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Abstract

In the arithmetic of function fields, Drinfeld modules play the role that el-
liptic curves do in the arithmetic of number fields. The aim of this thesis
is to study a non-existence problem of Drinfeld modules with constrained
torsion points at places with large degree, which is motivated by a conjec-
ture of Christopher Rasmussen and Akio Tamagawa related with abelian
varieties over number fields with some arithmetic constraints. We prove
the non-existence of Drinfeld modules in the case where the inseparable
degree of base fields is not divisible by the rank of Drinfeld modules. In
other cases, we conversely give an example of Drinfeld modules satisfying
Rasmussen-Tamagawa-type conditions.

This thesis is submitted to Tokyo Institute of Technology for the degree
of Doctor of Science. Several results in the thesis are contained in the au-
thor’s previous paper [Oku], which will be published in Kyushu Journal of
Mathematics, published by Faculty of Mathematics Kyushu University.
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Chapter 1

Introduction

The aim of this thesis is to formulate a function field! analogue of a conjec-
ture of Rasmussen and Tamagawa [RT08] on certain abelian varieties over
number fields and to give some results on it. It is known that there are
beautiful analogies between the arithmetic of number fields and the arith-
metic of function fields. In 1974, Drinfeld [Dri74] invented the analog of
elliptic curves under the name “elliptic modules”. These are today called
Drinfeld modules, see Chapter 2. In this thesis, following the philosophy
about analogies between number fields and function fields, we consider
a non-existence problem on Drinfeld modules of “Rasmussen-Tamagawa
type”.

In the arithmetic of number fields, problems of finiteness or non-existence
of isomorphism classes of various number theoretic objects have been stud-
ied by many people. For example, the Hermite-Minkowski theorem, which
is a famous arithmetic result, says that there exist only finitely many iso-
morphism classes of number fields with given degree and ramification set
of places. As a generalization of the Hermite-Minkowski theorem, Faltings
[Fal83] proved the Shafarevich conjecture, which is as follows: there exist
only finitely many isomorphism classes of abelian varieties over a number
tield with a give dimension, polarization of a give degree, and good reduc-
tion outside a give set of places. Furthermore, Zarhin improved Faltings’
result by omitting the assumption on polarization in [Zar85].

A conjecture of Rasmussen and Tamagawa is in the spirit of the Shafare-
vich conjecture. Inspired by the study of a question of Ihara [Tha86] related
with the kernel of the canonical outer Galois representation of the pro-¢
fundamental group of IPl\{O, 1,00}, Rasmussen and Tamagawa define a

n this thesis, a “function field” always means a finitely generated field of transcenden-
tal degree one over a finite field.
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set o7 (k,g,0) of k-isomorphism classes of g-dimensional abelian varieties
over a number field k with constrained /-power torsion points for a prime
number ¢. We can easily see that the set <7 (k, g, ¢) is finite by the Shafare-
vich conjecture. Rasmussen and Tamagawa conjectured that such a finite-
ness also should hold for the union <7 (k, g) := Uy’ (k, g, ¢) of these sets,
where / runs through all prime numbers. In other word, the Rasmussen-
Tamagawa conjecture says that there is a positive constant C = C(k,g) > 0
depending only on k and g such that <7 (k, g, ¢) is empty for all £ > C.

There are some results on the conjecture, see §§3.2.2. For example, Ras-
mussen and Tamagawa [RT08] prove that the conjecture is true for ellip-
tic curves over Q. However, it remains open in general. We notice that,
under the assumption of the Generalized Riemann Hypothesis (GRH) for
Dedekind zeta functions of number fields, the conjecture is true in general
[RT17, Theorem 5.1]. The key tool of this proof is the effective version of the
Chebotarev density theorem for number fields, which holds under GRH.
Rasmussen and Tamagawa also state the “uniform version” of the conjec-
ture [RT17, Conjecture 2], which says that one can take a lower bound of
¢ satisfying <7 (k, g,¢) = & depending only on the degree [k : Q] and g.
For instance, the uniform version of the conjecture for CM abelian varieties
is proved by Bourdon [Boul5, Corollary 1] and Lombardo [Lom, Theorem
1.3]. Under GRH, the uniform version of the conjecture is true if [k : Q] is
odd [RT17, Theorem 5.2].

Now let us state main results in this thesis. We first introduce some
notations. Let p be a prime number and fix some p-power g = p'. Write
A := F,[t] for the polynomial ring in one variable t over [F; and set F :=
F;(t). In the arithmetic of function fields, the ring A and the field F are
analogues of Z and Q, respectively. Let K be a finite extension of F. In this
thesis, we often identify every monic irreducible element 7w € A with the
corresponding finite place of F. Write [F; = A/mA for the residue field at
7 and set g := #F, = g8,

The arithmetic properties of Drinfeld modules over function fields are
similar to those of elliptic curves over number fields. For instance, there
are reduction theory and Galois representations attached to torsion points
of Drinfeld modules, see Chapter 2 for details. Under this analogy, we can
define the analogue of «/(k, g, /). Let r be a positive integer and 7 € A a
monic irreducible element. Define Z (K, r, 1) to be the set of K-isomorphism
classes [¢] of Drinfeld modules ¢ of rank r over K which satisfy the follow-
ing two conditions:
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(D1) ¢ has good reduction at any finite place of K not lying above 7,

(D2) the mod 7t representation p, , : Gk — GL,(IF) attached to ¢ is of
the form

where X is the mod 7t Carlitz character (Definition 2.5.4) and 0 <
i1,...,1iy < gz — 1 are integers.

Proposition 3.3.6 in Chapter 3 means that the condition (D1)+(D2) is a
Drinfeld module analogue of the defining condition of the set </ (k, g, ¢).
See also Proposition 3.2.1. The purpose of this thesis is to give a complete
answer to the following question:

Question 1.0.1. Does there exist a positive constant C > 0 depending only on K
q, and r which satisfies the following: if deg(m) > C, then the set 2(K,r, 1) is
empty?

We show that the answer to the question is YES if r does not divide the
inseparable degree [K : F]; of K/F:

Theorem 1.0.2 (Theorem 4.3.9 (2) and Theorem 5.4.4). Suppose that r does
not divide [K : Fl;. Then the set 2 (K,r, ) is empty for any monic irreducible
element 7w € A whose degree is large enough.

The proof of Theorem 1.0.2 consists of the two cases: (i) r = p¥, and
(ii) r = rop" for some ro > 1 which is prime to p. The proof in the case (i)
is provided by observations about the tame inertia weights (Definition 4.1.4)
of p,, . for any [¢] € Z(K,r, ). This technique is used in [Ozell] and
[RT17]. In the case (ii), we employ the strategy in [RT17] and use the effec-
tive version of the Chebotarev density theorem for function fields proved
by Kumer and Scherk [K594]. We notice that the same argument dose not
work well in the case (i).

In addition, as an analogue of [RT17, Theorem 5.2], we obtain a uniform
result as follows:

Theorem 1.0.3 (Corollary 4.3.5 and Theorem 5.4.5). Let r and 7t be as above.
Let n be a positive integer not divisible by r. Then there exists a positive constant
C > 0determined by r, q, and n such that for all finite extensions K/ F of degree
n, the set 2 (K, r, i) is empty if deg(mr) > C.
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On the other hand, there are differences between the number field set-
ting and the function field setting. Indeed, if r divides [K : F]; (for which
there is no number field setting), then we construct a Drinfeld module ¢
of rank r over K satisfying (D1) and (D2) for all monic irreducible elements
7t € A. Namely the following holds:

Theorem 1.0.4 (Theorem 6.1.1). If r divides [K : F];, then the set 2(K,r, 1) is
never empty for any 7t.

Consequently we obtain a complete answer to Question 1.0.1 by Theorem
1.0.2 and Theorem 1.0.4.

The organization of the thesis is as follows. In Chapter 2, after review-
ing several basic facts on function fields, we introduce well-known facts on
Drinfeld modules. In Chapter 3, we explain a motivation of the Rasmussen-
Tamagawa conjecture and the precise statement of it. After that, we define
the set Z(K,r, ). In Chapter 4, for any [¢] € Z(K,r, ), an important in-
teger e;(¢) is introduced and we prove some non-trivial properties of it.
Using it, we give some non-existence results on certain Drinfeld modules
and prove Theorem 1.0.2 in the case (i). The aim of Chapter 5 is to give the
proof of Theorem 1.0.2 in the case (ii). Finally, in Chapter 6, we construct a
Drinfeld module satisfying both (D1) and (D2) for any 7 in the case where
r divides [K : F];. We also show that the set Z(K,r, i) is infinite if 77 = ¢
andr > 2.
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Notation

For an arbitrary field F, write Gr = Gal(F*®P/F) for the absolute Galois
group of F. Throughout this thesis, we denote by

F, the finite field of g elements of characteristic p,

A =T,

F =Ty (t),

F, := A/mA; the residue field at a monic irreducible element 7T € A,
qT[ = #]Fﬂ = qdeg(ﬂ)

For a finite extension K of F and a place u of K, we denote by

K the separable closure of F in K,

K,  the completion of K at u,

Ok, the valuation ring of K,, with the maximal ideal p,,
[F, theresidue field of K,

Gu = #F,.

We use the same symbol u for the normalized valuation of K,. Identify
Gk, with the decomposition group of Gk at u and regard it as a subgroup
of Gk. Denote by Ik, the inertia subgroup of Gk, at u and choose a lift
Frob, € Gk, of the Frobenius element of Gk, /Ix,. If 7 is the place of F
below u, then we denote by e, (or e(K,/Fy)) the ramification index and
set fyr := [Fy : Frl.

Let F := F;((1/t)) be the completion of F at the place co of F corre-
sponding to the (1/t)-adic valuation of F. Write C, for the completion of
a fixed algebraic closure of F... Every algebraic extension of F is always
regarded as a subfield of Cw. Let | - | be the absolute value of Fy attached
to the normalized valuation of F.,. We also denote by | - | the unique exten-
sion of it to Co and its restriction to each algebraic extension of F. For any
non-zero a € A, we see that |a| = #(A/aA) = g8,

The notation C = C(x,y,...,z) indicates a constant C depending only
onx,y,...,and z. We use the notation p* for the semisimplification of a
linear representation of a group p.






Chapter 2

Preliminaries

Drinfeld modules are introduced by V. G. Drinfeld [Dri74] to prove the
Langlands conjecture for GL(2) over function fields. In this chapter, we
review several well-known results on Drinfeld modules and see that there
are various analogies between the arithmetic properties of Drinfeld mod-
ules and that of elliptic curves. Our exposition of the theory of function
fields and Drinfeld modules follows [Dri74], [Hay74],[Gos96], and [Ros02].

After recalling basic facts in the arithmetic of function fields in §2.1, we
introduce the definition of Drinfeld modules and study torsion points of
them in §2.2. In §2.3, we first introduce the notion of good and stable re-
duction of Drinfeld modules. For a monic irreducible element 7t € A, we
also define Galois representations attached to 7r-adic Tate modules and -
torsion points of Drinfeld modules. The purpose of §2.4 is to explain Drin-
feld’s theorem on Tate uniformization, which gives an analytic description
of Drinfeld modules with stable reduction. In the final section §2.5, we
define the Carlitz module and recall the properties of cyclotomic function
fields.

2.1 Function field arithmetic

We summarize some basic arithmetic facts on function fields and introduce
further notations and conventions used in this thesis.

The rational function field F = F,(t) has two kinds of places — places
corresponding to monic irreducible elements of A and oco. In this thesis, we
often identify every monic irreducible element 7t € A with the correspond-
ing place of F and use the same symbol “77”.

Definition 2.1.1. Let K/F be a finite extension and v a place of K. We say
that v is a finite place if it lies above some monic irreducible element 77 € A,

15
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and that v is an infinite place if it lies above co.

Definition 2.1.2. Let L/K/F be algebraic extensions.

(1) The algebraic closure of IF; in K is called the constant field of K and we
denote it by Fg.

(2) We say that L/K is a constant field extension if L = [F1 K, and that L/K
is a geometric extension if Fj = Fg.

In general, the composite field IF; K is the maximal constant extension
of Kin L and clearly L is a geometric extension of IF. K. If L /K is finite, then
we define the geometric extension degree of L/ Kby [L : K]g := [L : FLK].

Example 2.1.3. Let n € A be a non-zero element. Then the “cyclotomic
function field” F({,) defined in §1.4 is geometric over F (see Corollary
2.5.8).

Fix a finite extension K of F.
Proposition 2.1.4. Let L/K be a finite extension.
(1) If L/K is a constant field extension, then it is unramified at all places.

(2) If L/K is a purely inseparable extension, then it is totally ramified at all
places.

Proof. See [Ros02, Proposition 7.5] and [Ros02, Proposition 8.5]. O

Remark 2.1.5. Proposition 2.1.4 implies that every purely inseparable ex-
tension L/K is geometric.

Proposition 2.1.6. Let L/K be a finite extension. Suppose that v is a place of K
and {ws, ..., w,} the set of places of L above v. Then the equation

,
[L : K] = Zews|vfws|v
s=1

holds.
Proof. See [Ros02, Theorem 7.6]. O
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2.2 Drinfeld modules

Let K be an IF;-algebra and let G, x be the additive group scheme defined
over K. Write T for the g-power Frobenius map of G, x. Then the ring
Endg . (Gy) of IF;-linear endomorphisms of G,k is the non-commutative
polynomial ring

s=0

K{t} := {y = chrs; re€ Zsopandcs € K}

in one variable T satisfying Tc = ¢/7 for any ¢ € K. Denote by

K(T) = {f(T) e K[T): £(T) = zé csT”/S}

the set of IF;-linear additive polynomials. Define its multiplication by com-
position

f(T)og(T) = f(&(T))
of polynomials. Then K(T) is a non-commutative ring and K{t} = K(T)
by the correspondence 7° + TY".

Definition 2.2.1. An A-field is a field K equipped with an IF;-algebra homo-
morphism ¢ : A — K. The kernel p = ker is called the A-characteristic of
K.

Remark 2.2.2. In this thesis, we only consider A-fields with A-characteristic
p=(0).

Drinfeld modules are given as group schemes endowed with some A-
module structures.

Definition 2.2.3. Let (K, ) be an A-field and r a positive integer. A Drinfeld
module ¢ of rank r defined over K is an IF;-algebra homomorphism

p: A — K{t}
a +— o

such that ¢; = ((t) + 1T+ - - + ¢, 7" € K{t} with¢, # 0.
Let p be the A-characteristic of K. If p = (0) (resp. p # (0)), then ¢ is
said to be of generic characteristic (resp. special characteristic).

