
論文 / 著書情報
Article / Book Information

題目(和文)

Title(English) Accelerating robot learning of motor skills with knowledge transfer

著者(和文) MAKONDONdivhuwo

Author(English) Ndivhuwo Makondo

出典(和文) 学位:博士(学術),
 学位授与機関:東京工業大学,
 報告番号:甲第10900号,
 授与年月日:2018年3月26日,
 学位の種別:課程博士,
 審査員:長谷川 修,山村 雅幸,寺野 隆雄,石井 秀明,青西 亨

Citation(English) Degree:Doctor (Academic),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第10900号,
 Conferred date:2018/3/26,
 Degree Type:Course doctor,
 Examiner:,,,,

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/

Accelerating robot learning of motor skills with

knowledge transfer

by

Ndivhuwo Makondo

Submitted to the Department of Computational Intelligence and
Systems Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computational Intelligence and Systems
Science

at the

TOKYO INSTITUTE OF TECHNOLOGY

March 2018

c© Tokyo Institute of Technology 2018. All rights reserved.

Author .
Department of Computational Intelligence and Systems Science

January 09, 2018

Certified by. .
Osamu Hasegawa

Associate Professor, Department of Computational Intelligence and
Systems Science

Thesis Supervisor

Accepted by .
Prof. Takao Terano, Prof. Masayuki Yamamura, Assoc. Prof. Hideaki

Ishii, Assoc. Prof. Toru Aonishi
Thesis committee, Department of Computational Intelligence and

Systems Science

2

Accelerating robot learning of motor skills with knowledge

transfer

by

Ndivhuwo Makondo

Submitted to the Department of Computational Intelligence and Systems Science
on January 09, 2018, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computational Intelligence and Systems Science

Abstract

Machine learning approaches have recently been adopted for robot modeling and
control, where robot skills are acquired and adapted from data generated by the
robot while interacting with its environment through a trial-and-error process. This
endows robots with the capabilities to adapt to changing and open-ended environ-
ments, by acquiring new skills and behaviors as their environments and demands
change. Furthermore, as learning-based control techniques are capable of modeling
complex systems, modern robots no longer have to be designed to allow modeling to
be straightforward but can be designed to suit various demands and environments.

Despite the success that learning-based approaches promise us, robot learning of
new control skills remains one of the main challenges, especially for manipulators and
humanoids, mainly due to their large and high-dimensional state and action spaces,
as a large amount of data must be collected and this requires long training times.
Furthermore, their physical embodiment allows only for a limited time for collecting
training data.

In this thesis, we aim to accelerate robot learning of motor skills using knowledge
transfer, where we re-use data generated by other pre-existing robots to accelerate
learning for a new robot. The advantage of transferring raw data is that the knowledge
transfer system will not restrict the robots to the same knowledge representations
and thus the same type of learning algorithms. However, knowledge transfer across
robots is fraught with many challenges, specifically due to the robots having different
embodiments and physical characteristics.

We propose a transfer learning model, Local Procrustes Analysis, and algorithms
for training it, to enable knowledge transfer across such robots with different em-
bodiments and physical characteristics. We demonstrate the efficacy of our proposed
model in accelerating learning of manipulator kinematics and dynamics. More specif-
ically, we accelerate learning of sensorimotor mappings – forward and inverse kine-
matics – and online learning of inverse dynamics for manipulator control. Moreover,
we propose an approach that contributes towards robot learning from demonstra-
tions that enables non-robotics-expert human users to transfer skills to robots, and

3

demonstrate that our approach can be extended to allow robots to share knowledge
acquired from a human.

We validate our approach using simulated robots, ranging from simple planar
manipulator robots to more complex industrial manipulators and humanoids. Our
results demonstrate that not only is transfer across robots possible, but it is also
beneficial to accelerating learning for new robots based on data gathered by more
experienced robots.

Thesis Supervisor: Osamu Hasegawa
Title: Associate Professor, Department of Computational Intelligence and Systems
Science

4

Acknowledgments

My PhD studies were supported by the Ministry of Education, Culture, Sports, Sci-

ence and Technology (MEXT) during the first three years and by Core Research for

Evolutional Science and Technology (CREST) program of Japan Science and Tech-

nology Agency (JST) in the last year. I am grateful for the opportunity they allowed

to me to pursue my PhD with a peace of mind, knowing my living expenses in Japan

are covered.

Many thanks go to my supervisor, Associate Professor Osamu Hasegawa, who ad-

vised that I pursue my studies in the hot topic of knowledge transfer in robotics. I am

grateful to all the support that he has given me during the course of my studies and

stay in Japan. I would also like to acknowledge my colleague and mentor, Dr. Ben-

jamin Rosman, who has contributed enormously to the development and completion

of my thesis, and for all the fruitful discussions we had over Skype.

I would also like to thank all my lab mates at Hasegawa Laboratory, past and

present, for their helpful comments and discussions during our regular seminars. Many

thanks also go to the friends I made while in Japan for their moral support. I would

also like to thank my family back in South Africa for their moral support and words

of encouragement.

Lastly, I am grateful for the Council for Scientific and Industrial Research (CSIR),

my current employer, for granting me the leave of absence to pursue my studies in

Japan.

5

6

Contents

1 Introduction 15

1.1 Motivation . 16

1.2 Major Contributions . 16

1.3 Thesis Outline . 18

2 Knowledge Transfer in Robot Learning 21

2.1 Introduction . 21

2.2 Related Work . 25

2.3 General Assumptions and Notation 27

3 Local Procrustes Analysis 33

3.1 Introduction . 33

3.2 Procrustes Analysis . 35

3.3 Overview of Local Procrustes Analysis 37

3.4 Clustering and Mapping . 39

3.5 Initializing the E-M Algorithm for LPA 42

3.6 Illustrative Example . 45

4 Learning Motor Skills from Demonstrations 49

4.1 Introduction . 50

4.2 Related Work . 54

4.3 Problem Statement . 56

4.4 Knowledge Transfer for Motor Skills 57

7

4.4.1 Overview . 58

4.4.2 Correspondence . 60

4.4.3 Learning the Mapping . 62

4.4.4 Skill Encoding . 63

4.4.5 Multi-robot Transfer . 65

4.5 Experiments . 66

4.5.1 Mapping Accuracy . 69

4.5.2 Skill Transfer and Encoding 70

4.5.3 Knowledge Transfer between Robots 72

4.6 Discussion . 75

5 Model Learning for Control 77

5.1 Introduction . 78

5.2 Related Work . 80

5.3 Problem Statement . 83

5.4 Knowledge Transfer for Inverse Dynamics 84

5.4.1 Collecting Correspondences 86

5.4.2 Learning the Transfer Model 87

5.5 Experiments . 88

5.5.1 Experimental Setup . 88

5.5.2 Learning Inverse Dynamics Model 89

5.5.3 Transfer for Inverse Dynamics Model 91

5.6 Discussion . 94

6 Learning Sensorimotor Mappings 97

6.1 Introduction . 98

6.2 Related Work . 101

6.3 Problem Statement . 101

6.3.1 Online Goal Babbling . 103

6.3.2 Sensorimotor Models . 105

6.4 Guided Exploration with Knowledge Transfer 105

8

6.4.1 Transfer Models . 107

6.5 Experiments . 108

6.5.1 Simple Two-link Planar Robots 109

6.5.2 Knowledge Transfer between Nao and Poppy 111

6.6 Discussion . 114

7 Conclusion 117

9

10

List of Figures

2-1 Illustration of a general learning framework 28

2-2 Illustration of a general transfer learning framework 29

2-3 Proposed general transfer learning framework 30

3-1 Illustration of LPA with 4 clusters . 38

3-2 Illustration of GMM clustering in input space 40

3-3 Illustration of the EM initialization procedure 44

3-4 An illustrative example of knowledge transfer between robots 45

3-5 Error distributions . 46

3-6 Mapping and model errors as functions of training data size 47

3-7 Modeled workspace regions using LPA and PA. 48

3-8 Mapping and model errors as functions of difference in robot links. . . 48

4-1 Goal-directed imitation learning from human demonstrations 52

4-2 Adapting human demonstrations onto robot learner. 57

4-3 Multi-robot problem setting for two robot learners. 58

4-4 Overview of proposed method. 59

4-5 Illustration of corresponding poses . 60

4-6 Illustration of inconsistent IK solutions due to arm redundancies for

3-DoF planar robots in a 2D task space 61

4-7 Illustration of the T-Pose and U-Pose with the PR2 robot. 63

4-8 Robots used in our experiments. 67

4-9 Task of writing letters in the task space of the human model. 68

4-10 Mapping accuracy for the PR2 and Meka. 70

11

4-11 Sample transferred raw trajectories for the PR2 and Meka. 71

4-12 Encoding accuracy for the PR2 and Meka. 71

4-13 Sample task imitation for the PR2 and Meka. 72

4-14 Accuracy of transferring tasks of writing letters from the PR2 and

human teacher to the Meka. 73

4-15 Transferred tasks reproduced by the Meka. 74

5-1 A learning-based control framework. 84

5-2 Our proposed transfer learning-based control framework. 85

5-3 Our framework for collecting correspondence data. 87

5-4 Example of knowledge transfer from a low-cost robot to a more expen-

sive and heavier robot . 88

5-5 Learning progress of the tasks by the robots. 89

5-6 ‘Star 2’ progress in the first and last trials. 91

5-7 Accelerating ‘Star 1’ learning. 92

5-8 Accelerating ‘Star 2’ learning. 93

5-9 Example transfer results for youBot. 93

6-1 Illustration of a goal babbling framework 103

6-2 Illustration of our guided goal babbling framework 106

6-3 Illustration of our guided exploration framework 107

6-4 Two-link robots used in the experiments. 109

6-5 2D task spaces of the robots. 110

6-6 Knowledge transfer with Local Procrustes Analysis. 111

6-7 Knowledge transfer with Procrustes Analysis. 112

6-8 Example of knowledge transfer from a small Nao to a bigger Poppy robot113

6-9 Poppy learning to reach inside a 3D boundary space 114

6-10 Knowledge transfer from Nao to Poppy with Local Procrustes Analysis. 115

12

List of Tables

3.1 Parameters of two-link robots . 46

4.1 Parameters of human and robot models 66

4.2 Joints mapping between the human model and the robots 68

4.3 Comparison of errors for transferring to the Meka, from human and

the PR2 . 75

6.1 Parameters of two-link robots . 109

13

14

Chapter 1

Introduction

The presence of personal and service robots in real-world settings has been a long-

standing vision of the artificial intelligence and robotics communities for years. This

includes personal robots in homes that help with domestic tasks such as cooking,

cleaning and gardening; and service robots such as those that assist doctors with

surgical procedures in hospitals and those that autonomously perform duties in envi-

ronments deemed unsafe for humans, such as in space.

Early approaches in pursuit of this vision were based on reasoning and human

insight, where a robot engineer models a task as accurately as possible, for example,

in terms of desired trajectories for a robot to follow, and uses her understanding of

required forces to be applied to the robot in order to produce desired robot behaviors.

Such engineered approaches in most cases are applied in pre-structured environments,

for pre-defined tasks that can be fully specified mathematically and with precisely

located objects. To design control policies for the robot to produce desired behaviors

to complete the tasks, typically hand-crafted models based on human understanding

of physics are used.

These approaches have had successes in controlled and static environments such

as factories and research labs. However, they have failed to produce any desirable

results in real-world environments, that are unstructured and dynamic, such as those

mentioned above. In these cases, robots must be able to adapt to changing and

open-ended environments, by acquiring new skills and behaviors as their environments

15

and demands change. To this end, data-driven approaches based on machine learning

have recently been adopted. In these approaches robot skills are acquired and adapted

from data generated by the robot while interacting with its environment through a

trial-and-error process.

1.1 Motivation

Despite the success that learning-based approaches promise us, robot learning of

new control skills remains one of the main challenges, especially for manipulators

and humanoids, mainly due to their large and high-dimensional state and action

spaces. Furthermore, their physical embodiment allows only for a limited time for

collecting training data. For example, learning policies through reinforcement learning

or developmental learning approaches generally requires an interaction of the robot

with its physical environment to collect training samples over many trials.

In this thesis, we aim to accelerate robot learning with knowledge transfer, where

learning of a new robot is initialized by data generated by pre-existing robots or when

possible, from human demonstrations. By re-using data generated by other robots or

humans as a means of knowledge transfer, the hope is that learning for the new robot

will be biased towards relevant spaces such that fewer trials of interacting with the

environment are needed, thus improving the learning speed.

Our motivation behind knowledge transfer is the ability of humans to retain and

use knowledge acquired previously to solve new tasks faster. Humans do not only

learn from their own past experiences but also from those of others by means of

knowledge sharing. For example, pupils use knowledge gained from their teachers to

enhance their skills in order to solve problems.

1.2 Major Contributions

Equipping robots with the capabilities to transfer knowledge that they have learned

through their individual experiences is fraught with many challenges. The challenge

16

that we confront in this thesis is due to the diversity in modern robots, in terms

of different embodiments and physical characteristics. Although this brings with it

the advantage of combining the different capabilities that individual robots posses

to solve complex tasks in multi-robot systems, it also makes it challenging to share

learned knowledge across robots, because learning is often embodiment-specific.

The differences generally include kinematics properties – joint configurations,

number of degrees-of-freedom (DoF), robot dimensions – and dynamic properties

– mass, center of mass, inertia matrix, etc. All these result in robots having differ-

ent state and action spaces, which makes transfer of low-level, embodiment-specific

knowledge challenging.

This thesis makes the following contributions to the field of machine learning for

robot control. We demonstrate the benefit of knowledge transfer across robots for

accelerating robot learning. In particular, we demonstrate this for learning robot

sensorimotor mappings, such as forward and inverse kinematics, and online learning

of robot dynamics models, such as inverse dynamics. Furthermore, we also contribute

an approach for humans to accelerate learning of robot motor skills, by transferring

their knowledge to robots using camera systems, and demonstrate that our approach

can be easily extended to transfer between robots, knowledge gained by one robot

from human demonstrations.

This thesis also contributes to the field of machine learning, a model, and algo-

rithms for training it, for knowledge transfer using non-linear manifold alignment.

Although we only demonstrate the efficacy of our model in robotics applications, we

believe it also has applications outside the robotics community.

Despite our contributions, challenges still remain in transferring knowledge across

robots and this will be discussed in more details in Chapter 7. More specifically,

when transferring kinematic data across robots, we had to rely on robot correspon-

dences specified by a human designer. The challenge is that in some cases these

correspondences may not be obvious to the human eye, especially to non-robotics-

expert users, and ideally the robots should autonomously discover correspondences

among themselves.

17

Research conducted in this thesis has led to the following papers:

• Ndivhuwo Makondo, Benjamin Rosman, Osamu Hasegawa, Manifold Map-

ping for Knowledge Transfer, International Symposium on Pedagogical Ma-

chines (workshop/not reviewed), Mar. 2015.

• NdivhuwoMakondo, Benjamin Rosman, Osamu Hasegawa, Knowledge trans-

fer for learning robot models via Local Procrustes Analysis, IEEE-RAS 15th

International Conference on Humanoid Robots (Humanoids), pp. 1075-1082,

Nov. 2015.

• Hiratsuka Michihisa, Makondo Ndivhuwo, Rosman Benjamin, Hasegawa Os-

amu, Trajectory Learning from Human Demonstrations Via Manifold Mapping,

IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct.

2016.

• Ndivhuwo Makondo, Michihisa Hiratsuka, Benjamin Rosman, and Osamu

Hasegawa, A non-linear manifold alignment approach to robot learning from

demonstrations, J. of Robotics and Mechatronics, Under Review.

• Ndivhuwo Makondo, Benjamin Rosman, Osamu Hasegawa, Accelerating

model learning with inter-robot knowledge transfer, IEEE Robotics and Au-

tomation Letters, Under Review.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 provides an intro-

duction to knowledge transfer in robot learning and also reviews related work in

knowledge transfer for accelerating robot learning. We also lay out the assumptions

and notation adopted throughout the thesis in Section 2.3. In Chapter 3 we present

our proposed knowledge transfer model and illustrate it using a simple example in

Section 3.6. The reader is recommended to go through Chapter 2 and 3 in order to

18

understand the rest of the document, as these two chapters contain the background

knowledge.

Chapter 4, 5 and 6 can be read in any order. In Chapter 4 we present our proposed

approach to learning from demonstration using camera systems. Our approach con-

tributes towards enabling non-robotics-expert users to transfer knowledge to robots

by demonstrating the tasks using camera systems such as Microsoft Kinect and mo-

tion capture suit. We demonstrate that our approach can be easily extended to allow

knowledge transfer across robots for initializing a parameterized policy of robot motor

skills.

In Chapter 5 we present our proposed approach to accelerating model learning

with inter-robot knowledge transfer. In particular, we demonstrate how online learn-

ing of the inverse dynamics for manipulator control can benefit from knowledge trans-

fer. Chapter 6 present our preliminary work in accelerating learning of sensorimotor

mappings for developmental learning robots. In particular, we show how learning

inverse kinematics for an autonomously exploring robot can benefit from knowledge

transfer from an experienced robot. Lastly, we conclude the thesis and provide a

discussion of future work in Chapter 7.

19

20

Chapter 2

Knowledge Transfer in Robot

Learning

2.1 Introduction

Recent advances in machine learning and its application to robotics have endowed

robots with the capabilities to learn and acquire knowledge from their own experi-

ences gained by interacting with their surrounding environments. This brings with

it many benefits as well as challenges. Learning from experience enables robots to

continuously acquire new knowledge and adapt to changes in the robots themselves

or the surrounding environment. However, in many practical cases robots learn tab-

ula rasa, which results in slow learning, increasing sample complexity and sometimes

making mastering difficult tasks infeasible. This is especially true for manipulators

and humanoids with high-dimensional, continuous state and actions spaces.

With the proliferation of robots and the decrease in their cost, it seems reason-

able to suggest that robots could benefit from communicating and effectively sharing

knowledge that they have gleaned through their individual experiences. Such a multi-

robot systems approach has the advantage of solving complex tasks that individual

robots could otherwise not solve by themselves or would take a lot of time to solve.

The communication and sharing of knowledge across robots would allow better coop-

eration amongst the robots and could also make it possible for robots to accelerate

21

each others’ learning processes.

In a scenario where an old robot is to be replaced by a new model, either in

an industrial setting or a domestic one (e.g. an old cleaning and cooking robot

being replaced a by a newer model), rather than discarding the old robot with all the

knowledge it acquired throughout its lifetime and the new robot learning from scratch,

transferring some of the old robot’s knowledge to the new one may help accelerate

its learning process. Such bias from prior experiences is what enables humans to

generalize and be able to learn to solve new problems faster.

However, such an endeavor of equipping robots with the capability to transfer

knowledge to each other is fraught with challenges. One of the challenges is the lack of

interoperability between software architectures used in many robotic platforms [100].

This is mainly due to compatibility issues between software frameworks, algorithms

and data structures from different robot manufacturers. There have been attempts at

solving this issue, such as the development of robot software formats, standards and

components that if widely adopted and re-used would allow fast development of new

robotic systems and communication across different robotic systems [119, 13, 14].

Examples are the Robot Operating System (ROS) [109] and the Open RObot

COntrol Software (OROCOS) [15], which aim to provide abstraction of robot-specific

components and provide data structures that allow distributed processes (e.g. sensor

modules, actuator modules, robot systems, etc.) to communicate over a network.

In other cases researchers rely on sub-optimal solutions based on developing ad-hoc

custom software bridges between individual architectures [83, 123, 100].

The other, and perhaps more pressing, challenge that makes knowledge transfer

across robots difficult is due to the diversity in modern robots, in terms of sensing

and actuation capabilities. Although this brings with it the advantage of combin-

ing the different capabilities that individual robots posses to solve complex tasks in

multi-robot systems, it also makes it challenging to share learned knowledge across

robots, because learning is often embodiment-specific. The difference in sensors,

materials and actuators used to assemble robots makes direct transfer of knowledge

across robots infeasible, as this results in their corresponding machine learning models

22

having different feature spaces and data distributions.

Several studies have been conducted and methods proposed to deal with the prob-

lem of knowledge sharing across heterogeneous robots. One group of work seeks to

share perceptual knowledge across robots with differing sensing mechanisms. An-

other group deals with the knowledge transfer of low-level manipulation or control

skills across robots with differing embodiments and characteristics. Lastly, the third

group deals with general robot knowledge sharing, combining both perceptual and

manipulation skills. Generally this last group differs from the other groups in that it

deals with both perceptual and manipulation skills. Furthermore, it also differs from

the second group in that it deals with high-level skills and assumes the robots are

capable of performing low-level skills, whereas work in the second group attempts to

learn and transfer low-level skills that are often embodiment-specific.

Transferring perceptual knowledge addresses issues that are caused by robots hav-

ing different sensing mechanisms, such as different camera types, characteristics and

quality [67, 64, 60, 74, 65, 27], and different sensing perspectives, where cameras are

placed at different spatial positions across robots [78, 74] or sharing knowledge across

ground and aerial vehicles [78, 62, 66]. Approaches for enabling perceptual knowledge

transfer include, among others, abstracting away raw sensory signals from different

sensors into an intermediate representation [67, 62, 64, 63, 60], sharing learned clas-

sifiers [78, 66], and feature alignment for when the underlying representations differ

[65]. Other methods rely on some similarity between the data from the robots and

employ a transfer risk measure to quantify how much data from one robot to use in

another robot [27].

Work that attempt to enable robots to share general knowledge deals with the

knowledge of high-level tasks [147, 137, 58, 136, 138], where the knowledge is repre-

sented using a hierarchical network of skills that makes sharing of knowledge easy.

The common theme in these works is representation of the knowledge in a high level

of abstraction, thus abstracting away the robot-specific low-level knowledge. Key

to these approaches is a knowledge representation framework and many different

types of knowledge representations have been proposed, including the SysML (or

23

Systems Model Language) [58] or representations based on using ontologies such as

KNOWROB (which uses the OWL2 ontology) [136], the IEEE standard Ontology for

Robotics and Automation (ORA) [121] and many others [76, 75].

Transferring low-level manipulation/control skills on the other hand is very chal-

lenging, due to robots having different embodiments and physical characteristics,

as the knowledge is mainly grounded in a robot-specific manner. The differences

generally include kinematics properties – joint configurations, number of degrees-of-

freedom (DoF), robot dimensions – and dynamic properties – mass, center of mass,

inertia matrix, etc. All these result in robots having different state and action spaces,

which makes transfer of low-level, embodiment-specific knowledge challenging. While

knowledge transfer for all the different categories discussed above is important, this

thesis mainly focuses on knowledge transfer for accelerating low-level control skills

for new robots based on data generated by pre-existing robots. In particular, we

focus on three different learning domains, learning motor skills encoded as parame-

terized motor primitives in joint space, online learning of inverse dynamics control and

learning kinematics for autonomous robotic agents through developmental learning

frameworks.

The advantage of transferring raw data is that the knowledge transfer system

will not restrict the robots to the same knowledge representations and thus the same

type of learning algorithms. For example, when sharing classifiers across robots as

a means of knowledge transfer, both robots must use the same type of classifier

[78, 66]. Moreover, transferring raw data also makes it possible to share knowledge

across robots with different software architectures, as the data generated by robots

is independent of the software architectures used to control the robots. In the next

section we will review the literature of work in accelerating learning of motor skills

with knowledge transfer.

24

2.2 Related Work

Knowledge transfer in machine learning has been studied under the framework of

transfer learning (TL), where knowledge gained while solving prior tasks (source

tasks) is leveraged to help improve learning a new related task (a target task) [101,

151]. Standard machine learning models make the strong assumption that the train-

ing and test data are drawn from the same distribution and are represented by the

same feature spaces. This assumption breaks down in many practical situations, often

due to the noisy and dynamic nature of the real world. Standard machine learning

algorithms would typically require new training data in such real-world applications,

which may be expensive to collect.

TL algorithms treat the training set, typically collected in controlled environments

(e.g. collecting images of objects in a lab for learning classifiers), as the source domain

and the test set, in the real world (e.g. using the learned classifiers in the real world),

as the target domain, and learn to adapt models trained in the source domain to

effectively apply in the target domain, or supplement target domain data with large

source domain data, thus improving learning in the target domain.

A common idea in many TL methods is finding a shared (latent) feature space

across domains that captures domain invariances and can be used to transfer knowl-

edge across domains. Several TL algorithms for finding such latent spaces have been

proposed, including those that find a lower-dimensional latent space using dimension-

ality reduction techniques, preserving statistical properties (e.g. matching underlying

data distributions in the latent space) [102, 103], geometrical properties (e.g. local

and global distances) [149, 150] and sometimes a combination of these properties

[148].

Applications of TL can be found in computer vision problems, where TL is some-

times referred to as domain adaptation [51, 50, 44]; cross-lingual applications, where

models learned in one language are transferred to another language [148, 150]; bioin-

formatics [149, 7]; localization [102, 103]; text classification [30, 103]; and robotics.

