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ABSTRACT: In recent years, there has been much research interest in soil erosion and slope 18 

failure due to seepage and rainfall, especially toward finding new technologies/materials with 19 

which to stabilise soil slopes. Many geosynthetic materials have been developed to stabilise 20 

soil slopes while also being environmentally friendly and convenient for construction. In this 21 

study, the performance of a novel geosynthetic cementitious composite mat (GCCM) is studied 22 

regarding its ability to stabilise soil slopes. Physical model tests are performed on sandy soil 23 

slopes under seepage conditions both with and without GCCM stabilisation. Particle image 24 

velocimetry is used to measure the soil displacement, and standpipe piezometers are used to 25 

monitor the pore water pressure of the slope. The results show that the slope displacement with 26 

GCCM stabilisation is much smaller than that without it. The presence of the GCCM constrains 27 

the displacement near the slope surface to being along the slope, whereas without the GCCM 28 

the slope can deform freely especially in the middle to upper zone of slope area. The results 29 

indicate that the GCCM performs well at slope stabilisation. 30 
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NOTATION 36 

c′ soil cohesion (kPa) 

Cc coefficient of curvature 

Cu coefficient of uniformity 

D depth of failure zone (mm) 

D10 10% of the particles are finer than this size (mm) 

D30 30% of the particles are finer than this size (mm) 

D60 60% of the particles are finer than this size (mm) 

 angle of internal friction (o) 

d dry unit weight (kN/m3) 

Gs specific gravity 

sat saturated unit weight (kN/m3) 

hA water pressure head at point A (mm) 

hB water pressure head at point B (mm) 

hC water pressure head at point C (mm) 

hD water pressure head at point D (mm) 

hf pressure head when the slope failed (mm) 

hm pressure head when the slope started moving (mm) 

ksat hydraulic conductivity (m/s) 

L length of failure zone (m) 

SP poorly graded sand 

w/WGCCM ratio of water to dry mass of GCCM 

 37 
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1. INTRODUCTION 41 

Shallow slope failure is a geotechnical phenomenon related to the movement of soil at depths 42 

of less than 1.2 m (Evans 1972). While not causing major damage or loss of life, shallow slope 43 

failures can pose a hazard to infrastructure by damaging guardrails, shoulders, road surfaces 44 

and drainage facilities, for example, and they can affect traffic because of debris flows onto 45 

roads (Titi and Helwany 2007). However, if a shallow slope failure intersects an existing stream 46 

or channel, then it can cause a debris flow with the potential to do much damage to both life 47 

and property (Lee and Winter 2019). Shallow slope failures usually occur in the rainy season, 48 

with the seepage that develops parallel to the slope face due to rainfall being one of the main 49 

causes of slope instability (Day and Axten 1989; Muntohar and Liao 2010). 50 

There has been much use of physical model tests to study slope stability in the presence 51 

of seepage flow. By measuring the pore water pressure, moisture content and slope deformation 52 

in a model sandy slope subjected to water percolation from the upslope, Orense et al. (2004) 53 

found that slope failure was always induced when the soil near the toe of the slope became 54 

nearly fully saturated; this finding was supported by observations made by Huang et al. (2009). 55 

In addition, there has been research into the use of geosynthetic materials for slope stabilisation. 56 

Almost three decades ago, geotextiles (Fowler and Koerner 1987) and geocell materials (Bush 57 

et al. 1990) were studied for constructing embankments on soft soil. Subsequently, many 58 

geosynthetic materials have been developed and applied for slope stabilisation and land 59 

reclamation, examples being three-dimensional polyethylene geocell material (Wu and Austin 60 

1992), heavy-duty polyester woven geotextile (Raymond et al. 1993), geosynthetic mulch mats 61 

(Ahn et al. 2002), slurry-filled geotextile mats (Yan and Chu 2010) and biological geotextiles 62 

(Guerra et al. 2015). In addition, Thusyanthan et al. (2007) and Wang et al. (2011) studied 63 

geosynthetically reinforced soil slopes subjected to earthquake loads. For slope failure due to 64 

seepage flow, Rajabian et al. (2012) and Rajabian and Viswanadham (2016) conducted 65 

centrifuge model studies on fine sandy slopes under seepage conditions to evaluate the slope-66 

stabilisation performance of anchored geosynthetic systems, and Akay et al. (2013) introduced 67 

a lightweight expanded-polystyrene geofoam for slope remediation. 68 

Various techniques have been used to protect slopes from shallow failure, examples 69 

being vegetation (Wu 1994), live poles (Mafian et al. 2009; Wu et al. 2014), shotcrete (US-70 

