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Abstract

In the arithmetic of function fields, Drinfeld modules play the role that el-
liptic curves do in the arithmetic of number fields. The aim of this thesis
is to study a non-existence problem of Drinfeld modules with constrained
torsion points at places with large degree, which is motivated by a conjec-
ture of Christopher Rasmussen and Akio Tamagawa related with abelian
varieties over number fields with some arithmetic constraints. We prove
the non-existence of Drinfeld modules in the case where the inseparable
degree of base fields is not divisible by the rank of Drinfeld modules. In
other cases, we conversely give an example of Drinfeld modules satisfying
Rasmussen-Tamagawa-type conditions.

This thesis is submitted to Tokyo Institute of Technology for the degree
of Doctor of Science. Several results in the thesis are contained in the au-
thor’s previous paper [Oku], which will be published in Kyushu Journal of
Mathematics, published by Faculty of Mathematics Kyushu University.
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Chapter 1

Introduction

The aim of this thesis is to formulate a function field1 analogue of a conjec-
ture of Rasmussen and Tamagawa [RT08] on certain abelian varieties over
number fields and to give some results on it. It is known that there are
beautiful analogies between the arithmetic of number fields and the arith-
metic of function fields. In 1974, Drinfeld [Dri74] invented the analog of
elliptic curves under the name “elliptic modules”. These are today called
Drinfeld modules, see Chapter 2. In this thesis, following the philosophy
about analogies between number fields and function fields, we consider
a non-existence problem on Drinfeld modules of “Rasmussen-Tamagawa
type”.

In the arithmetic of number fields, problems of finiteness or non-existence
of isomorphism classes of various number theoretic objects have been stud-
ied by many people. For example, the Hermite-Minkowski theorem, which
is a famous arithmetic result, says that there exist only finitely many iso-
morphism classes of number fields with given degree and ramification set
of places. As a generalization of the Hermite-Minkowski theorem, Faltings
[Fal83] proved the Shafarevich conjecture, which is as follows: there exist
only finitely many isomorphism classes of abelian varieties over a number
field with a give dimension, polarization of a give degree, and good reduc-
tion outside a give set of places. Furthermore, Zarhin improved Faltings’
result by omitting the assumption on polarization in [Zar85].

A conjecture of Rasmussen and Tamagawa is in the spirit of the Shafare-
vich conjecture. Inspired by the study of a question of Ihara [Iha86] related
with the kernel of the canonical outer Galois representation of the pro-ℓ
fundamental group of P1\{0, 1, ∞}, Rasmussen and Tamagawa define a

1In this thesis, a “function field” always means a finitely generated field of transcenden-
tal degree one over a finite field.
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CHAPTER 1. INTRODUCTION 10

set A (k, g, ℓ) of k-isomorphism classes of g-dimensional abelian varieties
over a number field k with constrained ℓ-power torsion points for a prime
number ℓ. We can easily see that the set A (k, g, ℓ) is finite by the Shafare-
vich conjecture. Rasmussen and Tamagawa conjectured that such a finite-
ness also should hold for the union A (k, g) := ∪ℓA (k, g, ℓ) of these sets,
where ℓ runs through all prime numbers. In other word, the Rasmussen-
Tamagawa conjecture says that there is a positive constant C = C(k, g) > 0
depending only on k and g such that A (k, g, ℓ) is empty for all ℓ > C.

There are some results on the conjecture, see §§3.2.2. For example, Ras-
mussen and Tamagawa [RT08] prove that the conjecture is true for ellip-
tic curves over Q. However, it remains open in general. We notice that,
under the assumption of the Generalized Riemann Hypothesis (GRH) for
Dedekind zeta functions of number fields, the conjecture is true in general
[RT17, Theorem 5.1]. The key tool of this proof is the effective version of the
Chebotarev density theorem for number fields, which holds under GRH.
Rasmussen and Tamagawa also state the “uniform version” of the conjec-
ture [RT17, Conjecture 2], which says that one can take a lower bound of
ℓ satisfying A (k, g, ℓ) = ∅ depending only on the degree [k : Q] and g.
For instance, the uniform version of the conjecture for CM abelian varieties
is proved by Bourdon [Bou15, Corollary 1] and Lombardo [Lom, Theorem
1.3]. Under GRH, the uniform version of the conjecture is true if [k : Q] is
odd [RT17, Theorem 5.2].

Now let us state main results in this thesis. We first introduce some
notations. Let p be a prime number and fix some p-power q = pν. Write
A := Fq[t] for the polynomial ring in one variable t over Fq and set F :=
Fq(t). In the arithmetic of function fields, the ring A and the field F are
analogues of Z and Q, respectively. Let K be a finite extension of F. In this
thesis, we often identify every monic irreducible element π ∈ A with the
corresponding finite place of F. Write Fπ = A/πA for the residue field at
π and set qπ := #Fπ = qdeg(π).

The arithmetic properties of Drinfeld modules over function fields are
similar to those of elliptic curves over number fields. For instance, there
are reduction theory and Galois representations attached to torsion points
of Drinfeld modules, see Chapter 2 for details. Under this analogy, we can
define the analogue of A (k, g, ℓ). Let r be a positive integer and π ∈ A a
monic irreducible element. Define D(K, r, π) to be the set of K-isomorphism
classes [ϕ] of Drinfeld modules ϕ of rank r over K which satisfy the follow-
ing two conditions:
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(D1) ϕ has good reduction at any finite place of K not lying above π,

(D2) the mod π representation ρ̄ϕ,π : GK → GLr(Fπ) attached to ϕ is of
the form

ρ̄ϕ,π ≃


χi1

π ∗ · · · ∗
χi2

π
. . .

...
. . . ∗

χir
π

 ,

where χπ is the mod π Carlitz character (Definition 2.5.4) and 0 ≤
i1, . . . , ir < qπ − 1 are integers.

Proposition 3.3.6 in Chapter 3 means that the condition (D1)+(D2) is a
Drinfeld module analogue of the defining condition of the set A (k, g, ℓ).
See also Proposition 3.2.1. The purpose of this thesis is to give a complete
answer to the following question:

Question 1.0.1. Does there exist a positive constant C > 0 depending only on K
q, and r which satisfies the following: if deg(π) > C, then the set D(K, r, π) is
empty?

We show that the answer to the question is YES if r does not divide the
inseparable degree [K : F]i of K/F:

Theorem 1.0.2 (Theorem 4.3.9 (2) and Theorem 5.4.4). Suppose that r does
not divide [K : F]i. Then the set D(K, r, π) is empty for any monic irreducible
element π ∈ A whose degree is large enough.

The proof of Theorem 1.0.2 consists of the two cases: (i) r = pν, and
(ii) r = r0 pν for some r0 > 1 which is prime to p. The proof in the case (i)
is provided by observations about the tame inertia weights (Definition 4.1.4)
of ρ̄ϕ,π for any [ϕ] ∈ D(K, r, π). This technique is used in [Oze11] and
[RT17]. In the case (ii), we employ the strategy in [RT17] and use the effec-
tive version of the Chebotarev density theorem for function fields proved
by Kumer and Scherk [KS94]. We notice that the same argument dose not
work well in the case (i).

In addition, as an analogue of [RT17, Theorem 5.2], we obtain a uniform
result as follows:

Theorem 1.0.3 (Corollary 4.3.5 and Theorem 5.4.5). Let r and π be as above.
Let n be a positive integer not divisible by r. Then there exists a positive constant
C > 0 determined by r, q, and n such that for all finite extensions K/F of degree
n, the set D(K, r, π) is empty if deg(π) > C.
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On the other hand, there are differences between the number field set-
ting and the function field setting. Indeed, if r divides [K : F]i (for which
there is no number field setting), then we construct a Drinfeld module Φ
of rank r over K satisfying (D1) and (D2) for all monic irreducible elements
π ∈ A. Namely the following holds:

Theorem 1.0.4 (Theorem 6.1.1). If r divides [K : F]i, then the set D(K, r, π) is
never empty for any π.

Consequently we obtain a complete answer to Question 1.0.1 by Theorem
1.0.2 and Theorem 1.0.4.

The organization of the thesis is as follows. In Chapter 2, after review-
ing several basic facts on function fields, we introduce well-known facts on
Drinfeld modules. In Chapter 3, we explain a motivation of the Rasmussen-
Tamagawa conjecture and the precise statement of it. After that, we define
the set D(K, r, π). In Chapter 4, for any [ϕ] ∈ D(K, r, π), an important in-
teger eπ(ϕ) is introduced and we prove some non-trivial properties of it.
Using it, we give some non-existence results on certain Drinfeld modules
and prove Theorem 1.0.2 in the case (i). The aim of Chapter 5 is to give the
proof of Theorem 1.0.2 in the case (ii). Finally, in Chapter 6, we construct a
Drinfeld module satisfying both (D1) and (D2) for any π in the case where
r divides [K : F]i. We also show that the set D(K, r, π) is infinite if π = t
and r ≥ 2.
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Notation

For an arbitrary field F , write GF = Gal(F sep/F ) for the absolute Galois
group of F . Throughout this thesis, we denote by

Fq the finite field of q elements of characteristic p,
A := Fq[t],
F := Fq(t),
Fπ := A/πA; the residue field at a monic irreducible element π ∈ A,
qπ := #Fπ = qdeg(π).

For a finite extension K of F and a place u of K, we denote by

Ks the separable closure of F in K,
Ku the completion of K at u,
OKu the valuation ring of Ku with the maximal ideal pu,
Fu the residue field of Ku,
qu := #Fu.

We use the same symbol u for the normalized valuation of Ku. Identify
GKu with the decomposition group of GK at u and regard it as a subgroup
of GK. Denote by IKu the inertia subgroup of GKu at u and choose a lift
Frobu ∈ GKu of the Frobenius element of GKu /IKu . If π is the place of F
below u, then we denote by eu|π (or e(Ku/Fπ)) the ramification index and
set fu|π := [Fu : Fπ].

Let F∞ := Fq((1/t)) be the completion of F at the place ∞ of F corre-
sponding to the (1/t)-adic valuation of F. Write C∞ for the completion of
a fixed algebraic closure of F∞. Every algebraic extension of F is always
regarded as a subfield of C∞. Let | · | be the absolute value of F∞ attached
to the normalized valuation of F∞. We also denote by | · | the unique exten-
sion of it to C∞ and its restriction to each algebraic extension of F. For any
non-zero a ∈ A, we see that |a| = #(A/aA) = qdeg(a).

The notation C = C(x, y, . . . , z) indicates a constant C depending only
on x, y, . . . , and z. We use the notation ρss for the semisimplification of a
linear representation of a group ρ.





Chapter 2

Preliminaries

Drinfeld modules are introduced by V. G. Drinfeld [Dri74] to prove the
Langlands conjecture for GL(2) over function fields. In this chapter, we
review several well-known results on Drinfeld modules and see that there
are various analogies between the arithmetic properties of Drinfeld mod-
ules and that of elliptic curves. Our exposition of the theory of function
fields and Drinfeld modules follows [Dri74], [Hay74],[Gos96], and [Ros02].

After recalling basic facts in the arithmetic of function fields in §2.1, we
introduce the definition of Drinfeld modules and study torsion points of
them in §2.2. In §2.3, we first introduce the notion of good and stable re-
duction of Drinfeld modules. For a monic irreducible element π ∈ A, we
also define Galois representations attached to π-adic Tate modules and π-
torsion points of Drinfeld modules. The purpose of §2.4 is to explain Drin-
feld’s theorem on Tate uniformization, which gives an analytic description
of Drinfeld modules with stable reduction. In the final section §2.5, we
define the Carlitz module and recall the properties of cyclotomic function
fields.

2.1 Function field arithmetic

We summarize some basic arithmetic facts on function fields and introduce
further notations and conventions used in this thesis.

The rational function field F = Fq(t) has two kinds of places — places
corresponding to monic irreducible elements of A and ∞. In this thesis, we
often identify every monic irreducible element π ∈ A with the correspond-
ing place of F and use the same symbol “π”.

Definition 2.1.1. Let K/F be a finite extension and v a place of K. We say
that v is a finite place if it lies above some monic irreducible element π ∈ A,

15



CHAPTER 2. PRELIMINARIES 16

and that v is an infinite place if it lies above ∞.

Definition 2.1.2. Let L/K/F be algebraic extensions.

(1) The algebraic closure of Fq in K is called the constant field of K and we
denote it by FK.

(2) We say that L/K is a constant field extension if L = FLK, and that L/K
is a geometric extension if FL = FK.

In general, the composite field FLK is the maximal constant extension
of K in L and clearly L is a geometric extension of FLK. If L/K is finite, then
we define the geometric extension degree of L/K by [L : K]g := [L : FLK].

Example 2.1.3. Let n ∈ A be a non-zero element. Then the “cyclotomic
function field” F(ζn) defined in §1.4 is geometric over F (see Corollary
2.5.8).

Fix a finite extension K of F.

Proposition 2.1.4. Let L/K be a finite extension.

(1) If L/K is a constant field extension, then it is unramified at all places.

(2) If L/K is a purely inseparable extension, then it is totally ramified at all
places.

Proof. See [Ros02, Proposition 7.5] and [Ros02, Proposition 8.5].

Remark 2.1.5. Proposition 2.1.4 implies that every purely inseparable ex-
tension L/K is geometric.

Proposition 2.1.6. Let L/K be a finite extension. Suppose that v is a place of K
and {w1, . . . , wr} the set of places of L above v. Then the equation

[L : K] =
r

∑
s=1

ews|v fws|v

holds.

Proof. See [Ros02, Theorem 7.6].
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2.2 Drinfeld modules

Let K be an Fq-algebra and let Ga,K be the additive group scheme defined
over K. Write τ for the q-power Frobenius map of Ga,K. Then the ring
EndFq(Ga,K) of Fq-linear endomorphisms of Ga,K is the non-commutative
polynomial ring

K{τ} :=

{
µ =

r

∑
s=0

csτ
s ; r ∈ Z≥0 and cs ∈ K

}
in one variable τ satisfying τc = cqτ for any c ∈ K. Denote by

K⟨T⟩ :=

{
f (T) ∈ K[T]; f (T) =

r

∑
s=0

csTqs

}
the set of Fq-linear additive polynomials. Define its multiplication by com-
position

f (T) ◦ g(T) = f (g(T))

of polynomials. Then K⟨T⟩ is a non-commutative ring and K{τ} ∼= K⟨T⟩
by the correspondence τs 7→ Tqs

.

Definition 2.2.1. An A-field is a field K equipped with an Fq-algebra homo-
morphism ι : A → K. The kernel p = ker ι is called the A-characteristic of
K.

Remark 2.2.2. In this thesis, we only consider A-fields with A-characteristic
p = (0).

Drinfeld modules are given as group schemes endowed with some A-
module structures.

Definition 2.2.3. Let (K, ι) be an A-field and r a positive integer. A Drinfeld
module ϕ of rank r defined over K is an Fq-algebra homomorphism

ϕ : A → K{τ}
a 7→ ϕa

such that ϕt = ι(t) + c1τ + · · ·+ crτr ∈ K{τ} with cr ̸= 0.
Let p be the A-characteristic of K. If p = (0) (resp. p ̸= (0)), then ϕ is

said to be of generic characteristic (resp. special characteristic).

Remark 2.2.4. Since ϕ : A → K{τ} is an Fq-algebra homomorphism, it is
completely determined by ϕt ∈ K{τ}.
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Throughout this thesis, we always assume that Drinfeld modules are of
generic characteristic, that is, assume that any A-field structure ι : A → K
is injective.

Remark 2.2.5. (1) More generally, let R be an A-algebra and let ι : A → R
be its A-algebra structure. Then a Drinfeld module over R is defined to be
an Fq-algebra homomorphism ϕ : A→ R{τ} such that

ϕt = ι(t) + c1τ + · · ·+ crτr ∈ R{τ} with cr ∈ R×.

(2) Drinfeld modules are defined in a more general setting: let X be a
smooth projective, geometrically irreducible curve over Fq. Let ∞ ∈ X be a
fixed closed point and letA := Γ(X\{∞},OX) be the Fq-algebra of rational
functions on X which are regular outside ∞. Then a Drinfeld A-module
defined over an A-field (K, ι : A → K) is an Fq-algebra homomorphism
ϕ : A → K{τ} satisfying ϕa = ι(a) + ∑n

s=1 csτ
s for any a ∈ A and ϕa ̸= ι(a)

for some a ∈ A.

