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Abstract

This thesis presents novel methods for improving the reliability of speech

recognizer outputs in spoken document processing (SDP) systems.

Chapter 1 describes the background of this study, the details and prob-

lems of SDP systems, and approaches investigated in this thesis. The two

main approaches are “error rejection” and “feedback and reprocessing,” and

the sub-approaches of each approach are document-level/word-level confi-

dence measure (CM) estimation and out-of-vocabulary (OOV) word detec-

tion. Furthermore, the main concept underlying all proposed methods is

described: Global consistency information observed in multiple utterances

or multiple spoken documents is essential in improving CM estimation and

OOV word detection.

Chapter 2 first briefly explains of the general framework of ASR, and

then summarizes conventional methods for CM estimation and OOV word

detection and their issues in SDP systems.

Chapter 3 presents a novel document-level CM estimation method based

on long-range contextual consistency information. The proposed method for-

mulates contextual consistency by using context windows that cover several

consecutive utterances; contextual consistency is the average point-wise mu-

tual information (PMI) between word pairs in each window, and it is used

as contextual CM values of the document. A smoothing method that deals

with two PMI problems triggered by data sparseness is also proposed. Ex-

periments show that the proposed document-level CM yield high correlation

coefficients between CMs and true recognition rates, 0.721. It is also con-

firmed that the enhanced CMs actually increase the precision of keyword

search on spoken documents.

In Chapter 4, an unsupervised word-level CM estimation method that fo-
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cuses on consistency information observed in multiple documents is proposed.

The issue that conventional methods cannot be applied to SDP systems in

practice due to the cost of making human-labeled training data is addressed

by a completely unsupervised framework that utilizes transcripts stored in de-

ployed systems instead of human-labeled training data. In order to calibrate

the CM of the target word by using consistency of word sequences; similar

word sequences existing in the stored transcriptions are extracted as exam-

ples. The CM of the target word is updated using the similarity weighted

average of the examples. Experiments show that the proposed word CM is

superior to conventional word posterior probabilities in terms of rejecting

incorrectly recognized words.

In Chapter 5, an OOV word detection method that uses the degree of

consistency among multiple occurrences of the same phoneme sequence is

proposed. The problem with conventional methods, they raise many false

alarms due to disfluencies in spoken documents, is avoided by utilizing the

consistency information to distinguish true OOV words from disfluencies.

The proposed method first detects recurrent segments, segments that contain

the same phoneme sequence in spoken documents by open vocabulary spoken

term discovery using a phoneme recognizer. Then, the degree of consistency

is measured by using the distribution (mean and variance) of features (DOF)

derived from the recurrent segments; the DOF is used as an input for OOV

word detection. Experiments illustrate that the proposed method can more

robustly detect recurrent OOV words than the conventional method. It is

also confirmed that detection performance improves with repetitions of the

OOV words.

Reflecting the above work, this thesis makes the following contributions:

• Reliability of speech recognizer outputs for SDP systems is improved by

the document-level/word-level CM estimation and the recurrent OOV

word detection methods, both of which are founded on global consis-

tency information.

• Both document-level/word-level CM estimation and OOV word de-

tection are technologies that realize error aware systems. This thesis

confirms that global consistency information improves CM estimation
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and OOV word detection. This means that this thesis reveals key

components of the information essential for achieving error awareness:

The long-range contextual consistency information observed in mul-

tiple utterances for detecting global document recognition errors, the

consistency information observed on multiple recognized word exam-

ples in multiple spoken documents for detecting incorrect recognition

of words, and the consistency information observed in recurrently ap-

pearing phoneme sequences for detecting the presence of OOV words.
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Chapter 1

Introduction

1.1 Background

The recent drastic progress of automatic speech recognition (ASR) technolo-

gies [42, 51] has enabled many kinds of speech processing services, such as

voice search, personal voice assistants and automatic dictation. Especially

for industrial use, spoken document processing (SDP) systems for call centers

have been receiving a lot more attention [10,46].

A spoken document is a long speech signal that contains particular

topic(s). For example, speech signals in phone calls, lectures and consumer

videos are spoken documents. SDP systems for call centers extract business

intelligence, such as customer’s needs, claims and interests, from the massive

amount of phone calls being collected. The architecture of a typical SDP

system is shown in Figure 1.1. The input spoken document (phone call) is

automatically transcribed by ASR, and the transcript is stored in a database.

Most call centers store over 10000 transcripts per day. The transcripts are

analyzed by text processing functions, such as keyword search, frequent word

extraction, or word co-occurrence analysis, for extracting important/useful

information. For example, if the name of a particular product co-occurs fre-

quently with the word “broken”, the SDP system can immediately detect

that the product is a concern.

The analyses of phone calls are conventionally performed by sampling

surveys, i.e. human operators randomly pick up several phone calls and

1
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Spoken document
(E.g. phone calls in call centers)

ASR

Text processing

Database

Transcripts

Information
(E.g. Customer needs, claims, trends, etc.)

Figure 1.1: Spoken document processing system.

confirm their contents by hearing them. While surveys by human operators

can detect precise information, they are too expensive and time consuming.

SDP systems are expected to replace this manual process. In terms of SDP

system output, high precision outweighs recall.

The problem with SDP systems is that they are prone to extracting false

information. For example, when an SDP system raises the alert that a par-

ticular product name and “broken” co-occur frequently, the word “broken”

may be an incorrectly recognized word. Such false alerts degrade the value

of SDP systems. Speech recognizer outputs are not reliable enough for SDP

systems due to recognition errors [3, 48].

Phone calls are plagued by several factors that can cause recognition

errors. The acoustic environment such as noise, microphones and codecs

vary widely for each phone call, and speaking style is spontaneous. The

transcripts of very noisy phone calls contain many incorrectly recognized

words. Even if noise is small, vocal irregularities such as repairs, hesitations

and sloppy pronunciations frequently occur in spontaneous speech and cause

recognition errors. Moreover, out-of-vocabulary (OOV) words, i.e. words not
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contained in the vocabulary of the speech recognizer, also lead to recognition

errors. OOV words are never correctly recognized. Unfortunately, important

proper names such as the names of people/places/products and technical

terms are likely to be OOV words in phone calls since it is impossible to

create a vocabulary that covers all such proper names.

The objective of this thesis is to improve the reliability of speech recog-

nizer output and thus achieve more practical SDP systems.

1.2 Approach and problem

Objective, approaches, problems and methods proposed in this thesis are

summarized in Figure 1.2. This section describes the approaches, the prob-

lems, and provides brief explanations of the proposed methods.

For SDP systems, there are two approaches to deal with recognition errors

in transcripts:

a). Error rejection approach: Detecting erroneous transcripts or mis-

recognized words and removing them in order to avoid the extraction

of false information. This approach reduces the recall of information

extraction but is still viable since precision is important for SDP sys-

tems.

b). Feedback and reprocessing approach: Adapting the ASR system

to the target spoken document and reprocessing it by the adapted ASR

system in order to reduce recognition errors directly.

The key technology for the error rejection approach is the confidence

measure (CM) [18]; it quantifies the degree of correctness of the speech rec-

ognizer output. We refer to the CM of transcripts as document-level CM, and

CM of words as word-level CM. If document-level CM accurately measures

the recognition rates of each transcript and/or word-level CM accurately

measures correctness of each word in transcripts, transcript reliability can

be improved by rejecting transcripts/words with low CM values. Creating

effective document-level/word-level CMs is the main problem in the error

rejection approach.
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[Objective]
Improving the reliability of speech recognizer outputs to enhance SDP 
system performance.

[Approach 1] Error rejection

[Approach 2] Feedback and reprocessing

[Approach 1-1] Document-level CM estimation

[Approach 1-2] Word-level CM estimation

[Approach 2-1] Unsupervised adaptation of AM/LM

[Approach 2-2] OOV word detection

[Problem 1] No conventional method. Naive method does not work 
well.
[Proposed method 1] Document-level CM estimation using 
contextual consistency information in a spoken document (Chap. 3)

[Problem 2] State-of-the-art methods cannot be practically used due to 
the cost for making training data of CM estimation models.

[Proposed method 2] Unsupervised word-level CM estimation
using contextual consistency appearing in multiple spoken documents
(Chap. 4)

Conventional unsupervised AM/LM adaptation methods are effective.

[Problem 3] Conventional OOV word detection methods raise many 
false alarms due to disfluencies.

[Proposed method 3] Robust OOV word detection focusing on 
consistency information in recurrent occurrences of OOV words
(Chap. 5)

Figure 1.2: Structure of objective, approaches, problems and proposed meth-

ods.

The feedback and reprocessing approach first modifies the ASR system

so as to reduce recognition errors and then uses the modified system to

reprocesses the target spoken documents. A general ASR system has three

components, an acoustic model (AM), a language model (LM) and a lexicon

(see Section 2.1 for more details about ASR systems). AM and LM can be

enhanced by unsupervised adaptation techniques [13,47] that adapt AM/LM

to the target spoken document by utilizing the first transcripts. The lexicon

can be enhanced by OOV word detection methods [22, 41] that detect OOV
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words uttered in spoken documents and report the presence of OOV words

to a system operator. The operator uses the report when adding detected

OOV words to the lexicon. AM/LM adaptation and OOV word detection

are the main problems in the feedback and reprocessing approach.

While word-level CMs have been widely studied [18], document-level CMs

have not been well studied since general ASR systems assume independency

between utterances and process utterances on an utterance-by-utterance ba-

sis. However, since a spoken document consists of hundreds of utterances,

we can utilize multiple utterances to develop a more effective document-level

CM. We note that the state-of-the-art word-level CM estimation method uses

supervised training as detailed in Section 2.2.2. Though supervised training

definitely improves word-level CM performance, it raises the domain depen-

dency problem of CM estimation models. In practice, making training data

for CM estimation models for each domain is difficult due to the cost. Accu-

rate word-level CMs that do not use supervised training are required. In this

thesis, we propose two novel methods for: 1) document-level CM estimation,

and 2) unsupervised word-level CM estimation.

Practical and effective AM/LM adaptation methods applicable to spoken

document processing systems have already been proposed [13,47]. However,

existing OOV word detection methods have inadequate detection accuracy.

Conventional OOV word detection methods detect sequence of acoustic units

(e.g. phonemes) that do not match in-vocabulary (IV) words. However, spo-

ken documents contain many disfluencies such as fillers, repairs, hesitations,

and sloppy pronunciations. Since disfluencies often consist of irregular acous-

tic sequences, conventional OOV word detection methods tend to detect dis-

fluencies as OOV words and so raise many false alarms. In this thesis, we

propose a novel OOV word detection method that can robustly detect OOV

words from spoken documents containing disfluencies.

1.3 Main idea

Document-level CM estimation, word-level CM estimation and OOV word

detection improve the error-awareness. Our key concept undergirding all

methods proposed in this thesis is that the consistency information observed
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in long contexts of more than one utterance is essential for improving error-

awareness. The consistency represents steadfast adherence to some principles

or patterns. Our intuition is that humans must utilize similar kinds of con-

sistency information to find errors.

For example, when we see a low quality transcript of a spoken docu-

ment, we can easily discern that the transcript contains many incorrectly

recognized words since the transcript does not make any sense due to con-

textually/semantically inconsistent word usage across multiple utterances.

Contextual consistency information observed in multiple utterances must be

considered as an important clue for enhancing document-level CM estima-

tion.

Furthermore, if we know particular word sequences that consistently con-

tain incorrectly recognized words in advance, for example “sun Francisco”

(“sun” is incorrect), we can easily judge that another instance of “sun Fran-

cisco” also contains an incorrectly recognized word. This information can be

obtained from other spoken documents that have already been processed and

stored in the database. In this scenario, consistency information observed in

multiple documents helps word-level CM estimation.

Finally, when we hear the same phoneme sequence multiple times in a

spoken document and cannot understand it consistently, we become aware

that the phoneme sequence is probably not contained in our vocabulary. Con-

sistency information observed across a spoken document can be considered

as a key clue for enhancing OOV word detection.

We refer to the consistency information observed in ranges of more than

one utterance as global consistency information. All methods described in

this thesis employ global consistency information to improve their perfor-

mance.

As described in Section 2.1, the general ASR framework takes, as in-

put, single utterances in isolation, i.e. utterance independency is assumed.

However, utterances in spoken documents have dependency due to topics.

Furthermore, each SDP system stores multiple documents in the database.

Thus, SDP systems can utilize global consistency information obtained from

longer range than conventional utterance-wise systems. The proposed meth-

ods leverage this property of SDP systems.
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1.4 Contribution of Thesis

This thesis makes the following contributions:

• Reliability of speech recognizer outputs in SDP systems is improved

by document-level/word-level CM estimation and recurrent OOV word

detection methods, both employ global consistency information.

• Both document-level/word-level CM estimation and OOV word detec-

tion are technologies that can yield error aware systems. This thesis

confirms that global consistency information improves CM estimation

and OOV word detection. This means that this thesis reveals three key

components of the information needed for achieving error awareness:

The long-range contextual consistency information observed in mul-

tiple utterances for detecting global document recognition errors, the

consistency information observed in multiple recognized word exam-

ples in multiple spoken documents for detecting incorrect recognition

of words, and the consistency information observed in recurrently ap-

pearing phoneme sequences for detecting errors caused by OOV words.

