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Abstract

A wide spectrum of engineering applications are highly related to multi-material fluid
flows or flows with sharp interfaces, including contact discontinuities in compressible
flows, moving boundaries of fluid-structure interaction (FSI), free surfaces in two-phase
flow, etc. However, accurately simulating these flows is very difficult due to the moving
interfaces where a variety of boundary conditions or jump conditions may be enforced.
In this work, we want to track the moving interfaces as far as possible by using moving
grids in order to ensure the accurate solutions at interfaces while leaving extremely
flexible interfaces, e.g. free surfaces in two-phase flows, to be captured.

However, development of numerical model for tracking interface is rather challeng-
ing since it is always associated with moving unstructured grids which results in the
difficulties for achieving adequate solution accuracy, superior numerical stability and
robustness. In this thesis, we proposed a moving mesh framework for fluid flows based
on multi-moment finite volume method. The characteristics of this framework are pre-
sented as follows:

• The motion of fluid flows is described in Arbitrary Lagrangian Eulerian (ALE)
viewpoint.

• Both Volume Integrated Average (VIA) and Point Value (PV) are treated as com-
putational variables and used for high order polynomial reconstruction.

• Multi-moments, namely, VIA and PV, are solved separately on arbitrarily moving
mesh.

Based on above framework, we developed numerical models for both compressible
flows and incompressible flows on moving grids. For applications, we also constructed
a practical and reliable numerical solver for Fluid-Structure Interaction (FSI) problems.
The details and our major efforts are divided into following four parts:

1. The core idea of the moving mesh framework is interpreted in Chapter 3 for solv-
ing compressible Euler equations. Governing equations are firstly cast into ALE
integral form and differential form for updating VIA and PV respectively. The
VIAs are computed by a finite volume method (FVM) that ensures the rigor-
ous numerical conservativeness, while the PVs are defined at cell vertices and
updated efficiently by a point-wise finite difference formulation. By employing
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both VIA and PV as computational variables, it becomes convenient for gen-
erating quadratic or high order polynomials within a compact stencil. An uni-
formly third-order accuracy is achieved on arbitrarily moving grids for 1D and
2D smooth solutions and geometrical conservation law is well satisfied. More-
over, numerical tests reveal that it has superior capability for resolving moving
discontinuities in compressible flows in a Lagrangian way.

2. In Chapter 4, we extended the numerical model to viscous compressible flows
and solved a simple one-way coupling FSI problem where the fluid state is af-
fected by a prescribed varying boundary. Due to the moving boundary of fluid
domain, we implemented the radial basis function (RBF) interpolation to transfer
the movement of boundary to internal mesh points, which is of great significance
for putting our moving mesh numerical model to practical use. In addition to
several basic benchmark tests with high Mach number, we also investigate the
phenomenon of flows past over an oscillating cylinder, which verifies the feasi-
bility of present model for FSI application.

3. In Chapter 5, multi-moment finite volume method for incompressible flows on
unstructured moving grids was developed, where incompressible Navier-Stokes
equations are solved by the pressure projection procedure. We then built a fluid-
structure interaction solver by integrating the fluid model with an elastically mounted
rigid-body. Two coupling schemes, i.e. an explicit weak coupling scheme and a
semi-implicit strong coupling scheme, have been devised to formulate the inter-
actions between fluid and moving solid with a wide range of mass ratios. By
employing PVs at cell vertices as additional variables updated at each time step,
the present multi-moment finite volume method shows great advantage when ap-
plied to the ALE framework for interactions among multiple materials, where the
solution points can always coincide with the interfaces between different materi-
als.

4. In Chapter 6, we presented a preliminary numerical model for moving body in
free surface flow. In view of the flexibility of free surface of two-phase flow as
well as breakup and coalescence phenomena, the gas and liquid are described
by one-fluid model where the free surface is captured by an algebraic interface
capturing method, THINC-QQ scheme. Governing equations for two-phase flow
are solved on moving grids by multi-moment finite volume method and coupled
with the movement of solid body. Numerical tests, such as wave generation by
a moving paddle, water exit of a circular cylinder and free falling of a wedge,
show that the present solver is capable for simulating fluid flows with three-phase
material interaction (i.e. gas, liquid and solid).
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As mentioned above, the proposed numerical model has been verified by a wide range
of benchmark tests and analyzed from many aspects including numerical error, con-
vergence rate, conservativeness, computational cost, as well as reliability for practical
applications. Numerical results demonstrate the appealing performance and feasibility
of present framework for FSI application.
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Chapter 1

Introduction

1.1 Background

Fluid flows with multi-materials or sharp interfaces, including shock waves in com-

pressible flows, fluid-structure interactions (FSI), multiphase flows, etc., occur in a wide

spectrum of scientific researches and engineering applications. The moving interfaces,

which refer to a broad concept covering contact discontinuity, solid-fluid interface and

also the interface between two immiscible fluids, significantly affect the fluid flow and

attract much attention in fluid mechanics, thus is of primary interest in the current study.

To study this problems, both theoretical and experimental approaches have been con-

sidered from the very beginning and achieved many successes. However, though the

equations of fluid mechanics, generally Navier-Stokes equations, have been known for

over a century, they can only solve a limited number of flows [9]. General solutions

to Navier-Stokes equations with given initial conditions and boundary conditions are

still unsolved. Even more, the existence and smoothness of solution of Navier-Stokes

equations are still not mathematically proved, which were stated as one of the Millen-

nium Prize Problems by Clay Mathematics Institute [10]. For experimental study, the

database is insufficient for gradually increased requirements of careful optimization of

industrial design or prediction of fluid flows nowadays. Moreover, it may be too costly

or time consuming, and difficult if not impossible for certain extreme cases. As a result,

computational fluid dynamics (CFD) has become a popular and important auxiliary tool

for studying such kind of problems and many other related fields.

23
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1.2 Interface tracking and interface capturing techniques

There are a variety of boundary conditions or jump conditions need to be enforced at

interfaces in CFD code, thus the interfaces are expected to be treated accurately. To

represent and evolve multi-material interfaces or moving boundaries, interface tracking

and interface capturing techniques are commonly employed. Interface tracking tech-

nique conforms the computational mesh with the moving interfaces, thus the solutions

are updated in a moving mesh. With the body-fitted grids, the kinematic and dynam-

ics conditions on the interface can be explicitly specified or computed which ensures

the accuracy on the moving interfaces. Moreover, the mesh resolution of the boundary

layer around the interfaces can be easily refined. However, remapping process is needed

for the case where the interfaces are largely deformed or topologically changed, which

may be computationally expensive and technically trivial. On the other hand, interface

capturing techniques describe the interface by an indicator function on a fixed spatial do-

main, which avoid problems of mesh distortion. Nevertheless, the advection of interface

inevitably produces the numerical diffusion and the exact implementation of interface

conditions is not straightforward. As stated by Tezduyar [11], “for comparable levels of

spatial discretization, interface-capturing methods yield less accurate representation of

the interface”. Due to the inherent superiorities and weaknesses of both techniques, the

specific adoptions depend on problems confronted in practical applications.

1.2.1 Some related research topics

We discuss a few active research fields involving moving interfaces or boundaries in

CFD based on these two techniques as follows:

• Contact discontinuities in compressible flows

Discontinuous solutions commonly exist in compressible flows, which makes it tough

to devise a high accurate numerical scheme without non-physical oscillations. Gen-

erally, the solution of Riemann problem contains waves of three types: shock waves,

contact discontinuities and rarefaction waves. The accurate reproduction of complex

waves are significant for designing high-speed aircraft and some devices like gas tur-

bine, combustion chamber and so on. However, contact discontinuities, across which

both pressure and particle velocity are constant but density and some related variables

(such as specific internal energy, sound speed, entropy, etc.) jumps discontinuously, are

observed to be easily smeared in many numerical tests [12].
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Traditionally, numerical methods in CFD are developed in either Eulerian or Lagrangian

framework. Eulerian schemes describe the flow in a fixed coordinate, which are con-

venient but result in inevitable extra errors of convective fluxes or non-physical oscilla-

tions near material interfaces. Lagrangian schemes follow moving fluid particles, thus

inherently have superiority in tracking multi-material interfaces, particularly contact

discontinuity in compressible flows. Unfortunately, it may suffer from mesh tangle due

to large flow distortions. Due to the shortcomings of purely Lagrangian and purely Eu-

lerian descriptions, one solution is to devise numerical schemes by combining strong

points of both, i.e. the underlying idea of Arbitrary Lagrangian Eulerian (ALE) method

[13, 14].

• Fluid Structure interaction

Fluid structure interaction (FSI), such as flapping wings, airfoil oscillations, blood ves-

sels, is an ubiquitous phenomena in nature and engineering applications. In FSI, the

spatial domain occupied by fluids always varies with time since structure moves or

deforms, and its boundary is a subsequent result of fluid-structure interaction. The ac-

curate treatment of moving boundary of fluid and structure plays an essential role in FSI

field, since they are the passage for information communication.

The ways for representing the moving boundaries of fluid and structure can also be

classified into interface tracking and interface capturing techniques. Interface tracking

technique, also referred to conforming mesh method, as shown in Figure 1.1, treats the

solid-fluid interface as the boundary of both physical fields, thus the boundary condi-

tions can be simply and accurately imposed. Interface capturing technique, also called

(a) t = t0 (b) t = t1

FIGURE 1.1: Conforming mesh method

as non-conforming mesh method, represents and evolves the interface in a fixed domain
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by a color function, such as Level Set (LS) as shown in Figure 1.2. The interface con-

ditions are treated as constraints imposed on the model equations. The practical choice

(a) t = t0 (b) t = t1

FIGURE 1.2: Non-conforming mesh method

for industrial applications lies on the specific engineering problems. For example, inter-

face tracking technique is popularly chosen for studying flows involving mild structure

movement and deformation in coastal and ocean engineering, while remapping proce-

dures are required for large movements or distortions. As a contrast, interface capturing

technique has the advantage for large deformation problems while with a reduced accu-

racy for the solution near the interface due to interpolation.

• Two-phase flows

Two-phase flows, referred to gas-liquid flows or two immiscible fluids in this study,

is common in nature world, our daily life and also engineering applications, such as:

ocean waves, a jet of tap water, fuel spray in engines, etc.. The numerical simulation

of two-phase flows are very challenging, since they are usually accompanied with the

phenomena of large interface deformation, breakup and coalescence, thus is an active

research field in CFD.

The oldest and the most popular approach in this field is to capture the front directly

on a regular and stationary grid, such as Marker-And-Cell (MAC) [15], Level Set (LS)

[16], Volume-Of-Fluid (VOF) methods [17]. In these approaches, different fluids are

distinguished by indicators like signed distance function, VOF function, etc. The evo-

lution of interfaces is realized by moving the indicators with the velocity field of fluids.

Currently, most achievements on two-phase flows are obtained based on the concept

of capturing interfaces on a stationary grids since it is more available for practical use.

However, there are also some researchers devoted to tracking the interface for reaching
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higher accuracy by using moving grids [18, 19, 21]. Obviously, it is best suited for rel-

atively simple geometries, and the applications to complex three dimensional problems

are rare. The reason may attribute to the extremely flexible movement of free surface.

From the issues discussed above, the strongness and weakness of interface tracking

and interface capturing schemes are obvious. Therefore, the basic methodology in this

study is to track the multi-material interfaces as far as possible for practical applications,

since it inherently ensures the accurate solution at interfaces, while moving interfaces

with large deformation, such as free surfaces in multiphase flows, are expected to be

captured.

1.2.2 Requirements under interface tracking technique

Under interface tracking technique, some requirements for devising numerical model

are discussed as follows:

• Adaptability for complex geometry

Since moving grids are used to fit the multi-material boundaries, the elementary

elements are supposed to be adaptable for complex geometrical structures. To

this end, unstructured grids, such as triangular and tetrahedral elements, are de-

manded for the partition of computational domain. However, numerical algorithm

on unstructured grids may suffer from the algorithmic complexity, rapid increased

computational costs and so on, thus needs some efforts.

• Adequate solution accuracy

One direction in CFD is to devise accurate and reliable algorithm with high effi-

ciency. However, high order reconstruction polynomials on structured grids built

from wide stencils can not be straightforwardly extended to unstructured grids.

Moreover, the alleviation of accuracy degradation by mesh quality is pretty im-

portant for moving grids.

• Robustness on moving domain

Numerical robustness on moving domain is a basic requirement for providing

friendly user experience. To achieve accurate solutions, stable moving mesh

strategies are required to avoid the extremely distorted mesh or tangled mesh.

In addition, conservation laws of mesh geometry and physical quantities need to

be satisfied, which may benefit numerical stability.
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• Stability for interface coupling

With accurate representation of interface by tracking technique, the boundary

conditions or jump conditions on the interface need to be imposed. However,

the displacements and velocities of interfaces are the interactive or equilibrious

results of two neighbouring materials. For FSI, multi-material equations are sup-

posed to be solved simultaneously for extreme cases, since the the staggered cou-

pling algorithm may cause the disequilibrium of the energy transfer through the

interface.

With these in mind, we hope to explore a practical moving mesh framework under

interface tracking technique.

1.3 Previous and related studies

Two popular methods under interface tracking technique are: Arbitrary Lagrangian Eu-

lerian (ALE) method [13, 22] and space-time method [23, 24]. In ALE formulation,

the temporal and spatial derivatives are cast in different descriptions, namely, referen-

tial and spatial configuration respectively. By doing this, numerical formulation can

be simply written in semi-discrete form, which simplifies the procedure for devising

algorithms and thus has gained much popularity in current CFD application. Neverthe-

less, due to the variation of mesh geometry, efforts are needed to devise the numerical

algorithm satisfying several conditions to ensure the numerical stability and accuracy,

such as geometrical conservation law (GCL) [25]. Besides, developing high order ac-

curate numerical algorithm is also a challenging work on moving unstructured grid. On

the other hand, space-time method, firstly proposed by Hughes [26] in the finite ele-

ment formulation, exhibits superior advantages for solving moving boundary problems.

By integrating the governing equation in a space-time slab, the 3D practical problem

becomes a 4D problem including the time dimension, which results in full conserva-

tiveness in space and time. It is unconditionally stable and can achieve arbitrarily high

order accuracy in time. However, a space-time control volume requires the numerical

scheme to be implicit, which is not flexible for time integration. Moreover, the rep-

resentation of high-dimensional computational element is rather challenging and the

computational system may be huge with the largely increased degrees of freedom from

all elements. In this study, we prefer to employ ALE method for studying fluid flows on

moving domain.
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1.3.1 ALE method

In ALE-based interface tracking technique, the interface is desired to be tracked in a

Lagrangian way. However, as aforementioned, purely Lagrangian schemes are likely to

suffer from the mesh tangle for large deformation in practical applications. In the ALE

formulations, the grids of the computational domain can move arbitrarily independent of

the fluid motions, thus the mesh movement can be arranged artificially. This flexibility

of mesh motion makes it more robust compared to the purely Lagrangian framework.

Efforts have been made so far to develop practical ALE algorithms. The existing works

may be divided into two classes, i.e. indirect method and direct method. The indirect

method was firstly proposed by Hirt et al. [13], which consists of three phases: (1) a

Lagrangian phase where the solution and the grid are updated; (2) a rezoning phase that

regularizes the tangled or heavily distorted mesh cells; (3) a remapping phase in which

the Lagrangian solution is transferred to the rezoned mesh adjusted in step (2). How-

ever, rezoning and remapping procedures can be computationally expensive especially

for two and three dimensional realistic calculations. The direct method [27, 28] does not

need the remapping as a separate step because the mesh velocity is already taken into

account in the numerical formulations that are consistent with the governing equations

in the moving mesh framework. Both types of methods are widely implemented in the

simulations of fluid dynamics.

In ALE schemes, the mesh geometry changes in time, which requires the geometri-

cal quantities, such as volumes, boundary surfaces and vertices of moving cells, to be

updated at each time step. Some existing works started from purely Lagrangian frame-

work for developing mesh moving problems. Munz et al. [29] devised a cell-centered

Godunov-type scheme using Roe [30] and HLL [31] flux solvers for Lagrangian hydro-

dynamics equations. Maire et al. [32–34] built a relationship between nodal displace-

ment and flux formulation and presented a robust cell-centered Lagrangian method on

multi-dimensional meshes with first and second order accuracy. To achieve high order

accuracy, Cheng et al. [35] developed a class of Lagrangian type schemes based on high

order essentially non-oscillatory (ENO) [36] reconstruction and obtained third order ac-

curacy with curved mesh in [37]. Dumbser et al. [38] proposed a one-dimensional high

order Lagrangian ADER (arbitrary high-order accurate) finite volume method. Besides,

the Discontinuous Galerkin (DG) method has also been used to solve the gas dynam-

ics equations in the total Lagrangian formulation for high-order accuracy [39]. These

purely Lagrangian methods move mesh cells with the flow velocity so that the advection

terms are removed from the governing equations. Particular care must be paid when the
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mesh is distorted to an unacceptable extent. A remedy is to improve the mesh qual-

ity with subsequent rezoning and remapping steps, which results in the indirect ALE

method.

These Lagrangian methods can also be extended to direct ALE methods. In the con-

ventional finite volume framework, the direct ALE scheme can be constructed upon

cell-centered Lagrangian solver completed with an edge-based upwinded formulation

of the numerical fluxes as presented in [40]. Boscheri et al. developed high-order di-

rect ALE ADER finite volume schemes in [28, 41] with WENO (weighted essentially

non-oscillatory) reconstruction and MOOD (multi-dimensional optimal order detection)

approach. Moreover, high order discontinuous Galerkin (DG) direct ALE method has

been implemented in [27, 42, 43] for compressible Euler equations. In this paper, we

focus on direct ALE method where the hydrodynamics equations are solved in an arbi-

trarily moving coordinate frame.

1.3.2 Spatial reconstruction

As stated above, most numerical algorithms has been proposed under the framework of

three types: finite difference method (FDM), finite element method (FEM) and finite

volume method (FVM). Among these, FVM has gained a great popularity in CFD due

to the conservativeness and flexibility for unstructured grids, which is served as the

basic framework for devising numerical algorithms in this study.