Let K be an A-field.

Definition 2.2.6. A homomorphism µ : ϕ → ψ between two Drinfeld mod-
ules over K is an element µ ∈ K{τ} such that

µϕa = ψaµ

for any a ∈ A. Namely µ makes the following diagram commutative

Ga,K
µ //

ϕa

��

Ga,K

ψa

��
Ga,K µ

// Ga,K

for any a ∈ A.
A non-zero homomorphism µ : ϕ → ψ is called an isogeny and then ϕ

and ψ are said to be isogenous. We say that µ is an isomorphism if it is an
isomorphism of group schemes. It is easily seen that µ is an isomorphism
if and only if µ ∈ K×. Hence every Drinfeld module ψ which is isomorphic
to ϕ is given by ψt = c−1ϕtc for some c ∈ K×.

For a Drinfeld module ϕ : A→ K{τ}, denote by

EndK(ϕ) = {µ ∈ K{τ}; µϕa = ϕaµ for any a ∈ A}
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the ring of endomorphisms of ϕ over K. Clearly ϕa ∈ EndK(ϕ) for any
a ∈ A and thus we have an embedding A ↪→ EndK(ϕ). Suppose that ϕ is
of rank r. Since we now assume that ϕ is of generic characteristic, it follows
that EndK(ϕ) is a commutative A-algebra and free of finite rank ≤ r as an
A-module by [Dri74, Corollary of Proposition 2.4].

Definition 2.2.7. We say that a Drinfeld module ϕ : A → K{τ} of rank r
has complex multiplication if EndK(ϕ) is isomorphic, as an A-algebra, to an
A-order O of a finite extension E of F with [E : F] = r.

Example 2.2.8. For a rank-two Drinfeld module ϕ : A→ K{τ} determined
by ϕt = ι(t) + λτ + ∆τ2, the j-invariant of ϕ is defined by

j(ϕ) :=
λq+1

∆
.

It is known that rank-two Drinfeld modules ϕ and ψ over K are isomorphic
over K̄ if and only if j(ϕ) = j(ψ).

Let
√

t ∈ F̄ be a square root of t ∈ F. Regard F̄ as an A-field by the
canonical inclusion A ↪→ F ⊂ F̄. Let ϕ : A→ F̄{τ} be the Drinfeld module
of rank two determined by

ϕt = (
√

t + τ)(
√

t + τ) = t + (
√

t +
√

t
q
)τ + τ2.

Clearly µ :=
√

t + τ ∈ End F̄(ϕ) and µ2 = ϕt, so that the ring A[
√

t] injects
into End F̄(ϕ). Since A[

√
t] is a maximal A-order of the quadratic extension

E = F(
√

t) = Fq(
√

t) of F, we see that A[
√

t] ∼= End F̄(ϕ) and so ϕ has
complex multiplication. Suppose that q is odd. Then the j-invariant of ϕ is

j := j(ϕ) = t
q+1

2 (1 + t
q−1

2 )q−1 ∈ F.

The Drinfeld module ψ determined by

ψt = t + jτ + jqτ2

is defined over F and its j-invariant is j(ψ) = j. Hence ϕ ∼= ψ over F̄.
Namely ϕ has a model defined over F. This is the analogue of the fact that
an elliptic curve with complex multiplication by the ring of integer of an
imaginary quadratic field with class number one can be defined over Q.

Let ϕ : A → K{τ} be a Drinfeld module. For any K-algebra Ω, by
definition ϕ endows the additive group Ga,K(Ω) = Ω with a new A-module
structure defined by a · λ := ϕa(λ) for any λ ∈ Ω and a ∈ A. Denote by
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ϕΩ this A-module. Clearly any homomorphism µ : ϕ → ψ between two
Drinfeld modules ϕ and ψ over K induces an A-module homomorphism
µ : ϕΩ→ ψΩ.

In the case where Ω = K̄, for any non-zero element a ∈ A, we define
the set of a-torsion points of ϕ by

ϕ[a] = {λ ∈ ϕK̄; ϕa(λ) = 0},

which is a finite torsion A-submodule of ϕK̄. Since ϕ is now of generic
characteristic, it follows that ϕa is separable as an additive polynomial in
K⟨T⟩. Hence ϕ[a] is in fact a finite torsion A-submodule of ϕKsep and hence
the absolute Galois group GK of K canonically acts on it. Clearly the field
K(ϕ[a]) generated by all a-torsion points of ϕ is a finite Galois extension of
K. If ϕ is of rank r, then

ϕ[a] ∼= (A/aA)⊕r

as an A-module by [Ros02, Proposition 12.4]. Thus the GK-action on ϕ[a]
induces an injective homomorphism

Gal(K(ϕ[a])/K) ↪→ AutA/aA(ϕ[a]) ∼= GLr(A/aA).

In particular, if ϕ is of rank one, then K(ϕ[a])/K is an abelian extension.

2.3 Reduction theory and Galois representations

From now on, unless otherwise stated, we always regard any extension
field F of F as an A-field via the inclusion A ↪→ F ⊂ F . We often consider
the case where F is a finite extension of F or its completion.

In this section, denote by K a finite extension of F.

Definition 2.3.1. Let v be a finite place of K.

(1) We say that a Drinfeld module ϕ : A → Kv{τ} of rank r over Kv has
stable reduction if ϕ is Kv-isomorphic to a Drinfeld module ψ : A →
Kv{τ} satisfying

ψt = t + c′1τ + · · ·+ c′rτr ∈ OKv{τ} and c′r′ ∈ O×Kv

for some 1 ≤ r′ ≤ r. In particular if c′r ∈ O×Kv
, then we say that ϕ has

good reduction.
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(2) We say that a Drinfeld module ϕ : A→ K{τ} over K has stable reduc-
tion (resp. good reduction) at v if ϕ : A → K{τ} ⊂ Kv{τ}, considered
as a Drinfeld module over Kv, has stable reduction (resp. good reduc-
tion) in the above sense.

Suppose that ϕ : A → K{τ} has stable reduction at v. As in the no-
tations in Definition 2.3.1, the integer max{s; c′s ∈ O×Kv

} is called the stable
rank of ϕ. By definition ϕ has good reduction if and only if its stable rank is
equal to the rank of ϕ.

Remark 2.3.2. By Remark 2.2.5 (1), any Drinfeld module defined over OKv

has good reduction since its rank and stable rank are equal.

Remark 2.3.3. On the other hand, let v∞ be an infinite place of K, that is,
a place above ∞. Then for any Drinfeld module ϕ : A → Kv∞{τ}, the
constant term of ϕt is t by definition and v∞(t) < 0. Hence there is no
Drinfeld module ϕ with ϕt ∈ OKv∞

{τ}.
It is known that every Drinfeld module has potentially stable reduction.

Proposition 2.3.4. Let v be a finite place of K and let ϕ : A → Kv{τ} be a
Drinfeld module of rank r. Then there is a finite extension L/Kv such that ϕ :
A → Kv{τ} ⊂ L{τ} has stable reduction. Moreover we can choose such an L
which is a finite separable extension with e(L/Kv) | (qs − 1) for some 1 ≤ s ≤ r.

Remark 2.3.5. It follows by Proposition 2.3.4 that every Drinfeld module
ϕ : A → Kv{τ} over Kv of rank r has stable reduction over a finite sepa-
rable extension L/Kv whose ramification index is a divisor of the integer
∏r

s=1(qs − 1) depending only on r and q.

Proof of Proposition 2.3.4. Write ϕt = t+ c1τ+ · · ·+ crτr ∈ Kv{τ} and choose
an integer 1 ≤ r′ ≤ r such that

v(cr′)

qr′ − 1
≤ v(cs)

qs − 1
(2.3.1)

for all 1 ≤ s ≤ r.
Take 1a finite separable extension L of Kv with e(L/Kv) = qr′ − 1. Let

w be the normalized valuation of L. Take an element θ ∈ L with w(θ) =
−v(cr′) and consider the Drinfeld module ψ : A→ L{τ} determined by

ψt = θ−1ϕtθ = t + θq−1c1τ + θq2−1c2τ2 + · · ·+ θqr−1crτr.
1For example, for a uniformizer ϖ ∈ Kv, since Tqr′−1 − ϖ ∈ Kv[T] is an Eisenstein

polynomial and qr′ − 1 is not divisible by p, the extension L = Kv(ϖ1/qr′−1) is separable
and totally tamely ramified with ramification index qr′ − 1 over Kv.
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It is isomorphic to ϕ over L. For any 1 ≤ s ≤ r, the inequality (2.3.1) implies

w(θqs−1cs) = (qs − 1)w(θ) + w(cs)

= −(qs − 1)v(cr′) + ew|vv(cs)

= (qs − 1)
(
−v(cr′) + (qr′ − 1)

v(cs)

qs − 1

)
≥ (qs − 1)

(
−v(cr′) + (qr′ − 1)

v(cr′)

qr′ − 1

)
= 0.

Thus we see that ψt ∈ OL{τ} and w(θqr′−1cr′) = 0. Hence ϕ has stable
reduction over L.

Remark 2.3.6. In particular, every rank-one Drinfeld module has poten-
tially good reduction at all finite places.

Let ϕ : A → K{τ} be of rank r. For any monic irreducible element
π ∈ A, the set of π-torsion points ϕ[π] is a GK-stable r-dimensional Fπ-
vector space. Thus it carries an Fπ-linear representation

ρ̄ϕ,π : GK → AutFπ (ϕ[π]) ≃ GLr(Fπ)

describing the GK-action on ϕ[π]. It is called the mod π-representation at-
tached to ϕ.

Theorem 2.3.7 (Pink and Rütsche). Let ϕ : A → K{τ} be a Drinfeld module
with EndK(ϕ) = A. Then the mod π representation ρ̄ϕ,π is absolutely irreducible2

for almost all monic irreducible elements π ∈ A.

Proof. It follows from [PR09a, Theorem 4.1].

Remark 2.3.8. By contrast, for any Drinfeld module ϕ with EndK(ϕ) ̸= A
and any monic irreducible element π ∈ A, the mod π representation ρ̄ϕ,π
is never absolutely irreducible.

For any positive integer n, the map ϕ[πn+1] → ϕ[πn]; λ 7→ ϕπ(λ) is
GK-equivariant and {ϕ[πn]}n≥1 becomes an inverse system. Write

Aπ := lim←−
n

A/πn A

for the π-adic completion of A.

2We say that ρ̄ϕ,π is absolutely irreducible if ρ̄ϕ,π ⊗Fπ
F̄π is irreducible.
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Definition 2.3.9. The inverse limit

Tπ(ϕ) := lim←−
n

ϕ[πn]

is called the π-adic Tate module of ϕ.

By construction, if ϕ is of rank r, then the π-adic Tate module Tπ(ϕ) is a
free Aπ-module of rank r on which GK acts continuously. Hence it carries a
continuous Galois representation

ρϕ,π : GK → AutAπ
(Tπ(ϕ)) ∼= GLr(Aπ).

The next proposition is an analogue of the Néron-Ogg-Shafarevich cri-
terion for good reduction of abelian varieties (cf. [ST68, Theorem 1]).

Proposition 2.3.10 (Takahashi [Tak82, Theorem 1]). Let ϕ : A → K{τ} be a
Drinfeld module and π ∈ A a monic irreducible element. Let v be a finite place
of K not lying above π. Then ϕ has good reduction at v if and only if Tπ(ϕ) is
unramified at v, that is, ρϕ,π(IKv) = {1}.

Let π ∈ A be a monic irreducible element and let v be a finite place of
K not lying above π. Let ϕ : A → K{τ} be a Drinfeld module of rank r
and assume that ϕ has good reduction at v. Since ρϕ,π is unramified at v by
Proposition 2.3.10, it follows that ρϕ,π(Frobv) ∈ GLr(Aπ) is independent of
the choice of a lift Frobv. Denote by

Pv(T) := det(T − ρϕ,π(Frobv)|Tπ(ϕ)) ∈ Aπ[T]

the characteristic polynomial of Frobv. Then we have the following fact:

Proposition 2.3.11 (Takahashi [Tak82, Proposition 3 (ii)]). Let ϕ, v and π be
as above. Then the polynomial Pv(T) has coefficients in A and is independent of
π. Any root α of Pv(T) satisfies |α| = q1/r

v .

For a Drinfeld module ϕ : A→ K{τ}, denote by

EndK̄(ϕ) := {µ ∈ K̄{τ}; µϕa = ϕaµ for any a ∈ A}

the endomorphism ring of ϕ over K̄. We have the following.

Theorem 2.3.12 (Pink and Rütsche). Let ϕ : A → K{τ} be a Drinfeld module
with EndK̄(ϕ) = A. Then for almost all monic irreducible elements π ∈ A, the
representation ρϕ,π is surjective.
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Proof. This is the special case of [PR09b, Theorem 0.1].

Remark 2.3.13. We see that the “reduction” of ρϕ,π coincides with ρ̄ϕ,π, that
is, the projection AutAπ

(Tπ(ϕ)) ↠ AutFπ (ϕ[π]) induced by the reduction
map Aπ ↠ Fπ makes the following diagram commutative.

GK
ρϕ,π //

ρ̄ϕ,π ((QQ
QQQ

QQQ
QQQ

QQQ
AutAπ

(Tπ(ϕ))

����
AutFπ (ϕ[π])

Hence Theorem 2.3.12 implies that the mod π representation ρ̄ϕ,π is also
surjective for all but finitely many π if EndK̄(ϕ) = A. This is an analogue
of Serre’s classical result [Ser72] on the surjectivity of mod ℓ Galois repre-
sentations attached to non-CM elliptic curves over number fields.

2.4 Tate uniformization

In this section, we see that every Drinfeld module over Kv with stable re-
duction can be constructed from a Drinfeld module with good reduction
by dividing out a “lattice”. We follows the expositions in [Dri74, §7] and
[Leh09, Chapter 4 §3].

Let v be a finite place of a finite extension K of F. For a Drinfeld module
ψ : A → Kv{τ}, consider the A-module ψKsep

v and the metric on it deter-
mined by the normalized valuation of Ksep

v . A subset Λ ⊂ ψKsep
v is said to

be discrete if any ball of finite radius in ψKsep
v contains only finitely many

elements of Λ.
Let ψ : A→ OKv{τ} be a Drinfeld module defined over OKv . We notice

that ψ has good reduction (see Remark 2.2.5 and Remark 2.3.2).

Definition 2.4.1. Let ψ : A → OKv{τ} be as above. A ψ-lattice is a finitely
generated projective A-submodule Λ ⊂ ψKsep

v such that

(1) Λ is discrete,

(2) Λ is stable under the GKv -action.

The rank of Λ is its rank as a projective A-module.

Remark 2.4.2. A ψ-lattice Λ is actually free of finite rank over A since A
is a PID. Since Λ is finitely generated over A, it is contained in a finite
separable extension of Kv. Hence the GKv -action on Λ factors through some
finite quotient of GKv .
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Definition 2.4.3. A Tate datum of rank (r1, r2) over OKv is a pair (ψ, Λ),
where ψ : A→ OKv{τ} is a Drinfeld module of rank r1 and Λ is a ψ-lattice
of rank r2. The sum r = r1 + r2 is called the total rank of (ψ, Λ).

Let (ψ, Λ) and (ψ′, Λ′) be Tate data over OKv . A morphism of Tate data
µ : (ψ, Λ) → (ψ′, Λ′) is a homomorphism µ : ψ → ψ′ of Drinfeld modules
such that the induced A-module homomorphism

µ : ψKsep
v → ψ′K

sep
v

satisfies µ(Λ) ⊂ Λ′. It is called an isomorphism if µ is an isomorphism of
Drinfeld modules satisfying µ(Λ) = Λ′.

Then we obtain the following “analytic” description of stable Drinfeld
modules, so called Tate uniformization.

Proposition 2.4.4 (cf. [Dri74, Proposition 7.2] and [Leh09, Proposition 3.5]).
Let r1 and r2 be positive integers and set r = r1 + r2. Then the category of Tate
data of total rank r over OKv is equivalent to the full subcategory of all Drinfeld
modules of rank r over Kv consisting of those having stable reduction. Moreover
there is a bijection between the following:

(1) The set of Kv-isomorphism classes of Drinfeld modules ϕ : A → Kv{τ} of
rank r with stable reduction of stable rank r1.