The majority of work applying TL to accelerate learning robot motor skills are

25

found in the reinforcement learning (RL) literature (see [133, 73] for surveys). In

order to scale reinforcement learning to high dimensional problems with continuous

state and actions spaces, such as in robot control, policy gradient methods are some

of the most successful in the RL for robotics literature [106], where a parameterized

policy representation is used and the policy parameters are learned by maximizing

a reward function. However, as policy gradient methods are local learning methods,

to learn complex movements fast the policy parameters must be properly initialized

with domain knowledge [106]. Transfer learning has been employed in the RL domain

to accelerate learning motor skills by initializing policy parameters for new tasks

based on prior knowledge gained while solving other tasks within a single robot,

the inter-task transfer case [134, 117, 1, 118], or for the same task for a new robot

based on knowledge previously gained by other robots, the inter-robot transfer case

[12, 72, 154].

The vast experience and task knowledge of human agents have also been leveraged

as a source of knowledge to accelerate robot learning of motor skills. Transferring

human knowledge onto robots has been studied in robotics under the framework

of learning from demonstrations (LfD), also referred by many other terms such as

imitation learning, programming by demonstration, learning by demonstrations, etc.

Approaches in LfD aim to provide a user-friendly interface for non-robotics-expert

users to program and transfer knowledge to robots.

LfD can be applied to accelerate learning by providing the robot with human

demonstrations of the skills prior to learning in order to bias its subsequent explo-

ration into relevant spaces such that it converges faster [106, 135]. In other cases the

human agent provides guidance to the robot learner by interacting with it during its

exploration phase, providing it with demonstrations of the desired skills [92]. These

approaches assume the human teacher is an expert in the skills they are demon-

strating to the robots. Another way to leverage human agents to accelerate robot

learning, particularly for cases where expert human demonstrations are not available,

is to let the human teacher provide feedback to the robot about its performance.

This approach has mainly been applied to RL problems where the human feedback

26

is integrated into the reward functions [17, 52, 77].

In other robot learning domains such as learning internal models (e.g. kinematics

and dynamics) application of transfer learning is scarce and has only recently started

to surface. However, these domains face similar challenges such as long training

times and the need to physically interact with the surrounding environment to collect

training data. Few work has been conducted in TL for kinematics [8] and dynamics

[8, 111, 110, 54] models. Our work contributes to the application of transfer learning

in accelerating learning of kinematics and dynamics models.

In particular, we contribute to accelerating online learning of the inverse dynamics

model for robot control and accelerating learning kinematics models of autonomous

robotic agents in developmental robotics – known as learning sensorimotor mappings.

Furthermore, we also contribute a data-driven transfer learning approach, based on

the same ideas, to LfD, that allows an intuitive interface for humans to demonstrate

tasks using camera systems to robots, without assuming knowledge of robots kine-

matics properties, and also show that this can also be used to transfer skills across

robots. We discuss related work to each of our contributions in their relevant chapters,

in Chapter 4, 5, and 6.

2.3 General Assumptions and Notation

This section serves to lay out the general assumptions made and the notation used

throughout this thesis. Assumptions specific to a particular learning domain will

be made explicitly in the relevant chapter. The main objective of this thesis is to

investigate and design transfer learning algorithms and demonstrate the benefit of

knowledge transfer in accelerating learning of robot motor skills in the learning do-

mains introduced above.

Generally speaking, consider a standard learning agent, Ω, that generates a data

set, ξ = {xxx(i), yyy(i)}Ti=1, by interacting with its surrounding environment for a duration

T in order to learn a parameterized policy πθθθ. The data set ξ consists of input-output

vector pairs (xxx(i), yyy(i)), where, for example, xxx = qqq ∈ <d is a joint angle vector of a

27

Figure 2-1: An illustration of a general learning framework. Based on an environmen-
tal context, a high-level learning architecture decides the next task that a learning
agent must attempt to perform. Without prior knowledge of the task and an internal
model of the agent, the agent explores its environment by executing random motor
commands and observing the consequences, and use the generated data to update its
policy parameters. This process repeats until the agent is competent at performing
the task and has gained knowledge about the task that it will use in the future when
encountering the same task.

d-DoF manipulator and yyy ∈ <m is the corresponding end-effector position vector and

the policy πθθθ encodes the manipulator forward kinematics function fθθθ : qqq 7→ yyy and

θθθ ∈ Θ are the parameters of the policy. The learner generates the data by exploring

its action space and interacting with its surrounding environment, as illustrated in

Fig. 2-1, and the data is used to update the policy parameters offline or online.

As a tabula rasa learning agent may learn slowly and risks damage from all the

exploratory movements required to learn an optimal policy π?
θθθ , we aim to initialize

the parameters of the target agent Ωt by data generated by a more experienced

source agent Ωs. The source agent can be another more experienced robot or where

applicable a human teacher. We assume that the source agent is skillful in the task

being learned by the target learner, i.e., the source has successfully learned the task

or the human teacher is capable of generating expert demonstrations.

To this end, we want to learn the initial parameters θθθinit ≈ θθθ? from source agent

data ξs = {xxx(i)
s , yyy

(i)
s }Ti=1, as illustrated in Fig. 2-2. However, due to the different

embodiments and characteristics between the source and target agents, we cannot

use ξs directly to learn the initial policy πinit
θθθ of the target agent. Thus, ξs must be

28

Figure 2-2: An illustration of a general transfer learning framework. Knowledge
gained by a source agent when previously learning the current task is injected into
the target learner policy. With the prior knowledge of the source task the agent
explores its environment faster by executing motor commands that are biased toward
relevant spaces.

configured such that it is useful to the target agent. For example, in our forward

kinematics learning scenario, the source agent may have a different number of DoFs

ds resulting in the joint angle vector having a different dimensionality qqq
(i)
s ∈ <ds and

the links of the source manipulator may have different lengths, resulting in a different

distribution of its end-effector positions in the task space yyy
(i)
s .

We employ an inter-robot transfer learning framework to effectively transfer the

source domain knowledge to the target domain to improve learning of the target agent.

We associate a source domain χχχs with the source agent Ωs and a target domain χχχt

with the target agent Ωt. We assume the domains are different but related. They

are related in the sense that their data is generated by kinematic chains1, and, for

kinematics learning, they are different due to the chains having different parameters

(link lengths), configurations (how the links are connected and joint offsets) and DoFs.

For learning dynamics, in addition to the kinematics differences they are also different

in terms of link masses, center of mass, inertia matrix, etc.

In order to effectively transfer source domain knowledge to the target domain,

we learn a mapping f that maps source domain data into the target domain, i.e.,

f : χχχs 7→ χχχt. This domain mapping f can be learned from example correspondences,

1A human (or robot) body can be described mathematically as a group of links (or rigid bodies)
connected by joints, forming a kinematic chain.

29

Xs ⊂ χχχs and Xt ⊂ χχχt, sampled from both domains; for example, by controlling the

source and target agents to execute similar movements. The domain mapping f is

then used to map source agent experience data ξs into the target domain to generate

estimated target agent data ξ̂t, which is then used to initialize the target agent policy

πinit
θθθ . As the transferred policy πinit

θθθ may not be optimal, as the mapping is not

guaranteed to be perfect, the target agent can subsequently improve this policy by

trial-and-error. Fig. 2-3 illustrates our transfer learning framework.

Figure 2-3: An illustration of our proposed general transfer learning framework. The
framework is composed of a transfer learning model for learning the mapping f and
an algorithm for generating correspondences from source and target agents.

Our transfer learning framework is composed of a transfer learning model for

learning the mapping f and algorithms for generating correspondences, Xs and Xt,

from the source and target agents. In Chapter 3 we discuss various models that can

be employed to learn f and present our proposed model. Algorithms for generating

correspondences from the agents are specific to the learning domain and thus we will

30

discuss these more specifically for each learning domain in Chapter 4, 5 and 6.

31

32

Chapter 3

Local Procrustes Analysis

In this chapter we present our proposed transfer learning model that is based on

manifold alignment, Local Procrustes Analysis (LPA). We first provide a brief in-

troduction to knowledge transfer with manifold alignment techniques in Section 3.1,

then present the Procrustes Analysis (PA) technique, a linear manifold alignment

technique upon which LPA is based, in Section 3.2. We provide an overview of LPA

in Section 3.3 and sections 3.4 - 3.5 discuss various components of LPA. Lastly, we will

provide a simple illustrative example showcasing the performance of LPA compared

to the linear Procrustes Analysis.

3.1 Introduction

Consider two different but related domains: the source domain χχχs ⊂ <ds+ms and

the target domain χχχt ⊂ <dt+mt , associated with source agent Ωs and target agent

Ωt respectively, as previously defined in Section 2.3. dj +mj is the dimensionality of

domain j with dj being the dimensionality of its input space andmj the dimensionality

of its output space. In general, the dimensionality of the domains are not the same,

due to the agents having different embodiments, i.e., ds 6= dt and ms 6= mt. The

objective is to find a mapping, f : χχχs 7→ χχχt, that maps data points from the source

domain to the target domain, through which knowledge can be shared across the

domains.

33

Manifold alignment techniques have been shown to be very useful in this kind of

problem because they allow for knowledge transfer between two seemingly disparate

data sets, by aligning their underlying manifolds given a set of corresponding samples

Xs = {xxx(i)
s , yyy

(i)
s }Ni=1 and Xt = {xxx(i)

t , yyy
(i)
t }Ni=1 [148, 149], where X

(i)
s ∈ χχχs and X

(i)
t ∈ χχχt

are in correspondence. Applications of manifold alignment include automatic ma-

chine translation [37], cross-lingual information retrieval [148, 149], transfer learning

for Markov Decision Processes [148, 2] and robot model learning [8], object pose

alignment [153, 29] and bioinformatics [148, 149, 29]. Learning the transfer model f

with manifold alignment can be accomplished using two general methods: two-step

alignment methods and one-step alignment methods.

In the first step of a two-step alignment method, latent representations of the

source and target data are found independently in a lower dimensional space using

dimensionality reduction. In the second step, a transformation between the two is

computed by aligning them in the latent space. A one-step alignment method on

the other hand combines the two steps into one single step, where the data sets are

projected into a shared latent space. The output of this process is two mappings that

map the data sets into the shared latent space. For knowledge transfer to be possible

in both methods the mappings between the original space and the latent space must

be bijective, as the inverses are needed to map back to the the original spaces.

Examples of the two-step approach in robotics include combining Principal Com-

ponent Analysis (PCA) and Procrustes Analysis (PA) for transfer learning of forward

kinematics and inverse dynamics [8]. Examples of the one-step approach include

Unsupervised Manifold Alignment (UMA) [149, 2] and shared Autoencoders [53] for

transfer learning in the reinforcement learning domain, and shared Gaussian Pro-

cess Latent Variable Models (shared GPLVMs) [41] for transferring kinematic data

for humanoid bi-manual tasks [35]. In one-step alignment approaches, typically the

dimensionality reduction is performed in a supervised manner, i.e., considering the

purpose of alignment, by imposing constraints on the cost function, and linear [149, 2]

and non-linear [41, 35, 53] dimensionality reduction techniques are employed.

One-step alignment approaches on the other hand perform dimensionality reduc-

34

tion in an unsupervised manner, and as a result the domains are not guaranteed to

be the same in the latent space and an additional transformation step is required to

align the domains. Although this approach does not guarantee optimal alignment

of the domains in the latent space, it allows the user the choice of dimensionality

reduction techniques depending on the problem at hand. For example, in some cases

it may be obvious to the user how the domains are related, and thus the user can

manually match the dimensionality of the domains, e.g., by removing some dimen-

sions. Furthermore, the simple combination of PCA and Procrustes Analysis is data

efficient and has been shown to accelerate learning from very few training data [8]

and we also demonstrate this data efficiency in Chapter 5. However, sometimes the

linear mapping of Procrustes Analysis is too restrictive in some problems. Thus, we

propose Local Procrustes Analysis as an extension to Procrustes Analysis to relax

the linearity assumption and handle non-linear mappings.

3.2 Procrustes Analysis

In this section we present the Procrustes Analysis technique for manifold alignment

before presenting our extension in the following sections. The goal of Procrustes

Analysis is to find an optimal alignment from some source data set Zs ⊂ <d to

some target data set Zt ⊂ <d, where both data sets are assumed to have the same

dimensionality d, given that Z
(i)
s is in correspondence with Z

(i)
t . Through this linear

transformation, novel points in the source domain can be mapped onto the target

domain. The optimal alignment is achieved by removing the translational, rotational

and scaling components from one data set such that the two data sets are optimally

aligned [148].

The first step in applying PA is to preprocess the data by subtracting the mean

and whitening it, thus obtaining standardized matrices Ms and Mt, as follows,

sss = Bs(zzzs −ωωωs), (3.1)

ttt = Bt(zzzt −ωωωt), (3.2)

35

where sss ∈Ms and ttt ∈Mt. The values ωωωs = E{Zs} and ωωωt = E{Zt} are the means of

the data, where E{·} denotes the expectation operator. Matrices Bs and Bt can be

obtained using the Singular Value Decomposition (SVD) of the covariance matrices

of Zs and Zt respectively, and are such that the data Ms and Mt are whitened.

The manifold alignment function is modeled as a linear mapping fd : Ms 7→ Mt,

with

fd(sss) = Asss (3.3)

where Ad×d is a transformation matrix. To find the optimal transformation A, Wang

and Mahadevan [148] minimized ‖Mt−fd(Ms)‖F , where ‖ ·‖F is the Frobenius norm.

Bócsi et al. [8] minimized the expected loss of the transformation instead, as described

below.

We find the parameters A from (3.3) such that the expectation of the error of the

transformation L(A) is minimized, i.e.,

A = argmin
r

L(A) (3.4)

with

L(A) = E{(ttt− Asss)T (ttt− Asss)}

= tr(Σtt − 2ATΣts + ATΣssA)
(3.5)

where Σss, Σtt and Σts are covariance matrices and L is a loss function. The

minimization can be performed by setting the derivative of L(A) to zero. After

differentiation,

0 = −2Σts + 2ATΣss

A = Σ−1
ss Σts. (3.6)

where Σss is the covariance matrix of the source matrix Ms and Σts is the covariance

between the source and target matrices Ms and Mt.

To find a latent space of dimensionality d and match the dimensions of the data

sets, Zs ⊂ <ds and Zt ⊂ <dt , for the general case where ds 6= dt, and obtain Ms ⊂ <d

and Mt ⊂ <d, any dimensionality reduction technique can be employed depending on

36

the problem, provided the inverse of the resulting mapping is well defined. Combin-

ing Procrustes Analysis with PCA is straightforward, and is achieved by separately

projecting Zs and Zt onto their d principal components using only the first d columns

of Bs and Bt respectively in 3.1 and 3.2. The first d columns are chosen such that the

variances in Zs and Zt are maximized. The only open parameter is the dimensionality

of the latent space d. Algorithm 1 summarizes the learning procedure of Procrustes

Analysis with PCA.

Algorithm 1 Procrustes Analysis: Learning

1: IN: Training sets Zs, Zt and latent space dimension d
2: Compute Ms and Mt (using PCA, Eq. 3.1 and 3.2)
3: Compute alignment matrix: A = Σ−1

ss Σts

4: OUT: Parameters Φ = {A,Bs, Bt,ωωωs,ωωωt}

A new point sss? = Bs(zzz
?
s −ωωωs) in the source manifold can then be mapped to the

target manifold using ẑzz?t = Bt
−1Asss? + ωωωt, where ẑzz

?
t is the transferred point. This is

summarized in Algorithm 2.

Algorithm 2 Procrustes Analysis: Transfer

1: IN: Parameters Φ = {A,Bs, Bt,ωωωs,ωωωt}
2: IN: Source domain novel point zzz?s
3: Compute standardized novel point: sss? = Bs(zzz

?
s −ωωωs)

4: Compute estimated target point: ẑzz?t = Bt
−1Asss? +ωωωt

5: OUT: ẑzz?t

3.3 Overview of Local Procrustes Analysis

This section provides the overview of Local Procrustes Analysis. LPA extends the

Procrustes Analysis method to handle non-linear mappings, by approximating a

global non-linear manifold alignment with locally linear functions. This idea of ap-

proximating a global non-linear function with locally linear models has also been

applied in locally weighted learning for control [4, 140] and learning non-linear image

manifolds [145].

37

π1,N (µµµ1,Σ1)

π2,N (µµµ2,Σ2)

π3,N (µµµ3,Σ3)

π4,N (µµµ4,Σ4)

Source manifold
Target manifold

χχχs χχχt

f1

f2

f3

f4

Figure 3-1: Illustration of LPA with 4 clusters. The gray shaded ellipses represent
GMM components and the shaded areas on the manifolds represent areas for which
the GMM components are responsible. f1 to f4 are linear mappings learned from the
data in their corresponding clusters.

Consider again that we are provided with some source data set Xs ⊂ χχχs, target

data set Xt ⊂ χχχt and X
(i)
s is in correspondence with X

(i)
t . The objective of LPA is to

learn the domain mapping f as a non-linear function. LPA assumes that the domains

are locally continuous and smooth, and that the mapping can be computed locally

using linear models on the corresponding instances. To achieve this, LPA first clusters

the two data sets into K local clusters. Then a linear mapping for each cluster is

computed using the Procrustes Analysis algorithm. This is illustrated in Fig. 3-1 for

four clusters obtained using a Gaussian Mixture Model (GMM). A new data point

zzz
(i)
s from the source domain can then be mapped to the target domain by a weighted

sum of the linear mappings, to obtain the estimated target point ẑzz
(i)
t , as follows,

ẑzz
(i)
t =

∑K
k=1wk(zzz

(i)
s)fk(zzz

(i)
s)∑K

j=1wj(zzz
(i)
s)

, (3.7)

where wk(zzz) is a weight that determines the influence linear mapping fk has on data

point zzz.

We describe the formulation of LPA, its training procedure for obtaining local

38

clusters and its transfer algorithm in Section 3.4. Then we present one approach for

initializing the training of LPA in Section 3.5.

3.4 Clustering and Mapping

This section describes how the two data sets can be clustered such that the weighted

sum of the linear mappings, learned on the resulting clusters, yields a good non-linear

mapping from the source domain to the target domain. The aim is to represent the

two data sets Xs and Xt by a mixture of K regions, where corresponding points

in the data sets map to the same region, as illustrated in Fig. 3-1. One way to

obtain clusters is to use the standard unsupervised learning framework, where any

standard clustering technique can be used. Clustering could be performed in one

of the domains and then cluster assignments are transferred to the other domain

using the correspondence information, i.e. X
(i)
s and X

(i)
t will share the same cluster

assignment across the domains.

We choose to employ Gaussian Mixture Modeling (GMM), where the Gaussian

mixtures correspond to the local regions, trained using the Expectation–Maximization

(EM) algorithm, because it allows interpolating the output of local mappings using

component responsibilities as weights. A GMM is represented by three parameters:

the mixing coefficients πk, the mean vectors µµµk and the covariance matrices Σk. The

total probability density over a vector xxx is then defined as a superposition of K

Gaussian densities of the form

p(xxx) =
K∑
k=1

πkN (xxx | µµµk,Σk), (3.8)

and the components’ responsibilities are defined as

γk =
πkN (xxx | µµµk,Σk)∑K
j=1 πjN (xxx | µµµj,Σj)

, (3.9)

where N is a multivariate normal distribution. γk can be viewed as the responsibility

39

Xs = {xxx(i)
s , yyy

(i)
s }Ni=1 Xt = {xxx(i)

t , yyy
(i)
t }Ni=1

{xxx(i)
s }Ni=1 {xxx(i)

t }Ni=1

f : χχχs 7→ χχχt

Share cluster info.

Train GMM: p(xxxxxxxxxs) =
∑K

k=1 πkN (xxxxxxxxxs | µµµk,Σk).

Source domain Target domain

Figure 3-2: Illustration of clustering in the input space. A GMM model is trained
in the input space of the source domain, and the clusters found are transferred to
the input space of the target domain, using the correspondence information. The
non-linear mapping f is learned in the combined spaces.

that component k takes for explaining the point xxx.

We train a GMM on only one of the domains (the source domain throughout the

thesis) and the data is clustered by assigning points to components with the highest

responsibilities. This is indicated in Fig. 3-1 by having GMM parameters only in

the source domain. This clustering information, together with the information about

correspondences, is then used to fit another GMM to the target domain, i.e., points in

the target domain that correspond to points in the same cluster in the source domain

share the same cluster assignments.

Furthermore, since our domain data consists of inputs xxx
(i)
s and outputs yyy

(i)
s for

learning regression models, we expect correlations between the input and output

spaces. For example, in our forward kinematics learning scenario, the joint space and

the end-effector space are correlated through the kinematics of the body (i.e. moving

arm joints affects the end-effector movement). So in order to efficiently obtain clusters,

the GMMs are trained in the input spaces of the data sets (see Fig. 3-2), or the user

can specify a subspace with the most clustering information.

To learn the GMM parameters Π = {πk,µµµk,Σk} from the data Xs using the EM

algorithm, we must determine the desired number of GMM componentsK and initial-

40

ize the parameters Πinit. We do not put any restrictions on the choice of determining

the initial parameters. We, however, propose our own supervised EM initialization

scheme that considers the purpose of aligning the two data sets, Xs and Xt, when

clustering. This initialization scheme is described in the next section.

Given the parameters of the GMM learned in the source domain, mapping a source

data point to the target domain using Eq. 3.7 becomes

ẑzzt =
K∑
k=1

γkfk(zzzs), (3.10)

where we use the GMM components’ responsibilities γk as weights, computed in the

input space using Eq. 3.9 as

γk =
πkN (xxxs | µµµk,Σk)∑K
j=1 πjN (xxxs | µµµj,Σj)

. (3.11)

We can now use the cluster assignments obtained by assigning points in Xs and Xt

to GMM components with the highest responsibility γk, and the Procrustes Analysis

to compute fk locally in each cluster. Algorithm 3 summarizes the steps for training

LPA.

Algorithm 3 Local Procrustes Analysis: Learning

1: IN: Training sets Xs, Xt and latent space dimensionality d
2: IN: Parameters cmin and Nmin {see Alg. 5 in Section 3.5}
3: (Πinit, K) ⇐ initEM(Xs, Xt, cmin, Nmin, d) {see Alg. 5 in Section 3.5}
4: Π ⇐ fitGMM({xxx(i)

s }Ni=1, Π
init, K)

5: for each cluster k ∈ [1, K] do

6: Compute {A[k], B
[k]
s , B

[k]
t ,ωωω

[k]
s ,ωωω

[k]
t } {see Alg. 1}

7: end for
8: Φ = {A[k], B

[k]
s , B

[k]
t ,ωωω

[k]
s ,ωωω

[k]
t }Kk=1

9: OUT: {Π, Φ}

First, the dimensionality of the latent space must be specified. However, if training

sets Xs and Xt have the same dimensionality the parameter d can be omitted. Line

2 and 3 in Alg. 3 will be explained in Section 3.5 but they serve to initialize the

EM algorithm, for fitting the GMM in Line 4. Note that as previously discussed, the

41

GMM is fitted in the input space {xxx(i)
s }Ni=1. In Line 5-7 we loop through the clusters

and compute linear mappings for each cluster using Alg. 1, where all the linear

mappings are learned in the same latent space with dimensionality d. The output of

the algorithm is the GMM parameters Π = {πk,µµµk,Σk}Kk=1 and the parameters of all

the K linear mappings Φ = {A[k], B
[k]
s , B

[k]
t ,ωωω

[k]
s ,ωωω

[k]
t }Kk=1.

Algorithm 4 Local Procrustes Analysis: Transfer

1: IN: LPA parameters {Π, Φ}
2: IN: Novel source point zzz?s
3: Compute each component’s responsibility γk in input space xxx?

s {see Eq. 3.11}
4: Compute estimated target point ẑzz?t using Eq. 3.12
5: OUT: ẑzz?t

Algorithm 4 summarizes the steps for knowledge transfer with LPA. For a novel

data point zzz?s = {xxx?
s, yyy

?
s}, zzz?s ∈ χs in the source domain to be transferred to the target

domain, we compute each Gaussian component’s weights using Eq. 3.11. Then, we

map the query point zzz?s as follows

ẑzz?t =
K∑
k=1

γk(B
[k]
t

−1
A[k]zzz?s +ωωω

[k]
t). (3.12)

3.5 Initializing the E-M Algorithm for LPA

In this section we describe our proposed EM initialization scheme for Local Procrustes

Analysis. Our aim is to partition the two data setsXs andXt intoK clusters such that

a weighted sum of the linear mappings learned in each cluster approximate a good

global non-linear mapping. One way to measure how good a candidate non-linear

mapping is, is to compare ẑzz
(i)
t in Eq. 3.7 to its corresponding ground-truth zzz

(i)
t . For

N training points we have the squared error cost function

J =
1

N

N∑
i=1

‖ẑzz(i)t − zzz
(i)
t ‖2. (3.13)

42

Substituting ẑzz
(i)
t with zzzs in Eq. 3.13 results in

J =
1

N

N∑
i=1

‖
∑K

k=1 wk(zzz
(i)
s)fk(zzz

(i)
s)∑K

j=1wj(zzz
(i)
s)

− zzz
(i)
t ‖2. (3.14)

Optimizing J directly in Eq. 3.14 is computationally intractable for large K. There-

fore, we must approximate it. We employ a decisive hierarchical clustering scheme,

that starts with one cluster and recursively splits it until some criteria met. We intro-

duce two thresholds as our criteria, Nmin and cmin. Nmin is the minimum number of

points allowed in each cluster and cmin is the minimum error of each linear mapping

in the clusters. We introduce the cluster mapping error ck as follows

ck =
1

Nk

√√√√ Nk∑
i=1

‖fk(zzz(i)[k]s)− zzz
(i)[k]
t ‖2, (3.15)

where Nk is the number of points in cluster Ck and zzz
(i)[k]
s and zzz

(i)[k]
t are source and

target points in correspondence in cluster Ck.

