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Abstract—As the elderly population grows, the number of 
people with dementia is also increasing. If dementia is detected at 
an early stage, it is possible to slow its progression. Patients with 
Alzheimer's disease, a type of dementia, show some specific EEG 
patterns, and we have therefore been investigating EEG analysis 
to detect Alzheimer's disease. In this paper, we propose a method 
that evaluates the phase relation between three electrodes. This 
method enables estimation of the dynamical behavior of an 
assumed dipole in the deep brain to potentially detect 
Alzheimer's disease, depending on the disease progression. This 
method requires only three electrodes and a short period of data 
collection (1 min). Experimental results show that Alzheimer's 
disease is identified with over 70% accuracy. Therefore, this 
Alzheimer's disease detection system appears to be feasible.  

Index Terms—Alzheimer's disease, EEG, phase, cross-
correlation research  

I. INTRODUCTION  
The number of elderly people with dementia is increasing 

with aging of the population in Japan. Among several types of 
dementia, Alzheimer's disease (AD) affects the largest number 
of patients. If AD can be detected at an early stage, it is 
possible to delay its progression with medications and 
appropriate care. Positron emission tomography (PET) and a 
cerebrospinal fluid test using biomarkers are the major 
diagnostic methods for AD, in addition to an interview using a 
dementia test. Recently, the idea of diagnosis using 
electroencephalography (EEG) has also attracted considerable 
attention [1]. EEG devices are inexpensive compared with 
other brain monitoring systems and can be purchased by 
individuals, so it may be possible to develop an economically 

reasonable EEG system for detection of AD with a simple 
algorithm. If such a system becomes commercially available, 
people could use it at home, detect signs of AD at an early 
stage, and begin treatment earlier.  

Therefore, we aimed to develop an EEG-based diagnosis 
system for detecting AD. Although conventional EEG research 
requires many electrodes, we aimed to minimize the number of 
electrodes necessary for this system. In this paper, we propose 
a method to detect dementia from cross-correlation values 
between three electrodes while the patient is awake. We apply 
this method to clinical EEG data obtained at two medical 
institutions to evaluate its feasibility. 

II. PROPOSED METHOD 

A. Overview 
There is a strong correlation between EEG potentials 

recorded from any three electrodes [2]. This phenomenon is 
similar to that of seismic waves. When the hypocenter of an 
earthquake is located near the surface, the observed seismic 
waves differ greatly from one observation point to the next. 
However, when the hypocenter is located in a deeper layer, P 
waves, a type of seismic wave, have similar amplitude and 
phase at all points. Likewise, the neural activity in deeper parts 
of the brain can be estimated through the analysis of EEG data 
recorded from three electrodes. Assume a region in the shape 
of a triangular pyramid, formed by a signal source point in the 
brain and the three electrodes. When the three electrodes are 
located the same distance from the source point, the recorded 
signals would have the same phase and would reflect the neural 
activity at the source point. By analyzing the time series of 
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EEG data observed at the three electrodes, it may be possible to 
classify AD patients (AD group) and elderly adults with 
normal cognitive function (control group). We have named this 
method Deep Neuronal Activity Topography (dNAT) [3]. 

We performed a pilot experiment to investigate appropriate 
electrode positions, examining regions such as the frontal and 
temporal regions. The results revealed significant differences 
between the AD and control groups in the occipital region, 
which was surrounded by three electrodes: P3, P4, and Oz in 
the International 10-20 System (Fig. 1).  

 
Fig. 1. Electrode sets located at P3, P4, and Oz in the International 

10-20 EEG System 
 

During the progression of AD, the frequency of alpha waves 
decreases in the awake and resting state with eyes closed, and 
the power of slow waves increases [4]. Waves with frequency 
of 8 Hz are known as slow alpha waves and are considered a 
potential marker of extremely mild brain dysfunction [5]. On 
the basis of these past research results, we decided to use a 
frequency band of 6–13 Hz in the awake and resting state with 
eyes closed, which is slightly lower than the alpha wave band
8–13 Hz. The EEG was recorded for 1 min at a sampling 
frequency of 200 Hz per channel. After the recording, the data 
were band-pass filtered in order to pick out signals in the 
frequency range 6–13 Hz.  