(2) The set of isomorphism classes of Tate data (ψ, Λ) of rank (r1, r2) over OKv .

Sketch of the proof of Proposition 2.4.4. We roughly explain the above corre-
spondence. See [Dri74, §7] and [Leh09, Chapter 4] for details. Notice that
the discreteness of ψ-lattices is needed to use some analytic arguments.

Let (ψ, Λ) be a Tate datum over OKv of rank (r1, r2) and consider the
power series

eΛ(T) = T ∏
λ∈Λ\{0}

(
1− T

λ

)
.

It is an additive, Fq-linear formal power series with eΛ ∈ Kv[[T]] and con-
verges for all λ ∈ Ksep

v by [Gos96, Propositions 4.2.4 and 4.2.5]. Thus it can
be regarded as an element of the non-commutative ring Kv{{τ}} of formal
power series in τ over Kv. Then, for any a ∈ A, there is a unique ϕa ∈ Kv{τ}
satisfying

eΛψa = ϕaeΛ.

These elements actually define a Drinfeld module ϕ : A → Kv{τ} of rank
r = r1 + r2 with stable reduction of stable rank r1.
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Conversely, let ϕ : A→ Kv{τ} be a Drinfeld module of rank r = r1 + r2
with stable reduction of stable rank r1. After possibly replacing ϕ with a
Kv-isomorphic Drinfeld module, we may assume that ϕa ∈ OKv{τ} for any
a ∈ A. Then we see that there exist a unique Drinfeld module ψ defined
over OKv of rank r1 and a unique power series

µ = 1 +
∞

∑
s=1

csτ
s ∈ OKv{{τ}}

with cs ∈ pv and cs → 0 (as s→ ∞) such that

µψa = ϕaµ

for any a ∈ A. Then µ induces a surjective A-module homomorphism

µ : ψKsep
v ↠ ϕKsep

v

whose kernel Λ := ker µ is a ψ-lattice of rank r− r1 = r2.

Let (ψ, Λ) be a Tate datum corresponding to a stable Drinfeld module
ϕ : A → Kv{τ} and let µ ∈ OKv{{τ}} be the power series as above. Let
a ∈ A has positive degree. Then ψa induces a surjective GKv -equivariant
A-module homomorphism

ψ−1
a (Λ)/Λ→ Λ/aΛ

whose kernel is ψ−1
a (0) = ψ[a]. Since Λ = ker µ, we see that µ(λ) ∈ ϕ[a]

for any a ∈ ψ−1
a (Λ), so that ψ−1

a (Λ)/Λ ∼= ϕ[a]. Therefore we get a GKv -
equivariant short exact sequence

0→ ψ[a]→ ϕ[a]→ Λ/aΛ→ 0

of A-modules. Let π ∈ A be a monic irreducible element. Then we also
obtain a GKv -equivariant exact sequence

0→ Tπ(ψ)→ Tπ(ϕ)→ Λ⊗A Aπ → 0 (2.4.1)

of Aπ-modules.
We immediately obtain the following.

Proposition 2.4.5. Let ϕ : A → K{τ} be a Drinfeld module over a finite exten-
sion K of F. Let π ∈ A be a monic irreducible element and v a finite place of K. If
v does not lie above π, then the IKv -action on Tπ(ϕ) is potentially unipotent 3.

3Namely there exists a finite extension L/Kv such that ρϕ,π(σ) ∈ GLr(Aπ) is a unipotent
matrix for any σ ∈ IL. See also §§ 3.3.1.
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Proof. By Proposition 2.3.4, we may assume that ϕ : A → Kv{τ} has stable
reduction. Then we have the exact sequence

0→ Tπ(ψ)→ Tπ(ϕ)→ Λ⊗A Aπ → 0

determined by the Tate datum (ψ, Λ) corresponding to ϕ. Since ψ has good
reduction, its π-adic Tate module Tπ(ψ) is unramified at v by Proposition
2.3.10. We already see that the action of GKv on Λ⊗A Aπ is potentially un-
ramified. Hence we get the conclusion by the above exact sequence and
Lemma 3.3.2 in §§ 3.3.1.

Remark 2.4.6. By the theory of “analytic τ-sheaves”(see [Gar01], [Gar02]
and [Gar03a]), the sequence (2.4.1) can be reinterpreted as follows. For any
Drinfeld module ϕ over Kv, one can construct an analytic τ-sheaf M̃(ϕ)
associated with ϕ. It is a locally free OÃ1

Kv
-module of finite rank on Ã1

Kv
with

some additional structures, where Ã1
Kv

is the rigid analytic space associated
with the affine line A1

Kv
= SpecA ×SpecFq SpecKv. Then the π-adic Tate

module Tπ(M̃(ϕ)) of M̃(ϕ) can be defined and it is canonically isomorphic
to Tπ(ϕ). The Tate uniformization implies that there exist an analytic τ-
sheaf Ñ which is potentially trivial and an exact sequence

0→ Ñ → M̃(ϕ)→ M̃(ψ)→ 0

of analytic τ-sheaves. Since M̃ 7→ Tπ(M̃) is a contravariant exact functor,
we obtain

0→ Tπ(M̃(ψ))→ Tπ(M̃(ϕ))→ Tπ(Ñ)→ 0,

which coincides with the sequence (2.4.1) (for example, see [Gar03b, Exam-
ple 7.1]).

2.5 Cyclotomic function fields

We recall some properties of a function field analogue of cyclotomic exten-
sions of the rational number field Q (cf. [Hay74] and [Ros02, Chapter 12]).
In this section, we will use the letters “a” and “n” as our typical non-zero
elements of A.

Definition 2.5.1. The Drinfeld module

C : A→ F{τ}

determined by Ct = t + τ is called the Carlitz module.
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The Carlitz module C is of rank one and has good reduction at all finite
places. For any non-zero n ∈ A, we know that C[n] ∼= A/nA as an A-
module. Let ζn be a generator of C[n]. Then it is easy to see that Ca(ζn)
is also a generator of C[n] if and only if (a, n) = 1. Thus, it follows that
F(ζn) = F(C[n]). We see that the action of Gal(F(ζn)/F) on C[n] is faithful
and so we have an injection

Gal(F(ζn)/F) ↪→ (A/nA)×. (2.5.1)

Hence F(ζn)/F is an abelian extension. Its arithmetic behavior is similar to
that of cyclotomic number fields:

Proposition 2.5.2. Let π ∈ A be a monic irreducible element.

(1) For every e ∈ Z>0, F(ζπe) is unramified at every place of F distinct from π
and ∞. The place π is totally ramified with ramification index #(A/πe A)× =
qe−1

π (q− 1).

(2) Let n ∈ A be an element of positive degree. Then π is ramified in F(ζn) if
and only if (n, π) = 1. We have [F(ζn) : F] = #(A/nA)×.

Proof. See [Hay74, Proposition 2.2] and [Ros02, Theorem 12.8].

Proposition 2.5.2 (2) implies that the map (2.5.1) is an isomorphism
Gal(F(ζn)/F) ∼= (A/nA)×. We look at this isomorphism more closely. No-
tice that ζn is a generator of C[n]. If σ ∈ Gal(F(ζn)/F), then clearly σ(ζn)
is also a generator of C[n]. Thus there is an element a ∈ A with (a, n) = 1
such that σ(ζn) = Ca(ζn). The σ is completely determined by this rela-
tion. Then it follows that the map σ 7→ a coincides with the isomorphism
Gal(F(ζn)/F) ∼= (A/nA)×.

For any a ∈ A with (a, n) = 1, write σa ∈ Gal(F(ζn)/F) for the unique
element satisfying σa(ζn) = Ca(ζn). Then we have the following important
fact.

Proposition 2.5.3 (Hayes [Hay74, Corollary 2.5]). Let π ∈ A be a monic irre-
ducible element not dividing n. Then the element σπ ∈ Gal(F(ζn)/F) coincides
with the Artin automorphism 4 (π, F(ζn)/F) for π.

We introduce an important Galois character as follows.

4see § 5.2.
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Definition 2.5.4. Let π ∈ A be a monic irreducible element. The character

χπ(:= ρ̄C,π) : GF → F×π

describing the GF-action on C[π] is called the mod π Carlitz character.

By definition, it factors as χπ : GF ↠ Gal(F(ζπ)/F) ∼= F×π and satisfies
the following.

Proposition 2.5.5. Let π0 ∈ A be a monic irreducible element with π0 ̸= π.
Then χπ is unramified at π0 and we have

χπ(Frobπ0
) ≡ π0 (mod π).

Proof. By Proposition 2.3.10 or Proposition 2.5.2 (2), it follows that χπ is
unramified at π0. Since Frobπ0

|F(ζπ) = (π0, F(ζπ)/F) holds, the above con-
gruence follows from Proposition 2.5.3.

Remark 2.5.6. In general, let K be a finite extension of F and let v be a place

of K above π0. If π ̸= π0, then we have χπ(Frobv) = χπ(Frob
fv|π0
π0 ). Thus

χπ(Frobv) ≡ π
fv|π0
0 (mod π)

holds.

The last task in this section is to study the ramification of the infinite
place ∞. Let n ∈ A have positive degree. Define

J = {σx ∈ Gal(F(ζn)/F); x ∈ F×q }

and consider the fixed subfield F(ζn)+ ⊂ F(ζn) by J. We notice that J ∼= F×q
and [F(ζn) : F(ζn)+] = q− 1. Then we have:

Proposition 2.5.7. The infinite place ∞ of F splits completely in F(ζn)+ and
every place of F(ζn)+ above ∞ is totally and tamely ramified with ramification
index q− 1.

Proof. See [Ros02, Theorem 12.14].

Corollary 2.5.8. For any n ∈ A with n ̸= 0, the constant field of F(ζn) is Fq,
that is, F(ζn)/F is a geometric extension.

Proof. It is trivial when n ∈ F×q . Suppose that n has positive degree. Let
w∞|v∞ be places of F(ζn)/F(ζn)+ above ∞. Then Proposition 2.5.7 means
that fw∞|v∞

= fv∞|∞ = 1, so that the residue field at w∞ is Fq. Since the
constant field of F(ζn) injects into the residue field at w∞, the result follows.





Chapter 3

Rasmussen-Tamagawa type conditions

In this chapter, we explain a motivation of the Rasmussen-Tamagawa con-
jecture and the precise statement of it. After that, following the analogy
between number fields and function fields, we define the set D(K, r, π) of
K-isomorphism classes of Drinfeld modules with Rasmussen-Tamagawa
type conditions.

3.1 Ihara’s question

The absolute Galois group Gk of a global field k is a fundamental object in
number theory. However its structure is very complicated and still myste-
rious. To describe this, it is important to study various arithmetic objects on
which Gk acts. Typical examples of such objects are Galois representations
defined by the ℓ-adic Tate modules of abelian varieties over k and the ℓ-adic
étale cohomology groups of schemes over k, where ℓ is a prime number. In
the case where k is a function field, Drinfeld modules also provide Galois
representations.

Using the étale fundamental groups, one can construct other such ob-
jects so-called outer Galois representations. For a connected scheme X over
k, one can define the étale fundamental group π1(X), which is an scheme-
theoretic analogue of a topological fundamental group. Indeed if X is of
finite type over the field of complex numbers C, then its étale fundamental
group is isomorphic to the profinite completion of the topological funda-
mental group of X(C), the complex analytic space attached to X. It is well-
known that the étale fundamental group of Spec k is precisely the absolute
Galois group π1(Spec k) ∼= Gk.

Suppose that X is a quasi-compact and geometrically irreducible scheme
over k and set X̄ := X ×Spec k Spec ksep. Then it follows that the étale fun-
damental group π1(X) is an extension of Gk by π1(X̄). Namely there is a

31
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short exact sequence

1→ π1(X̄)→ π1(X)→ Gk → 1, (3.1.1)

which is called the homotopy exact sequence. Denote by Inn(π1(X̄)) the sub-
group of Aut(π1(X̄)) consisting of all inner automorphisms of π1(X̄). It is
a normal subgroup of Aut(π1(X̄)) and so we have the group

Out(π1(X̄)) := Aut(π1(X̄))/Inn(π1(X̄))

of outer automorphisms of π1(X̄). For any σ ∈ Gk and y ∈ π1(X̄), consider
a conjugation x−1

σ yxσ by a lift xσ ∈ π1(X) of σ, which is also an element of
π1(X̄) by the exact sequence (3.1.1). Thus we have an automorphism y 7→
x−1

σ yxσ of π1(X̄). It follows that this automorphism is uniquely determined
by σ up to inner automorphisms. Thus we obtain a group homomorphism

Φ : Gk → Out(π1(X̄))

so-called the outer Galois representation.
It is believed that such outer representations have ample information

about Galois groups. Let us consider the case where k = Q and X̄ =
P1

0,1,∞ := P1
Q̄
\ {0, 1, ∞}. Then Belyĭ’s result in [Bel80] shows that the outer

Galois representation

ΦQ : GQ → Out(π1(P
1
0,1,∞))

is injective. Therefore studying the group Out(π1(P
1
0,1,∞)) is helpful to un-

derstand the structure of GQ.
Ihara studied the structure of ΦQ and Out(π1(P

1
0,1,∞)) as follows. For

a fixed prime number ℓ, denote by πℓ
1(P

1
0,1,∞) the maximal pro-ℓ quotient

of π1(P
1
0,1,∞). It is a characteristic quotient of π1(P

1
0,1,∞) and so there is a

canonical surjection Out(π1(P
1
0,1,∞)) ↠ Out(πℓ

1(P
1
0,1,∞)). Then the pro-ℓ

outer representation

ΦQ,ℓ : GQ → Out(πℓ
1(P

1
0,1,∞))

is defined by the following diagram:

GQ

ΦQ //

ΦQ,ℓ ((QQ
QQQ

QQQ
QQQ

QQQ
Q Out(π1(P

1
0,1,∞))

����
Out(πℓ

1(P
1
0,1,∞)).
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Denote by µℓ∞ = µℓ∞(Q̄) the set of all ℓ-power roots of unity in Q̄. Ihara’s
result in [Iha86] shows that the fixed subfield

ΩQ,ℓ := Q̄ker ΦQ,ℓ

of Q̄ is an infinite non-abelian pro-ℓ extension of Q(µℓ∞) unramified outside
ℓ, that is, unramified at all places not lying above ℓ. Therefore if we write
ΛQ,ℓ for the maximal pro-ℓ extension of Q(µℓ∞) unramified outside ℓ, then

ΩQ,ℓ ⊆ ΛQ,ℓ

holds. Ihara asked the following:

Question 3.1.1 (Ihara [Iha86]). For any prime number ℓ, does ΩQ,ℓ = ΛQ,ℓ
hold?

Remark 3.1.2. If ℓ is odd and regular, then Scharifi’s work [Sha02, Theorem
1.1] shows that the question is equivalent to a conjecture of Deligne and
Ihara on the nature of a certain graded Lie algebra constructed from the
lower central series of πℓ

1(P
1
0,1,∞). This conjecture is recently proved by

Brown in [Bro12]. Hence the answer to Ihara’s question is given in the odd
regular prime case. However it is still open in general.

3.2 The Rasmussen-Tamagawa conjecture

3.2.1 Motivations Let k be a finite extension of Q and let ℓ be a prime
number. Denote by Ωk,ℓ the fixed subfield of ksep by ker ΦQ,ℓ|Gk and by Λk,ℓ
the maximal pro-ℓ extension of k(µℓ∞) unramified outside ℓ. As in §3.1, we
see that Ωk,ℓ ⊆ Λk,ℓ. In this situation, does the equality Ωk,ℓ = Λk,ℓ hold? To
consider this open question, it is worth studying subfields of Ωk,ℓ arising
from ℓ-power torsion points of abelian varieties in the following reason.

Let X be an abelian variety over k. Let X∨ be the dual abelian variety
to X and let θ : X → X∨ be a polarization. Then it is known that the
polarization θ induces a non-degenerate pairing

eθ : Vℓ(X)×Vℓ(X)→ Qℓ(1)

of rational ℓ-adic Tate module Vℓ(X) := Tℓ(X)⊗Zℓ
Qℓ of X, where Qℓ(1) is

the one-dimensional Qℓ-vector space on which Gk acts via the ℓ-adic cyclo-
tomic character. By the paring, we see that

k(µℓ∞) ⊂ k(X[ℓ∞]),
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where k(X[ℓ∞]) = k(∪n≥1X[ℓn]) is the field generated by all ℓ-power tor-
sion points of X. See [Mum70, §20] for details.