1.5 Outline of Thesis

The remainder of the thesis is organized as follows. Chapter 2 summarizes

previous studies of CM estimation and OOV word detection, and points out

their issues. Chapter 3 describes the framework for estimating document-

level CMs; it utilizes the contextual consistency observed in multiple utter-

ances in a single spoken document. Chapter 4 describes a novel unsupervised

word-level CM estimation method that leverages consistency information ob-

tained from multiple spoken documents. Chapter 5 describes an OOV word

detection method that utilizes consistency among recurrent appearance of

OOV words in a spoken document. Finally conclusions and future work are

described in Chapter 6.





Chapter 2

Previous Work

As described in Section 1.2, this thesis explores CM estimation and OOV

word detection technologies.

This chapter starts with a brief explanation of the general framework

of ASR. Then, representative methods of CM estimation and OOV word

detection and their issues are summarized.

2.1 Automatic speech recognition

ASR transforms an input utterance into a word sequence. An utterance

is a speech segment that contains human voice, as extracted from speech

signals by voice activity detection [44,53]. A single spoken document contains

dozens or hundreds of utterances. The ASR in SDP systems processes those

utterances on an utterance-by-utterance basis.

The general ASR system formulates the recognition process as follows:

Ŵ = argmax
W

P (W |X), (2.1)

= argmax
W

P (X|W )P (W ), (2.2)

where P (X|W ) is the likelihood of input utterance X given word sequence

W , P (W ) is the occurrence probability of word sequence W , and Ŵ is the

recognizer output. P (X|W ) and P (W ) are called the acoustic likelihood and

the language probability, respectively.

9
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Figure 2.1: The general framework of an ASR system.

Figure 2.1 shows the general framework of an ASR system. The acoustic

model (AM) computes the acoustic likelihood P (X|W ). Most ASR systems

employ the hidden Markov model and deep neural network hybrid AMs to

accurately determine the acoustic likelihood [6, 14]. AMs are preliminarily

trained by using pairs of speech signals and their manual transcriptions.

The language model (LM) computes language probability P (W ). N-gram

LM with backoff smoothing techniques [20,21] is almost always adopted. Re-

cently, the recurrent neural network language model is additionally used for

precise computation of the language probability [16, 32]. LMs are prelimi-

narily trained on texts whose topics are similar to those of the input speech.

The lexicon is a predefined word set that is expected to be uttered by

users. Words in the lexicon are called in-vocabulary (IV) words, and words

not in the lexicon are called out-of-vocabulary (OOV) words. Since the

decoder searches the word sequences consisting of IV words, OOV words are

never correctly recognized.

The decoder performs recognition by using AM, LM and the lexicon.

It generates word sequences as result hypotheses from the word set pro-

vided from the lexicon and evaluates the result hypotheses by computing

P (X|W )P (W ). Finally, the decoder outputs the result hypothesis with the

highest score as the recognizer output.

Result hypotheses generated in the decoder are represented by a directed

acyclic graph, called word lattice. Figure 2.2 shows an example of a word

lattice. Each arc has word hypothesis wi, with acoustic likelihood PA(wi) and

language probability PL(wi). Each node represents the start/end timestamp
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Figure 2.2: An example of a word lattice.

of words, tj. Each complete path from the beginning node to the end node

(t1 and t7 in Figure 2.2) represents a single result candidate.

2.2 CM estimation

CM estimation is the technology that estimates the degree of correctness

of speech recognizer outputs. Word-level CM estimation predicts the CM

of a target word in recognizer outputs; it represents the probability of the

correctness of the target word.

Word-level CM estimation techniques have been studied for decades [2,

18, 52]. This section describes the most widely used approach called word

posterior probability (WPP), improved CM estimation methods, and their

issues that remain to be addressed.

2.2.1 Word posterior probability

WPP [49] is the method most widely usded to compute word-level CMs.

WPP, which represents the degree of confusion of the speech recognizer, is

computed from the word lattice and does not require any other information.
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The posterior probability of a word hypothesis, i.e., arc a, in word lattice

G is computed by the following equation:

P (a) =

∑
C∈G,a⊂C P (C|G)∑

C∈G P (C|G)
, (2.3)

where C is a complete path in G, a ⊂ C denotes that complete path C passes

through arc a. P (C|G) is computed as follows:

P (C|G) =
∏
w⊂C

PA(w) · PL(w)
β, (2.4)

where w ⊂ C denotes that word w is included in complete path C; β is the

scaling factor of the language score. WPP P (a) can be efficiently computed

by a forward-backward algorithm [49] and directly used as a word-level CM.

P (a) is also denoted by P (w) where w is the word attached to arc a.

2.2.2 Improved CM estimation

WPP is a fundamental word-level CM and can be computed by using only

word lattices, i.e. acoustic and language models. In order to improve CM

quality, studies have investigated the use of richer information such as longer

context information than N-gram language models. This section summarizes

those studies.

Several studies have reported that contextual information is effective in

estimating word-level CMs [12, 24]. These techniques are based on the idea

that a word that appears to be contextually inconsistent in an utterance is

likely to be wrong. The contextual consistency of an utterance hypothesis can

be calculated by using word relatedness measures derived by latent semantic

analysis [24] and point-wise mutual information (PMI) [12].

Another CM estimation approach uses a post-processing step to refine the

raw WPPs obtained from the recognizer. This approach, called “confidence

calibration” [52], is being progressively improved and results are promising

[7, 8, 36, 50, 52]. These methods refine the WPPs by using discriminative

models such as the maximum entropy classifier [50], conditional random field

[7, 8, 36] and artificial neural networks [52]. Such models combine many

features related to the calibration target word, and its context (i.e. words
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around the target word). Given the availability of in-domain training data

for the discriminative models, which require each word in the recognizer

output to be labelled as either correct or incorrect, the confidence calibration

approach can substantially improve the quality of confidence measures.

2.2.3 Issues

As regards error rejection in SDP systems, conventional CM estimation meth-

ods are plagued by several problems.

A spoken document consists of hundreds of utterances and includes thou-

sands of words. Thus “document-level” CMs that estimate the recognition

rate of the target spoken document can be effectively used for document-level

error rejection. Unfortunately, conventional studies have focused on word-

level CMs and document-level CMs have been ignored. The reason is that

general ASR systems assume that utterances are independent and process

utterances on an utterance-by-utterance basis. Since document-level CM es-

timation can use rich information such as longer range context information

obtained from multiple utterances, specialized algorithms for document-level

CM estimation are needed.

Word-level error rejection should also be used in combination with

document-level rejection. The confidence calibration approach effectively

yields high quality word-level CMs. However, the domain dependency of dis-

criminative models is a serious problem in actual use cases. As described in

Section 2.2.2, human-labeled in-domain training data is required for effective

confidence calibration. In practice, such as SDP systems for call centers, it is

impossible to create in-domain training data for each call center due to the

cost. Unfortunately, a WPP is the only available word-level CM estimation

method without supervised training, and its quality is insufficient.

Furthermore, the contextual information used in conventional methods

[12,24] is limited to relatively short range context, i.e., at most one utterance,

due to the utterance independency assumption. However, utterances in a

spoken document exhibit strong dependency since each spoken document

has a particular topic. Moreover, each system stores spoken documents that

are very likely to have the same topic. The longer range context information
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obtained from multiple utterances/documents has not been used for CM

estimation in previous studies.

Issues of raised by CM estimation are summarized as follows:

• Document-level CM estimation is useful in SDP systems but has not

been studied.

• State-of-the-art confidence calibration methods using supervised train-

ing cannot be applied in practical systems due to the high costs of

making human-labeled training data.

• Contextual information used in the conventional methods are obtained

from at most a single utterance.

In this thesis, we address the first issue by proposing a novel framework

for document-level CM estimation in Chapter 3. We also propose a novel

unsupervised confidence calibration method to solve of the second issue in

Chapter 4. The proposed document-level CM estimation uses contextual

information obtained from multiple utterances, and the proposed unsuper-

vised confidence calibration method leverages consistency information found

in multiple spoken documents.

2.3 OOV word detection

OOV words, i.e. words missing from the lexicon of the speech recognizer,

never appear in the recognizer output even if they are actually present in the

input speech. Thus some special technologies other than standard speech

recognition systems are required for handling OOV words. OOV word de-

tection is a technology that identifies speech segments where OOV words are

uttered.

For OOV word detection, the word/fragment hybrid ASR-based approach

is successful and widely used [23,28,36,40,41]. This section summarizes the

approach and its issues to be addressed.
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Figure 2.3: An example of a confusion network.

2.3.1 Confusion network

Word/fragment hybrid ASR-based OOV word detection leverages confusion

networks (CNs) [26] generated by speech recognizers. An example of a CN is

shown in Figure 2.3. The CN is a concise representation of recognition result

hypotheses and can be obtained from a word lattice through the following

steps [26]:

1. The WPPs of all words in the word lattice are computed as described

in Section 2.2.1.

2. Intra-word clustering, which merges the arcs that correspond to the

same word and overlap in time is applied. The resulting arc has the

maximum WPP among all merged arcs. For example, w3 and w7 in

Figure 2.2 overlap in time. If w3 and w7 are the same word and P (w3) >

P (w7), the arc of w7 is deleted by intra-word clustering.

3. Inter-word clustering is applied, which gathers the arcs that overlap

in time into a cluster, called a confusion set. Note that overlapping

arcs always correspond to different words after the previous step. For

example, w3, w4, w5 and w6 in Figure 2.2 are gathered into a confusion

set. Note that w7 was deleted in intra-word clustering.

4. The ϵ arc that represents a null-word is added to each confusion set.

The WPP of the ϵ arc is the sum of the WPPs of arcs removed in the
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second step.

5. The WPPs are normalized so that the sum of the WPPs among each

confusion set becomes 1.

Each confusion set represents word hypotheses in a particular segment,

called a slot. OOV word detection using CNs generated by a word/fragment

hybrid ASR process is detailed in the next section.

2.3.2 Word/fragment hybrid ASR-based OOV word

detection

A word/fragment hybrid ASR is an ASR system that uses a special lexicon

and LM, called hybrid lexicon and hybrid LM, respectively; they include not

only words but also fragments. Fragments are an important subset of all

possible subword (phoneme) sequences [41]. Thus CNs generated from the

hybrid ASR system contain both words and fragments. When OOV words

exist in the input utterance, the confusion sets corresponding to the OOV

word segments tend to contain fragments with high WPPs. OOV words can

be detected by features that capture this tendency.

The fragments, i.e. a subset of all possible phoneme sequences, are se-

lected from the LM training texts as follows [41]:

1. All words in the LM training texts are first converted into phoneme

sequences by a grapheme-to-phoneme converter such as [9].

2. A phoneme 5-gram LM is trained using the converted texts, and

entropy-based pruning [45] is applied to select important/informative

phoneme N-grams.

3. All remaining phoneme N-grams (1, 2, 3, 4 and 5-grams) in the LM are

extracted as fragments.

Since entropy-based pruning does not remove 1-grams, the fragments include

all phoneme 1-grams. Thus all possible pronunciations can be represented as

fragment sequences.
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Figure 2.4: An example of a confusion network generated by a word/fragment

hybrid ASR system.

Figure 2.4 shows an example of a CN generated from a hybrid ASR sys-

tem. wi,j denotes words and fi,j denotes fragments where i is slot index

and j is word/fragment index in the slot. Features for OOV detection are

extracted from each slot. Representative features that capture the degree of

match/mismatch to the IV words are as follows [36,41]:

• Fragment posterior: Logarithm of the sum of WPPs of fragments in

the target slot:

FragmentPosterior = log
∑
f∈F

P (f), (2.5)

where F denotes a set of fragments in the target slot.

• Word entropy: Entropy of WPPs of words in the target slot:

WordEntropy = −
∑
w∈W

P (w) logP (w), (2.6)

where W denotes a set of words in the target slot.

• 1-best posterior probability: Maximum log WPP in the target slot.

• LM score: Log N-gram probability of the word/fragment that has the

largest WPP in the target slot.
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• LM back-off order: The back-off order of the 3-gram of

word/fragment with the largest WPP in the previous 2 slots and the

target slot.

These values are computed for each slot, and the values of surrounding slots

are concatenated as context features. They are concatenated into one fea-

ture vector and input to an IV/OOV classifier, such as a maximum entropy

classifier, a conditional random field, or an artificial neural network.

2.3.3 Issues

A big problem of conventional OOV word detection methods is that they trig-

ger many false alarms due to disfluencies such as fillers, repairs, hesitations,

or sloppy pronunciation. Word/fragment hybrid ASR-based methods detect

the CN slot that does not match any IV word. Disfluencies are not OOV

words, but do not match IV words since they consist of irregular phoneme

sequences. Thus the conventional hybrid ASR-based method readily detects

disfluencies as OOV words. Achieving disfluency-robustness is an important

issue in OOV word detection.

In Chapter 5, we address this issue by proposing a novel OOV word

detection framework that utilizes consistency information among recurrent

appearance of OOV words in a spoken document in order to separate true

OOV words and disfluencies.



Chapter 3

Spoken Document Confidence

Estimation Using Contextual

Consistency

3.1 Overview

As described in Section 1.2, error rejection is one of the two approaches to

improve SDP system performance. In SDP systems, document-level rejection

that removes poorly recognized spoken documents from the systems can be

utilized as well as word-level rejection.

