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Nonlinear normal modes and localization in two bubble oscillators

Naohiro Suigtaa, Toshihiko Sugiuraa,∗

aDepartment of Mechnical Engineering, Keio University, Yokohama 2238522, Japan

Abstract

We investigated a bifurcation structure of coupled nonlinear oscillation of two spherical gas bubbles
subject to a stationary sound field by means of nonlinear modal analysis. The goal of this paper is to
describe an energy localization phenomenon of coupled two-bubble oscillators which occurs as a result of
internal resonance between the two bubble oscillation, leading to bifurcations of the steady-state oscillation
amplitudes. Approximate asymptotic solutions of nonlinear normal modes (NNMs) and a steady state
solution are obtained based on the method of multiple scales. It is found that localized oscillation takes on
in a neighborhood of the localized in-phase oscillation mode. The analytical solutions of the amplitude and
the phase shift of the steady-state oscillation are compared with numerical results and found to be in good
agreement within the limit of small-amplitude oscillation. For larger amplitude oscillation, a bifurcation
diagram of the localized solution as a function of the driving frequency and the separation distance between
the bubbles is provided in a presence of the thermal damping. The obtained results show that the localized
oscillation can occur for a fairly typical parameter range used in practical experiments and simulations in
the early literatures.

Keywords: Bubble dynamics, Coupled nonlinear oscillation, Nonlinear localization, Bifurcation, Nonlinear
normal modes, Perturbation analysis

1. Introduction

Small cavitation bubbles repeatedly change their volume in an oscillating pressure field without losing
their spherical symmetry. Such continuous response of the oscillating bubbles is referred to as stable acoustic
cavitation[1], which is employed in many engineering applications such as ultrasonic cleaning[2], ultrasound
imaging[3, 4] and therapy[5]. The interactions between sound and cavitation bubbles have been extensively5

studied because the resonant phenomenon of the bubble oscillation is an important mechanism of the above
applications.

The external acoustical energy is continuously localized to the oscillating bubble and subsequently re-
leased to surroundings as the secondary radiation pressure which, in turn, drive the neighboring bubbles,
leading to the mutual interaction of the oscillating bubbles. We can consider the bubbles as nonlinear10

oscillators coupled by the radiation pressure, and readily analyze the motion of the bubble walls on the
basis of fairly mathematical treatments: that is to say the spherical dynamics of bubbles with time-varying
radii Ri(t). As the dynamical behavior of the bubble population is practically of importance to improve the
validity of ultrasonic techniques, the coupled oscillation of resonant bubbles has been studied intensively for
many years.15

At the outset of the theoretical studies on the coupled bubble oscillation, solid mathematical consequences
have been offered by linear modal analyses[6, 7]. Zabolotskaya analyzed linear normal modes (LNMs) of
two gas bubbles pulsating in a liquid using the Lagrangian formalism, and showed that the linear normal
frequencies depends on the separation distance between the two bubbles[6]. Takahira provided a general
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derivation of coupled N bubble dynamics accounting for the translational motion and deformation of the20

bubbles on a basis of the potential solution. The resulting eigenvalue problem concluded that the frequency
of the fundamental normal mode is much smaller than that of an unbounded single bubble[7]. However, in
contrast to linear systems, extremely complex behaviors are encountered in nonlinear systems[8]. Although
nonlinear spherical dynamics of a single bubble and its bifurcation structure, including subharmonic gen-
eration, period-doubling bifurcation and chaotic oscillation, have been explored[34], little is known about25

the bifurcation structures of the coupled bubble dynamics, and most of the studies have been employed
numerical techniques[9, 10, 11, 12, 13].

The numerical study of Takahira demonstrated the period-doubling bifurcation and accompanying chaotic
oscillation of interacting multi-bubble systems[9]. The fundamental feature identified in the analysis is that
equal-sized bubbles with the same initial radii arranged in a symmetrical configuration all take on the same30

behavior similar to that of an unbounded bubble, whereas cluster bubbles with different initial equilibrium
radii cannot oscillate independently from one another but experience a collective behavior. Macdonald also
reported numerical results on the same collective behavior in multi-bubble interactions of ultrasound con-
trast agent microbubbles[10].

Herein, we particularly focus on nonlinear localization[8] of the mutual bubble interaction in which the35

total vibrational energy of the system is confined to some bubbles due to the nonlinearity of the bubble
oscillation even though they are equally-sized and arranged in a symmetric configuration. This symmetry
breaking property is one of the distinctive feature of the localized oscillation[14, 15] considered in this study.
This symmetrical arrangements and equal-sized assumption have been used in numerical investigation of the
effects of bubble sizes and spatial arrangement on the coupled bubble dynamics[11, 12, 13, 16]. However,40

the fundamental bifurcation structure of the coupled bubble dynamics has not been addressed because most
of the above studies are based on numerical investigation.