It has been reported that the percentage of people whose 
dominant frequency of background activity is less than 9 Hz is 
significantly higher in AD patients than in healthy controls [6]. 
Furthermore, a negative correlation has been reported between 
age and fundamental frequency in elderly people with normal 
cognitive function, and slow waves become dominant due to 
aging [2]. Thus, when extracting EEG features, a method is 
needed for distinguishing between normal aging and AD 
because they have similar frequency characteristics. To 
confirm this, we examined using data of facilities with normal 
elderly person. To investigate this, we analyzed data of AD 
patients and elderly adults with normal cognitive function 
collected at two facilities. 

B. Calculation of Triple Correlation Value 
In evaluating the correlation of brain potentials at each 

electrode position, we calculated the triple correlation value 
(1). The triple correlation value is obtained by multiplying the 
potential signals EVA(t), EVB(t), and EVC(t) from the three 
electrodes, and applying time shifts of τ1 and τ2 with respect 
to the potential signal from each electrode and then integrating 

over time. dttEVtEVt
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To limit the rotation plane of the equivalent dipole 
assumed in the deep brain, we calculated the triple correlation 
only when the three potentials had the same sign. In (1), the 
number of times this occurred is represented by N. When this 
calculation is performed at a 1-s resolution, the triple 
correlation value is plotted on the feature space formed by the 
two time-delay parameters (t1, t2). As shown in Fig. 2, when 
comparing the distribution of triple correlation values between 
52 normal controls and 20 AD patients, the distribution with 
respect to the time axis was more irregularly aligned in the 
AD patients than in the normal controls (Fig. 2 (b)). Viewing 
the triple correlation value as a forest, we found that the trees 
of the AD group seemed to be growing sparsely. On the other 
hand, the trees of the control group seemed to be growing 
regularly (Fig. 2 (a)). By evaluating the variation of the triple 
correlation value and the degree of dispersion in the time axis 
direction, it is possible to quantitatively classify differences in 
the characteristics of individuals. 

 

 
  

Fig. 2. Distribution of triple correlation values  
a) Normal triple correlation  b) AD triple correlation 

 

C. Calculation of Index Value 
In the previous section, we showed that the fluctuation of 

triple correlation values differed greatly between the normal 
controls and AD patients. However, this feature may not be 
seen in some distribution areas for the triple correlation. Thus, 
in some cases, it is not possible to classify AD by evaluating 
only the variation of the entire triple correlation value. To 
mitigate this, we calculated the maximum value of the triple 
correlation value at the delay parameter (τ1, τ2) for each 
rectangular region of 0.2 s × 0.2 s, which is the triple 
correlation value created every second calculated by (2). This 
equation calculated the standard deviation std_Si of the 
maximum value. Then, we calculated the average value ave_S 
of 10 standard deviations up to i = 1, 2, …, 10 s. The size of 
the rectangular region of 0.2 s and the interval of calculating 
the triple correlation value of 10 s were determined by 
adjusting several parameters. Next, we calculated the standard 
deviation std_S of the 10 standard deviations, and the ratio 
between the standard deviation and the average value was 
defined as the index S (2).  
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Next, we defined an index indicating the degree of variation in 
the time axis direction. First, when comparing the distribution 
of triple correlation values with trees, the upper right figure of 
Fig. 2 shows the state of the plane surrounded by τ1 and τ2 as 
seen from the top. The figure of black and white grid points is 
a view of the three-dimensional representation from the top, 
and the region where the three brain potentials take the same 
sign is displayed in white. Other areas are black. As shown in 
Fig. 3, dxi (i = 1, 2, …, m) and dyj (j = 1, 2, …, n) are the 
distances between the white rectangles in the horizontal and 
vertical directions, respectively. We considered whether dxi 
and dyj are evenly aligned in the length and breadth of the 
white rectangles in the τ1 and τ2 directions or whether the 
white squares are arranged in a disordered manner. When 
comparing normal controls and AD patients, one of τ1 and τ2 
tended to show large bias in AD patients. Because the 
rectangles were regularly arranged in both the τ1 and τ2 
directions in both normal controls and AD patients, we 
inferred that both τ1 and τ2 could quantitatively evaluate the 
distance between adjacent white squares at arbitrary times. 
Specifically, as shown in (3), we calculated the standard 
deviation Std_dx of m number of dxi and the standard 
deviation Std_dy of n number of dyj, and the average value of 
the two standard deviations was defined as the index value SD.  
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Fig. 3. Interval of the temporal fluctuation 

(x-direction interval: dxi; y-direction interval: dyi) 
 

Then, we defined a new index dNAT using this SD value and 
the S value calculated from (2). We refer to this as the dNAT 
value below. 

dNAT = S + SD (4) 
 

The greater the difference between the triple correlation 
value and the variation in the time axis direction—in other 
words, the greater the dNAT value—the greater the likelihood 
of AD. 