Remark 2.2.4. Since ¢ : A — K{7} is an [F;-algebra homomorphism, it is
completely determined by ¢; € K{t}.
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Throughout this thesis, we always assume that Drinfeld modules are of
generic characteristic, that is, assume that any A-field structure:: A — K
is injective.

Remark 2.2.5. (1) More generally, let R be an A-algebra and let:: A — R

be its A-algebra structure. Then a Drinfeld module over R is defined to be
an [F-algebra homomorphism ¢ : A — R{7} such that

pr=1(t)+ 1T+ -+ 7 € R{t} with¢, € R™.

(2) Drinfeld modules are defined in a more general setting: let X be a
smooth projective, geometrically irreducible curve over IF,. Let co € X be a
fixed closed point and let A := I'(X\ {co}, Ox) be the IF;-algebra of rational
functions on X which are regular outside co. Then a Drinfeld .A-module
defined over an A-field (K,: : A — K) is an FF;-algebra homomorphism
¢ A — K{t} satisfying ¢, = 1(a) + Y, ¢sT° forany a € A and ¢, # 1(a)
for some a € A.

Let K be an A-field.

Definition 2.2.6. A homomorphism y : ¢ — 1 between two Drinfeld mod-
ules over K is an element y € K{7} such that

Ha = Yapl

for any a € A. Namely y makes the following diagram commutative

I
Gox — Gax

| |

Gu,K T> Ga,K

for any a € A.

A non-zero homomorphism y : ¢ — 1 is called an isogeny and then ¢
and ¥ are said to be isogenous. We say that p is an isomorphism if it is an
isomorphism of group schemes. It is easily seen that y is an isomorphism
if and only if u € K*. Hence every Drinfeld module ¢ which is isomorphic
to ¢ is given by ¢; = ¢~ ¢c for some ¢ € K*.

For a Drinfeld module ¢ : A — K{t}, denote by

Endg(¢) = {p € K{t}; upo = ¢pap foranya € A}
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the ring of endomorphisms of ¢ over K. Clearly ¢, € Endg(¢) for any
a € A and thus we have an embedding A — Endg(¢). Suppose that ¢ is
of rank 7. Since we now assume that ¢ is of generic characteristic, it follows
that Endg(¢) is a commutative A-algebra and free of finite rank < r as an
A-module by [Dri74, Corollary of Proposition 2.4].

Definition 2.2.7. We say that a Drinfeld module ¢ : A — K{t} of rank r
has complex multiplication if Endg(¢) is isomorphic, as an A-algebra, to an
A-order O of a finite extension E of F with [E : F| = r.

Example 2.2.8. For a rank-two Drinfeld module ¢ : A — K{7} determined
by ¢r = i(t) + AT + AT?, the j-invariant of ¢ is defined by

Aq—&-l

9) = "5

It is known that rank-two Drinfeld modules ¢ and ¢ over K are isomorphic
over K if and only if j(¢) = j(¢).

Let \/t € Fbe a square root of t € F. Regard F as an A-field by the
canonical inclusion A < F C F. Let ¢ : A — F{t} be the Drinfeld module
of rank two determined by

¢ = (VE+T)(VE+T) = t+ (VE+VE) T+ T2

Clearly p := v/t + T € Endp(¢) and u? = ¢y, so that the ring A[/#] injects
into Endz(¢). Since A[v/t] is a maximal A-order of the quadratic extension

= F(v/t) = Fy(\/t) of F, we see that A[v/t] = End(¢) and so ¢ has
complex multiplication. Suppose that g is odd. Then the j-invariant of ¢ is

ji=jlg) =t A+17) e F.
The Drinfeld module ¢ determined by
W =t+jT+ I

is defined over F and its j-invariant is j() = j. Hence ¢ = ¢ over F.
Namely ¢ has a model defined over F. This is the analogue of the fact that
an elliptic curve with complex multiplication by the ring of integer of an
imaginary quadratic field with class number one can be defined over Q.

Let ¢ : A — K{t} be a Drinfeld module. For any K-algebra Q, by
definition ¢ endows the additive group G, x(Q2) = Q) with anew A-module
structure defined by a- A := ¢,(A) for any A € QY and a € A. Denote by
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¢Q) this A-module. Clearly any homomorphism p : ¢ — ¢ between two
Drinfeld modules ¢ and ¢ over K induces an A-module homomorphism

In the case where () = K, for any non-zero element a € A, we define
the set of a-torsion points of ¢ by

plal = {A € pK; pa(A) = 0},

which is a finite torsion A-submodule of 4K. Since ¢ is now of generic
characteristic, it follows that ¢, is separable as an additive polynomial in
K(T). Hence ¢[a] is in fact a finite torsion A-submodule of ,K*P and hence
the absolute Galois group Gg of K canonically acts on it. Clearly the field
K(¢[a]) generated by all a-torsion points of ¢ is a finite Galois extension of
K. If ¢ is of rank r, then

Pla] = (A/aA)™

as an A-module by [Ros02, Proposition 12.4]. Thus the Gg-action on ¢[a]
induces an injective homomorphism

Gal(K(¢p[a])/K) > Autaan($la]) = GL,(A/aA).

In particular, if ¢ is of rank one, then K(¢[a])/K is an abelian extension.

2.3 Reduction theory and Galois representations

From now on, unless otherwise stated, we always regard any extension
tield F of F as an A-field via the inclusion A < F C F. We often consider
the case where F is a finite extension of F or its completion.

In this section, denote by K a finite extension of F.

Definition 2.3.1. Let v be a finite place of K.

(1) We say that a Drinfeld module ¢ : A — K,{7} of rank r over K, has
stable reduction if ¢ is K,-isomorphic to a Drinfeld module ¢ : A —
K, {7} satisfying

pr=t+cT+---+ 7 € Ok {t}and ¢, € Of

for some 1 <7 <r. In particular if ¢, € O , then we say that ¢ has
good reduction.
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(2) We say that a Drinfeld module ¢ : A — K{7} over K has stable reduc-
tion (resp. good reduction) at v if ¢ : A — K{t} C K,{7}, considered
as a Drinfeld module over Ky, has stable reduction (resp. good reduc-
tion) in the above sense.

Suppose that ¢ : A — K{t} has stable reduction at v. As in the no-
tations in Definition 2.3.1, the integer max{s;c; € Og } is called the stable
rank of ¢. By definition ¢ has good reduction if and only if its stable rank is
equal to the rank of ¢.

Remark 2.3.2. By Remark 2.2.5 (1), any Drinfeld module defined over Ok,
has good reduction since its rank and stable rank are equal.

Remark 2.3.3. On the other hand, let v, be an infinite place of K, that is,
a place above co. Then for any Drinfeld module ¢ : A — K, {7}, the
constant term of ¢ is t by definition and v, (f) < 0. Hence there is no
Drinfeld module ¢ with ¢; € Ok, {7}

It is known that every Drinfeld module has potentially stable reduction.

Proposition 2.3.4. Let v be a finite place of K and let ¢ : A — K,{7} be a
Drinfeld module of rank r. Then there is a finite extension L/K, such that ¢ :
A — Ky{t} C L{t} has stable reduction. Moreover we can choose such an L
which is a finite separable extension with e(L/Ky) | (° — 1) for some 1 <s < r.

Remark 2.3.5. It follows by Proposition 2.3.4 that every Drinfeld module
¢+ A — Ky{t} over K, of rank r has stable reduction over a finite sepa-
rable extension L/K, whose ramification index is a divisor of the integer
[Ti—1(g° — 1) depending only on r and 4.

Proof of Proposition 2.3.4. Write py = t+c1T+- - +¢, 7" € K,{7} and choose
an integer 1 < v’ < r such that

vl(cr/) < v(cs) (23.1)
qi’ _ 1 qS _ 1
foralll <s<r.

Take !a finite separable extension L of K, with e(L/K,) = g — 1. Let
w be the normalized valuation of L. Take an element 6 € L with w(0) =
—v(c,) and consider the Drinfeld module ¢ : A — L{t} determined by

P =070 = t+ 0T ey T+ 07 oy 4+ 07 e

IFor example, for a uniformizer @ € Ky, since 79" -1 _ @ € Ky[T] is an Eisenstein
polynomial and g" ' — 1 is not divisible by p, the extension L = Ky(@!/7 ~1) is separable
and totally tamely ramified with ramification index g" — 1 over K.
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Itis isomorphic to ¢ over L. Forany 1 < s < r, the inequality (2.3.1) implies

w6 e;) = (g7 —Dw(6) +w(c)
= _( - 1)0((:7’) + ew\vv(cs)

= (-1 (‘v(crf) +(q" 1) U(CS)1>
> (g 1) (—vlen) + ("~ 2L ) o

Thus we see that ¢y € O {7t} and w(OqV/*lcr/) = 0. Hence ¢ has stable
reduction over L. O

Remark 2.3.6. In particular, every rank-one Drinfeld module has poten-
tially good reduction at all finite places.

Let ¢ : A — K{t} be of rank r. For any monic irreducible element
€ A, the set of rt-torsion points ¢[7t] is a Gk-stable r-dimensional F-
vector space. Thus it carries an IF;-linear representation

ﬁ¢’n : Gk — Autp, (4?[7‘(]) ~ GLr(]Fn)

describing the Gg-action on ¢[7t]. It is called the mod m-representation at-
tached to ¢.

Theorem 2.3.7 (Pink and Riitsche). Let ¢ : A — K{1} be a Drinfeld module
with Endk(¢) = A. Then the mod 7t representation p,, - is absolutely irreducible®
for almost all monic irreducible elements T € A.

Proof. 1t follows from [PR09a, Theorem 4.1]. O

Remark 2.3.8. By contrast, for any Drinfeld module ¢ with Endg(¢) # A
and any monic irreducible element 77 € A, the mod 7 representation p,,
is never absolutely irreducible.

For any positive integer n, the map @[] — ¢[n"];A — ¢x(A) is
Gg-equivariant and {¢[7t"] },>1 becomes an inverse system. Write

Ar:=lmA/n"A
-l

for the rr-adic completion of A.

2We say that p ¢, 18 absolutely irreducible if p, O, F is irreducible.
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Definition 2.3.9. The inverse limit
Ta(9) := lim g["
n

is called the rr-adic Tate module of ¢.

By construction, if ¢ is of rank r, then the rr-adic Tate module T, (¢) is a
free Az-module of rank r on which Gk acts continuously. Hence it carries a
continuous Galois representation

Pp: Gk — Auta (Tr(9)) = GL(Anr).

The next proposition is an analogue of the Néron-Ogg-Shafarevich cri-
terion for good reduction of abelian varieties (cf. [ST68, Theorem 1]).

Proposition 2.3.10 (Takahashi [Tak82, Theorem 1]). Let ¢ : A — K{7} bea
Drinfeld module and = € A a monic irreducible element. Let v be a finite place
of K not lying above 7. Then ¢ has good reduction at v if and only if Tr(¢) is
unramified at v, that is, p, - (I,) = {1}.

Let T € A be a monic irreducible element and let v be a finite place of
K not lying above 7. Let ¢ : A — K{7} be a Drinfeld module of rank r
and assume that ¢ has good reduction at v. Since p, - is unramified at v by
Proposition 2.3.10, it follows that p,, . (Frob,) € GL,(A) is independent of
the choice of a lift Frob,. Denote by

Py(T) = det(T — py, (Frob,)|Tx(9)) € Ax[T]
the characteristic polynomial of Frob,. Then we have the following fact:

Proposition 2.3.11 (Takahashi [Tak82, Proposition 3 (ii)]). Let ¢, v and 7 be

as above. Then the polynomial P,(T) has coefficients in A and is independent of

7. Any root a of P,(T) satisfies |a| = q1/".

For a Drinfeld module ¢ : A — K{t}, denote by

Endg(¢) := {u € K{t}; p¢po = ¢opforanya € A}
the endomorphism ring of ¢ over K. We have the following.

Theorem 2.3.12 (Pink and Riitsche). Let ¢ : A — K{7} be a Drinfeld module
with Endg(¢) = A. Then for almost all monic irreducible elements m € A, the
representation p . is sutjective.
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Proof. This is the special case of [PR09b, Theorem 0.1]. ]

Remark 2.3.13. We see that the “reduction” of p,, . coincides with f,; ., that
is, the projection Auty (T.(¢)) — Autg, (¢[7]) induced by the reduction
map A, — [F; makes the following diagram commutative.

Gk — "+ Auty (Ta(9))
Autg, (9[71])

Hence Theorem 2.3.12 implies that the mod 7 representation g, , is also
surjective for all but finitely many 7t if Endg(¢) = A. This is an analogue
of Serre’s classical result [Ser72] on the surjectivity of mod ¢ Galois repre-
sentations attached to non-CM elliptic curves over number fields.

2.4 Tate uniformization

In this section, we see that every Drinfeld module over K, with stable re-
duction can be constructed from a Drinfeld module with good reduction
by dividing out a “lattice”. We follows the expositions in [Dri74, §7] and
[Leh09, Chapter 4 §3].

Let v be a finite place of a finite extension K of F. For a Drinfeld module
Y : A — K,{t}, consider the A-module lI,Kf}ep and the metric on it deter-
mined by the normalized valuation of K;P. A subset A C ¢Kf,ep is said to
be discrete if any ball of finite radius in K5 ' contains only finitely many
elements of A.

Let ¢ : A — Ok, {7} be a Drinfeld module defined over Ok,. We notice
that 1 has good reduction (see Remark 2.2.5 and Remark 2.3.2).

Definition 2.4.1. Let ¢ : A — Ok, {7} be as above. A p-lattice is a finitely
generated projective A-submodule A C ywK; T such that

(1) A is discrete,
(2) A is stable under the Gk, -action.
The rank of A is its rank as a projective A-module.

Remark 2.4.2. A y-lattice A is actually free of finite rank over A since A
is a PID. Since A is finitely generated over A, it is contained in a finite
separable extension of K,. Hence the Gk, -action on A factors through some
finite quotient of G, .



CHAPTER 2. PRELIMINARIES 25

Definition 2.4.3. A Tate datum of rank (r1,r2) over Ok, is a pair (¢, A),
where ¢ : A — Ok, {7} is a Drinfeld module of rank r; and A is a ip-lattice
of rank rp. The sum r = r; + r, is called the total rank of (y, A).