If X has good reduction at any finite place of k not lying above ℓ, then by
the Néron-Ogg-Shafarevich criterion in [ST68] the extension k(X[ℓ∞])/k(X[ℓ])
is pro-ℓ and unramified outside ℓ. Hence if k(X[ℓ]) ⊂ Λk,ℓ, then also
k(X[ℓ∞]) ⊂ Λk,ℓ. In this case, to consider the question of Ihara, it is worth
studying whether or not k(X[ℓ∞]) ⊂ Ωk,ℓ.

For example, if X is the Jacobian variety of one of the following curves
over k, then it is known that k(X[ℓ∞]) ⊂ Ωk,ℓ holds:

• Fermat curves or Heisenberg curves for any ℓ [AI98, §0.6],
• Principal modular curves X(2n), ℓ = 2 [AI98, §0.6],
• Elliptic curves E/Q with good outside ℓ = 2 [Ras08, Theorem 1.1],
• Elliptic curves E/Q with good outside ℓ = 3 [PaR07, Corollary 4],
• Modular curves X(ℓn), X0(ℓn) and X1(ℓ

n), ℓ = 2, 3 [PaR07, Theo-
rem 1 and §3.2 ].

3.2.2 Statements of conjectures and known results By the above reason,
we are interested in the existence of abelian varieties X over k satisfying
k(X[ℓ∞]) ⊂ Λk,ℓ for some prime number ℓ. Notice that such X has good
reduction at any finite places of k not lying above ℓ by the Néron-Ogg-
Shafarevich criterion in [ST68].

Despite the existence of these examples for some small ℓ as in the above
subsection, the constraints on such abelian varieties are strong and so such
abelian varieties are quite rare. For an abelian variety X over k, denote
by [X] its k-isomorphism class. For a positive integer g > 0 and a prime
number ℓ, define

A (k, g, ℓ) := {[X]; dim X = g and k(X[ℓ∞]) ⊂ Λk,ℓ}.

For a finite set S of finite places of k, we also define G (k, g, S) to be the set of
k-isomorphism classes of g-dimensional abelian varieties over k which have
good reduction outside S. If S contains all places above ℓ, then A (k, g, ℓ) ⊂
G (k, g, S). Faltings proved in [Fal83] the conjecture of Shafarevich: for fixed
positive integer d and fixed k,g, and S, the subset of G (k, g, S) consisting
of those abelian varieties which admit a polarization of degree d is finite.
In [Zar85, Theorem 1], Zarhin later improved Faltings’ result to give the
finiteness of G (k, g, S) for any k, g and S. Consequently the set A (k, g, ℓ) is
also finite. By the structure lemma (Lemma 3.3.1), we have the following
equivalence. See also the proof of Proposition 3.3.6.



CHAPTER 3. RASMUSSEN-TAMAGAWA TYPE CONDITIONS 35

Proposition 3.2.1. For an abelian variety X over k and a prime number ℓ, the
following conditions are equivalent:

(RT-1) k(X[ℓ∞]) ⊆ Λk,ℓ,

(RT-2) X has good reduction at any finite place of k not lying above ℓ and
k(X[ℓ])/k(µℓ) is an ℓ-extension,

(RT-3) X has good reduction at any finite place of k not lying above ℓ and the
mod ℓ representation ρ̄X,ℓ : Gk → AutFℓ

(X[ℓ]) ≃ GL2g(Fℓ) is of the
form

ρ̄X,ℓ ≃


χi1
ℓ ∗ · · · ∗

χi2
ℓ

. . .
...

. . . ∗
χ

i2g
ℓ

 ,

where χℓ is the mod ℓ cyclotomic character and dim X = g.

In 2008, Rasmussen and Tamagawa stated the following conjecture (the
Rasmussen-Tamagawa conjecture):

Conjecture 3.2.2 (Rasmussen and Tamagawa [RT08, Conjecture 1]). Let k/Q

be a finite extension and g ≥ 0. Then for any sufficiently large prime ℓ, the set
A (k, g, ℓ) is empty.

This conjecture says that there exists a positive constant C = C(k, g) > 0
depending only on k and g such that A (k, g, ℓ) = ∅ for any prime ℓ > C.
Since A (k, g, ℓ) is finite for all ℓ, the conjecture is equivalent to saying that
the disjoint union

A (k, g) :=
∪
ℓ

A (k, g, ℓ)

is finite. Under the assumption on the Generalized Riemann Hypothesis
(GRH, for short) for Dedekind zeta functions of number fields, Rasmussen
and Tamagawa proved the conjecture is true in [RT17, Theorem 5.1]. There-
fore it is believed that the conjecture is true in general. Without the assump-
tion of GRH, the conjecture is true in the following cases:

• k = Q and g = 1 [RT08, Theorem 2],
• k = Q and g = 2, 3 [RT17, Proposition 7.1 and Proposition 7.2],
• k/Q be a quadratic extension and g = 1 [RT17, Proposition 7.4],
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• k/Q is a Galois extension whose Galois group Gal(k/Q) has expo-
nent 3 and g = 1 [RT17, Proposition 7.7].

Sometimes one can prove non-existence of subsets of A (k, g, ℓ) (cf. Re-
mark 3.2.7). For example,

• for abelian varieties with everywhere semistable reduction [Oze11,
Corollary 4.5] and [RT17, Theorem 3.6],
• for abelian varieties with abelian Galois representations [Oze13,

Corollary 1.3],
• for QM abelian surfaces over certain imaginary quadratic number

fields [Ara14, Theorem 9.3].

For an arbitrary field F and a positive integer n > 0, define

Fn(F ) := {K; [K : F ] = n}

to be the set of finite extensions of F of degree n. Rasmussen and Tama-
gawa also stated a uniform version of conjecture 3.2.2:

Conjecture 3.2.3 (Rasmussen and Tamagawa [RT17, Conjecture 2]). Let g >
0 and n > 0 be positive integers. Then there exists a positive constant C =
C(g, n) > 0 such that A (k, g, ℓ) = ∅ for any k ∈ Fn(Q) and any prime ℓ > C.

Under the assumption of GRH, one can prove the conjecture in the odd
degree case:

Theorem 3.2.4 (Rasmussen and Tamagawa [RT17, Theorem 5.2]). Assume
that the Generalized Riemann Hypothesis. Then Conjecture 3.2.3 is true for any
g > 0 and any odd n.

Rasmussen and Tamagawa also prove the next stronger result:

Theorem 3.2.5 (Rasmussen and Tamagawa [RT17, Theorem 5.3]). Let k0 be
a finite extension of Q and assume the Generalized Riemann Hypothesis. For any
g > 0 and any odd n > 0, there exists a positive constant C = C(g, n) > 0 such
that A (k, g, ℓ) = ∅ for any k ∈ Fn(k0) and ℓ > C.

Although the uniform version of the conjecture is not proved without
the assumption of the GRH, several partial results are known. For example,
the result of Rasmussen and Tamagawa [RT17, Corollary 3.8] shows that for
any g > 0 and any n > 0 not divisible by 4, there exists a positive constant
C = C(g, n) > 0 such that A ss(k, g, ℓ) = ∅ for any k ∈ Fn(Q) and any



CHAPTER 3. RASMUSSEN-TAMAGAWA TYPE CONDITIONS 37

ℓ > C, where A ss(k, g, ℓ) is the subset of A (k, g, ℓ) consisting of those k-
isomorphism classes of abelian varieties which have semistable reduction
at every finite places of k. In the CM elliptic curve case, Bourdon proves the
following finiteness result:

Theorem 3.2.6 (Bourdon [Bou15, Theorem 1]). Let k be a finite extension of
Q of degree n. Then there exists a positive constant C = C(n) > 0 with the
following property: If there exists an elliptic curve E over k such that EQ̄ has
complex multiplication and k(E[ℓ∞]) is a pro-ℓ extension of k(µℓ), then ℓ ≤ C.

Remark 3.2.7. Define

A CM(k, g, ℓ) := {[X] ∈ A (k, g, ℓ); XQ̄ has complex multiplication}.

Then the above result of Bourdon implies that Conjecture 3.2.3 for the set
A CM(k, 1, ℓ) is true. For any g > 0 and n > 0, the recent work of Lom-
bardo [Lom, Theorem 1.3] shows that there exists a positive constant C =
C(g, n) > 0 such that A CM(k, g, ℓ) = ∅ for any k ∈ Fn(Q) and ℓ > C.

3.3 Definition of the set D(K, r, π)

The main task of this section is to formulate a Drinfeld module analogue
of the Rasmussen-Tamagawa conjecture. As usual, we denote by K a finite
extension of F and by r a positive integer. Let π ∈ A be a monic irreducible
element. As an analogue of A (k, g, ℓ), let us define the set D(K, r, π) of K-
isomorphism classes of Drinfeld modules with Rasmussen-Tamagawa type
conditions.

3.3.1 Group theoretic lemmas In the number field case, A (k, g, ℓ) is de-
termined by the equivalent conditions (RT-1), (RT-2), and (RT-3) in Propo-
sition 3.2.1. The equivalence of them follows from the criterion of Néron-
Ogg-Shafarevich and the next group theoretic lemma:

Lemma 3.3.1 (cf. Rasmussen and Tamagawa [RT17, Lemma 3.4]). Let F be
a finite field of characteristic ℓ. Suppose G is a profinite group, N ⊂ G is a pro-ℓ
open normal subgroup, and C = G/N is a finite cyclic subgroup with #C|#F×.
Let V be an F-vector space of dimension r on which G acts continuously. Fix
a group homomorphism χ0 : G → F× with ker χ0 = N. Then there exists a
filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vr = V

of F-vector spaces such that for each 0 ≤ s ≤ r,
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• Vs is G-stable,
• dimF Vs = s,
• the G-action on Vs/Vs−1 is given by χis

0 for some integer is satisfying
0 ≤ is < #C.

Proof. It is proved by induction on r. The r = 1 case is trivial since G
must act on V via a power of χ0. Suppose that the result holds for spaces
of dimension r − 1. Let V be an F-vector space of dimension r with G-
action. Consider the action of N on V. Then we see that it factors through
some finite ℓ-group. Hence every N-orbit of V has an ℓ-power order and
so the subspace VN of fixed points is non-trivial. Indeed if VN = {0}, then
it follows that #V − 1 is divisible by ℓ, which is impossible. Since N is a
normal subgroup of G, we see that VN is G-stable and there exists a well-
defined action of C on VN . Let γ ∈ C be a generator of C, so that C = ⟨γ⟩.
Set c := #C.

Choose an ordered basis for VN and denote the associated representa-
tion by ρ : C → AutF(VN) ∼= GLd(F), where d = dimF VN . Since ρ(γ)c is
the identity matrix, the minimal polynomial of ρ(γ) splits completely over
F. Thus there is an eigenvector w ∈ VN of ρ(γ) with eigenvalue ξ ∈ F× sat-
isfying ξc = 1. The homomorphism χ0 : G → F× induces an isomorphism
χ̄0 between C and the cyclic subgroup of F× of order c. Since ker χ0 = N,
it follows that χ̄0(γ) has exact order c and so ξ = χ̄0(γ)j for some integer j
satisfying 0 ≤ j < c.

Let V1 ⊂ VN be the subspace generated by w. Clearly V1 is G-stable
and the G-action on V1 is given by χ

j
0. Consider the induced action of G on

the quotient V ′ := V/V1. Since this quotient is of dimension r − 1, by the
assumption of induction there exists a filtration

{0} = V ′0 ⊂ · · · ⊂ V ′r−1 = V ′

of G-stable subspaces of V ′ such that for all 0 ≤ s ≤ r− 1, dimF V ′s = s and
G acts on V ′s /V ′s−1 via χ

i′s
0 with 0 ≤ i′s < c. Let Π : V ↠ V ′(= V/V1) be

the natural projection. Set V0 := {0} and Vs := Π−1(V ′s−1) for 1 ≤ s ≤ r.
Then the restriction of Π to Vs is a G-equivariant surjection Vs ↠ V ′s−1 and
hence the induce isomorphism Vs/Vs−1

∼= V ′s−1/V ′s−2 is also G-equivariant
for each 1 < s ≤ r. If we set is = i′s−1 for each 1 < s ≤ r, then the filtration
{Vs}r

s=0 has the required properties.

We shall prepare two fundamental lemmas which are needed in the
next subsection. Let F be a field of positive characteristic p and U ∈
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GLn(F ) for a positive integer n. We say that U is unipotent if U − In is
nilpotent, where In ∈ GLn(F ) is the identity matrix. Denote by

DTn(F ) :=




1 ∗ · · · ∗

1
. . .

...
. . . ∗

1

 ∈ GLn(F )


the subgroup of GLn(F ) consisting of those triangular matrices with diag-
onal elements equal to 1.

Lemma 3.3.2. Let F and n be as above.
(1) U ∈ GLn(F ) is unipotent if and only if it is of p-power order.
(2) The subgroup DTn(F ) is a maximal unipotent subgroup of GLn(F ). All

maximal unipotent subgroups of GLn(F ) are conjugate to DTn(F ) under GLn(F ).

Proof. See [Zas69, Theorem 1 and Theorem 2].

Next, for any positive integer n and any local ring R with residue field
F, denote by

Γn(R) := ker (GLn(R)→ GLn(F))

the kernel of the canonical surjection induced by the reduction map R ↠ F.

Lemma 3.3.3 (cf. [Gou01, Lemma 5.1 and Problem 5.1]). Let n be a positive
integer. Let R be a complete noetherian local ring with finite residue field F of
positive characteristic p. Then Γn(R) is a pro-p group.

Proof. Let m ⊂ R be the maximal ideal of R. Then by definition R is iso-
morphic to lim←−k

R/mk. For every positive integer k, denote by

fk : Γn(R/mk+1)→ Γn(R/mk)

the homomorphism induced by the canonical map R/mk+1 → R/mk. Then
the groups Γn(R/mk) form an inverse system by fk and we see that

Γn(R) ∼= lim←−
k

Γn(R/mk).

Therefore it suffices to show that Γn(R/mk) is a p-group for every k. To
prove this, we check that both ker fk and Im fk are p-groups.
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We see that ker fk consists of those matrices whose off-diagonal entries
are in the ideal mk/mk+1 and whose diagonal entries are in 1 + mk/mk+1.
Namely we have

ker fk = 1 + Mn(m
k/mk+1).

Here it is isomorphic to the additive group Mn(mk/mk+1). Indeed any two
matrices X and Y in Mn(mk/mk+1) satisfy XY = 0 and so the map

1 + Mn(mk/mk+1) → Mn(mk/mk+1)
1 + X 7→ X

is a group isomorphism. Since mk/mk+1 is a one-dimensional F-vector
space, the group Mn(mk/mk+1) is a p-group and hence ker fk is also a p-
group.

We next prove that Im fk is a p-group by induction on k. Notice that
Γn(R/m) = Γn(F) = {1} and so Im f1 = {1} is a p-group. Suppose that
Im fk−1 is a p-group for an integer k ≥ 2. Then

1→ ker fk−1 ∩ Im fk → Im fk
fk−1−→ Im fk−1

is exact and both ker fk−1 ∩ Im fk and Im fk−1 are p-groups, and so is Im fk.

3.3.2 Equivalent conditions Let ϕ : A → K{τ} be a Drinfeld module
of rank r and let π ∈ A be a monic irreducible element. We give some
conditions which are equivalent to the condition (D1)+(D2) in Chapter 1.

Recall that the mod π Carlitz character χπ : GK → AutFπ (C[π]) ∼= F×π is
an analogue of the mod ℓ cyclotomic character. Let ζπ ∈ C[π] be a generator
of C[π] as an A-module. Then we have K(C[π]) = K(ζπ). Consider the
subfield

L := K(ϕ[π]) ∩ K(ζπ)

of K(ϕ[π]). Then we have the following equivalent conditions.

Lemma 3.3.4. Let ϕ, π and L be as above. Then the following conditions are
equivalent.

(a) K(ϕ[π])/L is a p-extension,

(b) The mod π representation ρ̄ϕ,π|GL restricted to GL is of the form

ρ̄ϕ,π|GL ≃


1 ∗ · · · ∗

1
. . .