 

III. DATA USED TO EVALUATE THE PROPOSED METHOD

 
Data from two medical institutions were used to evaluate 

the proposed method. Based on the findings of specialists using 
tools such as cognitive tests, interviews, magnetic resonance 
imaging (MRI), and PET, subjects at each institution were 
classified into a normal control group and an AD group [9]. 
Details of the data are shown in Tables 1 and 2. 

(1) Data for elderly residents in Tone Town, Ibaraki 
Prefecture  

To estimate the prevalence of AD among the elderly 
throughout Japan, we selected a site in Tone Town, Ibaraki 
Prefecture, from the unified surveys of seven locations in 2009. 
In total, 612 residents aged 65 year or older participated in the 
interview survey. According to the process of “Dementia 
prevalence survey in the elderly,” a specialist performed 
cognitive screening and conducted a structured interview, 
neurological diagnosis, and other means, in order to diagnose 
dementia and psychoneurotic diseases. For cognitive 
screening tests, The Mini Mental State Examination (MMSE) 
and Clinical Dementia Rating (CDR) were used. In addition, 
397 subjects underwent brain MRI scans. This prevalence 
survey was approved by the ethics committee of the 
University of Tsukuba [10].The 402 subjects who consented 
to additional examinations at the time of the survey underwent 
EEG examination and the doctors visually inspected the EEG 
results [6]. The 52 subjects in the control group had no 
memory or cognitive impairment and no abnormal findings on 
brain MRI or EEG. This study analyzed the following two 
groups based on their classifications at the time we reviewed 
the above-mentioned EEG results  (Table 1). 

• 52 normal controls (Tone_NC)  

• 20 AD patients (Tone_AD) 

 
Table 1. Characteristics of subjects at Town [1] 

 
 

(2) Data acquired at Tokyo Metropolitan Institute of 
Gerontology 

The normal controls were selected from elderly people 
who volunteered to undergo annual FDG-PET examination 
(PET examination showing brain activity using 18F-labeled 
fludeoxyglucose) at the Tokyo Metropolitan Institute of 
Gerontology (TMIG). Among the volunteers, those who 
exhibited good PET results (rated A out of grades A, B, and 
C) were classified as the normal control group [6][7]. The 
diagnostic criteria for AD [8] were met by 22 patients whose 
FDG-PET findings did not contradict a diagnosis of AD 
(Table 2).  



 

• 50 normal controls (TMIG_NLC) 

• 22 AD patients (TMIG_AD)

 
Table 2. Characteristics of subjects at TMIG [2] 

 
 

EEG data were recorded using an electroencephalograph 
(EEG-9100, Nihonkoden Co., Ltd.) and an electrode helmet 
without paste (Brain Function Laboratory Co., Ltd.) in both 
settings. Data were recorded for just 1 min while subjects 
were awake. The filter at the time of recording was 0.08 to 
300 Hz, and 21 electrodes were placed according to the 
International 10-20 system. For this analysis, we used data 
from only three electrodes (P3, P4, and Oz) with a reference 
electrode placed on the right earlobe and we used only 1 min 
of data from the start of the measured data. The sampling 
frequency at the time of analysis was 200 Hz. 
 

IV. RESULTS 
Two-dimensional distributions of the two index S values 

and SD values in the AD group and the control group at each 
institution are shown in Fig. 4. The results show that the 
control group is distributed in the area below the straight line 
and the AD group is distributed in the area above the straight 
line. However, since the distributions are clustered in the 
vicinity of the straight line, it is difficult to clearly separate the 
AD group and the control group by only the two-dimensional 
distribution of the S and SD values. 