Let (i, A) and (', A") be Tate data over Ok,. A morphism of Tate data
we(p,A) — (¢, A) is a homomorphism y :  — ¢’ of Drinfeld modules
such that the induced A-module homomorphism

o pKo? — yKyP

satisfies u(A) C A'. It is called an isomorphism if p is an isomorphism of
Drinfeld modules satisfying j(A) = A’.

Then we obtain the following “analytic” description of stable Drinfeld
modules, so called Tate uniformization.

Proposition 2.4.4 (cf. [Dri74, Proposition 7.2] and [Leh09, Proposition 3.5]).
Let r1 and ry be positive integers and set r = r1 + ro. Then the category of Tate
data of total rank r over Ok, is equivalent to the full subcategory of all Drinfeld
modules of rank r over K, consisting of those having stable reduction. Moreover
there is a bijection between the following:

(1) The set of Ky-isomorphism classes of Drinfeld modules ¢ : A — Ky{t} of
rank r with stable reduction of stable rank ry.

(2) The set of isomorphism classes of Tate data (, A) of rank (r1, r2) over Ok,

Sketch of the proof of Proposition 2.4.4. We roughly explain the above corre-

spondence. See [Dri74, §7] and [Leh09, Chapter 4] for details. Notice that

the discreteness of -lattices is needed to use some analytic arguments.
Let (1, A) be a Tate datum over Ok, of rank (r1,r2) and consider the

power series
T
en(T) = TA 11 (1 — A) :
eA\{0}

It is an additive, [F;-linear formal power series with ey € K,[[T]] and con-
verges for all A € K; " by [Gos96, Propositions 4.2.4 and 4.2.5]. Thus it can
be regarded as an element of the non-commutative ring K,{{7} } of formal
power series in T over K,. Then, for any a € A, there is a unique ¢, € K, {7}
satisfying

eAPa = Paep.

These elements actually define a Drinfeld module ¢ : A — K,{7} of rank
r = 11 + r» with stable reduction of stable rank 7.
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Conversely, let ¢ : A — K,{7} be a Drinfeld module of rank r = r1 4 1,
with stable reduction of stable rank ry. After possibly replacing ¢ with a
K,-isomorphic Drinfeld module, we may assume that ¢, € Ok {7} for any
a € A. Then we see that there exist a unique Drinfeld module ¢ defined
over O, of rank r1 and a unique power series

u=1+ chrs € Og, {{t}}
s=1
with ¢ € p, and ¢; — 0 (as s — o0) such that

Wipa = Papt
for any a € A. Then u induces a surjective A-module homomorphism
KD o KT
whose kernel A := ker y is a ip-lattice of rank r — r; = 7. O

Let (¢, A) be a Tate datum corresponding to a stable Drinfeld module
¢ A — Ky{1} and let u € Ok, {{7}} be the power series as above. Let
a € A has positive degree. Then 1, induces a surjective Gk, -equivariant
A-module homomorphism

v Y (A) /A — AJaA

whose kernel is ¥, 1(0) = [a]. Since A = ker j, we see that (1) € ¢[a]
for any a € ;1 (A), so that ;1 (A)/A = ¢[a]. Therefore we get a G-
equivariant short exact sequence

0 — ¢la] = ¢pla] - A/aA — 0

of A-modules. Let Tt € A be a monic irreducible element. Then we also
obtain a Gg,-equivariant exact sequence

0— Tr(¢) = Tr(¢p) > A®AAr — 0 (24.1)

of A-modules.
We immediately obtain the following.

Proposition 2.4.5. Let ¢ : A — K{7} be a Drinfeld module over a finite exten-
sion K of F. Let Tt € A be a monic irreducible element and v a finite place of K. If
v does not lie above 7, then the Iy -action on T (¢) is potentially unipotent 3.

3Namely there exists a finite extension L/ Ky such that p o (o) € GL;(Ar) is a unipotent
matrix for any ¢ € Ir. See also §§ 3.3.1.
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Proof. By Proposition 2.3.4, we may assume that ¢ : A — K,{7} has stable
reduction. Then we have the exact sequence

0— Tr(¢p) = Tr(¢p) > A®AAr — 0

determined by the Tate datum (i, A) corresponding to ¢. Since ¢ has good
reduction, its 7r-adic Tate module T (1) is unramified at v by Proposition
2.3.10. We already see that the action of Gg, on A® 4 A is potentially un-
ramified. Hence we get the conclusion by the above exact sequence and
Lemma 3.3.2in §§ 3.3.1. O

Remark 2.4.6. By the theory of “analytic T-sheaves”(see [Gar01], [Gar02]
and [Gar03a]), the sequence (2.4.1) can be reinterpreted as follows. For any
Drinfeld module ¢ over K,, one can construct an analytic T-sheaf M(¢)
associated with ¢. Ttis alocally free 05, -module of finite rank on Aj with
some additional structures, where A}@ is the rigid analytic space associated
with the affine line A}<v = SpecA Xspeck, SpecK,. Then the 7r-adic Tate

module T (M(¢)) of M(¢) can be defined and it is canonically isomorphic
to Tr(¢). The Tate uniformization implies that there exist an analytic 7-
sheaf N which is potentially trivial and an exact sequence

0— N — M(¢) — M(p) — 0

of analytic T-sheaves. Since M +— T,(M) is a contravariant exact functor,
we obtain
0 — Tr(M(yp)) = To(M(¢)) = Tr(N) =0,

which coincides with the sequence (2.4.1) (for example, see [Gar03b, Exam-
ple 7.1]).

2.5 Cyclotomic function fields

We recall some properties of a function field analogue of cyclotomic exten-
sions of the rational number field Q (cf. [Hay74] and [Ros02, Chapter 12]).

“" 7

In this section, we will use the letters “a” and “n” as our typical non-zero
elements of A.

Definition 2.5.1. The Drinfeld module
C:A— F{t}

determined by C; = t + 7 is called the Carlitz module.
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The Carlitz module C is of rank one and has good reduction at all finite
places. For any non-zero n € A, we know that C[n] = A/nA as an A-
module. Let {, be a generator of C[n]. Then it is easy to see that C,({n)
is also a generator of C[n] if and only if (4,n) = 1. Thus, it follows that
F(Zn) = F(C[n]). We see that the action of Gal(F({,)/F) on C[n] is faithful
and so we have an injection

Gal(F(Zy)/F) < (A/nA)*. (2.5.1)

Hence F({,)/F is an abelian extension. Its arithmetic behavior is similar to
that of cyclotomic number fields:

Proposition 2.5.2. Let 7t € A be a monic irreducible element.

(1) Forevery e € Z~, F({re) is unramified at every place of F distinct from 1t
and oo. The place 7 is totally ramified with ramification index #(A/ ¢ A)* =

a5t (g —1).

(2) Let n € A be an element of positive degree. Then 7t is ramified in F({y) if
and only if (n, 71) = 1. We have [F({y) : F] = #(A/nA)*.

Proof. See [Hay74, Proposition 2.2] and [Ros02, Theorem 12.8]. O

Proposition 2.5.2 (2) implies that the map (2.5.1) is an isomorphism
Gal(F(Zn)/F) = (A/nA)*. We look at this isomorphism more closely. No-
tice that {,, is a generator of C[n]. If ¢ € Gal(F({»)/F), then clearly o ()
is also a generator of C[n]. Thus there is an element a € A with (a,n) =1
such that 0({n) = Cs(ln). The o is completely determined by this rela-
tion. Then it follows that the map o + a coincides with the isomorphism
Gal(F(gn)/F) = (A/nA)*.

For any a € A with (a,n) = 1, write 0, € Gal(F({»)/F) for the unique
element satisfying 0;({n) = Cs(ln). Then we have the following important
fact.

Proposition 2.5.3 (Hayes [Hay74, Corollary 2.5]). Let T € A be a monic irre-
ducible element not dividing n. Then the element o, € Gal(F({,)/F) coincides
with the Artin automorphism * (7, F(Z,)/F) for .

We introduce an important Galois character as follows.

4see §5.2.
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Definition 2.5.4. Let 77 € A be a monic irreducible element. The character
Xr(:= pC,n) :Gr — Fy
describing the Gp-action on C|r] is called the mod 7t Carlitz character.

By definition, it factors as x : Gr — Gal(F({»)/F) = F} and satisfies
the following.

Proposition 2.5.5. Let 7y € A be a monic irreducible element with 1y # 7.
Then X is unramified at 7o and we have

Xr(Frob, ) =m (mod 7).

Proof. By Proposition 2.3.10 or Proposition 2.5.2 (2), it follows that x is
unramified at 77g. Since Frob | F(n) = (710, F({x)/ F) holds, the above con-
gruence follows from Proposition 2.5.3. O

Remark 2.5.6. In general, let K be a finite extension of F and let v be a place

of K above . If 71 # 719, then we have ) (Frob,) = Xn(Frob{f[‘)"O). Thus

X~ (Frob,) = ngv‘"o (mod 1)

holds.

The last task in this section is to study the ramification of the infinite
place co. Let n € A have positive degree. Define

J = {ox € Gal(F(Zn)/F);x € F,'}

and consider the fixed subfield F(.)™ C F({x) by . We notice that | = IF
and [F(Cu) : F(n)™] = q — 1. Then we have:

Proposition 2.5.7. The infinite place co of F splits completely in F({,)" and
every place of F({n)" above co is totally and tamely ramified with ramification
index g — 1.

Proof. See [Ros02, Theorem 12.14]. O

Corollary 2.5.8. For any n € A with n # 0, the constant field of F(y) is Fy,
that is, F(Cy)/F is a geometric extension.

Proof. 1t is trivial when n € . Suppose that n has positive degree. Let
Weo|voo be places of F({y)/F({y)" above co. Then Proposition 2.5.7 means
that fi, o, = fou|e = 1, s0 that the residue field at w is F;. Since the
constant field of F({,) injects into the residue field at we, the result follows.

O






Chapter 3

Rasmussen-Tamagawa type conditions

In this chapter, we explain a motivation of the Rasmussen-Tamagawa con-
jecture and the precise statement of it. After that, following the analogy
between number fields and function fields, we define the set Z(K, r, i) of
K-isomorphism classes of Drinfeld modules with Rasmussen-Tamagawa
type conditions.

3.1 Thara’s question

The absolute Galois group Gy of a global field k is a fundamental object in
number theory. However its structure is very complicated and still myste-
rious. To describe this, it is important to study various arithmetic objects on
which Gy acts. Typical examples of such objects are Galois representations
defined by the /-adic Tate modules of abelian varieties over k and the ¢-adic
étale cohomology groups of schemes over k, where / is a prime number. In
the case where k is a function field, Drinfeld modules also provide Galois
representations.

Using the étale fundamental groups, one can construct other such ob-
jects so-called outer Galois representations. For a connected scheme X over
k, one can define the étale fundamental group 71 (X), which is an scheme-
theoretic analogue of a topological fundamental group. Indeed if X is of
finite type over the field of complex numbers C, then its étale fundamental
group is isomorphic to the profinite completion of the topological funda-
mental group of X(C), the complex analytic space attached to X. It is well-
known that the étale fundamental group of Spec k is precisely the absolute
Galois group 711 (Spec k) = Gy.

Suppose that X is a quasi-compact and geometrically irreducible scheme
over k and set X := X Xspec k Spec k°*P. Then it follows that the étale fun-
damental group 711 (X) is an extension of Gy by 711 (X). Namely there is a

31
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short exact sequence
1= m(X) - mX) =G —1, (3.1.1)

which is called the homotopy exact sequence. Denote by Inn (711 (X)) the sub-
group of Aut (711 (X)) consisting of all inner automorphisms of 7y (X). It is
a normal subgroup of Aut(7; (X)) and so we have the group

Out(711(X)) := Aut(r11(X))/Inn(711 (X))

of outer automorphisms of 711 (X). For any ¢ € Gy and y € m1(X), consider
a conjugation x; lyx, by a lift x, € 711(X) of ¢, which is also an element of
71(X) by the exact sequence (3.1.1). Thus we have an automorphism y
x;yx, of 711 (X). It follows that this automorphism is uniquely determined
by ¢ up to inner automorphisms. Thus we obtain a group homomorphism

b: Gy — Out(7T1(X))

so-called the outer Galois representation.

It is believed that such outer representations have ample information
about Galois groups. Let us consider the case where k = Q and X =
P10 = ]qu3 \ {0,1,0}. Then Belyi’s result in [Bel80] shows that the outer

Galois representation
CDQ : GQ — Out(rcl (1[)(1],1,00))

is injective. Therefore studying the group Out (7t (P ; ,)) is helpful to un-
derstand the structure of Gq.
Thara studied the structure of ®g and Out(71(IPj, ,)) as follows. For

a fixed prime number /, denote by 7{ (P}, ,,) the maximal pro-¢ quotient
of 711(11)(1)/1,00). It is a characteristic quotient of 711 (H)(l),l,oo) and so there is a
canonical surjection Out(7y(Pf; .,)) — Out(n{(IP}; ,)). Then the pro-(
outer representation

Pq, 1 Gg — Out(7f (P )

is defined by the following diagram:

@
Go —— Out(mi(Pf, )

T |

Out(7|(P}.))-



CHAPTER 3. RASMUSSEN-TAMAGAWA TYPE CONDITIONS 33

Denote by iy~ = - (Q) the set of all /-power roots of unity in Q. Thara’s
result in [Tha86] shows that the fixed subfield

QQ/[ = ler (bQ,é

of Q is an infinite non-abelian pro-£ extension of Q (s~ ) unramified outside
¢, that is, unramified at all places not lying above ¢. Therefore if we write
Aq, for the maximal pro-¢ extension of Q (i~ ) unramified outside /, then

Qg € Aoy
holds. Ihara asked the following:

Question 3.1.1 (Ihara [Iha86]). For any prime number ¢, does Qg = Agy
hold?

Remark 3.1.2. If /is odd and regular, then Scharifi’s work [Sha02, Theorem
1.1] shows that the question is equivalent to a conjecture of Deligne and
Ihara on the nature of a certain graded Lie algebra constructed from the
lower central series of nf(][’(l),l,oo). This conjecture is recently proved by
Brown in [Bro12]. Hence the answer to Thara’s question is given in the odd
regular prime case. However it is still open in general.

3.2 The Rasmussen-Tamagawa conjecture

3.2.1 Motivations Let k be a finite extension of Q and let ¢ be a prime
number. Denote by (), the fixed subfield of k5P by ker ®@q /|, and by A ¢
the maximal pro-¢ extension of k() unramified outside ¢. As in §3.1, we
see that () C Ay . In this situation, does the equality (0 ; = Ay, hold? To
consider this open question, it is worth studying subfields of (), arising
from /-power torsion points of abelian varieties in the following reason.

