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Experiment and modeling of translational dynamics of
an oscillating bubble cluster in a stationary sound field

Naohiro Sugita∗, Keita Ando, Toshihiko Sugiura

Department of Mechnical Engineering, Keio University, Yokohama 2238522, Japan

Abstract

Translational motion of an oscillating bubble cluster under sound irradiation

is studied experimentally and is modeled in the framework of the classical ap-

proach of Bjerknes. An experimental technique is proposed to observe bubble

cluster formation and its translational dynamics interacting with wall bound-

aries due to the secondary Bjerknes force. The translational motion observed

in the experiment is modeled by extending the classical theory of Bjerknes on

single bubble; a bubble cluster is treated as a single bubble. The extended

Bjerknes theory is shown to allow us to predict the overall trajectory of the

cluster translating toward a wall of finite acoustic impedance by tuning acous-

tic energy loss at the wall. The drag force turns out to be unimportant for the

translation of a millimeter-sized cluster that we observed.

Keywords: Bubble cluster dynamics, Sonication, Secondary Bjerknes force,

High-speed imaging

1. Introduction

Growth of gas bubble nuclei under pressure fluctuations of the surrounding

liquid and the subsequent oscillations are termed acoustic cavitation [1, 2, 3] and

the subsequent dynamics of nucleated cavitation bubbles play an important role

in many applications such as ultrasonic cleaning. This is due to the fact that5
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inputted acoustic energy is effectively converted, through bubble oscillations in

volume and translational instability of fissioned bubbles [4, 5], into mechanical

energy within localized spots [6, 7]. Since oscillating and translating bubble

clusters are accompanied frequently with violent collapses [8, 9], cavitation can

give rise to undesired disruptive damage to surrounding solid materials (i.e., the10

so-called cavitation erosion).

Hydrodynamic interactive forces acting on oscillating bubbles were first stud-

ied by Bjerknes [10]. In the classical theory, two synchronously oscillating bub-

bles are subject to mutual attractive force, while two bubbles oscillating out-

of-phase experience mutual repulsion. These kinds of mutual forces are known15

as secondary Bjerknes force and distinguished from the primary Bjerknes force

that results from interaction with an external sound source. The magnitude

of the secondary Bjerknes forces is proportional to the intensities of radial os-

cillation of each bubble and decays inversely with the square of the separation

distance between the bubbles. It follows from the classical description that the20

secondary Bjerknes effect is mathematically equivalent to translational motion

of one oscillating dipole subject to monopole radiation of the other.

More complicated behaviors of oscillating bubbles have been demonstrated

theoretically by extending the classical theory of Bjerknes. One of earliest stud-

ies of Crum [11] assumed linear bubble oscillation and derived a simple expres-25

sion of the secondary Bjerknes force after time-averaging over one oscillation

period of the imposed sound frequency. Barbat et al. [12] modified Crum’s for-

mula by accounting for damped oscillation of spherical bubbles. The resulting

phase shift between two resonant bubbles allowed a stable equilibrium point at

which the sign of the secondary Bjerknes force changes. Oguz and Prosperetti30

[13] developed a set of ordinary differential equations for the coupled nonlinear

dynamics between translational motion and bubble pulsation in an potential

flow. Subsequently, Harkin et al. [14] classified patterns of translational motion

of a couple of oscillating bubbles for the case of linear or weakly nonlinear forc-

ing by means of the dynamical analysis of Oguz and Prosperetti [13], drawing a35

conclusion that the classical theory was valid only for a large separation distance
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and weakly forced bubbles. Near-field interaction between bubbles is often re-

sults in nonspherical bubble deformation and there is thus a need to handle it

using the boundary element method [15, 16]. Further extensions to the discus-

sion on the secondary Bjerknes force between single bubbles have been proposed40

by several authors, which consider viscous liquid [17, 18], high-intensity sound

pressure [19], multipole interaction or higher spherical harmonics [20], drag and

history force on an oscillating bubble [21, 22, 23] and decoupling of the radial

dynamics from the translational motion [24].

Validity of the time-averaged secondary Bjerknes force has been experimen-45

tally investigated for single bubbles in early works of Crum [11] and Barbat et

al. [12], and more recently in the ultrasonic frequency range by Yoshida et al.

[25] and Jiao et al. [26]. The coupled radial and translational model developed

by Doinikov [19] was extended to microbubble-wall interaction by Xi et al. [27].