In the framework of finite volume method, there are mainly two methodologies to devise

high order ALE schemes. One is based on the conventional finite volume method,

where the computational variables are defined as volume integrated averages (VIA) as

shown in Figure 1.3 (a). The reconstruction originally started from piecewise constant

and extended to linear reconstruction such as monotonic upstream-centered scheme for

conservation laws (MUSCL) [44, 45], which is popularly implemented in mainstream

commercial softwares. In recent years, development of high order scheme is an active

research direction which is generally based on polynomial-based reconstruction, such

as the essentially non-oscillatory (ENO) [36] and weighted ENO (WENO) [46, 47]

schemes. These high order schemes presented the excellent performance on structured

grids, while choosing the reliable cell stencils for high order polynomial reconstruction

on moving unstructured grids is not an easy task.

The other methodology is to use compact stencils by adding the degrees of freedoms

(DOF) locally on each cell as shown in Figure 1.3 (a), such as the discontinuous Galerkin
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interface

Conventional FVM

Compact 

Scheme

(a)

interface

Multi-moment FVM

(b)

FIGURE 1.3: Definition of degrees of freedom (DOF) for (a) conventional finite vol-
ume method and compact scheme, (b) Multi-moment finite volume method.

(DG) method [48, 49] and the spectral finite volume (SV) method [50, 51]. Such meth-

ods have superior properties for achieving high order accuracy. As proved in [52],

the p-refinement (polynomial refinement) achieves a variable convergence rate with in-

creased DOFs, while the h-refinement (mesh size refinement) only produces a constant

convergence rate. However, some issues [53] like more restrictive time step for stability,

relative high computational cost and storage cost, need to be considered for industrial

applications.

On the other hand, for moving boundary problems, especially for fluid-structure interac-

tion applications, the solutions, as well as the coupling conditions, on the fluid-structure

interfaces are crucial and require particular attention. We notice that the aforementioned

methods based on increased local DOFs, as well as the conventional FVM, define the

computational variables inside each cell, thus extra numerical steps are needed to deter-

mine values and conditions on body surfaces or multi-material interfaces. This observa-

tion motivates us to use the point values (PV) at cell vertices as computational variables.

Making use of both VIA and PVs at the vertices of each mesh cell as the computational

variables, the underlying idea of the multi-moment finite volume method, as shown in

Figure 1.3(b), possesses at least the following advantages when used for the FSI prob-

lems with moving meshes.

• With locally increased DOFs, high order reconstructions can be easily built on

unstructured grids;

• PVs are always available at grid points, and can be directly used in moving mesh

and FSI computations with efficiency and accuracy;
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• The VIA is solved by an FVM formulation, and thus rigorously conserved.

Multi-moment finite volume method based on local reconstruction was developed by

Xie et al. [54, 55] on unstructured grids to achieve high order accuracy for incompress-

ible flows in Eulerian representation with fixed grids. In multi-moment finite volume

method, both VIA and PVs are used for local polynomial reconstruction, and simultane-

ously they are treated as computational variables which are solved by integral form and

differential form of the governing equations respectively. Successive works for Euler

equations have been implemented in [56, 57]. Since the high order polynomial is based

on well-determined local cells, it is straightforward to extend previous studies to mov-

ing grids. The first objective in this work is to establish an efficient numerical model for

fluid flows on moving grids by employing multi-moment finite volume method.

1.3.3 Fluid structure interaction

The second objective of this study is to construct an accurate and stable numerical model

for fluid-structure interaction based on the aforementioned fluid solver. The coupling

strategies for FSI problems can be classified into either the monolithic approach or the

partitioned approach. The monolithic approach solves the nonlinear algebraic systems

discretized from fluid and solid equations simultaneously. Since the equations for dif-

ferent materials are solved together, the monolithic approach inherently guarantees the

synchronism which benefits numerical accuracy and stability, but is usually more com-

putationally cost and requires a great deal of effort to develop the numerical models.

The partitioned approach separates different physical fields and solves them indepen-

dently with the information communicated through the material interfaces. The sepa-

rate computation makes different numerical schemes be able to be chosen for different

fields according to the requirements, which makes the partitioned approach popular in

the industrial applications. The partitioned method can be further divided into loosely

coupled [58, 59] and strongly coupled schemes [60]. For loosely coupled schemes, the

fluid and solid equations are solved only once in sequence at each time step, thus it

is simple and efficient. Obviously, it does not rigorously ensure dynamic equilibrium

across the interface, which may lead to the instability for a range of problems especially

for incompressible flows with small solid/fluid density ratios. Strong coupling scheme

enforces the exact coupling conditions between fluid and solid by means of iterations

with the implicit numerical schemes devised for both fields. For incompressible flows,

the fractional step method [15, 61, 62] is widely used for pressure-velocity coupling.

Based on the fractional step method, semi-implicit methods [63] are considered to be
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efficient and stable method even for light body involved simulations, where the implicit

coupling is only employed into the terms associated with the added-mass effect. In this

research, the semi-implicit coupling scheme is devised in the present FSI numerical

model for problems with small solid/fluid density ratio and the loosely coupled scheme

is used for large solid/fluid density ratio for computational efficiency.

1.4 Purpose of current study

In this paper, aiming at various interfaces in fluid flows, like contact discontinuities in

compressible flows, boundaries of fluid and structures, etc., we want to track the mov-

ing interfaces by using moving grids in order to ensure the accurate solutions. The ex-

tremely flexible moving interfaces, such as free surface in two-phase flows, is expected

to be captured by transporting indicator functions (i.e. VOF, LS, etc.) on stationary

grids or moderately moving grids. Toward this objective, we give the purpose of this

study from two parts.

1. Firstly, we will put effort to establish an accurate and robust moving mesh frame-

work for fluid flows based on multi-moment finite volume method. The major

concerns are put on following points:

(a) The motion of fluid flows is described in ALE viewpoint. Thus, the gov-

erning equations are formulated on a moving mesh configuration, where the

computational grids are able to move arbitrarily.

(b) To achieve adequate solution accuracy on moving unstructured grids, multi-

moment finite volume method will be adopted, where both VIA and PV are

treated as computational variables. With locally defined DOFs, quadratic

polynomials will be constructed over triangular and quadrilateral elements

for 2D and tetrahedral elements for 3D domain which are flexible for fitting

complex geometrical structures.

(c) Multi-moments, namely, VIA and PV, are solved separately on arbitrarily

moving grids, where the VIA is calculated by finite volume formulation to

ensure the rigorous numerical conservativeness, while the PVs are point-

wisely computed through a finite difference method.

(d) Conservation laws of mesh geometry should be well satisfied to ensure the

robustness and accuracy.
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We hope to develop numerical models for fluid flows on moving grids based on

this framework. The proposed numerical model is expected to achieve 3rd-order

accuracy for smooth solutions on varying domain and present appealing perfor-

mance for tracking moving interfaces by Lagrangian way.

2. Furthermore, we want to present a practical and reliable numerical model for

fluid-structure interaction problems of engineering applications. Some issues and

our efforts are given as follows:

(a) During the process of tracking fluid-structure interface, computational grids

are supposed to keep validity and good quality during the mesh movement.

An efficient and robust mesh movement strategies, radial basis function

(RBF) interpolation [64–66], will be implemented to transfer the given bound-

ary point displacements to internal point displacements.

(b) Interface coupling strategy affects the computational efficiency and stabil-

ity. Loosely coupled scheme is simple and fast for computation but does

not ensure the dynamic equilibrium across the interface. A semi-implicit

strong coupling scheme will be presented to calculate problems with small

solid/fluid density ratio.

(c) A preliminary numerical model for a more complex FSI phenomenon, mov-

ing body in free surface flow, will be presented. The proposed fluid model

on moving mesh will be used for tracking the moving body, while gas-

liquid surface will be captured with an algebraic VOF method, THINC-QQ

scheme, by formulating two-phase flow into one-fluid model.

Various benchmark tests will be finally calculated to extensively verify the per-

formance of present numerical solver in solving a large class of FSI problems.

1.5 Outline of thesis

The rest of the paper is organized as follows. In chapter 2, we first give the basic

knowledge of ALE description, and then formulate the Navier Stokes equations of con-

servation laws on a moving mesh configuration in ALE integral form and differential

form, which is prepared for updating VIA and PV moments respectively.

Chapter 3 presents the multi-moment finite volume ALE scheme for Euler equations

of compressible gas in 1D and 2D space, which interprets the core idea of the multi-

moment based moving mesh framework. The VIA of the conservative variables are
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solved by a finite volume method in the integral form of the governing equations to en-

sure the numerical conservativeness, where the numerical fluxes are calculated directly

from the cell boundary PVs in 1D and from the high-order multi-moment reconstruction

in 2D. Whereas, the governing equations of differential form are solved for the PVs of

the primitive variables by using Roe’s Riemann solver. Finally, a series of benchmark

tests are computed to verify the convergence rate and the performance for tracking the

contact discontinuities.

Chapter 4 extends the numerical model to the viscous compressible flows with a forced

moving body. Different from Chapter 3, the PVs are directly computed with differen-

tial form in respect of conservative variables which is straightforward for extension to

viscous flows. With a forced moving body in the flow, a radial basis function (RBF)

interpolation is implemented to transfer the displacement of given boundary points to

internal mesh points. Numerical tests, including flow over a oscillating cylinder, are

computed to verify the capability of the present solver.

In Chapter 5, we firstly presents the multi-moment finite volume method for unsteady

incompressible flows on unstructured moving grids and then construct a numerical

model for fluid-solid body interaction. We devise two coupling scheme, i.e. and ex-

plicit weak coupling scheme and a semi-implicit strong coupling scheme, to formulate

the interactions between fluid and moving solid with a wide range of mass ratios. Vari-

ous benchmark tests are finally present to verify the numerical model.

In Chapter 6, we present a preliminary numerical model for a more complex FSI phe-

nomenon, moving body in free surface flow. Moving body is tracked by the moving

mesh fluid model, while the gas-liquid interface is captured with an algebraic VOF

method, THINC-QQ scheme, by formulating two phase flow into one-fluid model. Nu-

merical tests, such as wave generation and water exit, are calculated to verify the nu-

merical model.

Chapter 7 summarizes the present study and offers some conclusions regarding the ma-

jor contributions. We also mention some deficiencies and provide suggestions for future

research.





Chapter 2

Governing Equations

2.1 Basic knowledge of ALE

2.1.1 ALE description

Lagrangian and Eulerian viewpoints are two basic methodologies for describing the

motion in continuum mechanics. For the interest of completeness, we start from La-

grangian and Eulerian descriptions, and then give the general formulation, Arbitrary

Lagrangian Eulerian description, by following [67–69].

There are two commonly used domains in continuum mechanics: the material domain

ΩX and the spatial domain Ωx which consist of material particles X and x respectively.

The Lagrangian viewpoint describes the motion by following the material particles, thus

relates to the material coordinate, X (X ∈ ΩX), or called as Lagrangian coordinate. The

Eulerian viewpoint observes the motion from current space, which is related to spatial

coordinate, x (x ∈ Ωx). Therefore, the motion of a specific material point at time t

relates the material coordinate X to the spatial coordinate x by a mapping function φ

as

x = φ(X, t). (2.1)

Then, the material velocity u is defined as

u =
∂x

∂t

∣∣∣∣
X

(2.2)

with
∣∣
X

meaning holding the material coordinate X fixed.

37
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In ALE description, a referential domain Ωχ made up of reference coordinates χ is

introduced, which represents the configuration of mesh movement. Its relationship with

spatial domain and material domain can be built by adding two other mapping function

ϕ and ψ as:

x = ϕ(χ, t), χ = ψ(X, t). (2.3)

Similarly with Eq.(2.2), two velocities are defined as

ug =
∂x

∂t

∣∣∣∣
χ

, w =
∂χ

∂t

∣∣∣∣
X

, (2.4)

where ug is called as referential velocity, or grid velocity with
∣∣
χ

meaning holding the

referential coordinate χ fixed,w the particle velocity in referential coordinates with
∣∣
X

meaning holding the material coordinate X fixed. The three velocities are connected by

∂x

∂t

∣∣∣∣
X

=
∂ϕ(χ, t)

∂t

∣∣∣∣
X

=
∂ϕ(χ, t)

∂t

∣∣∣∣
χ

+
∂ϕ(χ, t)

∂χ

∂χ

∂t

∣∣∣∣
X

, (2.5)

that is

u = ug +w
∂x

∂χ
. (2.6)

Readers may refer to [68] for rigorous proof.

2.1.2 Material, spatial and referential time derivatives

Considering a scalar physical variable f , we define the material, referential and spa-

tial time derivatives as ∂f
∂t

∣∣
X

, ∂f
∂t

∣∣
χ

and ∂f
∂t

∣∣
x

respectively. The material time derivative

relates to spatial and referential time derivatives as

∂f

∂t

∣∣∣∣
X

=
∂f

∂t

∣∣∣∣
x

+ u
∂f

∂x
(2.7)

and
∂f

∂t

∣∣∣∣
X

=
∂f

∂t

∣∣∣∣
χ

+w
∂f

∂χ
. (2.8)

By using Eq.(2.6), Eq.(2.8) can be transformed to

∂f

∂t

∣∣∣∣
X

=
∂f

∂t

∣∣∣∣
χ

+ (u− ug)
∂f

∂x
. (2.9)
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In this study, we denote d·
dt

= ∂·
∂t

∣∣
X

and ∂·
∂t

= ∂·
∂t

∣∣
x

for convenience, thus Eq.(2.7) and

Eq.(2.9) can be rewritten as
df

dt
=
∂f

∂t
+ u

∂f

∂x
(2.10)

and
df

dt
=
∂f

∂t

∣∣∣∣
χ

+ (u− ug)
∂f

∂x
. (2.11)

From Eq.(2.10) and Eq.(2.11), the relation between the referential and spatial time

derivatives can be formulated as

∂f

∂t

∣∣∣∣
χ

=
∂f

∂t
+ ug

∂f

∂x
, (2.12)

which is quite useful in ALE formulations.

2.1.3 Time derivatives of integrals over moving control volumes

To establish the integral form of conservation laws for physical variables, the rate

change of integrals over moving control volumes is of great interest. We consider a

material volume ΩX(t) bounded by its boundary ΓX(t), which means all particles are

permanently contained in ΩX(t). Then, we denote a spatial control volume (fixed in

space) Ω(t) enclosed by it boundary Γ(t), which coincides with the material volume

ΩX(t) at the considered time t. The material time derivative of the integral of a scalar

function f(x, t) over the time-varying control volume Ω(t) is given by the following

well-known expression, which is often referred as Reynolds transport theorem,

d

dt

∫
ΩX(t)

f(x, t)dΩ =

∫
Ω(t)

∂f(x, t)

∂t
dΩ +

∫
Γ(t)

f(x, t)u · ndΓ, (2.13)

where n denotes the surface normal vector of the control volume boundary Γ(t), the

detailed proof can be found in [70].

Analogically, the referential time derivative of a moving control volume is formulated

as
∂

∂t

∫
Ωχ(t)

f(x, t)dΩ =

∫
Ω(t)

∂f(x, t)

∂t
dΩ +

∫
Γ(t)

f(x, t)ug · ndΓ, (2.14)

where the spatial control volume Ω(t) coincides with the referential moving volume

Ωχ(t) at the considered time t and the moving velocity is given by ∂x
∂t

∣∣
χ

= ug.
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2.2 ALE formulations for Navier Stokes equations

2.2.1 Navier Stokes equations in Eulerian coordinates

The motion of fluid flows is generally described by the basic principles of conserva-

tion of mass, momentum and energy and cast into Navier-Stokes equations with the

Newtonian model of viscous stresses, which can be formulated in Eulerian coordinates

as
∂U

∂t
+∇ · (F(U)− G(U,∇U)) = 0, (2.15)

where U represents the vector of conservative variables, F(U) and G(U,∇U) represent

the vectors of convective flux and viscous flux respectively. In this formulation, the

vectors of conservative variables and fluxes take the form as follows

U =


ρ

M
ρE

 , F(U) =


uρ

u⊗M + p ¯̄I

uρE + pu

 , G(U,∇U) =


0

¯̄τ

¯̄τ · u−Q

 ,

(2.16)

with ρ,u, p,M and E being the density, velocity, pressure, momentum and specific

total energy of the fluid respectively. The symbol ⊗ denotes the tensor product and ¯̄I is

the unit tensor. For Newtonian fluid, the stress tensor ¯̄τ is a linear function of velocity

gradient based on Stoke’s hypothesis, given as

¯̄τ = µ

(
∇u+∇uT − 2

3
∇ · u ¯̄I

)
. (2.17)

The dynamic viscosity µ is represented as a function of temperature T following Suther-

land’s law

µ(T ) = µ0

(
T

T0

)β
T0 + s

T + s
. (2.18)

The heat flux vector Q is given by

Q = −κ∇T, (2.19)

where κ = cpµ

Pr
is the thermal conductivity with Pr and cp being Prandtl number and the

specific heat capacity at constant pressure respectively. We also include the equation of

state (EOS) to establish the relationship among three thermodynamic variables in the

following general form

p = p(ρ, e), (2.20)
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where e = E − 1
2
|u|2 is the specific internal energy. We consider the ideal gas in the

research with the simpler form as p = (γ−1)ρe. The adiabatic index γ = cp
cv

is the ratio

of specific heat capacities at constant presssure and constant volume conditions and we

set γ = 1.4 in this research unless otherwise stated.