The linear modal analyses have been definitely powerful tools for interpreting the underlying linear sys-
tem. However, they are still inadequate to properly describe complicated nonlinear phenomena. In order to
make a general survey of the bifurcation structure of the coupled bubble dynamics, analytical investigation45

of nonlinear normal modes (NNMs)[8, 14] is an essential approach to a greater insight on the structural
nature of the multi-bubble dynamics. At the first attempt of NNMs, Rosenberg extended straightforwardly
the concept of LNMs to nonlinear vibration systems and defined an NNM as a vibration in unison where
all mass points in the system display periodic motions with the same period[17, 18, 19]. In the definition,
all displacements pass through their equilibrium points and reach their extreme values simultaneously. It50

should be also noted that NNMs inherit the invariance property of LNMs (i.e., motions that depart from
the NNM confined in it for all time), which is exploited to derive the NNMs in the perturbation analysis of
this study.

There have been a few studies which used a perturbative method to obtain the steady-state solution
of bubble oscillation. Prosperetti presented a second order steady-state solution of Rayleigh’s equation55

of motion for the bubble wall by means of an asymptotic expansion method[20]. The analytical results
enabled it evident to predict the multivalued solution of the nonlinear oscillation and the unstable region
of subharmonic resonance as well as their hysteresis behavior. Francescutto used an asymptotic method
of multiple scales to obtained explicit and simpler formulas for the second order approximate solution[21].
Nevertheless, since these results are for a single bubble, nonlinear resonance of the vibration modes among60

multiple bubbles are still unclear. We employ the method of multiple scales[22, 23] to derive NNMs of the
coupled bubble oscillation and investigate the internal resonance[22] of the steady-state amplitude and the
phase shift.

In the present study, we will restrict the analysis to a resonant pair of two bubbles. In order not to
limit the generality, the bubble sizes are allowed to be different in the perturbation analysis (Section 3), but65

assumed to be similar so that the two uncoupled natural frequencies of isolated bubbles have a slight differ-
ence by the order of O(ε2) where ε is a nondimensional oscillation amplitude. Since the aim of this paper is
to investigate the bifurcation structure of the radial dynamics of a resonant pair of bubbles, the separation
distance of the bubbles is assumed to be unchanged by the translational instability due to Bjerknes forces
though it is important to account for the transient response and hysteresis property for a full understanding70

of the bubble structure dynamics[24]. The circumstances of a fixed bubble distance is not improbable but

2



R
10

R
20

Bubble 1 Bubble 2

d R
i0

Far from bubbles

Figure 1: A schematic model of two oscillating bubbles.

achieved in the case of surface cavitation bubbles attached on a solid surface[25, 26]. Because of the adhesion
between the bubble and wall surface the bubble mobility is decreased, and the bubble distances tends to
remain almost fixed. Additionally, the effect of the wall boundary is replaced with a mirror image of the real
bubble. This allows the dynamics of the hemispherical bubble to be well described by the Rayleigh-Plesset75

equation for a spherical bubble in an unbounded space.
In Section 2, the equations of radial motion for the coupled dynamics of two spherical gas bubbles are

presented, and the linear theory is summarized to illustrate the basic concept of normal modes. Perturbation
analysis in Section 3 provides the approximate solution of the steady-state oscillation, and the NNMs of the
two-bubble system are developed from the perturbation solution obtained. Section 4 performs numerical80

calculations for large amplitude oscillation in a broader range of parameter spaces. Important findings and
conclusions are summarized in Section 5.

2. Radial dynamics of two spherical bubbles

We consider two gas bubbles separated by a fixed distance in a liquid driven by a stationary sound field
sketched in Fig. 1. The wave length is assumed larger enough for the two bubbles to experience the equal
driving pressure. Bubble oscillations are inertially controlled by the periodic pressure change in the far
field, and develop a secondary sound field without distorting each others sphericity. The radiation pressure
induced by one of the bubbles, bubble 1, measured at the center of the other bubble, bubble 2, is

pr =
ρ

4πd

d2V1(t)

dt2
(1)

where V1 is the time-varying volume of bubble 1, d is the separation distance between the bubble centers
which is enough larger than the wave length for the bubbles to remain spherical with the time-varing radii85

R1(t) and R2(t), respectively during oscillation. Eq. (1) is exerted on the neighboring bubbles as an
additional driving pressure, and their resulting spherical dynamics are coupled with each other.

Herein, the liquid is assumed to be cold, and the vapor pressure is omitted from the bubble contents,
while the linear thermal damping[27, 28] was used in the numerical simulation (Section 4) in order to
account for the thermal behavior of gas in the bubble. Shape and dissolution instabilities[29] are neglected90

although they are generally needed to account for lifetimes of oscillating cavitation bubbles. The fission[30]
phenomenon and rectified diffusion[31] are also not taken into account because the scope of this study is to
identify the bifurcation structure of the spherical bubble oscillators.
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2.1. Equations of radial motion

For spherical dynamics of an oscillating bubble of radius Ri(t), we use a modified form of the coupled
Keller-Miksis equation[32] which accounts for the liquid compressibility of the first order. Adding pr as a
secondary driving term into the external driving pressure and neglecting coupling terms of higher order[33,
34] lead to the equation of radial motion of bubble 2[35]:(

1− Ṙ2

c

)
R2R̈2 +

(
3

2
− Ṙ2

2c

)
Ṙ2

2

=
1

ρ

(
1 +

Ṙ2

c

)[
p2(R2, Ṙ2)− p0 − pex(t)

]
+
Ṙ2

ρc

d

dt

[
p2(R2, Ṙ2)− pex(t)

]
(2)

where dots denotes time differentiation, ρ and c are the equilibrium liquid density and the speed of sound of
the liquid, p0 is the hydrostatic pressure in the far field, pex(t) = pa sinωt is the external driving pressure,
and p2(R2, Ṙ2) is the liquid pressure at the bubble wall. It should be noted that the retarded effects in the
coupling and driving terms are neglected in Eq. (2)[35].