Let X be an abelian variety over k. Let X" be the dual abelian variety
to X and let 6 : X — X" be a polarization. Then it is known that the
polarization 6 induces a non-degenerate pairing

¢ 1 Vi(X) x Vi(X) = Qu(1)

of rational /-adic Tate module V;(X) := T;(X)®z,Q, of X, where Q(1) is
the one-dimensional Q-vector space on which Gy acts via the ¢-adic cyclo-
tomic character. By the paring, we see that

k(pe) C R(X[7]),
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where k(X[(%]) = k(U,>1X[¢"]) is the field generated by all /-power tor-
sion points of X. See [Mum?70, §20] for details.

If X has good reduction at any finite place of k not lying above ¢, then by
the Néron-Ogg-Shafarevich criterion in [ST68] the extension k(X [¢*]) /k(X[¢])
is pro-¢ and unramified outside ¢. Hence if k(X[¢]) C Ay, then also
k(X[¢*]) C Ak, In this case, to consider the question of Thara, it is worth
studying whether or not k(X[¢*°]) C Q.

For example, if X is the Jacobian variety of one of the following curves
over k, then it is known that k(X [¢*°]) C O, holds:

e Fermat curves or Heisenberg curves for any ¢ [AI98, §0.6],
Principal modular curves X(2"), ¢ = 2 [AI98, §0.6],

Elliptic curves E/Q with good outside ¢ = 2 [Ras08, Theorem 1.1],
Elliptic curves E/Q with good outside ¢ = 3 [PaR07, Corollary 4],

Modular curves X(£"), Xo(¢") and X;(¢"), ¢ = 2,3 [PaR07, Theo-
rem 1 and §3.2 ].

3.2.2 Statements of conjectures and known results By the above reason,
we are interested in the existence of abelian varieties X over k satisfying
k(X[€°]) C Ayy for some prime number ¢. Notice that such X has good
reduction at any finite places of k not lying above ¢ by the Néron-Ogg-
Shafarevich criterion in [ST68].

Despite the existence of these examples for some small / as in the above
subsection, the constraints on such abelian varieties are strong and so such
abelian varieties are quite rare. For an abelian variety X over k, denote
by [X] its k-isomorphism class. For a positive integer ¢ > 0 and a prime
number ¢, define

(kg 0) = {[X]; dim X = gand k(X[{*]) C Ags}.

For a finite set S of finite places of k, we also define ¢ (k, g, S) to be the set of
k-isomorphism classes of g-dimensional abelian varieties over k which have
good reduction outside S. If S contains all places above ¢, then <7 (k, g, () C
9 (k, g,S). Faltings proved in [Fal83] the conjecture of Shafarevich: for fixed
positive integer d and fixed k,g, and S, the subset of ¥(k, g, S) consisting
of those abelian varieties which admit a polarization of degree d is finite.
In [Zar85, Theorem 1], Zarhin later improved Faltings” result to give the
finiteness of ¢4 (k, g, S) for any k, ¢ and S. Consequently the set <7 (k, g, ¢) is
also finite. By the structure lemma (Lemma 3.3.1), we have the following
equivalence. See also the proof of Proposition 3.3.6.
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Proposition 3.2.1. For an abelian variety X over k and a prime number ¢, the
following conditions are equivalent:

(RT-1) k(X[¢*]) € Axe,

(RT-2) X has good reduction at any finite place of k not lying above ¢ and
k(X[€])/k(py) is an L-extension,

(RT-3) X has good reduction at any finite place of k not lying above ¢ and the
mod { representation px, : Gy — Autg,(X[{]) ~ GLyg(IF,) is of the

form
Xlgl * e *
ip
~ Xi
oxe = ’
*
ing
X¢

where X is the mod ¢ cyclotomic character and dim X = g.

In 2008, Rasmussen and Tamagawa stated the following conjecture (the
Rasmussen-Tamagawa conjecture):

Conjecture 3.2.2 (Rasmussen and Tamagawa [RT08, Conjecture 1]). Let k/Q
be a finite extension and ¢ > 0. Then for any sufficiently large prime ¢, the set
o (k, g, 0) is empty.

This conjecture says that there exists a positive constant C = C(k,g) > 0
depending only on k and g such that «/(k, g,¢) = @ for any prime ¢ > C.
Since <7 (k, g, ¢) is finite for all /, the conjecture is equivalent to saying that
the disjoint union

o (k,g) = U,sz%(k,g,ﬁ)
l

is finite. Under the assumption on the Generalized Riemann Hypothesis
(GRH, for short) for Dedekind zeta functions of number fields, Rasmussen
and Tamagawa proved the conjecture is true in [RT17, Theorem 5.1]. There-
fore it is believed that the conjecture is true in general. Without the assump-
tion of GRH, the conjecture is true in the following cases:

e k= Q and g =1 [RTO08, Theorem 2],
e k= Qand g = 2,3 [RT17, Proposition 7.1 and Proposition 7.2],
e k/Q be a quadratic extension and g = 1 [RT17, Proposition 7.4],
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e k/Q is a Galois extension whose Galois group Gal(k/Q) has expo-
nent 3 and ¢ = 1 [RT17, Proposition 7.7].

Sometimes one can prove non-existence of subsets of <7 (k, g, ¢) (cf. Re-
mark 3.2.7). For example,

o for abelian varieties with everywhere semistable reduction [Ozel1,
Corollary 4.5] and [RT17, Theorem 3.6],

e for abelian varieties with abelian Galois representations [Ozel3,
Corollary 1.3],

e for QM abelian surfaces over certain imaginary quadratic number
fields [Aral4, Theorem 9.3].

For an arbitrary field / and a positive integer n > 0, define
In(F) :={K/[K: F|=n}

to be the set of finite extensions of F of degree n. Rasmussen and Tama-
gawa also stated a uniform version of conjecture 3.2.2:

Conjecture 3.2.3 (Rasmussen and Tamagawa [RT17, Conjecture 2]). Let g >
0 and n > 0 be positive integers. Then there exists a positive constant C =
C(g,n) > Osuch that o/ (k,g,{) = @ for any k € %#,(Q) and any prime £ > C.

Under the assumption of GRH, one can prove the conjecture in the odd
degree case:

Theorem 3.2.4 (Rasmussen and Tamagawa [RT17, Theorem 5.2]). Assume
that the Generalized Riemann Hypothesis. Then Conjecture 3.2.3 is true for any
g > 0and any odd n.

Rasmussen and Tamagawa also prove the next stronger result:

Theorem 3.2.5 (Rasmussen and Tamagawa [RT17, Theorem 5.3]). Let k¢ be
a finite extension of Q and assume the Generalized Riemann Hypothesis. For any

¢ > 0and any odd n > 0, there exists a positive constant C = C(g,n) > 0 such
that </ (k,g,0) = @ forany k € F, (ko) and £ > C.

Although the uniform version of the conjecture is not proved without
the assumption of the GRH, several partial results are known. For example,
the result of Rasmussen and Tamagawa [RT17, Corollary 3.8] shows that for
any ¢ > 0 and any n > 0 not divisible by 4, there exists a positive constant
C = C(g,n) > 0 such that &7**(k, g,¢{) = @ for any k € .%,(Q) and any
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¢ > C, where @*(k, g, /) is the subset of </ (k, g, ¢) consisting of those k-
isomorphism classes of abelian varieties which have semistable reduction
at every finite places of k. In the CM elliptic curve case, Bourdon proves the
following finiteness result:

Theorem 3.2.6 (Bourdon [Boul5, Theorem 1]). Let k be a finite extension of
Q of degree n. Then there exists a positive constant C = C(n) > 0 with the
following property: If there exists an elliptic curve E over k such that Eq has
complex multiplication and k(E[¢*]) is a pro-{ extension of k(ji,), then £ < C.

Remark 3.2.7. Define
A M(k,g,0) == {[X] € o/ (k,g {); Xohas complex multiplication}.

Then the above result of Bourdon implies that Conjecture 3.2.3 for the set
o M(k,1,¢) is true. For any ¢ > 0 and n > 0, the recent work of Lom-
bardo [Lom, Theorem 1.3] shows that there exists a positive constant C =
C(g,n) > 0such that #“M(k, g, ¢) = @ for any k € .%,(Q) and ¢ > C.

3.3 Definition of the set (K, r, 1)

The main task of this section is to formulate a Drinfeld module analogue
of the Rasmussen-Tamagawa conjecture. As usual, we denote by K a finite
extension of F and by r a positive integer. Let 71 € A be a monic irreducible
element. As an analogue of <7 (k, g, (), let us define the set Z(K,r, 7r) of K-
isomorphism classes of Drinfeld modules with Rasmussen-Tamagawa type
conditions.

3.3.1 Group theoretic lemmas In the number field case, <7 (k, g, ¢) is de-
termined by the equivalent conditions (RT-1), (RT-2), and (RT-3) in Propo-
sition 3.2.1. The equivalence of them follows from the criterion of Néron-
Ogg-Shafarevich and the next group theoretic lemma:

Lemma 3.3.1 (cf. Rasmussen and Tamagawa [RT17, Lemma 3.4]). Let F be
a finite field of characteristic £. Suppose G is a profinite group, N C G is a pro-{
open normal subgroup, and C = G/ N is a finite cyclic subgroup with #C|#F*.
Let V be an F-vector space of dimension r on which G acts continuously. Fix
a group homomorphism xo : G — F* with ker xo = N. Then there exists a
filtration

0O=VWcCcWcCc---CcV,=V

of F-vector spaces such that for each 0 < s <,
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o V, is G-stable,
° dimﬂz VS =5,

o the G-action on Vi/V;_q is given by )(f;‘ for some integer is satisfying
0<i; < #C.

Proof. 1t is proved by induction on r. The r = 1 case is trivial since G
must act on V via a power of xo. Suppose that the result holds for spaces
of dimension » — 1. Let V be an FF-vector space of dimension r with G-
action. Consider the action of N on V. Then we see that it factors through
some finite /-group. Hence every N-orbit of V has an /-power order and
so the subspace VY of fixed points is non-trivial. Indeed if VN = {0}, then
it follows that #V — 1 is divisible by ¢, which is impossible. Since N is a
normal subgroup of G, we see that VN is G-stable and there exists a well-
defined action of C on VN. Let v € C be a generator of C, so that C = ().
Set c := #C.

Choose an ordered basis for VN and denote the associated representa-
tion by p : C — Autg(VN) = GL4(F), where d = dimg VN. Since p(7)° is
the identity matrix, the minimal polynomial of p(y) splits completely over
IF. Thus there is an eigenvector w € VN of p(7y) with eigenvalue ¢ € F* sat-
isfying ¢¢ = 1. The homomorphism o : G — F* induces an isomorphism
Xo between C and the cyclic subgroup of F* of order c. Since ker xo = N,
it follows that §o(7y) has exact order ¢ and so & = ¥o(7y)’ for some integer j
satisfying 0 < j < c.

Let Vi C VN be the subspace generated by w. Clearly V; is G-stable
and the G-action on V; is given by x}. Consider the induced action of G on
the quotient V' := V/V;. Since this quotient is of dimension r — 1, by the
assumption of induction there exists a filtration

(O}=Vjc.---cv =V

of G-stable subspaces of V' such that forall 0 < s < r —1, dimg V] = s and
G acts on V//V!_, via x with 0 < il < c. LetIT: V — V/(= V/1;) be
the natural projection. Set Vg := {0} and V; := IT"}(V/ ;) for1 <s <r.
Then the restriction of IT to V; is a G-equivariant surjection V; — V/_; and
hence the induce isomorphism V;/V;_1 = V! | /V!_, is also G-equivariant
foreach1 < s <r. If weseti; =i, ; foreach 1 < s < r, then the filtration
{Vs}._, has the required properties. O

We shall prepare two fundamental lemmas which are needed in the
next subsection. Let F be a field of positive characteristic p and U €
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GL,(F) for a positive integer n. We say that U is unipotent if U — I, is
nilpotent, where I,, € GL,(F) is the identity matrix. Denote by

1 % --- =

DT, (F) := 5 € GL,(F)

1

the subgroup of GL, (F) consisting of those triangular matrices with diag-
onal elements equal to 1.

Lemma 3.3.2. Let F and n be as above.

(1) U € GL,(F) is unipotent if and only if it is of p-power order.

(2) The subgroup DT, (F) is a maximal unipotent subgroup of GL, (F). All
maximal unipotent subgroups of GL,,(F) are conjugate to DT, (F) under GL, (F).

Proof. See [Zas69, Theorem 1 and Theorem 2]. O

Next, for any positive integer n and any local ring R with residue field
F, denote by
I'v(R) := ker (GL,(R) — GL,(F))

the kernel of the canonical surjection induced by the reduction map R — TF.

Lemma 3.3.3 (cf. [Gou0l, Lemma 5.1 and Problem 5.1]). Let n be a positive
integer. Let R be a complete noetherian local ring with finite residue field IF of
positive characteristic p. Then T',(R) is a pro-p group.

Proof. Let m C R be the maximal ideal of R. Then by definition R is iso-
morphic to @k R/mF. For every positive integer k, denote by

fi: Ty(R/m*Hh) — T, (R/mh)

the homomorphism induced by the canonical map R/m*! — R/mk. Then
the groups T',(R/m*) form an inverse system by f; and we see that

T(R) 2 Jiml, (R/m").
k

Therefore it suffices to show that I';(R/m*) is a p-group for every k. To
prove this, we check that both ker f; and Im fy are p-groups.
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We see that ker f; consists of those matrices whose off-diagonal entries
are in the ideal m*/m**! and whose diagonal entries are in 1 + m*/m*+1,
Namely we have

ker fi = 14 M, (mF/m 1),
Here it is isomorphic to the additive group M,,(m*/m**1). Indeed any two
matrices X and Y in M, (m*/m**1) satisfy XY = 0 and so the map

1+M,(mk/m*+1) = M, (mf/mkt)
1+ X > X

is a group isomorphism. Since m*/m‘*! is a one-dimensional IF-vector
space, the group M, (m*/m**1) is a p-group and hence ker f; is also a p-
group.

We next prove that Im f; is a p-group by induction on k. Notice that
I(R/m) =T,(F) = {1} and soIm f; = {1} is a p-group. Suppose that
Im fi_; is a p-group for an integer k > 2. Then

1 = ker fy_1 NIm fr — Im f fk%l Im fr_q

is exact and both ker fx_1 NIm f; and Im f;_; are p-groups, and so is Im f.
O

3.3.2 Equivalent conditions Let ¢ : A — K{7} be a Drinfeld module
of rank r and let 7 € A be a monic irreducible element. We give some
conditions which are equivalent to the condition (D1)+(D2) in Chapter 1.