...
. . . ∗

1

 ,
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(c) ϕ satisfies (D2), that is, the mod π representation ρ̄ϕ,π is of the form

ρ̄ϕ,π ≃


χi1

π ∗ · · · ∗
χi2

π
. . .

...
. . . ∗

χir
π


for some integers 0 ≤ is < qπ − 1.

Proof. Since K(ϕ[π]) is the fixed subfield of Ksep by ker ρ̄ϕ,π, the represen-
tation ρ̄ϕ,π factors through an injection

ρ̄ : Gal(K(ϕ[π])/K) ↪→ GLr(Fπ).

Then it follows that ρ̄ϕ,π(GL) = ρ̄(Gal(K(ϕ[π])/L)) ⊂ GLr(Fπ). By Lemma
3.3.2 we see that Gal(K(ϕ[π])/L) is a p-group if and only if ρ̄ϕ,π(GL) is a
unipotent subgroup of GLr(Fπ). In this case, up to conjugation ρ̄ϕ,π(GL) is
a subgroup of DTr(Fπ). Hence (a) and (b) are equivalent.

Suppose that (c) holds. By definition, it follows that χπ(σ) = 1 for any
element σ ∈ GK(ζπ). Now ρ̄ϕ,π factors through Gal(K(ϕ[π])/K), so that
ρ̄ϕ,π(GK(ζπ)) = ρ̄ϕ,π(GL). Hence (c) implies (b).

Finally suppose that (a) holds. Consider the composite field M :=
K(ϕ[π], ζπ) of K(ϕ[π]) and K(ζπ).

M := K(ϕ[π], ζπ)

ooo
ooo

ooo
o

NNN
NNN

NNN

K(ϕ[π])

PPP
PPP

PPP
PPP

K(ζπ)

ooo
ooo

ooo
oo

L

Since L = K(ϕ[π]) ∩ K(ζπ), we see that [M : K(ζπ)] = [K(ϕ[π]) : L]
and therefore M/K(ζπ) is also a p-extension. By construction, both ρ̄ϕ,π :
GK → GLr(Fπ) and χπ : GK → F×π factor through the Galois group
G := Gal(M/K). Denote by χ0 : G → F×π the character given by the
decomposition

χπ : GK ↠ G
χ0−→ F×π .

Then we have N := ker χ0 = Gal(M/K(ζπ)), which is a normal p-subgroup
of G. Hence applying Lemma 3.3.1 to V = ϕ[π], G, χ0, and N as above, we
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see that the semisimplification ρ̄ss
ϕ,π is isomorphic to χi1

π ⊕ · · · ⊕ χir
π for some

integers is with 0 ≤ is < #G/N = #Gal(K(ζπ)/K) ≤ qπ − 1. Hence (c)
holds.

Remark 3.3.5. Unlike the abelian variety case, the field K(ϕ[π]) may not
contain K(ζπ). For example, for x ∈ F×q \{1}, consider the rank-one Drin-
feld module ϕ over F determined by ϕt = t + xτ and suppose q ̸= 2. Then
the fields F(ϕ[t]) and F(ζt) are generated by the roots of t + xTq−1 and
t + Tq−1, respectively. By Kummer theory, we see that F(ϕ[t]) ̸= F(ζt), so
that F(ϕ[t]) ̸⊃ F(ζt).

Using the above lemma, we can formulate the Rasmussen-Tamagawa
type conditions for Drinfeld modules as follows. Consider the field

K(ϕ[π∞]) := K(
∪

n≥1
ϕ[πn])

generated by all π-power torsion points of ϕ. Notice that it is the fixed
subfield of Ksep by the kernel of the π-adic representation ρϕ,π : GK →
GLr(Aπ).

Proposition 3.3.6. Let the notations be as above. Then the following conditions
are equivalent.

(DR-1) K(ϕ[π∞])/L is a pro-p extension which is unramified at any finite place
of L not lying above π,

(DR-2) ϕ has good reduction at any finite place of K not lying above π and
K(ϕ[π])/L is a p-extension,

(DR-3) ϕ satisfies (D1) and (D2).

Proof. The proof is parallel to that in the abelian variety case. Clearly both
ρϕ,π and ρ̄ϕ,π factor through Gal(K(ϕ[π∞])/K) and so we can regard them
as representations of Gal(K(ϕ[π∞])/K). By Remark 2.3.13, we have the
following diagram

Gal(K(ϕ[π∞])/K)
ρϕ,π //

ρ̄ϕ,π ))TTT
TTTT

TTTT
TTTT

GLr(Aπ)

����
GLr(Fπ).

It implies that
ker ρ̄ϕ,π = Gal(K(ϕ[π∞])/K(ϕ[π])).
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Here ρϕ,π : Gal(K(ϕ[π∞])/K) → GLr(Aπ) is injective and so ker ρ̄ϕ,π is
embedded into the kernel Γr(Aπ) of GLr(Aπ)→ GLr(Fπ). Since Γr(Aπ) is
a pro-p group by Lemma 3.3.3, the extension K(ϕ[π∞])/K(ϕ[π]) is always
pro-p. Consequently K(ϕ[π∞])/L is pro-p if and only if K(ϕ[π])/L is a p-
extension. By Proposition 2.3.10, we know that ϕ has good reduction at
any finite place v of K not lying above π if and only if v is unramified in
K(ϕ[π∞]). Hence the result follows from Lemma 3.3.4.

Now we can define a Drinfeld module analogue of the set A (k, g, ℓ).

Definition 3.3.7. Let K, r and π be as above. We define D(K, r, π) to be
the set of K-isomorphism classes [ϕ] of Drinfeld modules ϕ : A → K{τ} of
rank r satisfying the equivalent conditions in Proposition 3.3.6.

Remark 3.3.8. In the abelian variety case, the set A (k, g, ℓ) is always finite
by the Shafarevich conjecture (cf. §§ 3.2.2). However the Drinfeld module
analogue of this conjecture does not hold, see Example 6.2.1. Therefore it is
not known whether or not D(K, r, π) is finite. If r ≥ 2 and π = t, then we
prove that D(K, r, t) is infinite in Chapter 6.

Remark 3.3.9. The original conjecture of Rasmussen and Tamagawa is for-
mulated for abelian varieties of arbitrary dimension, and so we would like
to formulate its function field analogue for some higher dimensional ob-
jects (recall that Drinfeld modules are analogues of elliptic curves).

In [And86], Anderson introduced objects called t-motives as analogues
of abelian varieties of higher dimensions, which are also generalizations
of Drinfeld modules. In fact the category of Drinfeld modules is anti-
equivalent to that of t-motives of dimension one. It is known that t-motives
have the notions of good reduction and Galois representations attached to
their π-torsion points (see, for example [Gar01]), so that we can consider
the conditions (D1) and (D2) for t-motives. Moreover, Proposition 3.3.6 is
also generalized to t-motives since the Galois criterion of good reduction
for t-motives holds.

Therefore the set M (K, d, r, π) of isomorphism classes of d-dimensional
t-motives over K of rank r satisfying the Rasmussen-Tamagawa type con-
ditions can be defined and the following question makes sense: Is the set
M (K, d, r, π) empty for any π with sufficiently large degree?





Chapter 4

Inertia action on torsion points

Throughout this chapter, let π ∈ A be a monic irreducible element and K
a finite extension of F. In this chapter, studying the ramification of mod π
representations attached to Drinfeld modules, we show some non-existence
results on certain Drinfeld modules. As a corollary of them, we have a part
of Theorem 1.0.2 (= Theorem 4.3.9).

In §4.1, we introduce the notion of tame inertia weight, which is a key tool
to prove the non-existence theorems. In §4.2, considering the tame inertia
weights of the mod π Galois representation attached to a Drinfeld module
ϕ : A → K{τ}, we define an invariant eπ(ϕ) (Definition 4.2.5) and prove
some important properties on it. In §4.3, we define a set D(K, r, π, d) of
K-isomorphism classes of certain Drinfeld modules satisfying D(K, r, π) ⊂
D(K, r, π, d). Using some facts on eπ(ϕ), we prove the emptiness of the set
when π has large degree, which implies Theorem 4.3.9.

4.1 Tame inertia weights

Let u be a finite place of K above π. For a fixed separable closure Ksep
u of

Ku with residue field F̄u, denote by Kur
u (resp. Kt

u) the maximal unramified
(resp. maximal tamely ramified) extension of Ku in Ksep

u . Notice that IKu

is isomorphic to Gal(Ksep
u /Kur

u ). Denote by Iw
Ku

:= Gal(Ksep
u /Kt

u) the wild
inertia subgroup of IKu . It is a normal subgroup of IKu and then we define
It
Ku

:= IKu /Iw
Ku
∼= Gal(Kt

u/Kur
u ), which is called the tame inertia group of Ku.

4.1.1 Fundamental characters Let d be a positive integer and F the finite
field with qd

π elements in F̄u. Then F is the finite extension of Fπ of degree
d. Write µqd

π−1(K
sep
u ) for the set of (qd

π − 1)-st roots of unity in Ksep
u and

fix the isomorphism µqd
π−1(K

sep
u )

∼→ F× coming from the reduction map

45
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OKsep
u

↠ F̄u. For a uniformizer ϖ of Ku, choose a solution η ∈ Ksep
u to the

equation Xqd
π−1 −ϖ = 0 and define

ωd,Ku : IKu → µqd
π−1(K

sep
u )

∼→ F×.

σ 7→ σ(η)
η

It is independent of the choices of ϖ and η and factors through It
Ku

(cf.
[Ser72]).

Definition 4.1.1. The Gal(F/Fπ)-conjugates of ωd,Ku

(ωd,Ku)
qi

π : It
Ku
→ F× (0 ≤ i ≤ d− 1)

are called the fundamental characters of level d.

It is easy to check that

(ωd,Ku)
1+qπ+···+qd−1

π = ω1,Ku

and (ωd,Ku)
qd

π−1 = 1. For any finite extension L of Ku, we see that (ωd,Ku)|IL =
(ωd,L)

e(L/Ku) by definition.
As an analogue of Serre’s classical result on the mod ℓ cyclotomic char-

acter [Ser72, Proposition 8], the following fact is known.

Proposition 4.1.2 (Kim [Kim09, Proposition 9.4.3. (2)]). The character (ω1,Ku)
eu|π

coincides with the mod π Lubin-Tate character restricted to IKu .

Remark 4.1.3. The mod π Lubin-Tate character is the character describing
the GKu action on the π-torsion points of Lubin-Tate formal group overOKu

associated with π. It is also known that it coincides with the mod π Carlitz
character χπ restricted to IKu , so that χπ = (ω1,Ku)

eu|π on IKu .

4.1.2 The definition of tame inertia weights Let V be a d-dimensional
irreducible Fπ-representation of IKu . Then we see that the action of IKu on
V factors through It

Ku
as follows. Since Iw

Ku
is a normal subgroup of IKu , the

fixed subspace V Iw
Ku of V is stable under the action of IKu . The irreducibility

of V implies that V Iw
Ku = V or 0. Since Iw

Ku
is a pro-p group, there is a

non-zero element of V fixed by Iw
Ku

and hence V Iw
Ku = V. Consequently the

wild inertia subgroup Iw
Ku

acts on V trivially. Thus V can be regarded as a
representation of It

Ku
.
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Using Schur’s lemma, we see that E := End It
Ku
(V) is a finite field of

order qd
π. Therefore we can regard V as a one-dimensional E-representation

of It
Ku

. Denote by ρ̄ : It
Ku
→ E× the character describing the It

Ku
-action on

V. Fix an isomorphism f : E
∼=−→ F and consider the composition

ρ̄ f : It
Ku

ρ̄−→ End It(V)×
∼→ F×.

Then we have the following commutative diagram:

It
Ku

))SSS
SSS

SSS
SSS

SSS
SS ρ̄

//

ρ̄ f

**
E×

f

∼= //
_�

�

F×

AutF(V) = EndF(V)× .

Since It
Ku

is pro-cyclic and ωd,Ku is surjective, there exists an integer 0 ≤
n ≤ qd

π − 2 such that ρ̄ f = (ωd,Ku)
n. If we decompose

n = j0 + j1qπ + · · ·+ jd−1qd−1
π

with integers 0 ≤ js ≤ qπ − 1, then the set {j0, j1, . . . , jd−1} is independent
of the choice of f .

Definition 4.1.4. For a d-dimensional irreducible Fπ-representation V of
IKu , the integers j0, j1, . . . , jd−1 as above are called the tame inertia weights
of V. For any Fπ-representation ρ̄ : GKu → AutFπ (V), the tame inertia
weights of ρ̄ are the tame inertia weights of all the Jordan-Hölder quotients
of V|IKu

. Denote by TIKu(ρ̄) the set of tame inertia weights of ρ̄.

Lemma 4.1.5. Let ρ̄ : GKu → AutFπ (V) be an Fπ-representation and assume
that IKu acts on V unipotently. Then TIKu(ρ̄) = {0}.

Proof. By Lemma 3.3.2, the semisimplification ρ̄ss of ρ̄ is isomorphic to a
direct sum of the trivial character. Hence TIKu(ρ̄) = {0} by definition.

Let us now consider the tame inertia weights of more π representations
attached to Drinfeld modules with good reduction. By [Gar01, Theorem
2.14], the following holds.

Proposition 4.1.6. Let ϕ : A → Ku{τ} be a Drinfeld module. If ϕ has good
reduction, then every tame inertia weight j of ρ̄ϕ,π satisfies 0 ≤ j ≤ eu|π.
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4.2 Tame inertia weights of stable Drinfeld modules

Fix a monic irreducible element π ∈ A. Let u be a finite place of K above
π and let ϕ : A → Ku{τ} be a Drinfeld module of rank r. By using Tate
uniformization (Proposition 2.4.4), if ϕ has stable reduction, then there ex-
ists a unique (up to isomorphism) Tate datum (ψ, Λ) of rank (r1, r2) with
r = r1 + r2 corresponding to ϕ. Then Λ/πΛ ∼= Λ⊗AFπ and we have a
GKu -equivariant short exact sequence

0→ ψ[π]→ ϕ[π]→ Λ⊗AFπ → 0 (4.2.1)

of Fπ-vector spaces. We consider the following condition (SU) for Drinfeld
modules over Ku.

(SU) ϕ : A→ Ku{τ} has stable reduction and IKu acts on Λ⊗AFπ unipo-
tently.

Then as an extension of Proposition 4.1.6, we obtain the following estimate
of tame inertia wights.

Proposition 4.2.1. Let u be a finite place of K above π. If a Drinfeld module
ϕ : A → Ku{τ} satisfies the condition (SU), then every tame inertia weight j of
ρ̄ϕ,π satisfies 0 ≤ j ≤ eu|π.

Proof. Let (ψ, Λ) be the Tate datum corresponding to ϕ. Suppose that (ψ, Λ)
is of rank (r1, r2). Since ψ has good reduction, Proposition 4.1.6 implies that
TIKu(ρ̄ψ,π) ⊂ [0, eu|π]. Denote by

ρ̄Λ,π : GKu → AutFπ (Λ⊗Fπ) ∼= GLr2(Fπ)

the representation describing the Galois action on Λ⊗AFπ. Since IKu acts
on Λ⊗AFπ unipotently, Lemma 4.1.5 implies TIKu(ρ̄Λ,π) = {0}. Since the
semisimplification of ρ̄ϕ,π satisfies ρ̄ss

ϕ,π ≃ ρ̄ss
ψ,π ⊕ ρ̄ss

Λ,π by the above exact
sequence (4.2.1), we see that

TIKu(ρ̄ϕ,π) = TIKu(ρ̄ψ,π) ∪ TIKu(ρ̄Λ,π),

which implies the conclusion.

We know that every Drinfeld module ϕ : A → Ku{τ} has potentially
stable reduction and the Galois action on a ψ-lattice Λ factors through some
finite quotient. Hence it follows that there exists a finite extension L/Ku
such that ϕ : A→ L{τ} satisfies the condition (SU).
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We want to take such an L with small ramification index. To do this, we
study the ramification of the representation

ρΛ : GKu → AutA(Λ) ∼= GLr2(A)

since it determines the GKu -action on Λ⊗AFπ.

Lemma 4.2.2. Let n be a positive integer and let G be a finite subgroup of GLn(A).
Then the maximal prime-to-p divisor of #G is a factor of ∏n

s=1(qs − 1).