Document-level error rejection is based on a document-level CM esti-

mation method that computes a CM that accurately predicts the recogni-

tion rates of each spoken document. However, as described in Section 2.2.3,

document-level CM estimation has not been studied since the general as-

sumption of ASR systems is utterance independency.

As described in Section 1.3, our key idea for document-level CM esti-

mation is to leverage the contextual consistency information observed in

multiple utterances. Several studies have reported that even if the range

of context is limited to one utterance, contextual consistency is effective in

estimating word-level CMs [12,24]. In our task, estimating a document-level

CM, contextual consistency is an especially powerful source of information,

since a single spoken document usually consists of a few dozen to hundreds

19
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Figure 3.1: An example of a Japanese transcript with 45% recognition rate.

Misrecognized words are shown in bold.

of utterances on the same topic. In other words, we can use recognition hy-

potheses with long ranges of up to several utterances to obtain contextual

consistency. The transcripts of spoken documents that offer high recogni-

tion rates exhibit strong consistency over several consecutive utterances. In

contrast, low recognition rate transcripts exhibit strong inconsistency over

several utterances. In the example of Figure 3.1, the Japanese transcript

with 45% recognition rate contains recognized words that do not make any

sense at all. The difference in contextual consistency between high and low

recognition rate transcripts is marked.

Based on this understanding, we propose a method that uses contextual

consistency over several utterances for estimating a document-level CM. The

proposed method sets windows covering several utterances in the transcript

of a spoken document, and calculates CM values from the contextual consis-

tency of the content words in each window.

Contextual consistency is formulated as the arithmetic mean of point-

wise mutual information (PMI) in the window following [12]. However, data

sparseness triggers two problems in PMI. The first one is that the PMI of

word-pairs that are not present in the training sets cannot be calculated.

The second one is that PMI values become too large when the occurrence

frequencies of the words of a word-pair are quite low. Our solution is a PMI

smoothing method that overcomes both problems.
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Automatic transcription
of spoken document D
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Calculating 
contextual consistency

...Bag of words B1 Bag of words BL

Contextual consistency
of bag of words CC(BL)

Contextual consistency
of bag of words CC(B1)

...

Arithmetic mean

Confidence score
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Figure 3.2: Flow chart of proposed spoken document CM estimation.

3.2 Spoken document CM estimation

The entire flow of the spoken document CM estimation proposal is shown in

Fig. 3.2.

First, windowing is applied to the automatically generated transcript of

spoken document D. The purpose of windowing is to obtain contextual

consistency from the range that covers just one topic by adjusting the window

length. We assume that topics can be switched within a spoken document,

as in phone conversations. Strong contextual consistency is not guaranteed

if multiple topics are covered by one window. Therefore, division of the

document into segments that cover single topics, windowing, is required.

Window length is expressed as N content words and the amount of win-

dow shift is M content words (N > 1 and 1 ≤ M ≤ N). Each window

includes N content words and other words. The content words in each

window are extracted and taken to be the bag of words for that window.
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The spoken document is taken to be the set of all bags of content words,

D = {B1, B2, · · · , BL}, where L denotes the number of extracted bags of

words.

The contextual consistency of each bag of words is calculated. The pro-

posed method formulates the contextual consistency based on the idea that

contextual consistency is low if the relationships between the words in a bag

are weak. The contextual consistency of bag of words Bl, which consists of

N content words, w1, w2, · · · , wN , is calculated as

CC(Bl) =
1

N

N∑
i=1

log
P (wi|Bl \ {wi})

P (wi)
, (3.1)

where Bl \ {wi} is the bag of words Bl from which wi is omitted (i.e. the set

of neighbor words of wi), P (wi) is the probability that wi occurs in Bl and

P (wi|Bl \ {wi}) is the probability that wi occurs in Bl when the neighbor

words of wi are given. Cc(Bl) is the normalized log likelihood ratio and

tests whether the occurrences of each word in Bl are due to a relationship

with neighbor words or due entirely to chance. When Cc(Bl) is small, the

relationships of words in Bl are weak and the contextual consistency is low.

It is difficult to accurately estimate P (wi|Bl \ {wi}) since the num-

ber of combinations of words in Bl is enormous relative to the amount of

data actually available. Consequently, the proposed method approximates

P (wi|Bl \ {wi}) as the geometric mean of the probabilities that wi occurs in

Bl when each neighbor word of wi is given. This is calculated as

P (wi|Bl \ {wi}) ≈

(
N∏

j=1,j ̸=i

P (wi|wj)

) 1

N − 1
. (3.2)

Substituting Eq. (3.2) into Eq. (3.1) yields the contextual consistency of bag
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of words Bl as follows.

Cc(Bl) ≈
1

N

N∑
i=1

log

(∏N
j=1,j ̸=i P (wi|wj)

) 1
N−1

P (wi)
, (3.3)

=
1

N

N∑
i=1

log

(
N∏

j=1,j ̸=i

P (wi, wj)

P (wi)P (wj)

) 1

N − 1
, (3.4)

=
1

N(N − 1)

N∑
i=1

N∑
j=1,j ̸=i

log
P (wi, wj)

P (wi)P (wj)
, (3.5)

where P (wi, wj) is the probability that both wi and wj occur in Bl.

Eq. (3.3) is the arithmetic mean of PMI of all word-pairs in Bl. PMI

indicates the strength of the relatedness of a word-pair [4]. When the con-

textual consistency of Bl is low (i.e. Bl includes many error words), more of

the word-pairs in Bl are less likely to co-occur. Accordingly, the right side

of Eq. (3.3) becomes small. Therefore, approximating Cc(Bl) by Eq. (3.3)

is appropriate as a measure of contextual consistency.

The context-based CM, Cc(Bl), can be combined with the decoder-based

CM, i.e. WPP [49]. The decoder-based CM of Bl is calculated as follows:

Cd(Bl) =
1

N

N∑
i=1

logP (wi|O), (3.6)

where O is the input acoustic features, and P (wi|O) is the WPP obtained

from the ASR decoder. The ASR decoder uses short-range linguistic infor-

mation, i.e. the word trigram. In contrast, our context-based CM estimation

uses longer-range linguistic information over more words, but does not use

the word order information that the word trigram contains. It is expected

that these two CMs complement each other. The combined CM is calculated

as the linear interpolation of Cc(Bl) and Cd(Bl):

Ccd(Bl) = λ · Cc(Bl) + (1− λ) · Cd(Bl), (3.7)

where λ is the interpolation weight (0 ≤ λ ≤ 1).

Finally, the arithmetic mean of Ccd(Bl) is calculated as the CM of spoken
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document D;

C(D) =
1

L

L∑
l=1

Ccd(Bl). (3.8)

3.3 Smoothing pointwise mutual information

The proposed method calculates the contextual consistency of a bag of words

as the mean of PMI of all word-pairs in the bag by Eq. (3.3). Unfortunately,

if data is sparse, PMI suffers two problems. Our PMI smoothing method can

handle both problems.

3.3.1 Two problems of PMI

The PMI of two words, x and y, is expressed as follows [4].

PMI(x, y) = log
P (x, y)

P (x)P (y)
= log

f(x, y) ·K
f(x)f(y)

, (3.9)

where f(x) is the occurrence frequency of x (the number of bags of words

that include x), f(x, y) is the co-occurrence frequency of x and y, and K

is the total frequency (the number of all bags) in the training set. Positive

PMI values indicate that x and y tend to co-occur more often than chance.

Negative PMI values indicate that x and y tend not to co-occur more than

chance, and PMI becomes 0 when x and y are independent.

The two problems are found in Eq. (3.9);

1. PMI cannot be calculated when f(x, y) = 0. In this case, PMI always

becomes −∞ according to the above definition.

2. PMI becomes too large when f(x) and f(y) are small. For example,

when f(x) = f(y) = f(x, y) = 1, PMI(x, y) is logK (K exceeds 100,000

in practice). Meanwhile when f(x) = f(y) = f(x, y) = 50, x and y have

a stronger relationship than is true in the former case. Nevertheless,

PMI(x, y) is smaller, log(K/50).

Guo et al. proposed a smoothing technique in order to deal with the

first problem [12]. This technique corrects the co-occurrence frequencies and



3.3. SMOOTHING POINTWISE MUTUAL INFORMATION 25

probabilities by adding a constant and interpolating as follows.

f(x, y) := f(x, y) + I, (3.10)

P (x, y) :=
P (x, y) + αP (x)P (y)

1 + α
. (3.11)

I and α are parameters optimized manually on a development set. All word-

pairs have more than 0 frequency by this correction. However, this smoothing

method does not deal with the second problem.

3.3.2 Proposed smoothing method

The proposed PMI smoothing method deals with both problems as follows.

Against the first problem, it corrects the frequency of unobserved word-

pairs using the simple Turing estimator [11]. The co-occurrence frequencies

are corrected as follows.

f̂(x, y) =

f(x, y) if f(x, y) > 0,
N1

N0

otherwise,
(3.12)

where N1 is the number of word-pairs observed once in the training set and

N0 is the number of unobserved word-pairs. All word-pairs have non-zero

frequency by this correction. This correction does not require manual pa-

rameter optimization.

Next, to counter the second problem, we introduce the idea that PMI

should be 0 if f(x) and f(y) are too small to permit the relationship of the

word-pair to be judged. The proposed method uses the t-test to examine

whether f(x) and f(y) are large enough or not. The t-score, which tests

whether the difference between P (x, y) and P (x)P (y) is significant or not, is

calculated as follows [5].

t(x, y) ≈ |P (x, y)− P (x)P (y)|√
P (x,y)

K

,

=
|f̂(x, y)− f(x)f(y)

K
|√

f̂(x, y)
. (3.13)
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Table 3.1: Summary of evaluation task.

Size 782 phone calls (61 hours)

Utterance style Spontaneous

Speakers 17 males / 31 females

Recording conditions 16 kHz / 16 bit

Acoustic model Triphone HMMs

Language model Word trigram

Vocabulary size 59,676 words

ASR decoder VoiceRex [15,29]

Finally, the smoothed PMI is obtained as follows.

PMI(x, y) =

log
f̂(x, y) ·K
f(x)f(y)

if t(x, y) > θ,

0 else,

(3.14)

where θ is the threshold value of the t-test, which is determined from the

significance level. Performing this t-test before PMI suppresses the second

problem. For example, when the significance level is set to 5% (θ = 1.65)

and f(x) = f(y) = f(x, y) = 1, t(x, y) becomes 1− 1/K < 1.65. Therefore,

the proposed method can let PMI(x, y) be 0 by Eq. (3.14).

3.4 Experiments

3.4.1 Experimental conditions

Table 3.1 shows the evaluation task. Each phone call was a simulated

Japanese call center dialogue. Two speakers, an operator and a customer,

talked to each other as in call center dialogues, and the utterances of each

speaker were recorded by separate microphones. 782 phone calls (391 oper-

ator channels and 391 customer channels) were used as the evaluation set.

The lengths of the phone calls ranged from 2 to 17 minutes.

We treat a phone call as a spoken document. The acoustic model and the

language model were trained by manual transcripts of 224 hours of call center
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Figure 3.3: Distribution of recognition rates in the test set consisting of 782

calls.

recordings. Both training sets differed from the evaluation set. The average

recognition rate (character correctness) of the evaluation set was 79.56%;

the minimum was 48.95% and the maximum was 91.76%. In this study, we

use characters instead of words as the units for computing the recognition

rate to prevent the recognition rate from being varied by the word boundary

ambiguity of Japanese. The entire distribution of the recognition rates is

shown in Figure 3.3.

Window length N and window shift amount M in the windowing proce-

dure, described in Section 3.2, were optimized so as to maximize the corre-

lation coefficient between the true recognition rates and the document CMs

on a development set consisting of 212 phone calls. As a result, N = 20 and

M = 10. The development set differed from both the training and evalua-

tion set. Nouns and verbs in the recognition vocabulary were used as content

words. The word occurrence/co-occurrence frequencies used for calculating

PMI were counted on the 113,079 bags of words (K = 113079), which were

extracted from the training set of the language model by the windowing

procedure.
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3.4.2 Results

3.4.2.1 PMI smoothing

In order to evaluate the effect of our PMI smoothing procedure, the following

4 conditions of PMI smoothing were compared; “No smoothing”: PMI was

not smoothed at all (when f(x, y) = 0, PMI was large, negative, and con-

stant), “Conventional”: PMI was smoothed by the method described in [12],

“Proposed (Turing)”: PMI was smoothed by the method proposed in Sec-

tion 3.3.2 using only the Turing estimator (without the t-test), “Proposed

(Turing+t-test)”: PMI was smoothed by the proposed method with both

Turing estimator and the t-test. In the “Conventional” condition, smooth-

ing parameters I and α (in Eq. (3.10) and Eq. (3.11)) were optimized on

the development set and were, as a result, fixed to I = 0.10 and α = 0.15,

respectively. In the “Proposed” condition, the significance level of the t-test

was set to 5% (θ = 1.65) as recommended in [5]. In this experiment, the

context-based CMs were not combined with the decoder-based CMs, i.e. λ

was set to 1 in Eq. (3.7). The effectiveness was evaluated using the cor-

relation coefficients between the CMs and recognition rates of each spoken

document, which were calculated for the entire evaluation set.