Algorithm 5 initEM

1: IN: Training sets Xs, Xt

2: IN: Parameters cmin, Nmin and latent space dimensionality d
3: Set cluster assignment vector hhh to ones and K = 1
4: while not terminated do
5: for each cluster k ∈ [1, K] do
6: Learn fk using Alg. 1
7: Compute cluster error ck (see Eq. 3.15)
8: if ck > cmin then
9: Split cluster Ck into two (Ck,1 and Ck,2)
10: if NCk,1

≥ Nmin and NCk,2
≥ Nmin then

11: Update assignment vector hhh accordingly
12: end if
13: end if
14: end for
15: Update number of components K
16: end while
17: Initialize GMM components’ parameters {πk,µµµk,Σk}
18: OUT: K, Πinit = {πk,µµµk,Σk}

This EM initialization procedure is illustrated in Fig. 3-3 and summarized in Alg.

43

Source domain
Target domain

C1 C1

(a) Begin with one cluster.

Source domain
Target domain

C1

C1C2 C2

(b) Split into two clusters.

Source domain
Target domain

C1 C1

C2

C2C3

C3

C4 C4

(c) Four clusters.

Source domain
Target domain

(d) Final initialization.

Figure 3-3: Illustration of the EM initialization procedure. In the final stage a GMM
is learned in the source domain and the dark ellipses in 3-3d represent its Gaussian
components.

5. In Line 3 the entire data is treated as one cluster, as illustrated in Fig. 3-3a.

In Lines 4-15 the clusters are recursively split (see Fig. 3-3b and 3-3c) until their

mapping errors ck reach the threshold cmin (Line 8) and each cluster created has

enough points (Line 10). We use the K-means algorithm to split clusters into two.

If either of the resulting two clusters have less than Nmin points, the cluster split is

reversed. Lastly, in Line 17 a GMM is initialized using the final cluster assignments

obtained, as illustrated in Fig. 3-3d.

The threshold cmin reflects the desired mapping error that the user is willing to

tolerate. If set to a very small value (e.g., 10−3) every cluster created will be split

until each ck reaches that threshold while maintaining Nk ≥ Nmin. The threshold

Nmin must have the lower bound Nmin ≥ d, in order to compute covariance matrices

Σss and Σts for computing A in Eq. 3.6. For small values of cmin, Nmin controls

the amount of clusters created and if set to a small value it may result in overfitting,

especially for small N . Alternatively, one may choose to instead specify the desired

maximum number of clusters Kmax and Alg. 5 will split the clusters until either the

threshold cmin is reached or Kmax clusters have been created.

Since cmin has no effect if set very small, we can keep it at a small value and

control the number of clusters using Nmin ≥ d. Thus the only open parameters that

44

Figure 3-4: An illustrative example of knowledge transfer between robots. The source
robot has collected sufficient data (blue) to learn its models, whereas the target robot
has only sparse data (red). The mapping function is learned using the corresponding
training data (red) from both robots. The light gray background in the target space
is the workspace of the target robot to be inferred. The dark cylinders are the joints
– with the base at (0,0) – connecting the two red links.

must tuned in LPA are Nmin and the latent space dimensionality d. The output of

this procedure is the number K of GMM components and the parameters Πinit =

{πk,µµµk,Σk}. In practice, Alg. 5 can be run multiple times and parameters Πinit with

the highest log-likelihood estimate are used to initialize the EM algorithm, which is

run until convergence. After the EM algorithm has converged, clusters are created

locally by assigning points to components with the highest responsibilities.

3.6 Illustrative Example

In this illustrative example we illustrate knowledge transfer on 2-DoF robots. We

compare Local Procrustes Analysis against Procrustes Analysis. Note that the vi-

sualization is done in a 2D end-effector workspace and the actual datasets are 4

dimensional, i.e., ds = dt = 2 and ms = mt = 2. We compute a mapping between

two planar robots, from a small set of corresponding points, for speeding up learning

of forward kinematics on the target robot. Both robots have two links and two DoFs

as shown in Fig. 3-4. The parameters of the two robots are shown in Table 3.1.

We performed two experiments: in experiment 1, the robots have link lengths as

shown in Table 3.1; and in experiment 2, we varied the link lengths of the target robot

45

Parameter Source Target

Link 1 0.3 0.6
Link 2 0.25 0.2
Motor 1 [0, π/2] [0, π/2]
Motor 2 [0, π] [0, π]

Table 3.1: Parameters (lengths (m) and joint limits (rad)) of two-link robots.

(a) Source workspace. (b) Target workspace.

Figure 3-5: Error distributions. The scale of the color bar is meters and for visual-
ization purposes, errors above 1 cm are capped at 1 cm.

while keeping the links of the source robot fixed. We find correspondences in the joint

space by pairing together points from both robots that correspond to the same joint

space position. For LPA, we cluster the points in the 2 dimensional joint space and

Nmin = 7 for the two experiments. Fig. 3-5 shows that the end-effector workspaces

of the source robot (Fig. 3-5a) and the target robot (Fig. 3-5b) for experiment 1 are

not linearly transformable.

We use the LWPR [146] algorithm to learn forward kinematics of the target robot

as the ground-truth model from 10 000 uniformly generated points (RMSE = 0.0061

m). Fig. 3-6 shows the performance comparison of the linear method and our non-

linear method for different training data sizes for experiment 1. All results are aver-

aged over 100 runs. This experiment shows that LPA offers a more accurate transfer

of data and given enough training data no further learning for the target robot is

required to obtain an accurate model. We achieve convergence to the ground-truth

model with about 200 data points. Without transfer, this would not have happened

46

(a) Mapping accuracy. (b) Model error.

Figure 3-6: Mapping and model errors as functions of training data size. (a) The
error in the mapping is measured by the RMSE of the transferred points on the
ground-truth data. (b) The error in the transferred model is measured by testing
10 000 random samples from the target robot on the different forward kinematics
models.

until well over 1000 points. Also, although the linear method converges slightly faster,

it does so to a much poorer model.

Fig. 3-5 shows the error distribution in the source workspace and the target

workspace for an instance with 100 training points. It also shows the Gaussian com-

ponents fitted to the training data, with the ellipses indicating one standard deviation

of each component. Large errors occur in regions where there are either no points

or the required transformation is extremely non-linear. In both cases, adding more

training data would reduce the mapping errors. Fig. 3-7 shows the transferred data

of LPA and PA for a training set of 100 points, superimposed on the ground-truth

data, to highlight the resulting structures of the transferred data for both methods.

Fig. 3-8 shows the results for experiment 2. We incremented each link by 0.1 m

from 0.1 to 1.5 m and again used a training set of 100 points. The x- and y-axes are

the difference between the robots’ link 1 and link 2, respectively. We observe that

both methods have a zero error along a line in the x-y plane. This occurs when the

ratio between the links is the same for both robots, i.e.,
Ls
1

Ls
2
=

Lt
1

Lt
2
where Ls

i and Lt
i

indicate the i-th links of the source robot and target robot, respectively. In this case,

the underlying manifold of the target robot is a scaled version of the source robot

and therefore the underlying relationship is linear. As this ratio changes the error of

the linear mapping increases, while that of LPA stays relatively low. Furthermore,

47

(a) Local Procrustes Analysis. (b) Procrusts Analysis.

Figure 3-7: Modeled workspace regions using LPA and PA.

(a) Mapping accuracy. (b) Model error.

Figure 3-8: Mapping and model errors as functions of difference in robot links.

LPA still manages to improve the learning of the target model when the difference

of the robots is significant and most of the model errors are under 1 cm. Note that

errors are high when the ratios are very dissimilar but these can be reduced with

more training data.

48

Chapter 4

Learning Motor Skills from

Demonstrations

As the number of robots active in real-world settings continues to grow and their

capabilities improving as well, it is important that robots can be adapted to new

situations by extending their sets of behaviors or skills. Conventionally, robot skills

– also known as policies or behaviors – are developed by hand, where they are hard-

coded onto robots by an engineer. However, this requires tedious effort and expertise;

and to adapt to new situations, new behaviors need to be hard-coded onto the robots.

Recently however, machine learning techniques have been adopted to enable robots

to acquire policies from data. This offers opportunities for robots to continuously

build new policies as new data arrives, as well as adapt to new situations.

In this chapter we investigate techniques that enable humans to transfer knowledge

to robots in order to accelerate policy acquisition. In particular, we aim to initialize

the parameters of robot policies from human demonstrations of corresponding skills,

in such a way for the robot to quickly acquire the skills when it continues to learn by

itself. We propose a data-driven approach based on manifold alignment, that learns

to adapt human demonstrations onto the bodies of robots with unknown kinematics.

We show that the proposed approach can also be applied to transfer the knowledge

gained by one robot from a human to another robot.

In Section 4.1 we introduce this chapter and briefly present an introduction to

49

robot learning from demonstration. Section 4.2 reviews various methods for transfer-

ring human knowledge to robots by means of adapting human demonstrations. We

formulate the problem of adapting human demonstrations onto robots and initializing

robot policies in Section 4.3 and provide our proposed knowledge transfer solution in

Section 4.4. We demonstrate that our solution can reasonably initialize robot policies

with experiments in Section 4.5 and conclude the chapter with a discussion of our

results in Section 4.6.

4.1 Introduction

Reinforcement learning (RL) is one example of frameworks used in learning new robot

skills, where robots learn from their own experiences, through optimization of some

reward function provided by a human [131]. In RL, a robot learns one skill at a time.

Another framework is developmental learning (DL), where robots are equipped with

mechanisms that enable them to autonomously explore their parameterized space of

policies/skills to solve a corresponding parameterized space of goals/tasks [6]. In con-

trast to RL, DL seeks to equip robots with mechanisms for lifelong learning of multiple

skills in a developmental manner similar to that of human infants [46]. However, in

both frameworks the robot learns from scratch and must physically interact with its

environment over many trials/episodes to generate data to update the parameters of

its policies. This process is challenging for manipulators and humanoids with high-

dimensional and continuous state and action spaces, as this involves long training

times. Furthermore, exploration by a robot in uncontrolled environments (e.g., do-

mestic, hospitals, etc.) could be disastrous (e.g., the robot could break nearby objects

or fall down the stairs, etc.).

One way to accelerate the learning process, and simultaneously ensure safe robot

exploration, is to transfer knowledge to the robot from human trainers. This transfer

of knowledge can take many forms, including initializing the parameters of the robot

policies with human demonstrations [126, 106, 135, 90, 16], letting the human trainer

interact with the robot while it explores the environment and providing it with guid-

50

ance, in terms of actual trajectories the robot must follow [92] or feedback about its

performance [17, 52, 77]. Our work falls under techniques that make use of human

demonstrations to initialize the policy of the robot.

In most cases human demonstrations are generated by means of teleoperation,

where the robot is operated through the use of a joystick to perform the desired

task [126], or through kinesthetic guiding, where a human physically guides the robot

through the task [92]. In these techniques, sensors that record the demonstration are

typically placed on the robot, so the data sets collected can be directly used by the

robot learner, thereby bypassing the correspondence issues [91] – issues that arise due

to the differences in the kinematics of the teacher and robot learner, which prevent

the collected data sets from being directly used by the robot learner. However, these

strategies are limited to robots with fewer DoFs, due to the difficulty of a human

controlling each DoF in order to produce a coordinated overall behavior.

An alternative approach, which we adopt in this work, gathers human demon-

strations using camera systems, such as motion capture systems. This approach is

natural for humans as the human teacher is allowed to perform the task as best as

they can, without any obstruction from the robot learner. Furthermore, in this ap-

proach, the human trainer can be replaced by an experienced robot teacher, allowing

for knowledge transfer across robots. However, techniques using this approach must

directly confront the aforementioned correspondence issues. Such techniques have

been studied under the framework of Learning from Demonstration (LfD), also re-

ferred to as Imitation Learning, Programming by Demonstration and Learning by

Demonstration.

In LfD, a policy is learned from example data sets provided by a demonstrator.

The demonstrator acts as a teacher, either in the form of a human or another robot,

performing desired behaviors for the robot to learn. Without loss of generality we will

refer to the teacher as a human, as is illustrated in Fig. 4-1. LfD algorithms utilize

the provided data sets to derive policies that attempt to reproduce and generalize the

desired demonstrated behaviors on the robot [3].

Within LfD, policy acquisition can be facilitated by ordinary users (i.e. non-

51

Figure 4-1: Example of goal-directed imitation learning from human demonstrations.
A robot learner uses a Kinect sensor to observe a human teacher demonstrate a task
of pouring into a cup. The robot learner must be able to reproduce the general task
of pouring into the cup, rather than merely mimicking the human posture. The green
curves represent trajectories of the objects during teacher demonstration.

robotics-expert users), because its formulations do not typically require domain ex-

pertise of the robots and tasks. Furthermore, demonstration is intuitive for humans

as they already use it to teach other humans, making it natural to demonstrate tasks

to robots. The LfD learning problem can be broadly segmented into two phases: how

to gather demonstrations and how to derive policies [3]. Gathering demonstrations

is the process of building a data set of examples, which ranges from the selection of

sensors for collecting the data – which controls the type of data collected – to the

type of demonstration technique to use. We briefly discussed various demonstration

techniques and their pros and cons above.

Deriving a policy generally involves encoding the provided data set of examples

by learning a model, which can be used to later reproduce the demonstrated task on

the robot and generalize to different contexts. Data-driven approaches have received

considerable attention recently. Statistical modeling [18, 19] and dynamical systems

[61, 59] are amongst the most popular approaches. In particular, dynamic movement

primitives (DMPs) are widely used due to their flexibility and stability [59, 143], and

have been used to parameterize RL policies [106, 68, 129].

52

This work focuses on how to adapt demonstrations gathered using cameras, such

that they are useful to the robot learner, and to demonstrate that policies can be

derived from the adapted demonstrations. The derived policy can serve as an ini-

tialization to accelerate a subsequent optimization step of the policy parameters in

an agent learning by interacting with its environment – as in RL and DL. Several

approaches have been proposed to deal with correspondence issues that arise in this

setting, including optimization approaches based on a kinematic model of the robot

learner [31, 141, 79], and data-driven approaches that attempt to model a mapping

from the teacher space to the robot space [124, 128, 35]. Techniques that rely on

a kinematic model of the robot learner are among the most widely used, and some

general methods have been proposed [141, 79]. However, in some cases an accurate

kinematic model of the robot learner may not be available, limiting the applicability

of these methods.

This may be the case, for example, when the specifications required for modeling

the robot are not released by the manufacturer [80], and so need to be measured by

hand, leading to an inaccurate kinematic model, requiring further calibration. An-

other example is in dealing with robots whose bodies change over time, potentially

as a result of modification, repair, or material damage [130]; or when dealing with

biologically-inspired robots, with realistic skeletons and series-elastic, compliant ac-

tuators, such as Coman [142] and Meka1; and tendon-driven joints, such as the iCub

[88]. In these cases, data-driven approaches based on machine learning techniques

offer an alternative.

We propose a data-driven approach based on manifold alignment that is suitable

in such cases where knowledge of the kinematic model of the robot learner is not

available. We also demonstrate and analyze the possibility of transferring skills that

have been acquired by one robot from human demonstrations, to another robot. Next

we provide an overview of related work in human motion adaptation to kinematically

different embodiments.

1https://github.com/ahoarau/mekabot/wiki/Meka-robot-overview [accessed June 26, 2017].

53

4.2 Related Work

The idea of projecting a motion from one kinematic embodiment to another is also

found in other areas of computer graphics and robotics, where it is generally referred

to as kinematic retargeting [141, 132]. It allows the transfer of gestures or behaviors

that are defined in one reference frame (the source) to another (the target) [141].

Techniques generally differ based on the type of motions to be adapted and informa-

tion to be preserved. For example, to adapt dancing motions from a human dancer to

a humanoid, we may be interested in adapting the joint configurations of the human

dancer, such that the robot can mimic the dance moves, thus preserving postural

information. Another example of motions, which is of particular interest to our work,

are motions in which we desire the preservation of goal-directed characteristics of the

movement, where the focus is on achieving some goal, typically with an end-effector

of the robot. We refer to this as goal-directed imitation2.

Example cases where goal-directed imitation is useful include a workshop setting,

where it may be desired for multiple robots to perform some tasks demonstrated by

a human, such as painting, welding, or pouring fluids as shown in Fig. 4-1. Another

example is playing golf, where the robot must swing the golf club such that it strikes

the golf ball at a desired location while satisfying some constraints such as via-points

and obstacles [79]. For a robot to successfully reproduce such tasks, it must satisfy

some constraints in task space, rather than merely mimicking the human movements.

In our experiments, we use a goal-directed task of writing letters in the task space,

where it is desired that the robot learner reproduce the letters exactly in size and

position.

Approaches based on kinematic retargeting for adapting this kind of motion to

robots typically assume an accurate kinematic model of the target robot. The general

idea is to find an optimal transformation (i.e. locating the task in the robot frame)

and adaptation of the demonstration to the target robot, where correspondences

2The term goal-directed imitation is also used to mean imitation learning where the teacher’s in-
tention is inferred from the demonstrations. Here we use it to describe imitation of whole trajectories
in task space.

54

between the human and the robot are typically known. The demonstrations are

generally adapted by maximizing their similarity to the reproductions by the target

robot, while satisfying kinematic constraints, such as joint limits and end-effector

reach. This includes techniques based on non-linear optimization [38], using Inverse

Kinematics (IK) to fit corresponding poses between the human body structure and

the robot structure [155], and optimizing a generic weighted cost function whose

weights control the similarity of tasks in both task and joint spaces [141]. When

correspondences are not known (e.g. adapting to non-anthropomorphic robots), an

automatic method that searches for the optimal location and adaptation of the human

demonstration, based on the capability of the robot in reproducing it, can be used

[79].

When the kinematic data for the target robot is not available, data-driven ap-

proaches have been employed as alternatives. Here, a data set of correspondences

between the source (human or robot) and target (robot) spaces is collected and a

mapping between the spaces is learned, after which this mapping is used to transfer

novel points from the source to the target space. Most techniques in the literature

transfer human demonstrations in joint space, typically without explicitly addressing

goal-directed motions.

Examples include learning a direct mapping from sensor data from a motion cap-

ture suit to the position of the robot actuator by training a feed-forward neural

network for each DoF [128]; or a two-step mapping process, where the sensor data

and robot actuator data are assumed to share a common latent space of lower dimen-

sionality, and the goal is to find mappings from the high-dimensional sensor data to

the latent space and then to the high-dimensional robot actuator space. Several tech-

niques have been proposed for learning these mappings, including treating the task as

a regression problem and applying Gaussian processes for both mappings [124, 125],

using Kernel Canonical Correlation Analysis (KCCA) to map to the latent space and

Kernel Regression (KR) to map from the latent space to the robot space [57], and

using a mixture of factor analyzers (MFA) combined with a dynamical system for

modeling and stable reproduction of trajectories [45].

55

Another example is using Shared Gaussian Process Latent Variable Models (Shared-

GPLVM) to jointly learn a latent representation of skills in a lower-dimensional space

[35]. This has shown to be able to use the hyper-parameters of one robot to accelerate

learning of the same skills by another kinematically similar robot. This is similar to

our work in that knowledge acquired by one robot from demonstrations is transferred

to other robots, which reduces the time the human operator spends on training the

robots. However, the Shared-GPLVM models as presented assume that the source

and target inputs coincide, which is not necessarily the case if the robots do not share

the same workspace as the human demonstrator. Furthermore, goal-directed motions

were not addressed in this work.

4.3 Problem Statement

Consider a parameterized policy representation πθθθ, where θθθ ∈ Θ is a vector of policy

parameters. The policy encodes a robot skill, i.e. a trajectory that the robot must

follow towards some goal in order to perform a task. Here, we consider trajectories

in the joint space of the robot qqq ∈ Q in terms joint position vector qqq, velocity q̇qq and

acceleration q̈qq. Learning consists in finding the optimal policy π?
θθθ by incrementally

updating the parameters θθθ with data generated by the robot while interacting with

its environment, until the parameters θθθ? resulting in the optimal policy are found.

Finding the optimal parameters quickly depends on a good initialization and, as

previously discussed, learning can take long training times if not initialized properly.

Thus, we seek to seed policy learning by initializing it with θθθinit ≈ θθθ? obtained from

adapted human demonstrations.

Assume a given trajectory ξH1:T = {qqqH ,xxxH}1:T of duration T , provided by a human

demonstrator H, consisting at each time step of a dH dimensional human joint angle

vector qqqH and a human hand (tip, end-effector, etc.) position and orientation (pose)

vector xxxH in task space XH , where dH is the number of the human joints active

when performing a particular task. xxxH is given in the reference frame of the human

demonstrator. A robot R in a different location is to reproduce the demonstrated

56

XH
1:T XR

1:T

Human frame H Robot frame R

Human teacher

Robot learner

ξH1:T = {qqqH ,xxxH}1:T ξR1:T = {qqqR,xxxR}1:T

Demonstration Imitation

Figure 4-2: Adapting human demonstrations onto robot learner.

trajectory with its own arm w.r.t. to its own reference frame. We seek to adapt

ξH1:T to ξR1:T = {qqqR,xxxR}1:T such that the robot is able to reproduce it, where qqqR is

a dR dimensional joint angle vector of the robot, consisting of joints active when

the robot is performing the task and xxxR is the pose vector of the robot tip in robot

Cartesian space XR. The adapted demonstrations are subsequently used to initialize

the parameters of the policy πinit
θθθ , which can be further fine-tuned by optimizing on

the robot. This is illustrated in Fig. 4-2.

We aim to adapt the given human demonstration without assuming a kinematic

model of the target robot, in contrast to much of the related work. This can be

extended into a multi-robot problem setting (as illustrated by Fig. 4-3 for n = 2 robot

learners), where the demonstration ξH1:T must be adapted to multiple robot trajectories

ξR1
1:T , ξ

R2
1:T , · · · , ξ

Rn
1:T , for n robots. Each trajectory is encoded onto its own skill model

πinit
R1

, πinit
R2

, · · · , πinit
Rn

for the corresponding robot. Thus, n different mappings must be

learned from the human data to the n robots. In the next section we present our

proposed data-driven approach for solving this problem.

4.4 Knowledge Transfer for Motor Skills

Our proposed method employs a data-driven scheme based on manifold alignment,

that maps data from the domain of one agent to another. It requires that we provide

57

XH
1:T

XR1
1:T

XR2
1:T

Human frame H Robot frame R1

Robot frame R2

Human teacher Robot learner 1

Robot learner 2

Figure 4-3: Multi-robot problem setting for two robot learners.

corresponding samples from the domains, and a non-linear mapping is learned from

these samples. This mapping must generalize to samples from the same domains not

seen during training. The domains represent kinematic data generated by a human or

robot. By employing a manifold alignment approach, the mapping between domains

can be learned from very few samples, compared to the number of samples required to

instead learn a kinematic model of the robot, as illustrated in our example in Section

3.6. Below, a high-level overview of our method is presented (Section 4.4.1), followed

by the processes of collecting sample correspondences between the domains (Section

4.4.2), learning the mapping (Section 4.4.3), and encoding the mapped trajectories

as parametrized skills (Section 4.4.4).

4.4.1 Overview

Figure 4-4 shows the overview of our proposed method. We adopt the approach of

projecting human captured data onto a corresponding human skeletal model, because

this allows for a unified representation of captured human data from different sensors

[5, 47, 139, 82], and also enables our method to be applied in conjunction with different

motion capture systems. Given human demonstrations, represented as trajectories

of a human skeletal model in joint space and corresponding points in task space, we

58

aim to map the trajectories onto the body of a robot, such that we obtain joint-space

trajectories for the robot corresponding to the human demonstrations. These mapped

trajectories are subsequently encoded as parameterized skills for use later in new

situations and optimization on the robot.

Section 4.4.2 – Offline

Section 4.4.3 – Online

Section 4.4.3

Manifold Alignment

by

LPA

7. Encode skill by DMPs

Section 4.4.4
1. Motor/Goal
babbling Dt

TH
R

−1

2. Transform
task space

3. Generate corresponding
human data Ds

with IK solver

4. Learn mapping

from correspondences

{DS, Dt}

5. Extract

human
demos ξH1:T

6. Transfer to

robot demos ξ̂R1:T

Execute/

optimize

χt : Target domain χs : Source domain

Human demo

Project to human
skeletal model Corresponding

skeletal demo

Figure 4-4: Overview of proposed method.

In the first phase of our method, corresponding samples between the human

(source) and robot (target) spaces are collected. These samples must be representa-

tive of the respective spaces in which the human teacher demonstrates the tasks and

the robot learner is expected to perform the tasks. This phase is composed of steps

1 − 3 in Fig. 4-4 and is described in Section 4.4.2. Then a non-linear mapping is

learned from these samples using LPA in step 4 of Fig. 4-4, as described in Section

4.4.3.

The second phase is composed of steps 5 − 7 in Fig. 4-4, where the learned

mapping is employed to adapt human joint trajectories onto robot joint trajectories,

as described in Section 4.4.3, after which the adapted trajectories are encoded as

parametrized skills (see Section 4.4.4). Since the learned mapping is defined globally

within the limits of the given spaces, any trajectory that lies in the domain of the

human space can be mapped onto the robot space. This consequently allows the

transfer of any skills that both the human and the robot are capable of performing

within their respective domains.