Proof. Consider the t-adic completion At(∼= Fq[[t]]) of A and regard G as
a finite subgroup of GLn(At). Recall that Γn(At) is the kernel of the map
GLn(At) ↠ GLn(Fq) induced by the reduction map At ↠ Fq. Since At is a
complete noetherian local ring whose residue field is finite of characteristic
p, Lemma 3.3.3 implies that Γn(At) is a pro-p group. Hence the short exact
sequence

1→ Γn(At)→ GLn(At)→ GLn(Fq)→ 1

shows that the maximal prime-to-p divisor of #G is a factor of #GLn(Fq) =

qn(n−1)/2 ∏n
s=1(qs − 1). Hence it in particular divides ∏n

s=1(qs − 1).

Proposition 4.2.3. Let u be a finite place of K above π and let ϕ : A → Ku{τ}
be a Drinfeld module of rank r. Then there is a finite separable tamely ramified
extension L/Ku such that

• ϕ : A→ Ku{τ} ⊂ L{τ} satisfies the condition (SU),

• the ramification index e(L/Ku) divides (qr − 1)∏r−1
s=1(q

s − 1)2.

Proof. By Proposition 2.3.4, we can take a finite separable extension L0/Ku
such that ϕ has stable reduction over L0 and e(L0/Ku) divides ∏r

s=1(qs− 1).
Let (ψ, Λ) be the Tate datum overOL0 corresponding to ϕ : A→ L0{τ}.

Suppose that Λ is of rank r′ (≤ r− 1). Consider the representation

ρΛ : GL0 → AutA(Λ) ∼= GLr′(A)

and denote by E ⊂ Ksep
u the fixed subfield by ker ρΛ. Then the representa-

tion is the composition

ρΛ : GL0 ↠ Gal(E/L0) ↪→ GLr′(A)

of the canonical restriction map and an injection Gal(E/L0) ↪→ GLr′(A).
Let L be the maximal tamely ramified extension of L0 in E. Since Gal(E/L0)
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is isomorphic to a finite subgroup of GLr′(A), it follows that e(L/L0) di-
vides ∏r′

s′=1(q
s′ − 1) by Lemma 4.2.2. Hence by the assumption on L0 and

r′ ≤ r− 1, we see that

e(L/Ku) = e(L/L0)e(L0/Ku) | (qr − 1)
r−1

∏
s=1

(qs − 1)2.

We prove that the inertia subgroup IL of L acts on Λ⊗AFπ unipotently.
Since the action of GE on Λ⊗AFπ is trivial, we see that the representation
ρ̄Λ,π : GL0 → AutFπ (Λ⊗AFπ) ∼= GLr′(Fπ) factors though a group homo-
morphism ρ : Gal(E/L0)→ GLr′(Fπ).

GL0

ρ̄Λ,π //

����

GLr′(Fπ)

Gal(E/L0)

ρ

66lllllllllllll

The image of IL by GL0 ↠ Gal(E/L0) is Gal(E/L), which is a p-group. We
see that ρ̄Λ,π(IL) = ρ(Gal(E/L)) is also a p-subgroup of GLr′(Fπ). Hence
the IL-action on Λ⊗AFπ is unipotent by Lemma 3.3.2 and so ϕ satisfies the
condition (SU) over L.

Remark 4.2.4. A Drinfeld module ϕ : A → L{τ} satisfying (SU) can be
regarded as an analogue of a semistable elliptic curves. By the definition of
L, for any monic irreducible element π0 ∈ A with π0 ̸= π, we see that the
inertia subgroup IL acts on Tπ0(ψ) trivially and on Λ⊗A Aπ0 unipotently,
so that its action on Tπ0(ϕ) is unipotent. Then the analytic τ-sheaf M̃(ϕ)
attached to ϕ is strongly semistable over L in the sense of [Gar03a, Definition
4.6].

Definition 4.2.5. Let ϕ : A → K{τ} be a Drinfeld module over K. For any
finite place u of K above π, we denote by

eu(ϕ) := min{e(L/Fπ)}

the minimum of ramification indeces of all finite extensions L/Ku/Fπ such
that ϕ : A→ L{τ} satisfies (SU). We also set

eπ(ϕ) := gcd{eu(ϕ); u|π},

where u runs through all finite places of K above π.
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Set

C1 = C1(q, r) := (qr − 1)
r−1

∏
s=1

(qs − 1)2.

Then we have the following.

Lemma 4.2.6. Suppose that ϕ : A→ K{τ} is of rank r and [K : F] = n.
(1) For any finite place u|π of K, the index eu(ϕ) divides eu|πC1(q, r).
(2) eπ(ϕ) divides nC1(q, r).
(3) If π is unramified in Ks, then eπ(ϕ) divides [K : F]iC1(q, r).

Proof. Let u be a finite place of K above π. Then by Proposition 4.2.3 we see
that there is a finite extension L/Ku such that ϕ satisfies (SU) over L and
e(L/Ku) | C1(q, r). Hence (1) holds. Since n = ∑u|π eu|π fu|π holds, we see
that n is divisible by gcd{eu|π}. Hence nC1(q, r) is divisible by eπ(ϕ), so
that (2) holds. Finally if π is unramified in Ks, then eu|π = [K : F]i holds.
Therefore (1) implies (3).

4.3 Ramification of constrained torsion points

In this section, by showing some non-trivial properties of the index eπ(ϕ)
defined in the previous section, we prove some non-existence theorems on
certain Drinfeld modules. As a corollary of them, we obtain a part of The-
orem 1.0.2.

Let K be a finite extension of F and let π ∈ A be a monic irreducible
element. Denote by n := [K : F] the degree of K/F. Also let r be a positive
integer. For any positive integer d, we define a set D(K, r, π, d) satisfying
D(K, r, π) ⊂ D(K, r, π, d) as follows. Recall that D(K, r, π) consists of all K-
isomorphism classes [ϕ] of Drinfeld modules ϕ : A → K{τ} of rank r over
K satisfying the conditions (D1) and (D2); see Chapter 1. We now replace
(D1) with the following general condition:

(D1)’ There exists a monic irreducible element π0 ∈ A with deg(π0) ≤ d
such that ϕ has good reduction at a finite place v of K above π0.

Definition 4.3.1. DefineD(K, r, π, d) to be the set of K-isomorphism classes
of Drinfeld modules ϕ : A→ K{τ} of rank r satisfying (D1)’ and (D2).

Let ϕ be a Drinfeld module with [ϕ] ∈ D(K, r, π, d). By the condition
(D2), it follows that the semisimplification ρ̄ss

ϕ,π is of the form

ρ̄ss
ϕ,π
∼= χi1

π ⊕ · · · ⊕ χir
π

for integers 0 ≤ i1, . . . , ir < qπ − 1.
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Lemma 4.3.2. Let [ϕ] ∈ D(K, r, π, d) be as above and let u be a finite place of K
above π. Then for each 1 ≤ s ≤ r, there exists an integer js with 0 ≤ js ≤ eu(ϕ)
such that

iseu(ϕ) ≡ js (mod qπ − 1)

holds.

Proof. By Proposition 4.2.3, there is a finite extension L/Ku with e(L/Fπ) =
eu(ϕ) such that ϕ satisfies the condition (SU) over L. Then it follows that
TIL(ρ̄ϕ,π|GL) ⊂ [0, eu(ϕ)] by Proposition 4.2.1. For any irreducible factor χis

π

of ρ̄ss
ϕ,π, we have

χis
π|IL = (ωL,1)

js

for some js ∈ TIL(ρ̄ϕ,π|GL). Since χπ|IL = (ω1,L)
eu(ϕ) by Remark 4.1.3, we

have
(ω1,L)

iseu(ϕ) = (ω1,L)
js ,

which implies the result.

Recall that C1(q, r) = (qr − 1)∏r−1
s=1(q

s − 1)2. Define a positive constant
C′2 by

C′2 = C′2(n, q, r, d) := drn2C1(q, r).

Then we obtain the following important proposition.

Proposition 4.3.3. Let [ϕ] ∈ D(K, r, π, d) be as in Lemma 4.3.2 and let u be a
finite place of K above π. Suppose that deg(π) > C′2. Then eu(ϕ) is divisible by
r and the congruence

iseu(ϕ) ≡
eu(ϕ)

r
(mod qπ − 1)

holds for any 1 ≤ s ≤ r.

Proof. Set eu = eu(ϕ) for short. By the condition (D1)’, we can take a monic
irreducible element π0 ∈ A with deg(π0) ≤ d and a finite place v of K
above π0 at which ϕ has good reduction. Notice that the π0 is distinct from
π since deg(π) > C′2 > deg(π0). Then we can consider the characteristic
polynomial

Pv,eu(T) = det(T − ρϕ,π(Frobeu
v )|Tπ(ϕ)) ∈ A[T]

of Frobeu
v . Denote by {αs}r

s=1 the roots of the characteristic polynomial
Pv(T) of Frobv. Then the roots of Pv,eu(T) are given by {αeu

s }r
s=1. On the

other hand, the condition (D2) implies that the roots of the polynomial

P̄v,eu(T) := Pv,eu(T) (mod π) ∈ Fπ[T]
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are given by {χπ(Frobv)
iseu}r

s=1. Set πv := π
fv|π0
0 . Then we have

|πv| = qv = q fv|π0
deg(π0).

For any 1 ≤ s ≤ r, Lemma 4.3.2 implies that χπ(Frobv)
iseu = χπ(Frobv)

js

for some integer 0 ≤ js ≤ eu. Since χπ(Frobv)
js ≡ π

js
v (mod π) holds by

Remark 2.5.6, we obtain

P̄v,eu(T) =
r

∏
s=1

(T − χπ(Frobv)
js) ≡

r

∏
s=1

(T − π
js
v ) (mod π). (4.3.1)

For each integer 0 ≤ k ≤ r, denote by

Sk(x1, . . . , xr) = ∑
1≤s1<···<sk≤r

xs1 xs2 · · · xsk

the fundamental symmetric polynomial of degree k with r variables x1, . . . , xr.
Then we have

r

∏
s=1

(T − xs) =
r

∑
k=0

(−1)kSk(x1, . . . , xr)Tr−k.

Notice that |αeu
s | = qeu/r

v holds for any 1 ≤ s ≤ r by Proposition 2.3.11. Since
0 ≤ js ≤ eu for each s, we have∣∣∣Sk(α

eu
1 , . . . , αeu

r )− Sk(π
j1
v , . . . , π

jr
v )

∣∣∣ ≤ max
1≤s1<···<sk≤r

{
q

keu
r

v , q
js1+···+jsk
v

}
≤ qkeu

v

≤ qreu
v = qreu fv|π0

deg(π0)

for any 0 ≤ k ≤ r. We know that eu divides eu|πC1(q, r) by Lemma 4.2.6.
Clearly both eu|π and fv|π0

are less than or equal to n = [K : F]. We now
suppose that deg(π) > C′2 = drn2C1(q, r) and hence we have

qreu fv|π0
deg(π0) ≤ qC′2 < qdeg(π) = |π|.

It means that all absolute values of coefficients of Pv,eu(T)−∏r
s=1(T − π

js
v )

are smaller than |π|. Hence the congruence (4.3.1) implies

Pv,eu(T) =
r

∏
s=1

(T − π
js
v ).

Comparing the absolute values of the roots of Pv,eu(T) and ∏r
s=1(T − π

js
v ),

we see that eu/r = js for any 1 ≤ s ≤ r. Hence eu/r is an integer and
Lemma 4.3.2 implies the conclusion.
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Recall that Fn(F) is the set of finite extensions K of F with n = [K : F].
We denote by νp the normalized p-adic valuation of Q. Then any positive
integer r is written as r = r0 pνp(r) for some integer r0 not divisible by p. We
have the following uniform non-existence result.

Theorem 4.3.4. Let r, d, and n be positive integers and let π ∈ A be a monic
irreducible element. Suppose that n is not divisible by pνp(r). If deg(π) >
C′2(n, q, r, d), then the set D(K, r, π, d) is empty for all K ∈ Fn(F).

Proof. Let K/F be a finite extension of degree n. Assume that D(K, r, π, d)
is not empty. Then for any [ϕ] ∈ D(K, r, π, d) and any finite place u of K
above π, Proposition 4.3.3 implies that eu(ϕ) is divisible by r. Hence by
Lemma 4.2.6 (2), we have

r | eπ(ϕ) = gcd{eu(ϕ)} | nC1(q, r).

Since C1(q, r) is not divisible by p, it implies pνp(r)|n, which contradict to
the assumption.

In the case where d = 1, define

C2 = C2(n, q, r) := C′2(n, q, r, 1).

Then we have the following uniform result.

Corollary 4.3.5. Let the notations and hypothesis be as in Theorem 4.3.4. If
deg(π) > C2(n, q, r), then the set D(K, r, π) is empty for all K ∈ Fn(F).

Proof. Since D(K, r, π) ⊂ D(K, r, π, 1) holds, the result immediately fol-
lows from Theorem 4.3.4.

Definition 4.3.6. DefineD(K, r, π, d)SU to be the subset ofD(K, r, π, d) which
consists of all elements [ϕ] ∈ D(K, r, π, d) such that ϕ : A → Ku{τ} satis-
fies (SU) for any finite place u of K above π. Also define D(K, r, π)SU in the
same way, so that

D(K, r, π)SU = D(K, r, π) ∩D(K, r, π, d)SU

holds for any positive integer d.

Theorem 4.3.7. Let r, d, and n be positive integers and let π ∈ A be a monic
irreducible element. Suppose that deg(π) > C′2(n, q, r, d) and n is not divisible
by r. Then the set D(K, r, π, d)SU is empty for all K ∈ Fn(F).
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Proof. Let K/F be a finite extension of degree n. Assume thatD(K, r, π, d)SU
is not empty. Then we can take [ϕ] ∈ D(K, r, π, d)SU. For any finite place
u of K above π, it follows that eu(ϕ) = eu|π by the definition of eu(ϕ). By
Proposition 4.3.3, we see that eu(ϕ) is divisible by r. Thus we obtain

r | eπ(ϕ) = gcd{eu|π} |∑ eu|π fu|π = n,

which contradicts to the assumption on n.

The following is an analogue of [RT17, Corollary 3.8]:

Corollary 4.3.8. Let the notations be as in Theorem 4.3.7. Suppose that deg(π) >
C2(n, q, r) and n is not divisible by r. Then the set D(K, r, π)SU is empty for all
K ∈ Fn(F).

Proof. Since D(K, r, π)SU ⊂ D(K, r, π, 1)SU holds, the result immediately
follows from Theorem 4.3.7.

For any finite separable extension L/F, let {π1, . . . , πk} be the set of
finite places of F which are ramified in L and define

C3 = C3(L) := max{deg(π1), . . . , deg(πk)}.

Recall that we denote by Ks the separable closure of F in K. Consider the
two positive constants

C′4 = C′4(n, q, r, Ks, d) := max{C′2(n, q, r, d), C3(Ks)}

and
C4 = C4(n, q, r, Ks) := C′4(n, q, r, Ks, 1).

Then we obtain a part of Theorem 1.0.2.

Theorem 4.3.9. Let d be a positive integer. Let K/F be a finite extension of degree
n and let π ∈ A be a monic irreducible element. Suppose that [K : F]iC1(q, r) is
not divisible by r.

(1) If deg(π) > C′4(n, q, r, Ks, d), then the set D(K, r, π, d) is empty.

(2) If deg(π) > C4(n, q, r, Ks), then the set D(K, r, π) is empty.

Proof. It suffices to prove (1). Assume that deg(π) > C′4(n, q, r, Ks, d) and
D(K, r, π, d) is not empty. Take [ϕ] ∈ D(K, r, π, d). Then π is unramified in
Ks since deg(π) > C3(Ks). Hence we have

r | eπ(ϕ) | [K : F]iC1(q, r)

by Proposition 4.3.3 and Lemma 4.2.6 (3). It contradicts the assumption.
Hence D(K, r, π, d) is empty
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Remark 4.3.10. In particular the above non-existence theorem holds when
r = pν > 1 does not divide [K : F]i. Indeed the relation in the proof of
Theorem 4.3.9 implies

r | [K : F]i

since C1(q, r) is not divisible by p.