Table 3.2 shows the results. “Conventional” and “Proposed (Turing)”

offered higher correlation coefficients than “No smoothing,” and the highest

correlation, 0.614, was achieved by using “Proposed (Turing+t-test).”

“Conventional” addresses the fist problem described in Section 3.3.1, i.e.

the zero-frequency problem, by Guo’s PMI smoothing method [12]. Im-

provement from “No smoothing” to “Conventional” means the effectiveness

of solving the first problem. ”Proposed (Turing)” also addresses the first

problem and offered slightly higher correlation than “Conventional.” This

means the proposed frequency correction based on the Turing estimator is ef-

fective since ”Proposed (Turing)” requires no manual parameter tuning while

“Conventional” has two parameters (I and α).

In addition to deal with the first problem, ”Proposed (Turing+t-test)”

addresses the second problems, i.e. too large PMI for low frequency word-

pairs, by adopting the t-test. The improvement from “Proposed (Turing)“

to “Proposed (Turing+t-test)“ was achieved by dealing with both the first
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Table 3.2: CM improvement by PMI smoothing.

PMI smoothing Correlation coefficient

No smoothing 0.371

Conventional 0.485

Proposed (Turing) 0.514

Proposed (Turing+t-test) 0.614

and second problems.

3.4.2.2 Combination of context-based and decoder-based CMs

In order to evaluate the combination of the context-based CM and the

decoder-based CM, we compared the following 3 conditions: ”Context-

based”: Same condition as the “Proposed (Turing+t-test)“ in Section 3.4.2.1

(λ = 1 in Eq. (3.7)), ”Decoder-based”: CMs are computed by Eq. (3.7) with

λ = 0, ”Context+decoder”: CMs are computed by Eq. (3.7) with λ = 0.1.

The interpolation weight lambda was optimized on the development set.

Table 3.3 shows the results. ”Context+decoder” attained a higher correla-

tion coefficient than either ”Context-based” or “Decoder-based” conditions.

The difference between “Decoder-based” and “Context+decoder” was sta-

tistically significant with p < 10−6 by the Meng-Rosenthal-Rubin test [31].

This result confirmed that the long-range context information used by the

context-based CM and the short-range linguistic information used by the

decoder-based CM complement each other in generating a more effective

spoken document CM as expected in Section 3.2.

The scatter plot of all spoken documents in “Context+decoder” condition

is illustrated in Fig. 3.4. It is confirmed that the points demonstrate a linear

arrangement and that our CMs can predict the recognition rates of each

spoken document even in the evaluation set that includes both operator’s

and customer’s speech.
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Table 3.3: CM improvement by combining context-based and decoder-based

CMs.

CM Correlation coefficient

Context-based 0.614

Decoder-based 0.696

Context+decoder 0.721
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Figure 3.4: CMs and recognition rates of each spoken document in the con-

dition of “Context+decoder” (r = 0.721).

3.4.2.3 Spoken document rejection

The purpose of document-level CM is to reject low quality transcripts of

spoken documents for suppressing information retrieval errors in SDP sys-

tems. Specifically for keyword search systems of spoken documents, search

precision is expected to be improved by rejecting transcripts with low CMs

before keyword search. In order to evaluate this improvement, we conducted
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spoken document search experiments.

First, a CM was created for each spoken document in the test set, then

documents with low CM values were rejected by reference to a decision

threshold. The set of accepted documents were treated as the target of

keyword search; documents that include the query word were retrieved as

relevant documents.

We changed the rejection rate by altering the decision threshold. For each

rejection rate, keyword search was performed using 1714 nouns, all proper

nouns in the test set, as search queries. The performance was evaluated by

the average precision (AP ), average precisions of all search queries. AP was

calculated as follows:

AP =
1

Q

Q∑
i=1

NiC

NiH

, (3.15)

where Q is the total number of queries, NiH is the number of documents

retrieved by the i-th query, and NiC is the number of correctly retrieved

documents. We counted a retrieved document as correct when the manual

transcription of the document included the query word. AP decreased when

the query was found to match misrecognized words.

We compared two document CMs, “decoder-based” and “Con-

text+decoder” in Section 3.4.2.2. As a reference, we also investigated

the ideal condition where true recognition rates were used instead of CMs

(“Ideal”).

Table 3.4 shows the results. At all rejection rates of 10~90%, “Con-

text+decoder” yielded higher AP than “Decoder-based” condition. The dif-

ference between “Context+decoder” and “Decoder-based” was statistically

significant with p < 10−4 by the one-sided t-test. This result indicates that

context-based CMs are effective in actual SDP systems. Even though actual

rejection rate depends on the application and the number of stored spoken

documents, the proposed method is effective in various practical situations

since it improved search precision at all rejection rates.
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Table 3.4: Improvement in average precision by spoken document rejection.

Rejection Average precision [%]

rate [%] Decoder-based Context+decoder Ideal

0 69.83 69.83 69.83

10 70.58 71.28 71.80

20 72.26 72.64 73.18

30 73.25 73.73 74.95

40 74.06 74.38 76.14

50 75.20 75.92 78.08

60 76.56 77.39 80.06

70 79.08 79.80 82.92

80 81.91 82.96 85.80

90 86.84 87.25 89.02

3.5 Summary

This chapter presented a method that can, for each spoken document, esti-

mate a document-level CM that accurately represents the recognition rate of

each document. The proposed method uses word contextual consistency over

several utterances for spoken document CM estimation. We also proposed a

new smoothing method that deals with the two problems of PMI triggered

by data sparseness.

Experiments were conducted to evaluate how accurately our spoken doc-

ument CM estimated the recognition rate. The results showed that our

document-level CM estimation framework with the PMI smoothing method

yields higher correlation between CMs and true recognition rates than con-

ventional PMI smoothing methods. It was also confirmed that combining

the proposed context-based CMs and the conventional decoder-based CMs

is effective in estimating spoken document CMs. Furthermore, keyword

search experiments with document rejection using the document CM pro-

posal showed that introducing contextual consistency information to CM

estimation improves search precision and is beneficial for actual SDP sys-

tems.
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The experiments detailed in this chapter confirmed that the long-range

contextual consistency information effectively complements the short-range

information in estimating document-level CMs.





Chapter 4

Unsupervised Word Confidence

Calibration Using Examples of

Recognized Words and Their

Contexts

4.1 Overview

In Chapter 3, we proposed a method for estimating the document-level CM

and demonstrated its effectiveness in precision-oriented retrieval for spoken

documents. In this chapter, we focus on another approach for error rejection,

i.e., word-level rejection that excludes incorrect words in transcripts. Even

if poorly recognized spoken documents are removed by the document-level

rejection, incorrect words still appear in remaining transcripts due to the dif-

ficulty of attaining perfect recognition. Of particular importance, incorrect

content words cause false information retrieval in down-stream text process-

ing tasks such as keyword search. Word-level rejection is also important for

improving SDP system performance.

As described in Section 2.2, WPP [49] is widely used as a fundamen-

tal word-level CM, and confidence calibration methods using discriminative

models trained by human-labeled training data [7, 8, 36, 50, 52] are currently

successful approach. However, as pointed out in Section 2.2.3, it is actually

35
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impractical to apply confidence calibration methods to SDP systems due to

the cost of making the human-labeled training data needed for each domain.

Moreover, the quality of calibrated CMs is seriously degraded by the domain

mismatch problem.

In order to overcome the domain dependency problem and improve the

quality of CMs without labeled training data, this chapter presents a novel

framework for completely unsupervised confidence calibration. The key idea

of the proposed framework is to utilize consistency information observed in

multiple spoken documents. Specifically, the proposed method calibrates

word CMs by using the CMs of identical words, called “examples,” found

in the recognition results stored in each deployed system instead of the dis-

criminative models trained by labeled training data. Our proposal makes

it possible to improve the CM quality against unknown domain data while

totally eliminating the need and cost of creating human-labeled training data.

4.2 Example-based unsupervised confidence

calibration

4.2.1 Basic idea

Our main idea is that the correct/incorrect decision of a target recognized

word is made more reliable by using the CMs of identical words rather than

using just the target’s score. Generally, misrecognized words do not occur

randomly and tend to have typical contexts (prior and post words) as do

correct words. Therefore, identical words that have similar contexts tend to

be correct (or incorrect) to the same degree. We focus on this characteristic

and use it to improve the CMs.

We call words that are identical to the target word “examples.” Exam-

ples can be extracted from recognition results stored in deployed systems.

Among the many examples existing in the stored recognition results, those

that have similar context to that of the target word, “similar examples,”

are most important. The importance of each example is determined by the

context similarity between the target word and the example. Since similar
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examples tend to be correct or incorrect to the same degree, the CMs of

similar examples are biased high when the target word is correct, and low

when the target is incorrect.

Using the mean of the CMs of similar examples improves the cor-

rect/incorrect decision. The variance of uncalibrated CMs is large, and that

makes the correct/incorrect decision by a CM unstable. By averaging mul-

tiple CMs, which are biased high or low according to their correctness or

incorrectness, the variance becomes small, and the decision should become

stable.

Given a calibration target word, the proposed method first gathers words

identical to the target, i.e. examples of the target, from the database of the

SDP system. Then, in order to determine the importance of the examples,

context similarity between the target word and each example is measured.

The CM of the target word is calibrated to the similarity weighted mean of

the CMs of the examples.

The implementation of this idea is detailed in the next section.

4.2.2 CM calibration using similar examples

Figure 4.1 shows the flow chart of the proposed method. When a recognition

result is provided, the CMs in the result are calibrated by the procedure

consisting of example and context extraction, context similarity calculation,

and CM calibration. The input recognition result is passed through a part-

of-speech filter which drops words other than content words (nouns, verbs

and adjectives) since only content words are deemed to be important for

information extraction. The calibration procedure for the CM, ri, of the i-th

word, wi, is detailed below.

In the example and context extraction step, all K words that are identical

to target word wi are extracted from the recognition results already stored

in the database of the SDP system. These K words are examples of wi,

where w
(k)
i is the k-th example. Each example has its CM; r

(k)
i represents

the CM of w
(k)
i . Contexts of wi and each example are concurrently obtained

with context window width N , i.e. the set of N prior words and N post

words form the context of the center word. Let ci be the context of target
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Figure 4.1: Flow chart of proposed confidence calibration.

word wi, and c
(k)
i be the context of example w

(k)
i . Figure 4.2 summarizes the

notations and relationships of the target word, the examples and their CMs

and contexts.

In the context similarity calculation step, context similarities between wi

and each example are calculated in order to determine the importance of

each example. As mentioned in the previous section, the CMs of “similar”

examples should be averaged to calibrate ri and thus improve the reliability

of the correct/incorrect decision. The proposed method uses the cosine sim-

ilarity between the context of the target word, ci, and the context of each

example, c
(k)
i :

S(ci, c
(k)
i ) =

|ci ∩ c
(k)
i |√

|ci| · |c(k)i |
, (4.1)

where S(ci, c
(k)
i ) is the similarity between ci and c

(k)
i , |ci ∩ c

(k)
i | is the number
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Figure 4.2: Notations and relationships of the target word, examples and

their CMs and contexts.

of words that are commonly in ci and c
(k)
i , and |ci| and |c(k)i | are the num-

ber of words included in ci and c
(k)
i , respectively. The maximum value of

S(ci, c
(k)
i ) is 1, and the minimum value is 0 since neither the numerator nor

the denominator are negative.

In the CM calibration step, CM ri of target word wi is calibrated by

using the similarities and the CMs of the examples. The proposed method

uses context similarity (i.e. importance) to weight each example and ignores

dissimilar examples due to the assignment of low weights as follows:

r̂i =
ri +

∑K
k=1 S(ci, c

(k)
i )r

(k)
i

1 +
∑K

k=1 S(ci, c
(k)
i )

, (4.2)

where r̂i is the calibrated CM of the target word wi. This is the similarity

weighted mean of the CM of wi and the examples. In determining the cal-

ibrated score, the maximum weight value of 1 is used for the uncalibrated

(original) score of the target word, ri. The calibrated CM r̂i ranges from 0

to 1 since the proposed method assumes WPPs as uncalibrated CMs. In Eq.
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(4.2), while r
(k)
i can be replaced by calibrated score r̂

(k)
i , we consider the case

of uncalibrated scores.

The CMs of all words in the input recognition result are calibrated by

the above procedure. This procedure is “confidence calibration” since it is

a post-processing step that uses outputs of a general ASR engine (1-best

hypotheses and CMs). Note that this method is completely unsupervised

since this procedure only uses automatically generated information, i.e. CMs

(ri and r
(k)
i ) and the words present in the recognition results (wi, w

(k)
i , ci and

c
(k)
i ), and is domain independent since it uses the data generated by deployed

systems.

4.3 Experiments

In order to evaluate the effectiveness of our proposal, we conducted two

experiments on a call center task as follows:

• Experiment 1: CM distributions

The objective of this experiment is to validate the main idea in Section

4.2.1, that is the variance of CMs can be reduced by our proposal of

using similarity weighted means of CMs of the examples.

• Experiment 2: CM quality

This experiment evaluates the improvements in the quality of CMs

yielded by the proposed calibration in terms of the performance of

incorrect word detection.

The conditions and results of the experiments are described below.