59

A A

Human Robot

(a) Similar dimensions.

A AH

AR
TH
R

Human Robot

(b) Different dimensions.

Figure 4-5: Illustration of corresponding poses. (a) Different arm configurations
correspond to each other because they reach the same end-effector point, A. (b) If
the robot learner is smaller (or bigger), the task may need to be transformed from
the human frame, AH , to the robot frame, AR, through the transform TH

R such that
the learner is able to perform it. The same TH

R is applied to all human data points
to transform them to the robot frame.

4.4.2 Correspondence

As described in Section 4.2, goal-directed imitation requires that the robot preserves

task-space information. For this reason, we define correspondences as follows: two

points in the joint space of the demonstrator and the robot learner are in correspon-

dence if they lead to the same end-effector pose w.r.t. to some frame (demonstrator’s

or learner’s frame). This is illustrated in Fig. 4-5a, where both human and robot

arms reach the same point A with their end-effectors, with potentially different arm

postures. Furthermore, if the robot learner is smaller (or bigger) the task space of the

human demonstrator may need to be transformed, by some affine transformation TH
R ,

such that there is some overlap with the task space of the robot learner in the vicinity

of the tasks. This is illustrated in Fig. 4-5b, where in order for the robot learner to

reach point AH described w.r.t. to the human frame, it must be transformed to AR,

where we consider points AH and AR to be the same (or in correspondence) across

the task spaces.

In kinematic retargeting, correspondences can be easily determined from human

demonstrations given a kinematic model of the robot learner, e.g. using an IK solver

[155]. Although a kinematic model of the robot learner is assumed not available in

60

Source robot Target robot

A

B

A

B

(a) Inconsistent IK solutions for neigh-
boring points A and B due to redundan-
cies.

Source robot Target robot

A

B

A

B

(b) Consistent IK solutions for neighbor-
ing points A and B with redundancy res-
olution.

Figure 4-6: Illustration of inconsistent IK solutions due to arm redundancies for 3-DoF
planar robots in a 2D task space. The black solid and red dashed lines correspond to
similar tasks for the same robot. (a) Target data set will have inconsistent neighbors
due to redundancies. (b) With redundancy resolution, target data set will have
consistent neighbors.

our case, it is available for the human teacher, since the demonstrations are projected

onto a human skeletal model. Thus, given some robot data transformed into the task

space of the human model, corresponding human joints can be collected by using an

IK solver of the human model.

To collect a data set of correspondences, we propose generating N random robot

pose data, which can generally be accomplished by employing autonomous robot

exploration strategies from DL, such as motor babbling or goal babbling [114, 89] –

step 1 in Fig. 4-4. This data consists of robot joint angles qqqRi and their corresponding

task space points xxxR
i , where i = 1, 2, · · · , N . Then we use an IK solver to generate

corresponding human joint angles qqqHi , from their corresponding transformed task

space points xxxH
i – steps 2-3 in Fig. 4-4. The affine transformation TH

R for transforming

the task spaces XH and XR, is determined manually in our experiments, by placing

the task w.r.t. to the robot frame such that the overlap between its task space and

the human task space is maximized around the task. However, any method that

performs this transformation automatically without a kinematic model of the robot

can be employed.

In certain cases both the human arm and corresponding robot joints may be

61

redundant for a given task. In such cases, multiple joint configurations (corresponding

to points potentially lying far from each other in joint space) on both the human

and robot can lead to the same task space points, resulting in very different joint

configurations for similar end-effector poses – meaning there may be inconsistencies

in our samples. This is illustrated in Fig. 4-6a, where nearby configurations of the

source robot (black solid and red dashed) lead to nearby points A and B, but can

correspond to target robot joint configurations that are far from each other. To avoid

this issue we also consider posture similarity in joint space: for each human and robot

pair, we identify robot joints that correspond to each other for a particular task and

determine their pose similarity, where heuristics such as the T-Pose [69] or normalized

pose [141] can be used to determine pose similarity.

In this work we use a sequence of pre-defined poses, such as T-Pose and U-Pose

shown in Fig. 4-7, to easily visualize which joints between the human and the robot

correspond to each other, their direction of rotation and how they can map to each

other. Given this mapping for all joints involved in solving a task, we can resolve

redundancies by initializing the IK solver of the human model with the robot joints

that lead to the corresponding point in the robot task space (e.g., AH and AR in Fig.

4-5b), by mapping the robot joints onto the joint space of the human model. The

resulting mapped values are then used to initialize the IK solver. Note that merely

mapping the robot joints does not provide us with human joints that correspond to

the same point in the task space, but it provides us with joints that are closer to

the corresponding joints around the mapped joints, which can be used to initialize

IK. This provides us with a consistent set of corresponding samples for a given joint

relationship between the human model and the robot, as shown in Fig. 4-6b.

4.4.3 Learning the Mapping

Once a sample of corresponding points has been collected using the method presented

in the previous section, we can use it to learn a mapping between two domains – step

4 in Fig. 4-4. To this end, we employ Local Procrustes Analysis. Given samples of

correspondences from each domain, Ds = {qqqsi ,xxxs
i}Ni=1 and Dt = {qqqti,xxxt

i}Ni=1, where N is

62

(a) Human T-Pose. (b) PR2 T-Pose.

(c) Human U-Pose. (d) PR2 U-Pose.

Figure 4-7: Illustration of the T-Pose and U-Pose with the PR2 robot.

the sample size, the objective is to learn a mapping function, f : χs 7→ χt, that maps

data points from the source domain to the target domain, through which knowledge

can be shared between the domains. We input training data Ds and Dt and latent

space dimensionality d to Alg. 3 to learn an LPA model, and obtain LPA parameters

{Π, Φ}.

For a given source trajectory, say a human demonstration ξH1:T = {qqqH ,xxxH}1:T
already projected onto a corresponding human skeleton model, for example using the

Master Motor Map (MMM) framework [139], transfer with LPA is performed for each

point individually along the trajectory, using Alg. 4, to obtain estimated target robot

trajectories ξ̂R1:T = {q̂qqR, x̂xxR}1:T . Then each transferred trajectory can be encoded onto

a parametrized skill as discussed below in Section 4.4.4.

4.4.4 Skill Encoding

We use Dynamic Movement Primitives to encode joint space trajectories as param-

eterized policies πθθθ and demonstrate that we can recover useful skills from human

demonstrations adapted using our method. A DMP is specified by a set of nonlinear

63

differential equations with well-defined attractor dynamics [59]. For a single DoF

trajectory q, the DMP is defined as follows:

τ ż = αz(βz(qg − q)− z) + g(x), (4.1)

τ q̇ = z, (4.2)

τ ẋ = −αxx, (4.3)

where x is the phase variable, z is the auxiliary variable and qg is the desired goal

of the movement. Parameters αz, βz, αx and τ define the behaviour of this second

order system. If the parameters are selected as τ > 0, αz = 4βz > 0 and αx > 0, then

the dynamic system has a unique point attractor at q = qg, z = 0. Given the initial

condition x(0) = 1, Eq. 4.3 is solved analytically by x(t) = exp(−αxt/τ). However,

to implement different modulations of the DMP such as phase stopping [143], it is

better to keep Eq. 4.3 as a differential equation.

The forcing term g(x) is defined as a linear combination of radial basis functions,

which enable the robot to follow any smooth point-to-point trajectory from the be-

ginning of the movement q0 to the end configuration qg:

g(x) =

∑
wiΨi(x)

N
i=1∑

Ψi(x)
N
i=1

x, (4.4)

Ψi(x) = exp(−hi(x− ci)
2). (4.5)

Here ci are the centers of the radial basis functions distributed along the trajectory

and hi > 0. For robots with more than one DoF, each degree is represented by Eq. 4.1

- 4.2 with different wi and qg, but with a common phase variable x and time constant

τ as specified in Eq. 4.3. To approximate any smooth trajectory with a DMP, we

need to estimate the weights wi, time constant τ , and the goal configuration qg. τ

is usually set to the duration of the movement, qg to the final configuration on the

64

trajectory, while wi are estimated from the training data (sampled positions, velocities

and accelerations) using regression techniques. See [59] for more details.

The training data here is the estimated target robot trajectory {q̂qqR}1:T in joint

space, which is transferred from human demonstrations by LPA. We compute its first

and second derivatives to obtain velocities and accelerations.

4.4.5 Multi-robot Transfer

A straightforward extension of our method to multi-robot systems involves applying

the method separately for each robot to learn from the same human demonstra-

tions. This approach, as illustrated in Fig. 4-3, assumes that all robots are learning

at roughly the same time, in parallel from the same human demonstrations. This

requires learning an LPA model for each teacher-learner pair.

Teaching multi-robot systems is attractive for complex tasks that require collab-

oration of multiple robots. Such tasks can be solved more easily by combining the

unique capabilities of each robot, or faster by extending the area of coverage and

range of operation [24, 55]. There may be a case where only one robot is available

to learn from a human demonstrator, and after some period of time a new robot

becomes available to learn the same skills. This may be the case where a new robot

is delivered to a factory with existing robots that have previously learned these skills

or a skilled robot is shipped to a different location with other robots that must learn

the same skills.

In these settings, if the existing robot has mastered the skills and a human teacher

is not available to teach the new robot, it may be beneficial to transfer knowledge

from the existing robot to the new one. In this approach, human demonstrations

are transferred to the new robot via the existing robot. The existing robot can

master the skills by optimizing the parameters of the corresponding policies through

trial-and-error while attempting to perform the skills.

To apply our method in this setting, we learn a mapping from a human teacher

to the robot that will then act as a teacher to other robot learners. Then we learn a

mapping between the robot teacher and the robot learners using the same procedure

65

Link Human PR2 Meka?

Upper arm 250 400 279
Forearm 250 321 322

Table 4.1: Parameters (lengths) of human and robot models in mm. ?Estimated from
URDF model.

described in our method (Alg. 3), without the step of projecting the trajectories onto

a skeletal model. We assume that the robot teacher has successfully learned its kine-

matic models, or that the models are well understood analytically. This assumption

is reasonable, since a robot deployed in some environment for an extended period of

time would generate some data from which to learn its kinematics models. Examples

of this setting can be found in developmental robotics and lifelong learning.

Under this assumption we can replace the human teacher with a robotic teacher

and apply the same method to transfer knowledge between robots. We explore and

analyze knowledge transfer between robots in this context experimentally in Section

4.5.3.

4.5 Experiments

To evaluate our transfer method, we designed experiments in simulation to demon-

strate and transfer trajectories from a 7-DoF arm of a human model, to two humanoid

robots, each with 7-DoF arms, namely the Willow Garage PR23 and Meka M14, shown

in Fig. 4-8. Table 4.1 shows the parameters (lengths) of their arms as well as those

of the human model. We demonstrated goal-directed tasks of writing letters, using

the common 2D handwriting movement data set5. The letters are distributed, scaled

and rotated such that they span the 3D task space, as shown in Fig. 4-9. We also

analyzed the transfer of the demonstrated tasks from one robot to another robot, to

evaluate the possibility of knowledge transfer between robots.

3http://www.willowgarage.com/pages/pr2/overview [accessed June 26, 2017]
4https://github.com/ahoarau/mekabot [accessed June 26, 2017]
5https://gitlab.idiap.ch/rli/pbdlib-matlab/tree/master/data/2Dletters [accessed June 26, 2017]

66

(a) PR2. (b) Meka.

Figure 4-8: Robots used in our experiments.

The data set contains handwritten letters from A to Z, with several demonstra-

tions per letter. In our experiments we only used 5 demonstrations for each letter in

Fig. 4-9. To model human demonstrations, we used an IK solver on the left arm of

the human kinematic model to trace the letters and obtained the tasks in joint space;

however, these demonstrations could have been recorded by any motion capture sys-

tem and adapted onto the human model, using for example, the Master Motor Map

(MMM) framework [139]. We then used our method to adapt these trajectories onto

the left arms of the robots and encoded them using DMPs.

To evaluate our method we executed reproductions of the tasks on the robots, by

computing forward kinematics on the simulated robots, to obtain the adapted trajec-

tories in task space. We then also used an IK solver on the robots to trace the letters

and obtained ground-truth joint space trajectories of the tasks, encoded them using

DMPs and executed the reproductions on the robots to obtain their corresponding

reproductions in task space. As a measure of performance, we computed the error in

reproducing the letters in task space, using our method and the IK-based method.

Our hypothesis is that if the reproduction of the transferred skills is close to the

ground truth transfer would serve as a good initialization of policy parameters.

There are multiple ways in which a 7-DoF arm can write the letters in the 3D task

67

0.45
0.50.55

00.20.40.6

0.6

0.7

0.8

0.9

Figure 4-9: Task of writing letters in the task space of the human model.

Table 4.2: Joints mapping between the human model and the robots. Ji is the i-th
joint of the human model.

Joint # Human PR2 Meka

1 J1 J2 π/2-J1
2 J2 J1 -J2
3 J3 J3+π/2 J3+π/2
4 J4 J4 J4

space. However, we found that this task can also be completed with only the first 4 of

the 7 DoFs – resulting in the tasks lying in a 4-dimensional joint space of the human

and the robot arms. The domains χs and χt, data sets Ds and Dt, and trajectories ξs

and ξt are therefore 7-dimensional – 4 in joint space and 3 in task space. As described

in Section 4.4.2, we identified correspondences between the 4 DoFs of the human and

the robot arms, as shown in Table 4.2. For example, in the first row, the first joint

of the PR2 corresponds to the second joint of the human model; and the first joint of

the Meka corresponds to the first human joint and the conversion to the Meka joint

is π/2 minus the human joint.

To generate training data for learning an LPA model for each robot, we simulated

motor babbling by randomly sampling the 4-dimensional joint space of the robot and

applying forward kinematics to obtain corresponding end-effector positions; and for

each robot data point we transformed it into the frame of the human demonstrator

using TH
R

−1
and used an IK solver to collect the corresponding human data point,

where the IK was initialized by mapping the joints of the robot onto the human

68

joint space using the inverse of the mappings in Table 4.2. The rest of the joints

(last three joints) were kept at constant values. The rotational components of the

transformation matrix TH
R for both robots are set to the Identity matrix, and the

translational components are set to [0.2, 0.0,−0.72] for the PR2 and [−0.1, 0.0, 0.48]

for the Meka. The values are chosen so as to locate the tasks in the robots’ frames

w.r.t. to the human frame.

The 5 demonstrations of the letters in Fig. 4-9 were used as test data, and the

data set was collected by using an IK solver on the human model to trace the letters.

The ground-truth data for the robots was also collected in a similar manner. We start

by evaluating the accuracy of mapping the trajectories from the human model onto

robots in Section 4.5.1, followed by evaluating the encoding of the mapped trajectories

using DMPs in Section 4.5.2, and finally we analyze the transfer of acquired knowledge

by one robot to another robot in Section 4.5.3.

4.5.1 Mapping Accuracy

In this section we analyze the mapping of 5 demonstrations for each letter in Fig. 4-9.

To train LPA (see Alg. 3), we set Cmin to 0.005, encouraging narrow clusters, and we

experimented with several values of Nmin. Encouraging narrow clusters runs a risk of

overfitting the mapping but this can be controlled by choosing a large value of Nmin.

Figure 4-10 shows the accuracy of mapping the test data to both robots for increasing

training sample size and different values of Nmin. The results were averaged over 5

runs.

We observe that the mapping improves with more data and that it degrades when

the value of Nmin decreases, from 15 to 8 for the PR2 and 15 to 10 for the Meka.

Furthermore, the mapping errors are on average less than 0.01 m. Smaller values of

Nmin cause overfitting of the mapping for insufficient training data, indicated by large

errors for small training data size. Nmin = 8 overfits the mapping for the PR2 and

Nmin = 10 overfits for the Meka.

Figure 4-11 shows samples of quantitative results of the transferred trajectories in

green, for Nmin = 15 and sample size of 15k for the PR2 and Nmin = 12 and sample

69

0 0.5 1 1.5 2

·104
0

0.5

1

1.5

2
·10−2

Training size

R
M
S
E
(m

)

Nmin = 15
Nmin = 12
Nmin = 10
Nmin = 8

(a) Accuracy for the PR2.

0 0.5 1 1.5 2

·104
0

0.5

1

1.5

2
·10−2

Training size

R
M
S
E
(m

)

Nmin = 15
Nmin = 12
Nmin = 10

(b) Accuracy for the Meka.

Figure 4-10: Mapping accuracy for the PR2 and Meka.

size of 21k for the Meka, overlaid on the red ground-truth trajectories. Most of the

letters look to be mapped accurately; except for A in LAB, for the Meka. In the next

section we will see that encoding a skill with DMPs can recover a smooth generalized

task even under some mapping errors for the letter A.

The results indicate that mapping to the PR2 is more accurate and requires less

data than mapping to the Meka. This is most likely due to the relative differences

of the robots w.r.t. to the human model. We observed in our illustrative example in

Section 3.6 that the complexity of the mapping required between manifolds of agents

increases with the difference between the ratios of their arm links. The ratio of the

first link to the second one of the human model is 1, and it is 1.25 for the PR2 and

0.87 for the Meka. Here the mapping is less accurate when the ratio of the robot links

is less than that of the human, compared to when it is larger.

4.5.2 Skill Transfer and Encoding

In this section we analyze the encoding of the mapped trajectories as parametrized

skills using DMPs. We learned a DMP model from the 5 transferred demonstrations

for each letter. We then attempted to reproduce the first demonstration of each letter

from the DMP models and compared these reproductions against their corresponding

original demonstrations. We repeated this for the IK-based method and averaged the

70

0.6
0.7

0.8

00.20.40.6

−0.2

0

0.2

X (m) Y (m)

Z
(m

)

Ground-truth
Transfer

(a) Transferred trajectories for the PR2.

0.3
0.4

0.5

00.20.40.6

0

0.2

0.4

X (m) Y (m)

Z
(m

)

Ground-truth
Transfer

(b) Transferred trajectories for the Meka.

Figure 4-11: Sample transferred raw trajectories for the PR2 and Meka.

results over 5 runs.

0 0.5 1 1.5 2

·104
1

1.5

2

2.5
·10−2

Training size

R
M
S
E
(m

)

Nmin = 15
Nmin = 12
Nmin = 10
Nmin = 8
IK-based

(a) Accuracy for the PR2.

0 0.5 1 1.5 2

·104
1

1.5

2

2.5
·10−2

Training size

R
M
S
E
(m

)
Nmin = 15
Nmin = 12
Nmin = 10
IK-based

(b) Accuracy for the Meka.

Figure 4-12: Encoding accuracy for the PR2 and Meka. The black dashed line corre-
sponds to the results of the baseline method.

Figure 4-12 shows the accuracy in reproducing the letters for different values of

Nmin and increasing training sample size (similar values as the previous experiment).

The results of the IK method are shown in black, dashed lines. We note that the

effectiveness of encoding a skill is correlated with the performance of mapping the

trajectories, as one would expect – inaccurate adaptation of the trajectories would

lead to poor encoding and reproduction of a skill by the robot.

The reproductions of the letters using our method are comparable with the repro-

ductions of the IK-based method, which makes use of kinematic models of the robots.

Some letters with complex shapes, such as H, K, A and B, could not be reproduced

71

0.60.70.8 00.20.40.6

−0.2

0

0.2

X (m) Y (m)

Z
(m

)

IK-based
Our method

(a) Imitation for the PR2.

0.30.40.5
00.20.40.6

0

0.2

0.4

X (m) Y (m)

Z
(m

)

IK-based
Our method

(b) Imitation for the Meka.

Figure 4-13: Sample task imitation for the PR2 and Meka.

exactly by DMP, accounting for much of the errors in Fig. 4-12, for both our method

and the IK method. This is most likely because DMP aims to reproduce a generalized

skill that can be adapted to new contexts, rather than an exact skill as demonstrated.

Nevertheless, all the letters reproduced by the robots were recognizable, as shown in

Fig. 4-13. Compared to the raw transferred letters in Fig. 4-11 that are jagged

in some areas, the DMP was able to reproduce smooth generalized letters. This is

particularly clear for A in LAB in Fig. 4-13. The results presented here demonstrate

that we are able to recover the skills from the adapted demonstrations.

4.5.3 Knowledge Transfer between Robots

In the previous experiments we demonstrated the transfer of skills from a human

teacher to two robot learners. The same trajectories were demonstrated once and

adapted to the two robots. In this experiment we analyze the transfer of knowledge

between robots, where the PR2 is the teacher and the Meka is the learner. We

assume that the teacher robot either has successfully learned its kinematics models,

or that they can be modeled analytically. We analyze the transfer of knowledge from

the existing robot to the new one, in comparison with the direct transfer from a

human teacher to the new robot. We follow the same procedure as with the previous

experiments and only substitute the human teacher with the robot teacher. Since the

PR2 is the teacher, we must locate the demonstrations in the Meka w.r.t. to the PR2

frame using T pr2
meka, where we set the translational component of the transformation

72

0 0.5 1 1.5 2 2.5 3

·104
0

1

2

3

·10−2

Training size

R
M
S
E
(m

)

Human-PR2 unrefined
Human-PR2 refined
Human

(a) Mapping accuracy.

0 0.5 1 1.5 2 2.5 3

·104
1

1.5

2

2.5

3

·10−2

Training size

R
M
S
E
(m

)

Human-PR2 unrefined
Human-PR2 refined
Human
IK-based

(b) Encoding accuracy.

Figure 4-14: Accuracy of transferring tasks of writing letters from the PR2 and human
teacher to the Meka.

to [−0.3, 0.0, 0.23] and the rotational component to the Identity matrix6.

Firstly we transferred skills demonstrated by a human to the PR2 robot and then

immediately transferred them to the Meka via the PR2, where the PR2 has not yet

mastered the skills. This is equivalent to cascading the mapping from the human

domain to the PR2 and the mapping from the PR2 to the Meka. Separately, we also

transferred the skills from the PR2 to the Meka, where the PR2 is allowed time to

master the skills transferred from the human teacher. The teacher robot can master

the skills by attempting to execute them and optimizing the policy parameters using

the data generated in a trial-and-error fashion as discussed Section 4.4.5. In this

paper, we assume the teacher is capable of this, and thus we model refined robot

skills using an IK solver on the robot teacher, the same way we modeled human

demonstrations. The former approach is labeled ‘Human-PR2 unrefined’ and the

latter ‘Human-PR2 refined’. These two approaches are compared with direct transfer

from the human teacher to the Meka.

Figure 4-14 shows the comparison of adapting demonstrations onto the Meka

using the three approaches and encoding them using DMPs. Results for transferring

directly from human demonstrations are taken directly from the previous sections,

6Similar to transfer from human teacher to robot learner, T teacher
learner is chosen manually here, such

that the learner can perform the tasks in its task space.

73

0.30.40.5
00.20.40.6

0

0.2

0.4

X (m) Y (m)

Z
(m

)

IK-based
Our method

(a) Human to the Meka.

0.30.40.5
00.20.40.6

0

0.2

0.4

X (m) Y (m)

Z
(m

)

IK-based
Our method

(b) PR2 to the Meka refined.

0.3
0.4

0.5

00.20.40.6

0

0.2

0.4

X (m) Y (m)

Z
(m

)

IK-based
Our method

(c) PR2 to the Meka unrefined.

Figure 4-15: Transferred tasks reproduced by the Meka.

for Nmin = 12. We observe that direct transfer from the human teacher is more

accurate, followed by transferring refined skills via the PR2. Given more training data,

transferring refined skills via the PR2 becomes as accurate as transferring directly

from the human teacher. This could be due to the mapping from the PR2 to the

Meka being more complex compared to the mapping from the human teacher, since

the ratio of the Meka links is much smaller than the ratio of the PR2 links, compared

to the ratio of the human links. Transferring unrefined skills via the PR2 is even less

accurate because of the accumulation of errors from the human domain.

In Fig. 4-15, we show some quantitative results of transferring to the Meka,

using the three approaches. The generalized letters reproduced are recognizable and

comparable to the IK method. Table 4.3 summarizes the results, where we show the

minimum errors achieved by each approach. Direct transfer from the human teacher

and transfer of refined skills from the PR2 are within the standard deviations of each

other, and therefore are not statistically significantly different from each other. On

74

Table 4.3: Comparison of errors for transferring to the Meka, from human and the
PR2. The numbers in brackets are standard deviations.

Source Human Human-PR2 Human-PR2
refined unrefined

mapping (m) 0.0045 0.0062 0.0152
(0.0008) (0.0041) (0.0035)

encoding (m) 0.0140 0.0138 0.0192
(0.0013) (0.0005) (0.0012)

the other hand, transferring unrefined skills from the PR2 is the least accurate and

further refinement of the skills by the robot learner would be needed.

4.6 Discussion

The results presented in Section 4.5.1 demonstrated the efficacy of our proposed data-

driven approach in adapting human demonstrations onto the arms of two humanoid

robots with different kinematic parameters; and the results in Section 4.5.2 confirmed

that skills on the robots can be successfully recovered from the adapted demonstra-

tions. In contrast to the standard approach taken by other methods, we showed that

generalized forms of the tasks can be reproduced by the robots, while preserving the

goal-directed characteristics of the tasks, i.e., preserving the shape and size of the

letters, rather than mimicking the posture of the teacher.