2.2.2 ALE integral form

Following [71], we integrate Eq.(2.15) over a spatial control volume Ω(t) (coinciding

with a referential moving control volume Ωχ(t) at the time t) which is enclosed by its

boundary Γ(t) ≡ ∂Ω as∫
Ω(t)

∂U
∂t
dΩ +

∫
Γ(t)

F(U) · ndΓ−
∫

Γ(t)

G(U,∇U) · ndΓ = 0, (2.21)

where n denotes the surface normal vector of the control volume boundary Γ(t). By

using Eq.(2.14), Eq.(2.21) becomes

∂

∂t

∫
Ωχ(t)

UdΩ +

∫
Γ(t)

(F(U)− ugU) · ndΓ−
∫

Γ(t)

G(U,∇U) · ndΓ = 0. (2.22)

In this research, we denote the vectors of convective flux and viscous flux as F(U) =

(F(U)− ugU) · n and G(U,∇U) = G(U,∇U) · n respectively with ug = ∂x
∂t

∣∣
χ

rep-

resenting the grid moving velocity. Thus, we formulate the ALE integral form of the

conservative form of Navier-Stoke equations as

∂

∂t

∫
Ωχ(t)

UdΩ +

∫
Γ(t)

F(U)dΓ−
∫

Γ(t)

G(U,∇U)dΓ = 0. (2.23)

In the case of uniform flow, where all fluid variables are uniform and constant, Eq.(4.1)

should be reduced to
dV

dt
−
∫

Γ(t)

ug · ndΓ = 0, (2.24)

which is the original definition of geometrical conservation law (GCL) [25] in the inte-

gral form. Here, V =
∫

Ωχ(t)
dΩ is the control volume.
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2.2.3 ALE differential form

With the relation between spatial time derivatives and referential time derivatives Eq.(2.12),

Eq.(2.15) can be written as

∂U
∂t

∣∣∣∣
χ

+∇ · (F(U)− G(U,∇U))− ug · ∇U = 0, (2.25)

where ∂U
∂t

∣∣
χ

denotes the time derivative of conservative variables with respect to grid

moving frame.

Since the grid velocity ug is considered in both integral and differential formulations,

the system can be discretized on arbitrarily moving grids. Two common cases are:

(1) Eulerian framework with ug = 0 in which mesh keeps stationary; (2) Lagrangian

framework with ug = u where the control volume moves with the local fluid velocity.



Chapter 3

Multi-moment finite volume ALE
scheme for Euler equations

In CFD, PDEs are traditionally discretized on a computational mesh, where the compu-

tational variables are defined as moments like Volume Integrated Average (VIA), Point

Values (PV), etc.. Different from the conventional FVM or FDM, where only single

moment (VIA or PV) is employed, multi-moment finite volume method makes use of

multiple moments. In this study, we are interested in building a moving mesh frame-

work based on multi-moment finite volume method by employing both VIA and PV,

so called as VPM (Volume integrated average and Point value based Multi-moment)

method. To interpret the basic idea, we start from inviscid compressible flows, which

are governed by Euler equations. The numerical formulations to compute two kinds of

moments, i.e. VIA and PV, are derived respectively from the integral and differential

forms of Euler equations.

3.1 Governing euqation

3.1.1 Integral form

The VIA is updated by a finite volume formulation where we use the integral form of

Euler equations. By diminishing the effect of viscosity and heat conduction, we rewrite

Eq.(2.23) as
d

dt

∫
Ωχ(t)

UdΩ +

∫
Γ(t)

F(U)dΓ = 0, (3.1)

43
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with the vectors of conservative variables U and fluxes F(U) given below

U =


ρ

M

ρE

 ,F(U) =


(u− ug) · nρ
(u− ug) · nM + p · n
(u− ug) · nρE + pu · n

 , (3.2)

where ρ, u, M, p and E are the density, velocity, momentum, pressure and specific

total energy of the fluid respectively. Ωχ(t) is a referential moving control volume with

moving velocity ug which can be set arbitrarily. If ug = 0, the system reduces to a

Eulerian framework; and if ug = u, it corresponds to the Lagrangian framework where

the control volume moves with the local fluid velocity.

Considering the ideal gas, the equation of state (EOS) becomes

p = (γ − 1)ρe, (3.3)

with e = E − 1
2
|u|2 being the specific internal energy, γ the ratio of specific heats.

Besides, the volume variation is given by following geometric conservation law (GCL) [25]

dV

dt
−
∫

Γ(t)

ug · ndΓ = 0, (3.4)

where V denotes the control volume.

3.1.2 Differential form

In this study, differential form of compressible Euler equations is used to predict the PV

moment, which can be obtained from Eq.(2.25) as

∂U
∂t

∣∣∣∣
χ

+∇ · F(U)− ug · ∇U = 0. (3.5)

As we can see from Eq.(3.5), there is an extra term related to the gradient of variables,

ug · ∇U, in the conservation laws, which can not be calculated separately from the

divergence term. In practice, we cast Eq.(3.5) into two kind of quasi-linear forms in 2D.

Form 1
Eq.(3.5) is cast in terms of primitive variables:

∂W
∂t

∣∣∣∣
χ

+A(W)
∂W

∂x
+B(W)

∂W

∂y
= 0, (3.6)
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where W = [ρ, u, v, p] is the vector of primitive variables, A(W) and B(W) are the

coefficient matrices for spatial derivatives of W with respect to x and y coordinates

respectively. They take the following form

A(W) =


u− ug ρ 0 0

0 u− ug 0 1
ρ

0 0 u− ug 0

0 γp 0 u− ug

 ,

B(W) =


v − vg 0 ρ 0

0 v − vg 0 0

0 0 v − vg 1
ρ

0 0 γp v − vg

 ,

where ρ is the density, p the pressure, u and v the x and y components of fluid ve-

locity u = (u, v), ug and vg x and y components of the grid velocity ug = (ug, vg)

respectively. Note that in (3.6), ∂W
∂t

∣∣
χ

denotes the time derivative with respect to the

grid moving at speed ug. The grid velocity ug = ∂x
∂t

∣∣
χ

can be formulated more directly

as

ug =
dxg
dt

, (3.7)

where xg is the coordinate of the grid. This is the so-called local kinematic equation,

which corresponds to GCL in the integral form (3.4). If ug = 0, the system reduces to

the differential form of Euler equations in the Eulerian framework; and if ug = u, the

system becomes the Lagrangian framework.

Form 2
Eq.(3.5) can also be formulated with respect to conservative variables U = [ρ, ρu, ρv, ρE]

as
∂U
∂t

∣∣∣∣
χ

+ (A(U)− ugI)
∂U
∂x

+ (B(U)− vgI)
∂U
∂y

= 0, (3.8)

where A(U) = ∂Fx(U)
∂U and B(U) = ∂Fy(U)

∂U are the Eulerian Jacobian matrices, I is the

unit matrix, ug and vg are x and y components of grid velocity ug respectively. Thus,

we formulate the ALE differential form of compressible Navier-Stoke equations as

∂U
∂t

∣∣∣∣
χ

+A(U)
∂U
∂x

+B(U)
∂U
∂y

= 0 (3.9)
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with the ALE Jacobian matrices A(U) = A(U) − ugI and B(U) = B(U) − vgI .

Jacobian matrices take the form as

A(U) =


−ug 1 0 0

−u2 + 1
2
(γ − 1)V 2 (3− γ)u− ug (1− γ)v γ − 1

−uv v u− ug 0

u
[

1
2
(γ − 1)V 2 −H

]
H − (γ − 1)u2 (1− γ)uv γu− ug

 , (3.10)

B(U) =


−vg 0 1 0

−uv v − vg u 0

−v2 + 1
2
(γ − 1)V 2 (1− γ)u (3− γ)v − vg γ − 1

v
[

1
2
(γ − 1)V 2 −H

]
(1− γ)uv H − (γ − 1)v2 γv − vg

 , (3.11)

with the specific kinetic energy 1
2
V 2 = 1

2
(u2 + v2) and the total specific enthalpy H =

e+ p
ρ
.

Finally, both Form 1 and Form 2 can be summarized into a general quasi-linear form

∂Q
∂t

∣∣∣∣
χ

+A
∂Q
∂x

+B
∂Q
∂y

= 0 (3.12)

with Q being W or U , A and B corresponding matrices, thus the numerical proce-

dures for two forms are identical. In this study, we tried both Form 1 and Form 2 for

solving PV moment of Euler equations and don’t see much difference in our practice.

However, Form 1 can not be directly extended to viscous compressible flows due to

the transformation between conservative variables and primitive variables. Thus, We

will present the numerical scheme for Euler equations based on Form 1 for solving PV

moments in this Chapter, and use Form 2 for viscous compressible flows as shown in

Chapter 4.

3.2 Multi-moment finite volume ALE scheme for 1D Eu-

ler equation

The one-dimensional computational domain is divided into I non-overlapping cells

Ωi = [xi− 1
2
, xi+ 1

2
] of size ∆xi = xi+ 1

2
− xi− 1

2
with i = 1, 2, · · · , I . For a given cell

Ωi, two kinds of moments are defined for field variable φ(x, t). They are the volume
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integrated average (VIA) over each cell

φi =
1

∆xi

∫ x
i+1

2

x
i− 1

2

φ(x, t)dx (3.13)

and the point value (PV) at cell boundary

φi+ 1
2

= φ(xi+ 1
2
, t), (3.14)

where φ stands for all state variables, including conservative and primitive variables.

3.2.1 The CIP-CSL3 reconstruction

Given one VIA φi and two PVs φi± 1
2

over Ωi, as well as the first order cell center

derivative di approximated from the VIA and PV moments from Ωi and its neighboring

cells, a piecewise cubic interpolation function for conservative variables φ(x, t) can

be constructed, following the CIP-CSL3 (constrained interpolation profile-conservative

semi-Lagrangian scheme with third-order polynomial function) scheme [72, 73], for

each element as

Φi(x) = a3(x− xi− 1
2
)3 + a2(x− xi− 1

2
)2 + a1(x− xi− 1

2
) + a0, (3.15)

and the unknown coefficients are computed by imposing the following constraint con-

ditions: 

Φi(xi− 1
2
) = φi− 1

2
,

Φi(xi+ 1
2
) = φi+ 1

2
,

1
∆xi

∫ x
i+1

2
x
i− 1

2

Φi(x)dx = φi,

dΦi(x)
dx

∣∣
xi

= di.

(3.16)

Thus, we have coefficients of (3.15) as

a0 = φi− 1
2
,

a1 =
2(3φi−3φ

i− 1
2
−∆xidi)

∆xi
,

a2 =
3(−2φi−φi+1

2
+3φ

i− 1
2

+2∆xidi)

∆x2i
,

a3 =
4(φ

i+1
2
−φ

i− 1
2
−∆xidi)

∆x3i
.

(3.17)
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When the cell center derivative di is simply computed by differencing the PVs at the

two boundaries of cell Ωi as

di =
φi+ 1

2
− φi− 1

2

∆xi
, (3.18)

the coefficient of the third-order term a3 vanishes in (3.17), and the interpolation func-

tion then degrades to a piecewise quadratic interpolation function for cell Ωi and the

CIP-CSL2 (constrained interpolation profile-conservative semi-Lagrangian scheme with

second-order polynomial function) scheme [74] is retrieved. As shown in [72, 73], the

cell center derivative can be approximated by conventional slope limiter schemes to

suppress the numerical oscillations. We use the superbee limiter [75] as follows

di = maxmod
(
minmod

(
di− 1

2
, 2di+ 1

2

)
,minmod

(
2di− 1

2
, di+ 1

2

))
, (3.19)

where di− 1
2

=
2(φi−φi−1)

∆xi−1+∆xi
and di+ 1

2
=

2(φi+1−φi)
∆xi+∆xi+1

. The minmod and maxmod functions

are given respectively as

minmod(a1, a2) =

{
s ·min(|a1|, |a2|), if s = sign(a1) = sign(a2),

0, otherwise,
(3.20)

and

maxmod(a1, a2) =

{
s ·max(|a1|, |a2|), if s = sign(a1) = sign(a2),

0, otherwise.
(3.21)

Once the CIP-CSL3 interpolation is constructed over Ωi, we can obtain the spatial

derivatives of the physical variables at two boundary points xi± 1
2

which are then used to

update the PVs at cell boundaries.

3.2.2 Solution for VIA moment

We first formulate the semi-discrete finite volume scheme of (3.1) for updating VIA

moments as

d

dt


ρi∆xi

M i∆xi

(ρE)i∆xi

 = −


f̂D
i+ 1

2

− f̂D
i− 1

2

f̂M
i+ 1

2

− f̂M
i− 1

2

f̂E
i+ 1

2

− f̂E
i− 1

2

 , (3.22)
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with the fluxes approximated from PVs as
f̂D
i+ 1

2

= (ui+ 1
2
− ug,i+ 1

2
)ρi+ 1

2
,

f̂M
i+ 1

2

= (ui+ 1
2
− ug,i+ 1

2
)Mi+ 1

2
+ pi+ 1

2
,

f̂E
i+ 1

2

= (ui+ 1
2
− ug,i+ 1

2
)(ρE)i+ 1

2
+ pi+ 1

2
ui+ 1

2
.

(3.23)

It is noted that by solving the physical variables as computational variables at cell

boundaries we don’t need to solve any Riemann problem to find the numerical fluxes at

cell boundaries which are required in the finite volume formulations for the VIAs of the

conservative variables. Thus, the present method is computationally efficient.

3.2.3 Solution for PV moment

The governing equations (3.6) of PVs in one-dimensional case are formulated by

∂W
∂t

+ A(W)
∂W

∂x
= 0, (3.24)

with W = [ρ, u, p] being the primitive variables. The Jacobian matrix can be factorized

into A = RAΛALA, where ΛA is the diagonal matrix of eigenvalues, andLA andRA are

the corresponding left and right eigen matrices respectively. Details of eigenstructure

are documented in Appendix A.1.

As introduced in [57], Eq.(3.24) is solved by Roe’s Riemann solver point-wisely as

∂Wi+ 1
2

∂t
= −1

2

(
Ã

(
∂W−

i+ 1
2

∂x
+
∂W+

i+ 1
2

∂x

)
+ R̃A|Λ̃A|L̃A

(
∂W−

i+ 1
2

∂x
−
∂W+

i+ 1
2

∂x

))
,

(3.25)

where
∂W−

i+1
2

∂x
and

∂W+

i+1
2

∂x
denote the derivatives of variables Wi+ 1

2
on the left and right

sides of point xi+ 1
2

and the Jacobian matrix is calculated from the Roe-averaging. Each

Roe-averaging value is computed from the VIA values in the surrounding cells by

φ̃i+ 1
2

=

√
ρi · φi +

√
ρi+1 · φi+1√

ρi +
√
ρi+1

, (3.26)
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where φ̃i+ 1
2

stands for ũi+ 1
2

and H̃i+ 1
2

and H i =
(

(ρE)i + pi

)
/ρi is the total enthalpy.

We compute the sound speed by

ãi+ 1
2

=

(
(γ − 1)(H̃i+ 1

2
− 1

2
ũ2
i+ 1

2
)

) 1
2

. (3.27)

As shown in 3.2.1, the interpolation function is reconstructed for the conservative vari-

ables ρ, M and ρE, thus the spatial derivatives of conservative variables must be trans-

ferred to the spatial derivatives of primitive variables W = [ρ, u, p]. We use the follow-

ing formulations for this purpose in this work

∂u±
i+ 1

2

∂x
=

1

ρ̃i+ 1
2

∂M±
i+ 1

2

∂x
−
M̃i+ 1

2

ρ̃2
i+ 1

2

∂ρ±
i+ 1

2

∂x
, (3.28)

∂p±
i+ 1

2

∂x
= (γ − 1)

(
∂(ρE)±

i+ 1
2

∂x
− ũi+ 1

2

∂M±
i+ 1

2

∂x
+

1

2
ũ2
i+ 1

2

∂ρ±
i+ 1

2

∂x

)
. (3.29)

The semi-discrete time evolution equations (3.25) are then solved to update the PVs at

cell boundaries.

3.2.4 Time integration

In order to achieve third order accuracy in time, we implement the third order Runge-

Kutta scheme [76] to update the semi-discrete equations (3.22) and (3.25) in time. Since

the mesh changes with the time in ALE scheme, not only VIAs and PVs but also the

position of each vertex and the size of each cell should be updated in each Runge-Kutta

step.

We summarize the solution procedure using the third order Runge-Kutta scheme to

update the numerical solutions of Euler equations from time level n (t = tn) to n + 1
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(t = tn + ∆t) as follows,

Step 1:

x
(1)

i+ 1
2

= xn
i+ 1

2
+ un

i+ 1
2
∆t, ∆x

(1)
i = x

(1)

i+ 1
2

− x(1)

i− 1
2

,

U(1)

i ∆x
(1)
i = Un

i ∆xni + ∆tR1(Un

i ,W
n
i+ 1

2
),

W(1)

i+ 1
2

= Wn
i+ 1

2
+ ∆tR2(Un

i ,W
n
i+ 1

2
);

Step 2:

x
(2)

i+ 1
2

=
3

4
xn
i+ 1

2
+

1

4

[
x

(1)

i+ 1
2

+ u
(1)

i+ 1
2

∆t
]
, ∆x

(2)
i = x

(2)

i+ 1
2

− x(2)

i− 1
2

,

U(2)

i ∆x
(2)
i =

3

4
Un

i ∆xni +
1

4

[
U(1)

i ∆x1
i + ∆tR1(U(1)

i ,W(1)

i+ 1
2

)
]
,

W(2)

i+ 1
2

=
3

4
Wn

i+ 1
2

+
1

4

[
W(1)

i+ 1
2

+ ∆tR2(U(1)

i ,W(1)

i+ 1
2

)
]

;

Step 3:

xn+1
i+ 1

2

=
1

3
xn
i+ 1

2
+

2

3

[
x

(2)

i+ 1
2

+ u
(2)

i+ 1
2

∆t
]
, ∆xn+1

i = xn+1
i+ 1

2

− xn+1
i− 1

2

,

Un+1

i ∆xn+1
i =

1

3
Un

i ∆xni +
2

3

[
U(2)

i ∆x
(2)
i + ∆tR1(U(2)

i ,W(2)

i+ 1
2

)
]
,

Wn+1
i+ 1

2

=
1

3
Wn

i+ 1
2

+
2

3

[
W(2)

i+ 1
2

+ ∆tR2(U(2)

i ,W(2)

i+ 1
2

)
]
,

where R1 and R2 stand for the numerical operators of the right sides of (3.22) and (3.25)

respectively. The time step is simply determined by

∆t = CE min
16i6I

(
∆xni
|uni |+ cni

)
, (3.30)

where we set CE = 0.4 in our computations except for the blast wave problem.