Army-Corps-of-Engineers 1995) and geosynthetic clay liners (GCLs) (Daniel et al. 1998; 71 

Gilbert and Wright 2010), but each has certain limitations. For example, (i) vegetation and live 72 

poles take time to grow and must be maintained regularly, (ii) the cover of shotcrete is not 73 
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always uniform in terms of quality and thickness and (iii) clay leakage can reduce the friction 74 

between GCLs and soil slopes (Bouazza 2002). 75 

Recently, a geosynthetic cementitious composite mat (GCCM) made of geotextiles and 76 

cement powder was introduced (Jongvivatsakul et al. 2018; Jirawattanasomkul et al. 2018 and 77 

2019). GCCMs have many attractive properties, examples being high strength and stiffness 78 

after setting, uniform thickness and the fact that they are simple to install in the field. Therefore, 79 

GCCMs could be used for slope stabilisation, erosion control, containment and ditch lining. In 80 

addition, in early 2018 a new standard guide was released for the site preparation, layout, 81 

installation and hydration of GCCMs (ASTM-D8173-18), an event that represents a milestone 82 

in promoting and developing GCCMs, especially for geotechnical engineering applications. 83 

To study the performance of a stabilised slope, it is crucial to be able to measure the 84 

extent of any slope deformation. Various image-based analysis techniques are used to measure 85 

the planar deformation of soil in geotechnical tests, examples being X-rays (Arthur et al. 1964; 86 

Roscoe et al. 1963), stereo photogrammetry (Andrawes and Butterfield 1973; Butterfield et al. 87 

1970) and particle image velocimetry (PIV) (Paikowsky and Xi 2000; Taylor et al. 1998; White 88 

et al. 2003). Of these, PIV is an important technique for measuring velocities in fluid dynamics 89 

(Adrian 1991), allowing the instantaneous measurement of the velocity (and related properties) 90 

in a specific area (known as the interrogation area) in the fluid. PIV arose from laser speckle 91 

velocimetry, which was developed in the late 1970s (Dainty 1975). In PIV, the displacement 92 

of the interrogation area between two digital images is calculated using cross-correlation or 93 

autocorrelation techniques. In the present study, PIV is used to measure the deformation of soil 94 

slopes because it is a relatively simple and inexpensive technique that does not require the use 95 

of target markers. 96 

The aim of the present paper is to assess the potential for using GCCMs to stabilise 97 

sandy slopes in the presence of seepage flow. In physical model tests, the GCCM properties 98 

are evaluated and PIV is used to measure the slope displacement. 99 

 100 

2. MATERIALS 101 

2.1. Geosynthetic cementitious composite mat (GCCM) 102 

A GCCM is a manufactured product comprising two geotextile layers and a dry cement layer 103 

bound together with needle punching as shown in Figure 1(a). The present final product is a 104 

10-mm-thick and 1-m-wide GCCM roll can be produced up to a maximum length of 30 m as 105 

shown in Figure 1(b). Because the GCCM is manufactured in a factory, its properties are more 106 
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uniform than those of a product that is installed in the field, such as shotcrete. After water 107 

spraying, the cement hydration that takes place in the GCCM turns it into a solid mat with high 108 

stiffness and tensile strength. In addition, the presence of the geotextile layers at the top and 109 

bottom of the GCCM helps it to absorb large strains due to external loads in practice. Moreover, 110 

the GCCM can be installed relatively simply and quickly for slope stabilisation; it is simply 111 

laid on the slope surface and then sprayed with water [Figure 1(c)]. Given the aforementioned 112 

advanced characteristics, the GCCM has many potential geotechnical applications, such as 113 

slope protection, erosion control, ditch lining and water containment as hydraulic barriers 114 

(ASTM-D8173-18). 115 

Table 1 summarises the basic physical and mechanical properties of the GCCM after a 116 

curing time of  7 d, namely its mass per unit area (ASTM-D5993-14), nominal thickness 117 