Results presented in Section 4.5.3 demonstrated the possibility of human-robot

knowledge transfer in a multi-robot setting, where one robot acquired knowledge

from a human teacher and then acted as a teacher to a new robot. Due to the

accumulation of errors when transferring from a human to the new robot via the

existing one, our results show that it is better for the teacher robot to first optimize

its skills, or alternatively the new robot can further optimize its skills after transfer,

where the transferred knowledge acts as prior knowledge for accelerating the learning

process of the new robot.

Our simulation results demonstrated that our approach is capable of human-robot

knowledge transfer for robots with unknown kinematics and also knowledge transfer

75

across robots, and that the transferred data can be used to reasonably initialize

the parameters of a policy. As part of our future work, we plan to evaluate the

benefit of our approach in accelerating learning of a robotic agent interacting with

its environment, by comparing optimization with our initialization and learning from

scratch. A possible extension of our work is applying it to transfer human skills to

non-anthropomorphic robots, where the challenge is that correspondences with the

human body are not obvious.

76

Chapter 5

Model Learning for Control

Given joint-space trajectories for the robot to follow, obtained either through rein-

forcement learning techniques1 accelerated by human demonstrations as discussed in

Chapter 4, or through traditional motion planning techniques, a control policy is

required to track the trajectories as close as possible. In this chapter we present a

model-based control algorithm based on learning the inverse dynamics model, and

demonstrate how we can accelerate the learning process by re-using data generated

by pre-existing robots.

In Section 5.1 we present an introduction to learning inverse dynamics for control

and also provide a brief review of state-of-the-art learning algorithms for this model.

Section 5.2 reviews various methods for accelerating learning of inverse dynamics,

including techniques based on knowledge transfer. We formulate the problem of

learning inverse dynamics in Section 5.3 and provide a solution to accelerating the

learning process with knowledge transfer in Section 5.4. We demonstrate the benefit

of this solution with experiments in Section 5.5 and end the chapter with a discussion

of our results in Section 5.6.

1Note that this is not always the case and in some applications learning motor skills with rein-
forcement learning techniques finds a policy that directly computes robot joint torque.

77

5.1 Introduction

To control a robot manipulator to follow a specified trajectory, model-based con-

trol offers many advantages over traditional PID-based control, including potentially

higher tracking accuracy, lower energy consumption and lower feedback gains – which

results in more compliant and reactive control [96]. The model is used to predict,

for example, the joint torques given the desired trajectory in terms of joint positions,

velocities and accelerations. However, the performance of model-based control relies

heavily on the accuracy of the models used in capturing the dynamics of the real sys-

tem under control and its environment. The dynamics model can be developed from

first principles in mechanics, based on the Rigid Body Dynamics (RBD) framework

[42], resulting in a parametric model, with parameters such as the inertial parameters

of link mass, center of mass and moments of inertia, and friction parameters, that

must be estimated precisely.

In practice, however, it is difficult to obtain a sufficiently accurate dynamic model

for many modern robotic systems based on the parametric RBDmodel, due to unmod-

eled non-linearities such as friction, backlash and actuator dynamics. Thus, several

assumptions are made to simplify the process, such as rigidity of links or that friction

has a simple analytical form, leading to inaccuracies in the model. The inaccurate

model can lead to large tracking errors, which must be compensated for using high-

gain PID control. As high-gain control would turn the robot into a danger for its

environment in reducing compliance, more accurate models are needed.

Learning robot models for control based on regression techniques is typically em-

ployed as an alternative in such cases where the physical parameters of the robot are

unknown or inaccurate. Unknown non-linearities can be taken into account as the

model is estimated directly from measured data, while they are typically neglected by

the standard RBD model [95]. Furthermore, as learning-based control techniques are

capable of modeling complex systems, modern robots no longer have to be designed

to allow modeling to be straightforward but can be designed to suit various demands

and environments. As a result, learning approaches to robot modeling have attracted

78

much interest and have been used successfully in recent years.

In this chapter, our focus is on model-based control for robot manipulators, specif-

ically inverse dynamics control; however, other robot models can be learned, including

forward and inverse kinematics [40, 11] (also see Chapter 6), operational space control

[105], and forward dynamics [107]. The inverse dynamics model is usually learned

using state-of-the-art non-parametric regression techniques. Real-time online learn-

ing is preferred over batch learning because i) it allows adaptation to changes in the

robot dynamics, load, or actuators; and ii) it is almost impossible to explore entirely

the state space of robots with large DoFs in a batch setting.

Real-time online learning of the inverse dynamics model can be broadly broken

down into two categories: global methods and local methods. Global methods model

a regression function that is defined globally in input space; whereas local methods

seek to partition the input space into smaller regions and define a function only valid

locally for each region. The final prediction is typically a weighted sum of all local

predictions. Examples of global methods include those that make use of the entire

available data, such as those based on deep learning methods [108], random features

and Ridge Regression [48], and methods that make use of basis vectors (or a sparse

set) representing the input space [97, 93, 49].

Local methods are inspired by the idea of locally weighted learning (LWL) for

control [4] and include techniques that build locally linear models such as Locally

Weighted Projection Regression (LWPR) [146], locally non-linear models such as

Local Gaussian Processes (LGP) [98] and Local Gaussian Regression (LGR) [84,

85], and Local online Support Vector Regression (LoSVR) [25]. Drifting Gaussian

Processes is also a local model, specifically aimed at streaming data [87].

Real-time online learning of the inverse dynamics model using any of the tech-

niques presented above necessitates an interaction of the robot with its physical en-

vironment to collect training samples over many trials. This can be challenging for

manipulators and humanoids, mainly due to their large and high-dimensional state

and action spaces, as a large amount of data must be collected over time – resulting

in a time-intensive process. Furthermore, their physical embodiment allows only for

79

a limited time for collecting training data.

This problem becomes considerably worse in a heterogeneous multi-robot setting,

each robot having different structural properties (link dimensions, number of degrees-

of-freedom (DoF), etc.), where each robot must go through the same laborious process

so as to learn models from scratch. Thus, in this chapter, we aim to accelerate the

learning process of a new robot with knowledge transfer, where we re-use data gener-

ated by a pre-existing robot as an additional data set for the new robot. By re-using

data generated by other robots as a means of knowledge transfer we show that learn-

ing for the new robot will be biased towards relevant spaces such that fewer trials of

interacting with the environment are needed, thus improving the learning speed.

We propose a scheme for generating training data online from the robots, which

we use to learn transfer learning models, and in contrast to previous work in transfer

learning for inverse dynamics control, we demonstrate the benefit of knowledge trans-

fer for accelerating online learning of the inverse dynamics model. Prior to presenting

our knowledge transfer approach, in the next section we review other techniques that

can be used to accelerate learning of the inverse dynamics, including those based on

knowledge transfer.

5.2 Related Work

The learning algorithms presented above disregard any prior knowledge about the

robot system that may be available, and so begin learning from scratch. One of

the techniques for obtaining faster learning speeds that has been proposed recently is

marrying the analytical physics-based Rigid Body Dynamics model (if available) with

state-of-the-art non-parametric learning models into a semi-parametric model. The

benefits of learning such models are faster learning speeds, higher accuracy, and better

generalization [94]. The parametric RBD model component acts as prior knowledge

and is defined in the entire state space, and the non-parametric component models

the non-linearities and adapts to changes online.

Examples include techniques that incorporate the parametric RBD model into the

80

non-parametric part as a mean function [94, 28], kernel function [94, 116], and those

that use first order approximations of the RBD equation to initialize the local models

of the LWPR model [34, 32]. Other techniques instead model the inverse dynamics

error (or residual), using random features and Recursive Regularized Least Squares

(RRLS) [20], or as a constant offset that is continuously adapted via online gradient

descent to minimize the tracking error [112, 86].

Another set of approaches for accelerating learning of inverse dynamics, which is

of particular interest to our work, is based on the concept of transfer learning [101],

where knowledge gained while solving one task (a source task) is leveraged to help

improve learning a new task (a target task). Transfer learning approaches for robotics

can be broadly broken down into two categories: inter-task transfer and inter-robot

transfer.

In inter-task transfer, knowledge gained by the same robot while previously per-

forming some tasks is leveraged to speed up learning of a new related task in a different

context. This includes the Independent Joint Learning (IJL) method for speeding up

and generalizing learning of a new task, possibly in a different state space of the robot

[144]. This has been shown to be able to generalize the inverse dynamics model of

the Kuka LWR IV+ for load variations [122]. Another approach uses the multi-task

learning framework, where Gaussian process priors are employed to share information

for learning inverse dynamics for varying loads [152, 21]. In other approaches policies

learned in simulation are adapted to the real system, by collecting experience on the

real system and training a deep neural network inverse dynamics model [26].

In inter-robot transfer, a data set generated by another robot (a source robot)

performing a task is used to aid learning of the same task by a new robot (a target

robot). In general the source and target robots may not be exactly the same (i.e.,

they may differ in structural properties such as link length and mass, number of links

and DoFs, etc), so the source data must be mapped into the domain of the target

robot such that it is useful to the target robot. Not a lot of work dealing with this

case exists and the majority of those available model this mapping using manifold

alignment techniques [148, 149].

81

A manifold alignment based transfer learning algorithm has been used to demon-

strate the possibility of transfer for inverse dynamics between two simulated robot

manipulators [8]. An upper-bound on the error of this model was theoretically ana-

lyzed and derived with the goal of identifying cases in which transfer is possible and

beneficial; it was only validated for linear time-invariant (LTI), single-input, single-

output (SISO) systems [111] and was applied to transfer knowledge for linearized

models of unicycle robots [110]. A theoretical study was done on SISO systems to

show that an optimal map between two different systems is a dynamic map, and

an algorithm for identifying the optimal dynamic map was proposed and validated

on simulated planar robots and experimentally on two different quadrotor platforms,

where the systems were modeled as SISO systems [54].

In some cases it has been shown that the learning speed can be improved by

initializing the model with random data generated through a motor babbling process

[33, 105]. Here, the robot tracks random joint movements using a PID controller while

the parameters of the learner are updated using the data generated. This idea was

used to improve learning of inverse dynamics using LWPR [33, 32] and for initializing

learning of operational space control [105].

In this work, we investigate the acceleration of learning the inverse dynamics

model using inter-robot transfer. Based on our review this approach has not received

much attention. The authors of [8] demonstrated the possibility of improving inverse

dynamics based on manifold alignment. However, since their aim was to show the

soundness of transfer, they did not address how to collect training data from the

robots without using analytical models of the robots and so did not demonstrate the

benefit of transfer in a realistic scenario. Here, we leverage motor babbling techniques

to generate the training data from the robots and demonstrate the benefit of transfer

under this training scheme (see Section 5.4.1). The robots are controlled to track

random trajectories using PID controllers to generate the training data. Although

our experiments are performed in simulation, we do not make use of any analytical

models of the robot dynamics to generate training data.

82

5.3 Problem Statement

The inverse dynamics model of a robot manipulator relates the joint positions q,

velocities q̇, and accelerations q̈ with the corresponding forces and torques τττ required

to follow a specified joint-space trajectory; and can be described analytically using

the well-known Rigid Body Dynamics formula

τττ = M(q)q̈+C(q, q̇)q̇+ g(q), (5.1)

where M, C and g are the inertial, Coriolis, and gravitational terms, respectively

[127]. The feed-forward torque τττ ff for the current desired state qd, q̇d, q̈d is predicted

using Eq. 5.1, while a feedback torque τττ fb, computed using a feedback controller (e.g.

a simple PID controller), is used to stabilize the system. Therefore the total torque

applied to the robot is τττ tot = τττ ff + τττ fb.

Unfortunately, as discussed previously, this formulation is limited when used to

control modern robotics systems, due to the difficulty in accurately determining their

complex kinematic and dynamic parameters. Thus, learning the model from data

generated by a robot, using non-parametric machine learning techniques has emerged

as an alternative. Here, the problem is reduced to a standard supervised learning

setting

τττ = D(q̈, q̇,q) + ε, (5.2)

where we seek to learn the dynamic modelD(·) from input-output pairs {(q, q̇, q̈), τττ}

generated by the robot and ε ∼ N (0, σ2I) is the output noise modeled as Gaussian

noise with zero mean and variance σ2. Figure 5-1 shows a learning-based control

framework employed in this work.

In an online learning setting, the current torque prediction τττ ff , predicted using

the current learned model, with the corresponding stabilizing feedback torque τττ fb, is

applied to the robot, which results in the actual state qa, q̇a, q̈a. The data generated

in each time step is immediately used to update the parameters of the model. In

83

Robot

Manipulator
Model

Feedback
Controller

Learning signal

Source
task

qa, q̇a, q̈a, τττa

τττ fb

τττ ff τττa

qa, q̇a, q̈a

Actual
trajectory

qd, q̇d, q̈d

Desired
trajectory

Figure 5-1: A learning-based control framework.

the early stages of learning, where the learned model is still poor, the predictions are

inaccurate and the system relies heavily on the feedback term. This causes the actual

states to differ from the desired states, and eventually, after many trials over the task,

the model will improve and generalize to the desired states of the trajectory. The

knowledge gained here is only used by the same robot when encountering the same

task in the future.

When a new robot is available to learn the same task, it must go through the same

laborious process, so as to collect training data. Our hypothesis is that, if its model

is initialized offline, with data generated by a pre-existing robot while performing the

same task (knowledge gained by the old robot), it may learn to perform the task

in fewer trials. This may reduce training time of the new robot considerably, and

is beneficial particularly in cases where operating the new robot is more expensive

than operating the old robot. Next we outline how we propose applying knowledge

transfer to improve learning of inverse dynamics.

5.4 Knowledge Transfer for Inverse Dynamics

We employ inter-robot transfer to improve learning a new task for target robot learner

Ωt by re-using data generated from the experience of source robot learner Ωs when

previously learning the same task. To achieve this, we learn a mapping function

84

f : χχχs 7→ χχχt, for mapping samples from the domain χχχs of the source robot to the

domain χχχt of the target robot. We assume training data Xs ⊂ χχχs and Xt ⊂ χχχt with

correspondences, from which to learn f . This data set of correspondences is assumed

to be generated by the source and target robots respectively (see Section 5.4.1). In

our case of transfer for inverse dynamics, each data sample xxxi
j = {qqqa, q̇qqa, q̈qqa, τττa}, where

j is either s or t for source data and target data respectively, i = 1 : n, and n is the

number of samples in Xs and Xt.

We also assume that Ωs has previously learned the task at hand and thus has

generated source task data ξξξs ∈ <m×(4ds), where ds is Ωs’s DoF and m is the number

of samples in the experience data2. Similar to Xs, ξξξs also contains joint positions, ve-

locities, accelerations and torques associated with the task. Then we use the mapping

f to transfer the source task ξξξs into the domain of Ωt to obtain the estimated target

task data ξ̂ξξt ∈ <m×(4dt), where dt is Ωt’s DoF. Finally, ξ̂ξξt is used to initialize Ωt’s

learning model offline, and the model is subsequently updated online as Ωt learns to

perform the task.

Ωt :
Target

Robot
Model

Feedback
Controller

Learning signal

Target
task

Source
task

qa, q̇a, q̈a, τττa

τττ fb

τττ ff τττa

qa, q̇a, q̈a

Actual
trajectory

qd, q̇d, q̈d

Desired
trajectory

ξξξs

ξ̂ξξt

Initialize with transferred source task

f :
Transfer

Model

Figure 5-2: Our proposed transfer learning-based control framework.

Figure 5-2 illustrates our transfer learning-based control framework described

2m is actually the number of samples collected over many trials until Ωs learned to successfully
perform the task.

85

above. We discuss the process of generating a sample of correspondences from the

robots in Section 5.4.1 and algorithms for learning f from this sample in Section 5.4.2.

5.4.1 Collecting Correspondences

To train the transfer model f , we must collect correspondence data, Xs and Xt, from

the robots. This means the robots must be controlled to generate similar movements,

in order to identify correspondences. In [8] the authors used analytical controllers

of the robots to track the same tasks with the same speed, and used cubic spline

interpolation in the joint and torque spaces to obtain correspondences. We follow

the same procedure; however, when learning a dynamic model for a real robot, we

typically do not have access to its analytical controller, due to difficulties in accurately

modeling its dynamic model. Thus, we employ PID controllers to track the same tasks

with both robots.

We define correspondences in the task space of the robots, because the space is

robot-agnostic, and also allows us to easily specify tasks. To obtain the correspon-

dence data in joint and torque spaces, we assume kinematic models of the robots are

available (either analytical or learned); we use them to map the tasks into the joint

space, and use a PID controller to track them. We generate random straight-line

trajectories of random length in the vicinity (in task space) of the tasks to be learned

and track them with both robots with the same speed.

We do not necessarily require (nor expect) accurate tracking of the random tasks.

The PID tracking control helps to generate correspondence data (approximately)

locally from both robots. Our experiments demonstrate that correspondence data

generated in this way is sufficient to learn transfer models. The random straight-line

tasks could be replaced by any simple tasks (e.g. pick-and-place tasks) that both

robots may be capable of tracking without complex dynamic models, and the data

generated by both robots is then used to learn transfer models with which to accelerate

learning of more complex tasks for the target robot.

Fig. 5-3 shows our framework for collecting samples of correspondences, where

the straight-line random tasks have already been mapped into the joint spaces of the

86

Ωs

ΩtController

Controller

Random
trajectory

Source
random data

Target
random data

Xt

Xs

qt
a, q̇

t
a, q̈

t
a, τττ

t
a

qs
a, q̇

s
a, q̈

s
a, τττ

s
a

f :
Transfer
Model

Figure 5-3: Our framework for collecting correspondence data.

robots using corresponding inverse kinematics (IK) models.

5.4.2 Learning the Transfer Model

In this section we describe learning of the transfer model f from a sample of corre-

spondences generated from the robots as described in Section 5.4.1. We are provided

with source domain data Xs = {xxxi
s}ni=1 and target domain data Xt = {xxxi

t}ni=1, where

xxxs ∈ <4ds and xxxt ∈ <4dt , and in general ds 6= dt due to the robots potentially having

differing DoFs. The aim is to learn the mapping f that we can use to transfer source

domain data into the target domain, in such a way that is useful to the target robot.

As previously mentioned in Section 5.2, this problem can be solved using manifold

alignment techniques. Manifold alignment techniques allow for knowledge transfer

between two seemingly disparate data sets, by aligning their underlying manifolds

[149].

Any of the manifold alignment approaches discussed Section 3.1, Unsupervised

Manifold Alignment [149], shared Autoencoders [53] and shared Gaussian Process

Latent Variable Models [35], could be used in our framework to learn the transfer

models. In our experiments the simple combination of PCA and PA proved sufficient,

and we compared it against the combination of PCA and our LPA. For LPA, we cluster

the data in the state space of the original source data (i.e. {qqqa, q̇qqa} ∈ <2ds). By

applying PCA, we assume a linear relationship between the original data spaces and

87

‘Star 1’

‘Star 2’
‘Star 1’

‘Star 2’

PhantomX Pincher Kuka youBot arm

Figure 5-4: Example of knowledge transfer from a low-cost robot to a more expensive
and heavier robot. The red arrow indicates a point that is challenging for the robot
to reach at high speeds.

the corresponding latent representations. This is reasonable in our case because the

training data is collected in the vicinity of the tasks to be transferred, and therefore

the latent representations lie in relatively simple manifolds.

5.5 Experiments

5.5.1 Experimental Setup

We conducted experiments in simulation to transfer knowledge between a 5-DoF arm

of the Kuka youBot and the 4-DoF Interbotix PhantomX Pincher arm (see Fig. 5-4).

Both robots were simulated in V-REP3 and controlled by a Matlab script via a V-REP

remote application interface. The two robots have different kinematic and dynamic

properties4. The Pincher arm is smaller, lighter and has a low torque rating on its

joints – limited to 2.5 Nm, whereas the youBot arm is bigger, heavier and has a

relatively higher torque rating on its joints – limited to 100 Nm.

As benchmark tasks, the robots learn to track the position of two ‘star-like’ fig-

ures placed at different locations in the task spaces of the robots and in different

3http://www.coppeliarobotics.com/
4We used default properties in V-REP 3.3.2.

88

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5
·10−2

number of trials

R
M
S
E
(m

)

youBot
Pincher

(a) ‘Star 1’ task.

0 5 10 15 20
0

1

2

3

4

5
·10−2

number of trials

R
M
S
E
(m

)

youBot
Pincher

(b) ‘Star 2’ task.

Figure 5-5: Learning progress of the tasks by the robots.

orientations, as shown in Fig. 5-4. This ‘star-like’ trajectory has components of high

acceleration, which makes tracking difficult, and is often considered in human motor

control experiments and in robot control. Each ‘star’ task is composed of 7 straight

lines starting from the center and pointing outwards.

The robots are required to perform the tasks by following each straight line starting

from the center, going outwards and coming back to the center before following the

next straight line. Each straight line must be tracked for 1.2 seconds5 in total (0.6

seconds from the center to the end and another 0.6 seconds back to the center).

Therefore one trial of tracking each task takes 8.4 seconds. The two tasks are denoted

‘Star 1’ and ‘Star 2’ as shown in Fig. 5-4.

5.5.2 Learning Inverse Dynamics Model

The aim of this experiment is to analyze online learning of the inverse dynamics

model for tracking control applications and highlight the difference in learning per-

formance due to the different dynamic properties of the robots. We employ LWPR

[146] for learning the inverse dynamics model. We tuned hyper-parameters init D

and init alpha using a grid strategy, following the guideline from the LWPR software

package6, and found init D = 30 for both robots to be sufficient, and init alpha = 1.1

for the Pincher arm and init alpha = 0.01 for the youBot arm.

5This is simulated time in V-REP.
6http://wcms.inf.ed.ac.uk/ipab/slmc/research/software-lwpr

89

The following PID gains were used in all experiments: Kp = 5III, Kd = 0.1III and

Ki = 0.01III for the Pincher arm, and Kp = 100III, Kd = 2.0III and Ki = 0.01III for the

youBot arm, where III is an identity matrix whose size corresponds to robot DoFs.

The learning procedure is as outlined in Section 5.3. Predictions and model updates

are done at 100Hz for both robots, which is the current frequency at which to obtain

stable torque control via a remote client in V-REP.

Figure 5-5 shows the learning performance of the tasks by the robots, where Fig.

5-5a shows results for ‘Star 1’ and Fig. 5-5b for ‘Star 2’. The performance is measured

in terms of the average error in each trial, of tracking the position of the desired tasks

at each time step by the end-effector of the robot in the task space. We conducted

10 runs for each experiment and reported the mean and standard deviations of the

tracking error.

We observe that the robots successfully learn to track the tasks over time, mea-

sured in terms of number of trials, indicated by the decreasing tracking errors. The

smaller and lighter Pincher robot learns significantly faster and better, as it converges

to lower tracking errors in fewer trials. The youBot robot converges slowly, especially

for ‘Star 2’ where it requires more than 20 trials. The youBot arm requires larger

PID gains due to its heavier components requiring larger torques to move, resulting

in large feedback torques, especially in the first few trials where the learned model

is still poor. For instance, in the first learning trial, the second joints of the robots

exert the largest torque values, with the youBot arm exerting torque between -26 and

39 Nm and the Pincher robot exerting between -0.5 and 1.6 Nm.

Figure 5-6 shows example end-effector trajectories of both robots when tracking

‘Star 2’, overlaid on top of the desired trajectory (black dashed line). In the first

learning trial (see Fig. 5-6a), tracking for both robots is poor, with the youBot robot

performing the least. This may turn the robots into a danger to their environments

and themselves, especially when interacting with objects.

We noticed that the youBot accumulates large errors when attempting to execute

motions that require it to almost fully stretch out and raise its end-effector high at high

speeds (see red arrow in Fig. 5-4), probably because these motions drive the robot

90

−0.4
−0.2

0 −0.2 −0.1 0 0.1

0.1

0.2

0.3

0.4

X-axis (m) Y-axis (m)

Z
-a
x
is
(m

)

Desired
youBot
Pincher

(a) First trials.

−0.4

−0.2
−0.2 −0.1

0 0.1 0.2

0.1

0.2

0.3

X-axis (m) Y-axis (m)

Z
-a
x
is
(m

)

Desired
youBot
Pincher

(b) Last trials.

Figure 5-6: ‘Star 2’ progress in the first and last trials.

far from its center of mass. This makes ‘Star 2’ harder to learn. The same applies

to the Pincher robot, but to a lesser extent, probably due to its lighter materials.

Nevertheless, both robots eventually learn to accurately track the tasks, as shown in

Fig. 5-6b, where, in the last learning trial, the robots no longer unnecessarily exert

too large torque values. Compared to the first learning trial, the second joints of the

robots exert smaller torque values in the last few trials, with the youBot arm exerting

torque between -0.9 and 15 Nm, and the Pincher arm exerting torque between -0.12

and 0.8 Nm.

5.5.3 Transfer for Inverse Dynamics Model

The aim of this experiment is to evaluate our knowledge transfer approach and to

investigate the benefit of knowledge transfer in accelerating online learning of the

inverse dynamics model. The learning procedure of the inverse dynamics model and

parameters are the same as the previous experiment. The procedure for generating

the training data for learning transfer models is as outlined in Section 5.4.1. We

used random straight-line trajectories of random length and of duration 0.6 seconds

each for motor babbling, requiring to be tracked at different speeds. The robots

are controlled with PID controllers (parameters the same as before) to track these

trajectories roughly in the vicinity of ‘Star 1’ and ‘Star 2’, for about 7 seconds per

task. This means the motor babbling session lasts for about 14 seconds in total per

91

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5
·10−2

number of trials

R
M
S
E
(m

)

uninitialized
random
transfer-PA
transfer-LPA

(a) Transfer to youBot.