However, studies on the translational motion of an oscillating bubble ”cluster”50

are rather limited, despite its practical importance. While the translational dy-

namics of cavitation clouds were recently investigated by Nowak and Mettin [28]

and Johnston et al. [29], in an ultrasonic frequency range, the cluster dynamics

could not be resolved in detail because of limitation in temporal and spatial

resolution of the optical imaging. In this work, we aim to propose an experi-55

mental technique to resolve the dynamics of a translating bubble cluster under

sonication and analyze the experimental observation with extended theory.

The goal of this study is to show the validity of the classical Bjerknes theory

to a spherical cluster oscillation interacting with solid boundaries. In doing so,

we develop a lower frequency vibration system [30, 31, 32] in order to resolve60

the entire picture of bubble cluster activities subject to a stationary sound field

after the example of Nyborg and Rodgers [33] and Crum [11]. In what follows,

we explain the experimental method and high-speed imaging of cluster events

(bubble fission, clustering, cluster oscillation and translation, interaction with

solid boundaries), present the temporal evolution of cluster size and translation,65

and finally analyze the translational dynamics with extended Bjerknes theory.
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2. Experimental method

2.1. Experimental setup

The experimental setup is sketched in Fig. 1(a). A rectangular acrylic vessel

(inside sizes: 50 mm × 50 mm × 100 mm, thickness: 5 mm) filled with tap water70

of 90 mm in height at the room temperature was fixed on a vibration generator

(513-BS/Z08, EMIC Corp.). A vacuum pump (DAP-6D, ULVAC KIKO Inc.)

was connected to the well-closed vessel through a valve in order to reduce the

hydrostatic pressure in the vessel toward the vapor pressure. With the reduced

ambient pressure, one can easily obtain cavitation even at low driving amplitude75

of the vibration generator [11]. Continuous sinusoidal excitation was input from

a function generator (WF1973, NF Corp.) via a power amplifier (371-A, EMIC

Corp.). The acceleration of the vessel in the vertical direction was measured by a

accelerometer (710-D, EMIC Corp.) with a charge amplifier (6001-AHD/1NBD-

1, EMIC Corp.), which was used to calculate the absolute liquid pressure. The80

gas pressure in the container was monitored by a pressure sensor (HAV-100KP-

V, SENSEZ) attached on the top of the vessel. The absolute gas pressure

remains approximately at 5.0 kPa under steady state operation of the vacuum

pump. It turned out that the gas pressure is almost undisturbed, even with the

presence of cavitation. It can therefore be assumed that the liquid pressure at85

the free surface is fixed at the gas pressure.

The recording system consists of a high-speed video camera (FASTCAM SA-

5, Photron), a distortion-less macro lens (VS-LD50, VS Technology) combined

with a 2.0× magnification converter lens (VS-2.0XV, VS Technology), and LED

backlight (TS-LAX-RGB3, MeCan imaging). The spatial resolution of images90

was 41 µm per pixel. The recording frame rate of the high-speed camera was

set at 10000 frame/s, which is sufficiently fast for image processing with the

Fourier analysis. The exposure time of the camera was fixed to 0.1 ms.

2.2. Preparation of a bubble cluster

A millimeter-sized gas bubble as a cavitation nucleus was manually injected

by a needle through a silicone plug of 4.5 mm in diameter, which was located
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Figure 1: Schematic of (a) experimental setup, (b) an enlarged view of the silicone plug and

needle and (c) comparison of a typical photographed image (left) and the image processing

with a bounding box and its centroid (right).

at 30 mm above the vessel bottom and 25 mm away from the side walls. The

bubble injection was sketched in Fig. 1(b). The diameter of the gas nucleus we

obtained is approximately 1 mm. The side view of the bubble nucleus is shown

in Fig. 2. The bubble remained attached to the wall surface unless the external

driving force was imposed.