4.3.1 Experimental setup

Phone calls recorded in an actual call center were used in the experiments.

Table 4.1 shows utterance domains (topics) and data set size of the evaluation

set.

Each phone call was transcribed by the WFST-based ASR decoder,

VoiceRex [15, 29]. The acoustic model was speaker independent 3-state left-

to-right triphone HMMs, which were discriminatively trained by the dMMI
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Table 4.1: Data descriptions of the evaluation set.

Utterance domain Contract of Internet services

# of calls for test 275 calls (39 hours)

Character error rate 19.6%

# of correct words 79,419

# of incorrect words 14,746

criterion [30] using a 224 hour training set. The language model was trained

against a set consisting of manual transcripts of call center recordings, with

a total of 1 million words. The vocabulary size was 59676 words. Both

training sets differed from the evaluation set. Character error rate of the

evaluation set was 19.6% and the numbers of correct and incorrect words

after part-of-speech filtering, which passed only nouns, verbs and adjectives

in the evaluation set, were 79,419 and 14,746, respectively (the 4th and 5th

rows in Table 4.1).

WPPs [49] were given for each word as uncalibrated CMs. The examples

used in the proposed method were extracted from the recognition results of

calls using the leave-one-out approach, i.e. examples were extracted from

274 calls in the evaluation set other than the target test call.

The only parameter of the proposed method is context window width

N . N was optimized on the development set, which differed from both the

training and evaluation set, and was fixed to N = 5.

In Experiment 2, CM quality of the proposed method was compared to

the quality of the uncalibrated WPP and that of the conventional supervised

calibration method using discriminative models. Maximum entropy (Max-

Ent) model was used as the discriminative model [50, 52]. 1-gram, 2-gram

and 3-gram of word and part-of-speech tag, and WPP of the calibration tar-

get word and its prior and post 2 words were used as features, which can be

extracted from the recognizer outputs in the post-processing step.

The training data for the MaxEnt model is the ASR transcript set; the

words are manually labeled as either correct or incorrect. We assume the

situation where the system is deployed to a new call center. Usually in this

situation, the human-labeled training data is not available due to cost and
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Table 4.2: Reduction in standard deviation of CM distributions from uncal-

ibrated WPP to calibrated WPP by the proposed method.

WPP Calibrated WPP

Mean Std. dev. Mean Std. dev.

Correct 0.75 0.24 0.80 0.16

Incorrect 0.47 0.26 0.52 0.22

time constraints. Using the MaxEnt model already trained by other call

center data is a possible solution for the conventional supervised method.

To simulate this out-of-domain condition, the MaxEnt model was trained

against labeled recognition results of 782 calls (61 hours) recorded in a call

center different from that of the evaluation set. The ideal (but not practical)

situation for the conventional method is where the labeled training data of the

target call center is available. We also simulated this in-domain condition

by training the MaxEnt model using the labeled recognition results of a

part of the evaluation set (4-fold cross validation on the evaluation set was

conducted). The out-of-domain condition representing the situation of a

new domain call center is our main target, and the ideal in-domain condition

is merely a reference. In Section 4.3.3, “Conventional” denotes the out-of-

domain condition, and “Ideal” denotes the in-domain condition.

4.3.2 Results of Experiment 1

Table 4.2 shows the means and standard deviations of both the uncalibrated

and calibrated CMs of the correct and incorrect words.

The standard deviations of CMs of both correct and incorrect words are

diminished after calibration, but the difference in the means between correct

and incorrect words was not changed (∆Mean from uncalibrated to calibrated

WPP were 0.05 in both conditions). The reduction in variances for both

correct and incorrect words was statistically significant (p < .01 by the F-

test).

These results validate our idea that calibration based on the similarity

weighted mean of CMs of examples reduces the variance of CMs. This vari-
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ance reduction should make the correct/incorrect decision more reliable.

4.3.3 Results of Experiment 2

CM quality was assessed by the normalized cross entropy (NCE). NCE can

be calculated without using thresholds and is used for evaluating the overall

CM quality [8, 52]. NCE is defined as follows:

NCE =
Hbase −Hcond

Hbase

, (4.3)

Hcond = −
M∑
i=1

log [riδ(yi = 1) + (1− ri)δ(yi = 0)], (4.4)

Hbase = −m log (
m

M
)− (M −m) log (1− m

M
), (4.5)

where M is the number of total (correct and incorrect) words, m is the

number of correct words and ri is the CM of the i-th word. yi = 1 if the

i-th word is correct, yi = 0 otherwise, and δ(x) = 1 if x is true and δ(x) = 0

otherwise. NCE becomes large when the CMs have good quality, i.e. the

CMs of correct words are biased high and the scores of incorrect words are

biased low.

As a preliminary experiment, we investigated the relationship between

the number of examples used for calibration and the quality of calibrated

CMs. We limited the maximum number of examples to Kmax, i.e. Kmax ex-

amples that have higher context similarity were used for calibration by Eq.

(4.2) when the number of extracted examples was more than Kmax. Table

4.3 shows the NCEs of calibrated CMs for several Kmax values. Kmax = 0

means that the CMs were uncalibrated. Kmax = ∞ means the maximum

number of examples was not limited. Basically the NCEs increased as Kmax

increased, but the improvement became small when Kmax ≥ 30. The pro-

posed method uses the weighted average CMs of the examples. The weighted

average becomes stable when sufficient numbers of examples are used. This

result confirmed that stable confidence calibration can be achieved by using

30 or 40 examples in our experiments.

We now compare the NCEs of uncalibrated and calibrated CMs for the

evaluation task (see Section 4.3.1 for the details of each condition). Kmax
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was set to 40 in the proposed method. The results are shown in Table 4.4.

The CMs calibrated by the proposed method outperformed the uncalibrated

WPPs and the conventional method in the out-of-domain condition. This

indicates that the proposed unsupervised calibration is more effective than

conventional supervised calibration if human-labeled in-domain training data

is not available.

A general application of CMs is incorrect word detection. The perfor-

mance of incorrect word detection by thresholding the CMs was evaluated

by precision and recall. The precision is calculated as Ni/Nd, where Nd is

the number of words whose CM is under the threshold and Ni is the number

of incorrect words whose CM is under the threshold. The recall is calculated

as Ni/NI , where NI is the total number of incorrect words in the evaluation

set.

Figure 4.3 shows the precision-recall curve that plots the precision and

recall values when the detecting threshold is altered in each condition. The

conventional method could yield very high performance in the ideal condition

if the in-domain training set was used (“Ideal”). However, in the out-of-

domain condition where the training set of another call center was used, the

performance of the conventional method fell dramatically (“Conventional”).

The line (performance) of the proposed unsupervised calibration method is

always above the lines of uncalibrated WPP and the conventional method

in the out-of-domain condition. This confirms that the proposed calibration

method can yield better CMs in terms of the performance of incorrect word

detection than either WPP or the conventional method in the situation where

the labeled data is not available.

The results described in this section confirm that the proposed unsuper-

vised calibration method can yield CMs that have better quality than either

WPP or the supervised calibration method if different domain training data

is used. This means that the proposed method is valuable in practical sit-

uations where manually labeled in-domain data cannot be created, such as

deploying the system to a new call center.
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Table 4.3: Relationship between the maximum number of examples and CM

quality.

Kmax 0 1 3 5 10 20 30 40 50 70 ∞
NCE 0.015 0.100 0.144 0.160 0.173 0.181 0.184 0.186 0.187 0.188 0.190

Table 4.4: Improvements in NCE from uncalibrated WPPs to calibrated

WPP achieved by conventional and proposed methods.

WPP
Calibrated WPP

Conventional Proposed Ideal

0.015 0.119 0.186 0.563

4.4 Summary

This chapter presented a novel unsupervised confidence calibration frame-

work that uses examples of recognized words and their contexts present in

the recognition results stored in deployed systems; it does not require any

human-labeled training data at all. This framework makes it possible to

improve the quality of word-level confidence measures in situations where

in-domain labeled data is not available, such as the case of SDP systems

newly deployed in a wide variety of call centers. The proposed method is

based on the idea that the mean of confidence scores of the examples whose

contexts are similar to the target word are more reliable than just the tar-

get’s score. The confidence score of the target word is calibrated to the

similarity weighted mean of the confidence scores of the examples found in

the recognition results stored in the deployed system

Experiments showed that the calibration proposal stabilized cor-

rect/incorrect decision by reducing the variance of confidence scores and

improved the performance of incorrect word detection on actual call cen-

ter data. The results validated our idea and confirmed that the proposed

method can yield greater improvements in the confidence measure quality

and the accuracy of incorrect word detection than the conventional method

in the practical situation where manually labeled in-domain data is not avail-

able.
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Figure 4.3: Improvements in incorrect word detection performance from un-

calibrated WPPs and the conventional calibration method achieved by the

proposed method on the unknown domain task.

The proposed method can yield more accurate word confidence measure

than conventional methods in a completely unsupervised manner. The suc-

cess of the proposed approach confirmed that the consistency information

observed on multiple examples present in multiple spoken documents is es-

sential for word-level confidence estimation.
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Recurrent Out-of-Vocabulary

Word Detection Based on

Distribution of Features

5.1 Overview

As described in Section 1.2, out-of-vocabulary (OOV) word detection is crit-

ical if we are to enhance the “feedback and reprocessing” approach. An ASR

engine can correctly recognize only in-vocabulary (IV) words that are con-

tained in the lexicon of the ASR engine, and OOV words are never correctly

recognized. Furthermore, important keywords that are repeatedly uttered

in a spoken document, e.g. names of people/places/products or technical

terms, are likely to be OOV words since it is impossible to create a lexicon

that covers all words possible. Even though the impact on the word error

rate (WER) is small, such important OOV words likely to be content bear-

ing and thus have a big impact on down-stream text processing that uses

keywords in the recognizer outputs. Thus, detecting important OOV words

and adding them to the lexicon of the ASR engine is essential for improving

SDP systems.

As described in Section 2.3, word/fragment hybrid ASR-based OOV word

detection is a successful approach. However, the big problem is its many false

alarms due to disfluencies such as fillers, repairs, hesitation, or sloppy pro-

47
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nunciation. This problem seriously hampers SDP system effectiveness since

spoken documents are usually spontaneous speech containing more disfluen-

cies than read speech.

The conventional hybrid ASR-based methods use features that represent

OOV likelihood, which are extracted from confusion networks (CNs) gener-

ated by the hybrid ASR. To reduce false alarms caused by disfluencies we

need some additional information that can separate OOV words and disflu-

encies. To this end, our key idea is to utilize the consistency of recurrent

OOV words in a spoken document as mentioned in Section 1.3. True OOV

words tend to have consistent syntactic and phonetic properties across mul-

tiple occurrences since they are words. On the other hand, disfluencies have

weak consistency since they are not words. Extending the detection process

to include the degree of consistency should improve the robustness of OOV

word detection.

Based on this idea, this chapter presents a novel method that reduces

false alarms by correctly detecting recurrent OOV words; for this we utilize

their repeated appearance in spoken documents. The proposed method first

detects recurrent segments, segments that contain the same word, in a spoken

document by open vocabulary spoken term discovery using a phoneme rec-

ognizer [19,35,39]. The degree of consistency is then measured by using the

distribution (mean and variance) of features (DOF) derived from the recur-

rent segments. When the same OOV word appears in multiple segments, the

posterior probabilities of fragments in those segments become consistently

high. This property can be captured by our DOF as large mean and small

variance values. Finally, the DOF is used for robust IV/OOV classification.

Obviously this approach has a drawback in that singleton OOV words,

i.e. OOV words that do not occur repeatedly, cannot be detected. However,

we believe that detecting recurrent (important) OOV words with high pre-

cision is critical for practical lexicon maintenance operation. Actually, Our

examination of academic lectures found that 66% of OOV words were uttered

more than one time (see Section 5.3.1).
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Figure 5.1: Recurrent OOV word detection using distribution of features.

5.2 Method for recurrent OOV word detec-

tion

The full procedure of our recurrent OOV word detector is illustrated in Figure

5.1.

The input spoken document is decoded by both a phoneme recognizer
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and a word/fragment hybrid recognizer. From the output of the phoneme

recognizer, recurrent segments, segments in which the same word is uttered,

are detected by the recurrent segment discovery module. Standard slot-by-

slot features are extracted from the CN yielded by the hybrid recognizer.

DOFs are computed by using the slot-by-slot features that correspond to the

recurrent segments. The slot-by-slot features and our DOF are concatenated

and input to the IV/OOV classifier, and each recurrent segment is classified

as either IV or OOV.

Note that Figure 5.1 shows the simplest case in which only one pair of

recurrent segments are detected. Actually many recurrent segments (no over-

laps) will be detected and the DOF computation and IV/OOV classification

are applied to each recurrent segment. Details of each module are given

below.

5.2.1 Recurrent segment detection based on phoneme

recognition

In order to discover the phonetically consistent segments without the influ-

ence of OOV words, we use an ASR system without linguistic constraints,

i.e. a phoneme recognizer. The input spoken document is converted into a 1-

best phoneme sequence by phoneme recognition using a deep neural network-

based triphone HMM (DNN-HMM) acoustic model and a phoneme 3-gram

LM.