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5
·10−2

number of trials

R
M
S
E
(m

)

uninitialized
random
transfer-PA
transfer-LPA

(b) Transfer to Pincher.

Figure 5-7: Accelerating ‘Star 1’ learning.

robot, resulting in samples of correspondences, Xyoubot and Xpincher, with 1464 data

points each.

The dimension of the youBot data is 20 ({qqqa, q̇qqa, q̈qqa, τττa} for 5 DoFs), and that of the

Pincher arm is 16 (same variables for 4 DoFs). We learned transfer models from this

data, using PA and LPA, both combined with PCA for matching the dimensions of

the data sets (see Section 5.4.2). We found the latent dimension d = 16 to be sufficient

for both PA and LPA. Lower values of d lead to decreased transfer performance and

values less than 10 barely transferred any useful knowledge.

We transferred to both robots, where the robots exchange roles of being source

and target. We took the data generated by the source robot when learning a task

from scratch and transferred it to the target robot domain. This provided us with

additional data (12600 points for 15 trials and 16800 for 20 trials) that we use to

initialize the target robot model. We denote initializing with transfer ‘transfer-PA’

and ‘transfer-LPA’ for PA and LPA respectively. In addition to evaluating the two

transfer models, we also separately initialize the target robot model with target ran-

dom data generated in the motor babbling session, which is denoted ‘random’, as it

has previously been shown to accelerate learning [33, 105].

Figure 5-7 and 5-8 show results for initializing the target model offline, for ‘Star 1’

and ‘Star 2’ respectively, compared to learning from scratch (denoted ‘uninitialized’).

Knowledge transfer is accelerating learning considerably in most cases. In particu-

lar, when the youBot is the target learning ‘Star 2’ (see Fig. 5-8a), where learning

92

0 5 10 15 20
0

1

2

3

4

5
·10−2

number of trials

R
M
S
E
(m

)

uninitialized
random
transfer-PA
transfer-LPA

(a) Transfer to youBot.

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5
·10−2

number of trials

R
M
S
E
(m

)

uninitialized
random
transfer-PA
transfer-LPA

(b) Tranfer to Pincher.

Figure 5-8: Accelerating ‘Star 2’ learning.

−0.4

−0.2
−0.2 −0.1 0

0.1

0.2

0.4

X-axis (m)
Y-axis (m)

Z
-a
x
is
(m

)

Desired
random
transfer

(a) First trial for ‘Star 2’.

0 200 400 600 800

0

1

2

samples

jo
in
t
p
os
it
io
n
(r
ad

)

(b) First 4 joints of youBot.

Figure 5-9: Example transfer results for youBot.

from scratch and random initialization failed to converge within 20 trials, transfer

converged within 5 trials. Both transfer models perform well, with PA slightly bet-

ter than LPA in the early trials of ‘Star 1’. This indicates that linear mappings are

sufficient to transfer useful knowledge in this case.

In the general case of robots learning multiple tasks, transfer saves more time

because the robots need only to generate motor babbling data once in the beginning.

In the case of transferring to the youBot arm, learning from scratch for ‘Star 1’ con-

verges within 9 trials (taking 75.6 seconds) and with knowledge transfer it converges

within 4 trials (taking 33.6 seconds). Combining with the figures of ‘Star 2’, 20 trials

(168 seconds) for learning from scratch and 5 trials (42 seconds) with transfer, and

considering the 14 seconds for motor babbling, knowledge transfer saves up to 63%

of training time in total, whereas random initialization only saves up to 4%. Fur-

93

thermore, the benefit of knowledge transfer would increase when more tasks must be

learned in the same task space, since transfer models need only to be learned once.

Figure 5-9a shows example end-effector trajectories for random initialization and

transfer in the first learning trial of the youBot learning ‘Star 2’. We observe that for

the most part transfer leads to stable and safe learning already in the first trial. This

is due to transfer biasing exploration into relevant spaces near the desired trajectory,

thus resulting in more efficient exploration, rather than sparse random trajectories

that are not guaranteed to follow the same distribution as the desired trajectories. In

Fig. 5-9b, we show an example of mapping the joints of the Pincher into the youBot

domain using PA, where the solid lines are youBot joints and the dashed lines are

transferred Pincher joints. We can see that although the linearly transferred Pincher

joints are not exactly aligned with the target joints, they are distributed similarly,

making it possible for learning to be accelerated.

5.6 Discussion

The fact that Procrustes Analysis is performing as well as and at times better than its

non-linear extension, Local Procrustes Analysis, indicates that simple linear mappings

are sufficient in transferring knowledge for inverse dynamics for our robots. This is

most likely because learning in this case is aided when exploration is biased towards

relevant spaces, and does not require transfer to be perfect. Also, LPA has been

shown to perform better than PA when supplied with more data, as it creates more

local clusters adapting to the local structure of the data [81, 56]. However, since

in this case near-perfect mappings are not required and only guiding exploration is

sufficient to accelerate learning, we can successfully transfer useful knowledge with a

linear mapping learned on very few data points.

Knowledge transfer proved particularly beneficial for the youBot robot for which

it is relatively more difficult to learn the tasks from scratch. The two robots we used

are a good example of knowledge transfer between robots where the source robot is

easier and cheaper to control than the target robot. The Pincher arm costs 40 times

94

less than the youBot arm, and has shown in our experiments to be able to learn the

two tasks faster. Transfer enables experimenting with the cheaper robot and transfer

to the expensive one.

Our simple PID control based data collection scheme proved to work well for

generating data for learning transfer models in simulation. However, this needs to

be validated on real robots and may prove difficult for bigger and heavier robots as

they would require tuning of large PID gains. We employed LWPR as our model

learning algorithm, mainly because its implementation was readily available online.

It is possible that our results are biased by our choice of model learning algorithm.

So an unbiased work must look at employing several other model learning algorithms

discussed in Section 5.2, more especially recent ones, to ensure the conclusions drawn

are not biased by a specific model learning technique.

Lastly, more experiments still need to be conducted on multiple robots to inves-

tigate cases in which transfer fails. The work in [111, 110, 54] is a step towards this

goal, where the aim is to theoretically analyze transfer, however the theory has so far

only been validated for single-input single-output control systems.

95

96

Chapter 6

Learning Sensorimotor Mappings

In robot modeling and control, kinematics modeling plays an important role. A

robot kinematics model describes the motion of the robot with respect to some fixed

reference frame, usually at the base of the robot, without considering any of the

dynamic effects (e.g., forces and torques acting on the robot body, acceleration, etc).

It allows, for example, a robot to be able make quick predictions about whether it

can reach for objects in its surruounding environment using its hands. For motions

decribed in the task space of the robot, a robot kinematics model is required to map

them into the joint space, where control typically takes place (e.g., see Chapter 5).

Kinematics modeling also describes the relative positions and orientations (poses)

between all the robot parts as well as with respect to the global reference frame. For

example, the knowledge of poses of sensors located on the robot’s hands, and the

knowledge of the location of the hands on the robot’s kinematics model, enables the

transformation of the sensor data into a single reference frame for processing while

the robot is in motion.

Conventionally, robot kinematics models are designed analytically by an engineer,

using parameters of the robot released by the manufacturer, such as link dimensions,

number of degrees-of-freedom (DoFs), the configuration of the joints and the con-

nections of the links. If these parameters are not released by the manufacturer the

engineer must estimate them through analysis of the robot’s structure, which can

cause modeling errors, requiring further calibration [80]. Analytical modeling tech-

97

niques fail when the exact values of such parameters are not available, such as in

the case of complex robots with non-rigid links, flexible joints and when uncalibrated

sensors provide noisy measurements. They are also not suitable for robots whose

bodies change over time, potentially as a result of modification, repair, or material

damage [130], as the static analytical model would need to be updated every time

the characteristics of the robot change.

In such cases, machine learning techniques are employed as an alternative, where

robot kinematics models are learned from data generated by the robot through its sen-

sors and actuators. However, to successfully learn kinematics models a large amount

of data must be collected from the robots, and this can be a time-intensive process

for manipulators and humanoids with high DoFs and large state spaces. This is con-

siderably worse in a multi-robot case, where each robot must learn its own models

from scratch. In this chapter we investigate the improvement of learning kinematics

models in the multi-robot setting using knowledge transfer, where kinematic data

generated by pre-existing robots is used to accelerate learning for new robots.

The rest of the chapter is organized as follows. Section 6.1 provides an introduc-

tion to robot kinematics learning, and briefly reviews model learning techniques, and

exploration techniques from developmental learning. Section 6.2 provides a review

of accelerating kinematics learning, including techniques based on knowledge trans-

fer. Section 6.3 describes the general problem of learning kinematics from real robot

data and in Section 6.4 we present our knowledge transfer algorithm for accelerating

the learning process. Section 6.5 provides our preliminary results validating our al-

gorithm in simulations and we end the chapter with a discussion of our results and

recommendation for future work in Section 6.6.

6.1 Introduction

Learning robot models from data is typically employed as an alternative to manual

programming when the physical parameters of the robot are unknown or inaccurate.

Unknown non-linearities can be taken into account as the model is estimated directly

98

from measured data, while they are typically neglected by the standard analytical

modeling techniques [95]. Furthermore, modern robot systems are complex to model

manually and are becoming increasing more diverse and widespread. As a result,

learning of robot kinematics models has attracted much interest and has been used

successfully in recent years [95, 11].

Robot kinematic models that are typically learned are forward kinematics (FK),

which predicts the pose of the end-effector in the sensory space – the task space as

perceived by sensors tracking the end-effector – given the robot joint angles in the

motor space, and inverse kinematics (IK), which predicts the motor command (joint

angles) required for the end-effector to reach a desired pose (e.g., to reach for objects).

Learning these models involves learning of complex sensorimotor mappings, often in

high-dimensional spaces.

Kinematics learning has been approached from mainly two angles that compliment

each other. In model learning the focus is on developing machine learning algorithms

that can learn robot models from large amount of data in high-dimensional spaces.

Online and incremental learning algorithms are highly desired as they allow the robot

to adapt to changes in the environment and/or the robot itself, and as the data is

generated on the fly while the robot is in operation. Advanced statistical models

have been developed here (e.g., [40, 146, 11, 22]). However, typically an assumption

is made that good quality data is available in abundance and the algorithms perform

well depending on the quality of the data sets.

Developmental robotics on the other hand attempts to study robotics from the

perspective of building capabilities progressively via embodied interaction with the

physical world. Its focus has been on designing exploration mechanisms that equip

robots with the capability to autonomously explore their surrounding environment

in order to collect data from which to learn the sensorimotor mappings. This has

led to several strategies for exploration, ranging from exploration in motor space,

referred to as motor babbling [36] (e.g., exploring the joint angles of a robot), to

exploration in sensory space, referred to as goal babbling [114, 115] (e.g., exploring in

end-effector space of a robot). Robots can explore these spaces randomly – random

99

motor babbling and random goal babbling – or they can explore actively, making

use of the so-called interest models (also known as acquisition functions in the active

learning area) to explore in such a way that maximizes some measure of progress –

active motor babbling [120] and active goal babbling [6].

In general, when robot data is available, learning forward kinematics is straight-

forward, as the mapping from the motor space of the robot to its sensory space is

one-to-one, and can be learned using standard regression techniques. Learning inverse

kinematics on the other hand is an ill-posed problem for redundant systems, where

the dimension of the sensory space m is less than the number of motors d (i.e., manip-

ulator joints or DoFs). In such cases there usually are multiple joint configurations

that lead to the same end-effector pose. As a result, standard regression techniques

are not applicable.

Several model learning algorithms for inverse kinematics have been proposed in the

literature, including those based on neural networks models [43, 70, 71] and statistical

models [40, 22]. To overcome the non-uniqueness of the inverse kinematics solution,

several techniques have been proposed, including learning by local optimization [10, 9],

learning on the velocity level [40, 104, 39], learning with modular neural networks [99]

and learning with structured prediction [11].

Complementing advanced model learning techniques with exploration mechanisms

equips individual robots with the capabilities for autonomous exploration and learning

of their sensorimotor mappings. In the single-robot case, exploration in the world is

performed alone and the robot explores its own capabilities. In a multi-robot case, it

may be beneficial for the robots to be able to share the knowledge they have acquired

through their individual exploration. Such knowledge sharing has the potential to

speed up development significantly and can allow more experienced or capable robots

to impart their wisdom to others.

We explore knowledge transfer in the context of learning kinematics models, where

an experienced robot shares its kinematic data with a new robot that is autonomously

exploring its environment, in order to accelerate its learning process. By sharing

kinematic data across robots, we show that the sensorimotor models of the new robot

100

can converge faster and also achieve a higher performance compared to individual

exploration from scratch, when allocated the same exploration time. Next we review

related work in improving learning of kinematics models.

6.2 Related Work

Very few work attempt to transfer knowledge across robots for accelerating learning

of kinematics models, more specifically inverse kinematics. In [8], Procrustes Analysis

was employed to transfer knowledge for learning forward kinematics, where data was

generated using analytical models of the robots. In [23], an approach for transferring

skills from human demonstrations for learning inverse kinematics of a soft-tendon

driven manipulator was proposed. Reinforcement learning techniques were used to

improve the transferred skills. Their targeted application was minimally invasive

surgical tasks.

In this work we aim to transfer knowledge across developmental learning robots.

Work related to ours in developmental robotics in is social robotics, where robots

interact and learn from humans [92] or socially interact with each other [24]. However,

none of the work in social robotics has been applied to transfer knowledge for learning

kinematics models, more specifically inverse kinematics. Thus in this chapter we

present, to the best of our knowledge, the first attempt to transfer knowledge across

developmentally learning robots for inverse kinematics.

6.3 Problem Statement

We consider the relation between the motor commands qqq ∈ Q ⊂ <d and their con-

sequences in the sensory space xxx ∈ X ⊂ <m (e.g., the position of the hand), where

d is the number of DoFs and m is the dimension of the sensory space (e.g., n = 3

for the 3D spatial position of the hand). The forward kinematics function L(qqq) = xxx

describes the unique mapping from the motor space to the sensory space. It can be

used to predict the consequences xxx? of setting the joints to some position qqq?. For

101

robot control, an inverse function L−1(xxx) = qqq is required to predict the control com-

mand qqq? required to place the robot end-effector at some desired position xxx?. The two

functions model the sensorimotor mappings of the agent, and we will refer to them

as sensorimotor models.

In general, the inverse function L−1 is complex and not uniquely defined if the

number of DoFs d exceeds the dimension of the sensory space m. This is due to the

existence of infinitely many solutions to L−1(xxx) whenm < d. Several learning schemes

for learning L−1 have been proposed, such as those discussed in Section 6.1. The

robotic agent must learn such sensorimotor models by collecting samples (qqq(i),xxx(i))

through its interaction with the environment, i.e., by executing motor commands qqq

and observing the sensory consequences xxx. The samples are then used to update the

sensorimotor models L̂ and L̂−1.

One of the challenges in learning L̂ and L̂−1 from autonomous robot exploration

is that since Q and X can be high dimensional, exploration can be a long process. It

has been shown that goal babbling – exploration in the sensory space X – can learn

inverse models for redundant systems more efficiently, compared to motor babbling

– exploration in the motor space Q, since the sensory space is usually of much lower

dimensionality than the motor space for manipulators [114, 115, 6, 89]. Furthermore,

efficiency in exploration has been shown to further improve when leveraging active

learning techniques, where the robot explores in such a way to maximize some measure

of learning progress [6, 89].

Here we explore accelerating exploration and learning with knowledge transfer,

where an experienced robot shares its kinematics data with a new robot. The shared

data is used to initialize the sensorimotor models of the new robot such that its

learning is bootstrapped and accelerated. In this preliminary study we employ a

simple random goal exploration mechanism and a simple model learning algorithm

for learning the sensorimotor models, in order demonstrate the possibility and benefit

of knowledge transfer. In the following sections we describe an online goal babbling

scheme we employ for autonomous exploration (Section 6.3.1) and a simple algorithm

for learning sensorimotor models (Section 6.3.2).

102

Figure 6-1: An illustration of a goal babbling framework. Based on an environmental
context, a high-level learning architecture decides the next goal that a learning agent
must attempt to reach. Without prior knowledge of the inverse model L−1, the agent
explores its environment by executing random motor commands and observing the
consequences, and use the generated data to update its models L and L−1. This
process repeats until the agent is competent at reaching the goals and has gained
knowledge about its internal models that it will use in the future when encountering
the same goals.

6.3.1 Online Goal Babbling

In goal babbling, the robot randomly explores its sensory space X, by choosing ran-

dom goals xxxg, and employs the current estimate L̂−1 of the inverse model to predict

the command q̂qqg required to reach xxxg with its end-effector. The robot then executes

the predicted command and observes the sensory consequences, generating the train-

ing pair (qqq(i),xxx(i)). Note that in the early stages of learning, the motor command

prediction q̂qqg from the estimate L̂−1 will be poor such that when applied the robot

may end up at xxx(i) 6= xxxg. A general exploration and learning framework is illustrated

in Fig. 6-1. Typically, a learning algorithm is embedded in the system that incremen-

tally learns L̂−1 as the robot explores and generates data, and also guides exploration

by predicting the motor input for the next selected target to be explored. A forward

model L̂ can also be learned if needed from the generated data, but is not required

by the goal babbling strategy, except for cases where the forward model is needed to

estimate the inverse model, such as in Jacobian based inverse models or analytically

inverting the forward model.

For high-dimensional redundant systems, the goal babbling strategy allows the

robot to cover the sensory space more efficiently, avoiding wasting time in redundant

parts of the motor space, as in motor babbling, which may execute many commands

103

that actually reach the same goal [114, 89]. Exploration is initiated near some home

configuration qqqhome, which results in L̂−1 learning to predict commands locally around

qqqhome, and over time exploration gradually moves away from qqqhome towards more

complex movements, such as movements that contain multiple commands qqq that

result in the same goal xxxg. This strategy biases robot exploration into focusing on

learning simple movements that reach all the goals in the end-effector space and

refining the movements at a later stage.

Algorithm 6 Goal Babbling

1: IN: End-effector space bounds Xbounds = {xxxmin,xxxmax}
2: IN: Time T for reaching selected goals
3: IN: Home configuration qqqhome

4: Initialize learner: L−1
θθθ ← L−1

θθθ0
5: for Number of epochs do
6: Select a target xxx? randomly from Xbounds

7: Select a sequence of targets towards xxx?: xxxt, t = 1, · · · , T
8: for t ∈ [1, T] do
9: Estimate motor command: q̂qqt = L̂−1

θθθ (xxxt)
10: Generate exploratory noise: Et(xxx

?)
11: Execute perturbed motor command q̂qqt + Et(xxx

?) on robot
12: Update model with generated data: L̂−1

θθθ ← train(qqq(t),xxx(t)))
13: end for
14: end for
15: OUT: Learned inverse model L̂−1

θθθ

Here, we employ a simple online goal babbling scheme proposed in [115] and is

summarized in Algorithm 6. The model L−1 is parameterized by θθθ, which is updated

online from data generated by the robot, thus is L−1
θθθ . As inputs, the algorithm must be

provided with sensory space bounds Xbounds, the number of waypoints T on the path

when reaching for selected random goals xxxg and a home configuration qqqhome. The in-

verse estimate is initialized with the home configuration: L̂−1
θθθ0
← train(qqqhome,xxxhome)),

such that it always predicts the home configuration in the beginning.

To explore the sensory space, random goals xxx? are interatively chosen fromXbounds,

and the robot attempts to reach each goal from the current configuration (qqqhome in

the beginning) via T − 1 intermediate targets xxxt. The targets are defined by a linear

sequence between the current robot position xxx0 and the goal xxxg: xxx
?
t =

T−t
T
· xxxg +

t
T
·

104

xxxt−1, where t = 1, · · · , T denotes the substeps within one movement. To reach the

intermediate targets, the robot uses the current estimate of the inverse model to infer

a motor command q̂qqt. An exploratory noise Et(xxx
?) is added to the inferred motor

command and the noisy command is sent to the robot. The parameters of the inverse

estimate (or if needed, also of the forward estimate) are updated from the generated

examples qqq(t),xxx(t)).

The exploratory noise is added in order to find kinematic solutions for all goals

in the sensory space. Following [115], we model the exploration noise as a randomly

chosen linear function

Et(xxx
?) = At · xxx? + bbbt, At ∈ <d×m, bbbt ∈ <d. (6.1)

6.3.2 Sensorimotor Models

6.4 Guided Exploration with Knowledge Transfer

In the single-robot case, exploration in the world is performed alone and the robot

explores its own capabilities. In a multi-robot case, it may be beneficial for the

robots to be able to share the knowledge they have acquired through their individual

exploration. Such knowledge sharing has the potential to speed up development

significantly and can allow more experienced or capable robots to impart their wisdom

to others. We investigate knowledge transfer for accelerating learning in a context of

learning forward and inverse sensorimotor mappings L and L−1.

Formally, we consider an experienced source agent Ωs that has learned its own

sensorimotor models Ls and L−1
s , and a less experienced target agent Ωt that is yet

to learn its own sensorimotor models Lt and L−1
t . Our aim is to utilize source agent

data ξs = {qqq(i)s ,xxx
(i)
s }Ti=1, generated by the source agent while learning its sensorimotor

models or synthesized from its learned models, to initialize the parameters of the

target agent sensorimotor models, so as to accelerate learning of the target agent.

In general, the source and target agents have different embodiments, resulting in

differing motor and/or sensory spaces, i.e., ds 6= dt and ms 6= mt, and different data

105

Figure 6-2: An illustration of our guided goal babbling framework. Based on an
environmental context, a high-level learning architecture decides the next goal that
a learning agent must attempt to reach. With the prior knowledge of the inverse
model L−1 transferred from some source agent, the agent explores its environment by
executing the transferred motor commands and observing the consequences, and use
the generated data to update its models L and L−1. This process repeats until the
agent is competent at reaching the goals and has gained knowledge, which is obtained
faster than learning from scratch.

distributions.

To effectively transfer the source data into the target agent domain, the source

data must be configured such that it is useful to the target agent. Similar to other

learning domains dealt with in this thesis, we learn a domain mapping f from samples

of correspondences Xs and Xt generated by the robots. This domain mapping is then

used to transfer source agent data ξs into the target agent domain to obtain estimated

target agent data ξ̂t, which is subsequently used to initialize the parameters of the

target agent sensorimotor models Lt and L−1
t , as illustrated in Fig. 6-2.

To collect correspondences Xs and Xt, we propose an algorithm for guiding explo-

ration of one robot with motor commands generated by another robot. This algorithm

assumes we know correspondences between the motor spaces q̄qq
(i)
s , q̄qq

(i)
t ∈ Q̄ ⊂ <dc of

the robots, where dc ≤ min(ds, dt) is the dimension of a motor subspace Q̄ in which

Ωs and Ωt have joints in common. In our proposed guided exploration algorithm, the

target agent explores its environment for some period Tguided, using for example Alg.

6, executing only those motor commands q̄qq
(i)
t that are in correspondence with the

source agent, to collect Xt. Since dc ≤ dt, the rest of the commands not in common

with the source agent’s stay at their ‘home’ values, i.e., in qhome.

The source agent Ωs then executes the sequence of commands {q̄qq(i)s }Tguided

i=1 to collect

Xs corresponding toXt, using Alg. 7. This guided exploration process is illustrated in

106

Figure 6-3: An illustration of our guided exploration framework. The source agent ex-
ecutes commands generated by the target agent in order to correspond its movements
with those of the target agent and generate a sample of correspondences.

Fig. 6-3. The domain mapping f can then be learned from Xs and Xt as discussed in

Section 6.4.1. The source agent experience, or synthesized, data ξs is transferred to the

target agent domain to obtain estimated target agent data ξ̂t, which is subsequently

used to initialize target agent sensorimotor models Lt and L−1
t . The target agent then

continues exploring autonomously using Alg. 6.

Algorithm 7 Guided exploration

1: IN: A sequence of corresponding Ωt motor commands {q̄qq(i)s }Tguided

i=1

2: Xs = {}
3: for i ∈ [1, Tguided] do

4: Execute motor command q̄qq
(i)
s on Ωs

5: Xs = Xs ∪ {q̄qq(i)s ,xxx
(i)
s }

6: end for
7: OUT: Source correspondence sample Xs

6.4.1 Transfer Models

The samples of correspondences {q̄qq(i)s , x̄xx
(i)
s }Tguided

i=1 , {q̄qq(i)t , x̄xx
(i)
t }

Tguided

i=1 ⊂ <dc+mc have the

same dimensionality dc +mc of the subspace in which Ωs and Ωt have common vari-

ables. For the 3D positions the source and target sensory spaces have the same

original dimensionality, i.e., x̄xx
(i)
s , x̄xx

(i)
t ∈ <mc , mc = ms = mt, and dc ≤ min(ds, dt).

The domain mapping f then learns the (non-linear) transformation of sensory signals

xxx
(i)
s and xxx

(i)
t given correspondences in the motor subspace Q̄.