(ASTM-D5199-06), tensile strength (ASTM-D6768), bending strength (BS-EN-12467), 118 

puncture resistance (ISO-12236) and water permeability (BS-EN-12467). The ratio of water to 119 

dry mass (w/WGCCM) of the GCCM is 0.5, and curing is done by soaking under ambient 120 

laboratory conditions. More details of these tests can be found in Jongvivatsakul et al. (2018). 121 

The GCCM interfacial resistance is proportional to the interfacial friction between the 122 

GCCM and the soil, and therefore the latter is an important property, especially in slope 123 

stabilisation. The interfacial friction angle between the GCCM and sand used in the present 124 

physical model tests as determined by direct shear tests (ASTM-D3080-98) with a normal 125 

stress of 7–50 kPa is 36, as shown in Figure 2. 126 

 127 

2.2. Sand 128 

The specimen soil used in the present physical model tests is fine yellow sand taken from a 129 

river bank around 80 km north of Bangkok, Thailand. According to the Unified Soil 130 

Classification System (USCS), the sand is classified as poorly graded sand (SP). The particle 131 

size distribution as determined by sieving according to ASTM D422 is shown in Figure 3, 132 

where it can be seen that the specimen sand is uniformly graded with a particle size that varies 133 

in the relatively narrow range of 0.106–0.425 mm. The sand is cohesionless, and Figure 2 134 

shows that the internal friction angle based on a direct shear test according to ASTM D3080 is 135 

38. The average hydraulic conductivity of the saturated sand with a dry unit weight of 14.2–136 

14.7 kN/m3 at 29C (i.e. the ambient laboratory temperature) as determined by the constant-137 

water-head method according to ASTM D2434 is 2.1×10−4 m/s, as shown in Figure 4. The 138 
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results show that the hydraulic conductivity is inversely proportional to the dry unit weight, 139 

and the sand properties are summarised in Table 2. 140 

 141 

3. CALIBRATION OF PARTICLE IMAGE VELOCIMETRY 142 

The displacement of the soil slope is measured using the open-source PIV analysis software 143 

OpenPIV, which is written in MATLAB and was developed by Taylor et al. (2010). The size 144 

of the selected interrogation area is 128128 pixels, equivalent to 4.5 cm  4.5 cm in the 145 

prototype. Note that because OpenPIV outputs the horizontal and vertical velocities of soil 146 

particle, the soil displacement is then calculated by accumulation of two such velocity 147 

components multiplied by time. 148 

To evaluate the accuracy and precision of the PIV technique, a series of calibration tests 149 

is conducted using an acrylic calibration tool as shown in Figure 5. The calibration tool 150 

comprises an upper box and a lower box, the former being free to slide on the latter. A screw 151 

and a dial gauge are used to control and measure the horizontal movement of the upper box, as 152 

shown in Figure 5. A sliding guide located on the surface of the lower box ensures that the 153 

upper box moves only horizontally, and a steel ruler is attached to the lower box as a reference. 154 

The calibration is conducted using the same sand intended to use in the physical model test but 155 

with a saturation degree (i.e. water content) ranging from zero to 90%. A high-resolution 156 

camera with a resolution of 18 megapixels and a frame rate of 5 frame per second is used in 157 

this study. The calibration is conducted carefully in a 3.0-m-long, 2.0-m-wide and 2.0-m-high 158 

chamber with lighting provided by two LED spotlights. 159 

The upper box of sand is translated using the screw bolt attached on the right side of the 160 

lower box, and a photograph is taken after each 1 mm of translation. Here, accuracy is defined 161 

as the systematic difference between the PIV-measured value and the true value read from the 162 

dial gauge, whereas precision is defined as the random difference among multiple 163 

measurements of the same quantity, i.e. the standard error. The calibration results in Figure 6 164 

show that for the 128128-pixel patch, the PIV measurements have an average accuracy of 165 

0.13 mm (equivalently to 2.6 pixels) and a precision of 0.005 mm (equivalently to 0.01 pixels). 166 

Note that the image distortion is neglected in the analysis. Alternatively, expressing the 167 

accuracy as a fraction of the field of view (FOV) width (i.e. by dividing the accuracy in pixels 168 

by the image width in pixels, 4,608 pixels), the present accuracy is 1/1,772, which is clearly 169 

better than the accuracy of 1/1,266 achieved by (Paikowsky and Xi 2000). 170 

 171 
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4. PHYSICAL MODEL 172 

4.1. Slope model 173 

A 2.0-m-long, 1.2-m-high and 0.2-m-wide acrylic tank as shown in Figure 7 is constructed and 174 

used for the physical model tests of the soil slope. Each 10-mm-thick side of the tank is 175 

transparent, which is useful for monitoring and photographing the soil slope during the tests. 176 