The objective of recurrent segment discovery is detecting segments

wherein the same word is uttered. We borrow the idea of subword-based

open vocabulary spoken term detection [19, 35, 39], and assume that simi-

lar sub-sequences appearing in a 1-best phoneme sequence can be treated

as the same word. In the proposed method, similar phoneme sub-sequences

are extracted by two steps: 1) Detecting sub-sequences whose frequency is

at least N and length (number of phonemes) is at least L, and 2) clustering

phonetically similar sub-sequences.

All sub-sequences that have at least frequency N and length L can be

efficiently extracted by the PrefixSpan algorithm [37] which is widely used

for frequent sequential pattern mining [34]. We set L to 5 since most OOV
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words have at least 5 phonemes (approximately 3 Japanese moras), and N

to 2 for extracting as many as possible recurrent segments (i.e. OOV word

candidates). Sub-sequences are extracted with timestamps in the spoken

document, and if detected sub-sequences overlap, they are merged into one

longer sub-sequence.

Even if the same word is uttered, the decoded phoneme sequences are

likely to be slightly different because of ambiguity in pronunciation or

phoneme recognition errors. In order to deal with these small differences,

we collect similar sub-sequences based on the edit distance between sub-

sequences. The distance between two sub-sequences, s1 and s2, is calculated

as the normalized edit distance:

D(s1, s2) =
edit(s1, s2)

max(|s1|, |s2|)
, (5.1)

where edit(s1, s2) is the edit distance between s1 and s2, and |s1| and |s2|
are the number of phonemes in s1 and s2, respectively. The edit distance

is unweighted, i.e. insertion, deletion and substitution are treated equally.

D(s1, s2) becomes 0 when s1 and s2 are the same, and 1 when phonemes

consisting of s1 and those consisting of s2 do not overlap at all.

Since the number of unique words in each spoken document is unknown,

the number of clusters cannot be pre-determined. Thus, we employ a graph-

based clustering method that detects the appropriate number of clusters

automatically. A similarity graph of sub-sequences is constructed based on

the normalized edit distance (similarity is 1 − D(s1, s2)), and input to the

graph-based clustering algorithm. In our experiments, the Chinese Whis-

pers algorithm [1] is used as the graph-based clustering method, as it is

parameter-free and has been reported to have good performance [27]. Sub-

sequences in the same cluster are treated as recurrent segments. The use of

edit distance-based clustering ensures that segments with phonetic consis-

tency are extracted as recurrent segments.

Recurrent segments are candidates of recurrent OOV words, and each re-

current segment is an IV/OOV classification target. Note that the start/end

timestamps of the segments do not necessarily match the start/end times-

tamps of actual words; multiple segments can overlap a word and multiple

words can overlap a segment, which leads to ambiguity in counting correctly
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classified segments. In this study we define a segment as corresponding to

the word that has the longest overlap. Thus each segment always has one

corresponding word while some words do not have any corresponding seg-

ments. In principle the start/end timestamps of detected OOV segments do

not strictly match the timestamps of actual OOV words, however, in prac-

tice this subtle difference is not a problem since the human system operators

usually check the detected segments and their surroundings by ear.

5.2.2 Slot-by-slot feature extraction using hybrid ASR

The input spoken document is also processed by the word/fragment hybrid

ASR to extract slot-by-slot features.

First, fragments are selected from the LM training texts by the procedure

described in Section 2.3.2. In our experiments, we adjusted the parameters

of the entropy-based pruning so as to select 10K fragments as in [41].

In order to compare our method to the conventional method, the

word/fragment hybrid lexicon and the hybrid 3-gram LM are also constructed

in the same manner as [41]. The hybrid lexicon and 3-gram LM are con-

structed on the LM training texts in which words with frequency 1 are

replaced by their fragment sequences. A fragment sequence of a word is

determined by the leftmost longest match to the pronunciation (phoneme

sequence) of the word obtained from the grapheme-to-phoneme converter.

Note that the hybrid LM does not contain an UNK (unknown word) symbol

since fragment sequences are used instead of the UNK symbol.

ASR using the word/fragment hybrid LM generates the CNs against the

input spoken document. Features for OOV word detection are extracted

from each slot. As the slot-by-slot features, we use the feature set described

in Section 2.3.2, i.e. fragment posterior, word entropy, 1-best posterior prob-

ability, LM score, and LM back-off order. The effectiveness of these values

was reported in previous studies [36,41]. The five features are computed for

each slot, and the features of surrounding 4 slots, i.e. the previous 2 and the

post 2 slots, are used as the context. A concatenated 25 dimensional vector

is used as a slot-by-slot feature of the target slot. We do not use the word

itself as a feature since the raw lexical information is highly dependent on
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the domain (topic) of the LM training texts.

5.2.3 DOF computation

In order to capture the consistency of the slot-by-slot features from the mul-

tiple appearances of the same word, distribution of features (DOF) are com-

puted using the sub-sequence cluster (i.e. recurrent segments) obtained in

Section 5.2.1.

Our DOF consists of the means and variances of slot-by-slot features. If

recurrent segments in a cluster are recurrent OOV words, the segments are

likely to have consistently OOV-like features, e.g. large fragment posteriors.

This consistency is captured by taking the means and variances in the cluster,

e.g. large mean and small variance of fragment posteriors strongly indicate

that the recurrent segments in the cluster are recurrent OOV words. These

statistics should be a more robust indicator of OOV than the individual

slot-by-slot features.

A DOF is computed for each cluster as follows:

1. Slot-by-slot features corresponding to the cluster are selected based on

timestamps. For each recurrent segment in the cluster, a slot-by-slot

feature that has the longest overlap is selected as the corresponding

feature.

2. The DOF of the cluster, d, is computed as the element-wise means and

variances of the selected slot-by-slot features:

µ =
1

M

M∑
m=1

vm, (5.2)

σ = diag

{
1

M

M∑
m=1

(µ− vm)(µ− vm)
T

}
, (5.3)

d = [µTσT ]T , (5.4)

where M denotes the number of recurrent segments in the cluster, and

vm denotes the corresponding slot-by-slot feature of the m-th recur-

rent segment in the cluster. T denotes vector transposition and diag

represents the vector consisting of the diagonal elements of the matrix.
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Table 5.1: Data set sizes.

Group #lectures Time length Vocab. size

A 1351 266h 62741

B 1350 265h 62887

As a result, them-th recurrent segment in the cluster has a 75 (25 slot-by-slot

and 50 DOF) dimensional feature vector, [vT
md

T ]T , and this vector is used

for IV/OOV classification. Note that recurrent segments in a cluster share

the same DOF. By applying the above procedure to all clusters, all recurrent

segments are assigned their own 75 dimensional feature vector with DOF.

5.2.4 IV/OOV classification

IV/OOV classification is based on the standard supervised training frame-

work. A training set, a set of spoken documents in which true OOV segments

are known, is used for training a classifier. The timestamps of the true OOV

segments are obtained by forced alignment using manual transcriptions. The

trained classifier is used for labeling recurrent segments in the test spoken

documents either IV or OOV. Feature vectors with DOF described in Section

5.2.3 are used for classification.

Several binary classifiers can be used for IV/OOV classification. We use

a multi-layer perceptron (MLP) for classification since the proposed DOFs

are real values and an MLP can use real values as input without any quanti-

zation. Note that sequence classifiers such as the conditional random field or

the recurrent neural network are not suitable since the classification targets

(recurrent segments) do not necessarily form a sequence as shown in Figure

5.1.
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Table 5.2: Word/phoneme error rates.

SNR Group %WER %PER

Clean A 22.9 10.2

Clean B 23.0 10.3

10dB A 31.5 17.3

10dB B 32.1 17.6

5dB A 44.7 28.1

5dB B 45.5 28.9

Table 5.3: Data used in the experiments.

Group Test 1 Test 2 Test 3 Test 4

A-1 ASRtrain ASRtrain OOVtrain Test

A-2 ASRtrain ASRtrain Test OOVtrain

B-1 OOVtrain Test ASRtrain ASRtrain

B-2 Test OOVtrain ASRtrain ASRtrain

5.3 Experiments

5.3.1 Data

The Corpus of Spontaneous Japanese (CSJ) [25] was used for OOV word

detection experiments. It consists of 2701 Japanese academic lectures (531

hours, 7M words) with manual transcriptions. It includes various topics

such as signal processing, Japanese history, and geography. Each lecture was

treated as one spoken document.

The lectures were randomly split into two groups to make ASR training

sets so that the amounts of the two groups were balanced. Table 5.1 shows the

size of the groups. The DNN-HMM acoustic model, the hybrid lexicon and

the hybrid 3-gram LM trained on Group A were used for recognizing Group

B, and vice versa. The DNN of the acoustic model had 8 hidden layers with

2048 sigmoid units and a softmax output layer with 3072 units, which was

initialized by discriminative pre-training [43] and fine-tuned by stochastic

gradient descent (SGD) with momentum. 11 consecutive frames (center,
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Figure 5.2: Histogram of number of OOV repetitions in a lecture.

previous 5 and post 5 frames) of 38 dimensional acoustic features (12MFCC,

12∆MFCC, 12∆∆MFCC, ∆power and ∆∆power) were concatenated and

input to the DNN. The same acoustic model is used in the hybrid ASR and

the phoneme recognizer. JTAG [9] was used as the grapheme-to-phoneme

converter in training the hybrid LM. Decoding was performed by the WFST-

based decoder VoiceRex [15,29]. In this setting, total number of OOV words

in Group A and B was 79826, and the OOV rate was 1.1%. Figure 5.2 shows

the histogram of the number of OOV word repetitions per lecture. According

to the histogram, 66% of OOV words in a lecture appeared at least twice.

In order to reveal the impact of the error rates of the speech recognizers

on OOV detection, we conducted experiments on two noisy conditions in

addition to the clean condition. In the noisy conditions, all lectures were

contaminated by white noise with signal to noise ratios (SNR) of 10dB and

5dB. Table 5.2 shows WERs of the hybrid ASR and phoneme error rates

(PERs) of the phoneme recognizer of Group A and B in clean, 10dB, and

5dB conditions. In the experiments the decoding parameters were adjusted so

as to minimize the error rates and thus obtain reasonably accurate start/end

timestamps.
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To make a training set for the OOV classifier separately from the ASR

training set, we conducted two-fold cross validation. Table 5.3 shows the

data used in our experiments. “ASRtrain” and “OOVtrain” represent the

training sets of ASR and OOV classifier, respectively. All 2701 lectures were

used as a test set through the four tests, and the overall results are reported

in Section 5.3.3.

5.3.2 Experimental conditions

The parameters of recurrent segment discovery, hybrid ASR and slot-by-

slot feature extraction are described in Sections 5.2.1 and 5.2.2. The MLP

for IV/OOV classification has 2 hidden layers with 64 sigmoid units and a

softmax output layer with 2 (IV or OOV) units. It was randomly initialized

and trained by standard SGD with momentum. The momentum coefficient

was set to 0.9. At the same time, 10% of samples were randomly selected

from the training set of the OOV classifier and separated as a validation

set. The learning rate was initialized to 0.08 and halved when classification

accuracy on the validation set was decreased, and training was stopped when

the learning rate fell under 0.0008. The model parameters that yielded the

highest accuracy on the validation set were used in the test.

The true IV/OOV segments in the lectures were labeled by forced align-

ment using manual transcriptions. Recurrent segments and their feature

vectors were extracted by the method described in Section 5.2. As described

in Section 5.2.1, each recurrent segment corresponded to an actual word that

had the longest overlap. In training, recurrent segments that corresponded to

OOV words were treated as positive samples, and those that corresponded to

IV words were treated as negative samples. In testing, the MLP gave OOV

probabilities to recurrent segments, and the segments whose OOV probability

exceeded a decision threshold were classified as OOV.

Note that recurrent segments are only a portion of each entire spoken doc-

ument, i.e. there were the segments that were not extracted as the recurrent

segments. Such segments were not classified as OOV. The segments corre-

sponding to IV words and misclassified as OOV were counted as false alarms.

The segments corresponding to OOV words and misclassified as IV and the
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true OOV words that had no corresponding recurrent segments were counted

as misses. When segments that overlap true OOV words were misclassified

as IV, they were counted as misses even if other segments corresponding to

the same OOV word were correctly classified as OOV.

The performance was evaluated by the receiver operating characteristic

(ROC) curve, the contour of false alarm probabilities and OOV detection

probabilities formed when the threshold is varied. The false alarm probabil-

ity, P (FA), and the OOV detection probability, P (OOVdet), were computed

as follows:

P (FA) =
NFA

NDetect

, (5.5)

P (OOVdet) = 1− NMiss

NOOV

, (5.6)

where NFA is the number of false alarms, NDetect is the number of recurrent

segments classified as OOV, NMiss is the number of misses, and NOOV is the

number of true OOV words.

In order to evaluate the effectiveness of DOF, we compared the following

two conditions:

• Baseline: Classify recurrent segments using only slot-by-slot features

described in Section 5.2.2.

• Baseline+DOF: Classify recurrent segments using the slot-by-slot

features and DOF described in Section 5.2.3.

Moreover, the performance of DOF may be dependent on the number of OOV

word repetitions since DOF represents the statistics of multiple features.

Thus we compared the detection performance of OOV words repeated at

least twice and that of OOV words repeated 5 or more times in a lecture.