The source experience data ξs = {q̄qq(i)s ,xxx
(i)
s }Ti=1 is then transferred using f to ob-

107

tain estimated target data ξ̂t = {q̄qq(i)t ,xxx
(i)
t }Ti=1. Since the dimensionality dc of the

transferred motor data may not be the same as the dimensionality dt of the target

motor space, we pad the transferred data with those values in qhome
t 6∈ Q̄. Then

any manifold alignment technique can be used to learn f from {q̄qq(i)s , x̄xx
(i)
s }Tguided

i=1 and

{q̄qq(i)t , x̄xx
(i)
t }

Tguided

i=1 . Employing Procrustes Analysis or Local Procrustes Analysis, points

in ξs are transferred individually into the target domain using Alg. 2 or 4 respectively.

6.5 Experiments

In this section we present some preliminary results validating knowledge transfer

for accelerating learning of inverse kinematics using two sets of experiments. In

Section 6.5.1 we present results for transfer between two-link planar robots with

2D task spaces, to illustrate our approach and to compare transfer with Procrustes

Analysis and Local Procrustes Analysis. In Section 6.5.2 we demonstrate the benefit

of knowledge transfer in a realistic scenario, where we transfer knowledge between

two humanoid robots. All robots are simulated in V-REP [113] and controlled via a

remote Matlab script.

We assume the source robot has successfully learned its sensorimotor models and

that we can synthesize its experience data. So to evaluate the benefit of knowledge

transfer, we compare the time it takes for the target robot to learn from scratch and

the time it takes to learn when provided with additional knowledge transferred from

the source robot. We only conduct experiments for learning inverse kinematics, since

learning forward kinematics is easier and exactly the same procedure for transfer is

applicable. We employ a simple k-NN regression model as our sensorimotor model

with K = 3.

For all learning setups, we evaluate the learning progress by testing the learned

sensorimotor model at evenly spaced time intervals on some test data evenly dis-

tributed in the target robot’s task space. We use two measures of progress. We

calculate the average error of reaching all the test points and calculate the reaching

rate as the ratio of the points reached within some error threshold – 0.01 m in Section

108

(a) Source robot. (b) Target robot.

Figure 6-4: Two-link robots used in the experiments.

6.5.1 and 0.015 m in Section 6.5.2. All the experimental results are averaged over 10

runs.

6.5.1 Simple Two-link Planar Robots

In this experiment we analyze knowledge transfer between two two-link planar robots

with differing link lengths and same joint limits. The goal of this experiment is to

illustrate our knowledge transfer method for accelerating learning of inverse kinemat-

ics. The parameters of the two robots are shown in Table 6.1 and the two robots

are shown in Fig. 6-4. The dimensionality of the motor and sensory spaces of both

robots is 2, i.e., qqqs, qqqt,xxxs,xxxt ∈ <2, and thus Xs, Xt, ξs, ξt ∈ <4. The two robots share

the same motor space, so correspondences are easily defined in their original motor

spaces.

Parameter Source Target

Link 1 0.5 0.7
Link 2 0.5 0.4
Motor 1 [−π/2, 0] [−π/2, 0]
Motor 2 [0.4, 2.9] [0.4, 2.9]

Table 6.1: Parameters (lengths (m) and joint limits (rad)) of two-link robots.

109

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

X- axis (m)

Y
-
ax

is
(m

)

(a) Source robot.

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

X- axis (m)

Y
-
ax

is
(m

)

(b) Target robot.

Figure 6-5: 2D task spaces of the robots.

The differences in the link lengths of the two robots make direct transfer of ξs into

the target domain infeasible, as the distributions of their sensory spaces are differ-

ent, as illustrated in Fig. 6-5. We employ Procrustes Analysis and Local Procrustes

Analysis to transfer ξs into the target to obtain ξ̂t to initialize the target robot sen-

sorimotor model. For learning the target robot sensorimotor model, we perform goal

babbling using Alg. 6 for 1000 seconds.

For learning with knowledge transfer, we perform guided exploration using Alg. 7

for 60, 120, 180 and 240 seconds to evaluate the effect of transfer in the early stages as

well as in later stages of learning. After performing guided exploration and transfer

from the source robot, the target robot continues to explore using Alg. 6 for the

remainder of the time. For all learning setups, we evaluate the learning progress by

testing the sensorimotor model on test points evenly distributed in the task space, at

60 seconds intervals.

Fig. 6-6 shows the average results of knowledge transfer with LPA, where Fig.

6-6a shows the reaching error and Fig. 6-6b shows the reaching rate. The black curve

indicates the progress of the target robot learning from scratch, and the other curves

indicate learning with knowledge transfer where the transfer model was learned and

transfer applied at different intervals.

We observe that the learning progress is boosted instantly when the knowledge is

transferred, and the target robot achieves higher learning rates compared to learning

110

0 100 200 300 400 500 600 700 800 900 1,000
0

1

2

3

4

5
·10−2

Simulation time (s)

L
ea
rn
in
g
er
ro
r
(m

)

Target
Transfer-60s
Transfer-120s
Transfer-180s
Transfer-240s

(a) Reaching error.

0 100 200 300 400 500 600 700 800 900 1,000
0

0.2

0.4

0.6

0.8

1

Simulation time (s)

L
ea
rn
in
g
ra
te

Target
Transfer-60s
Transfer-120s
Transfer-180s
Transfer-240s

(b) Reaching rate.

Figure 6-6: Knowledge transfer with Local Procrustes Analysis.

from scratch. However, transfer with LPA is beneficial with respect to the final

learning performance when applied at 180 seconds and beyond. This is because at

180 seconds there is enough correspondence data collected by the target robot and

LPA achieves a better transfer accuracy when given more data. When only a few

data to learn an LPA transfer model is available, and LPA cannot learn a good

model, negative transfer occurs.

Fig. 6-7 shows the average results of knowledge transfer with Procrustes Analysis.

Knowledge transfer with Procrustes Analysis on the other hand fails to accelerate

learning, with only a slight boost of progress when transfer is applied early. This is due

to the linear mapping failing to capture the complex non-linearity of the robot data

spaces. Providing Procrustes Analysis with more data does not improve its transfer

accuracy, as has been demonstrated before in Section 3.6. Knowledge transfer with

Procrustes Analysis in this case negatively affects the final performance as there are

many data points that were inaccurately transferred.

6.5.2 Knowledge Transfer between Nao and Poppy

This experiment demonstrates the benefit of knowledge transfer in a realistic scenario,

between two of the popular robots in developmental robotics. We transfer data from

SoftBank’s Nao robot to Poppy, shown in Fig. 6-8. Poppy is a 25-DoF humanoid

robot with two 4-DoF arms. We use Poppy as our target robot and learn inverse

111

0 100 200 300 400 500 600 700 800 900 1,000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
·10−2

Simulation time (s)

L
ea
rn
in
g
er
ro
r
(m

)

Target
Transfer-60s
Transfer-120s
Transfer-180s
Transfer-240s

(a) Reaching error.

0 100 200 300 400 500 600 700 800 900 1,000
0

0.2

0.4

0.6

0.8

1

Simulation time (s)

L
ea
rn
in
g
ra
te

Target
Transfer-60s
Transfer-120s
Transfer-180s
Transfer-240s

(b) Reaching rate.

Figure 6-7: Knowledge transfer with Procrustes Analysis.

kinematics for its right arm, where we allow the torso rotation about the Z axis,

allowing it to turn left and right. This results in a 5-DoF motor space qqqt ∈ <5 and a

3D sensory space xxxt ∈ <3, and thus Xt, ξt ∈ <8.

Our source robot, Nao, is a 25-DoF humanoid robot with two 5-DoF arms. The 25

DoFs include the motors for controlling its fingers. Nao’s motor space is also 5-DoF

qqqs ∈ <5 and it also has a 3D sensory space xxxs ∈ <3, and thus Xs, ξs ∈ <8. Nao’s arms

have additional wrist joints compared to Poppy’s 4-DoF arms but Nao does not have a

motor that rotates its torso about the Z axis. So the robots have a dc = 4 dimensional

common motor space q̄qqs, q̄qqt ∈ Q̄ ⊂ <4 and thus their correspondence data is in <7.

This means that since Nao cannot rotate its torso it cannot transfer knowledge about

reaching using the torso movement, and since Poppy arms do not have wrist joints,

Poppy cannot learn any knowledge about reaching using wrist movements.

So we aim to accelerate Poppy’s learning by transferring Nao data generated

by the 4 joints that it has in common with Poppy. Then Poppy continues ex-

ploring utilizing all the motors available, i.e., the 4 joints in common with Nao’s

right arm and the torso joint rotating about the Z axis. Poppy explores its envi-

ronment using Alg. 6 for 5000 seconds to learn to reach within a grid defined by

Xbounds = [(0.1, 0.05, 0.4), (0.4, 0.3, 0.8)], and its learning progress is evaluated every

300 seconds on a grid of test points evenly distributed inside the 3D boundary as

shown in Fig. 6-9.

112

Poppy Nao

Figure 6-8: Example of knowledge transfer from a small Nao to a bigger Poppy robot.
On the left is the Poppy robot and on the right Nao robot.

We perform guided exploration for 600 seconds and learn the transfer model using

Local Procrustes Analysis to transfer Nao’s experience data. Fig. 6-10 shows the

results of knowledge transfer using LPA. The blue curve labeled ‘Poppy’ indicates the

learning progress of Poppy from scratch, using all 5 motors. We observe that learning

in this case varies a lot. This is more likely due to the redundancy introduced by the

5 motors, as there are many ways for Poppy to reach points inside the boundary. For

example, it can reach some points either without moving its torso or with the torso.

The orange curve labeled ‘Nao transfer’ indicates the results of transferring Nao’s

experience data using LPA. We transferred Nao’s experience equivalent to the amount

of data Nao generates when learning its model from 600 seconds until 5000 seconds.

This means when we transfer the knowledge to Poppy at 600 seconds, we are providing

Poppy with additional 4400 seconds worth of knowledge and it continues exploring

from 600 seconds until 5000 seconds. The additional data provided to Poppy instantly

113

Figure 6-9: Poppy learning to reach inside a 3D boundary space.

boots its learning progress and helps it achieve faster learning and better final per-

formance. Without the additional knowledge transferred by Nao, Poppy reaches a

reaching rate of about 0.81 in 5000 seconds. With the help of the transferred knowl-

edge, Poppy reaches a reaching rate of 0.81 in 1500 seconds and a final performance

of 0.88. Thus transfer saves up to 3500 seconds if learning is stopped at 1500 seconds.

6.6 Discussion

Our preliminary results presented in the previous section demonstrate the possibility

and benefit of knowledge transfer in accelerating learning of sensorimotor mappings.

Results presented in Section 6.5.1 compared knowledge transfer with Procrustes Anal-

ysis and our proposed (non-linear) model, Local Procrustes Analysis. Results show

that the linear mapping of Procrustes Analysis is limited to transfer kinematic data for

accelerating a sensorimotor model learned using k-NN regression. Negative transfer

occurs, which results in k-NN regression being computed on incorrect data, as indi-

cated by the degradation in learning performance of the target robot after transfer.

114

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
0.5

1

1.5

2

2.5

3
·10−2

simulated time (s)

er
ro
r
(m

)

Poppy
Nao transfer

(a) Reaching error.

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
0

0.2

0.4

0.6

0.8

1

simulated time (s)

p
ro
gr
es
s

Poppy
Nao transfer

(b) Reaching rate.

Figure 6-10: Knowledge transfer from Nao to Poppy with Local Procrustes Analysis.

Our proposed model proved particularly suitable to this application as it successfully

accelerated learning for the toy example used. Negative transfer only occurs when

LPA transfer is applied before enough data has been collected.

Results in Section 6.5.2 demonstrated the benefit of knowledge transfer using our

proposed transfer model in a realistic scenario consisting of two humanoid robots. We

demonstrated that the knowledge transferred from Nao to Poppy helps to save up to

70% of learning time compared to learning from scratch, and that knowledge transfer

can also improve the final learning performance of the target robot.

We believe more experiments still need to be conducted with other robots to

determine when transfer is possible and beneficial. Ideally we should be able to

provide conditions in which transfer is guaranteed to be beneficial and conditions

in which we know beforehand that transfer is not possible. We plan to conduct

experiments to transfer knowledge from Poppy to Nao (in the opposite direction),

and also introduce a third robot with different kinematics, such as the iCub, as future

work. This should provide us with enough experimental data to analyze conditions

where transfer is possible and beneficial.

The k-NN regression model employed for learning sensorimotor models may have

a limitation when negative transfer occurs. This is because regression is performed

on all data saved in memory and equal weights are assigned to all data. To reduce

the effect of negative transfer, one may consider weighting transferred data less, espe-

115

cially when the robot is generating new data as it continues to explore. Alternatively,

a parameterized model representations can be used, such as neural networks, poly-

nomial regression, etc., whose parameters are updated when new data is generated.

This has the potential that the parameters initialized with knowledge transfer may

perform well in the early stages of learning and will get updated by new data and

quickly adapt, thereby forgetting the inaccurately transferred knowledge.

Lastly, we employ a random goal babbling scheme in all our experiments. Given

that active exploration schemes have been shown to learn sensorimotor models faster

than random ones, since they seek to explore regions where the robot has yet to

learn to successfully reach, it is reasonable to suggest that active exploration schemes

would benefit from knowledge transfer more than random exploration schemes. We

believe that an active learning agent would quickly shift its attention to areas where

knowledge transfer was not effective, such as if negative transfer occurred or areas

where the source robot could not reach, rather than to continue exploring randomly

without considering the information from the transferred knowledge.

116

Chapter 7

Conclusion

In this thesis, we confronted some of the challenges encountered when robots share

knowledge that they have learned through their individual experiences. The chal-

lenges we tackled are due to robots having different embodiments and physical char-

acteristics. More specifically, the differences in terms of kinematics – robot dimen-

sions, number of degrees-of-freedom, joint configurations and link connections – and

dynamics – mass, center of mass, inertia matrix, etc. They result in the robots having

different state and actions spaces – resulting in their machine learning models having

different feature spaces – and different data distributions.

We are particularly interested in accelerating learning of low-level robot motor

skills with knowledge transfer, where we re-use data gathered by pre-existing robots.

We reviewed work in knowledge transfer in robot learning in Chapter 2 and related

work in accelerating learning with knowledge transfer. Our work is amongst the few

work applying transfer learning for accelerating kinematics and dynamics learning in

the literature. We contribute a transfer learning model, Local Procrustes Analysis

presented in Chapter 3, to enable the transfer of knowledge across robots with different

embodiments and physical characteristics.

Our proposed transfer learning model is particularly suited for robotics applica-

tions where the data distributions require a non-linear mapping to be aligned, and

we compared it against a popular linear model, which failed to accurately align the

data. We applied our non-linear transfer learning model to transfer knowledge in

117

three different learning domains.

In Chapter 4 we proposed a knowledge transfer approach to robot learning from

demonstrations which applies our transfer learning model. We demonstrated that our

approach can reasonably initialize the parameters of a parameterized motor primitive

and that the skills transferred from a human teacher can be reproduced by the robot.

Furthermore, we showed that our method can be extended to allow one robot that has

acquired knowledge from a human teacher to act as a teacher to another robot and

transfer its knowledge. However, we only demonstrated the efficacy of transferring

skills across robots and not the acceleration of learning motor skills. In future work we

plan to conduct experiments to test our method in a realistic scenario where the robot

learner improves the transferred skills using reinforcement learning techniques and

evaluate whether our transfer learning approach can accelerate the learning process.

In Chapter 5 we proposed a knowledge transfer framework for accelerating online

learning of inverse dynamics for manipulator control. We demonstrated that our ap-

proach can transfer knowledge between robots with different kinematic and dynamic

properties, including different number of degrees-of-freedom. In contrast to previous

work, we proposed an approach for collecting correspondences from the robots without

using their analytical models – which is what is required in a realistic scenario. Our

results showed that for inverse dynamics, the linear mapping of Procrustes Analysis

is sufficient to transfer knowledge for accelerating learning of the target robot.

In Chapter 6 we proposed a guided exploration approach for knowledge transfer

between robots for accelerating learning of sensorimotor mappings for a developmen-

tal learning robot. We evaluated our approach in accelerating learning of inverse

kinematics between humanoid robots with different kinematics. Our preliminary re-

sults show that knowledge transfer using our proposed transfer learning model is

beneficial. We believe our approach has the potential to transfer knowledge across

many different humanoids and we plan to conduct more experiments in the future to

ascertain that. In particular, we plan to use parameterized sensorimotor models that

can quickly forget inaccurately transferred knowledge and employing active explo-

ration strategies that will take more advantage of the transferred knowledge to guide

118

exploration towards unexplored regions. Lastly, we plan to investigate an approach

that will allow robots to autonomously detect their correspondences.

119

120

Bibliography

[1] Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew E. Taylor. Online
Multi-Task Learning for Policy Gradient Methods. In Proceedings of the 31st
International Conferences on Machine Learning (ICML), June 2014. 25

[2] Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew E. Taylor. Unsu-
pervised Cross-Domain Transfer in Policy Gradient Reinforcement Learning via
Manifold Alignment. In Proceedings of the 29th AAAI Conference on Artificial
Intelligence (AAAI), January 2015. 27

[3] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A sur-
vey of robot learning from demonstration. Robot. Auton. Syst., 57(5):469–483,
May 2009.

[4] Christopher G. Atkeson, Andrew W. Moore, and Stefan Schaal. Locally
weighted learning for control. Artificial Intelligence Review, 11(1):75–113, Feb
1997.

[5] P. Azad, T. Asfour, and R. Dillmann. Toward an unified representation for imi-
tation of human motion on humanoids. In Proceedings 2007 IEEE International
Conference on Robotics and Automation, pages 2558–2563, April 2007.

[6] Adrien Baranes and Pierre-Yves Oudeyer. Active learning of inverse mod-
els with intrinsically motivated goal exploration in robots. Robotics and Au-
tonomous Systems, 61(1):49–73, 2013.

[7] John Blitzer, Dean Foster, and Sham Kakade. Domain adaptation with cou-
pled subspaces. In Conference on Artificial Intelligence and Statistics, Fort
Lauterdale, 2011.

[8] Botond Bócsi, Lehel Csató, and Jan Peters. Alignment-based transfer learning
for robot models. In Proceedings of the International Joint Conference on Neural
Networks, 2013.

[9] Botond Bócsi, Lehel Csató, and Jan Peters. Indirect robot model learning for
tracking control. Advanced Robotics, 28(9):589–599, 2014.

[10] Botond Bócsi, Phillip Hennig, Lehel Csató, and Jan Peters. Learning track-
ing control with forward models. In 2012 IEEE International Conference on
Robotics and Automation, pages 259–264, May 2012.

121

[11] Botond Bócsi, Duy Nguyen-Tuong, Lehel Csató, Bernhard Schölkopf, and Jan
Peters. Learning inverse kinematics with structured prediction. In IEEE Inter-
national Conference on Intelligent Robots and Systems, pages 698–703, 2011.

[12] Georgios Boutsioukis, Ioannis Partalas, and Ioannis Vlahavas. Transfer Learn-
ing in Multi-Agent Reinforcement Learning Domains, pages 249–260. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

[13] D. Brugali and P. Scandurra. Component-based robotic engineering (part i)
[tutorial]. IEEE Robotics Automation Magazine, 16(4):84–96, December 2009.

[14] D. Brugali and A. Shakhimardanov. Component-based robotic engineering
(part ii). IEEE Robotics Automation Magazine, 17(1):100–112, March 2010.

[15] H. Bruyninckx. Open robot control software: the orocos project. In Proceedings
2001 ICRA. IEEE International Conference on Robotics and Automation (Cat.
No.01CH37164), volume 3, pages 2523–2528, 2001.

[16] Tim Brys, Anna Harutyunyan, Halit Bener Suay, Sonia Chernova, Matthew E.
Taylor, and Ann Nowé. Reinforcement learning from demonstration through
shaping. In Proceedings of the 24th International Conference on Artificial In-
telligence, IJCAI’15, pages 3352–3358. AAAI Press, 2015.

[17] S. Calinon and A. Billard. Active teaching in robot programming by demonstra-
tion. In RO-MAN 2007 - The 16th IEEE International Symposium on Robot
and Human Interactive Communication, pages 702–707, Aug 2007.

[18] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. G. Billard.
Learning and reproduction of gestures by imitation. IEEE Robotics Automation
Magazine, 17(2):44–54, June 2010.

[19] Sylvain Calinon. A tutorial on task-parameterized movement learning and re-
trieval. Intell. Serv. Robot., 9(1):1–29, January 2016.

[20] Raffaello Camoriano, Silvio Traversaro, Lorenzo Rosasco, Giorgio Metta, and
Francesco Nori. Incremental semiparametric inverse dynamics learning. In Pro-
ceedings - IEEE International Conference on Robotics and Automation, pages
544–550, 2016.

[21] Kian Ming Chai, Christopher Williams, Stefan Klanke, and Sethu Vijayakumar.
Multi-task Gaussian process learning of robot inverse dynamics. In Nips, 2009.

[22] J. Chen and H. Y. K. Lau. Learning the inverse kinematics of tendon-driven
soft manipulators with k-nearest neighbors regression and gaussian mixture
regression. In 2016 2nd International Conference on Control, Automation and
Robotics (ICCAR), pages 103–107, April 2016.

122

[23] J. Chen, H. Y. K. Lau, W. Xu, and H. Ren. Towards transferring skills to
flexible surgical robots with programming by demonstration and reinforcement
learning. In 2016 Eighth International Conference on Advanced Computational
Intelligence (ICACI), pages 378–384, Feb 2016.

[24] Sonia Chernova and Manuela Veloso. Confidence-based multi-robot learning
from demonstration. International Journal of Social Robotics, 2(2):195–215,
Jun 2010.

[25] Younggeun Choi, Shin-Young Cheong, and Nicolas Schweighofer. Local Online
Support Vector Regression for Learning Control. In International Symposium
on Computational Intelligence in Robotics and Automation, number 2, pages
13–18, 2007.

[26] P. Christiano, Z. Shah, I. Mordatch, J. Schneider, T. Blackwell, J. Tobin,
P. Abbeel, and W. Zaremba. Transfer from Simulation to Real World through
Learning Deep Inverse Dynamics Model. ArXiv e-prints, October 2016.

[27] Gabriele Costante, Thomas A. Ciarfuglia, Paolo Valigi, and Elisa Ricci. Trans-
ferring knowledge across robots: A risk sensitive approach. Robotics and Au-
tonomous Systems, 65(Supplement C):1 – 14, 2015.

[28] J. S. De La Cruz, W. Owen, and D. Kulić. Online Learning of Inverse Dynamics
via Gaussian Process Regression. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), number 1, pages 3583–3590, 2012.

[29] Zhen Cui, Hong Chang, Shiguang Shan, and Xilin Chen. Generalized unsu-
pervised manifold alignment. In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Pro-
cessing Systems 27, pages 2429–2437. Curran Associates, Inc., 2014.

[30] Wenyuan Dai, Gui-Rong Xue, Qiang Yang, and Yong Yu. Transferring naive
bayes classifiers for text classification. In Proceedings of the 22Nd National Con-
ference on Artificial Intelligence - Volume 1, AAAI’07, pages 540–545. AAAI
Press, 2007.

[31] B. Dariush, M. Gienger, A. Arumbakkam, C. Goerick, Youding Zhu, and K. Fu-
jimura. Online and markerless motion retargeting with kinematic constraints.
In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 191–198, Sept 2008.

[32] Joseph Sun de la Cruz, Ergun Calisgan, Dana Kulić, William Owen, and Eliza-
beth A. Croft. On-line dynamic model learning for manipulator control. IFAC
Proceedings Volumes, 45(22):869 – 874, 2012. 10th IFAC Symposium on Robot
Control.

[33] Joseph Sun de la Cruz, Dana Kulić, and William Owen. A comparison of
classical and learning controllers. IFAC Proceedings Volumes, 44(1):1102 – 1107,
2011. 18th IFAC World Congress.

123

[34] Joseph Sun de la Cruz, Dana Kulić, and William Owen. Online Incremental
Learning of Inverse Dynamics Incorporating Prior Knowledge, pages 167–176.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[35] B. Delhaisse, D. Esteban, L. Rozo, and D. Caldwell. Transfer learning of shared
latent spaces between robots with similar kinematic structure. In 2017 Interna-
tional Joint Conference on Neural Networks (IJCNN), pages 4142–4149, May
2017.

[36] Yiannis Demiris and Anthony Dearden. From motor babbling to hierarchical
learning by imitation: a robot developmental pathway, 2005.

[37] Fernando Diaz and Donald Metzler. Pseudo-aligned multilingual corpora. In
Proceedings of the 20th International Joint Conference on Artifical Intelligence,
IJCAI’07, pages 2727–2732, San Francisco, CA, USA, 2007. Morgan Kaufmann
Publishers Inc.

[38] M. Do, P. Azad, T. Asfour, and R. Dillmann. Imitation of human motion on
a humanoid robot using non-linear optimization. In Humanoids 2008 - 8th
IEEE-RAS International Conference on Humanoid Robots, pages 545–552, Dec
2008.

[39] Alain Droniou, Serena Ivaldi, Vincent Padois, and Olivier Sigaud. Autonomous
online learning of velocity kinematics on the icub: a comparative study. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3577–3582, Vilamoura, Portugal, October 2012.