Recall that the mod 7t Carlitz character x : Gk — Autg, (C[rt]) = F} is
an analogue of the mod / cyclotomic character. Let {, € C[rt] be a generator
of C[r] as an A-module. Then we have K(C[t]) = K({r). Consider the
subfield

L= K(g[x)) NK(Zx)

of K(¢[rt]). Then we have the following equivalent conditions.
Lemma 3.3.4. Let ¢, 7t and L be as above. Then the following conditions are
equivalent.

(@) K(¢[r])/L isa p-extension,
(b) The mod 7t representation ﬁl]),ﬂ’cL restricted to Gy, is of the form
1 % --- x

- 1
Pyl =~ . ,
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(c) ¢ satisfies (D2), that is, the mod 71 representation pg r is of the form

XZ;[ % DR %

*
iy
Xm

for some integers 0 < is < g, — 1.

Proof. Since K(¢[n]) is the fixed subfield of K* by ker p, -, the represen-
tation p; . factors through an injection

5 Gal(K(¢[n])/K) — GL,(Fy).

Then it follows that p,, (G1.) = p(Gal(K(¢[r])/L)) C GL/(Fr). By Lemma
3.3.2 we see that Gal(K(¢[r])/L) is a p-group if and only if p,, .(Gr) is a
unipotent subgroup of GL,(Fr). In this case, up to conjugation p,, ,(Gr) is
a subgroup of DT, (IF ;). Hence (a) and (b) are equivalent.

Suppose that (c) holds. By definition, it follows that x(c) = 1 for any
element 0 € Gg(;,)- Now p, . factors through Gal(K(¢[n])/K), so that
Pp,7(Gk(z,)) = Pg,(GL). Hence (c) implies (b).

Finally suppose that (a) holds. Consider the composite field M :=

K(¢[r], {r) of K(¢[r]) and K(Cr).

M := K(¢[7T]/ gn)

Since L = K(¢[rr]) N K({x), we see that [M : K({r)] = [K(¢[m]) : L]
and therefore M /K({r) is also a p-extension. By construction, both Pg,r
Gk — GL,(Fx) and x : Gk — [} factor through the Galois group
G := Gal(M/K). Denote by xo : G — F} the character given by the
decomposition

Xr: Gk — G % FX.

Then we have N := ker xo = Gal(M/K({r)), which is a normal p-subgroup
of G. Hence applying Lemma 3.3.1 to V = ¢[7], G, xo, and N as above, we
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see that the semisimplification pj, is isomorphic to Xi® - @ x't for some
integers i; with 0 < i; < #G/N = #Gal(K({»)/K) < g — 1. Hence (c)
holds. O

Remark 3.3.5. Unlike the abelian variety case, the field K(¢[7r]) may not
contain K({r). For example, for x € Fy\{1}, consider the rank-one Drin-
feld module ¢ over F determined by ¢; = t + xT and suppose g # 2. Then
the fields F(¢[t]) and F({;) are generated by the roots of ¢ + xT9"! and
t + T7-1, respectively. By Kummer theory, we see that F(¢[t]) # F(;), so

that F(¢[t]) 2 F(Cr).

Using the above lemma, we can formulate the Rasmussen-Tamagawa
type conditions for Drinfeld modules as follows. Consider the field

K(g[m™]) := K({, ., ¢[7"])

generated by all t-power torsion points of ¢. Notice that it is the fixed
subfield of K*F by the kernel of the rr-adic representation p,, . : Gk —
GL,(Ar).

Proposition 3.3.6. Let the notations be as above. Then the following conditions
are equivalent.

(DR-1) K(¢[7™®])/L is a pro-p extension which is unramified at any finite place
of L not lying above T,

(DR-2) ¢ has good reduction at any finite place of K not lying above 1t and
K(¢[r])/L is a p-extension,

(DR-3) ¢ satisfies (D1) and (D2).

Proof. The proof is parallel to that in the abelian variety case. Clearly both
Py~ and p,, - factor through Gal(K(¢[7*])/K) and so we can regard them
as representations of Gal(K(¢[r®])/K). By Remark 2.3.13, we have the
following diagram

Gal(K(9[r™]) /K) — "~ GLy(Ax)
GL.(Fy).

It implies that
ker py, » = Gal(K(¢[7™]) /K(¢[7])).



CHAPTER 3. RASMUSSEN-TAMAGAWA TYPE CONDITIONS 43

Here p,, . : Gal(K(¢[n*])/K) — GL:(Az) is injective and so kerp,, . is
embedded into the kernel I',(A) of GL,(Ax) — GL,(F). Since I',(A) is
a pro-p group by Lemma 3.3.3, the extension K(¢[r™])/K(¢p[m]) is always
pro-p. Consequently K(¢[7t™])/L is pro-p if and only if K(¢[rt])/L is a p-
extension. By Proposition 2.3.10, we know that ¢ has good reduction at
any finite place v of K not lying above 7 if and only if v is unramified in
K(¢[r]). Hence the result follows from Lemma 3.3.4. O

Now we can define a Drinfeld module analogue of the set <7 (k, g, ).

Definition 3.3.7. Let K, r and 7t be as above. We define (K, r, 1) to be
the set of K-isomorphism classes [¢] of Drinfeld modules ¢ : A — K{t} of
rank r satisfying the equivalent conditions in Proposition 3.3.6.

Remark 3.3.8. In the abelian variety case, the set <7 (k, g, ¢) is always finite
by the Shafarevich conjecture (cf. §§ 3.2.2). However the Drinfeld module
analogue of this conjecture does not hold, see Example 6.2.1. Therefore it is
not known whether or not 2 (K, r, r7) is finite. If r > 2 and 7t = ¢, then we
prove that Z(K, r, t) is infinite in Chapter 6.

Remark 3.3.9. The original conjecture of Rasmussen and Tamagawa is for-
mulated for abelian varieties of arbitrary dimension, and so we would like
to formulate its function field analogue for some higher dimensional ob-
jects (recall that Drinfeld modules are analogues of elliptic curves).

In [And86], Anderson introduced objects called t-motives as analogues
of abelian varieties of higher dimensions, which are also generalizations
of Drinfeld modules. In fact the category of Drinfeld modules is anti-
equivalent to that of £-motives of dimension one. It is known that f-motives
have the notions of good reduction and Galois representations attached to
their 7t-torsion points (see, for example [Gar(01]), so that we can consider
the conditions (D1) and (D2) for t-motives. Moreover, Proposition 3.3.6 is
also generalized to t-motives since the Galois criterion of good reduction
for t-motives holds.

Therefore the set .# (K, d, r, 1) of isomorphism classes of d-dimensional
t-motives over K of rank r satisfying the Rasmussen-Tamagawa type con-
ditions can be defined and the following question makes sense: Is the set
A (K, d,r, m) empty for any 7t with sufficiently large degree?






Chapter 4

Inertia action on torsion points

Throughout this chapter, let 7 € A be a monic irreducible element and K
a finite extension of F. In this chapter, studying the ramification of mod 7
representations attached to Drinfeld modules, we show some non-existence
results on certain Drinfeld modules. As a corollary of them, we have a part
of Theorem 1.0.2 (= Theorem 4.3.9).

In §4.1, we introduce the notion of tame inertia weight, which is a key tool
to prove the non-existence theorems. In §4.2, considering the tame inertia
weights of the mod 7t Galois representation attached to a Drinfeld module
¢ : A — K{t}, we define an invariant e, (¢) (Definition 4.2.5) and prove
some important properties on it. In §4.3, we define a set D(K,r, 7T, d) of
K-isomorphism classes of certain Drinfeld modules satisfying Z(K,r, ) C
D(K,r, m,d). Using some facts on e, (¢), we prove the emptiness of the set
when 7t has large degree, which implies Theorem 4.3.9.

4.1 Tame inertia weights

Let u be a finite place of K above 7. For a fixed separable closure K; " of
K, with residue field [F,, denote by K¥* (resp. K!,) the maximal unramified
(resp. maximal tamely ramified) extension of K, in K;F. Notice that I,
is isomorphic to Gal(K; ™ /K}"). Denote by I := Gal(K;F/K}) the wild
inertia subgroup of Ig,. It is a normal subgroup of Ig, and then we define
Iy, = Ix,/I¥, = Gal(K}, /Ky"), which is called the tame inertia group of K.

4.1.1 Fundamental characters Let d be a positive integer and FF the finite
field with g% elements in IF,,. Then T is the finite extension of IF; of degree
d. Write pq _(Ki?) for the set of (g% — 1)-st roots of unity in K;* and

fix the isomorphism ,q L (K;P) = F* coming from the reduction map

45
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OKZep — IF,,. For a uniformizer @ of K, choose a solution 77 € K to the

equation X7 — @ = 0 and define

Se ~
wag,: Ik, = pga g (KF) S F

It is independent of the choices of @ and 7 and factors through I (cf.
[Ser72]).

Definition 4.1.1. The Gal(IF/IF,)-conjugates of w; g,
(War,) T : Ty, —F* (0<i<d-—1)
are called the fundamental characters of level d.

It is easy to check that

T gt it

(wak,) = w1k,

and (w, g )% ! = 1. For any finite extension L of K,,, we see that (wy g, )|, =
(wq )L/ K) by definition.

As an analogue of Serre’s classical result on the mod ¢ cyclotomic char-
acter [Ser72, Proposition 8], the following fact is known.

Proposition 4.1.2 (Kim [Kim09, Proposition 9.4.3. (2)]). The character (w1 g, )™
coincides with the mod 7t Lubin-Tate character restricted to Ik, .

Remark 4.1.3. The mod 7t Lubin-Tate character is the character describing
the Gk, action on the 7r-torsion points of Lubin-Tate formal group over Ok,
associated with 7. It is also known that it coincides with the mod 7t Carlitz
character x restricted to Ix,, so that xr = (w1, )%~ on I, .

4.1.2 The definition of tame inertia weights Let V be a d-dimensional
irreducible [F-representation of Ix,. Then we see that the action of Ix, on
V factors through I}<u as follows. Since IIV<Vu is a normal subgroup of I, the
fixed subspace V& of V is stable under the action of I, . The irreducibility
of V implies that V&« = V or 0. Since I is a pro-p group, there is a
non-zero element of V fixed by Iy’ and hence VK = V. Consequently the
wild inertia subgroup I¥ acts on V trivially. Thus V' can be regarded as a
representation of I .
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Using Schur’s lemma, we see that E := End; (V) is a finite field of

order g%. Therefore we can regard V as a one-dimensional [E-representation
of I . Denote by p : IIQM — IE* the character describing the I -action on

V. Fix an isomorphism f : [E —=+ FF and consider the composition
pp: It s Bnd (V)" S X

Then we have the following commutative diagram:

=l
<3
>

t _ 1E>< 1F><

R

Autg (V) = Endp (V) x

~

Since I}<u is pro-cyclic and wy g, is surjective, there exists an integer 0 <
n < g% — 2 such that ps = (wy,)". If we decompose

n=jo+ g+ +ja1qs "

with integers 0 < j; < g — 1, then the set {jo, j1,...,js—1} is independent
of the choice of f.

Definition 4.1.4. For a d-dimensional irreducible [F,-representation V of
Ik,, the integers jo,j1,...,js—1 as above are called the tame inertia weights
of V. For any [F-representation § : Gk, — Autg_ (V), the tame inertia
weights of p are the tame inertia weights of all the Jordan-Holder quotients
of V|, . Denote by TIk, (0) the set of tame inertia weights of .

Lemma 4.1.5. Let o : G, — Autg, (V) be an F-representation and assume
that I, acts on V unipotently. Then Tlg, (p) = {0}.

Proof. By Lemma 3.3.2, the semisimplification p*° of p is isomorphic to a
direct sum of the trivial character. Hence Tlk, (§) = {0} by definition. [

Let us now consider the tame inertia weights of more 7t representations
attached to Drinfeld modules with good reduction. By [Gar01, Theorem
2.14], the following holds.

Proposition 4.1.6. Let ¢ : A — K, {7} be a Drinfeld module. If ¢ has good
reduction, then every tame inertia weight j of p, . satisfies 0 < j < ey
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4.2 Tame inertia weights of stable Drinfeld modules

Fix a monic irreducible element 7 € A. Let u be a finite place of K above
mand let ¢ : A — K, {7} be a Drinfeld module of rank r. By using Tate
uniformization (Proposition 2.4.4), if ¢ has stable reduction, then there ex-
ists a unique (up to isomorphism) Tate datum (¢, A) of rank (ry, ;) with
r = r1 + ry corresponding to ¢. Then A/tA = A®4F,; and we have a
Gk, -equivariant short exact sequence

0 — ] = ¢p[t] > AQsF — 0 (4.2.1)

of [F;-vector spaces. We consider the following condition (SU) for Drinfeld
modules over K,,.

(SU) ¢ : A — K, {7} hasstable reduction and I, acts on A® oIF; unipo-
tently.

Then as an extension of Proposition 4.1.6, we obtain the following estimate
of tame inertia wights.

Proposition 4.2.1. Let u be a finite place of K above m. If a Drinfeld module
¢ : A — K, {1} satisfies the condition (SU), then every tame inertia weight j of
Py, satisfies 0 < j < ey

Proof. Let (1, A) be the Tate datum corresponding to ¢. Suppose that (i, A)
is of rank (71, 12). Since ¢ has good reduction, Proposition 4.1.6 implies that
TIk, (plp,n) c [o, eu|n]. Denote by

Par: Gk, — Autg, (A®F,) = GL,,(Fy)

the representation describing the Galois action on A®4F. Since I, acts
on A®AF unipotently, Lemma 4.1.5 implies Tlk, (0, ) = {0}. Since the
semisimplification of g, . satisfies p, ~ Py~ ® p | by the above exact
sequence (4.2.1), we see that

TIKu (p(P,TL’) = TIKu (pl,ll,ﬂ') U TIKu (15/\,7'[)’
which implies the conclusion. O

We know that every Drinfeld module ¢ : A — K, {7} has potentially
stable reduction and the Galois action on a ¢-lattice A factors through some
finite quotient. Hence it follows that there exists a finite extension L/K,
such that ¢ : A — L{7} satisfies the condition (SU).
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We want to take such an L with small ramification index. To do this, we
study the ramification of the representation

PA ¢ GKU — AutA(A) = GL”Z (A)
since it determines the Gk, -action on A® 4.