Chapter 5

Observations at places with small degree

As usual, let K/F be a finite extension and let r be a positive integer. Let
π ∈ A be a monic irreducible element. The aim of Chapter 5 is to give the
proof of Theorem 1.0.2 in the case where r is not a p-power.

After recalling basic facts on divisors of function fields in §5.1 and in-
troducing the statement of the effective version of the Chebotarev density
theorem in §5.2, we consider an existence problem of an m-th power residue
modulo π (Definition 5.3.1) for a positive integer m|qπ − 1 in §5.3. By us-
ing the effective version of the Chebotarev density theorem, we see that
there exists an m-th power residue modulo π whose degree is smaller than
deg(π) if deg(π) is sufficiently large (Propositions 5.3.4). On the other
hand, for any [ϕ] ∈ D(K, r, π), we define in §5.4 an integer mϕ and a charac-
ter χ(mϕ). We show the property that χ(mϕ) never vanishes on the Frobe-
nius elements of places with some conditions (Proposition 5.4.3). It contra-
dicts the consequence of §5.3 if deg(π) is sufficiently large and therefore
we have the non-existence result.

5.1 Divisors of function fields

We introduce some notations and properties of divisors of function fields
in this section. Denote by Div(K) the divisor group of K, that is, the free
abelian group generated by all places of K. We write divisors additively, so
that a typical divisor is of the form D = ∑v nvv for some integers nv ∈ Z

such that nv = 0 for almost all v. For any place v of K, the notation v ̸∈ D
means that nv = 0.

Recall that we write FK for the constant field of K. The degree of a place
v of K is defined by degK v := [Fv : FK] and it is extended to any divisor
D = ∑v nvv by degK D = ∑v nv degK v. Notice that the degree degF π of a
finite place π of F is exactly the degree deg(π) as a polynomial.

57
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For any λ ∈ K×, the value v(λ) is zero for all but finitely many places
v of K. A divisor of the form (λ) = ∑v v(λ)v is called a principal divisor.
Denote by P(K) the subgroup of Div(K) consisting of all principal divisors.
The quotient ClK := Div(K)/P(K) is called the divisor class group of K.

A divisor D = ∑v nvv is said to be effective if nv ≥ 0 for all v, and then
we write D ≥ 0. Set

L(D) := {λ ∈ K×; (λ) + D ≥ 0}∪{0},

which is a finite dimensional FK-vector space. Set ℓ(D) := dimFK L(D).

Theorem 5.1.1 (the Riemann-Roch theorem). There exist an integer g ≥ 0 and
a divisor class C ∈ ClK such that for any C ∈ C and D ∈ Div(K), we have

ℓ(D) = deg D− g + 1 + ℓ(C− D).

The integer g is uniquely determined by K.

Proof. See [Ros02, Chapter 6] for example.

The unique non-negative integer as in Theorem 5.1.1 is called the genus
of K and denoted by gK.

Remark 5.1.2. Since K is a finitely generated field of transcendental degree
one over the finite field FK, it coincides with the field of rational functions
on a smooth projective curve X defined over FK by [Liu02, Chapter 7.3
Proposition 3.13]. Then gK is the genus of the projective curve X.

Suppose that L is a finite separable extension of K. Then the conorm map
iL/K : Div(K)→ Div(L) is defined to be the linear extension of

iL/Kv = ∑
w|v

ew|vw,

where v is a place of K and w runs through all places of L above v. Recall
that [L : K]g is the geometric extension degree of L/K (see § 2.1).

Lemma 5.1.3. Let w be a place of L above a place v of K and D ∈ Div(K). Then

degL iL/KD = [L : K]g degK D and degL w =
fw|v

[FL : FK]
degK v.

Proof. See [Ros02, Proposition 7.7] for example.
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Let w be a place of L above a place v of K. Recall that we denote by pw
the maximal ideal ofOLw . Define δw to be the exact power of pw dividing the
different of OLw over OKv . Then it follows that δw ≥ ew|v − 1 with equality
holding if and only if ew|v is not divisible by p (see [Ros02, Corollary 2 of
Lemma 7.10]). Define the ramification divisor of L/K by DL/K = ∑w δww.

Lemma 5.1.4. For any intermediate field K′ of L/K, we have

DL/K = DL/K′ + iL/K′DK′/K.

Proof. See [Ser79, Chapter III 4] for example.

Hence DL/K′ ≤ DL/K holds. In addition, the following holds (cf. [CL13,
Lemma 2.6]).

Lemma 5.1.5. Let L/K and L′/K be finite separable extensions. Then

DLL′/K ≤ iLL′/LDL/K + iLL′/L′DL′/K.

5.2 The Effective Chebotarev density theorem

Let E be a finite Galois extension of K and set G := Gal(E/K). Let v be a
place of K and suppose that it is unramified in E. Then for every place w of
E above v, the Frobenius element Frw|v ∈ G is well-defined. It follows that
the subset [

E/K
v

]
:= {Frw|v; w|v } ⊂ G

is a conjugacy class in G, which is called the Frobenius conjugacy class at
v. If E/K is an abelian extension, then the conjugacy class determines an
element (v, E/K) ∈ G, which is called the Artin automorphism for v.

Define ΣE/K to be the divisor of K that is the sum of all ramified places
of K in E. Let C ⊂ G be a conjugacy class. For a positive integer N > 0,
denote by πC (N) the number of places v of K with v /∈ ΣE/K such that
degK v = N and

[
E/K

v

]
= C . Also denote by π(N) the number of places

v /∈ ΣE/K of K such that degK v = N. Set qK = #FK and write φ ∈ GFK for
the Frobenius element, so that φ(x) = xqK for x ∈ F̄K. Kumar and Scherk
proved the following effective version of the Chebotarev density theorem:

Theorem 5.2.1 (Kumar and Scherk [KS94, Theorem 1]). Let E/K be a finite
Galois extension with Galois group G. Set d := [FE : FK]. Suppose that C ⊂ G
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is a conjugacy class whose restriction to FE is φN |FE for some integer N. Then∣∣∣∣πC (N)− d
#C

#G
π(N)

∣∣∣∣ ≤ 2gE
#C

#G
qN/2

K
N

+ 2(2gK + 1)#C
qN/2

K
N

+(1+
#C

N
)degK ΣE/K

holds.

As a consequence of this theorem, Chen and Lee prove the following
estimate.

Proposition 5.2.2 (Chen and Lee [CL13, Corollary 3.4]). Let E/K be a finite
Galois extension and Σ a divisor of K such that Σ ≥ ΣE/K. Set d0 := [FK : Fq]
and d := [FE : FK]. Define the constant B = B(E/K, Σ) by

B = max{degK Σ, degEDE/FEK, 2[E : FEK]− 2, 1}.

Then for any nonempty conjugacy class C in Gal(E/K), there exists a place v of
K with v /∈ Σ such that

• C =
[

E/K
v

]
,

• degK v ≤ 4
d0

logq
4
3 (B + 3gK + 3) + d.

5.3 Existence of m-th power residues modulo π

Let π ∈ A be a monic irreducible element. Let K be a finite extension of F
and suppose that [K : F] = n. In this section, we fix an integer m ≥ 1 with
m | #F×π = qπ − 1.

Definition 5.3.1. A non-zero element n ∈ A satisfying (n, π) = 1 is called
an m-th power residue modulo π if n ≡ am (mod π) for some a ∈ A.

As an application of Proposition 5.2.2, we will show that one can find
an m-th power residue modulo π whose degree is smaller than deg(π) if
deg(π) is sufficiently large. Take a generator ζπ of C[π]. Denote by Fm
the unique subfield of F(ζπ) with [Fm : F] = m and consider the character
χ(m) : GF

χπ−→ F×π ↠ F×π /(F×π )m.

Lemma 5.3.2. For a monic irreducible element π0 ∈ A, the following are equiva-
lent.

• π0 is an m-th power residue modulo π,
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• χ(m)(Frobπ0
) = 1,

• Frobπ0
|Fm

= id.

Proof. It is trivial when m = 1. If not, then this lemma immediately follows
from that χπ(Frobπ0

) ≡ π0 (mod π) and Fm is the fixed subfield of Fsep by
ker χ(m).

Denote by K̃ the Galois closure of Ks over F. Set E := K̃Fm, which is also
a Galois extension of F. Consider the divisor

Σ := ΣE/F + π + ∞ ∈ Div(F)

and the constant

B = B(E/F, Σ) = max{degF Σ, degEDE/FEF, 2[E : FEF]− 2, 1}.

Let us compute a bound of B. Since the degree [K̃ : F] is less than or equal
to n!, we see that [FK̃ : Fq] ≤ n! and so [E : FEF] ≤ m · n!. Then we obtain
the following important lemma.

Lemma 5.3.3. If deg(π) > C3(Ks), then there exist two positive constants B1
and B2 depending only on Ks, n, q, and m such that

B ≤ B1 deg(π) + B2.

In particular for any positive N > 0, one can take a positive constant C5 =
C5(Ks, n, q, m, N) > 0 such that if deg(π) > C5, then

4 logq
4
3
(B + 3) + [FK̃ : Fq] <

1
N

deg(π)

holds.

Proof. Notice that deg(π) > C3(Ks) implies that π is unramified in Ks. By
Proposition 2.5.7, the infinite place ∞ of F splits into at most m places in
Fm whose ramification indices divide q− 1 and π is totally ramified in Fm.
Thus we see that

degF Σ ≤ degF(ΣFm/F + ΣK̃/F + π + ∞) ≤ 2 deg(π) + 2 + degF ΣK̃/F.

Now DE/FEF = DE/F holds. Lemmas 5.1.3 and 5.1.5 imply

degEDE/F ≤ degE iE/K̃DK̃/F + degE iE/FmDFm/F

≤ m degK̃ DK̃/F + [E : Fm]g degFm
(∑

v|∞
(q− 2)v + mπ)

≤ m degK̃ DK̃/F + m · n!(q− 2 + deg(π)).
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Hence there exist positive constants B1 and B2 depending only on Ks, n, q,
and m such that B ≤ B1 deg(π) + B2 holds. Therefore if deg(π) is suffi-
ciently large with respect to Ks, n, q, m, and N, then 4 logq

4
3 (B + 3) + [FK̃ :

Fq] <
1
N deg(π) holds.

Proposition 5.2.2 and Lemma 5.3.3 imply the following:

Proposition 5.3.4. Let N be a positive integer. If deg(π) > C5, then there exist
a monic irreducible element π0 ∈ A and a place v of K above π0 such that

• π0 is an m-th power residue modulo π,

• deg(π0) <
1
N deg(π),

• fv|π0
= 1.

Proof. We may assume that K = Ks since the extension K/Ks is totally ram-
ified at any place. Let K̃ and E = K̃Fm be as above and fix an element
σ ∈ Gal(E/F) such that σ|KFm = id. For the conjugacy class

C = {gσg−1; g ∈ Gal(E/F)}

of σ in Gal(E/F), by Proposition 5.2.2 and Lemma 5.3.3 there exists a place
π0 of F with π0 /∈ Σ (hence it is a finite place) such that

•
[

E/F
π0

]
= C ,

• deg(π0) <
1
N deg(π),

so that σ = Frw|π0
for some place w of E. Then the decomposition group Zw

of w over π0 is generated by σ and it is a subgroup of Gal(E/KFm). Denote
by K′ the fixed subfield of E by Zw. Then we see that the place v′ of K′

below w satisfies ev′|π0
= 1 and fv′|π0

= 1. Hence fv|π0
= 1, where v is the

place of K below v′. By construction, we see that Frobv|Fm = id. Lemma
5.3.2 means that π0 is an m-th power residue modulo π.

5.4 Non-p-power rank case

Fix a Drinfeld module ϕ : A → K{τ} of rank r satisfying [ϕ] ∈ D(K, r, π).
Suppose that [K : F] = n. In this section, we always assume that

r = r0 pν
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for some r0 > 1 not divisible by p.
Now let i1, . . . , ir be the positive integers satisfying ρ̄ss

ϕ,π ≃ χi1
π ⊕ · · · ⊕χir

π

by (D2). Set
Sr := {s = (s1, . . . , sr) ∈ Zr; 1 ≤ sk ≤ r}.

For any s = (s1, . . . , sr) ∈ Sr, set εs := χπ
is1+···+isr−1 and define

ϵ := (εs)s∈Sr : GF → (F×π )
⊕rr

.

Set mϕ := #ϵ(GF), which is the least common multiple of the orders of
εs. Since ϵ factors through χπ : GF → F×π , the image ϵ(GF) is cyclic and
mϕ|(qπ − 1). Then we obtain the following commutative diagram

ϵ(GF)

GF F×π F×π /(F×π )
mϕ

ϵ

::ttttttttttttttttt

OOOO

χπ // // //

≃

ffMMMMMMMMMMMMMMMMMM

χ(mϕ)

11
.

Hence a monic irreducible element π0 ∈ A is an mϕ-th power residue mod-
ulo π if and only if εs(Frobπ0

) = 1 for any s ∈ Sr.

Lemma 5.4.1. Suppose that deg(π) > C2. For any (s1, . . . , sr) ∈ Sr, the relation
eπ(ϕ)(is1 + · · ·+ isr − 1) ≡ 0 (mod qπ − 1) holds.

Proof. By Proposition 4.3.3, we see that iseπ(ϕ) ≡ eπ(ϕ)
r (mod qπ− 1). Adding

these congruences for s1, . . . , sr gives

eπ(ϕ)(is1 + · · ·+ isr) ≡ eπ(ϕ) (mod qπ − 1).

Lemma 5.4.2. If deg(π) > C2(n, q, r), then mϕ divides the greatest common
divisor (eπ(ϕ), qπ − 1). In particular, it divides nC1(q, r).

Proof. By Lemma 5.4.1, we see that ε
eπ(ϕ)
s = 1 for all s ∈ Sr. Hence we have

mϕ | eπ(ϕ) and so mϕ divides (eπ(ϕ), qπ − 1).

Proposition 5.4.3. If there exist a monic irreducible element π0 ∈ A and a finite
place v of K above π0 such that deg(π) > fv|π0

deg(π0) and fv|π0
is not divisible

by r0, then both mϕ > 1 and χ(mϕ)(Frobv) ̸= 1 hold.
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Proof. Assume that either mϕ = 1 or χ(mϕ)(Frobv) = 1 holds. Then it fol-
lows that εs(Frobv) = 1 for any s ∈ Sr. Denote by av,pν ∈ A the coefficient
of Tr−pν

in the characteristic polynomial Pv(T) of Frobv on Tπ(ϕ). It is given
by

av,pν = (−1)pν
Spν(α1, . . . , αr),

where α1, . . . , αr are the roots of Pv(T) and Spν(x1, . . . , xr) is the fundamen-
tal symmetric polynomial of degree pν with r variables. Set

Sr,pν := {(s1, . . . , spν); 1≤s1< · · ·<spν≤r} ⊂ Zpν
.

Then we have

Spν(x1, . . . , xr) = ∑
(s1,...,spν )∈Sr,pν

xs1 xs2 · · · xspν ,

which is the sum of ( r
pν) monomials of degree pν.

Consider the product S
r0
pν of Spν and regard it as a subset of Sr. Then we

obtain that

(av,pν)r0 = (−1)rSpν(α1, . . . , αr)
r0

≡ (−1)r

 ∑
(s1,...,spν )∈Sr,pν

χ
is1+···+ispν

π (Frobv)

r0

≡ (−1)r ∑
s∈S

r0
pν

εs(Frobv)χπ(Frobv)

≡ (−1)r ∑
s∈S

r0
pν

χπ(Frobv)

≡ (−1)r
(

r
pν

)r0

π
fv|π0
0 (mod π). (5.4.1)

Since ( r
pν) is not divisible by p, we see that (−1)r( r

pν)
r0 π

fv|π0
0 ̸= 0. Here it

follows that
|(av,pν)r0 | ≤ qv = q fv|π0

deg(π0) < |π|
and ∣∣∣∣(−1)r

(
r
pν

)r0

π
fv|π0
0

∣∣∣∣ = |π fv|π0
0 | = qv < |π|.

Hence the above congruence (5.4.1) implies (av,pν)r0 = (−1)r( r
pν)

r0 π
fv|π0
0 .