[40] Aaron D’Souza, Sethu Vijayakumar, and Stefan Schaal. Learning inverse kine-
matics. In Proceedings 2001 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 298–303, 2001.

[41] Carl Henrik Ek. Shared Gaussian process latent variable models. PhD thesis,
Oxford Brookes University, 2009.

[42] Roy Featherstone. Rigid Body Dynamics Algorithms, section 3.1, pages 39–64.
Springer, New York, 2008.

[43] Yin Feng, Wang Yao-nan, and Yang Yi-min. Inverse kinematics solution for
robot manipulator based on neural network under joint subspace. International
Journal of Computers Communications & Control, 7(3):459–472, 2014.

[44] Basura Fernando, Amaury Habrard, Marc Sebban, and Tinne Tuytelaars. Un-
supervised visual domain adaptation using subspace alignment. In The IEEE
International Conference on Computer Vision (ICCV), December 2013.

[45] M. Field, D. Stirling, Z. Pan, and F. Naghdy. Learning trajectories for robot
programing by demonstration using a coordinated mixture of factor analyzers.
IEEE Transactions on Cybernetics, 46(3):706–717, March 2016.

124

[46] S. Forestier, Y. Mollard, and P.-Y. Oudeyer. Intrinsically Motivated Goal Explo-
ration Processes with Automatic Curriculum Learning. ArXiv e-prints, August
2017.

[47] Stefan Gärtner, Martin Do, Tamim Asfour, Rüdiger Dillmann, Christian Si-
monidis, and Wolfgang Seemann. Generation of human-like motion for hu-
manoid robots based on marker-based motion capture data. In ISR/ROBOTIK,
pages 1–8. VDE Verlag, 2010.

[48] Arjan Gijsberts and Giorgio Metta. Incremental learning of robot dynamics
using random features. In 2011 IEEE International Conference on Robotics
and Automation, pages 951–956, 2011.

[49] Arjan Gijsberts and Giorgio Metta. Real-time model learning using Incremental
Sparse Spectrum Gaussian Process Regression. Neural Networks, 41:59–69,
2013.

[50] B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised
domain adaptation. In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 2066–2073, June 2012.

[51] R. Gopalan, Ruonan Li, and R. Chellappa. Domain adaptation for object
recognition: An unsupervised approach. In 2011 International Conference on
Computer Vision, pages 999–1006, Nov 2011.

[52] Shane Griffith, Kaushik Subramanian, Jonathan Scholz, Charles Isbell, and
Andrea L Thomaz. Policy shaping: Integrating human feedback with reinforce-
ment learning. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
26, pages 2625–2633. Curran Associates, Inc., 2013.

[53] Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine.
Learning Invariant Feature Spaces to Transfer Skills with Reinforcement Learn-
ing. In Proceedings - IEEE International Conference on Learning Representa-
tions, 2017.

[54] Mohamed K. Helwa and Angela Schoellig. Multi-Robot Transfer Learning: A
Dynamical System Perspective. Under review at International Conference on
Intelligent Robots and Systems (IROS) 2017, May 2017.

[55] Jorge David Figueroa Heredia, Jose Ildefonso U. Rubrico, Shouhei Shirafuji, and
Jun Ota. Teaching tasks to multiple small robots by classifying and splitting a
human example. Journal of Robotics and Mechatronics, 29(2):419–433, 2017.

[56] M. Hiratsuka, N. Makondo, B. Rosman, and O. Hasegawa. Trajectory learning
from human demonstrations via manifold mapping. In 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 3935–3940,
Oct 2016.

125

[57] Tatsuya Hirose and Tadahiro Taniguchi. Abstraction multimodal low-
dimensional representation from high-dimensional posture information and vi-
sual images. Journal of Robotics and Mechatronics, 25(1):80–88, 2013.

[58] Jacob Huckaby and Henrik Christensen. A taxonomic framework for task mod-
eling and knowledge transfer in manufacturing robotics. In AAAI Workshops,
2012.

[59] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan
Schaal. Dynamical movement primitives: Learning attractor models for motor
behaviors. Neural Comput., 25(2):328–373, February 2013.

[60] Hyunryong Jung, Arjun Menon, and Ronald C. Arkin. A conceptual space ar-
chitecture for widely heterogeneous robotic systems. In Proc. 2nd International
Conference on Biologically Inspired Cognitive Architectures (BICA 2011, 2011.

[61] S. M. Khansari-Zadeh and A. Billard. Learning stable nonlinear dynami-
cal systems with gaussian mixture models. IEEE Transactions on Robotics,
27(5):943–957, Oct 2011.

[62] Z. Kira. Transferring embodied concepts between perceptually heterogeneous
robots. In 2009 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 4650–4656, Oct 2009.

[63] Z. Kira. Inter-robot transfer learning for perceptual classification. In 9th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS),
2010, 2010.

[64] Z. Kira. Using conceptual spaces to fuse knowledge from heterogeneous robot
platforms. In Multisensor, Multisource Information Fusion: Architectures, Al-
gorithms, and Applications 2010, volume 7710 of procspie, April 2010.

[65] Z. Kira. Transfer of sparse coding representations and object classifiers across
heterogeneous robots. In 2014 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 2209–2215, Sept 2014.

[66] Z. Kira. An evaluation of features for classifier transfer during target handoff
across aerial and ground robots. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), pages 4245–4251, May 2015.

[67] Zsolt Kira. Mapping grounded object properties across perceptually heteroge-
neous embodiments. In 22nd International FLAIRS Conference, pages 57–62,
2009.

[68] Jens Kober and Jan R. Peters. Policy search for motor primitives in robotics.
In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in
Neural Information Processing Systems 21, pages 849–856. Curran Associates,
Inc., 2009.

126

[69] J. Koenemann, F. Burget, and M. Bennewitz. Real-time imitation of human
whole-body motions by humanoids. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 2806–2812, May 2014.

[70] RaşIt KöKer. A genetic algorithm approach to a neural-network-based inverse
kinematics solution of robotic manipulators based on error minimization. Inf.
Sci., 222:528–543, February 2013.

[71] Raşit Köker, Tarik Çakar, and Yavuz Sari. A neural-network committee ma-
chine approach to the inverse kinematics problem solution of robotic manipu-
lators. Eng. with Comput., 30(4):641–649, October 2014.

[72] Hitoshi Kono, Akiya Kamimura, Kohji Tomita, and Tsuyoshi Suzuki. Transfer
learning method using ontology for heterogeneous multi-agent reinforcement
learning. International Journal of Advanced Computer Science & Applications,
5(10), 2014.

[73] Alessandro Lazaric. Transfer in Reinforcement Learning: A Framework and a
Survey, pages 143–173. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[74] J. Leitner, S. Harding, M. Frank, A. Frster, and J. Schmidhuber. Transferring
spatial perception between robots operating in a shared workspace. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
1507–1512, Oct 2012.

[75] G. H. Lim, I. H. Suh, and H. Suh. Ontology-based unified robot knowledge for
service robots in indoor environments. IEEE Transactions on Systems, Man,
and Cybernetics - Part A: Systems and Humans, 41(3):492–509, May 2011.

[76] H. Liu and P. Singh. Conceptnet — a practical commonsense reasoning
tool-kit. BT Technology Journal, 22(4):211–226, October 2004.

[77] Robert Loftin, Bei Peng, James MacGlashan, Michael L. Littman, Matthew E.
Taylor, Jeff Huang, and David L. Roberts. Learning behaviors via human-
delivered discrete feedback: modeling implicit feedback strategies to speed up
learning. Autonomous Agents and Multi-Agent Systems, 30(1):30–59, Jan 2016.

[78] Jie Luo, Andrzej Pronobis, and Barbara Caputo. SVM-based transfer of visual
knowledge across robotic platforms. In Proceedings of the 5th International
Conference on Computer Vision Systems (ICVS’07), Bielefeld, Germany, March
2007.

[79] G. Maeda, M. Ewerton, D. Koert, and J. Peters. Acquiring and generalizing the
embodiment mapping from human observations to robot skills. IEEE Robotics
and Automation Letters, 1(2):784–791, July 2016.

[80] N. Makondo, J. Claassens, N. Tlale, and M. Braae. Geometric technique for
the kinematic modeling of a 5 dof redundant manipulator. In 2012 5th Robotics
and Mechatronics Conference of South Africa, pages 1–7, Nov 2012.

127

[81] Ndivhuwo Makondo, Benjamin Rosman, and Osamu Hasegawa. Knowledge
Transfer for Learning Robot Models via Local Procrustes Analysis. In 15th
IEEE-RAS International Conference on Humanoid Robotics, Seoul, 2015. IEEE.

[82] Christian Mandery, Ömer Terlemez, Martin Do, Nikolaus Vahrenkamp, and
Tamim Asfour. Unifying representations and large-scale whole-body motion
databases for studying human motion. IEEE Trans. Robotics, 32(4):796–809,
2016.

[83] J. Matai, Y. H. Suh, H. Kim, K. W. Lee, and H. Kim. Integration framework for
interoperability of distributed and heterogeneous robot middlewares. In 2008
10th International Conference on Control, Automation, Robotics and Vision,
pages 2337–2343, Dec 2008.

[84] Franziska Meier, Philipp Hennig, and Stefan Schaal. Efficient Bayesian local
model learning for control. In 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 2244–2249, 2014.

[85] Franziska Meier, Philipp Hennig, and Stefan Schaal. Incremental Local Gaus-
sian Regression. Advances in Neural Information Processing Systems 27 (NIPS
2014), (M):972–980, 2014.

[86] Franziska Meier, Daniel Kappler, Nathan Ratliff, and Stefan Schaal. Towards
Robust Online Inverse Dynamics Learning. In International Conference on
Intelligent Robots and Systems, pages 4034–4039, 2016.

[87] Franziska Meier and Stefan Schaal. Drifting Gaussian Processes with Varying
Neighborhood Sizes for Online Model Learning. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), Stockholm, 2016. IEEE.

[88] Giorgio Metta, Giulio Sandini, David Vernon, Lorenzo Natale, and Francesco
Nori. The icub humanoid robot: An open platform for research in embodied
cognition. In Proceedings of the 8th Workshop on Performance Metrics for
Intelligent Systems, PerMIS ’08, pages 50–56, New York, NY, USA, 2008. ACM.

[89] C. Moulin-Frier and P. Y. Oudeyer. Exploration strategies in developmental
robotics: A unified probabilistic framework. In 2013 IEEE Third Joint In-
ternational Conference on Development and Learning and Epigenetic Robotics
(ICDL), pages 1–6, Aug 2013.

[90] Thibaut Munzer, Freek Stulp, and Olivier Sigaud. Non-linear regression algo-
rithms for motor skill acquisition: a comparison. In 9èmes Journées Franco-
phones de Planification, Décision et Apprentissage, Liège, Belgium, May 2014.

[91] Chrystopher L. Nehaniv and Kerstin Dautenhahn. Like me?- measures of cor-
respondence and imitation. Cybernetics and Systems, 32(1-2):11–51, 2001.

128

[92] Sao Mai Nguyen and Pierre-Yves Oudeyer. Socially guided intrinsic motivation
for robot learning of motor skills. Autonomous Robots, 36(3):273–294, Mar
2014.

[93] Duy Nguyen-Tuong and Jan Peters. Incremental Sparsification for Real-time
Online Model Learning. In Artificial Intelligence and Statistics, volume 9, pages
557–564, 2010.

[94] Duy Nguyen-tuong and Jan Peters. Using model knowledge for learning inverse
dynamics. In 2010 IEEE International Conference on Robotics and Automation,
pages 2677–2682, 2010.

[95] Duy Nguyen-Tuong and Jan Peters. Model learning for robot control: A survey.
Cognitive Processing, 12(4):319–340, 2011.

[96] Duy Nguyen-Tuong, Jan Peters, Matthias Seeger, and Bernhard Schölkopf.
Learning Inverse Dynamics : a Comparison. In Advances in Computational
Intelligence and Learning: Proceedings of the European Symposium on Artifi-
cial Neural Networks (ESANN 2008), pages 13–18, 2008.

[97] Duy Nguyen-Tuong, Bernhard Scholkopf, and Jan Peters. Sparse online model
learning for robot control with support vector regression. In 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems, number 1, pages
3121–3126, 2009.

[98] Duy Nguyen-Tuong, Matthias Seeger, and Jan Peters. Model Learning with
Local Gaussian Process Regression. Advanced Robotics, 23(15):2015–2034, 2009.

[99] E. Oyama, T. Maeda, J. Q. Gan, E. M. Rosales, K. F. MacDorman, S. Tachi,
and A. Agah. Inverse kinematics learning for robotic arms with fewer degrees of
freedom by modular neural network systems. In 2005 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1791–1798, Aug 2005.

[100] A. Paikan, D. Schiebener, M. Wchter, T. Asfour, G. Metta, and L. Natale.
Transferring object grasping knowledge and skill across different robotic plat-
forms. In 2015 International Conference on Advanced Robotics (ICAR), pages
498–503, July 2015.

[101] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10):1345–1359, Oct 2010.

[102] Sinno Jialin Pan, James T. Kwok, and Qiang Yang. Transfer learning via
dimensionality reduction. In Proceedings of the 23rd National Conference on
Artificial Intelligence - Volume 2, AAAI’08, pages 677–682. AAAI Press, 2008.

[103] Sinno Jialin Pan, Ivor W. Tsang, James T. Kwok, and Qiang Yang. Domain
adaptation via transfer component analysis. In Proceedings of the 21st Inter-
national Jont Conference on Artifical Intelligence, IJCAI’09, pages 1187–1192,
San Francisco, CA, USA, 2009. Morgan Kaufmann Publishers Inc.

129

[104] J. Peters and D. Nguyen-Tuong. Real-time learning of resolved velocity control
on a mitsubishi pa-10. In 2008 IEEE International Conference on Robotics and
Automation, pages 2872–2877, May 2008.

[105] J. Peters and S. Schaal. Learning to Control in Operational Space. The Inter-
national Journal of Robotics Research, 27(2):197–212, 2008.

[106] J. Peters and S. Schaal. Reinforcement learning of motor skills with policy
gradients. Neural Networks, 21(4):682–697, May 2008.

[107] A. S. Polydoros and L. Nalpantidis. A reservoir computing approach for learning
forward dynamics of industrial manipulators. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 612–618, Oct 2016.

[108] Athanasios S. Polydoros, Lazaros Nalpantidis, and Volker Kruger. Real-time
deep learning of robotic manipulator inverse dynamics. In IEEE International
Conference on Intelligent Robots and Systems, pages 3442–3448, 2015.

[109] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y. Ng. Ros: an open-source robot operating
system. In ICRA Workshop on Open Source Software, 2009.

[110] Kaizad Raimalwala, Bruce Francis, and Angela Schoellig. A Preliminary Study
of Transfer Learning between Unicycle Robots. In AAAI Spring Symposium,
pages 53–59, 2016.

[111] Kaizad V. Raimalwala, Bruce A. Francis, and Angela P. Schoellig. An upper
bound on the error of alignment-based Transfer Learning between two linear,
time-invariant, scalar systems. In IEEE International Conference on Intelligent
Robots and Systems, pages 5253–5258, 2015.

[112] Nathan Ratliff, Franziska Meier, Daniel Kappler, and Stefan Schaal. Doomed:
Direct online optimization of modeling errors in dynamics. Big Data,
4(4):253–268, 2016.

[113] E. Rohmer, S. P. N. Singh, and M. Freese. V-rep: a versatile and scalable robot
simulation framework. In Proc. of The International Conference on Intelligent
Robots and Systems (IROS), 2013.

[114] M. Rolf, J. J. Steil, and M. Gienger. Goal babbling permits direct learning of
inverse kinematics. IEEE Transactions on Autonomous Mental Development,
2(3):216–229, Sept 2010.

[115] M. Rolf, J. J. Steil, and M. Gienger. Online goal babbling for rapid boot-
strapping of inverse models in high dimensions. In 2011 IEEE International
Conference on Development and Learning (ICDL), volume 2, pages 1–8, Aug
2011.

130

[116] Diego Romeres, Mattia Zorzi, Raffaello Camoriano, and Alessandro Chiuso.
Online semi-parametric learning for inverse dynamics modeling. In 2016 IEEE
55th Conference on Decision and Control, CDC 2016, pages 2945–2950, 2016.

[117] B. Rosman and S. Ramamoorthy. What good are actions? accelerating learn-
ing using learned action priors. In 2012 IEEE International Conference on
Development and Learning and Epigenetic Robotics (ICDL), pages 1–6, Nov
2012.

[118] B. Rosman and S. Ramamoorthy. Action priors for learning domain invariances.
IEEE Transactions on Autonomous Mental Development, 7(2):107–118, June
2015.

[119] Steve Rowe and Christopher R Wagner. An introduction to the joint architec-
ture for unmanned systems (jaus). Ann Arbor, 1001:48108, 2008.

[120] R. Saegusa, G. Metta, G. Sandini, and S. Sakka. Active motor babbling for
sensorimotor learning. In 2008 IEEE International Conference on Robotics and
Biomimetics, pages 794–799, Feb 2009.

[121] C. Schlenoff, E. Prestes, R. Madhavan, P. Goncalves, H. Li, S. Balakirsky,
T. Kramer, and E. Miguelez. An ieee standard ontology for robotics and au-
tomation. In 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 1337–1342, Oct 2012.

[122] Zeeshan Shareef, Felix Reinhart, and Jochen J Steil. Generalizing the Inverse
Dynamic Model of KUKA LWR IV+ for Load Variations using Regression in
the Model Space. In Proceedings of IEEE Int. Conf. Intelligent Robots and
Systems, 2016.

[123] Jie Sheng, Sam Chung, Leo Hansel, Don McLane, Joel Morrah, Seung-Ho Baeg,
and Sangdeok Park. Jaus to ethercat bridge: Toward real-time and determinis-
tic joint architecture for unmanned systems. J. Control Sci. Eng., 2014:1:1–1:1,
January 2014.

[124] A. P. Shon, K. Grochow, and R. P. N. Rao. Robotic imitation from human
motion capture using gaussian processes. In 5th IEEE-RAS International Con-
ference on Humanoid Robots, 2005., pages 129–134, Dec 2005.

[125] Aaron Shon, Keith Grochow, Aaron Hertzmann, and Rajesh P Rao. Learning
shared latent structure for image synthesis and robotic imitation. In Y. Weiss,
P. B. Schölkopf, and J. C. Platt, editors, Advances in Neural Information Pro-
cessing Systems 18, pages 1233–1240. MIT Press, 2006.

[126] W. D. Smart and L. Pack Kaelbling. Effective reinforcement learning for mobile
robots. In Proceedings 2002 IEEE International Conference on Robotics and
Automation (ICRA), volume 4, pages 3404–3410 vol.4, 2002.

131

[127] MarkW Spong, Seth Hutchison, and M Vidyasagar. Robot modeling and control,
chapter 1.2. Addison-Wesley, 2006.

[128] Christopher Stanton, Anton Bogdanovych, and Edward Ratanasena. Teleoper-
ation of a humanoid robot using full-body motion capture, example movements,
and machine learning. In Proceedings of Australasian Conference on Robotics
and Automation (ACRA), 2012.

[129] Freek Stulp and Olivier Sigaud. Robot skill learning: From reinforcement learn-
ing to evolution strategies. Paladyn. Journal of Behavioral Robotics, 4(1):49–61,
September 2013.

[130] Jürgen Sturm, Christian Plagemann, and Wolfram Burgard. Body schema
learning for robotic manipulators from visual self-perception. Journal of
Physiology-Paris, 103(3):220–231, 2009.

[131] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learn-
ing. MIT Press, Cambridge, MA, USA, 1st edition, 1998.

[132] Seyoon Tak and Hyeong-Seok Ko. A physically-based motion retargeting filter.
ACM Trans. Graph., 24(1):98–117, January 2005.

[133] Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learn-
ing domains: A survey. J. Mach. Learn. Res., 10:1633–1685, December 2009.

[134] Matthew E Taylor and Peter Stone. An introduction to intertask transfer for
reinforcement learning. Ai Magazine, 32(1):15, 2011.

[135] Matthew E. Taylor, Halit Bener Suay, and Sonia Chernova. Integrating re-
inforcement learning with human demonstrations of varying ability. In The
10th International Conference on Autonomous Agents and Multiagent Systems
- Volume 2, AAMAS ’11, pages 617–624, Richland, SC, 2011. International
Foundation for Autonomous Agents and Multiagent Systems.

[136] Moritz Tenorth and Michael Beetz. Knowrob: A knowledge processing infras-
tructure for cognition-enabled robots. The International Journal of Robotics
Research, 32(5):566–590, 2013.

[137] Moritz Tenorth, Alexander Clifford Perzylo, Reinhard Lafrenz, and Michael
Beetz. The roboearth language: Representing and exchanging knowledge about
actions, objects, and environments. In Robotics and Automation (ICRA), 2012
IEEE International Conference on, pages 1284–1289. IEEE, 2012.

[138] Moritz Tenorth, Alexander Clifford Perzylo, Reinhard Lafrenz, and Michael
Beetz. Representation and exchange of knowledge about actions, objects, and
environments in the roboearth framework. IEEE Transactions on Automation
Science and Engineering, 10(3):643–651, 2013.

132

[139] Ö. Terlemez, S. Ulbrich, C. Mandery, M. Do, N. Vahrenkamp, and T. Asfour.
Master motor map (mmm) – framework and toolkit for capturing, represent-
ing, and reproducing human motion on humanoid robots. In 2014 IEEE-RAS
International Conference on Humanoid Robots, pages 894–901, Nov 2014.

[140] Jo-Anne Ting, Franziska Meier, Sethu Vijayakumar, and Stefan Schaal. Locally
Weighted Regression for Control, pages 1–14. Springer US, Boston, MA, 2016.

[141] Tarik Tosun, Ross Mead, and Robert Stengel. A general method for kinematic
retargeting: Adapting poses between humans and robots. In ASME 2014 In-
ternational Mechanical Engineering Congress and Exposition, 2014.

[142] N. G. Tsagarakis, S. Morfey, G. Medrano Cerda, L. Zhibin, and D. G. Caldwell.
Compliant humanoid coman: Optimal joint stiffness tuning for modal frequency
control. In 2013 IEEE International Conference on Robotics and Automation,
pages 673–678, May 2013.

[143] A. Ude, B. Nemec, T. Petri, and J. Morimoto. Orientation in cartesian space
dynamic movement primitives. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 2997–3004, May 2014.

[144] Terry Taewoong Um, Myoung Soo Park, and Jung-min Park. Independent Joint
Learning : A Novel Task - to - Task Transfer Learning Scheme for Robot Models.
In Proc. of IEEE International Conference on Robotics and Automation, pages
5679–5684, 2014.

[145] J. Verbeek. Learning nonlinear image manifolds by global alignment of local lin-
ear models. IEEE Transactions on Pattern Analysis and Machine Intelligence,
28(8):1236–1250, Aug 2006.

[146] Sethu Vijayakumar, Aaron D’Souza, and Stefan Schaal. Incremental online
learning in high dimensions. Neural computation, 17(12):2602–2634, 2005.

[147] Markus Waibel, Michael Beetz, Javier Civera, Raffaello d’Andrea, Jos El-
fring, Dorian Galvez-Lopez, Kai Häussermann, Rob Janssen, JMM Montiel,
Alexander Perzylo, et al. Roboearth. IEEE Robotics & Automation Magazine,
18(2):69–82, 2011.

[148] Chang Wang and Sridhar Mahadevan. Manifold alignment using Procrustes
analysis. In Proceedings of the 25th international conference on Machine learn-
ing, pages 1120–1127, Helsinki, 2008.

[149] Chang Wang and Sridhar Mahadevan. Manifold alignment without correspon-
dence. In IJCAI International Joint Conference on Artificial Intelligence, pages
1273–1278, 2009.

[150] Chang Wang and Sridhar Mahadevan. Manifold alignment preserving global
geometry. In Proceedings of the Twenty-Third International Joint Conference
on Artificial Intelligence, IJCAI ’13, pages 1743–1749. AAAI Press, 2013.

133

[151] Karl Weiss, Taghi M. Khoshgoftaar, and DingDing Wang. A survey of transfer
learning. Journal of Big Data, 3(1):9, May 2016.

[152] Dit Yan Yeung and Yu Zhang. Learning inverse dynamics by Gaussian process
regression under the multi-task learning framework. The Path to Autonomous
Robots: Essays in Honor of George A. Bekey, pages 131–142, 2009.

[153] Deming Zhai, Bo Li, Hong Chang, Shiguang Shan, Xilin Chen, and Wen Gao.
Manifold alignment via corresponding projections. In British Machine Vision
Conference, BMVC 2010, Aberystwyth, UK, August 31 - September 3, 2010.
Proceedings, pages 1–11, 2010.

[154] Yusen Zhan and Matthew E. Taylor. Online Transfer Learning in Reinforcement
Learning Domains. In Proceedings of the AAAI Fall Symposium on Sequential
Decision Making for Intelligent Agents (SDMIA), November 2015.

[155] L. Zhang, Z. Cheng, Y. Gan, G. Zhu, P. Shen, and J. Song. Fast human whole
body motion imitation algorithm for humanoid robots. In 2016 IEEE Inter-
national Conference on Robotics and Biomimetics (ROBIO), pages 1430–1435,
Dec 2016.

134