Lemma 4.2.2. Let n be a positive integer and let G be a finite subgroup of GL,, (A).
Then the maximal prime-to-p divisor of #G is a factor of TT!_1(¢° — 1).

Proof. Consider the t-adic completion A;(= F,[[t]]) of A and regard G as
a finite subgroup of GL,(A;). Recall that I';(A;) is the kernel of the map
GL,(A¢) = GL,(IF;) induced by the reduction map A; — [F,. Since A; is a
complete noetherian local ring whose residue field is finite of characteristic
p, Lemma 3.3.3 implies that I',(A¢) is a pro-p group. Hence the short exact
sequence

1 —Tu(As) = GLy(A;) — GL,(Fy) — 1

shows that the maximal prime-to-p divisor of #G is a factor of #GL,(F;) =
g""~V/2TT"_, (¢° — 1). Hence it in particular divides [T"_;(g° — 1). O

Proposition 4.2.3. Let u be a finite place of K above 7t and let ¢ : A — K, {t}
be a Drinfeld module of rank r. Then there is a finite separable tamely ramified
extension L/ K,, such that

o ¢: A— K,{t} C L{t} satisfies the condition (SU),
o the ramification index e(L/K,) divides (7" — 1) TT'Z1(¢° — 1)2.

Proof. By Proposition 2.3.4, we can take a finite separable extension Ly /K

such that ¢ has stable reduction over Lo and e(Lo/K,,) divides [T,_;(4° — 1).
Let (¢, A) be the Tate datum over Oy, corresponding to ¢ : A — Lo{7}.

Suppose that A is of rank 7’ (< r — 1). Consider the representation

oa : Gr, — AutA(A) = GLr/(A)

and denote by E C KT the fixed subfield by ker p5. Then the representa-
tion is the composition

PA : GLO —» Gal(E/Lo) — GL,,/(A)

of the canonical restriction map and an injection Gal(E/Ly) — GL.(A).
Let L be the maximal tamely ramified extension of Ly in E. Since Gal(E /L)
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is isomorphic to a finite subgroup of GL, (A), it follows that e(L/Ly) di-
vides [T_;(q° — 1) by Lemma 4.2.2. Hence by the assumption on Ly and
r" <r—1, we see that

e(L/Ky) = e(L/Lo)e(Lo/Ku) | (4" = 1) ] l(qs -1)%

S

Il
—_

We prove that the inertia subgroup I, of L acts on A® 4F; unipotently.
Since the action of GE on A® 4F is trivial, we see that the representation
Pt G, — Autg, (A®sF7) = GL.(FF7) factors though a group homo-
morphism p : Gal(E/Ly) — GL,/ (Fx).

GLO GL,/ (]Fn)
L
Gal(E/Ly)

The image of I; by G, — Gal(E/Ly) is Gal(E/L), which is a p-group. We
see that p, (L) = p(Gal(E/L)) is also a p-subgroup of GL,/(F~). Hence
the I -action on A® 4F is unipotent by Lemma 3.3.2 and so ¢ satisfies the
condition (SU) over L. O

Remark 4.2.4. A Drinfeld module ¢ : A — L{t} satisfying (SU) can be
regarded as an analogue of a semistable elliptic curves. By the definition of
L, for any monic irreducible element 779 € A with 719 # 71, we see that the
inertia subgroup I acts on Ty, (¢) trivially and on A®4 A, unipotently,
so that its action on T, (¢) is unipotent. Then the analytic T-sheaf M(¢)
attached to ¢ is strongly semistable over L in the sense of [Gar03a, Definition
4.6].

Definition 4.2.5. Let ¢ : A — K{7} be a Drinfeld module over K. For any
finite place u of K above 71, we denote by

eu(¢) := min{e(L/Fr)}

the minimum of ramification indeces of all finite extensions L/K,,/F; such
that ¢ : A — L{7} satisfies (SU). We also set

en(¢) := ged{eu(@); ul7},

where u runs through all finite places of K above 7.
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Set
r—1

C] C](q, : 6]—1 Hq—l

s=1
Then we have the following.

Lemma 4.2.6. Suppose that ¢ : A — K{t} is of rank r and [K : F] = n.
(1) For any finite place u| 7 of K, the index ey (¢) divides e, ;C1(q,7).
(2) ex(¢) divides nC1(q,r).
(3) If 7t is unramified in Ks, then e, (¢) divides [K : F|;C1(q, 7).

Proof. Let u be a finite place of K above 7. Then by Proposition 4.2.3 we see
that there is a finite extension L/K, such that ¢ satisfies (SU) over L and
e(L/Ky) | Ci(q,7). Hence (1) holds. Since n = Y, | fy|» holds, we see
that n is divisible by ged{e,,}. Hence nCi(q,r) is divisible by e;(¢), so
that (2) holds. Finally if 77 is unramified in Ks, then e, , = [K : FJ; holds.
Therefore (1) implies (3). O

4.3 Ramification of constrained torsion points

In this section, by showing some non-trivial properties of the index e (¢)
defined in the previous section, we prove some non-existence theorems on
certain Drinfeld modules. As a corollary of them, we obtain a part of The-
orem 1.0.2.

Let K be a finite extension of F and let 1 € A be a monic irreducible
element. Denote by 1 := [K : F] the degree of K/F. Also let r be a positive
integer. For any positive integer d, we define a set D(K, r, 7, d) satisfying
2(K,r, ) C D(K,r,m,d) as follows. Recall that Z(K, r, 7t) consists of all K-
isomorphism classes [¢] of Drinfeld modules ¢ : A — K{7} of rank r over
K satisfying the conditions (D1) and (D2); see Chapter 1. We now replace
(D1) with the following general condition:

(D1)" There exists a monic irreducible element 77y € A with deg(7) < d
such that ¢ has good reduction at a finite place v of K above 7.

Definition 4.3.1. Define D (K, r, 7, d) to be the set of K-isomorphism classes
of Drinfeld modules ¢ : A — K{7} of rank r satisfying (D1)" and (D2).

Let ¢ be a Drinfeld module with [¢] € D(K,r, ,d). By the condition
(D2), it follows that the semisimplification pf;:n is of the form
Do ZXR D DXk
for integers 0 < iy,...,i, < g — 1.
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Lemma 4.3.2. Let [¢p] € D(K,r, mt,d) be as above and let u be a finite place of K
above 7t. Then for each 1 < s < r, there exists an integer js with 0 < j; < e, (¢p)
such that

iseu(¢) =js  (mod g —1)
holds.

Proof. By Proposition 4.2.3, there is a finite extension L /K, with e(L/F;) =
eu(¢) such that ¢ satisfies the condition (SU) over L. Then it follows that
TI.(Pg,xlc,) C [0,eu(¢)] by Proposition 4.2.1. For any irreducible factor X
of pfps;n, we have

Xl = (wi)”
for some j; € TIL(p¢,n|GL). Since x|, = (wLL)eu(‘P) by Remark 4.1.3, we
have ' ‘

(wLL)ZSEu((P) — (wl,L)]SI

which implies the result. O
Recall that C;(q,7) = (9" — 1) [T.Z1(¢° — 1)2. Define a positive constant
C; by
Ch = Cy(n,q,r,d) := drn*Cy(q,7).
Then we obtain the following important proposition.
Proposition 4.3.3. Let [¢p] € D(K,r, 7, d) be as in Lemma 4.3.2 and let u be a

finite place of K above 7t. Suppose that deg(7t) > Ch. Then e, (¢) is divisible by
r and the congruence

eu ()

r

isey(¢p) = (mod g, —1)

holds for any 1 <s <.

Proof. Sete, = e,(¢) for short. By the condition (D1)’, we can take a monic
irreducible element 1y € A with deg(mp) < d and a finite place v of K
above 719 at which ¢ has good reduction. Notice that the 77y is distinct from
7t since deg(m) > C, > deg(mp). Then we can consider the characteristic
polynomial

Po,, (T) = det(T — py, - (Froby)[T=(¢)) € A[T]

of Froby'. Denote by {as}._; the roots of the characteristic polynomial
Py(T) of Frob,. Then the roots of Py, (T) are given by {ag"}._;. On the
other hand, the condition (D2) implies that the roots of the polynomial

Pye,(T) :=Pye,(T) (mod 1) € Fr|[T]
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are given by {x,(Frob,)®}'_,. Set 71, := 7'(5”‘”0. Then we have
70| = g0 = qfv‘ﬂo deglr),

Forany 1 < s < r, Lemma 4.3.2 implies that Xn(Frobv)iSe“ = )(,T(Frobv)js
for some integer 0 < j; < e,. Since x(Frob,) = 75 (mod 7) holds by
Remark 2.5.6, we obtain

r r

Py, (T) = T (T = xn(Froby)i) = [(T — k) (mod m).  (43.1)
s=1 s=1

For each integer 0 < k < r, denote by

Sk(x1,..., %) = ) Xgy Xy + X,
1<s1< <5 <r
the fundamental symmetric polynomial of degree k with r variables x1, . . ., x;.
Then we have

r r

[I(T—x) = Z(—l)kSk(xl, o x)TK

s=1 k=0

Notice that |a%| = g%/" holds forany 1 < s < r by Proposition 2.3.11. Since
0 <js <e, for each s, we have

. . key i o1
B R ey )
Se(a, ..., a8) = Si(rlt,..., 7| < max s K
k( 17 ’ r) k( v s U) ~ 1<sy< <5, <r Qv qu
< g
S qgeu — qrellfv\no deg(ng)

for any 0 < k < r. We know that e, divides e,,C1(q,7) by Lemma 4.2.6.
Clearly both e, and f,|,, are less than or equal to n = [K : F]. We now
suppose that deg(7r) > C, = drn?Cy(q,r) and hence we have

qm”fv\ﬂo deg(mo) < qCé < qdeg(n) — |7.[’

It means that all absolute values of coefficients of Py, (T) — [T5_1 (T — n{f)
are smaller than |7r|. Hence the congruence (4.3.1) implies

r

Pye, (T) = [J(T — 7}).

s=1

Comparing the absolute values of the roots of Py, (T) and [T._;(T — 7 ),
we see that ¢, /r = js forany 1 < s < r. Hence ¢,/r is an integer and
Lemma 4.3.2 implies the conclusion. O
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Recall that .7, (F) is the set of finite extensions K of F with n = [K : F].
We denote by v, the normalized p-adic valuation of Q. Then any positive

integer 7 is written as r = rop*»(") for some integer r not divisible by p. We
have the following uniform non-existence result.

Theorem 4.3.4. Let r, d, and n be positive integers and let w € A be a monic
irreducible element. Suppose that n is not divisible by p"»("). If deg(m) >
Ch(n,q,r,d), then the set D(K,r, 1, d) is empty for all K € %, (F).

Proof. Let K/F be a finite extension of degree n. Assume that D(K,r, 7t,d)
is not empty. Then for any [¢] € D(K,r, r,d) and any finite place u of K
above 71, Proposition 4.3.3 implies that e,(¢) is divisible by r. Hence by
Lemma 4.2.6 (2), we have

r|en(9) = gedfeu(¢)} [ nCi(g,7).

Since C;(g,7) is not divisible by p, it implies p*»(")|n, which contradict to
the assumption. O

In the case where d = 1, define
Cy = Ca(n,q,7) := Cy(n,q,7,1).
Then we have the following uniform result.

Corollary 4.3.5. Let the notations and hypothesis be as in Theorem 4.3.4. If
deg(m) > Ca(n,q,r), then the set (K, r, ) is empty for all K € %, (F).

Proof. Since Z(K,r, 1) C D(K,r,m,1) holds, the result immediately fol-
lows from Theorem 4.3.4. O

Definition 4.3.6. Define D (K, r, 71, d)sy to be the subset of D(K, r, 7t,d) which
consists of all elements [¢] € D(K,r, t,d) such that ¢ : A — K, {7} satis-
fies (SU) for any finite place u of K above 7. Also define (K, r, 71)gy in the
same way, so that

P(K,r,m)su = 2(K,r, 1) N D(K,r,7,d)sy
holds for any positive integer d.

Theorem 4.3.7. Let v, d, and n be positive integers and let 1 € A be a monic
irreducible element. Suppose that deg(7t) > Ch(n,q,r,d) and n is not divisible
by r. Then the set D(K,r, 1t,d)sy is empty for all K € %, (F).
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Proof. Let K/F be a finite extension of degree n. Assume that D(K, r, 7, d)sy
is not empty. Then we can take [¢| € D(K,r, 7, d)sy. For any finite place
u of K above 7, it follows that e, (¢) = e, by the definition of e,(¢). By
Proposition 4.3.3, we see that e, (¢) is divisible by r. Thus we obtain

r| eﬂ(¢) = ng{eu\n} | Zeu|7rfu|7r =n,

which contradicts to the assumption on . O

The following is an analogue of [RT17, Corollary 3.8]:

Corollary 4.3.8. Let the notations be as in Theorem 4.3.7. Suppose that deg(rt) >
Ca(n,q,r) and n is not divisible by r. Then the set (K, r, 0)sy is empty for all
K € Z#,(F).

Proof. Since Z(K,r, m)sy C D(K,r, 7, 1)sy holds, the result immediately
follows from Theorem 4.3.7. O]

For any finite separable extension L/F, let {rt,..., ¢} be the set of
finite places of F which are ramified in L and define

C3 = C3(L) := max{deg(m),...,deg(m)}.

Recall that we denote by K the separable closure of F in K. Consider the
two positive constants

C, = Ci(n,q,r,Ks,d) := max{Cj(n,q,7,d),C3(Ks) }
and
Cy = Cy(n,q,1,Ks) := Cy(n,q,1,Ks, 1).
Then we obtain a part of Theorem 1.0.2.

Theorem 4.3.9. Let d be a positive integer. Let K/ F be a finite extension of degree
n and let T € A be a monic irreducible element. Suppose that [K : F|;Cy1(q,7) is
not divisible by r.

(1) Ifdeg(mt) > Cy(n,q,t,Ks,d), then the set D(K, r, 7, d) is empty.
(2) Ifdeg(mt) > Ca(n,q,7,Ks), then the set 2 (K, r, 1) is empty.