The model slope is constructed in the 1.5-m-long middle section, while the remaining sections 177 

on the left and right are used as chambers for water supply and drainage, respectively. The 178 

water chambers and the soil model are separated by perforated stainless-steel walls covered 179 

with stainless-steel wire mesh with opening holes of 0.1 mm to allow water move through 180 

without washing out the soil particles. Each water chamber is connected to a water supply tank 181 

to maintain a constant water head; to ensure a stable and continuous water supply, an electric 182 

pump with a capacity of 5 L/min is used to supply water during the tests. To measure the water 183 

pressure head in the soil, two 6-mm-diameter standpipes are installed along the base of the soil 184 

slope at the locations shown in Figure 7. 185 

The 1.5-m-long, 0.3-m-deep and 0.2-m-wide model sandy slope is built on an 186 

impermeable base inclined at 33 and a 0.15 m flat base near the slope toe. The front and rear 187 

inner surfaces of the tank are coated with petroleum jelly to reduce the friction between the soil 188 

slope and the tank sides. The interfacial friction angle between the sand and the acrylic is 189 

measured both with and without the petroleum jelly; it is 16.7 with the petroleum jelly and 190 

19.5 without it. Therefore, the slope model can be simplified as plane strain condition. A 191 

mixture of silicon glue and sand particles of size 1–2 mm is applied to the top surface of the 192 

impermeable base to form a rough base. 193 

Each homogenous model sandy slope is constructed with a dry unit weight of 194 

approximately 14.5 kN/m3. The sand is first dried in air and then used to construct the model 195 

slope. To obtain a uniform slope and consistent and repeatable specimen preparation, the slope 196 

ground is divided into four layers for compaction, each of which is compacted gently with a 197 

tamping rod to obtain the target height. 198 

A camera is positioned 2 m in front of the tank to photograph the slope every 30 s during 199 

the tests, and two steel rulers are attached to the front surface of the tank as references. Note 200 

that the accuracy of the PIV technique used to measure the soil displacement in this study is 201 

0.13 mm as mentioned in Section 3, and the duration of each test is approximately 20 min. 202 

 203 
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4.2. Experimental program 204 

Two experiments are carried out under the condition of seepage flow, namely one in which the 205 

slope is not stabilised slope (case 1) and one in which the slope is stabilised by a GCCM 206 

(case 2). In case 2, a 1.7-m-long and 0.19-m-wide GCCM that has been cured for 7 d is placed 207 

directly on the slope surface. To avoid any friction between the GCCM and the acrylic, a gap 208 

of 5 mm is provided on each side of the GCCM to prevent it from interacting with the tank 209 

sides, which could affect the test results. Moreover, there is a 50 mm gap between the GCCM 210 

and the steel mesh located at the toe to prevent them from coming into contact. Note that the 211 

interfacial friction between the GCCM and the sand prevents the former from sliding off the 212 

slope surface. 213 

 214 

4.3. Test procedure 215 

In many cases, a shallow slope can destabilise when subjected to seepage flow, therefore the 216 

aim here is to model a real slope with rising groundwater. The test procedure comprises two 217 

stages, namely saturation and seepage flow. Before conducting a test, the lower part of the 218 

sandy slope, namely the zone located near the impermeable base, is saturated by applying a 219 

constant water pressure head (hA) of 130 mm at the upslope; to keep hA constant, there is a 220 

series of 10 mm diameter holes in the right-hand side of the supply chamber to control the 221 

water level (see Figure 7). To control hA, only one 10 mm diameter hole at the target water 222 

level was opened while the other were closed. The seepage flow reaches the toe of the slope 223 

after approximately 1 h, whereupon it takes roughly the same time again for the water pressure 224 

head at the toe of the slope (hD) to reach the target value of 200 m. To allow the seepage flow 225 

to stabilise, hA and hD are then maintained for 30 min, during which time the outlet flow rate is 226 

monitored. Note that hD remains constant at 200 mm during the test. 227 

Upon saturation, an electric pump delivers water to the supply chamber to raise hA 228 

gradually from 0.13 m. The blue lines in Figure 8 show that on average the water in case 1 (not 229 

stabilised) rises slightly more slowly than it does in case 2 (stabilised). During each test, care 230 

is taken to avoid disturbing either the physical model or the lighting conditions, which would 231 

affect the quality of the photographs taken for PIV analysis. Each test is terminated when either 232 

the slope collapses or hA reaches the maximum level of 250 mm (i.e. to avoid an overflow). 233 