3.3 Benchmark tests in 1D

In this section, one-dimensional ALE multi-moment finite volume scheme for Euler

equations is tested by some benchmark tests. To verify that the mesh can move arbi-

trarily for the proposed ALE scheme, we set the grid velocity as a fraction of the local

fluid velocity in this chapter. With ug = 0 for Eulerian framework and ug = u for

Lagrangian framework, we include the case of ug = 0.5u to demonstrate the present

ALE framework with a specified speed to move the mesh. It is noted that numerical

formulation of the present ALE works well for any specified mesh speed. The ideal gas

with γ = 1.4 is used unless otherwise stated and also for later 2D tests.
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3.3.1 Accuracy test

The accuracy of the proposed scheme is evaluated by a benchmark test with smooth

solutions [35]. The initial conditions are

ρ(x, 0) = 2 + sin(2πx), u(x, 0) = 1 + 0.1 sin(2πx), p(x, 0) = 1, x ∈ [0, 1],

(3.31)

and the periodic boundary condition is used. We tested the present ALE scheme in the

Eulerian and Lagrangian frameworks as two special cases and also another moving-

mesh case with the grid velocity specified as half of the fluid velocity (ug = 0.5u).

We summarize in Table 3.1 the errors and numerical convergence rates for the den-

sity field at t = 1 with the reference solution calculated from the third order multi-

moment constraint finite volume method (MCV) [77] in the Eulerian framework with

8000 grids. To show the accuracy improvements of the present multi-moment ALE

scheme in comparison with the conventional finite volume ALE method, we also calcu-

lated the same benchmark test by a conventional third-order finite volume ALE scheme

using the quadratic polynomials constructed over a three-cell stencil. Numerical results

of third-order finite volume ALE scheme are shown in Table 3.2 for comparison, and

we compare the computation time of both schemes in Table 3.3.

TABLE 3.1: Errors and convergence rates of density with initially uniform cells by
using the present ALE scheme

cells Eulerian (ug = 0) ALE (ug = 0.5u) Lagrangian (ug = u)
L1 rate L∞ rate L1 rate L∞ rate L1 rate L∞ rate

50 1.96e-4 - 7.70e-4 - 1.06e-4 - 5.25e-4 - 6.88e-5 - 3.12e-4 -
100 2.52e-5 2.96 1.04e-4 2.89 1.39e-5 2.93 7.00e-5 2.91 8.88e-6 2.95 4.17e-5 2.90
200 3.16e-6 3.00 1.32e-5 2.98 1.74e-6 3.00 8.97e-6 2.96 1.11e-6 3.00 5.36e-6 2.96
400 3.96e-7 3.00 1.66e-6 2.99 2.19e-7 2.99 1.13e-6 2.99 1.40e-7 2.99 6.76e-7 2.99
800 4.94e-8 3.00 2.08e-7 3.00 2.73e-8 3.00 1.41e-7 3.00 1.74e-8 3.01 8.46e-8 3.00

TABLE 3.2: Errors and convergence rates of density with initially uniform cells by
using 3rd-order finite volume ALE scheme

cells Eulerian (ug = 0) ALE (ug = 0.5u) Lagrangian (ug = u)
L1 rate L∞ rate L1 rate L∞ rate L1 rate L∞ rate

50 1.12e-3 - 4.34e-3 - 6.33e-4 - 3.11e-3 - 3.82e-4 - 1.68e-3 -
100 1.46e-4 2.93 5.95e-4 2.87 8.34e-5 2.93 4.17e-4 2.90 4.93e-5 2.95 2.59e-4 2.70
200 1.84e-5 2.99 7.54e-5 2.98 1.05e-5 2.99 5.27e-5 2.98 6.23e-6 2.98 3.36e-5 2.95
400 2.28e-6 3.01 9.41e-6 3.00 1.32e-6 3.00 6.59e-6 3.00 7.82e-7 2.99 4.25e-6 2.98
800 2.54e-7 3.17 1.18e-6 3.00 1.67e-7 2.98 8.56e-7 2.95 1.02e-7 2.94 5.63e-7 2.91

It is clearly that the present ALE scheme can achieve third order accuracy. By the

comparison, we can find that with same mesh resolution, the numerical error of present
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TABLE 3.3: Computational time comparison of the present ALE scheme and 3rd-order
finite volume ALE scheme. The elapse time of computations was measured on a PC
with an Intel Core i7-4790 CPU @ 3.60GHz. 500, 1000, 2000, 4000 and 8000 time-

steps were used respectively for the cases of 50, 100, 200, 400 and 800 cells.

cells
The present scheme 3rd-order FVM
Eulerian ALE Lagrangian Eulerian ALE Lagrangian
(ug = 0) (ug = 0.5u) (ug = u) (ug = 0) (ug = 0.5u) (ug = u)

50 0.05s 0.04s 0.04s 0.04s 0.04s 0.03s
100 0.15s 0.15s 0.14s 0.11s 0.12s 0.12s
200 0.55s 0.57s 0.55s 0.45s 0.46s 0.45s
400 2.15s 2.19s 2.17s 1.79s 1.78s 1.77s
800 8.52s 8.53s 8.57s 6.90s 7.01s 7.08s

scheme is only 15 ∼ 20% of the conventional 3rd-order finite volume ALE scheme

no matter mesh moves or not. Since two kinds of moment are used, the computational

cost increases 20 ∼ 25%. However it is not substantial compared with the reduction of

the numerical error. Besides, it is also observed that the Lagrangian framework of both

methods shows the smallest numerical errors compared to the other two frameworks.

3.3.2 Lax problem

Known as Lax’s Riemann problem for Euler equations, this benchmark test starts from

the following initial conditions,

(ρ0, u0, p0) =

{
(0.445, 0.698, 3.528), for 4 6 x 6 10,

(0.5, 0, 0.571), for 10 < x 6 14.
(3.32)

Figure 3.1 shows the results of the Eulerian framework (a), the ALE framework (b)

and the Lagrangian framework (c) with 100 initially uniform cells at time t = 1. The

present scheme can resolve the discontinuous solution well with the superbee limiter.

We can see from Figure 3.1 that the Lagrangian framework can capture sharper contact

discontinuity than the Eulerian framework. The ALE scheme with ug = 0.5u gives

numerical results lying between Eulerian and Lagrangian frameworks.
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FIGURE 3.1: The density results for Lax problem with the present ALE scheme: (a)
Eulerian (ug = 0); (b) ALE (ug = 0.5u); (c) Lagrangian (ug = u).

3.3.3 Two interacting blast waves

The benchmark test of two interacting blast waves [78] was computed. The initial

conditions were specified as

ρ0 = 1, u0 = 1, p0 =


1000, for 0 6 x 6 0.1,

0.01, for 0.1 < x 6 0.9,

100, for 0.9 < x 6 1.

(3.33)

The reflective boundary conditions were applied at the two ends of computation do-

main, x = 0 and x = 1. We solved this problem with 400 initially uniform cells to time

t = 0.38, and the CFL number is set as 0.1. The density results of the Eulerian, ALE

and Lagrangian framework are plotted in Figure 3.2. The left-most contact discontinu-
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FIGURE 3.2: The density results for blast waves with the present ALE scheme: (a)
Eulerian (ug = 0); (b) ALE (ug = 0.5u); (c) Lagrangian (ug = u).

ity in the Eulerian framework is diffused as observed in the numerical solutions of other

high-resolution schemes, while the numerical solutions of the Lagrangian framework

demonstrate much superior capability in resolving both discontinuities and smooth so-

lutions. The Lagrangian framework can resolve the contact discontinuity within two
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cells, which is very challenging to Eulerian sort approach even with high-order recon-

struction. Meanwhile, we also observe some overshoots in the Lagrangian framework

quite similar to that reported in [35]. Again, the ALE result with ug = 0.5u shows a

result lying between Eulerian and Lagrangian frameworks.

3.3.4 Shock entropy wave interaction

This problem was proposed in [79]. The initial conditions are given as

(ρ0, u0, p0) =

{
(3.857148, 2.629369, 10.333333), for − 5 6 x 6 1,

(1 + 0.2 sin(5x− 5), 0, 1), for 1 < x 6 10.
(3.34)

The numerical results of density at time t = 1.8 with 400 initially uniform mesh are

displayed in Figure 3.3. The Lagrangian framework resolves finer structure in the nu-

merical solutions which are much superior to the Eulerian framework. The ALE result

with ug = 0.5u shows good results for both shocks and density perturbations, and per-

forms as a balanced solver between Eulerian and Lagrangian frameworks as expected.
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FIGURE 3.3: The density results for shock-turbulence interaction test with the present
ALE scheme: (a) Eulerian (ug = 0); (b) ALE (ug = 0.5u); (c) Lagrangian (ug = u).

In this section, a direct ALE multi-moment finite volume scheme is developed for one-

dimensional Euler equations. It can achieve third order accuracy for smooth solutions

and can successfully solve the 1D compressible Euler equations include discontinuous

solutions on moving meshes. The Lagrangian framework captures the discontinuities

more sharply than the Eulerian framework.
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3.4 Multi-moment finite volume ALE scheme for multi-

dimensional Euler equation

The 1D ALE formulation presented in the previous section can be extended straightfor-

wardly to multi-dimensional case. In the present multi-moment finite volume scheme,

we solve the PV at each cell vertex as the computational variable as well in addition

to the VIA moment. Since the vertex is moved at a specified velocity, the basic idea

developed in the previous section can be applied to update the two kinds of moments in

multi-dimensional case.

3.4.1 Grid configuration and notations

The original Volume-average/point-value formulation was proposed by Xie [54, 80, 81]

for incompressible Navier-Stokes equations on static unstructured grids. Following

Xie’s work, we give the definition of computational grids. The computational domain is

divided into elements Ωi (i = 1, 2, · · · , I) of different types, triangular and quadrilateral

elements for 2D and quadrilateral element for 3D (will be used in Chapter 5) as shown

in Figure 3.4.

Ωi
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θi3

Γi1Γi2

Γi3 θi1
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θi3
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Γi4
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θi2

θi3

θi4

Γi1

Γi2

Γi3

Γi4

FIGURE 3.4: 2D: triangular (left), quadrilateral (middle) element and 3D: tetrahedral
element (right).

The global indices of cell vertices are denoted by θp, (p = 1, 2, · · · ,P). To reconstruct

the high order polynomials on local cells, the vertices of cell Ωi are denoted by θik

(k = 1, 2, · · · ,K) with the coordinate xik = (xik, yik, zik) (i.e. K = 3 for triangle,

K = 4 for quadrilateral and 3D tetrahedron). The boundary surface segments of element

Ωi are denoted by Γij (j = 1, 2, · · · , J) with subscript ij denoting the index of jth

cell boundary (i.e. J = 3 for triangle, J = 4 for quadrilateral and tetrahedron). The

boundary segments Γij is actually an edge for 2D and a surface for 3D as shown in
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Figure 3.4. For later use, we also denote the area and the outward unit normal vector of

boundary segments by |Γij| and nij = (nxij, nyij, nzij), and the cell volume and mass

center by Vi = |Ωi| and θic(xic, yic, zic), respectively. The topological relation between

the global index of vertices “p” and its local index “ik” in respect of the target cell Ωi

is realized through a connection table.

In VPM method, two kinds of computational variables, i.e. the volume integrated aver-

ages (VIA) over Ωi and the point values (PV) at the vertices are defined with respect to

a physical variable φ(x, y, z, t)

φi =
1

|Ωi|

∫
Ωi

φ(x, y, z, t)dΩ, i = 1, 2, · · · , I; (3.35)

φik = φ(xik, yik, zik, t), k = 1, 2, · · · ,K, (3.36)

where φ stands for all state variables same as that in 1D.

3.4.2 Local reconstruction

For algorithm simplicity, following [54, 55, 80], element Ωi is firstly transformed from

global coordinate system x−y−z to a canonical referential coordinate system ξ−η−ζ
by x =

∑K
k=1 xikNik as shown in Figure 3.5, where the third dimension is discarded by

default for 2D elements. Given an arbitrary quantity φik at a vortex ik of the physical

θi1 θi2

θi3

θi1
θi2

θi3θi4

θi1 θi2

θi3

θi4

FIGURE 3.5: 2D: triangular (left), quadrilateral (middle) element and 3D: tetrahedral
element (right) in local referential coordinate system.

coordinates (xik, yik, zik), the corresponding quantity in referential coordinate can be
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connected by basis function Nik(ξ) as

1

x

y

z

φ


=



1 1 · · · 1 1

xi1 xi2 · · · xiK−1 xiK

yi1 yi2 · · · yiK−1 yiK

zi1 zi2 · · · ziK−1 ziK

φi1 φi2 · · · φiK−1 φiK





Ni1(ξ)

Ni2(ξ)

· · ·
NiK−1(ξ)

NiK(ξ)


(3.37)

The mapping functions for above three types of elements are listed in Table 3.4. Another

TABLE 3.4: Mapping functions

Quadrilateral element Triangular element Tetrahedral element

Basis functions

Ni1 = 1
4(1− ξ − η + ξη) Ni1 = 1− ξ − η Ni1 = 1− ξ − η − ζ

Ni2 = 1
4(1 + ξ − η − ξη) Ni2 = ξ Ni2 = ξ

Ni3 = 1
4(1 + ξ + η + ξη) Ni3 = η Ni3 = η

Ni4 = 1
4(1− ξ + η − ξη) Ni4 = ζ

important issue is regarding to the transformation of first order derivative between two

coordinate systems, which is given as
φξi

φηi

φζi

 =


xξi yξi zξi

xηi yηi zηi

xζi yζi zζi



φxi

φyi

φzi

⇐⇒

φxi

φyi

φzi

 =


ξxi ηxi ζxi

ξyi ηyi ζyi

ξzi ηzi ζzi



φξi

φηi

φζi


(3.38)

As detailed in [54, 55, 80], the first-order and second-order derivatives of the physi-

cal field are firstly computed in the physical coordinates and then transformed to the

local coordinates. With the supplementary of the first and second order derivatives at

cell center (φξic, φηic, φζic) and (φξ2ic, φη2ic, φζ2ic), the reconstruction polynomial Φ for

conservative variable U = [ρ,M, ρE] can be formulated on the local coordinates as

Φi(ξ, η, ζ) = c0+c1ξ+c2η+c3ξη+c4ξ
2+c5η

2+c6ζ+c7ξζ+c8ηζ+c9ζ
2+c10ξηζ (3.39)

where the formulation for 2D elements can be described by discarding the third compo-

nent of coordinate in η direction of Eq.(3.39). The coefficients can be obtained from the

constrained conditions in term of multi-moments, i.e. VIA (φi), PVs (φik) and deriva-

tives (φξic, φηic, φζic) at cell center, which are documented in the Appendix B.

Following the limiting procedure in [56, 57], the high order reconstruction is degraded

to a linear polynomial by MLP [82] scheme to eliminate spurious oscillations. The
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first-order derivatives at vertices are computed from the reconstruction functions in lo-

cal coordinates and then transformed back to the physical coordinates for updating PV

moments.

Given the spatial derivatives of physical field U at point p,
(
∂Upm

∂x
, ∂Upm

∂y
, ∂Upm

∂z

)
, which

are calculated from the surrounding cells Ωpm (m = 1, 2, 3, · · · ,M), we approximate

the upwind-biased derivatives with respect to x, y and z at vertex point p by

∂U±p
∂x

=
4∑

m=1

ωx±pm
∂Upm

∂x
,
∂U±p
∂y

=
4∑

m=1

ωy±pm
∂Upm

∂y
and

∂U±p
∂z

=
4∑

m=1

ωz±pm
∂Upm

∂z
(3.40)

respectively. The weights for derivatives on left and right sides of point p in x and y

directions are calculated by

ωτ±pm =
max(0,nτ± · −−−→θpmcθp)∑M
m=1 max(0,nτ± · −−−→θpmcθp)

, (3.41)

where
−−−→
θpmcθp denotes the vector from the mass center θpmc to vertex θp, and the unit nor-

mal vector nτ± represents nx±(±1, 0, 0), ny±(0,±1, 0) and nz±(0, 0,±1) respectively.

3.4.3 Solution for VIA moment

We formulate the semi-discrete finite volume scheme (3.1) in 2D with a Q-point Gaus-

sian quadrature for numerical fluxes as

d

dt

(
UiVi

)
= −

J∑
j=1

Q∑
q=1

ωqF̃ij(Gq, t)|Γij|, (3.42)

where Gq is the Gaussian quadrature point on cell edge Γij which separates cells Ωi and

Ωij . The four-point Gauss-Lobatto integral formula is used in this work, which reads

G1 = P1, G2 = 1
2
(P1 +P2)−

√
5

10
(P2−P1), G3 = 1

2
(P1 +P2) +

√
5

10
(P2−P1), G4 = P2,

and ω1 = ω4 = 1
12
, ω2 = ω3 = 5

12
for the edge with endpoints P1 and P2. The HLLC

scheme on moving grids [83] is implemented in this study to calculate flux F̃ij on edge

Γij , as shown in Appendix C.3.
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3.4.4 Solution for PV moment

We solve Eq.(3.6) point-wisely by Roe’s Riemann solver as

∂Wp

∂t
= −1

2

(
Ã

(
∂W−

p

∂x
+
∂W+

p

∂x

)
+ R̃A|Λ̃A|L̃A

(
∂W−

p

∂x
− ∂W+

p

∂x

))
−1

2

(
B̃

(
∂W−

p

∂y
+
∂W+

p

∂y

)
+ R̃B|Λ̃B|L̃B

(
∂W−

p

∂y
− ∂W+

p

∂y

))
(3.43)

where the matrices are approximated from the Roe-averaging values of the surrounding

VIAs by

φ̃p =

∑M
m=1

√
ρpm · φpm∑M

m=1

√
ρpm

(3.44)

and the sound speed is calculated as

ãp =

(
(γ − 1)(H̃p −

1

2
(ũ2

p + ṽ2
p))

) 1
2

. (3.45)

Eigenstructures are detailed in Appendix A.2. The spatial derivatives of primitive vari-

ables
(
∂W±p
∂x

,
∂W±p
∂y

)
can be obtained from the spatial derivatives of the conservative vari-

ables
(
∂U±p
∂x
,
∂U±p
∂y

)
in analogy to (3.28) and (3.29).

The overshoots/undershoots of PV can be simply removed by

φp = min
(
φp,max(φpm)

)
, φp = max

(
φp,min(φpm)

)
, (3.46)

where max(φpm) and min(φpm) are the maximum and minimum VIAs on the surround-

ing cells sharing node θp.