Proof. 1t suffices to prove (1). Assume that deg(7t) > Cjy(n,q,7,Ks,d) and
D(K,r, m,d) is not empty. Take [¢] € D(K,r, 7,d). Then 7 is unramified in
K, since deg(7t) > C3(Ks). Hence we have

r|ex(¢) | [K:FliCi(q,7)

by Proposition 4.3.3 and Lemma 4.2.6 (3). It contradicts the assumption.
Hence D(K, r, 7T, d) is empty O
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Remark 4.3.10. In particular the above non-existence theorem holds when
r = p¥ > 1 does not divide [K : F];. Indeed the relation in the proof of

Theorem 4.3.9 implies
r|[K:F}

since Cy (g, r) is not divisible by p.



Chapter 5

Observations at places with small degree

As usual, let K/F be a finite extension and let r be a positive integer. Let
7t € A be a monic irreducible element. The aim of Chapter 5 is to give the
proof of Theorem 1.0.2 in the case where 7 is not a p-power.

After recalling basic facts on divisors of function fields in §5.1 and in-
troducing the statement of the effective version of the Chebotarev density
theorem in §5.2, we consider an existence problem of an m-th power residue
modulo 7t (Definition 5.3.1) for a positive integer m|q, — 1 in §5.3. By us-
ing the effective version of the Chebotarev density theorem, we see that
there exists an m-th power residue modulo 7 whose degree is smaller than
deg () if deg(m) is sufficiently large (Propositions 5.3.4). On the other
hand, for any [¢] € Z(K,r, ), we define in §5.4 an integer my and a charac-
ter x(mgy). We show the property that x(m,) never vanishes on the Frobe-
nius elements of places with some conditions (Proposition 5.4.3). It contra-
dicts the consequence of §5.3 if deg(7) is sufficiently large and therefore
we have the non-existence result.

5.1 Divisors of function fields

We introduce some notations and properties of divisors of function fields
in this section. Denote by Div(K) the divisor group of K, that is, the free
abelian group generated by all places of K. We write divisors additively, so
that a typical divisor is of the form D = }_, n,v for some integers n, € Z
such that n, = 0 for almost all v. For any place v of K, the notation v ¢ D
means that n, = 0.

Recall that we write [Fg for the constant field of K. The degree of a place
v of K is defined by degy v := [F, : Fg| and it is extended to any divisor
D =) ,ny,v by degy D = }_, n, degy v. Notice that the degree deg 7r of a
finite place 7t of F is exactly the degree deg(7r) as a polynomial.

57
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For any A € K*, the value v(A) is zero for all but finitely many places
v of K. A divisor of the form (A) = Y, v(A)v is called a principal divisor.
Denote by P(K) the subgroup of Div(K) consisting of all principal divisors.
The quotient Clg := Div(K)/P(K) is called the divisor class group of K.

A divisor D = ), n,v is said to be effective if n, > 0 for all v, and then
we write D > 0. Set

L(D):={A € K*;(A)+D > 0}u{0},
which is a finite dimensional [Fg-vector space. Set ¢(D) := dimg, £(D).

Theorem 5.1.1 (the Riemann-Roch theorem). There exist an integer ¢ > 0 and
a divisor class ¢ € Clg such that for any C € ¢ and D € Div(K), we have

¢(D) =degD —g+1+¢(C—D).
The integer g is uniquely determined by K.

Proof. See [Ros02, Chapter 6] for example. O

The unique non-negative integer as in Theorem 5.1.1 is called the genus
of K and denoted by gx.

Remark 5.1.2. Since K is a finitely generated field of transcendental degree
one over the finite field IFg, it coincides with the field of rational functions
on a smooth projective curve X defined over Fx by [Liu02, Chapter 7.3
Proposition 3.13]. Then gx is the genus of the projective curve X.

Suppose that L is a finite separable extension of K. Then the conorm map
ip/x : Div(K) — Div(L) is defined to be the linear extension of

iL/KU =) eqpW,
wlv

where v is a place of K and w runs through all places of L above v. Recall
that [L : K], is the geometric extension degree of L/K (see § 2.1).

Lemma 5.1.3. Let w be a place of L above a place v of K and D € Div(K). Then

fw\v

deg; ir kD = [L : K]gdegy D and deg; w = Ty : Fy]

degy v.

Proof. See [Ros02, Proposition 7.7] for example. O
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Let w be a place of L above a place v of K. Recall that we denote by py,
the maximal ideal of Oy . Define d,, to be the exact power of p;, dividing the
different of 0L, over Ok,. Then it follows that 6, > e, — 1 with equality
holding if and only if ¢,, is not divisible by p (see [Ros02, Corollary 2 of
Lemma 7.10]). Define the ramification divisor of L/K by Dr /g = Y, dwW.

Lemma 5.1.4. For any intermediate field K' of L/ K, we have

DL/K — DL/K’ -|- iL/K’DK’/K‘
Proof. See [Ser79, Chapter III 4] for example. O

Hence Dy ,x» < Dp,/k holds. In addition, the following holds (cf. [CL13,
Lemma 2.6]).

Lemma 5.1.5. Let L/K and L' /K be finite separable extensions. Then

Dryyk <irp/tDrjx + iy Dryk.

5.2 The Effective Chebotarev density theorem

Let E be a finite Galois extension of K and set G := Gal(E/K). Let v be a
place of K and suppose that it is unramified in E. Then for every place w of
E above v, the Frobenius element Fr,,, € G is well-defined. It follows that
the subset

[ E/K

5 ] i= {Fryjp;wlv } CG

is a conjugacy class in G, which is called the Frobenius conjugacy class at
v. If E/K is an abelian extension, then the conjugacy class determines an
element (v, E/K) € G, which is called the Artin automorphism for v.

Define X /g to be the divisor of K that is the sum of all ramified places
of Kin E. Let ¥ C G be a conjugacy class. For a positive integer N > 0,
denote by 74 (N) the number of places v of K with v ¢ X,k such that

degyv = N and [E/TK} = %. Also denote by 7(N) the number of places

v & Xk of K such that deg, v = N. Set gx = #Fg and write ¢ € G, for
the Frobenius element, so that ¢(x) = x7 for x € [Fx. Kumar and Scherk
proved the following effective version of the Chebotarev density theorem:

Theorem 5.2.1 (Kumar and Scherk [KS94, Theorem 1]). Let E/K be a finite
Galois extension with Galois group G. Set d := [[Fg : Fx]. Suppose that € C G
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is a conjugacy class whose restriction to B is ¢ |, for some integer N. Then

#¢ 46 q'? gR/? #¢
e (N) — dﬁn(N) < 2g,5EKT +2(2gk + 1)aia&<51<T +(1+ W) degy Xk,

holds.

As a consequence of this theorem, Chen and Lee prove the following
estimate.

Proposition 5.2.2 (Chen and Lee [CL13, Corollary 3.4]). Let E/K be a finite
Galois extension and X a divisor of K such that ¥ > X k. Set dg := [Fx : FF]
and d := [Fg : Fg|. Define the constant B = B(E/K,X) by

B = max{degy X, deg Dr/f,k,2[E : FgK] — 2,1}.

Then for any nonempty conjugacy class € in Gal(E/K), there exists a place v of
Kwithv & X such that

o & = [EK],

v

e deg, v < diologq %(B+3g1<—|—3) +d.

5.3 Existence of m-th power residues modulo 7

Let 71 € A be a monic irreducible element. Let K be a finite extension of F
and suppose that [K : F] = n. In this section, we fix an integer m > 1 with
m | #F: =g, — 1.

Definition 5.3.1. A non-zero element n € A satisfying (n, 1) = 1 is called
an m-th power residue modulo 7t if n = a™ (mod 7r) for some a € A.

As an application of Proposition 5.2.2, we will show that one can find
an m-th power residue modulo 7 whose degree is smaller than deg(7) if
deg() is sufficiently large. Take a generator {, of C[7t]. Denote by F,
the unique subfield of F({) with [F, : F] = m and consider the character

x(m) : Gp X5 FX — FX/(FX)™,

Lemma 5.3.2. For a monic irreducible element g € A, the following are equiva-
lent.

o 719 is an m-th power residue modulo T,
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° )((m)(Frob,TO) =1,
[ ) FI‘ObnO‘Fm = ld

Proof. 1Itis trivial when m = 1. If not, then this lemma immediately follows
from that x(Frob, ) = 7o (mod 1) and Fy, is the fixed subfield of F**P by
ker x(m). O

Denote by K the Galois closure of K over F. Set E := KF,,, which is also
a Galois extension of F. Consider the divisor

Y :=Xg/r+ 1+ oo € Div(F)
and the constant
B = B(E/F,%) = max{deg; X, deg, Dg/,r,2[E : FgF] —2,1}.

Let us compute a bound of B. Since the degree [K : F] is less than or equal
to n!, we see that [IF¢ : IF;] < n! and so [E : FgF] < m - n!. Then we obtain
the following important lemma.

Lemma 5.3.3. If deg(7r) > C3(Ks), then there exist two positive constants By
and By depending only on Ks, n, q, and m such that

B < B; deg(rf) + B,.
In particular for any positive N > 0, one can take a positive constant Cs =
Cs(Ks,n,q,m,N) > 0 such that if deg(7) > Cs, then
4 1
4log, §(B +3) + [Fg : Fy] < N deg(m)
holds.

Proof. Notice that deg(7r) > C3(Ks) implies that 7r is unramified in Ks. By
Proposition 2.5.7, the infinite place co of F splits into at most m places in
F» whose ramification indices divide g4 — 1 and 7 is totally ramified in F,.
Thus we see that

deg, X < deg.(XZf,/r +Zg,p + T+ o0) < 2deg(m) + 2 + degp g /f-
Now Dg,,.r = Dg/r holds. Lemmas 5.1.3 and 5.1.5 imply

degy De/p < degpip,gDg,r +degrir/r,Dr,/r
< mdegg Dg/p + [E : Fulgdegy () (q—2)v+mmn)

v|oo

mdegg Dgp +m-n!(q—2+deg(m)).

IN
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Hence there exist positive constants By and B, depending only on K, 7, g,
and m such that B < By deg(m) + By holds. Therefore if deg(7) is suffi-
ciently large with respect to K, 1, g, m, and N, then 4 logq %(B +3) + [Fg -

IF,] < % deg () holds. O
Proposition 5.2.2 and Lemma 5.3.3 imply the following;:

Proposition 5.3.4. Let N be a positive integer. If deg(7r) > Cs, then there exist
a monic irreducible element 11g € A and a place v of K above o such that

e 770 is an m-th power residue modulo T,
o deg(my) < + deg(7),

b f'(i‘?‘(o = 1

Proof. We may assume that K = K; since the extension K/Kj is totally ram-
ified at any place. Let K and E = KF,, be as above and fix an element
o € Gal(E/F) such that o|gr, = id. For the conjugacy class

¢ = {g0g ';¢ € Gal(E/F)}

of o in Gal(E/F), by Proposition 5.2.2 and Lemma 5.3.3 there exists a place
1o of F with 719 ¢ X (hence it is a finite place) such that

o |EE] =,

7T

o deg(my) < & deg(m),

so that o = Fry|, for some place w of E. Then the decomposition group Zy
of w over 7 is generated by ¢ and it is a subgroup of Gal(E/KF,,). Denote
by K’ the fixed subfield of E by Z,. Then we see that the place v’ of K’
below w satisfies e, = 1 and f,|,, = 1. Hence f;,,, = 1, where v is the
place of K below v’. By construction, we see that Frob,|r, = id. Lemma
5.3.2 means that 719 is an m-th power residue modulo 7. O

5.4 Non-p-power rank case

Fix a Drinfeld module ¢ : A — K{t} of rank r satisfying [¢] € Z(K,r, 7).
Suppose that [K : F|] = n. In this section, we always assume that

r=rop’
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for some ry > 1 not divisible by p. ‘
Now letiy, ..., i, be the positive integers satisfying p;ﬁn ~AAD DX
by (D2). Set
S, :={s=(s1,...,5,) € Z";1 < s <r}.

eeeigy —

Forany s = (s1,...,5;) € Sy, set &g := X,fisl 1 and define

€ .= (SS)SESy : GP — (]F;)@ry.

Set my := #¢e(Gr), which is the least common multiple of the orders of
gs. Since € factors through x, : Gr — F, the image €(Gr) is cyclic and
my|(q> — 1). Then we obtain the following commutative diagram

€(Gp

12

Xn

G’ Fx X / (IFX)™.

alm)

Hence a monic irreducible element 71y € A is an my-th power residue mod-
ulo 77 if and only if es(Frob, ) = 1 forany s € S,.

Lemma 5.4.1. Suppose that deg(7t) > Cy. Forany (si,...,s,) € S,, the relation
ex(¢p)(is, + - +is, —1) =0 (mod g, — 1) holds.

Proof. By Proposition 4.3.3, we see that ise;(¢) = e”£¢) (mod g, —1). Adding
these congruences for sy, ..., s, gives

en(P)(is, +- - +1is,) =ex(¢p) (mod g —1).
]

Lemma 5.4.2. If deg(m) > Ca(n,q,r), then my divides the greatest common
divisor (ex(¢), gz — 1). In particular, it divides nCy(q, 7).

Proof. By Lemma 5.4.1, we see that ees”(‘P) = 1forall s € 5,. Hence we have
mgy | ex(¢) and so my divides (ex(¢), g, —1). O

Proposition 5.4.3. If there exist a monic irreducible element 1ty € A and a finite
place v of K above 7ro such that deg(7t) > f,|, deg (7o) and fy, is not divisible
by ro, then both my > 1 and x(my)(Frob,) # 1 hold.
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Proof. Assume that either my = 1 or x(mg)(Frob,) = 1 holds. Then it fol-
lows that e (Frob,) = 1 for any s € S,. Denote by a,,,» € A the coefficient
of T""" in the characteristic polynomial P,(T) of Frob, on T (¢). Itis given
by

o = (—1)V Spo(aa, ..., ),

where a1, ..., &, are the roots of P,(T) and S,v(x1, ..., ;) is the fundamen-
tal symmetric polynomial of degree p” with r variables. Set

Srpr i ={(s1,...,5p);1<s1< - - <spw<r} C 7",
Then we have

Sp”’(xlr cee /xr> = Z Xg) Xgy * xspw
(81/0es8pv ) €Sy pv

which is the sum of ( prv) monomials of degree p".

Consider the product S;“V of S5,» and regard it as a subset of 5,. Then we
obtain that

(o) = (~1)Spe (@, )
ro
iy i
X< " (Frob,)
S1,eees Spv)ESV/pv

(=1)" ) es(Frob,)x(Frob,)

I
T
=

—
N/

565;9/
= (<1) ¥ xa(Frob,)
ses’%
P
- (—1)f<r>r0nf”0 (mod 77) (5.4.1)
= ) . 4.