 234 
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5. RESULTS  235 

All the results presented here arise from the information contained in the photographs taken 236 

during the tests. The pressure heads are determined from the standpipes and the water levels in 237 

the chambers at either end of the model slope, and the soil displacement is measured using PIV. 238 

 239 

5.1. Water pressure heads 240 

The water pressure heads at positions A–D (i.e. the supply chamber, standpipes 1 and 2 and 241 

the drainage chamber, respectively, as shown in the inset of Figure 8) are determined from each 242 

photograph taken, thereby recording how the water pressure heads change with time, as shown 243 

in Figure 8. In both cases 1 and 2, hB and hC clearly increase as hA is increased. However, 244 

because soil wetting is required before the water level in the slope can rise, the rises in hB and 245 

hC are delayed relative to that in hA. 246 

In case 1, at the elapsed time of 7 min (i.e. when hA reaches 186 mm), the crest of the 247 

slope is seen to move [as shown in Figure 13(a)]. It is also interesting to note that hB starts 248 

increasing rapidly half a minute later (i.e. at the elapsed time of 7.5 min) despite hA still being 249 

increased gradually. This observation suggests that the slope movement plays a role in the 250 

increase of hB. In case 2 by contrast, the slope crest does not move until the elapsed time of 251 

15 min, and hB increases gradually throughout the entire test. 252 

 253 

5.2. Soil displacement 254 

To interpret how the soil slope deforms, eight vertical and 13 oblique cross sections are 255 

considered as shown in Figure 9, the spacing between them being 180 mm and 22 mm, 256 

respectively. Noted that vertical cross section V3 is considered in Figure 10 because the PIV 257 

observations show that the displacement is highest there, making it likely to be the location of 258 

greatest instability. This also confirmed by a plot of the deformation at V3 generated by water 259 

pressure variation at the point A (Figure 12). 260 

Figure 10 shows the soil displacement versus hA at V3 at the depths of 22, 66, 110, 154, 261 

198, 242 and 286 mm. The soil displacement clearly increases with hA, with the maximum soil 262 

displacement being 45 mm and 7 mm in cases 1 and 2, respectively. The considerably reduced 263 

displacement in case 2 indicates that the GCCM helps reduce the slope deformation. 264 

In case 1, the slope displacement becomes rapid when hA reaches 213 mm 265 

(approximately 71% of the depth of the model slope), as shown in Figure 10(a). In case 2 by 266 

contrast, the slope displacement remains gradual when hA reaches 213 mm and even as high as 267 
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246 mm, as shown Figure 10(b). This shows that the GCCM contributes to the slope resistance 268 

and decreases the deformation. The soil displacement at the other vertical cross sections is 269 

similar to that at V3 but with smaller magnitude. At each vertical cross section, there is very 270 

little soil movement at the depth of 286 mm, which is due to the roughness of the base. 271 

Figure 11 shows the typical shape of the curve of displacement versus water pressure 272 

head at shallower depth, in which there are two points of sudden change (denoted as Pm and 273 

Pf). The pressure heads at Pm and Pf (denoted as hm and hf, respectively) are interpreted as those 274 

when the slope starts to move and fails, respectively, thereby allowing them to be determined 275 

as hm = 186 mm and hf = 213 mm in case 1 and hm = 230 mm in case 2 (hf cannot be 276 

determined because the slope does not fail). 277 

To interpret how the slope displacement varies with depth, the former is re-plotted as 278 

shown in Figure 12. In case 1 [i.e., no stabilisation; Figure 12(a)], when hA is relatively small 279 

(i.e. hA = 186 mm), the soil movement is zero at the base and increases fairly steadily toward 280 

the slope surface; it drops slightly in the shallowest zone where the soil is above the water table. 281 