The true OOV segments appearing once in a lecture are ignored (i.e. not

classified as OOV and not counted as misses) in “freq ≥ 2” condition, and

those appearing 4 or fewer times in a lecture are ignored in “freq ≥ 5”

condition.
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Figure 5.3: ROC curve of recurrent OOV word detection with/without DOF

(Clean).

5.3.3 Results

5.3.3.1 Detection performance

The ROC curves are shown in Figures 5.3, 5.4 and 5.5. The two curves

yielded with DOF lie above the curves created using only slot-by-slot features

in all conditions. At any OOV detection probability, the use of DOF yielded

an over 60% relative reduction in false alarms. This result confirms that

the DOF extracted by the proposed framework dramatically reduces the

detection errors of recurrent OOV words.

In both “Baseline” and “Baseline+DOF” conditions, detection error rate

in “freq. ≥ 5” were lower than those in the “freq. ≥ 2” condition, but

larger improvement was yielded when our DOF was used. This means that

our framework effectively utilizes the repeated appearance of OOV words.

While our DOF is effective in detecting OOV words repeated at least twice,

it becomes more powerful as the number of OOV word repetitions increases.

When the decision threshold was set to yield the false alarm probability

of 5% in the clean condition, the ratio of the number of false alarms in
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Figure 5.4: ROC curve of recurrent OOV word detection with/without DOF

(10db).
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Table 5.4: Examples of correct detection in “Baseline+DOF (freq ≥ 5)”

condition.

Detected word # of repetitions Category

shinjiko (“Lake Shinji”) 12 Name of place

matsumori-akiko (“Akiko Matsumori”) 10 Name of person

juman (“JUMAN”) 18 Name of system

enpo-tadamasa-bon (“Enpo Tadamasa Book”) 6 Name of ancient text

tandemu (“tandem”) 5 Technical term

nomoguramu (“nomogram”) 7 Technical term

ten-yaku (“translation into Braille”) 30 Technical term

Table 5.5: Examples of false alarms in “Baseline+DOF (freq ≥ 5)” condition.

Detected word # of repetitions Category

joutan-katan (“top and bottom end”) 5 Rare phrase with IV words

tatami-komu (“convolute”) 7 Rare phrase with IV words

ee-kono (“well this”) 6 Disfluency with consistency

disfluency (filler) segments to the total number of false alarms in “Baseline

(freq ≥ 2)” and “Baseline+DOF (freq ≥ 2)” conditions were 17.2% and 9.4%,

respectively. This confirms that our DOF can effectively reduce false alarms

created by vocal irregularities as expected.

Noise also causes false alarms. In noisy conditions (Figure 5.4 and 5.5),

OOV detection performance was degraded from the clean condition. How-

ever, the degradation by noise was alleviated by using DOF as was seen for

vocal irregularities. For example, at the OOV detection probability of 50%,

the false alarm probability of “Baseline+DOF (freq ≥ 2)” was degraded 0.5%

from clean to 10dB, whereas “Baseline (freq ≥ 2)” was degraded 2%.

5.3.3.2 Example analyses

In order to more fully understand the property of the proposed method, we

analyzed individual detection results in several lectures. In this section, we

pick up and discuss some important examples. Detected words and their
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Table 5.6: Examples of misses in “Baseline+DOF (freq ≥ 5)” condition.

Missed word # of repetitions Category

shindoushi (“oscillator”) 5 Existence of IV homonyms

kaisetsu (“diffraction”) 7 Existence of IV homonyms

suikou (“revise”) 15 Existence of IV homonyms

phonetic transcriptions shown in Tables 5.4 and 5.5 were manually extracted

from correct transcriptions of the test sets according to the detected times-

tamps and true OOV timestamps obtained by forced alignment.

Table 5.4 shows examples of correctly detected OOV words in “Base-

line+DOF (freq ≥ 5)” in clean speech condition. OOV words that have

short and long length and were repeated a few and many times were de-

tected. These words were proper names and technical terms related to the

main theme or detailed technical descriptions. It is confirmed that repeatedly

uttered OOV keywords could actually be detected by the proposed method.

Table 5.5 shows examples of false alarms raised in “Baseline+DOF (freq

≥ 5)” in clean speech condition. First and second examples, joutan-katan

and tatami-komu, were phrases consisting of IV words (joutan, katan, tatami

and komu were included in the vocabulary of the recognizer). However, the

2-grams, joutan katan and tatami komu, occurred only a few times in the

training text of the LM. It can be considered that low LM scores are the

cause of these false alarms. Though these examples were falsely detected

as OOV words, the addition of these phrases as composite words to the

recognizer’s vocabulary would reduce LM mismatch. Thus these examples

are considered as false but beneficial alarms.

The third example in Table 5.5 is obviously a false alarm caused by dis-

fluency. Although the proposed method reduces the impact of disfluencies

by utilizing the degree of consistency as DOF, the speaker of the lecture had

tendency to insert ee (“well”) before kono (“this”). This example broke our

assumption that vocal irregularities have weak consistency. While it indicates

the limitation of DOF-based OOV detection, most disfluencies actually have

weak consistency and the overall number of disfluency-caused false alarms

was reduced as described in Section 5.3.3.1.
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Table 5.6 shows examples of missed OOV words in “Baseline+DOF (freq

≥ 5)” in clean speech condition. In our analyses, the existence of IV

homonyms was found to be a typical cause of misses. For example, the

missed OOV word, kaisetsu (“diffraction”), has a homonym, kaisetsu (“ex-

planation”), in Japanese. The IV homonyms likely have high posterior prob-

ability in the CN slot corresponding to the OOV word. This makes the

fragment posterior and the word entropy small, and classifying the slot as

OOV becomes difficult. This is seen as another problem of the conventional

word/fragment hybrid ASR-based OOV detection approach and is not ad-

dressed in this study.

5.4 Summary

This chapter presented a novel framework to extract effective features for

detecting recurrent OOV words in a spoken document, such words seriously

degrade the performance of speech recognizers. In order to deal with the

sensitivity to disfluencies and improve the robustness of OOV word detection,

we focused on the consistency of recurrent OOV words observed in a spoken

document. The proposed method first discovers recurrent segments wherein

the same word is uttered by using a phoneme recognizer, and uses the means

and variances of slot-by-slot features corresponding to the recurrent segments

as DOF for IV/OOV classification.

Experiments on 2701 academic lectures showed that the use of DOF

achieves over 60% relative reduction of false alarms in both clean and noisy

conditions. We also confirmed that our framework effectively reduces false

alarms due to disfluencies and noise by utilizing the repetition of OOV words;

our DOF becomes more effective as the number of repetitions increases. De-

tailed analyses of detection results revealed that the proposed method could

actually detect OOV keywords in the lecture set.

The substantial improvement yielded by the proposed framework con-

firmed that the consistency information observed in a spoken document can

greatly contribute to OOV word detection.





Chapter 6

Conclusions

6.1 Usage of the proposed methods in SDP

systems

This thesis proposed document-level/word-level CM estimation and OOV

word detection methods for improving SDP systems. This section qualita-

tively discusses the usage of the methods in SDP systems.

Both the document-level and the word-level CM estimation method take

the error rejection approach, and are intended to be used simultaneously

in SDP systems. The document-level rejection removes ill-recognized tran-

scripts, while the word-level rejection further cleanses the remaining tran-

scripts. Therefore, the decision threshold of document-level CM is usually

set to a low value so as to remove poor quality transcripts. The decision

threshold of the word-level CM should be adjusted according to the impor-

tance of precision.

Since the OOV word detection method belongs to the feedback approach,

it is used independently of the CM estimation methods. Actually, OOV words

such as the names of new products are generated day by day. Thus, OOV

word detection should be periodically applied to keep the lexicon of the ASR

system fresh so as to catch and use the new words. Note that some of these

new words will have short lifetimes. In order to prevent unlimited expansion

of the lexicon, it is effective to add only OOV words appearing in the latest

spoken documents to the basic lexicon.
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6.2 Summary of thesis

This thesis has presented novel methods for improving the reliability of speech

recognizer outputs in SDP systems.

In Chapter 1, the background of this study, the details and problems

of SDP systems, and approaches investigated in this thesis were described.

The two main approaches described are “error rejection” and “feedback and

reprocessing,” and the sub-approaches for error rejection and feedback ap-

proaches were document-level/word-level CM estimation and OOV word de-

tection, respectively. Furthermore, the main concept underlying all proposed

methods was described; the use of global consistency information observed

in multiple utterances or multiple spoken documents is essential to improve

CM estimation and OOV word detection.

Chapter 2 first provided a brief explanation of the general framework of

ASR, and then summarized conventional methods for CM estimation and

OOV word detection and their issues in SDP systems.

Chapter 3 presented a novel document-level CM estimation method based

on long-range contextual consistency information. The proposed method

formulated contextual consistency in a context window that covers several

consecutive utterances as an average PMI between word pairs in the win-

dow, and used it to generate contextual CMs of the document. A smoothing

method that deals with two problems of PMI triggered by data sparseness

was also proposed. Experiments showed that the proposed document-level

CM yielded high correlation coefficients between CMs and true recognition

rates, 0.721. It was also confirmed that the improvement of CMs actually

increased the precision of keyword search on spoken documents. Chapter 3

confirmed that the long-range contextual information observed in several ut-

terances effectively complements the short-range information obtained from

one utterance.

In Chapter 4, an unsupervised word-level CM estimation method that

focuses on consistency information observed in multiple documents was pro-

posed. The issue that conventional methods cannot be applied to SDP sys-

tems in practice due to the cost of making human-labeled training data was

addressed by a completely unsupervised framework that utilizes transcripts
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stored in deployed systems; it dispenses with the need for human-labeled

training data. In order to calibrate the CM of the target word by using con-

sistency of word sequences; similar word sequences existing in stored tran-

scriptions are extracted as examples. The CM of the target word is updated

as similarity weighted average of the examples. Analysis of the standard

deviation of the CMs revealed that this calibration stabilized the word CMs.

Experiments showed that the proposed word CM significantly improved the

performance of incorrect word rejection over conventional WPPs. Chapter

4 confirmed that the consistency information observed in multiple spoken

documents is essential for word-level CM estimation.

In Chapter 5, an OOV word detection method that uses the degree of

consistency among multiple occurrences of same phoneme sequence was pro-

posed. The weakness of conventional methods, they raise many false alarms

due to disfluencies in spoken documents was addressed by utilizing the con-

sistency information to separate true OOV words from disfluencies. The

proposed method first detects recurrent segments, segments that contain the

same phoneme sequence in a spoken document by open vocabulary spoken

term discovery using a phoneme recognizer. Then, the degree of consistency

is measured by using the distribution (mean and variance) of features (DOF)

derived from the recurrent segments, and use the DOF for IV/OOV classifica-

tion. Experiments illustrated that the proposed method could more robustly

detect recurrent OOV words than the conventional method. It was also con-

firmed that detection performance improved as the OOV words are repeated

more often. Chapter 5 confirmed that the consistency information observed

in a single spoken document offers a significant enhancement to OOV word

detection.

Through the three studies, this thesis made following contributions:

• Reliability of speech recognizer outputs in SDP systems can be im-

proved by using the document-level/word-level CM estimation and the

recurrent OOV word detection methods that introduce global consis-

tency information.

• Both document-level/word-level CM estimation and OOV word detec-

tion are technologies that realize error aware systems. This thesis
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confirmed that global consistency information improves CM estima-

tion and OOV word detection. This means that this thesis revealed

key components of the information needed for achieving error aware-

ness: The long-range contextual consistency information observed in

multiple utterances for global document recognition errors, the con-

sistency information observed on multiple recognized word examples

in multiple spoken documents for incorrect recognition of words, and

the consistency information observed in recurrently appearing phoneme

sequences for errors caused by OOV words.

6.3 Future work

Future work will focus on the following issues: 1) Investigation of more so-

phisticated consistency representations, 2) reduction in training data require-

ments, and 3) achieving awareness of other types of errors.

This study used basic representations of consistency; average PMI in

document-level CM estimation, weighted average of examples in word-level

CM estimation, and means and variances of features in OOV word detec-

tion. We believe that there are more sophisticated representations that will

yield even greater improvements in error awareness. For example, the neu-

ral network-based distributed representation of words [33,38] is promising for

computing the contextual consistency and similarity between word sequences.

Training data required for computing the contextual consistency and con-

structing the IV/OOV classifier should be reduced to apply the proposed

methods to many domains at reasonable cost. Domain adaptation techniques

such as [17] will be necessary for the further growth of SDP systems.

This thesis addressed three types of errors: global document recognition

errors, word recognition errors, and OOV words. However, there are other

types of errors in speech processing such as missing truly uttered IV words,

and voice activity detection errors. These were deemed beyond the scope of

this thesis but should be tackled to achieve really intelligent speech processing

systems.



Bibliography

[1] C. Biemann. Chinese whispers: An efficient graph clustering algorithm

and its application to natural language processing problems. In the first

workshop on graph based methods for natural language processing, pages

73–80, 2006.

[2] L. Burget, P. Schwarz, P. Matejka, M. Hannemann, A. Rastrow,

C. White, S. Khudanpur, H. Hermansky, and J. Cernocky. Combination

of strongly and weakly constrained recognizers for reliable detection of

OOVs. In IEEE ICASSP, pages 4081–4084, 2008.