The periodic pressure field induced by the driving acceleration will follow a

potential solution owing to the sufficiently long wave length and given in the

form of [11, 33, 34]

p(h, t) = p0 + ρgh+ ρAω2h sinωt (1)

where h is the water depth measured from the free surface, p0 is the static pres-95

sure at the free surface, ρ is the liquid density, g is the gravitational acceleration,

A is the displacement amplitude of the vibration generator, and ω is the angular

frequency of the vibration generator. Since p0 reached 5.0 kPa after vacuuming,

the hydrostatic pressure at the initial bubble position, at h = 60 mm (≡ h0),

was reduced to 5.6 kPa. As a result of this pressure reduction, the injected100

bubble nucleus was subject to large amplitude oscillation and accompanying

surface instability in the sub-kHz sound field even with a weak sound amplitude
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Figure 2: Sideview of an injected bubble nucleus corresponding to the schematic in Fig. 1(b).

ρAω2h; this eventually leads to the formation of a collapsing bubble cluster.

In fact, the displacement acceleration measured by the accelerometer was 29

m/s2 for 625 Hz which yields sound amplitude of 1.9 kPa at h = h0. However,105

further large driving amplitude gave rise to a large number of cavitation arising

probably from pre-existing bubble nuclei at the container surface [35]. In order

to observe only the motion of the injected bubble nucleus, the driving amplitude

was set at sufficiently low levels to avoid such undesired cavitation events.

2.3. Image processing110

The recorded images were analyzed using the image processing software

(MATLAB, The Mathworks Inc.) function graythresh based on the binariza-

tion and thresholding technique of a recorded image sequence to 8-bit grayscale

images. Figure 1(c) shows comparison between a captured image and a pro-

cessed binary image with a bounding-box which encloses the contour of the

cluster with the minimum area. The area of the bounding-box Abox and the

coordinate of its centroid (X,Y ) were computed for each recorded image. Here,

we defined an area-equivalent mean radius Rb as

Rb =

√
Area of the inscribed ellipse

π
=

√
Abox

2
. (2)

Temporal evolution of Rb was produced from the recorded image sequence, and

Fourier spectrum of the time-radius curve was then calculated for the use of

theoretical analysis. The transient velocity U in the x direction was calculated
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Figure 3: Trajectory of a cluster motion denoted by a red solid line. Representative pictures

of the cluster are superimposed: (a) initial state, (b) collapse and fission, (c) jet formation

and (d) oscillation in contact with the side wall. The injected bubble nucleus departs from

the silicone plug and moves toward the right side wall.

by a simple central difference of the X–t curve where X stands for the geomet-

ric center of a bubble cluster. Before applying differentiation to compute the115

velocity, the X–t curve was smoothed using a moving average low-pass filtering

based on the MATLAB function filter.

3. Experimental observation

3.1. Overview of bubble cluster dynamics

Figure 3 presents a representative example of cluster motion and its trajec-120

tory with the driving frequency 625 Hz. An initially injected bubble of Rb=1

mm departs from the silicone plug, oscillating in volume subject to the primary

sound field. The bubble continuously collapses with the Rayleigh–Taylor-like

surface instability and subsequent bubble fission [4], so that the bubble oscil-

lates as a cluster of bubble fragments. It should be noted that the cluster125

motion occurs almost in the horizontal direction because the primary Bjerknes

force counterbalances to the buoyant force in the vertical direction.

After some back-and-forth motion around the silicone plug, the bubble clus-

ter goes straight to the right direction with increasing its translational velocity

due to the secondary Bjerknes force that arises from the interaction with the130

side walls, as will be explained in Section 4. During the travel to the right
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Figure 4: Snapshots of (a) the initial state, (b) maximum expansion, and (c-f) the consecutive

collapse phases. The scale bar represents 2 mm.

side wall, the bubble cluster experienced kinds of phenomena shown in the fol-

lowing section, i.e., surface instability, bubble collapse and fission, coalescence,

nonlinear oscillation, interaction with the wall boundaries.

3.2. Bubble collapse, fission and cluster oscillation135

An image sequence of consecutive collapse phases is shown in Fig. 4. The

dark circular structure seen beneath the bubble in the images is the upper part

of the silicone plug. The initially spherical bubble reached a maximum radius

Rb = 2.15 mm, as seen in Fig. 4(b), after several driving periods. At the sub-

sequent first collapse shown in Fig. 4(c), surface instability was developed, so

that the bubble was split into fission fragments. The deformed bubble has lost

the spherical symmetry, but the configuration of the fragments was almost exact

line symmetry with respect to the vertical axis. This indicates that the primary

Figure 5: A typical image sequence of an oscillating bubble cluster driven at 625 Hz. The

image sequence corresponds to one oscillation cycle of the imposed driving frequency. The

scale bar represents 2 mm.
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sound field does not have a significant pressure gradient in the x direction as de-

scribed by Eq. (1). After the second collapse shown in Fig. 4(d), each tuft-like

structure in Fig. 4(c) seems to be split again into a couple of daughter bubbles.