However, when hA is relatively high (hA = 216 mm), the slope begins to collapse and there is 282 

much more soil movement. In case 2 by contrast [i.e. with GCCM stabilisation; Figure 12(b)], 283 

the soil displacement is zero at the base, increases to a pronounced maximum at a certain depth 284 

and then decreases toward the surface. The maximum displacements near the surface in case 1 285 

and 2 for hA = 216 mm are 44 mm and less than 5 mm, respectively, which at approximately 286 

eightfold is a relatively large difference. In case 2 with GCCM stabilisation, existence of the 287 

mat could contribute to equalisation of the soil movement near the surface. On the other hand, 288 

in case 1 no stabilisation, the failure starts from the highest movement layer and propagates 289 

toward the upslope. 290 

The directions in which the soil slope moves can be presented in terms of the velocity 291 

vectors of the soil particles as derived from OpenPIV, as shown in Figure 13. The results 292 

indicate that the major direction of movement is nearly parallel to the base of the slope. In 293 

addition, the failure zone can be detected from the velocity vectors, as shown in Figure 13(b). 294 

The depth of the failure zone varies from section to section and tends to be deeper at the upslope 295 

and shallower at the downslope. The maximum depth (D) and length (L) of the failure zone are 296 

approximately 0.1 m and 1.7 m, respectively, which at D/L ≈ 6% means that the failure can be 297 

classified as a translational failure according to Abramson et al. (2002) and Hansen (1984). 298 

The soil slope is photographed after each test, as shown in Figure 14. The non-stabilised 299 

slope has failed absolutely after the test, but the GCCM-stabilised slope remains stable. 300 

 301 
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6. DISCUSSION 302 

The increased pore water pressure and hydraulic force due to the seepage flow cause the slope 303 

displacement and failure. The soil is displaced throughout the slope by different amounts, with 304 

those at shallow depth and at the upslope being the greatest. The slope deformation due to 305 

seepage flow comprises the stable stage, the moving stage and the failure stage, the transitions 306 

between which correspond to points Pm and Pf of sudden change. This implies that slope failure 307 

might be preceded by some warning signs, namely those associated with the moving stage. For 308 

example, a landslide occurred in the city of Antipolo in the Philippines in August 1999, burying 309 

many houses; however, according to Punongbayan R et al. (2002), there had been warning 310 

signs (e.g. cracks forming in the walls of houses) several months earlier. In addition, Voight 311 

(1989), Crosta and Agliardi (2003) and Sasahara (2017) have discussed soil displacement as a 312 

precursor of creep failure. 313 

In the mechanism for GCCM stabilisation, the stiffness of the GCCM is a key factor. 314 

The downslope constraint (i.e. the retaining wall at the downslope) means that in the tests the 315 

slope deformation occurs between the midslope and the upslope. Given that (i) the GCCM is 316 

much stiffer than the soil and (ii) the GCCM–soil interfacial friction is comparable to the 317 

internal soil friction, as shown in Section 5, the effect of the GCCM is to equalize the along-318 

slope displacement near the slope surface. Consequently, a relatively large deformation occurs 319 

in the midslope in case 1, whereas the surface displacement is smaller in case 2 because of the 320 

displacement-equalisation function of the GCCM. Moreover, the weight of the GCCM acting 321 

on the slope increases the effective stress, thereby increasing the stability of the GCCM-322 

stabilised slope. 323 

During a test, the PIV technique gives the magnitude and direction of the soil 324 

displacement at any location and time with an accuracy of 0.13 mm, from which the failure 325 

surface can be defined. Note that the PIV technique requires no markers to be placed within 326 

the model slope and thus does not disturb its behaviour, unlike if the displacement is measured 327 

using a tiltmeter or accelerometer as an inclinometer (Orense et al. 2004; Sasahara 2017); 328 

burying sensors inside the model slope may affect the soil movement (Zhang et al. 2009). It 329 

should be emphasised that PIV measures only the soil deformation at the side of the tank facing 330 

the camera, and therefore the relatively high friction between the soil and the tank could affect 331 

the soil deformation, which is why petroleum jelly is applied there. 332 

 333 
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7. CONCLUSIONS AND RECOMMENDATIONS 334 

Physical model tests of a sandy slope with and without a GCCM were performed under seepage 335 

conditions, and the PIV technique worked well for measuring the slope deformation. In the 336 

present study, the PIV accuracy was 0.13 mm, which is less than the effective diameter 337 