We assume that the behavior of the gas in the bubble is approximately polytropic and set

p2 =

(
p0 +

2S

R20

)(
R20

R2

)3κ

− 2S

R2
− 4µṘ2

R2
(3)

where R20 is the equilibrium radius of bubble 2, S is the surface tension, κ is the polytropic index, and µ is
the dynamic liquid viscosity. The equations for bubble 1 is obtained by exchanging the indices 1 and 2 in
Eqs. (2) and (3). The adiabatic natural frequency of an uncoupled bubble of R0 at rest in an unbounded
liquid media is

ωN =
1

R0

[
3γp0

ρ
+

2(3γ − 1)S

ρR0

] 1
2

(4)

where γ is the ratio of specific heats.95

2.2. Nondimensional form

In the following perturbation method, it is convenient to nondimensionalize the equations of Substituting
R1 = R10(1 + ∆x), R2 = R20(1 + ∆y) and t = ω−1

N t∗, the equations motion of the two bubbles are reduced
to (

1− ∆ẋ

C

)
(1 + ∆x) ∆ẍ+

3

2

(
1− ∆ẋ

3C

)
∆ẋ2 =

(
1 +

∆ẋ

C

)
[p∗1(∆x,∆ẋ)− Eu(1 +A∗ sinωf t)]

+
∆ẋ

C

d

dt∗
[p∗1(∆x,∆ẋ)− EuA∗ sinωf t]

− R∗3

d∗
[
(1 + ∆y)2∆ÿ + 2∆ẏ2(1 + ∆y)

]
(5)

(
1− R∗∆ẏ

C

)
(1 + ∆y) ∆ÿ +

3

2

(
1− R∗∆ẏ

3C

)
∆ẏ2 =

(
1 +

R∗∆ẏ

C

)[
p∗2(∆y,∆ẏ)− Eu

R∗2
(1 +A∗ sinωf t)

]
+
R∗∆ẏ

C

d

dt∗

[
p∗2(∆y,∆ẏ)− Eu

R∗2
A∗ sinωf t

]
− 1

d∗R∗2
[
(1 + ∆x)2∆ẍ+ 2∆ẋ2(1 + ∆x)

]
(6)
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where ∆ symbolizes small perturbation of the corresponding variables, and p∗1(∆x,∆ẋ) and p∗2(∆y,∆ẏ) are
the dimensionless liquid pressures at the bubble walls given by

p∗1 =

(
Eu +

2

We

)(
1

1 + ∆x

)3κ

− 2

We

1

1 + ∆x
− 4

Re

∆ẋ

1 + ∆x
, (7)

p∗2 =

(
Eu

R∗2
+

2R∗3

We

)(
1

1 + ∆y

)3κ

− 2R∗3

We

1

1 + ∆y
− 4R∗2

Re

∆ẏ

1 + ∆y
. (8)

Here, all the dimensionless parameters are defined with respect to R10 and ωN as

R∗ =
R20

R10
, d∗ =

d

R10
,

A∗ =
pa
p0
, ωf =

ω

ωN
, C =

c

ωNR10
,

Eu =
p0

ρω2
NR

2
10

, We =
ρω2

NR
3
10

S
, Re =

ρωNR
2
10

µ
(9)

where R∗ is the ratio of the initial radii, d∗ is the dimensionless separation distance, A∗ is the driving
pressure normalized by the static pressure in the far field, ωf is the angular frequency, C is the speed of
sound in liquid, and Eu, We and Re are Euler, Weber and Reynolds number, respectively. Since the temporal
time is nondimesionalized using the natural frequency of an unbounded bubble ωN , the order of the velocity100

and that of the acceleration of the bubble wall do not change after time differentiation if the excitation
frequency is near the natural frequency of the bubble (ωf ≈ 1). Therefore, the order of ∆ẋ and that of ∆ẍ
are assumed the same as that of ∆x in the primary resonance considered in this study. Throughout the
following perturbation analysis, we can assume small amplitude oscillation and set the order of ∆x, ∆y and
their derivatives to be a small but finite dimensionless quantity ε.105

2.3. Linear normal modes

Linear truncation and dropping the inhomogeneous terms of Eqs. (5) to (8) with respect to ∆ leads to

∆ẍ+ cx∆ẋ+ ω2
x∆x = −ex (1−∆x) sinωf t− µx∆ÿ (10)

∆ÿ + cy∆ẏ + ω2
y∆y = −ey (1−∆y) sinωf t− µy∆ẍ (11)

or in a vector form with x= (∆x,∆y)
T

Mẍ + Cẋ + (K− F sinωf t)x = 0 (12)

where ωi (i = x, y) is the partial natural frequency of the individual bubbles, ci is the damping coefficient
due to the viscous and radiation effects, µi is the strength of the acceleration’s coupling term which is
inversely proportional to the separation distance, and ei is the driving amplitude of the acoustic pressure.
Expressions for these parameters and matrices M, C, K and F are listed in Appendix A. Eq. (12) is a damped
Mathieu-type equation driven by a harmonic excitation, and the forth term on the left hand side give rise
to parametric instability when the driving amplitude and frequency satisfy specific conditions. However, we
can neglect this parametric resonance term in the small amplitude assumption.