Since ( prv) is not divisible by p, we see that (—1)"( prv)rO ng”‘no # 0. Here it
follows that
[(0,p)"| < o = gFim ) < 7]

o
()

Hence the above congruence (5.4.1) implies (a,,+)" = (—1)"(

and

fvn
= |7y = 4o < |7]-

r\T0 fv\no
pV) 7[0 *

Comparing the 7rp-adic valuations of both sides, we obtain rg|f|,, which
is a contradiction. O
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Recall that n = [K : F] and m divides nC;(q,7) by Lemma 5.4.2. Set
Ce = C6(Ks,n,q,r) = maX{CS(Ks; n,q, mrl); m|nC1(q,r)}

and
Cy = Cy(Ks,n,q,1) :== max{Ca(n,q,7),Cs(Ks,n,q,7)}.

Then we have the following theorem.

Theorem 5.4.4. Suppose that r = rop¥ and ro > 1 is not divisible by p. If
deg(m) > Cy, then the set (K, r, v) is empty.

Proof. Assume that Z(K,r, ) is not empty and [¢] € Z(K, r, 7r). By Propo-
sition 5.3.4, there exist a monic irreducible element 77y € A and a place v of
K above 7y such that

x(my) (Frob ) =1,
deg(my) < deg(m),

and

f vlmy — 1.
However, since 779 and v satisfy the assumption of Proposition 5.4.3, we see
that x(m,)(Frob,) = X(m¢)(FrobnO) # 1. It is a contradiction. O

By the same argument, we can also prove a uniform non-existence the-
orem as follows. For a fixed finite separable extension Ky of F with degree
np := [Kp : F] and a positive integer 7, set

Cg = Cg(Ko, g,7,n) := max {Cy(nny, q,r), max{Cs(Ko, no,q,m,n); minoCy(q,7)}}.

Theorem 5.4.5. Let r = rop”, Ko, and ny = [Ko : F| be as above. Let n be
a positive integer. If n is not divisible by ro and deg(rt) > Cg, then the set
PD(K,r, ) is empty for all K € F,(Kp).

Proof. Let K be a finite extension of Ky with [K : Ky] = n and assume that
9] € 2(K,r, ). Applying Proposition 5.3.4 to Ko, we can find a monic
irreducible element 77p € A and a finite place vy of Ky above g such that

x(mg)(Froby,) =1,

deg(mp) < %deg(n),

and
fvo|7T0 =1
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Now we can take a place v of K above vy such that fv|vo(: fv‘no) is not
divisible by ro. Indeed, if not, then rp must divide n =}, €(0, fo[o,-
Since fy|,, deg(mo) < ndeg(m) < deg(r), by Proposition 5.4.3 we see

that x(m,)(Frob,) = )((mq,)(Frobno)fv‘”o # 1. It is a contradiction. O

Remark 5.4.6. In particular by Corollary 4.3.5 and Theorem 5.4.5 for Ky =
F, we have the following: if a positive integer 7 is not divisible by r, then
2(K,r,m) = @ forall K € .%,(F) and 7t with deg(7) > Cs.



Chapter 6

Comparison with number field case

We denote by K a finite extension of F and by r a positive integer as usual.
In this final chapter, we focus on differences between the Rasmussen-Tamagawa
conjecture and its Drinfeld module analogue.
In §6.1, under the assumption that r divides [K : FJ;, we construct an
example of a Drinfeld module ® : A — K{t} satisfying [®] € Z(K,r, 1)
for all monic irreducible elements 7w € A. In §6.2, we prove the infiniteness
of 2(K,r,t) forr > 2and w =t (Proposition 6.2.5). These constructions
are based on the suggestion by Akio Tamagawa.

6.1 Non-emptiness of 7 (K, r, 1)

In this section, by constructing a concrete example, we prove the following
theorem:

Theorem 6.1.1. If r divides [K : F|;, then the set 2(K,r, 1) is never empty for
any 7.

If r = 1, then Theorem 6.1.1 is trivial since the Carlitz module C satisfies
both (D1) and (D2). Assume that » > 2 and [K : FJ; is divisible by r. Then
ris a p-power and so the r-power map A — A;a — 4’ is an injective ring
homomorphism.

Forany a = ) x,t" € Awithx, € F,, setd := Zx}/rt”. Then we see
that 2 — 4 is a ring automorphism of A and the map A — A;a > 4" is an
injective IF;-algebra homomorphism.

Lemma 6.1.2. Set [K : F]; = p¥. Then Ks = K7".

Proof. Since K is a purely inseparable extension of K of degree pV, the field
K*" is contained in K. Consider the sequence of fields K D K O -+ D

67
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n+1

K. Proposition 7.4 of [Ros02] implies that each extension KP" /KPP is of
degree p. Hence [K : KP'] = p” = [K : K¢], which means that Ks = KP'. [

Since r divides [K : F];, Lemma 6.1.2 implies that K contains the field
F/7. In particular the r-th root t'/" of t is contained in K. Then we have a
new injective A-field structure : : A — K defined by ((t) = t!/". Define the
rank-one Drinfeld module

C': A— K{t}
over the A-field (K, () by C] = t'/7 + .
Set "y := Y. cit! for any u = Y ¢;7' € K{7}. Then
K{t} — K{t}
po= Up

is a ring endomorphism. We can relate C’ with the Carlitz module C as
follows:

Lemma 6.1.3. Let a € A.
(1) ¢, = C,.
(2) For any A € C'[4], there exists a unique 6 € Cla] such that A = 5'/".

Proof. Clearly )C} = x = C, for any x € FF; and (r)Cg = (¢! = C;. Hence
foranya =) x,t" € A,

Nc; =0 (La/"(€)") = Lan(C)" =Ca.

For any A € C'[d], we see that
0= (C;(A))" = "CG(A") = Ca(A").

Hence A" € Cla] and we have the injective homomorphism C'[d] — Cla]; A —
A" of finite groups. Since #C’[d] is equal to #C[a] by deg(d) = deg(a), itisa
bijection. O

Define ®, := C}, = (C})" € K{t} for any a € A. Then by construction
it gives an IF;-algebra homomorphism

d: A— K{t},

which is determined by ®; = (t!/" + 7)". Since 1(4") = a holds, ® is a rank-
r Drinfeld module over K. Moreover it has good reduction at every finite
place v of K since v(t!/") > 0.

By the following proposition, we see that [®] € Z(K,r, ), which im-
plies Theorem 6.1.1.
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Proposition 6.1.4. Let i be the positive integer satisfying ir = 1 (mod g, — 1)
and i < q — 1. Then the mod 7t representation attached to ® is of the form

*
i

Xn

Proof. Tt suffices to prove that g% = = (x5)®". Foreach 1 <'s <, set
Vs := {A € oK*P;Cl:(A) = 0}.

Forany a € A and A € V;, we see that ®,(A) € V; since CL.(Pa(A)) =
CLs(Chr(A)) = Ch(Che(A)) = 0. Hence V; is an A-submodule of ¢ K*¢P with
the natural Gg-action. Moreover ®,(A) = 0 for any A € V;, so that V; is an
F(= A/mA)-vector space. Here ®[r1] = V, by the definition of ®. Then
we obtain the filtration

0=VycWvicV,C---CV, =[]

of Gg-stable [F-subspaces of ®[r]. The map Vi — Vi;A = Cl..(A) in-
duces a Gg-equivariant isomorphism V;/V,_; = V. Since V; = C'[#] (as
a set) and deg(m) = deg(7), we have #V; = g2 = (= #F;). Hence
dimp, Vi = 1 and the semisimplification of @[] (as an F,[Gk|-module)
is @[] = PL_|Vs/ Vi1 = VfBr. For any ¢ € Gk and A € Vj, we prove
o(A) = xn(0)" - A as follows. Take an element a, € A satisfying a, = x(0)
(mod 7). By Lemma 6.1.3 (2), A = 6!/" for some 6 € C[r]. Then

o(A)" = 0(8) = xn(0) -8 = Ca,r ().

The IF;-vector space structure of V; is determined by ® and so )(n(q)i A=
@, (A) = C;,(A). Since ir = 1 (mod g4 — 1) holds, we have 47 = a,
(mod 7). This implies C’,,(A) = C; (A). By Lemma 6.1.3 (1), we obtain

(xa(@) 1) = (€ (A0)" =} (A7) = € (6) = (A",

Since the r-power map is injective, we have o(A) = Xr(0)' - A. Hence the
Gk-action on Vj is given by x/;. O

Remark 6.1.5. Proposition 6.1.4 means that the mod 7t representation O,
is reducible for all 7t. Hence Endg(®) # A must hold by Theorem 2.3.7.
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In fact C/ = t'/" 4+ 1 € K{t} is an endomorphism of ® and the correspon-
dence t!/" + C! induces an isomorphism A[t'/"] =2 Endg(®), so that ® has
complex multiplication.

Remark 6.1.6. Let u be a finite place of K above 7. Now r divides ¢, by
assumption. Sete = e, /r. Since ir =1 (mod q, — 1), we see that

Xl = (wik,) 7 = (wik,) ™ = (wik,)"

Hence the set of tame inertia weights of g, |1, is Tk, (0g, ) = {e}-

6.2 Infiniteness of 7(K,1,t)

Finally, for m = t and r > 2, we construct an infinite subset of Z(K,r,t).
In the number field case, the set <7 (k, g, ¢) is always finite because of the
Shafarevich conjecture proved by Faltings [Fal83]. However, the Drinfeld
module analogue of it does not hold as follows:

Example 6.2.1. For any a € A, consider the rank-two Drinfeld module
¢ . A — F{1} given by (f)t(”) = t+at + 72 It is easily seen that ¢
has good reduction at any finite place of F.

If ¢(*) is F-isomorphic to ¢(*) for some a’ € A, then there exists an

element ¢ € F such that Cgbt(a/) = ¢t(”)c. Hence
o) =t +ad T+ =t+ I lar+ T

This means that ¢ € F and hence a’ = ¢i~la = a. Therefore the set of
F-isomorphism classes {[¢(?)];a € A} is infinite.
Let W be a Gg-stable one-dimensional IF;-vector space contained in K¢P

and write x : Gk — I for the character attached to W. Set Py (T) :=
[Trew (T — A), which is an [F;-linear polynomial of the form

Pw(T) =TT+ ewT, ewi=[T\cmo) (—A) € K*

by [Gos96, Corollary 1.2.2]. For any ¢ € K*, denote by ¢ € K* /(K*)7~! the
class of ¢ and by k() : Gk — [ the character corresponding to ¢ by the

map K*/(K*)1~1 = Hom(Gg, IF;) of Kummer theory.

Lemma 6.2.2. For the above element cyy € K*, the character K(—ew) coincides
with Kw.
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Proof. Since A7! = —cyy for any A € W\{0}, the character x_.,) is given
by x(_¢,)(¢) = 0(A)/A =xw(0c) for any o € Gg. O

Identify F; = A/tA = [F;. Then C[t] is a one-dimensional IF,-subspace
of K*P and Py (T) = T + tT by the definition of C. By Lemma 6.2.2, we
see that x; = x(_;). Note that X = K((—)) for any integer i.

Take r elements ¢y, ...,¢, € K*. Forany 1 < s < r, define f;(7) := (7 +
cs)(T+cs—1) - (T4 c1) € K{t}. Set W, := ker f; : K*P — K, which is a
Gg-stable s-dimensional IFq—subspace of K*¢P, Thus we obtain the filtration

0O=WoCcW;C---CW,
of IF;[Gg]-modules.

Lemma 6.2.3. The IF-linear representation p : Gk — Autg, (W) = GL,(IF,)
is of the form
Klee)  * o *

K(—cy)

el
12

*

K(_Cr)

Proof. For any 1 < s < r, the quotient W,/ W;_; is isomorphic to Ker(7 +
cs : KP — K*%P) as an [F;[Gk]-module. Hence each W;/W;_; is embedded
into K*F. By Lemma 6.2.2, the action of Gx on W;s/W;_1 is given by x(_).

O

Fix rintegers iy, . .., i, satisfying ) _; i = 1. Forany m = (my,...,m,) €
Z'" satistying y.!_, ms; = 0, consider the IF;-algebra homomorphism ¢™ :
A — K{t} given by

where ks = is +ms(g—1) forany 1 < s < r. Now Y {_; ks = 1, so that the
constant term of ™ is (—1)" "' [Ti_; (—(=t)k) = (=1)%"t = t. Hence ¢p™ is
a rank-r Drinfeld module over K.
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Proposition 6.2.4. The K-isomorphism class [¢™] is contained in 2 (K,r,t).
Moreover, the mod t representation attached to ¢™ is of the form

i
Xt * o« oo *
ip

_ ~ X+ . .
p(Pm,t — . ’

‘. >k

i

Xt

where iy, . .., 1, are the integers fixed as above.

Proof. For any finite place v of K not lying above ¢, since —t € Ok, and
the leading coefficient of ¢ is (—1)" "1, we see that ¢™ has good reduction
at v. Now ¢™[t] coincides with the kernel of [Ti_; (t — (—t)%). Applying
Lemma 623 to fs = (T — (=1)%) - (T — (—1)"1), we see that ym , is given
as above since K((—t)s) = X’;S = X’f forany1 <s <r. O

Proposition 6.2.5. If r > 2, then the set 2 (K, r,t) is infinite.

Proof. We construct an infinite subset of Z(K,r,t) as follows. Fix r in-
tegers iy,...,I, satisfying Y. _;i; = 1. For any positive integer m, con-
sider (—m,0,...,0,m) € Z" and define ¢ := cp(*m'o""'o'm), which is a
Drinfeld module satisfying [¢"] € Z(K,r,t) by Proposition 6.2.4. Write
P =t+cT+- -+ 171+ (1)1t € K{t}. Then by construction
the coefficient c,_; is given by

. . r_l .
Crq = (_t)llfm(’ifl) + (_t)lrer(Q*U + Z(_t)ls_
5=2

For any finite place u of K above ¢, if m is sufficiently large, then
u(cr—1) = (ih —m(qg—1))u(—t) <O0.

Hence we see that u(c,_1) — —o0 as m — co. On the other hand, for two
positive integers m and n/, if ¢ is isomorphic to ¢, then ¢} = x~1¢J"x
for some x € F¢ by the same argument of Example 6.2.1. These facts imply
that if m’ is sufficiently large, then ¢ and ¢™ are not isomorphic. Therefore
the subset {[¢p"];m € Z~} of (K, 1,t) is infinite. O
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