(D10 = 0.16 mm) of the sand grains. The results show that the GCCM stabilised the slope by 338 

means of displacement equalisation and applying a frictional force and a normal force to the 339 

slope surface. Consequently, the deformation of the slope stabilised with the GCCM was 340 

significantly smaller than that of the one with no GCCM. 341 

In the present study, the GCCM performed well at reinforcing the sandy slope in the 342 

presence of seepage flow. However, the effectiveness of GCCM stabilisation for slopes of other 343 

types of soils (e.g. silt, sandy clay, clay etc.) and other conditions (e.g. seepage, rainfall etc.) is 344 

yet to be studied. These issues should be investigated and evaluated in future work involving 345 

physical models, centrifuge models, numerical simulations and/or field studies. 346 

 347 
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(c)  

Figure 1. Typical geosynthetic cementitious composite mat (GCCM) and its application: 503 

(a) GCCM composition; (b) manufacturing process; (c) installation and water spraying 504 

of GCCM on slope surface. 505 
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Figure 2. Results of direct shear tests. 508 
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Figure 3. Grain size distribution of sand. 511 
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Figure 4. Results of hydraulic conductivity test. 514 
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Figure 5. Calibration tool. 518 
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Figure 6. Variation of accuracy and precision with saturation degree. Red and blue 521 

dashed lines show average accuracy and precision, respectively. 522 
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Figure 7. Schematic of physical model. 526 
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 529 

Figure 8. Variations of water pressure heads with time. 530 
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Figure 9. Locations of cross sections. 534 

  535 



26 
 

Pressure head hA (mm)
140 160 180 200 220

D
is

p
la

ce
m

en
t 

(m
m

)

0

10

20

30

40

50
22 mm 

66 mm 

110 mm 

154 mm 

198 mm 

242 mm 

286 mm 

hm = 186 mm

hf = 213 mm

 536 

(a) 537 

Pressure head h
A
 (mm)

140 160 180 200 220 240 260

D
is

p
la

ce
m

en
t 

(m
m

)

0

10

20

30

40

50
22 mm 

66 mm 

110 mm 

154 mm 

198 mm 

242 mm 

286 mm 

hm = 230 mm

 538 

(b) 539 

Figure 10. Displacement of soil at vertical cross section V3 versus upslope water pressure 540 

head (hA): (a) without stabilisation; (b) with stabilisation. 541 
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Figure 11. Typical curve of displacement versus water pressure head hA. 544 
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Figure 12. Variation of displacement with depth at section V3: (a) case 1: without 550 

stabilisation; (b) case 2: with stabilisation. 551 
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 552 

  

(a) (c) 

  

(b) (d) 

Figure 13. Velocity vectors of soil particles: (a) case 1, hA = 186 mm; (b) case 1, 553 

hA = 213 mm; (c) case 2, hA = 230 mm; (d) case 2, hA = 246 mm. 554 
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 557 

  

(a) (b) 

Figure 14. Photographs of soil slope after test: (a) case 1: without stabilisation; (b) case 2: 558 

with stabilisation. 559 
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Table 1. Properties of GCCM after being cured for 7 d [after Jongvivatsakul et al. (2018)] 570 
 571 

Property 

GCCM  

Width 

direction 

Length  
direction 

Nominal thickness [mm] 8.1 

Mass per unit area [g/cm2] 1.35 

Tensile strength [kN/m] 26.5 16.3 

Stiffness [MPa] 252.4 240.8 

Bending strength [MPa] 9.9 6.6 

Maximum puncture load [kN] 1.60 

Permeability [cm/s] 7.03×10−7 

 572 
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Table 2. Physical and mechanical properties of sand 574 

Description Value Unit Standard 

Grain size distribution 

(sand:silt:clay) 

100:0:0 % ASTM D422 

D10 0.16  mm - 

D30 0.19  mm - 

D60 0.25 mm - 

Coefficient of uniformity, Cu 1.5 - - 

Coefficient of curvature, Cc 0.9 - - 

Classification SP - ASTM D2487 

Dry unit weight, d 14.5 kN/m3 ASTM D7263 

Saturated unit weight, sat 18.8 kN/m3 - 

Specific gravity, Gs 2.65 - ASTM D854 

Cohesion, c′ 0 kPa ASTM D3080 

Angle of internal friction,  38  ASTM D3080 

Hydraulic conductivity, ksat 2.1×10−4 m/s ASTM D2434 
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