In general, a N degrees-of-freedom linear oscillation system can have N natural frequencies and corre-
sponding LNMs which are derived from the eigenvalue problem of M−1K. We denote by ωL1 and ωL2 the
modal natural frequencies of the LNMs of the system as

ω2
L1 =

ω2
x + ω2

y −
√

(ω2
x + ω2

y)2 − 4(1− µxµy)ω2
xω

2
y

2(1− µxµy)
, (13)

ω2
L2 =

ω2
x + ω2

y +
√

(ω2
x + ω2

y)2 − 4(1− µxµy)ω2
xω

2
y

2(1− µxµy)
. (14)
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Eqs. (13) and (14) are identical with that of Zabolotsukaya[6] termed as the partial natural frequency in
the paper. Particularly for equally-sized two bubbles, the above equations become

ωL1 =
ωN√

1 + d∗−1
, (15)

ωL2 =
ωN√

1− d∗−1
(16)

whose oscillation are in-phase and out of phase, respectively. The corresponding LNMs are described in
Fig. 2, and the nondimensional parameters used are given in Table 1. The LNMs are uniquely specified by
the ratio between the inertia and stiffness of the system and invariant with respect to the state of motion.
Indeed, L1 and L2 are depicted as a straight vertical line in Fig. 2 which shows that the LNMs are not110

functions of the oscillation amplitude. What is notable is that the forced oscillation of a two-DoF system has
two resonance points in the neighborhood of the LNMs. Therefore, it is worth exploring normal modes and
their normal natural frequencies for understanding the global dynamics of coupled oscillating systems. In
the next section, we readily extend the concept of LNMs to the nonlinear modal analysis of the two-bubble
oscillators.115

3. Perturbation analysis

3.1. Small-amplitude approximation

In order to construct perturbative solutions based on a Taylor series expansion, we approximate Eqs.
(5) to (8) by truncated equations considering terms to ε3

∆ẍ+ cx∆ẋ+ ω2
x∆x = −b (1−∆x) ∆ẋ2 − βxx∆x2 − βxxx∆x3

− ex sinωf t− µx
[
(1 + ∆y)

2
∆ÿ + (1 + ∆y) ∆ẏ2

]
(17)

∆ÿ + cy∆ẏ + ω2
y∆y = −b (1−∆y) ∆ẏ2 − βyy∆y2 − βyyy∆y3

− ey sinωf t− µy
[
(1 + ∆x)

2
∆ẍ+ (1 + ∆x) ∆ẋ2

]
(18)

where βxx, βyy, βxxx and βyyy are parameters associated with the nonlinear terms (See Appendix A). The
other parameters associated with the linear terms are the same as Eq. (12) except that b = 3/2 is a constant.

For the sake of the perturbation analysis, we assume that damping coefficients ci and coupling strength
µi are of the order of O(ε2), and sound amplitude ei is of the order of O(ε3) so that all the terms in Eqs.
(17) and (18) are at least of the order of O(ε3) and set

ci = ε2ĉx, µi = ε2µ̂i, ei = ε3êi. (19)

3.2. Perturbation solution

To obtain the approximate solution of Eqs. (17) and (18), we use the method of multiple scales[23, 36].
Instead of using the driving frequency ωf as a control parameter, we use a detuning parameter σ = ε2σ̂
which indicates the deviation of ωf from ωx such that

ωf = ωx + ε2σ̂ (20)

Here, we consider nearly equal-sized bubbles and denote the difference of the natural frequencies of the
bubbles by α = ε2α̂ in the form

ωy = ωx + ε2α̂ (21)

On the basis of the method of multiple scales, we introduce three time scales t0 = t, t1 = εt and t2 = ε2t.
Accordingly, the total derivative is d/dt = D0 +εD1 +ε2D2 where Dk = ∂/∂tk denotes partial differentiation

6



with respect to tk. The approximate solution of ∆x and ∆y as functions of these multiple time scales are
assumed in the form

∆x (t0, t1, t2) = εx1 + ε2x2 + ε3x3 + · · · , (22)

∆y (t0, t1, t2) = εy1 + ε2y2 + ε3y3 + · · · (23)

where successively determined xi and yi are the solution of the εi order. After substituting Eq. (19) to (23)
into Eq. (17) and (18) and collecting powers of ε, we find following a set of partial differential equations.
O(ε) :

D2
0x1 + ω2

xx1 = 0 (24)

D2
0y1 + ω2

xy1 = 0 (25)

O(ε2) :

D2
0x2 + ω2

xx2 = −2D0D1x1 − b (D0x1)
2 − βxxx2

1 (26)

D2
0y2 + ω2

xy2 = −2D0D1y1 − b (D0y1)
2 − βyyy2

1 (27)

O(ε3) :

D2
0x3 + ω2

xx3 = −D2
1x1 − 2D0D2x1 − 2D0D1x2

− 2b(D0x1)(D1x1) + 2b(D0x1)(D0x2) + bx1(D0x1)2

− ĉxD0x1 − 2βxxx1x2 − βxxxx3
1 − µ̂xD2

0y1 − êx sinωf t
∗ (28)