3.4.5 Geometrical conservation law

For a uniform flow, the spatial gradients of all flow variables are zero, thus Equation

(3.42) becomes
dVi
dt

=

J∑
j=1

Q∑
q=1

ωqug(Gq, t) · n|Γij|, (3.47)

which is the semi-discretization of geometrical conservation law (GCL). Here,ug(Gq, t)

is the grid velocity at Gaussian point Gp on edge Γij . For an arbitrarily varying mesh,

we can suppose that the grid velocity has a linear distribution over cell edges. Given

the grid velocities at two ends of boundary segments Γij denoted as ugij0 and ugij1,
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Equation (3.47) can be simplified as

dVi
dt

=

J∑
j=1

ugij · n|Γij|, (3.48)

where the edge-averaged velocity is given as

ugij =
1

2
(ugij0 + ugij1). (3.49)

It is noted that, by the assumption that the cell edge moves as a solid body, Equation

(3.48) might not truly realize the pure Lagrangian framework for deformational flows

because the cell boundaries do not move with the local fluid in the same accuracy or-

der of the third order spatial discretizations. As shown in [37], curvilinear meshes are

necessary for purely Lagrangian scheme higher than second order. Nevertheless, by as-

suming cell boundaries always move as a linear edge and then computing the numerical

fluxes over this linear edge, it is still possible to achieve third order accuracy for the

ALE framework. We call the framework that only moves cell vertices with the local

fluid as quasi-Lagrangian framework in this research to distinguish it from the purely

Lagrangian framework.

3.4.6 Time step limitation

Time marching for all the semi-discrete time evolution equations (4.5), (4.7) and (3.48)

in this section is implemented by third order Runge-Kutta scheme similar in 3.2.4. Fol-

lowing [32, 84], a classical CFL stability condition and a geometrical time step limita-

tion are both considered for a suitable time step.

At time tn, the classical CFL time step is given as

∆tE = CE min
16i6I

λi√
u2
i + v2

i + ai
, (3.50)

where λi is the in-circle diameter of cell i and ai is the sound speed in the cell. We set

the CFL number CE = 0.3 for later simulation.

The second criterion limits the variation rate of the element volume in one time step,

which is given as

∆tV = CV min
16i6I

|Sni |
|S ′i|

, (3.51)
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where

S
′

i =

J∑
j=1

ugij · n|Γij|, (3.52)

and CV is set as 0.1.

Finally, the interval for time stepping is

∆t = min (∆tE,∆tV , CM∆tn) , (3.53)

where CM is set as 1.1 in this paper.

3.5 Benchmark tests in 2D

In this section, the multi-moment ALE method is verified with some 2D benchmark

tests. For the Lagrangian framework, the grid velocity is simply calculated from the

Roe average of the surrounding VIAs as shown in (4.8) with φ representing the fluid

velocity u. As shown in the 1D cases, the Lagrangian and Eulerian frameworks have

been evaluated as two special cases of the general ALE formulations. We also assessed

the performance of the ALE scheme on moving meshes with specified nodal velocities.

3.5.1 Isentropic vortex

Advection of an isentropic vortex [85] is computed to examine the convergence rate

of the present ALE scheme. we computed this problem on a computational domain of

[0, 10]× [0, 10] with the initial conditions specified as

(ρ0, u0, v0, p0) = (1 + δρ, 1 + δu, 1 + δv, 1 + δp), (3.54)

where δρ, δu, δv, δp are the initial perturbations to the primitive variables, which are

centered in the computational domain and given by

δρ = (1 + δT )
1

γ−1 − 1,

δu = − ε
2π
e

1−r2
2 (y − 5),

δv = ε
2π
e

1−r2
2 (x− 5),

δp = (1 + δT )
γ
γ−1 − 1,

(3.55)
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where the vortex strength ε = 5, the temperature perturbation δT = − (γ−1)ε2

8γπ2 e1−r2

and r2 = (x − 5)2 + (y − 5)2. The periodic boundary conditions were applied to the

boundaries of the computational domain for Eulerian and Lagrangian framework and

zero gradient boundary condition is set for the following specific ALE framework.
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FIGURE 3.6: The density results for 2D isentropic vortex solved by the present ALE
scheme in triangular mesh. (a) Eulerian (ug = 0, vg = 0); (b) ALE (ug = 1 −
πỹ/2, vg = 1 + πx̃/2); (c) Quasi-Lagrangian (ug = u, vg = v). It is noted that the

coordinate axes are fixed, while the meshes in (b) and (c) move.

We computed this problem to time t = 1 using the Eulerian (ug = 0, vg = 0), La-

grangian (ug = u, vg = v) and ALE (ug = 1 − πỹ/2, vg = 1 + πx̃/2) frameworks

respectively. In the ALE framework, where x̃ = (x − (5 + t)) and ỹ = (y − (5 + t)),

the mesh moves at a velocity field that combines a translational motion (1, 1) and a

rigid-rotational motion around the vortex center with an angular speed of π/2. Up to

t = 1, the mesh is moved over a distance of 1 in both x and y directions, and rotated by

90o(π/2) as shown in Figure 3.6(b).

The density fields of numerical solutions using different mesh-moving strategies are

shown in Figure 3.6. The exact solution of the Euler equations from the particular initial

conditions is the pure translation of the vortex in the diagonal direction of the compu-

tational domain. Our numerical experiments started with Cartesian grids of gradually

refined resolutions. The Eulerian framework remains the initial Cartesian grids fixed,

while the grids nodes were moved at specified velocities in ALE and Quasi-Lagrangian

cases.

To quantify the spatial discretization error, we define L1 and L∞ error as follows,

L1 =
1

N

N∑
i=1

|φni − φei|, L∞ = max
16i6N

|φni − φei|, (3.56)
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TABLE 3.5: Errors and convergence rates of density for 2D isentropic vortex in trian-
gular mesh

cells Eulerian ALE Quasi-Lagrangian
L1 rate L∞ rate L1 rate L∞ rate L1 rate L∞ rate

800 8.28e-4 - 1.79e-2 - 6.11e-4 - 8.43e-3 - 5.91e-4 - 9.69e-3 -
3200 1.24e-4 2.73 2.99e-3 2.58 8.66e-5 2.82 1.89e-3 2.15 7.63e-5 2.95 1.26e-3 2.95
12800 1.59e-5 2.97 3.81e-4 2.97 1.13e-5 2.94 2.79e-4 2.76 9.04e-6 3.08 1.38e-4 3.19
51200 2.00e-6 2.99 4.66e-5 3.03 1.68e-6 2.75 3.97e-5 2.81 1.09e-6 3.05 1.56e-5 3.15

where φni and φei denote the numerical and exact solutions in cell i respectively. For

a converging numerical formulation, L1 and L∞ error reduce with the grid refinement

as N is increased. The rate of error reduction, i.e. the convergence rate, is related to

the leading term of the truncation error for a specific spatial discretization algorithm. In

practice, we evaluate the convergence rate as

OL =
ln(L(1)/L(2))

ln
√
N (2)/N (1)

, (3.57)

where L(1) and L(2) represent L1 or L∞ errors for two successive refined grids with

different resolutions quantified by cell numbers N (1) and N (2) respectively.

We measured the L1 and L∞ errors of the numerical experiments, which are shown with

the convergence rates in Table 3.5. We observe that a uniformly third order accuracy is

achieved for all frameworks. It also demonstrates that higher than second order accuracy

can be achieved for linear edge element by ALE scheme.

To explore the worst mesh quality the present scheme can work on, we further run

the quasi-Lagrangian case until the program stops. The mesh quality is evaluated by

non-orthogonality and skewness, which are defined in Appendix D. As presented in

Figure 3.7, the degrees of non-orthogonality and skewness in the vortex region reach

to high values before the program ceases. We plot the time histories of mesh non-

orthogonality and skewness for different mesh resolutions in Figure 3.8. With time

evolves, the mesh quality becomes worse. It is observed that the the program can run a

longest time for the finest mesh where the maximum degree of non-orthogonality is 81o.

The robustness of present scheme mostly depends on the mesh non-orthogonality while

the mesh skewness does not have much restriction. Figure 3.9 shows the time history

of L1 and L∞ errors in the case with 800 cells, which indicates that the numerical

error increases with the deterioration of mesh quality and the error sharply rises right

before the program stops. The mesh quality at the corner point (e.g. t=1.5 in Figure

3.9) is chosen as the worst mesh quality the present scheme can endure. We collect the

values of maximum non-orthogonality and skewness for the five mesh resolutions at the
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FIGURE 3.7: Mesh non-orthogonality and skewness for quasi-Lagrangian case at time
t=1.7 in the case with 800 cells.
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FIGURE 3.8: Time history of mesh non-orthogonality (a) and skewness (b) with dif-
ferent mesh resolutions.

limit situation, and plot the values on the plane 3.10. We can roughly conclude that the

present scheme can endure the mesh deformation to the maximum non-orthogonality of

around 70o.

3.5.2 Free stream preservation

Free stream preservation is a common test to check the geometrical conservation law for

moving mesh schemes. The computational domain and mesh are set as the same as in

section 3.5.1. The initial conditions are uniform for all physical fields with (ρ0, u0, v0, p0) =

(1, 1, 1, 1).
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FIGURE 3.9: Time history of L1 and L∞ errors in the case with 800 cells.
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We perform the calculation up to time t = 1 in moving mesh where the grid velocity

ug = (ug, vg) is prescribed by

ug(x, t) = X0 · 2πnt/t0 cos(2πntt/t0) sin(2πnxx/Lx) sin(2πnyy/Ly), (3.58a)

vg(x, t) = Y0 · 2πnt/t0 cos(2πntt/t0) sin(2πnxx/Lx) sin(2πnyy/Ly), (3.58b)

with parameters given as X0 = 1, Y0 = 1, nt = 4, nx = 1, ny = 1, t0 = 2, Lx =

10, Ly = 10. The mesh configurations are plotted in Fig. 3.11 to show the large mesh

motions at different time instants.

We plot the L1 and L∞ numerical errors of density for meshes with different element

sizes as shown in Figure 3.12. The numerical errors for all mesh resolutions are of

machine precision, which justifies the exact geometrical conservation of the proposed

method.
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FIGURE 3.11: The mesh configurations at different time instants.
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3.5.3 Sod problem

We solved the well-known Sod shock tube problem on 2D meshes within the computa-

tional domain [0, 1]× [0, 0.1]. The initial conditions are

(ρ0, u0, v0, p0) =

{
(1, 0, 0, 1), for 0 6 x 6 0.5,

(0.125, 0, 0, 0.1), for 0.5 < x 6 1,
(3.59)

which will generate rarefaction wave, contact discontinuity and shock wave.

The computational domain is partitioned into 100 × 10 initially uniform quadrilateral

elements. We computed the problem to time t = 0.25 for the Eulerian, Lagrangian

and ALE framework. The grid for Lagrangian frame at time t = 0.25 is shown in

Figure 3.13. Figure 3.14 shows the density results computed by the present scheme on
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FIGURE 3.13: 2D Sod problem grid at time t = 0.25 for Lagrangian framework.

different frameworks. We can find that the Lagrangian framework gets more accurate

results around contact discontinuity than the Eulerian framework.
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FIGURE 3.14: The density profiles of the results for Sod problem with different mesh
configurations: (a) Eulerian (ug = 0); (b) ALE (ug = 0.5u); (c) Lagrangian (ug = u).

3.5.4 Sedov problem

We tested the present scheme with the Sedov problem, which is a circular blast wave

generated from a point source at the origin of the Cartesian grid. The exact solution of

this problem is available based on the self-similarity arguments [86]. We computed this

problem on a quarter of the physical domain, [0, 1.2] × [0, 1.2], with 30 × 30 initially

uniform quadrilateral elements. The initial conditions are given by (ρ0, u0, v0, p0) =

(1, 0, 0, 10−6) except in the first zone, where an initial delta-function energy source was

set in terms of pressure by

por = (γ − 1)ρ0
E0

Vor
, (3.60)

where Vor denotes the volume of the cell containing the origin and E0 is the total amount

of released energy which was set as E0 = 0.244816 in our numerical tests. Reflective

boundary conditions were imposed on the left and lower boundaries of the computa-

tional domain. Numerical tests were carried out up to time t = 1. As discussed in [86],

the solution consists of an axis-symmetrically diverging shock whose front is located at

radius R = 1 at time t = 1 with the peak density reaching the value of 6.



Chapter 3. Multi-moment finite volume ALE scheme for Euler equations 69

(a)

R

rh
o

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

Lagrangian numerical solution

analytical solution

(b)

(c)

R

rh
o

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

ALE numerical solution

analytical solution

(d)

(e)

R

rh
o

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

Eulerian numerical solution

analytical solution

(f)

FIGURE 3.15: Mesh and density results of Sedov problem with present scheme: (a)(b)
Lagrangian (ug = u); (c)(d) ALE (ug = 0.7u); (e)(f) Eulerian (ug = 0).
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We computed this test case in Lagrangian, Eulerian and ALE frameworks respectively,

with the grid velocity being 0.7 of the fluid velocity for ALE framework. Figure 3.15

presents the density results for different frameworks, where panels (a), (c) and (e) show

the density distribution over the computational domain as well as the computational

meshes, and panels (b), (d) and (f) compare the profiles of density along the radial

directions with the exact solution. The Lagrangian solution is the most accurate among

the three frameworks, which well captures the discontinuity and the peak value.

3.6 Short summary

In this chapter, we presented a multi-moment finite volume ALE scheme for Euler equa-

tions. In the multi-moment finite volume method, both the volume integrated averages

(VIA) and the point values (PV) at the vertices of mesh cells, which are treated as

prognostic variables and updated simultaneously, are used for high-order reconstruc-

tions. The governing equations are written with respect to the conservative variables

in the integral form to update the VIA, while non-conservative equations of the primi-

tive variables in the differential form are used to update the PV moment. The PVs are

computed point-wisely with Roe Riemann solver using the spatial derivatives of prim-

itive variables, while the VIAs are updated by the finite volume formulation of flux

form where the numerical fluxes are calculated directly from the cell boundary PVs

in 1D case and from the high-order multi-moment reconstructions in 2D case. Third

order Runge-Kutta scheme is implemented for time marching. The mesh is moved by

giving specified velocities to the mesh vertices, which results in a simple and efficient

straight-line formulation for ALE computations.

The proposed direct ALE multi-moment finite volume formulation provides a high-

order and efficient ALE computational model for inviscid compressible flows. The

numerical verifications show that the present model can achieve 3rd-order convergence

rate in 1D and 2D accuracy tests though the cell edges of moving mesh remain as

straight lines in 2D. From the accuracy test in 1D, we can find that, with same mesh

resolution, numerical errors of present scheme reduce to 15 ∼ 20% of a conventional

3rd-order finite volume scheme no matter mesh moves or not. On the other hand, com-

putational cost only increases 20 ∼ 25%, which is not substantial compared with the

reduction of numerical errors. In multi-dimensional moving mesh computation, the

numerical resolution and robustness can be affected by mesh quality. The proposed

scheme can endure the mesh deformation to the extend of maximum non-orthogonality
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of around 70o. Moreover, the geometrical conservation law is well satisfied for a uni-

form flow on arbitrarily moving mesh, which may play the role for improving the

numerical accuracy and stability. Besides, numerical tests also show that the present

scheme can resolve the inviscid compressible flows with discontinuities well, where the

Lagrangian framework, as a particular case of the ALE model, has superior capability

to track contact discontinuities.





Chapter 4

Viscous compressible flow involved
with forced moving body

The application of CFD often encounters fluid flows involving geometrically varying

boundaries, such as fluid-structure interaction (FSI). In some cases, the moving bound-

aries might be driven by imposed external effects, such as flapping wings. Thus, the

problem can be simplified by just concerning a one-way coupling, where the fluid state

is affected by a given deforming boundary. In this chapter, we will present the numer-

ical model for viscous compressible flows involved with forced moving body. Multi-

moment finite volume scheme for Euler equations presented in Chapter 3 is directly

extended to the viscous flows, while the PV moments are calculated from the differen-

tial equations in terms of conservative variables. For practical applications, the whole

computational mesh of fluid domain should be moved with the moving boundaries. To

this end, a simple moving mesh strategies, radial basis function (RBF) interpolation,

is implemented to transfer the movement of boundary to internal mesh points. At last,

numerical tests are calculated to verify the capability of the present solver.

4.1 Governing equations

4.1.1 Integral form

As introduced in Chapter 2, We reformulate the ALE integral form of viscous com-

pressible Navier-Stoke equations as

∂

∂t

∫
Ωχ(t)

UdΩ +

∫
Γ(t)

F(U)dΓ−
∫

Γ(t)

G(U,∇U)dΓ = 0, (4.1)

73
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with the vectors of convective flux and viscous flux respectively. In this formulation,

the vector of conservative variables and fluxes taking the form as follows

U =


ρ

M
ρE

 ,F(U) =


(u− ug) · nρ
(u− ug) · nM + p · n
(u− ug) · nρE + pu · n

 ,G(U,∇U) =


0

¯̄τ · n
¯̄τ · nu−Q · n

 .

(4.2)

The geometrical conservation law (GCL) is given as

dV

dt
−
∫

Γ(t)

ug · ndΓ = 0. (4.3)

All variables, closure equations and notations here are same as Chapter 2.

4.1.2 Differential form

Since the differential equation with respect to primitive variables is indirect for solving

viscous conservative Navier-Stokes equations, we cast Eq.(2.25) into the standard quasi-

linear form in 2D based on Form 2 as

∂U
∂t

∣∣∣∣
χ

+A
∂U
∂x

+B
∂U
∂y
−∇ · (G(U,∇U)) = 0, (4.4)

which is just the extension of Eq.(3.9) with the diffusive term. The coefficient matrices

A andB are defined in Eq.(3.10) and Eq.(3.11) with eigenstructures given in Appendix

A.3.

Since the grid velocity ug appears in both integral and differential formulations, the

system can be discretized on arbitrarily moving grids.