Although the number of fission fragments was augmented and the size of bubble

fragments was ununiformly distributed, the line symmetry was barely retained

at this moment. During the third collapse, the fragmentation continued further

as shown in Fig. 4(e), and much smaller bubbles were produced. As seen in

Fig. 4(f), the bubble fragments tended to be single-sized after the forth collapse,

and their oscillation phases were synchronized. At the subsequent collapses, the

cluster looked very similar in a sense that the size and number of the bubble

fragments remain at the same order, implying that fission and coalescence bal-

ance. The subsequent cluster oscillation for one driving period is shown in Fig.

5. The bubble cluster kept in contact with the back wall and slid across the

contact surface with its shape remained nearly hemispherical.

Figure 6(a) shows the last 130 oscillation periods of the evolution of the

cluster radius Rb before the bubble cluster crashed to the right side wall. The

beginning of the external driving is set to t = 0. The volumetric response of

the bubble cluster is found to be almost in a steady state during the observa-

tion. It should be noted that the interaction between the cluster and the right

side wall comes into play just before the cluster reaches the wall; otherwise,

the interaction does not play an important role in the volumetric oscillation.

The bubble fragments remain gathered in a cluster. This is because attractive

secondary Bjerknes forces, which acts on synchronously oscillating bubbles of

the similar size, hold the bubble fragments closely together within the cluster.

The evolution of the cluster radius in shorter time is shown in Fig. 6(b) and its

Fourier spectrum (from 64 data points) is computed in Fig. 6(c). The fitting

curve is reproduced using Eq. (5), to be presented in the following section,

where nonlinear components up to the third harmonic δ3 are considered. It is

clearly seen that there arises nonlinear resonance in the oscillation; the second

superharmonic at 1250 Hz (i.e., twice the driving frequency) is notably evident.

It follows that the resonant frequency of the cluster oscillation would lie around
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Figure 6: The results of image processing. (a) Rb–t curve, (b) Rb–t curve (enlarged) and (c)

its Fourier spectrum. The fitting curve in (b) was reproduced using the frequency component

up to the third harmonics of (c).
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Figure 7: The temporal evolution of the cluster position.

1250 Hz. If the damping effect is small, resonant frequency of a spherical gas

bubble is given by the Minnaert frequency, ωM [36]. The formula of the natural

frequency can be extended to the case of a spherical bubble cluster that consists

of single-sized bubbles [37, 38] and is given by

ωc =
1

a0

√√√√ 3γp0 + 2S
a0

(3γ − 1)

ρ
(

1 + N1/3a0

R0

(
N2/3 − 1

)) < ωM . (3)

where R0 is the equilibrium cluster radius, a0 is the equilibrium radius of

bubbles in the cluster, γ is the ratio of the specific heats of the bubble con-

tents and S is the surface tension. Equation (3) is reduced to the Minnaert

frequency when N = 1 and the surface tension is neglected. Calculating

with γ = 1.4 (for air), S = 0.073 N/m, R0 = 1.6 mm and p0 − pv ∼ 3 kPa140

offers a reasonable estimation of a0, given the cluster’s resonance frequency

ωc = 2π × 1250 rad/s; a0 = 0.58 mm, 0.35 mm, 0.17 mm and 0.081 mm, re-
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a)

b)

Figure 8: An image sequence of (a) the jet-like motion and (b) spherical oscillation in contact

with the right side wall driven at 625 Hz. The scale bar represents 2 mm.

spectively, for N = 1, 10, 100 and 1000. In the particular example of our

experiment in Fig. 3, the cluster dynamics are tuned to be under resonance

at twice the driving frequency. Indeed, we also observed cluster oscillation un-145

der primary resonance (i.e., resonance at an imposed frequency) by lowering the

driving sound frequency, which consists of a small number of N but arising from

similar R0, leading to larger bubble fragments than that of Fig. 4. The result

is consistent with the above discussion in that one obtains a smaller resonant

frequency from Eq. (3) for the case of larger a0.150

3.3. Interaction with wall boundaries

The trajectory of the cluster center is shown in Fig. 7. The cluster stayed

around the plug until t = 760 ms. After that, the cluster began traveling toward

the right side wall subjected to the secondary Bjerknes force exerted from the

wall. The direction of movement depends not only on the initial position, but155

also the detuning of the vibrating system and randomness of the fission process.