D2
0y3 + ω2

xy3 = −D2
1y1 − 2D0D2y1 − 2D0D1y2

− 2b(D0y1)(D1y1) + 2b(D0y1)(D0y2) + by1(D0y1)2

− ĉyD0y1 − 2βyyy1y2 − βyyyy3
1 − µ̂yD2

0x1 − êy sinωf t
∗

− 2ωxα̂y1 (29)

The general solutions of Eqs. (24) and (25) are

x1 = Ax(t1, t2)eiωxt0 + cc (30)

y1 = Ay(t1, t2)eiωxt0 + cc (31)

where cc stands for the complex conjugate of the preceding terms on the right hand side. Substituting Eqs.
(30) and (31) into Eqs. (26) and (27) yields

D2
0x2 + ω2

xx2 = −2iD1Axeiωxt0 + bA2
xe2iωxt0 − βxxx2

1 (32)

D2
0y2 + ω2

xy2 = −2iD1Ayeiωxt0 + bA2
xe2iωxt0 − βyyy2

1 (33)

The first terms on the right hand side of Eqs. (32) and (33) produces secular terms in x2 and y2, respectively,
which make the solution grow unboundedly in time. To eliminate the secular terms, we exert following
solvability conditions:

D1Ax(t1, t2) = 0 (34)

D1Ay(t1, t2) = 0 (35)

Solving Eqs. (34) and (35), Ax and Ay turn out to be only a function of t2, and the solutions of Eqs. (32)
and (33) are

x2 = −βxx − bωx
3ω2

x

A2
xe2iωxt0 − βxx + bω2

x

ω2
x

|Ax|2 + cc (36)

y2 = −βyy − bωx
3ω2

x

A2
ye2iωxt0 − βyy + bω2

x

ω2
x

|Ay|2 + cc (37)
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Similarly, substituting Eqs. (30), (31), (36) and (37) into Eqs. (28) and (29) leads to solvability conditions
so as to eliminate the secular terms in x3 and y3.

2iωxD2Ax + iωxĉxAx − ωxKxAx|Ax|2 − ω2
xµ̂xAx −

iêx
2

eiσ̂t2 = 0 (38)

2iωxD2Ay + iωxĉyAy − ωxKyAy|Ay|2 − ω2
xµ̂yAy −

iêy
2

eiσ̂t2 + 2ωxα̂Ay = 0 (39)

where

Kx = −3βxxx
ωx

+
10β2

xx

3ω3
x

+ b

(
7ωx

3
+

10

3ωx

)
(40)

Ky = −3βyyy
ωx

+
10β2

yy

3ω3
x

+ b

(
7ωx

3
+

10

3ωx

)
(41)

To solve Eqs. (38) and (39) for Ax and Ay, we transform complex functions Ax and Ay into the polar form

εAx(t2) =
1

2
ax(t2)ei[φx(t2)+σ̂t2] (42)

εAy(t2) =
1

2
ay(t2)ei[φy(t2)+σ̂t2] (43)

where ax, ay, φx and φy are real functions of t2. Substituting Eqs. (42) and (43) into Eqs. (38) and (39),
and separating the results into the real and imaginary parts, a following set of amplitude equations for the
oscillation amplitude and the phase shift are obtained.

dax
dt

= −cx
2
ax +

ωxµx
2

ay sin (φy − φx) +
ex

2ωx
cosφx (44)

dφx
dt

= −σ − Kx

8
a2
x −

ωxµx
2

ay
ax

cos (φy − φx)− ex
2ωxax

sinφx (45)

day
dt

= −cy
2
ay +

ωxµy
2

ax sin (φx − φy) +
ey

2ωx
cosφy (46)

dφy
dt

= −σ − Ky

8
a2
y −

ωxµy
2

ax
ay

cos (φx − φy)− ey
2ωxay

sinφy + αay (47)

where the scaled parameters by using ε are reset to the original form without (̂ ). Substituting Eqs. (42)
and (43) into Eqs. (30) and (31) yields the first approximate solution

∆x = ax cos (ωf t+ φx) +O(ε2) (48)

∆y = ay cos (ωf t+ φy) +O(ε2) (49)

3.3. Nonlinear normal modes

In analogy with the LNMs, we consider undamped free oscillation of Eqs. (44) to (47). Setting cx = cy =
ex = ey = 0, and removing the driving term, the amplitude equations governing ai and φi are rewritten as

day
dt

=
1

2
ωxµxay sin (φy − φx) (50)

dφx
dt

= −Kx

8
a2
x −

1

2
ωxµx

ay
ax

cos (φy − φx) (51)

dax
dt

=
1

2
ωxµyax sin (φx − φy) (52)

dφy
dt

= −Ky

8
a2
y −

1

2
ωxµy

ax
ay

cos (φx − φy) + αay (53)
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Figure 2: The NNMs Ni (i = 1, 2, 3, 4) as a function of normal oscillation frequency ω (Case A: R10 = R20 = 10 µm). The
LNMs, L1 and L2, are also shown for comparison.