[3] N. Camelin, F. Bechet, G. Damnati, and R. D. Mori. Speech mining

in noisy audio message corpus. In INTERSPEECH, pages 2401–2404,

2007.

[4] K. W. Church and P. Hanks. Word association norms, mutual informa-

tion, and lexicography. In ACL, pages 76–83, 1989.

[5] K. W. Church and R. L. Mercer. Introduction to the special issue on

computational linguistics using large corpora. Computational Linguis-

tics, 19(1):1–24, 1993.

[6] G. E. Dahl, D. Yu, L. Deng, and A. Acero. Context-dependent pre-

trained deep neural networks for large-vocabulary speech recognition.

IEEE/ACM Transaction on Audio, Speech, and Language Processing,

20(1):30–42, 2012.

[7] R. Dufour, G. Damnati, and D. Charlet. Automatic error region detec-

tion and characterization in LVCSR transcriptions of TV news shows.

In IEEE ICASSP, pages 4445–4448, 2012.

69



70 BIBLIOGRAPHY

[8] J. Fayolle, F. Moreau, C. Raymond, G. Gravier, and P. Gros. CRF-

based combination of contextual features to improve a posterior word-

level confidence measures. In INTERSPEECH, pages 1942–1945, 2010.

[9] T. Fuchi and S. Takagi. Japanese morphological analyzer using word

co-occurrence -JTAG-. In COLING-ACL, pages 409–413, 1998.

[10] T. Fukutomi, S. Kobashikawa, T. Asami, T. Shinozaki, H. Masataki,

and S. Takahashi. Extracting call-reason segments from contact center

dialogs by using automatically acquired boundary expressions. In IEEE

ICASSP, pages 5584–5587, 2011.

[11] W. A. Gale. Good-turing smoothing without tears. Quantitative Lin-

guistics, 2(3):217–237, 1995.

[12] G. Guo, C. Huang, H. Jiang, and R. H. Wang. A comparative study on

various confidence measures in large vocabulary speech recognition. In

ISCSLP, pages 9–12, 2004.

[13] M. A. Haidar and D. O’Shaughnessy. Unsupervised language model

adaptation using LDA-based mixture models and latent semantic

marginals. Computer Speech and Language, 29(1):20–31, 2015.

[14] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-R. Mohamed, N. Jaitly,

A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury.

Deep neural networks for acoustic modeling in speech recognition. IEEE

Signal Processing Magazine, 29(6):82–97, 2012.

[15] T. Hori, C. Hori, Y. Minami, and A. Nakamura. Efficient WFST based

one-pass decoding with on-the-fly hypothesis rescoring in extremely

large vocabulary continuous speech recognition. IEEE Transaction on

Audio, Speech and Language Processing, 15(4):1352–1365, 2007.

[16] T. Hori, Y. Kubo, and A. Nakamura. Real-time one-pass decoding with

recurrent neural network language model for speech recognition. In

IEEE ICASSP, pages 6364–6368, 2014.



BIBLIOGRAPHY 71

[17] H. Daume III. Frustratingly easy domain adaptation. In ACL, pages

256–263, 2007.

[18] H. Jiang. Confidence measures for speech recognition: A survey. Speech

Communication, 45:455–470, 2005.

[19] K. Katsurada, S. Sawada, S. Teshima, Y. Iribe, and T. Nitta. Evaluation

of fast spoken term detection using a suffix array. In INTERSPEECH,

pages 909–912, 2011.

[20] S. M. Katz. Estimation of probabilities from sparse data for the language

model component of a speech recognizer. IEEE Transaction on Acoustic,

Speech and Signal Processing, 35(3):400–401, 1978.

[21] R. Kneser and H. Ney. Improved backing-off for M-gram language mod-

eling. In IEEE ICASSP, pages 181–184, 1995.

[22] S. Kombrink, M. Hannemann, and L. Burget. Out-of-vocabulary word

detection and beyond, pages 57–65. Springer, 2012.

[23] H. K. Kuo, E. E. Kislal, L. Mangu, H. Soltau, and T. Beran. Out-of-

vocabulary word detection in a speech-to-speech translation system. In

IEEE ICASSP, pages 7158–7162, 2014.

[24] B. Lecouteux, G. Linares, and B. Favre. Combined low level and high

level features for out-of-vocabulary word detection. In INTERSPEECH,

pages 1187–1190, 2009.

[25] K. Maekawa, H. Koiso, S. Furui, and H. Isahara. Spontaneous speech

corpus of Japanese. In LREC, pages 947–952, 2000.

[26] L. Mangu, E. Brill, and A. Stolcke. Finding consensus in speech recog-

nition: word error minimization and other applications of confusion net-

works. Computer Speech and Language, 14(4):373–400, 2000.

[27] A. D. Marcoa and R. Navigli. Clustering and diversifying web search

results with graph-based word sense induction. Computational Linguis-

tics, 39(3):709–754, 2013.



72 BIBLIOGRAPHY

[28] A. Marin, T. Kwiatkowski, M. Ostendorf, and L. Zettlemoyer. Using

syntactic and confusion network structure for out-of-vocabulary word

detection. In IEEE SLT, pages 159–164, 2012.

[29] H. Masataki, D. Shibata, Y. Nakazawa, S. Kobashikawa, A. Ogawa, and

K. Ohtsuki. VoiceRex – Spontaneous speech recognition technology for

contact-center conversations. NTT Technical Review, 5(1):22–27, 2007.

[30] E. McDermott, S. Watanabe, and A. Nakamura. Discriminative training

based on an integrated view of MPE and MMI in margin and error space.

In IEEE ICASSP, pages 4894–4897, 2010.

[31] X.-L Meng, R. Rosenthal, and D. B. Rubin. Comparing correlated cor-

relation coefficients. Psychological Bulletin, 111(1):172–175, 1992.

[32] T. Mikolov, M. Karafiat, J. Cemocky, and S. Khudanpur. Recurrent

neural network based language model. In INTERSPEECH, pages 1045–

1048, 2010.

[33] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Dis-

tributed representations of words and phrases and their compositional-

ity. In NIPS, pages 3111–3119, 2013.

[34] C. H. Mooney and J. F. Roddick. Sequential pattern mining – Ap-

proaches and algorithms. ACM Computing Surveys, 45(2):19:1–19:39,

2013.

[35] H. Nishizaki, H. Furuya, S. Natori, and Y. Sekiguchi. Spoken term de-

tection using multiple speech recognizers’ outputs at ntcir-9 spokendoc

std subtask. In NTCIR-9 Workshop Meeting, pages 236–241, 2011.

[36] C. Parada, M. Dredze D. Filimonov, and F. Jelinek. Contextual infor-

mation improves OOV detection in speech. In NAACL, pages 216–224,

2010.

[37] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and

M. C. Hsu. PrefixSpan: Mining sequential patterns efficiently by prefix-

projected pattern growth. In ICDE, pages 215–224, 2001.



BIBLIOGRAPHY 73

[38] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors

for word representation. In EMNLP, pages 1532–1543, 2014.

[39] J. Pinto, I. Szoke, S. Prasanna, and H. Hermansky. Fast approximate

spoken term detection from sequence of phonemes. In SSCS 2008:

Speech search workshop at SIGIR, pages 28–33, 2008.

[40] L. Qin and A. Rudnicky. Finding recurrent out-of-vocabulary words. In

INTERSPEECH, pages 2242–2246, 2013.

[41] A. Rastrow, A. Sethy, and B. Ramabhadran. A new method for OOV

detection using hybrid word/fragment system. In IEEE ICASSP, pages

3953–3956, 2009.

[42] G. Saon, T. Sercu, S. Rennie, and H.-K. J. Kuo. The IBM 2016 En-

glish conversational telephone speech recognition system. In INTER-

SPEECH, pages 7–11, 2016.

[43] F. Seide, G. Li, X. Chen, and D. Yu. Feature engineering in context-

dependent deep neural networks for conversational speech transcription.

In IEEE ASRU, pages 24–29, 2011.

[44] J. Sohn, N. S. Kim, and W. Sung. A statistical model-based voice

activity detection. IEEE Signal Processing Letters, 6(1):1–3, 1999.

[45] A. Stolcke. Entropy-based pruning of backoff language models. In

DARPA Broadcast News Transcription and Understanding Workshop,

pages 270–274, 1998.

[46] L. V. Subramaniam, T. A. Faruquie, S. Ikbal, S. Godbole, and M. K.

Mohania. Business intelligence from voice of customer. In ICDE, pages

1391–1402, 2009.

[47] P. Swietojanski, J. Li, and S. Renals. Learning hidden unit contribution

for unsupervised acoustic model adaptation. IEEE/ACM Transaction

on Audio, Speech, and Language Processing, 24(8):1450–1463, 2016.



74 BIBLIOGRAPHY

[48] S. Tsakalidis, X. Zhuang, R. Hsiao, S. Wu, P. Natarajan, R. Prasad, and

P. Natarajan. Robust event detection from spoken content in consumer

domain videos. In INTERSPEECH, pages 2101–2104, 2012.

[49] F. Wessel, R. Schluter, K. Macherey, and H. Ney. Confidence measures

for large vocabulary continuous speech recognition. IEEE Transaction

on Speech and Audio Processing, 9(3):288–298, 2001.

[50] C. White, J. Droppo, A. Acero, and J. Odell. Maximum entropy confi-

dence estimation for speech recognition. In IEEE ICASSP, pages 809–

812, 2007.

[51] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu,

and G. Zweig. The Microsoft 2016 conversational speech recognition

system. In IEEE ICASSP, pages 5255–5259, 2017.

[52] D. Yu, J. Li, and L. Deng. Calibration of confidence measures in speech

recognition. IEEE Transaction on Audio, Speech and Language Process-

ing, 19(8):2461–2473, 2011.

[53] X. L. Zhang and J. Wu. Deep belief networks based voice activity de-

tection. IEEE Transaction on Audio, Speech, and Language Processing,

21(4):697–710, 2013.



List of Publications

Journal Paper

• Taichi Asami, Ryo Masumura, Yushi Aono and Koichi Shinoda, “Recurrent

out-of-vocabulary word detection based on distribution of features,” Com-

puter Speech and Language, accepted, 2019.

• Taichi Asami, Narichika Nomoto, Satoshi Kobashikawa, Yoshikazu Yam-

aguchi, Hirokazu Masataki and Satoshi Takahashi, “Confidence estimation

of spoken document recognition using word contextual coherence,” Jour-

nal of the Acoustic Society of Japan, vol.68, no.7, pp.323–330, 2012 (in

Japanese).

International Conference Paper (Refereed)

The presenter is underlined.

• Taichi Asami, Ryo Masumura, Yushi Aono and Koichi Shinoda, “Recurrent

out-of-vocabulary word detection using distribution of features,” INTER-

SPEECH, pp.1320-1324, 2016.

• Taichi Asami, Satoshi Kobashikawa, Hirokazu Masataki, Osamu Yoshioka

and Satoshi Takahashi, “Unsupervised confidence calibration using examples

of recognized words and their contexts,” INTERSPEECH, pp.2217-2221,

2013.

• Taichi Asami, Narichika Nomoto, Satoshi Kobashikawa, Yoshikazu Yam-

aguchi, Hirokazu Masataki and Satoshi Takahashi, “Spoken document con-

fidence estimation using contextual coherence,” INTERSPEECH, pp.1961-

1964, 2011.

75



76 LIST OF PUBLICATIONS

Domestic Conference Paper (Non-refereed)

The presenter is underlined.

• Taichi Asami, Satoshi Kobashikawa, Hirokazu Masataki, Osamu Yoshioka

and Satoshi Takahashi, “Evaluation of unsupervised example-based confi-

dence calibration,” ASJ Spring meeting, 2-9-5, pp.47–48, 2013 (in Japanese).

• Taichi Asami, Hirokazu Masataki, Osamu Yoshioka and Satoshi Takahashi,

“Unsupervised case-based calibration of word confidence measures,” ASJ

Autumn meeting, 2-1-6, pp.69–70, 2012 (in Japanese).

• Taichi Asami, Narichika Nomoto, Satoshi Kobashikawa, Yoshikazu Yam-

aguchi, Hirokazu Masataki and Satoshi Takahashi, “Spoken document con-

fidence estimation using smoothed pointwise mutual information,” ASJ Au-

tumn meeting, 2-10-3, pp.57–58, 2011 (in Japanese).

• Taichi Asami, Satoshi Kobashikawa, Yoshikazu Yamaguchi, Hirokazu Masa-

taki and Satoshi Takahashi, “Evaluation of confidence estimation using word

contextual coherence and acoustic likelihood,” ASJ Spring meeting, 3-5-20,

pp.133–136, 2011 (in Japanese).

• Taichi Asami, Satoshi Kobashikawa, Yoshikazu Yamaguchi, Hirokazu Masa-

taki and Satoshi Takahashi, “Confidence estimation at the spoken document

level using word contextual coherence and acoustic likelihood,” IEICE Tech-

nical Report, vol.110, no.143, pp.43–48, 2010 (in Japanese).

Award

• The Awaya Prize Young Researcher Award, Acoustic Society of Japan, 2012.

• The Sato Prize Paper Award, Acoustic Society of Japan, 2014.

• IEICE ISS Young Researcher’s Award in Speech Field, 2016.