The impact on the right wall (located at x = 25 mm) occurred approximately

at t = 970 ms.

The oscillating bubble cluster radiates secondary pressure field, prad, which
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reflects on the side walls and forms a pressure gradient at the cluster normal to160

the wall, ∂prad/∂x. The cluster with volume V (t) in the pressure gradient expe-

rienced an instantaneous force, −V (t)∂prad/∂x. Since this force is composed of

a product of oscillating components, time-averaging of this force leads to mean

motion of the cluster. The direction of the force is determined by phase angle

between the cluster oscillation and the reflected wave. It is instructive to note165

that in the y direction, buoyant force counterbalanced to the Bjerknes force due

to the primary sound field induced by the driving acceleration (strictly, interac-

tion with the bottom wall and top surface contribute to the force balance). This

allowed the cluster to move almost in the horizontal direction. The translational

dynamics in the x direction will be modeled and examined in Section 4.170

At the final stage of the wall impact, we observed a jet-like motion of the

bubble cluster shown in Fig. 8(a), which is similar to the phenomenon of a single

bubble near a wall boundary; asymmetric bubble collapse leads to formation of

a liquid jet directed toward the wall [8, 7]. The interaction between larger

bubbles in the cluster and the wall boundary became much stronger than that175

of bubble-bubble interaction; smaller bubbles were no longer able to follow up

the fast motion and left behind the cluster. After the impact on the wall, side

view of cluster oscillation were captured at the corner of the container shown in

Fig. 8(b). Once the cluster was attached to wall surface, the shape of the cluster

remained almost hemispherical during oscillation, meaning that the boundary180

layer at the side wall does not have an impact on the cluster dynamics.

4. Modeling of the translational motion

4.1. Secondary Bjerknes force

Figure 9 illustrates the top view of the vibrating water vessel. The separation

between the left and right side walls is 2L, and the center of a (hemispherical)

bubble cluster in the x direction is denoted by X and is initially set at the

middle of the side walls (i.e., −L < X < L). Here, we consider fictitious

bubble clusters that are mirrored with respect to the left and right side walls;
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the mirrored clusters are set at 2 (L+X) and 2 (L−X) away from the original

cluster. With these mirrored clusters, we aim to model the interaction of the

oscillating bubble cluster of our target with the side walls.

We treat the acrylic side wall as an elastic boundary and assume that the

secondary sound field induced by oscillation of a bubble cluster is spherically

symmetric. Since the interaction between the bubble cluster and the plane

boundaries is equivalent to monopole interaction with its images, the gradient

of the radiation pressure at distance l away from the center of an oscillating

cluster is described by [3]

∂pa
∂r

∣∣∣∣
r=l

= −
ρ
(
R2R̈+ 2RṘ2

)
l2

(4)

where dots denote time derivative, r is the coordinate in the spherical coor-

dinate, ρ is the (constant) density of the liquid, R is the time-varying cluster185

radius, and l is the distance to measurement point from the cluster center. For

clarity, we account only for the adjacent two images in the x direction while ne-

glecting any higher-order corrections. Since we will below introduce simplifica-

tions in fluid dynamics modeling of cluster translation, higher-order corrections

are expected to be minor.190

The radial oscillation of a spherical cluster is now expanded as Fourier series:

R(t) = R0

[
1 + δ0 +

n∑
k=1

δk sin(kωt+ φk)

]
(5)

where R0 is the radius of the (initially injected) bubble nucleus, ω is the angular

frequency of the primary sound field induced by the external driving, and δk

and φk (k = 0, 1, . . . , n) are, respectively, the small amplitude and the phase

angle of frequency component k. Here, the mean radius of the cluster, Rc, is

defined as a time average of R(t) by

Rc = R0 (1 + δ0) . (6)

Since the primary sound field governed by Eq. (1) is a function of y (= h0−h)

and has no significant pressure gradient in the x direction, the force acting on

13



Figure 9: Schematic of the water vessel (top view). X and 2L denote the center of a hemi-

spherical bubble cluster and the separation distance between the left and right side walls,

respectively. The bubble cluster is mirrored with respect to the left and right side walls; the

mirrored clusters are set at 2 (L+X) and 2 (L−X) away from the original cluster.

the cluster is only due to the reflected pressure wave from the side walls [11].