Recalling the definition of normal modes that motions which depart from a NNM confined in it for all
time, we consider the steady-state solution of Eqs. (50) to (53). To obtain explicit expression of the NNMs,
letting dax/dt = day/dt = 0 in Eqs. (50) and (52) yields

φx − φy = 0, π (54)

which correspond to in-phase and out-of-phase NNMs, respectively. Since d (φx − φy) /dt = 0 from Eq. (54),
Eqs. (51) and (53) lead to a following nonlinear algebraic relation for ax and ay.

−Kx

8
a2
x +

Ky

8
a2
y ∓

ωx
2

(
µxay
ax
− µyax

ay

)
− αay = 0 (55)

The first approximate solution of the free oscillation is

∆x = ax cos Ωx(t) +O(ε2) (56)

∆y = ay cos Ωy(t) +O(ε2) (57)

where Ωi(t) = ωxt + φi is the oscillation phase of the normal mode. The normal frequency of ∆x and ∆y,
denoted by ω1 and ω2 are given by

ω1 ≡
dΩx(t)

dt
= ωx −

Kx

8
a2
x −

ωxµxay
2ax

cos (φy − φx) (58)

ω2 ≡
dΩy(t)

dt
= ωx −

Ky

8
a2
y −

ωxµyax
2ay

cos (φx − φy) + α (59)

On the NNMs where ax and ay satisfies Eq. (55), the bubbles oscillate at the same frequency ω which are
determined by Eq. (58) and (59). In order to complete understanding a bifurcation structure of the normal
modes, the case of equally-sized bubbles is considered in the following. In this case the perturbation param-
eter α vanishes, and we can analytically obtain the oscillation frequency and amplitude at the bifurcation
point. Straightforward calculations using the symmetric property of the system and Eq. (55) lead to

(
a2
x − a2

y

) [
−Kx

8
± ωxµx

2axay

]
= 0 (60)

where Ky and µy are replaced by Kx and µx owing to the equality of the bubble sizes. Assuming ax and ay
to be positive quantities without loss of generality, Eq. (60) produces

ay =

 ax,
4ωxµx
Kxax

(φx − φy = 0)

ax (φx − φy = π)
(61)
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Figure 3: Amplitude (top) and phase shift (bottom) of the steady-state fundamental component for case B as a function of the
nondimensional driving frequency denoted by ai (i = 1, 2, 3, 4) in different colors. Solid and dashed lines stand for stable and
unstable solutions, respectively. For convenience, the NNMs in Fig. 2 are also depicted. The numerical results (circles) are the
steady-state fundamental component extracted from the FFT spectrum of time-radius curve.
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Figure 4: Steady-state solution of the branches a1 to a4 plotted in a ∆x-∆y configuration space for (a)the branch a1 at
ωf = 0.92, (b)the branch a2 at ωf = 1.02, (c)the branch a3 at ωf = 0.97 and (d)the branch a4 at ωf = 0.97, The physical
parameters are the same as those of Fig. 3. Analytical solutions are the first approximation given by Eqs. (49) and (50).
Numerical curves were obtain by time-integration of Eqs. (5) and (6).

Therefore, we obtain four types of NNMs:

N1: ax = ay, φx − φy = 0

N2: ax = ay, φx − φy = π

N3: ax ≥ ay, φx − φy = 0 (Localized mode)

N4: ax ≤ ay, φx − φy = 0 (Localized mode)

where Ni (i = 1, 2, 3, 4) denotes a branch of the four types of NNMs. The non-localized normal modes N1 and
N2 correspond to in-phase and out-of-phase NNM motions. Localized modes N3 and N4 indicate a localized
oscillation where the total vibration energy of the system is not evenly shared between the oscillators, but
confined to either one. Fig. 2 illustrates the NNMs as a function of oscillation frequency where the LNMs Li
(i = 1, 2) are also depicted for comparison. The frequency of N1 and N2 decreases with increasing oscillation
amplitude, and they asymptote to their linear counterparts L1 and L2 in the limit of zero-amplitude. The
in-phase mode N1 splits up at the bifurcation point Pb, and the localized normal modes N3 and N4 emerge
on either sides of N1 as a result of the pitchfork bifurcation. It follows that nonlinear localized resonance

10



0 100 200

Numerical

Stable

Unstable

-π

-π/2

0

b3

b2

b1

b4

d

0 100 200

0

0.1

0.2

0.3

0.4

0.5

Numerical

Stable

Unstable

b1

b4

b3

b2

d

0 100 200

0

0.1

0.2

0.3

0.4

0.5

Numerical

Stable

Unstable

b1

b4

b2

b3

d

0 100 200

Numerical

Stable

Unstable

-π

-π/2

0

b2

b3

b1

b4

d

Figure 5: Amplitude (top) and phase shift (bottom) of the steady-state fundamental component for case C as a function of the
nondimensional separation distance denoted by bi (i = 1, 2, 3, 4) in different colors. Solid and dashed lines stand for stable and
unstable solutions, respectively. The numerical results (circles) are the steady-state fundamental component extracted from
the FFT spectrum of time-radius curve.

is expected in the neighborhood of the localized NNMs if the vibration amplitude exceeds a certain critical
value. What is notable is that nonlinear localization can occur even in an equal-sized pair of bubbles which
has no structural detuning but is completly symmetric. The amplitude and the frequency at the bifurcation
point, Pb, are given by

abp = 2

[
ωxµx
Kx

] 1
2

(62)

ωbp = ωx(1− µx) (63)

Note that the amplitude at Pb is proportional to the square root of the ratio between the magnitude of120

the nonlinearity and radiation coupling. In contrast, the frequency at Pb is just a linear function of the
coupling coefficient. We note that these results are valid only for a limited parameter space with the
small-amplitude approximation. Furthermore, the bifurcation structure and their stability highly depend
on energy dissipation because the damping effect tends to smooth out the energy localization.