4.2 Numerical model for viscous compressible Navier

Stokes equations

4.2.1 Solution for VIA moment

We formulate the semi-discrete form for Equation (4.1) with a Q-point Gaussian quadra-

ture for surface convective fluxes and a relatively simpler integration for viscous fluxes
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as
∂

∂t

(
UiVi

)
= −

J∑
j=1

Q∑
q=1

ωqF̃ij(Gq, t)|Γij|+
J∑
j=1

G̃ij(t)|Γij|, (4.5)

where Ui denotes the volume integrated average (VIA) of conservative variables on cell

Ωi with volume Vi, Gq is the Gaussian quadrature point on cell edge Γij which separates

cells Ωi and Ωij . Two-points Gaussian quadrature formula is used in this work, which

reads G1 = (1
2

+
√

3
6

)P1 +(1
2
−
√

3
6

)P2, G2 = (1
2
−
√

3
6

)P1 +(1
2

+
√

3
6

)P2 and ω1 = ω2 = 1
2

for the edge with endpoints P1 and P2.

Various Riemann solvers for calculating the inviscid flux F̃ij on edge Γij are imple-

mented in this research, such as the robust Lax-Friedrich scheme, HLL scheme [31]

and the less diffusive HLLC scheme [83]. HLLC scheme is mainly adopted in this

chapter. Lax-Friedrich and HLL schemes are employed to problems involving strong

shock waves to stabilize the computation. These Riemann solvers on moving mesh are

documented in Appendix C.

The viscous numerical fluxes are evaluated based on the values Uij and (∇U)ij of

conservative variables on cell edge segment Γij . Thus, we formulate the viscous flux

G̃ij on the edge Γij as

G̃ij = Gij

(
1

2
(U
−
Γij

+ U
+

Γij
), (∇U)Γij

)
, (4.6)

where U
−
Γij

and U
+

Γij
are reconstructed line-averaged values of two neighbouring cells

respectively, (∇U)Γij is linearly interpolated from the spatial derivatives in the cell cen-

ter of the two neighbouring cells.

4.2.2 Solution for PV moment

We solve Equation (4.4) point-wisely by Roe’s Riemann solver [30] for convective term

and T EC (Time-evolution Converting) formulation [87] for viscous term as

∂Up

∂t
= −1

2

(
Ã
(
∂U−p
∂x

+
∂U+

p

∂x

)
+ R̃A|Λ̃A|L̃A

(
∂U−p
∂x
− ∂U+

p

∂x

))
−1

2

(
B̃
(
∂U−p
∂y

+
∂U+

p

∂y

)
+ R̃B|Λ̃B|L̃B

(
∂U−p
∂y
− ∂U+

p

∂y

))
+T EC(∇ ·G(U)pm), (4.7)
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where the matrices with tilde are calculated from the Roe-averaging values of the sur-

rounding VIAs as

φ̃p =

∑M
m=1

√
ρpm · φpm∑M

m=1

√
ρpm

(4.8)

and the sound speed is approximated by

c̃p =

(
(γ − 1)(H̃p −

1

2
(ũ2

p + ṽ2
p))

) 1
2

. (4.9)

4.3 Moving mesh strategies

4.3.1 Review of moving mesh techniques

One challenge for solving fluid flows involving moving body by moving mesh method

is to maintain effective mesh quality. Over past few decades, there have been several

techniques to obtain mesh motion for unstructured grids in CFD. The most popular

method may be the spring analogy method [88], where the connection of neighbouring

two grid points is represented by a linear spring. However, it was observed lacking

robustness on arbitrarily unstructured grids [89]. Other moving mesh techniques relates

to solving a PDE to determine the movements of internal mesh displacement given

the boundary points movements. Examples are a Laplace equation with constant or

variable distance-based diffusion coefficient [90], solid body rotation stress (SBR stress)

equation [91] and so on. These methods are straightforward to implement since the

existing CFD codes are available. However, it fails in maintaining high mesh quality

when the boundary points move with high rotation angles.

In recent years, the radial basis function (RBF) method has drawn much attention as an

approach to interpolate scattered data. It is widely used in the practical applications,

such as computer graphics, error estimations and fluid-structure interactions. Boer de

et al. [64] initially used the RBF interpolation to transfer the given boundary-point

displacements to internal-point displacements, which can produce high-quality mesh

for even largely deformed configurations. Successive works have been carried out to

improve the efficiency of mesh motion in [65, 66]. The RBF interpolation is imple-

mented in this research to determine the displacements of internal mesh points for mov-

ing boundary problems.
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4.3.2 Radial basis function interpolation

The moving velocity ug = ẋ specified at the internal points of fluid domain is ap-

proximated from the motion of solid boundary by using the radial basis function (RBF)

interpolation [64, 65, 92]. The interpolation function s(x) is evaluated at structural node

position given by a sum of basis functions

s(x) =

nb∑
j=1

γjϕ(||x− xbj||) + h(x), (4.10)

whereϕ is the radial basis function, xbj the location of control points, nb its total number,

γj the coefficients of basis function and || · || denotes the Euclidean norm. Since the

fluid-structure interface does not change, we use a linear polynomial to recover the

translation and rotation of rigid body motions. Thus the h(x) in (4.10) is constructed

from the vector of monomials q = [1, x, y, z] as

h(x) = β1 + β2x+ β3y + β4z (4.11)

where β1,β2,β3 and β4 are to-be-determined coefficients.

Given the displacements of control points ∆xb, we can impose the constraint conditions

s(xbj) = ∆xbj (4.12)

and
nb∑
j=1

γjqi(xbj) = 0, (4.13)

which leads to the following linear system of equations[
Mbb Pb
PTb 0

][
γ

β

]
=

[
∆xb
0

]
. (4.14)

where Mbb is an nb × nb matrix with Mij = ϕ(||xbi − xbj||), Pb is an nb × 4 matrix with

the row i given by [1, xbi, ybi, zbi], PTb is the transpose matrix of Pb, γ and β contain all

coefficients γj and βj respectively. The displacements of internal fluid points can then

be evaluated by

∆xint = s(xint), (4.15)

where xint denotes the position of internal point.



Chapter 4. Viscous compressible flows involved with forced moving body 78

Among various radial basis functions available for data interpolation, we use thin plate

spline (TPS) with compact support which has the form as

ϕ(x) = x2 log(x). (4.16)

For more details, please consult the related papers [64, 65].

In practice, the control points are selected from the boundary points by a coarsening

technique to reduce the computational cost. In addition, the outer boundary points

far from the boundary are fixed to further improve the efficiency. To make the RBF

interpolation vanishing at the outer boundary, a smoothing function is defined varying

between 0 and 1 as

ψ(x̃) =


1, x̃ 6 0,

1− x̃2(3− 2x̃), 0 6 x̃ 6 1,

0, x̃ > 1,

(4.17)

where x̃ is given by

x̃ =
||xi − x0|| −Rinner

Router −Rinner
. (4.18)

Here, xi is the grid node coordinate, x0 is the focal point, Rinner and Router are two radii

of the transitional region. Therefore, the corrected location for each inner grid point is

given by

∆x̃int = ψ(x̃)∆xint. (4.19)

For fluid flows with moving boundary, we firstly approximate the internal mesh move-

ment by constructing RBF interpolation function which is determined from fluid bound-

ary movement. Navier-Stokes equations in ALE formulation are then solved based on

the mesh movement and with the corresponding boundary conditions.

4.4 Numerical tests

4.4.1 2D isentropic vortex

Since the PV moment is solved different from Chapter 3, we still calculate the isen-

tropic vortex [85] benchmark test to examine the convergence rate of inviscid part of

the present scheme. The initial computational domain is Ω(0) = [0, 10] × [0, 10] and
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initial conditions are given in terms of primitive variables as

(ρ0, u0, v0, p0) = (1 + δρ, 1 + δu, 1 + δv, 1 + δp), (4.20)

where δρ, δu, δv, δp are the initial vortex perturbations. We set this perturbation at the

center of computation domain (5, 5) with the vortex strength ε = 5. Then the initial

perturbations are given as following,

δρ = (1 + δT )
1

γ−1 − 1,

δu = − ε
2π
e

1−r2
2 (y − 5),

δv = ε
2π
e

1−r2
2 (x− 5),

δp = (1 + δT )
γ
γ−1 − 1,

(4.21)

where δT = − (γ−1)ε2

8γπ2 e1−r2 denotes the temperature perturbation, and r2 = (x − 5)2 +

(y − 5)2. The initial profile of density is presented in Figure 4.1 (a).

We compute this problem to time t = 1 in the Eulerian and quasi-Lagrangian frame-

work respectively with gradually increased number of triangular elements. The periodic

boundary condition is applied. The final vortices of density calculated on 800 triangular

(a) Initial condition (b) Eulerian (c) Quasi-Lagrangian

FIGURE 4.1: (a) Initial profile of 2D isentropic vortex; (b) and (c) show the density re-
sults with the present scheme in Eulerian framework and quasi-Lagrangian framework

at time t = 1.

elements show in Figure 4.1. To verify that the mesh can move arbitrarily for the pro-

posed scheme, we also calculate the same case on a specific moving mesh framework

where the mesh moves independent of fluid motion. The grid velocities vary with time

as

ug(x, t) = X0 · 2πnt/t0 cos(2πntt/t0) sin(2πnxx/Lx) sin(2πnyy/Ly), (4.22a)
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(a) t=0 (b) t=0.125 (c) t=0.25

(d) t=0.375 (e) t=0.5 (f) t=0.625

(g) t=0.75 (h) t=0.875 (i) t=1

FIGURE 4.2: Density and grid variation for vortex advection with the grid velocity
given in Equation (4.22).

vg(x, t) = Y0 · 2πnt/t0 cos(2πntt/t0) sin(2πnxx/Lx) sin(2πnyy/Ly), (4.22b)

where X0 = 1, Y0 = 1, nt = 4, nx = 1, ny = 1, t0 = 2, Lx = 10, Ly = 10. Figure 4.2

shows the density and mesh variation with time. Though the mesh moves independent

of fluid motion, the vortex propagates in the domain and accurately reproduced during

whole computation process.

For this advection test of isentropic vortex, the analytical solution is available, which is

just the time-shifted initial profile for the distance of 1 in both x and y directions. Thus
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TABLE 4.1: Errors and convergence rates of density for 2D isentropic vortex

cells Eulerian Quasi-Lagrangian Specific-speed ALE
L1 rate L∞ rate L1 rate L∞ rate L1 rate L∞ rate

200 4.16e-3 - 7.10e-2 - 3.12e-3 - 5.15e-2 - 5.78e-3 - 1.06e-1 -
800 8.01e-4 2.38 1.76e-2 2.01 6.06e-4 2.36 9.70e-3 2.41 1.46e-3 1.99 3.04e-2 1.81
3200 1.16e-4 2.78 3.07e-3 2.52 7.94e-5 2.93 1.35e-3 2.85 2.42e-4 2.59 5.12e-3 2.57
12800 1.47e-5 2.99 3.87e-4 2.99 9.50e-6 3.06 1.52e-4 3.15 3.18e-5 2.92 6.59e-4 2.96
51200 1.85e-6 2.99 4.81e-5 3.01 1.15e-6 3.04 1.75e-5 3.12 4.03e-6 2.98 8.24e-5 3.00

we measure the L1 and L∞ errors of the Eulerian, quasi-Lagrangian and the specific-

speed moving frameworks, and show the results in Table 4.1. As expected, third order

numerical accuracy is achieved for all of these three frameworks. It also demonstrates

that higher than second order accuracy can be achieved for linear edge element by ALE

scheme.

4.4.2 Saltzman problem

Saltzman problem is a well-known challenging benchmark test to assess the robustness

of numerical algorithms involving mesh movement, which consists of a strong piston-

driven shock wave as shown in [33, 93–95]. It is firstly proposed by Dukowicz et

al. in [96] for a two-dimensional uniformly skewed Cartesian grid in a computational

domain of [0, 1]× [0, 0.1] which is discretized by 100× 10 quadrilateral elements. The

skewed coordinate of grid x
′

= (x
′
, y
′
) is transformed from the uniform Cartesian grid

x = (x, y) by {
x
′
= x+ (0.1− y) sin(πx),

y
′
= y.

(4.23)

In this research, each quadrilateral element is split into two triangular elements as

shown in Figure 4.3. The initial condition is given by an ideal gas (γ = 5
3
) with

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

FIGURE 4.3: Initial mesh configuration of Saltzman problem.

(ρ0, u0, v0, p0) = (1, 0, 0, 2
3
· 10−4). The gas is pushed by a moving piston from left

to right with velocity (1, 0). A moving slip wall boundary condition is set for the piston

on the left and reflective boundary condition is set for other boundaries. The analytical

solution is a one-dimensional infinite strength shock wave that moves toward right di-

rection at speed 4
3

with a post-shock density plateau of 4. To meet the motion of the left
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piston, we performed the simulation to time t = 0.6 in a quasi-Lagrangian framework

and also in a specific-speed ALE framework where the mesh movement is given as

ug(x, t) = (
1− x
1− t , 0). (4.24)

We use Rusanov scheme [97] for convection flux and multi-dimensional limiting pro-

cess (MLP) scheme [56, 98] is employed for suppressing numerical oscillations. The

mesh and density map at final time are given in Figure 4.4 for both frameworks and

density values for the whole field are plotted in Figure 4.5. Since the ideal gas is filled

in the closed container, we also measure the total mass of the gas. The mass variation

with time is of machine error, which verifies the conservation of the present scheme.

(a)

(b)

FIGURE 4.4: Mesh and density map for Saltzman problems at time t=0.6. (a) the quasi-
Lagrangian framework (b) an ALE framework with a specific mesh moving strategy as

given in Equation (4.24).

4.4.3 Viscous double Mach reflection

Double Mach reflection is originally proposed by Woodward and Colella in [99] for

compressible Euler equations, which involves a Mach 10 shock that hits a 30o ramp.

We run a viscous version of double Mach reflection [100] in this section to verify the
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(b)

FIGURE 4.5: Density values in all cells for Saltzman problem at time t=0.6. (a) the
quasi-Lagrangian framework (b) an ALE framework with a specific mesh moving strat-

egy as given in Equation (4.24).

capability of the present solver for simulating viscous flows. The computational domain

is set as [0, 3.2] × [0, 1]. The initial conditions, which can be obtained by Rankine-

Hugoniot conditions, are given here as

(ρ0, u0, v0, p0) =

{
(8.0
γ
, 8.25 cos(π

6
),−8.25 sin(π

6
), 116.5

γ
), if y >

√
3(x− 1

6
),

(1.0, 0, 0, 1.0
γ

), if y <
√

3(x− 1
6
).
(4.25)

Reflecting wall lies along the bottom of the domain where x > 1
6
. Analytical solution of

a shock Mach number Ms = 10 is imposed on the upper wall and bottom wall (x < 1
6
).

Inflow and outflow boundary conditions are set for left and right sides respectively.

We partitioned the domain into totally 296, 418 triangular elements with 640 and 200

uniform segments in the corresponding boundaries. Constant dynamic viscosity is used

in this calculation. The other parameters are: γ = 1.4, cv = 2.5, κ = γcvµ
Pr

with Pr = 3
4
.

We first performed the inviscid case up to time t = 0.2 with HLL Riemann solver

[31] for inviscid finite volume flux, and also MLP scheme [56, 98] is used for limiting

process. The well resolved vortex structures as shown in Figure 4.6 demonstrate the

high fidelity of present method. For viscous shock waves, the Reynolds number is

defined based on the shock speed and an unitary reference Length (L=1) as Res =
ρ0c0MsL

µ
with c0 =

√
γp0
ρ0

. We then calculate the cases with Res = 1000 and Res = 100

and the comparisons with inviscid case are shown in Figure 4.7. We observe that, with a

rather larger physical viscosity, the small-scale vortex structures are suppressed, which

is comparable with [100].
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FIGURE 4.6: Numerical results of inviscid double Mach at t = 0.2 with 296, 418
triangular elements. 31 density isolines in the the interval [1,17].
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(a) inviscid
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(b) Res = 1000
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(c) Res = 100

FIGURE 4.7: Comparison of (a) inviscid case (b) Res = 1000 and (c) Res = 100 at
t = 0.2 with 296, 418 triangular elements. 31 density isolines in the the interval [1,17].

4.4.4 Flow over cylinder

Flow around a fixed or oscillating cylinder is a widely used benchmark test to evaluate

numerical models for fluid-structure interactions. We firstly compute the flow past a

fixed cylinder to test the performance of the present solver for stationary grids, and

then simulate the flow past a transversely oscillating cylinder to verify its capability for

moving boundary problems.

4.4.4.1 Fixed cylinder

A fixed cylinder of diameter d = 1 is located at the origin and the computational domain

is set as a rectangular of [−10 : 30] × [−10 : 10]. The Reynolds number based on the

cylinder diameter is defined asRe = u∞d
µ

and Mach number based on freestream flow is

given as Ma∞ = u∞
c∞

, where u∞ and c∞ are the x-component of inlet velocity and inlet

sound speed respectively. To obtain the desired Reynolds number Re = 150 and Mach
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number Ma∞ = 0.2, we set initial conditions (ρ∞, u∞, v∞, p∞) = (1, 0.2, 0, 1/γ) and

the Prantdtl number Pr = 1. The linear viscosity law is chosen in the calculation

with β = 2 and s = 0. To avoid the reflection of shock wave from boundaries, the

characteristic boundary condition [101] is used for inlet and outlet boundary. The slip

boundary condition is set for top and bottom walls.

The grid dependency test was firstly conducted to choose a reliable mesh for later sim-

ulations. The computational domain is partitioned by a mesh of triangular elements,

where the area near the cylinder has relatively smaller cell sizes in order to adequately

represent the geometric configuration of the solid body as well as the induced wake

and vortex structures. Three kinds of grids, Grid A, Grid B and Grid C, are generated

where distances between neighbouring points on the cylinder are around 1
20
d, 1

40
d and

1
80
d respectively. Accordingly, the total element numbers for Grid A, Grid B and Grid

C are 4358, 14060 and 48163 respectively. Figure 4.17(a) shows the image of Grid A,

and the enlarged view of the grid cells near the cylinder is plotted in Figure 4.17(b).
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(a)

X

(b)

FIGURE 4.8: The mesh image for grid A (a), and the enlarged part near the cylinder
surface (b).

The simulations were performed until final time t = 1000 on Grid A, Grid B and Grid

C respectively. We show the numerical results for the case of Re=150 on Grid B in

Figure 4.9 for Mach number and Figure 4.10 for vorticity. The Kármán vortex street

was clearly reproduced after the symmetrical flow structure in the earlier stage was

broken.