Therefore, the pressure gradient of the reflected wave at the center of the bubble

cluster is approximated by

∂pa
∂x

∣∣∣∣
x=X

= −

[
ρR2

cR̈

4(L−X)2
− ρR2

cR̈

4(L+X)2

]
Q (7)

where the complex quantity Q represents acoustic energy loss through trans-

mission to the side walls of finite acoustic impedance. To be simple, the loss

Q is assumed to be constant regardless of the frequency. The time-averaged

Bjerknes force (of the second kind) in the x direction is obtained as a function

of position X,

FB(X) = −
〈
V (t)

∂pa(X, t)

∂x

〉
(8)

where 〈·〉 denotes a time averag over the driving period 2πω−1 and V (t) =

(4π/3)R3(t) is the volume of the spherical bubble cluster. Substituting Eq. (7)

into Eq. (8) leads to

FB(X) = 2πρω2R6
c∆2

[
1

4(L−X)2
− 1

4(L+X)2

]
<[Q] (9)

14



where < denotes the real part and

∆ =
1

1 + δ0

[
3∑

k=1

k2δ2k

] 1
2

. (10)

Here, higher nonlinear corrections of the order O(δi1δ
j
2δ

k
3 ) (i+ j + k ≥ 3 ; i, j

and k are integers ) are neglected in Eq. (9). We note that a long-term behavior195

of the translation of an oscillating bubble cluster arises from quadratic nonlinear

terms O(k2) in the expression of the Bjerknes force FB .

4.2. Translational motion of the bubble cluster

The translation of the bubble cluster may be described by200

m
dU

dt
= FB + FD + FA (11)

where U is the translational velocity and m is the mass within the cluster. Since

the gas phase is essentially massless, the cluster mass is approximated by

m =
4

3
πρR3

c (1− α) , (12)

where α is the so-called void fraction (i.e., the volume fraction of the gas phase).

The case of no bubbles is represented by α = 0. The added force, FA, arising

from unsteadiness is calculated by [12]205

FA =
2

3
πρR3

c

dU

dt
, (13)

where (2/3)πρR3
c means the added mass. The drag force acting on the bubble

cluster is given by the Levich’s formula [19],

FD(U) = −12πµRcU (14)

where µ is the liquid viscosity. We will show that the contribution of the drag

force have negligible impact on the translation. Because of the assumption of

small-amplitude oscillations, the cluster radius is evaluated as the undisturbed

constant Rc in Eqs. (12) to (14) [24].
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Table 1: The cluster radius Rc and oscillation amplitudes δk determined by the experimentally

obtained Fourier spectrum. The radius of the (initially injected) bubble nucleus is R0 = 1.01

mm. The imposed sound frequency is 625 Hz.

Rc[mm] δ0 δ1 δ2 δ3

1.68 0.665 0.216 0.169 0.0802

The dimensionless variables (superscripted by asterisks) are defined as

U∗ =
U

ωL
, X∗ =

X

L
, t∗ = ωt. (15)

Substituting Eqs. (15) into Eq. (11) leads to the dimensionless form

dU∗

dt∗
= B

[
1

(1−X∗)2
− 1

(1 +X∗)2

]
− CU∗. (16)

There arise the two dimensionless parameters

B =
3

4m∗

(
Rc

L

)3

∆2<[Q], C =
3

4m∗
Rc

L

48

Re
. (17)

where m∗ is the dimensionless mass that consists of the cluster mass and the

added mass is given by

m∗ = 3− 2α. (18)

For the case of a single bubble (not a cluster) with α = 1, this reduces to210

m∗ = 1. Note that B presents intensity of the acoustic radiation from the bub-

ble cluster including the acoustic energy loss, and C is the drag force where

Re = (2Rc)
2
ων−1 is Reynolds number from the cluster translation. For the

inviscid case (C = 0), one can explicitly derive the exact solution of Eq. (16).

Multiplying the both side of Eq. (16) by U∗ and integrating with initial condi-215

tions (X0, U0) yield

U∗2 =

(
U∗2
0 −

4B

1−X∗2
0

)
+

4B

1−X∗2 . (19)

For reference, the eigenvalue analysis of the dynamical system described by Eq.