3.4. Steady-state solution125

The steady-state amplitude, the phase shift of ∆x and ∆y and their linear stabilities are shown in Fig. 3
as a function of the driving frequency. The separation distance is fixed to d∗ = 60, and the driving amplitude
is A∗ = 0.0250. It is clear that the forced oscillation occurs in the neighborhood of the NNMs as is the case
with linear resonance. We found that the branch a1 is connected to a saddle-node bifurcation point at its
right end, and a supercritical pitchfork bifurcation appears at the left end of a2. Consequently, there is no130

stable synchronized motion between these two bifurcation points. Instead, the localized solutions a3 and
a4 branch out from the pitchfork bifurcation point. We also notice that the localized branch a4 intersects
with the non-localized branch a1, and three stable solutions coexist within a narrow range of the driving
frequency. Comparison with the numerical results show a good agreement over the range of the parameter
limit. In Fig. 4, these four types of steady-state solutions are described in ∆x−∆y configuration space. The135

non-localized solutions, a1 and a2, look like a straight line with a positive slope of unity in Fig. 4(a) and
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Table 1: Dimensionless parameters for air bubbles in water at 298K and the atmospheric ambient pressure. The equilibrium
radii of the two bubbles are 10 µm for all the cases. Case A corresponds to an undamped free oscillation (damping and driving
pressure are removed), and the other cases are for forced oscillation with damping effects. Note that in case D and E Reynolds
number is calculated with the effective kinematic viscosity νeff = 6.73 × 10−3 m2/s, and the effective polytropic exponent
κeff = 1.10. The corresponding driving pressure are 2.5 and 100 kPa for A∗ = 2.50× 10−2 and 1.00, respectively.

Case R∗ Eu Re We C Pe A∗ ωf d∗

A 1 0.214 215 64.3 ∞ ∞ · · · · · · 60
B 1 0.214 215 64.3 ∞ ∞ 0.0250 0.9-1.1 60
C 1 0.214 215 64.3 ∞ ∞ 0.0250 0.95 5-200
D 1 0.214 215 64.3 11.4 69.5 1.00 0.3-1.1 7.5
E 1 0.214 215 64.3 11.4 69.5 1.00 0.3-1.1 3-45
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Figure 6: Time-radius curves for d∗ = 7.5, (a) ωf = 0.40 (second superharmonic resonance) (b) ωf = 0.70 (primary resonance).

(b) because of the completely synchronized in-phase motion, while the plot of localized solutions, a3 and a4,
are an elongated closed orbit with an oblique axis. The orientation of the axes are due to the localization of
the phase difference shown in Fig. 3. The immediate question is to which solution a3 or a4 does the system
converge for a typical initial condition. It requires observation of the sensitive dependence of its long-time140

behavior on initial conditions, which is beyond the scope of this paper. The steady-state amplitude and the
phase shift as a function of the separation distance d∗(= d/R10) are also shown in Fig. 5 where the driving
frequency is fixed to ωf = 0.97. The similar bifurcation structures (pitchfork and saddle-node bifurcations)
are also true as with Fig. 3 for the case of a fixed driving frequency. That is, increasing the separation
distance, d∗, brings about multi-valued stable solutions with localized oscillation, leading to a drastic jump145

phenomenon at about d∗ = 90 where the phase difference φy − φx changes from π/2 to zero. It follows that
even a small coupling effect exerted from neighboring bubbles are essentially negligible in such nonlinear
regime.

4. Numerical results

The preceding weakly nonlinear analysis assumed small-amplitude perturbation and is valid only for the150

limited parameter space. In this section, large amplitude oscillation for a wide range of the driving frequency
and the separation distance as shown in Table 1 are presented. An pair of equally-sized bubbles of 10 µm
in radius with a fixed separation distance are driven by a sound pressure amplitude of 100 kPa. We put a
small disturbance to the initial radius of bubble 2 in order to avoid a completely symmetric motion, and
(R1(0), R2(0), Ṙ1(0), Ṙ2(0)) = (1, 1.01, 0, 0) is used for each ωf . In addition, we account for the well-known155

additional damping[27, 28] because the thermal damping dominates over the viscous damping for a resonant
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Figure 7: Frequency response curves of the maximum bubble radii obtained from the steady-state oscillation after 32 cycles of
the driving period. The physical parameters used are those of case D (d∗ = 7.5, and A = 1.00) in Table 1. The sound pressure
corresponds to 100 kPa.

bubble in a wide range of equilibrium bubble sizes. The effective kinematic viscosity νeff and polytropic
index κeff for thermal behavior of the internal gas are given by a function of Peclet number Pe = ωfR

2
10/αth

where αth is the thermal diffusivity of the gas[37]. In the calculation, the governing equation is transformed
into a C∞ equivalent dynamical system[34] to achieve smoother oscillation in the transformed system since160

a singular behavior due to a violent collapse of a bubble oscillation leads to serious numerical errors. The
classical forth order Runge-Kutta method is used for time integration.