 

 
Fig. 4. S value and SD value in Tone town 

(Left: Tone town, Right: TMIG) 
 

Next, evaluation was performed using the value of the 
index dNAT obtained by linearly combining the S value and 
the SD value, as shown in (4). Fig. 5 shows that the dNAT 
value increases with decreasing MMSE for subjects at both 
medical institutions. The results of Wilcoxon's rank sum test 
indicate that Tone_NLC and Tone_AD as well as TMIG 
_NLC and TMIG_AD showed significant differences at p < 
0.01. Therefore, the AD and normal control groups could be 
clearly distinguished. 

 
Fig. 5. dNAT value and MMSE 
(Left: Tone town, Right: TMIG) 

 
Next, we plotted as the ratio of the average dNAT value 

between the groups on the vertical axis versus the dNAT value 
on the horizontal axis; the result was called the sensitivity-
specificity curve. Fig. 6 shows the sensitivity-specificity 
curves for the data of the two medical institutions, where the 
intersection of the curve of the normal control group and that 
of the AD group was defined as the boundary value. The 
sensitivity-specificity curve shows that the discrimination rate 
that can be determined when the boundary value is set as the 
threshold. As shown in Fig. 6, the normal control group and 
the AD group could be classified with a discrimination rate 
exceeding about 70% at both medical institutions. 
Furthermore, even if we compare data between different 
medical institutions, such as Tone_AD versus TMIG _NC and 
TMIG_AD versus Tone_NC, the results are as acccurate as 
when we compare data from the same medical institution. The 
data of the normal control groups in Tone Town and TMIG 
show almost identical characteristics, suggesting that the 
method is able to discriminate between elderly adults with 
normal cognitive function and those with AD. 

 
Fig. 6. Sensitivity-specificity curve for dNAT 

 

V. DISCUSSION 
The proposed dNAT index is a method that we developed 

to classify AD patients and elderly adults with normal 
cognitive function based on feature quantities focusing on 
spatial and temporal fluctuations between three electrodes. 
Conventionally, many methods for detecting dementia using 
EEG are based on spectral analysis. These methods rely on 
observations that the frequency of the alpha wave decreases in 
the presence of dementia, and the power of slow waves 
increases. However, the power of slow waves also increases 



 

with normal aging. Therefore, it may be difficult to distinguish 
between normal elderly people and AD patients. 

In our dNAT method, it is possible to grasp the spatial 
and temporal characteristics of the triple correlation value by 
analyzing from the high theta band to the alpha band in order 
to take gradual waves into consideration. Using this method, 
we showed that it is possible to analyze data from different 
medical institutions with a discrimination rate exceeding about 
70% between normal controls and AD patients. As shown in 
Tables 1 and 2, the normal control group of TMIG data was 
older than the normal control group from Tone Town, and the 
TMIG_AD group was younger than the Tone_AD group. 
However, since we observed a statistically significant 
difference between the normal control group and the AD 
group at each institution, we can conclude that the proposed 
method is not influenced by age. Furthermore, this method has 
a short measurement time and requires only a small number of 
electrodes. Therefore, the burden on the subject is small and 
the measurement can be easily performed without going to a 
medical institution. 
 

VI. CONCLUSION 
In this paper, we proposed a method to detect dementia 

using only three electrodes and 1 min of EEG data. Data were 
obtained from elderly residents in Tone Town, Ibaraki 
Prefecture, and at Tokyo Metropolitan Institute of Gerontology. 
Data from each institution were classified into a normal control 
group and an AD group based on findings such as cognitive 
tests, interviews, MRI, and PET conducted by doctors. The 
EEG data were sampled at 200 Hz per channel while subjects 
were awake and band-pass filtered to pick out signals in a 
frequency range of 6–13 Hz.  Data were analyzed using only 
three electrodes (P3, P4, and Oz) out of the 21 electrodes of the 
International 10-20 System. We defined a dNAT index that 
quantifies the observation that both spatial and temporal 
fluctuations of the triple correlation values are disturbed due to 
dementia. Using this feature, we showed that normal controls 
and AD patients can be classified with a discrimination rate 
exceeding 70%. 
In the future, we will study patients with mild dementia (also 
known as mild cognitive impairment or MCI) and analyze 
data on patients who progressed from MCI to AD, as well as 
data on patients who progressed from normal cognitive 
function to MCI or AD. In this way, we aim to conduct further 
detailed dementia analyses.  
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