To quantitatively analyze the numerical accuracy, we measure the drag coefficient Cd
and the lift coefficient Cl which are calculated as

Cd =
FD

1
2
ρu2
∞d

and Cl =
FL

1
2
ρu2
∞d

, (4.26)
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FIGURE 4.9: Mach number distribution for flow over a fixed cylinder at time t=1000
(Re=150).

FIGURE 4.10: Contours of vorticity for flow over a fixed cylinder at time t=1000
(Re=150).
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where FD and FL are the drag force and the lift force exerted on the cylinder. We

plot the drag and lift coefficients for the case calculated on Grid C in Figure 4.11. In

t
200 400 600 800 1000 1200

­0.5

0

0.5

1

1.5

Cd

Cl

FIGURE 4.11: Temporal variations of drag and lift coefficients for flow over a fixed
cylinder at Reynolds number Re=150.

the initial stage of computation, the wake around the cylinder keeps symmetry, thus

the lift coefficient Cl approaches zero. With the development of instability, the vortex

sheds with gradually increasing shedding amplitude in the downstream of the cylinder

and finally the periodic regime established. The profile of lift coefficient Cl looks very

close to the representative results in the literature. Due to the periodic vortex shedding,

the drag coefficient Cd correspondingly fluctuates as shown in Figure 4.11. We then

calculated the mean drag coefficient

Cd =
1

t2 − t1

∫ t2

t1

Cd(t)dt (4.27)

with [t1 : t2] covering several periods of time span sampled during the periodic regime

to reduce the statistical error. The Strouhal frequency fs is also an important parameter

for the Kármán streets, which was calculated from the period of lift coefficient in this

research. And then the Strouhal number was calculated by

St = fs
d

u∞
. (4.28)
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TABLE 4.2: Time-averaged drag coefficient and the Strouhal number on gradually
refined meshes.

Time-averaged Cd Strouhal number St
Grid A 1.364 0.172
Grid B 1.371 0.183
Grid C 1.371 0.184
DG/FV (4th order) [102] 1.348 0.184
Müller [103] 1.34 0.183

We measured the time-averaged drag coefficient Cd and Strouhal number St for grad-

ually refined meshes, Grid A, Grid B and Grid C as shown in Table 4.2. The time-

averaged drag coefficients approaches 1.371 and the Strouhal number also converges

with the mesh finer than Grid B. Therefore, we assume that Grid B can give adequate

accuracy for later test cases. Compared with the existing results, the Strouhal number

has a good agreement with results calculated by DG/FV method [102] and Müller’s

simulation [103].

We also calculated the cases with Re = 60, 80, 100 and 120 to evaluate the capability

of the numerical model to simulate flows with different Reynolds number. Figure 4.12

compares the numerical results of Strouhal numbers and r.m.s. (root-mean-square) lift

coefficients with the empirical function [104] and Placzek’s numerical results [105].

The good agreement of Strouhal number and r.m.s. lift coefficients demonstrates the

accuracy of the present solver for stationary mesh, which provides a good base for

implementation to moving mesh applications.
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FIGURE 4.12: Strouhal number and r.m.s. lift coefficient for different Reynolds num-
bers.
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4.4.4.2 Oscillating cylinder

Viscous flow over oscillating cylinder provides a test bed for numerical solvers for fluid-

structure interactions. One of the most interesting phenomena for flow past forced os-

cillating cylinder is the lock-in phenomenon, which has been reported in the literature to

verify numerical models. The characteristics of vortices and wakes around the cylinder

is significantly different from that of a fixed cylinder. We investigate the flow over a

forced oscillating cylinder in this part with a Reynolds number Re=100.

The cylinder is forced to oscillate in the transversal direction of the main uniform flow

with a sinusoidal motion in time defined by

y(t) = ymax sin(2πf0t) (4.29)

where ymax is the maximal displacement which can be characterized by the non-dimensional

amplitude A = ymax
d

. The oscillating frequency, f0, which associates with the Strouhal

frequency fs for fixed cylinder, plays an essential role in lock-in phenomenon, which

can be categorized by the frequency ratio f = f0
fs

. Figure 4.13 represents the lock-

in zone with respect to the amplitude A and the frequency ratio f where the data is

collected from Koopmann and Anagnostopoulos’s studies [1, 2].

f

A

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

0.1

0.2

0.3

0.4

0.5

Koopmann

Anagnostopoulos

FIGURE 4.13: Lock-in regime for flow past an oscillating cylinder in (f ,A) plane at
Re = 100 with the data collected from Koopmann and Anagnostopoulos’s studies
[1, 2]. The region above the data line is the lock-in region and otherwise unlocked

region.
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According to Figure 4.13, we keep the amplitude constant as A = 0.3 to devise the

locked and unlocked configurations with f = 0.5, 0.9, 1.1 and 1.5. We plot the drag

coefficient and lift coefficient over time for four cases in Figure 4.14 with time charac-

terized by the oscillating period T0. As expected in Figure 4.13, the case with f = 0.9

and f = 1.1 are locked where the vortex shedding frequency are synchronized with

the cylinder oscillating frequency as shown in Figure 4.14 (c) and (d). For locked con-
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FIGURE 4.14: Time variation of drag and lift coefficients for certain frequencies
(a)f = 0.5, (b)f = 0.9,(c)f = 1.1,(d)f = 1.5 with A = 0.3 at Re = 100.

figurations, the mean drag coefficient has a significant increase which reaches 1.56 for

f = 0.9 and 1.83 for f = 1.1, while it is 1.38 for the fixed cylinder. The maximum lift

coefficient reduces to 0.24 for f = 0.9 but increases to 0.86 for f = 1.1, in comparison

with its value of 0.33 for the fixed cylinder. Unlocked wakes are formed with the fre-

quency ratio f = 0.5 and f = 1.5 which represent more complicated phenomena than

locked cases. The variation of lift coefficients does not follow the sinusoidal profile any
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more. The period of signal is over several cylinder oscillation cycles which is called

as the beating period Tb. The simpler case is f = 0.5 that the beating periodic Tb is

equal to the forced oscillation period T0. In this case, it is twice of the Strouhal period

Ts. More complex case is f = 1.5 where the beating period consists several oscillating

periods as shown in Figure 4.14 (d). The snapshots of vorticity contour lines within one

oscillating period are plotted in Figure 4.15. The cylinder moves with a sinusoidal func-

tion in y direction: (a) t = t0, it is located at the origin of the domain; (b) t = t0 + 1
4
T0,

it moves to the maximum displacement in y direction; (c) t = t0 + 1
2
T0, it returns to the

origin; (d) t = t0 + 3
4
T0, it moves to the maximum displacement in the reverse direction

of y axis.

Cases with a larger amplitude A = 2 are also calculated to show the ability of our pro-

posed method for large mesh distortions. The oscillating period ratio is set as f = 0.5.

We show the snapshots of vorticity contour lines within one cylinder oscillating period

in Figure 4.16. Figure 4.17 (a) gives the mesh image when the cylinder moves to the

maximum displacement in y direction, and we magnify the area near the cylinder sur-

face in Figure 4.17 (b). By using RBF interpolation function, though large boundary

movements are specified, the displacements of the boundary points are smoothly in-

terpolated to the internal grid points based on the distance of the internal nodes to the

boundary which is the essence of RBF function to ensure whole mesh maintains a good

quality. In the simulation of forced oscillation problems, RBF interpolation is outside

the Runge Kutta loop, which makes the grid velocity ug constant during the whole time

step (including all sub-steps in the 3-stage Runge-Kutta method). It is in fact equiva-

lent to the case that each grid point moves at a constant speed in the duration of each

time step. In this way, the computational cost of RBF interpolation can be substantially

reduced without losing numerical accuracy. Meanwhile, a coarsening technique is em-

ployed as presented in [65]. We select every other 5 points in the cylinder boundary

as control points for saving computational cost. We estimate the computational cost by

running the case up to time t=10 on a PC with an Intel Core i7-4790 CPU @ 3.60GHz,

the computational time for RBF interpolation is 48.63s while the whole running time is

1433.35s.

4.5 Short summary

In this chapter, we extend the multi-moment finite volume scheme to viscous com-

pressible flows. The VIA is computed by a finite volume method, where conventional
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(a) t=t0

(b) t=t0 + 1
4
T0

(c) t=t0 + 1
2
T0

(d) t=t0 + 3
4
T0

FIGURE 4.15: The snapshots of vorticity contour lines within one oscillating period
(A=0.3, F=1.5).
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(g) t=t0 + 3
4
T0

FIGURE 4.16: Same as Figure 4.15, but for (A=2, F=0.5).
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FIGURE 4.17: The mesh image for Grid B when the cylinder moves to the maximum
displacement in y direction (A=2, F=0.5) (a), and the enlarged part near the cylinder

surface (b).

Riemann solvers can be used for calculating the convective fluxes and variable gradients

on cell edge required in approximating the viscous fluxes are simply calculated from the

interpolation of neighboring cell centers. A minor difference from Chapter 3 is that the

PV moment is calculated by differential equation with respect to conservative variables,

which is more direct for adding viscous term. For updating PV moment, numerical for-

mulations of inviscid fluxes are still by using Roe’s Riemann solver, and viscous term

is simply calculated by the T EC (Time-evolution Converting) formula. Numerical tests

for compressible flows with high Mach numbers, such as Saltzman problem, viscous

double Mach reflection are firstly calculated to demonstrate the performance of present

solver. It is pointed out that defining and using the physical variables at the vertices of
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mesh cells as new computational variables leads to an accurate and efficient numerical

formulation for ALE implementation.

To simulate fluid flows with moving boundaries, we integrate the fluid model with the

radial basis function (RBF) interpolation which transfers the boundary movement to in-

ternal mesh points. Finally, flow past an oscillating cylinder is computed to show the

feasibility for fluid-structure interaction applications. With different oscillating ampli-

tude and frequency, the vortex structure around the cylinder is different. In our simu-

lation, lock-in phenomena are observed by setting cylinder oscillating frequency with

f = 0.9 and f = 1.1, and oscillating amplitude with A = 0.3, which agrees well

with published studies. To evaluate the efficiency of RBF interpolation, we estimate

the computational time in single-core calculation, where the RBF code takes only 3.4%

of the total computational time by using a coarsening technique. Numerical tests verify

the capability of present solver for calculating viscous compressible flows involved with

forced moving body.





Chapter 5

Incompressible flows on moving
domain and fluid-solid body
interaction

5.1 Brief introduction

Multiphysics phenomena, which involve the interaction of at least two different physical

fields, have attracted much attention in recent years [106, 107]. Fluid structure inter-

action (FSI), as one classical problem of this sort, is of great interest in broad-range

engineering applications, such as aerospace engineering, hemodynamics and oceanic

engineering, just a few among many others. The application of computational fluid

dynamics (CFD) in FSI is rather challenging due to the fact that the spatial domain

occupied by fluids always varies with time and its boundary is a subsequent result of

fluid-structure interaction. There have been some significant contributions in FSI field

[108–110], where flexible bodies are fully coupled with fluid flows. Meanwhile, for

some applications, the deformation of structure shape is so slight or negligible for the

phenomenon of interest that the structure can be idealized as a rigid body. In such a

case, the FSI can be simplified into fluid-rigid body interaction, which does not require

numerical formulation of solid deformation and largely reduces the computational com-

plexity. In this paper, we focus on a novel numerical formation for moving mesh and

FSI, and limit our interest to fluid-rigid body interaction.

The illustration of mathematical model for FSI is given in Figure 5.1, where the fluid

model and solid model are calculated simultaneously. In this system, the solid model

is updated with the force f or torque T evaluated from the physical variables of fluid,

97
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and the fluid model is calculated with the displacement and velocity on the moving

interface which is provided by solid body. Thus, the major parts of this system are:

fluid model, solid model and fluid-solid coupling algorithm, which will present in the

following sections.

∇ · u = 0
∂u

∂t
= −∇ · (u⊗ u) + ν∇2u− 1

ρ
∇p

!"#$%&'(%)" *("$%&'(%)"

mẍ+ cẋ+ kx = f

Mθ̈ +Cθ̇ +Kθ = T

!(+,)&-.&/(+0#)&1&)2)+/)%&(3&4("$%

5$46"7,)')3/&73%&8)"(,$/9

FIGURE 5.1: FSI numerical model.

5.2 Numerical model for incompressible flows on mov-

ing domain

5.2.1 Incompressible Navier-Stokes equations

For fluid flows of low Mach number (Ma� 1), the compressibility of fluid can be ne-

glected and the fluid density is generally treated as constant in fluid mechanics. Mean-

while, the energy equation is no longer required for closure of the system. Thus, the

incompressible flow can be described by simplifying Eq.(2.15) as

∇ · u = 0, (5.1)
∂u
∂t

= −∇ · (u⊗ u) + ν∇2u− 1
ρ
∇p, (5.2)

with u, ρ, p and ν being velocity, density, pressure and viscosity of fluid respectively.

To describe fluid flows with arbitrary boundary deformation, the momentum equation is

cast into Arbitrary Lagrangian Eulerian (ALE) formulation in integral and differential

form [68] respectively as

Integral form:

∂

∂t

∫
Ωχ(t)

udΩ = −
∫

Γ(t)

(u− ug)⊗ u · ndΓ +

∫
Γ(t)

ν∇u · ndΓ−
∫

Γ(t)

1

ρ
pndΓ, (5.3)
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Differential form:

∂u

∂t

∣∣∣∣
χ

= −(u− ug)⊗∇u + ν∇2u− 1

ρ
∇p, (5.4)

where Ωχ(t) is a moving control volume enclosed by its boundary Γ(t), ∂
∂t

∣∣
χ

represents

the operator of time derivative with respect to the referential moving frame, ug = ẋ

is the grid velocity of fluid domain, and n stands for the surface normal vector of the

boundary Γ(t). For a uniform flow, (5.3) reduces to a geometrical conservation law

(GCL) [25]
dV

dt
−
∫

Γ(t)

ugndΓ = 0, (5.5)

where V =
∫

Ωχ(t)
dΩ represents the moving volume.

For fluid-rigid body interaction, fluid-solid interface is treated as the boundary of both

fluid and solid. Thus, the force f or torque T exerted on the rigid body can be evaluated

by integrating fluid pressure and viscous stress over the body surface as

f = ρ

∫
∂ΩI

(pn− ν∇u · n) dΓ, (5.6)

T = ρ

∫
∂ΩI

(x− xc)× (pn− ν∇u · n) dΓ, (5.7)

where ∂ΩI represents the fluid-solid interface, xc the mass center of rigid body.

5.2.2 Solution procedure of pressure projection

The pressure projection method, a fractional-step method [15, 61, 62], which has been

popularly used in the simulation of incompressible flows, is adopted in the present sim-

ulation. We summarize the numerical procedure for updating fluid variables from time

tn to tn+1 as follows:

1. Given the velocity un at step n, compute the convection and diffusion terms of

momentum equation (5.3) and (5.4) with GCL condition (5.5) to put forward the

intermediate velocity u∗ by ALE integral and differential formulations as,

∂

∂t

∫
Ω(t)

udΩ = −
∫

Γ(t)

(u− ug)⊗ un · ndΓ +

∫
Γ(t)

ν∇un · ndΓ, (5.8)

∂u

∂t
= −(u− ug) · ∇un + ν∇2un. (5.9)
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2. Generally, the intermediate velocity u∗ does not satisfy the continuity equation.

Thus, we calculate the pressure by solving Poisson equation to enforce the divergence-

free constraint condition

∇ ·
(

1

ρ
∇pn+1

)
=

1

∆t
∇ · u∗. (5.10)

3. Correct the velocity by the correction step equivalently by

un+1 − u∗

∆t
= −1

ρ
∇pn+1. (5.11)

It is obvious that by this procedure the updated velocity in the next time step satisfies

the continuity property.

5.2.3 Semi-discrete formulations

As shown in Figure 5.2. We define both VIA (ui) and PV (uik) for velocity while

only VIA (pi) for pressure for simplicity. Unlike the conventional FVM, both VIA

ui1 ui2

ui3

ui, pi

(a)

ui1

ui2

ui3

ui4

ui, pi

(b)

FIGURE 5.2: The arrangement of velocity and pressure defined in multi-moment finite
volume method on triangular (a) and tetrahedral (b) elements.

and PV of velocity field are treated as prognostic variables and updated separately at

each time step through the pressure-projection solution procedure. We compute the

evolution equations of VIA by finite volume scheme and those of PVs efficiently in

finite difference formulation. As elaborated in our previous work [54, 55, 111], VPM

method effectively improves the solution accuracy and numerical robustness without

loss of algorithmic simplicity. Next, we discuss the spatial discrete formulations given

in section 5.2.2 at each sub-step in details.
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In the first step, ALE convection and diffusion terms of momentum equation in integral

and differential forms are solved for the evolution of VIA and PV moments respec-

tively. Employing the concept of finite volume method, we can obtain the semi-discrete

formulations of the evolution equation (5.8) on the moving grids as

∂

∂t
(uiVi) ≈ −

J∑
j=1

(
uΓij − ug,ij

)
uij · nij|Γij|+

J∑
j=1

ν∇uij · nij|Γij|, (5.12)

where uij denotes the surface-averaged value calculated from multi-moment recon-

struction (5.2), ug,ij the moving velocity approximated at the boundary surface and

∇uij the surface gradient computed by the least-square method. Given grid velocities

on mesh nodes, we suppose that the grid velocity has a linear distribution over cell sur-

face. Thus, the surface-averaged grid velocity ug,ij is approximated from the algebraic

average of surface node velocities.

To remain the global conservation in ALE formulation, we solve (5.12) along with the

geometrical conservation law (5.5) numerically by

dVi
dt

=

J∑
j=1

ug,ij · nij|Γij|, (5.13)

which preserves a uniform flow on a grid that moves arbitrarily in space regardless of

numerical discretization scheme used.

The semi-discrete formulation of (5.9) is derived for PVs based on the relation between

the time and referential derivatives

∂up

∂t
= −(up − ug,p) · (∇u)p + ν ·

VIA→PV

T EC (∇uij), (5.14)

where the gradient of convection term is evaluated from a weighted upwind scheme [54]

and the diffusion term is simply calculated by the T EC (Time-evolution Converting)

scheme [87, 111]. After the computation of convection and diffusion equation, the VIA

and PV of velocity are put forward to the intermediate values as u∗i and u∗p respectively.