Comparing the π0-adic valuations of both sides, we obtain r0| fv|π0
, which

is a contradiction.
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Recall that n = [K : F] and mϕ divides nC1(q, r) by Lemma 5.4.2. Set

C6 = C6(Ks, n, q, r) := max{C5(Ks, n, q, m, 1); m|nC1(q, r)}

and
C7 = C7(Ks, n, q, r) := max{C2(n, q, r), C6(Ks, n, q, r)}.

Then we have the following theorem.

Theorem 5.4.4. Suppose that r = r0 pν and r0 > 1 is not divisible by p. If
deg(π) > C7, then the set D(K, r, π) is empty.

Proof. Assume that D(K, r, π) is not empty and [ϕ] ∈ D(K, r, π). By Propo-
sition 5.3.4, there exist a monic irreducible element π0 ∈ A and a place v of
K above π0 such that

χ(mϕ)(Frobπ0
) = 1,

deg(π0) < deg(π),

and
fv|π0

= 1.

However, since π0 and v satisfy the assumption of Proposition 5.4.3, we see
that χ(mϕ)(Frobv) = χ(mϕ)(Frobπ0

) ̸= 1. It is a contradiction.

By the same argument, we can also prove a uniform non-existence the-
orem as follows. For a fixed finite separable extension K0 of F with degree
n0 := [K0 : F] and a positive integer n, set

C8 = C8(K0, q, r, n) := max {C2(nn0, q, r), max{C5(K0, n0, q, m, n); m|n0C1(q, r)}} .

Theorem 5.4.5. Let r = r0 pν, K0, and n0 = [K0 : F] be as above. Let n be
a positive integer. If n is not divisible by r0 and deg(π) > C8, then the set
D(K, r, π) is empty for all K ∈ Fn(K0).

Proof. Let K be a finite extension of K0 with [K : K0] = n and assume that
[ϕ] ∈ D(K, r, π). Applying Proposition 5.3.4 to K0, we can find a monic
irreducible element π0 ∈ A and a finite place v0 of K0 above π0 such that

χ(mϕ)(Frobπ0
) = 1,

deg(π0) <
1
n

deg(π),

and
fv0|π0

= 1.
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Now we can take a place v of K above v0 such that fv|v0
(= fv|π0

) is not
divisible by r0. Indeed, if not, then r0 must divide n = ∑v|v0

ev|v0
fv|v0

.
Since fv|π0

deg(π0) < n deg(π0) < deg(π), by Proposition 5.4.3 we see
that χ(mϕ)(Frobv) = χ(mϕ)(Frobπ0

) fv|π0 ̸= 1. It is a contradiction.

Remark 5.4.6. In particular by Corollary 4.3.5 and Theorem 5.4.5 for K0 =
F, we have the following: if a positive integer n is not divisible by r, then
D(K, r, π) = ∅ for all K ∈ Fn(F) and π with deg(π) > C8.



Chapter 6

Comparison with number field case

We denote by K a finite extension of F and by r a positive integer as usual.
In this final chapter, we focus on differences between the Rasmussen-Tamagawa
conjecture and its Drinfeld module analogue.

In §6.1, under the assumption that r divides [K : F]i, we construct an
example of a Drinfeld module Φ : A → K{τ} satisfying [Φ] ∈ D(K, r, π)
for all monic irreducible elements π ∈ A. In §6.2, we prove the infiniteness
of D(K, r, π) for r ≥ 2 and π = t (Proposition 6.2.5). These constructions
are based on the suggestion by Akio Tamagawa.

6.1 Non-emptiness of D(K, r, π)

In this section, by constructing a concrete example, we prove the following
theorem:

Theorem 6.1.1. If r divides [K : F]i, then the set D(K, r, π) is never empty for
any π.

If r = 1, then Theorem 6.1.1 is trivial since the Carlitz module C satisfies
both (D1) and (D2). Assume that r ≥ 2 and [K : F]i is divisible by r. Then
r is a p-power and so the r-power map A → A; a 7→ ar is an injective ring
homomorphism.

For any a = ∑ xntn ∈ A with xn ∈ Fq, set â := ∑ x1/r
n tn. Then we see

that a 7→ â is a ring automorphism of A and the map A → A; a 7→ âr is an
injective Fq-algebra homomorphism.

Lemma 6.1.2. Set [K : F]i = pν. Then Ks = Kpν
.

Proof. Since K is a purely inseparable extension of Ks of degree pν, the field
Kpν

is contained in Ks. Consider the sequence of fields K ⊃ Kp ⊃ · · · ⊃

67
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Kpν
. Proposition 7.4 of [Ros02] implies that each extension Kpn

/Kpn+1
is of

degree p. Hence [K : Kpν
] = pν = [K : Ks], which means that Ks = Kpν

.

Since r divides [K : F]i, Lemma 6.1.2 implies that K contains the field
F1/r. In particular the r-th root t1/r of t is contained in K. Then we have a
new injective A-field structure ι : A → K defined by ι(t) = t1/r. Define the
rank-one Drinfeld module

C ′ : A→ K{τ}

over the A-field (K, ι) by C ′t = t1/r + τ.
Set (r)µ := ∑ cr

i τ
i for any µ = ∑ ciτ

i ∈ K{τ}. Then

K{τ} → K{τ}
µ 7→ (r)µ

is a ring endomorphism. We can relate C ′ with the Carlitz module C as
follows:

Lemma 6.1.3. Let a ∈ A.
(1) (r)C ′â = Ca.
(2) For any λ ∈ C ′[â], there exists a unique δ ∈ C[a] such that λ = δ1/r.

Proof. Clearly (r)C ′x̂ = x = Cx for any x ∈ Fq and (r)C ′t̂ =
(r)C ′t = Ct. Hence

for any a = ∑ xntn ∈ A,

(r)C ′â = (r)
(
∑ x1/r

n (C ′t)n
)
= ∑ xn(Ct)

n = Ca.

For any λ ∈ C ′[â], we see that

0 =
(
C ′â(λ)

)r
= (r)C ′â(λr) = Ca(λ

r).

Hence λr ∈ C[a] and we have the injective homomorphism C ′[â]→ C[a]; λ 7→
λr of finite groups. Since #C ′[â] is equal to #C[a] by deg(â) = deg(a), it is a
bijection.

Define Φa := C ′âr = (C ′â)r ∈ K{τ} for any a ∈ A. Then by construction
it gives an Fq-algebra homomorphism

Φ : A→ K{τ},

which is determined by Φt = (t1/r + τ)r. Since ι(âr) = a holds, Φ is a rank-
r Drinfeld module over K. Moreover it has good reduction at every finite
place v of K since v(t1/r) ≥ 0.

By the following proposition, we see that [Φ] ∈ D(K, r, π), which im-
plies Theorem 6.1.1.
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Proposition 6.1.4. Let i be the positive integer satisfying ir ≡ 1 (mod qπ − 1)
and i < qπ − 1. Then the mod π representation attached to Φ is of the form

ρ̄Φ,π ≃


χi

π ∗ · · · ∗
χi

π
. . .

...
. . . ∗

χi
π

 .

Proof. It suffices to prove that ρ̄ss
Φ,π = (χi

π)
⊕r. For each 1 ≤ s ≤ r, set

Vs := {λ ∈ ΦKsep; C ′π̂s(λ) = 0}.

For any a ∈ A and λ ∈ Vs, we see that Φa(λ) ∈ Vs since C ′π̂s(Φa(λ)) =
C ′π̂s(C ′âr(λ)) = C ′âr(C ′π̂s(λ)) = 0. Hence Vs is an A-submodule of ΦKsep with
the natural GK-action. Moreover Φπ(λ) = 0 for any λ ∈ Vs, so that Vs is an
Fπ(= A/πA)-vector space. Here Φ[π] = Vr by the definition of Φ. Then
we obtain the filtration

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vr = Φ[π]

of GK-stable Fπ-subspaces of Φ[π]. The map Vs → V1; λ 7→ C ′
π̂s−1(λ) in-

duces a GK-equivariant isomorphism Vs/Vs−1
∼= V1. Since V1 = C ′[π̂] (as

a set) and deg(π) = deg(π̂), we have #V1 = qπ̂ = qπ(= #Fπ). Hence
dimFπ V1 = 1 and the semisimplification of Φ[π] (as an Fπ[GK]-module)
is Φ[π]ss = ⊕r

s=1Vs/Vs−1
∼= V⊕r

1 . For any σ ∈ GK and λ ∈ V1, we prove
σ(λ) = χπ(σ)i · λ as follows. Take an element aσ ∈ A satisfying aσ ≡ χπ(σ)
(mod π). By Lemma 6.1.3 (2), λ = δ1/r for some δ ∈ C[π]. Then

σ(λ)r = σ(δ) = χπ(σ) · δ = Caσ(δ).

The Fπ-vector space structure of V1 is determined by Φ and so χπ(σ)i · λ =
Φai

σ
(λ) = C ′âir

σ
(λ). Since ir ≡ 1 (mod qπ̂ − 1) holds, we have âir

σ ≡ âσ

(mod π̂). This implies C ′âir
σ
(λ) = C ′âσ

(λ). By Lemma 6.1.3 (1), we obtain(
χπ(σ)

i · λ
)r

=
(
C ′âσ

(λ)
)r

= (r)C ′âσ
(λr) = Caσ(δ) = σ(λ)r.

Since the r-power map is injective, we have σ(λ) = χπ(σ)i · λ. Hence the
GK-action on V1 is given by χi

π.

Remark 6.1.5. Proposition 6.1.4 means that the mod π representation ρ̄Φ,π
is reducible for all π. Hence EndK(Φ) ̸= A must hold by Theorem 2.3.7.
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In fact C ′t = t1/r + τ ∈ K{τ} is an endomorphism of Φ and the correspon-
dence t1/r 7→ C ′t induces an isomorphism A[t1/r] ∼= EndK(Φ), so that Φ has
complex multiplication.

Remark 6.1.6. Let u be a finite place of K above π. Now r divides eu|π by
assumption. Set e = eu|π/r. Since ir ≡ 1 (mod qπ − 1), we see that

χi
π|IKu

= (ω1,Ku)
i·eu|π = (ω1,Ku)

i·r·e = (ω1,Ku)
e.

Hence the set of tame inertia weights of ρ̄Φ,π|IKu
is TIKu(ρ̄Φ,π) = {e}.

6.2 Infiniteness of D(K, r, t)

Finally, for π = t and r ≥ 2, we construct an infinite subset of D(K, r, t).
In the number field case, the set A (k, g, ℓ) is always finite because of the
Shafarevich conjecture proved by Faltings [Fal83]. However, the Drinfeld
module analogue of it does not hold as follows:

Example 6.2.1. For any a ∈ A, consider the rank-two Drinfeld module
ϕ(a) : A → F{τ} given by ϕ

(a)
t = t + aτ + τ2. It is easily seen that ϕ(a)

has good reduction at any finite place of F.
If ϕ(a) is F-isomorphic to ϕ(a′) for some a′ ∈ A, then there exists an

element c ∈ F such that cϕ
(a′)
t = ϕ

(a)
t c. Hence

ϕ
(a′)
t = t + a′τ + τ2 = t + cq−1aτ + cq2−1τ2.

This means that c ∈ F×q and hence a′ = cq−1a = a. Therefore the set of
F-isomorphism classes {[ϕ(a)]; a ∈ A} is infinite.

Let W be a GK-stable one-dimensional Fq-vector space contained in Ksep

and write κW : GK → F×q for the character attached to W. Set PW(T) :=
∏λ∈W(T − λ), which is an Fq-linear polynomial of the form

PW(T) = Tq + cW T, cW := ∏λ∈W\{0}

(
−λ

)
∈ K×

by [Gos96, Corollary 1.2.2]. For any c ∈ K×, denote by c̄ ∈ K×/(K×)q−1 the
class of c and by κ(c) : GK → F×q the character corresponding to c̄ by the
map K×/(K×)q−1 ∼→ Hom(GK, F×q ) of Kummer theory.

Lemma 6.2.2. For the above element cW ∈ K×, the character κ(−cW) coincides
with κW .
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Proof. Since λq−1 = −cW for any λ ∈ W\{0}, the character κ(−cW) is given
by κ(−cW)(σ) = σ(λ)/λ = κW(σ) for any σ ∈ GK.

Identify Ft = A/tA = Fq. Then C[t] is a one-dimensional Fq-subspace
of Ksep and PC[t](T) = Tq + tT by the definition of C. By Lemma 6.2.2, we
see that χt = κ(−t). Note that χi

t = κ((−t)i) for any integer i.
Take r elements c1, . . . , cr ∈ K×. For any 1 ≤ s ≤ r, define fs(τ) := (τ +

cs)(τ + cs−1) · · · (τ + c1) ∈ K{τ}. Set Ws := ker fs : Ksep → Ksep, which is a
GK-stable s-dimensional Fq-subspace of Ksep. Thus we obtain the filtration

0 = W0 ⊂W1 ⊂ · · · ⊂Wr

of Fq[GK]-modules.

Lemma 6.2.3. The Fq-linear representation ρ̄ : GK → AutFq(Wr) ∼= GLr(Fq)
is of the form

ρ̄ ≃


κ(−c1) ∗ · · · ∗

κ(−c2)
. . .

...
. . . ∗

κ(−cr)

 .

Proof. For any 1 ≤ s ≤ r, the quotient Ws/Ws−1 is isomorphic to Ker(τ +
cs : Ksep → Ksep) as an Fq[GK]-module. Hence each Ws/Ws−1 is embedded
into Ksep. By Lemma 6.2.2, the action of GK on Ws/Ws−1 is given by κ(−cs).

Fix r integers i1, . . . , ir satisfying ∑r
s=1 is = 1. For any m = (m1, . . . , mr) ∈

Zr satisfying ∑r
s=1 ms = 0, consider the Fq-algebra homomorphism ϕm :

A→ K{τ} given by

ϕm
t = (−1)r−1

r

∏
s=1

(τ − (−t)ks),

where ks = is + ms(q− 1) for any 1 ≤ s ≤ r. Now ∑r
s=1 ks = 1, so that the

constant term of ϕm
t is (−1)r−1 ∏r

s=1(−(−t)ks) = (−1)2rt = t. Hence ϕm is
a rank-r Drinfeld module over K.
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Proposition 6.2.4. The K-isomorphism class [ϕm] is contained in D(K, r, t).
Moreover, the mod t representation attached to ϕm is of the form

ρ̄ϕm,t ≃


χi1

t ∗ · · · ∗
χi2

t
. . .

...
. . . ∗

χir
t

 ,

where i1, . . . , ir are the integers fixed as above.

Proof. For any finite place v of K not lying above t, since −t ∈ OKv and
the leading coefficient of ϕm

t is (−1)r−1, we see that ϕm has good reduction
at v. Now ϕm[t] coincides with the kernel of ∏r

s=1(τ − (−t)ks). Applying
Lemma 6.2.3 to fs = (τ− (−t)ks) · · · (τ− (−t)k1), we see that ρ̄ϕm,t is given

as above since κ((−t)ks ) = χks
t = χis

t for any 1 ≤ s ≤ r.

Proposition 6.2.5. If r ≥ 2, then the set D(K, r, t) is infinite.

Proof. We construct an infinite subset of D(K, r, t) as follows. Fix r in-
tegers i1, . . . , ir satisfying ∑r

s=1 is = 1. For any positive integer m, con-
sider (−m, 0, . . . , 0, m) ∈ Zr and define ϕm := ϕ(−m,0,...,0,m), which is a
Drinfeld module satisfying [ϕm] ∈ D(K, r, t) by Proposition 6.2.4. Write
ϕm

t = t + c1τ + · · ·+ cr−1τr−1 + (−1)r−1τr ∈ K{τ}. Then by construction
the coefficient cr−1 is given by

cr−1 = (−t)i1−m(q−1) + (−t)ir+m(q−1) +
r−1

∑
s=2

(−t)is .

For any finite place u of K above t, if m is sufficiently large, then

u(cr−1) = (i1 −m(q− 1))u(−t) < 0.

Hence we see that u(cr−1) → −∞ as m → ∞. On the other hand, for two
positive integers m and m′, if ϕm′ is isomorphic to ϕm, then ϕm′

t = x−1ϕm
t x

for some x ∈ F×K by the same argument of Example 6.2.1. These facts imply
that if m′ is sufficiently large, then ϕm and ϕm′ are not isomorphic. Therefore
the subset {[ϕm]; m ∈ Z>0} of D(K, r, t) is infinite.
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