In Fig. 6, time-radius curves of typical localized oscillation are plotted for case D with a fixed driving
frequency. The oscillation amplitudes are attracted to a localized steady-state values after the transient
response decays although both motions of the bubbles look identical during the first eight periods. It is165

also interesting to note that the phase shifts of the oscillators converge to different values, and the bubbles
collapse with a slight time lag. Fig. 7 shows frequency response curves of the maximum bubble radii Rimax

obtained from the steady-state oscillation after 32 cycles of the driving period (Case D). The localized
oscillation is observed in a wide range of the driving frequency even in the presence of the thermal damping.
The magnitudes of R1max and R2max are switched around ωf = 0.40 and 0.70, corresponding to the second170

superharmonic and primary resonance, respectively. It follows that the magnitude relation of localized
oscillation is sensitive, at the vicinity of resonance peaks, to microscopic fluctuation of initial conditions or
an external disturbance with the magnitude of no more than 1% of the initial bubble radii.

In order to explore bifurcation structures in ωf −d∗ space, contour plot of the difference of the maximum
amplitude ∆Rmax = (R2max−R1max)/R10 as a function of the driving frequency and the separation distance175

is illustrated in Fig. 8 where the physical parameters of case E are used. In contrast to the weakly nonlinear
case, localization occurs at a short separation distance. This is because both the nonlinearity and coupling
strength should be large enough to counterbalance the thermal damping. Therefore, the region of localization
shifts toward a low-frequency and short-distance part of the ωf−d∗ space which is a fairly typical parameter
range used in practical experiments and simulations in the early literatures[7, 9, 16, 34, 35, 38]. It follows180

that even a mono-dispersed bubble cloud can have tremendously complex bifurcation structures depending
on its void fraction and the driving pressure amplitude at the nonlinear resonant frequencies.

5. Conclusion

We have provided an asymptotic derivation of the steady-state solutions and underlying NNMs for the
primary resonance of two spherical gas bubbles oscillating with a fixed separation distance in order to explore185

bifurcation structures of the two-bubble oscillators. In the case of equal-sized bubbles of particular interest
for this study, an approximate solution of the oscillation amplitude and the phase shift for the fundamental
mode bifurcates to produce multi-valued stable solutions in the neighborhood of the NNMs. The distinctive

13



Figure 8: Contour plot of ∆Rmax = (R2max −R1max)/R10 as a function of the driving frequency and the separation distance.
Note that ∆Rmax = 0 indicates non-localized oscillation which is not plotted, and only localized oscillation ∆Rmax 6= 0 is
plotted. The physical parameters used are those for case E (d∗ = 3− 45, and A∗ = 1.00) in Table 1.

feature of these solutions is that localized oscillation (localization of vibration energy) can occur depending
on the driving frequency and the separation distance between the bubbles, because the identical steady-state190

motion becomes unstable in a certain range of the parameter space. Requirements necessary for the presence
of localized oscillation are summarized as follows. (a) The partial natural frequencies of the individual bubble
are close in value so as to evoke the internal resonance. (b) Bubbles are in resonance at the imposed driving
frequency. (c) Steady-state oscillation are achieved. (d) The separation distance is within a proper range
where the coupling strength counterbalances the nonlinearity of the radial dynamics. (e) Damping effects are195

not so strong to smooth out the energy distribution among the bubbles. Some of our numerical calculation
showed that the localized oscillation occur for a fairly typical parameter range used in practical experiments
and simulations in the literature. This makes it almost unfeasible to rigorously describe the bubble cloud
dynamics since even a cluster containing a small number of bubbles can have an incomprehensible number
of steady-states.200
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Appendix A.

Nondimensional parameters in Eqs. (10) and (11) are

ωx =

[
3κEu + (3κ− 1)

2

We

] 1
2

, ωy =

[
3κ

Eu

R∗2
+ (3κ− 1)

2R∗3

We

] 1
2

,

cx =
4

Re
+
ω2
x

M
, cy =

4R∗2

Re
+

ω2
y

R∗M
,

µx =
R∗3

d∗
, µy =

1

d∗R∗2
,

ex = EuA∗, ey =
EuA∗

R∗2
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with which

K =

[
ω2
x 0

0 ω2
y

]
, M =

[
1 µx
µy 1

]
, C =

[
cx 0
0 cy

]
, F =

[
ex 0
0 ey

]
.

Nondimensional parameters in Eqs. (17) and (18) are

βxx = − (3κ+ 1)(3κ+ 2)− 6

We
− (3κ+ 1)(3κ+ 2)− 2

2
Eu,

βyy = − (3κ+ 1)(3κ+ 2)− 6

We
R∗3 − (3κ+ 1)(3κ+ 2)− 2

2

Eu

R∗2
,

βxxx =
(3κ+ 1)(3κ+ 2)(3κ+ 3)− 24

3

1

We
− (3κ+ 1)(3κ+ 2)(3κ+ 3)− 6

6
Eu,

βyyy =
(3κ+ 1)(3κ+ 2)(3κ+ 3)− 24

3

R∗3

We
− (3κ+ 1)(3κ+ 2)(3κ+ 3)− 6

6

Eu

R∗2
.
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