven Givant. A formalization of set theory without variables.

Vol. 41. Colloquium Publications. American Mathematical Society, 1987, p. 318.

[86] Ken Thompson. “Programming Techniques: Regular expression search algo-

rithm”. In: Communications of the ACM 11.6 (1968), pp. 419–422. DOI: 10.1145/

363347.363387.

https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.2168/LMCS-9(3:25)2013
https://doi.org/10.1007/BF02945004
https://doi.org/10.1145/800125.804029
https://doi.org/10.1145/800125.804029
https://doi.org/10.1007/BF00299636
https://doi.org/10.1016/S1385-7258(55)50009-6
https://doi.org/10.1016/S1385-7258(55)50009-6
https://doi.org/10.2307/2268577
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387