(16) is presented in Appendix A.
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5. Comparison to the experimental result

With the model we proposed in the previous section, we now try to replicate220

the cluster translation observed in Fig. 3. The mean radius Rc and oscillation

amplitudes δk are determined from the Fourier spectrum in Fig. 6(c):

Rc = |Rb(f)|f=0 (20)

δk = |Rb(f)|f= ω
2π×k (21)

where k takes 1, 2, or 3. The computed values of Eqs. (20) and (21) are

summarized in Table 1. For water, we have ρ = 1000 kg/m3 and µ = 0.001 Pa·s.

The initial position and velocity of the bubble cluster are set, respectively, at

X0 = 4 mm and U0 = 0.01 m/s; the simulation result is not altered significantly

by slight changes in the values of X0 and U0. The void fraction is approximated

by

α ≈
(
R0

Rc

)3

= 0.27 (22)

Comparison of the temporal evolution of X between the experiment and

the model is made in Fig. 10 where the parameter for the acoustic energy loss

is set at <[Q] = 0.22. The maximum particle Reynolds number defined as225

ReU = 2RcUν
−1 is approximately 1900 for Umax = 0.576 m/s at X = 23 mm.

The computed curve fits well to the experiment except near the cluster-wall

collision. It should be noted, however, that higher-order nonlinear corrections

neglected in the present model may be needed for the short-distance interaction;

the model overestimates the translational velocity as the separation distance230

decreases. We also note that the evaluation of the drag force acting on the

cluster is unimportant, for a change in the computation is insignificant between

the viscous and inviscid cases; the translational motion is determined mainly by

the secondary Bjerknes force and the inertia of the oscillating bubble cluster in

this particular example.235
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Figure 10: Comparison between the experiment and simulations: the results of the temporal

evolution of the cluster position. The parameter for the acoustic energy loss is set at <[Q] =

0.22.

6. Conclusion

An experimental technique was developed to observe translation of a bubble

cluster oscillating under a stationary sound field and the translational dynamics

were modeled by simply extending the theory of Bjerknes. A gas bubble nucleus

showed nonlinear oscillation in a low-frequency vibrating vessel and eventually240

leads to fission into bubble fragments. The bubble cluster showed translation

toward the side wall. We explained the cluster translation as a result of the

interaction with imaginary bubbles located at the opposite side of the side walls.

The interaction was modeled by applying the Bjerknes theory of the second kind

where the cluster is treated as a single bubble, while acoustic energy loss at the245

elastic wall was treated as a tuning parameter. We showed that the cluster

translation observed in the experiment can be predicted properly by solving the

equation of the cluster motion coupled with extended Bjerknes theory. It is

concluded that the cluster translation in the present experiment is determined

mainly by the secondary Bjerknes force and the cluster inertia.250
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Appendix A. Eigenvalue analysis

The translational dynamics described by Eq. (16) has only one equilibrium

point (X∗
st, U

∗
st) = (0, 0), which is a stationary solution of the system. Pertur-

bation of (X∗, U∗) from the fixed point is denoted by (δx, δu), and the linear

truncation of Eq. (16) is obtained in the form of

d

dt∗

 δx

δu

 =

 0 1

−4B −C

 δx

δu

 (.1)

after the transformation with X∗ = X∗
st+δx and U∗ = U∗

st+δu. The eigenvalues

of the system are

λ =
−C ±

√
C2 + 16B

2
. (.2)

The bifurcation structure can be understood in B–C plain and is divided into

three regions. The stability of (X∗
st, U

∗
st) is determined only by the sign of B

as explained below. When B > 0, the equilibrium point is unstable (saddle

point) because of a positive real eigenvalue. This indicates that the oscillating260

bubble can not stay away from the both side walls, leading to the attractive

motion toward the walls. When B is negative, the equilibrium point is stable

node or spiral depending on the magnitude of C, which is assumed positive

real in this study. If B < 0 and C is small enough to satisfy C2 + 16B < 0,

the system presents damped oscillatory motion around the stable equilibrium265

point due to the complex eigenvalues. Increasing C causes qualitative change

of the bubble behavior from damped oscillation to asymptotic motion to the

equilibrium point. The sign of B depends on the acoustic impedance of the wall

boundary, the separation distance and the imposed sound frequency [39].
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