To enforce the divergence-free condition, the pressure Poisson equation is recast in an

integral form as

J∑
j=1

(
∇pn+1

ij · nij|Γij|
)

=
1

∆t

J∑
j=1

(
u∗ij · nij|Γij|

)
, (5.15)
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where u∗ij is obtained from the multi-moment reconstruction in terms of the intermediate

velocity values, i.e. u∗ and u∗p. The calculations of the pressure gradient ∇pij in (5.15)

are split to the orthogonal part and the non-orthogonal part, where the orthogonal part

is calculated implicitly with central difference and the non-orthogonal part is computed

explicitly for deferred correction [54, 112].

Finally, the pressure obtained above is then used to correct the velocity at boundary

surface by (5.11), while VIA and PV of velocity are corrected through T EC formulation

un+1
ij = u∗ij −

4t
ρ
∇pn+1

ij ,

un+1
i = u∗i −

SIA→VIA

T EC
(
(un+1

ij − u∗ij) · nij
)
,

un+1
p = u∗p −

VIA→PV

T EC
(
(un+1

ij − u∗ij) · nij
)
.

In these formulation, we first correct the velocity at cell surface uij , so called surface

integrate average (SIA). SIA is then used to correct VIA and finally PV by T EC formu-

lation. The interested reader can refer to [80, 111] for more details.

For FSI problems, the boundary conditions of moving interface need to be treated care-

fully, since they substantially affect the interaction phenomenon. In this study, PVs

on the interface of multi-materials, which are the interactive results of fluid and solid

motions (see section 5.4 for details), are directly used as part of the boundary condi-

tions for fluid motion. As PVs are updated at every time step and always available at

the fluid-solid interface in the present numerical formulation, the algorithm for moving

mesh and FSI can be very simple and accurate.

For fluid flows with moving boundary, we firstly approximate the internal mesh move-

ment by constructing RBF interpolation function which is determined from fluid bound-

ary movement. Navier-Stokes equations in ALE formulation are then solved based on

the mesh movement and with the corresponding boundary conditions. Finally, the com-

puted fluid state can be used for evaluating the force or torque for fluid-rigid body inter-

action phenomena by (5.6) and (5.7). From the perspective of the rigid body, the fluid

model can be treated as a functionF , where the computational variable is the fluid-solid

interface xI and the output is the force or torque on the body. Thus, we denote it as

σ = F(xI) (5.16)

where σ represents the force f or torque T.
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5.3 Motion of an elastically mounted rigid body

For the dynamics of a rigid body in a fluid-structure coupled system, we first consider

the motion of solid translation which can be described by a second-order ODE (ordinary

differential equation)

mẍ + cẋ + kx = f . (5.17)

Here, x = (x, y, z) stands for the translational displacement, m, c and k are the diagonal

matrix of mass, damping and stiff coefficients respectively.

Specifically, we solve (5.17) component-wisely in each direction which is taken as an

instance to illustrate the numerical schemes used in the computations. The x-component

of (5.17) is written as

mxẍ+ cxẋ+ kxx = fx, (5.18)

where mx, cx, kx and fx denote the coefficient and force regarding to x-component

direction respectively. For the sake of simplicity, we decomposed the second-order

ODE into a set of first-order ODEs with v = ẋ

v̇ =
fx − cxv − kxx

mx

, (5.19)

ẋ = v, (5.20)

in which the explicit Runge-Kutta scheme is used for time stepping of weak coupling.

The weak coupling scheme may suffer numerical instability especially when the density

ratio of solid and fluid (ρs/ρf ) is small. To achieve the sufficient robustness, Newmark

scheme is used to treat the light solid bodies which is derived from Taylor expansion as

following

ẋn+1 = ẋn + (1− γ)∆tẍn + γ∆tẍn+1, (5.21)

xn+1 = xn + ∆tẋn + (
1

2
− β)∆t2ẍn + β∆t2ẍn+1, (5.22)

where ∆t is the time step. The coefficients here are set as γ = 1
2
, β = 1

4
since it is

unconditional stable. The solution of (5.18) then can be formulated as

xn+1 =
fn+1
x + a1x

n + a2ẋ
n + a3ẍ

n

k̂
(5.23)
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with coefficients given by

a1 = mx
β∆t2

+ cxγ
β∆t

,

a2 = mx
β∆t

+ cx(
γ
β
− 1),

a3 = ( 1
2β
− 1)mx + cx∆t(

γ
2β
− 1),

k̂ = mx
β∆t2

+ cxγ
β∆t

+ kx.

(5.24)

And the translational velocity is calculated as the first order derivative of its displace-

ment by

ẋn+1 =
γ

β∆t
(xn+1 − xn) + (1− γ

β
)ẋn + ∆t

(
1− γ

2β

)
ẍn. (5.25)

Similarity, we can construct an alternative equation regarding to the rotational displace-

ment θ = (θx, θy, θz) of the solid motion

Mθ̈ + Cθ̇ + Kθ = T, (5.26)

where M, C and K are coefficient matrices respectively.

After the transitional velocity u = ẋ and the rotational velocity ω = θ̇ are obtained by

solving (5.17) and (5.26), we end up with the displacement and velocity of the moving

rigid body by considering both transitional and rotational motions as

xs = x + θ × (x− xc) , (5.27)

us = u + ω × (x− xc) , (5.28)

which satisfies the rigidity condition and will never cause any distortion on the solid

body. Since the rigid body is assumed in this study, the displacement and velocity of

the body xs and us can be easily transformed to that of fluid-solid interface xI and uI ,

which can be treated as boundary condition for fluid model.

Finally, we formulate the relation of the interface displacement xI and the effect of fluid

flow σ as

xI = S(σ), (5.29)

where S is the numerical model of solid motion. It represents that the interface position

is associated with the force or torque exerted on the rigid body.
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5.4 Fluid Solid Coupling

As aforementioned, partitioned approach is preferred to solve the fluid-structure inter-

action in this study due to its modularity and the possibility of re-using existing solvers

which reduce the code development time by taking advantage of the available code or

numerical algorithms that have been validated and used for many fluid and structural

problems. In the partitioned approach, fluid and the structure equations are solved sep-

arately with respective numerical algorithms and discretization method, and interface

coupling is enforced to communicate information between the fluid and structure solu-

tions. To achieve accurate and efficient fluid-structure interaction, we present the both

weakly coupled and semi-implicit coupled schemes for fluid-rigid body applications.

To distinguish different domain, we denote xf for the fluid mesh and xs for the solid

displacement. At time tn, we define the computational variables un, pn,xnf for the fluid

and xns ,v
n
s for the solid, and then update them by integrating the fluid and structural

solvers described above via weak or semi-implicit coupling scheme which will be de-

tailed in the rest of this section.

5.4.1 Weak coupling

The basic and well-known weakly coupled scheme is the conventional serial staggered

(CSS) scheme [113]. The simplicity and high efficiency makes it popular and be widely

used in practical applications. The solution procedure of this scheme is summarized as

following:

1. Given computational variables at tn: un, pn,xnf ,x
n
s ,v

n
s .

2. Evaluate the force fn and torque Tn by (5.6) and (5.7) from fluid variables.

3. Update the solid displacement and velocity to next step xn+1
s ,vn+1

s by (5.27) and

(5.28).

4. Update fluid mesh position xn+1
f by RBF interpolation (4.19).

5. Update grid velocity of fluid domain: un+1
g = (xn+1

f − xnf ) /∆t .

6. Solve Navier-Stokes equation: NS(un+1,un, pn+1,xn+1
f ,xnf ,u

n+1
g ) = 0 with

GCL condition, and then obtain un+1, pn+1.

7. Up to now, we have all the computational variables at tn+1, then go to next step

calculation.

In this procedure, Navier-Stokes equation NS(un+1,un, pn+1,xn+1
f ,xnf ,u

n+1
g ) = 0

represents whole moving-mesh numerical model for fluids where un,xnf ,x
n+1
f and un+1

g
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are input values and un+1 and pn+1 are variables obtained in the new time step. In this

study, most validations are computed based on the weak coupling scheme due to its rela-

tively low computational cost since the fluid and solid equations are coupled once in the

calculation of each time step. However, when the coupling intensity is strong due to the

small solid/fluid ratios, the instability was observed in many published works [60, 114]

which needs a semi-implicit scheme to stabilize and accelerate the computations.

5.4.2 Semi-implicit coupling

To remedy the deficiency of weak coupling schemes, implicit coupling schemes are

always used in FSI simulations to ensure the fluid and solid be updated at same time.

Based on implicit scheme, iterative steps are usually performed until both fluid and

solid variables converge in the next time step in the framework of partitioned approach.

The key work of iterations is always settled in finding the ultimate equilibrium interface

position xI which is initialized by the computed solid position. Based on the interface

position at next time step xn+1
I , the force or the torque on the body can be evaluated

by (5.16). Then, solid equation is solved to update the solid displacement, namely, the

fluid-solid interface, by (5.29).

Therefore, one closed loop for FSI is reduced to

x̃n+1
I = S ◦ F(xn+1

I ). (5.30)

We can find that the fully implicit schemes for both fluid and solid equations are required

for obtaining a strong FSI scheme.

In this study, we follow a semi-implicit scheme where only the pressure term of fluid

is implicitly coupled with the structure and the remaining terms of fluid equations are

computed explicitly. Thus, the coupling process can be straightforwardly constructed

based on the projection method for fluid equations as presented in section 5.2.2 and

Newmark scheme for solid equation in section 5.3. It is observed that the pressure term

is responsible for the added-mass effect and numerical instability is more attributed to

the explicit coupling of pressure term [63, 115]. We construct the semi-implicit coupling

scheme based on fixed-point methods [116] in this study. A block Gauss-Seidel iteration

can be formulated as

x̃n+1,l+1
I = S ◦ F(xn+1,l+1

I ), (5.31)
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where l stands for the sub-iterative step. The Aitken’s dynamics relaxation method

[117] is used to stabilize and accelerate the computation by

xn+1,l+1
I = xn+1,l

I + λlrl+1, (5.32)

with rl+1 = x̃n+1,l+1
I − xn+1,l

I and λl = −λl−1
(
rl+1(rl+1 − rl)

) /
|rl+1 − rl|2 . In this

study, the interface velocity is then calculated by

ẋn+1,l+1
I =

γ

β∆t
(xn+1,l+1

I − xnI ) + (1− γ

β
)ẋnI + ∆t

(
1− γ

2β

)
ẍnI (5.33)

for the body with translational degrees of freedom, which is used as the boundary con-

dition of fluid flows. For complex solid motion involving both translation and rotation,

the interface velocity may be simply approximated by

ẋn+1,l+1
I =

xn+1,l+1
I − xnI

∆t
. (5.34)

The numerical procedure of semi-implicit coupling scheme devised in this study is pre-

sented in Figure 5.3. The convergence criterion is set as

xn+1,l+1
I − xn+1,l

I < ε & ẋn+1,l+1
I − ẋn+1,l

I < ε, (5.35)

where ε is the tolerance error.

It is noted that since the point values at vertices of mesh cells are updated as the com-

putational variables and ready to use at every time step, the coupling between different

materials can be directly computed without extra interpolation procedure. Hence, the

present ALE formulation based on multi-moment finite volume method provides an

accurate and efficient numerical framework for fluid-solid interaction.

5.5 Numerical tests

5.5.1 Accuracy test

We evaluate the convergence rate of the present scheme by computing the advection

transport of a sine function whose initial profile is given as

φ0(x, y) = sin 2π(x+ y) (5.36)
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Given variables at tn:
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n
s ,v

n
s ,x

n
I ,v

n
I , f
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Predict the force fn+1,1 = fn

and torque Tn+1,1 = Tn

Calculate the solid displacement xn+1,1
s

and vn+1,1
s by (5.27) and (5.28)

Obtain the interface displace-
ment xn+1,1

I and velocity vn+1,1
I

Update fluid mesh position xn+1,l+1
f

by RBF interpolation (4.19)

Update grid velocity of fluid domain:
un+1,l+1
g = (xn+1,l+1

f − xnf ) /∆t

Solve Navier-Stokes equation:
NS(un+1,l+1,un, pn+1,l+1,x

n+1,l+1
f

,xn
f ,u

n+1,l+1
g ) =
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Evaluate the force fn+1,l+1 and
torque Tn+1,l+1 by (5.6) and (5.7)

Calculate the solid displacement x̃n+1,l+1
s

by (5.27) using Newmark scheme

Compute the displacement resid-
uals rl+1 = x̃n+1,l+1

I − xn+1,l
I

Convergence?
Update the interface displacement xn+1,l+1

I

by the Aitken’s dynam-
ics relaxation method (5.32)

Update the interface velocity
vn+1,l+1
I by (5.33) or (5.34)

Update all variables to the new time step

l = 0

No

l = l + 1

Yes

FIGURE 5.3: Flowchart of semi-implicit coupling scheme for fluid-rigid body interac-
tion.
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over a computational domain of [0, 1] × [0, 1]. We use gradually refined triangular

elements which are obtained by uniformly dividing each square element of Cartesian

grid into two triangles. The constant advection velocity is specified as u = (1, 1). The

3rd-order Runge-Kutta scheme is used for time integration and the time step is given as

0.08
/√

N/2 where N denotes the cell numbers in each grid. The periodic condition

is prescribed for all boundaries of computational domain. We perform the calculation

up to time t = 1 in ALE form with the grid velocity ug = (ug, vg) which is prescribed

by zero for the case of static mesh by

ug(x, t) = X0 · 2πnt/t0 cos(2πntt/t0) sin(2πnxx/Lx) sin(2πnyy/Ly), (5.37)

vg(x, t) = Y0 · 2πnt/t0 cos(2πntt/t0) sin(2πnxx/Lx) sin(2πnyy/Ly), (5.38)

for the moving mesh case with parameters given as X0 = 1, Y0 = 1, nt = 4, nx =

1, ny = 1, t0 = 2, Lx = 10, Ly = 10.

We summarize L1 and L∞ errors along with their convergence rates by using present

method on static and moving meshes as shown in Table 5.1. The elapsed time of com-

putation is measured on a PC with an Intel Core i7-4790 CPU @ 3.60GHz. It is ob-

served that uniformly 3rd-order accuracy is obtained with the same level of numerical

errors between two cases which demonstrate the validity and efficiency of proposed

ALE scheme. For the sake of comparison, we also compute with the same conditions

by a conventional 3rd order finite volume method (FVM) [118] where the quadratic

polynomial for spatial reconstruction is performed by using least-square approxima-

tions on a merged stencil. The 3rd order accuracy is also produced as shown in Table

5.2 however at expense of larger computational cost.

TABLE 5.1: Errors and convergence rates for 2D sine wave computed by VPM method
in ALE form respectively.

Cells
Static mesh with ug = 0 Moving mesh with ug by (5.37)

L1 error Rate L∞ error Rate Time(s) L1 error rate L∞ error rate Time(s)
200 2.80× 10−2 – 4.47× 10−2 – 0.08 3.65× 10−2 – 7.44× 10−2 – 0.43
800 3.66× 10−3 2.94 5.76× 10−3 2.96 0.55 5.16× 10−3 2.82 1.22× 10−2 2.60 3.07

3200 4.66× 10−4 2.97 7.36× 10−4 2.97 4.31 6.73× 10−4 2.94 1.68× 10−3 2.86 23.32
12800 5.87× 10−5 2.99 9.25× 10−5 2.99 40.32 8.58× 10−5 2.97 2.25× 10−4 2.90 192.58
51200 7.36× 10−6 3.00 1.16× 10−5 3.00 329.21 1.07× 10−5 3.00 2.66× 10−5 3.09 1440.77

From the numerical results of Table 5.1 and Table 5.2, we can find that the VPM method

can achieve 3rd order accuracy with smaller numerical errors than the conventional

FVM regardless of moving mesh or not. On the other hand, since two kinds of mo-

ments are employed as prognostic variables, the VPM method needs less computational

cost and algorithmic complexities than that of FVM which may be associated with the
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TABLE 5.2: The same as Table 5.1 but computed by conventional FVM method.

Cells
Static mesh with ug = 0 Moving mesh with ug by (5.37)

L1 error Rate L∞ error Rate Time(s) L1 error rate L∞ error rate Time(s)
200 7.58× 10−2 – 1.18× 10−1 – 0.11 9.01× 10−2 – 1.54× 10−1 – 0.60
800 1.02× 10−2 2.89 1.60× 10−2 2.89 0.69 1.34× 10−2 2.75 2.80× 10−2 2.46 4.11

3200 1.29× 10−3 2.98 2.03× 10−3 2.98 5.95 1.77× 10−3 2.92 4.07× 10−3 2.78 31.49
12800 1.62× 10−4 3.00 2.55× 10−4 3.00 55.29 2.25× 10−4 2.98 5.26× 10−4 2.95 247.39
51200 2.03× 10−5 3.00 3.18× 10−5 3.00 438.70 2.82× 10−5 3.00 6.61× 10−5 2.99 1933.69

computation of inverse matrix. The comparison proves that the VPM method signifi-

cantly outperforms the 3rd-order FVM method for implementing ALE schemes in term

of numerical accuracy and efficiency.

5.5.2 Lid-driven cavity flow

Lid-driven cavity flow is a widely used benchmark test for numerical codes designed

to solve viscous compressible flow [119]. Incompressible flow is enclosed in a square

domain [0, 1] × [0, 1]. Non-slip conditions are imposed on the 4 walls. The upper wall

y = 1 is moving at a constant speed u = (1, 0). Reynolds number is set as Re = 1000.

Numerical tests are initially carried out on the uniform triangular mesh of different mesh

resolutions: 200, 800, 3200, and 12800 cells. Figure 5.4 (a) shows the initial mesh with

800 elements. We run the cases up to time t = 100s and plot the numerical results on

X

Y

0 1
0

1

(a) t=0s

X

Y

0 1
0

1

(b) t=120s

FIGURE 5.4: Computational mesh at t=0s and t=120s for the case with 800 cells.

different grid resolutions in Figure 5.5. Figure 5.5 (a) and (b) display u profiles along

x = 0.5 and v profiles along y = 0.5 at time t = 100s on grids of different resolutions
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FIGURE 5.5: (a) u profiles along x = 0.5, (b) v profiles along y = 0.5 at time t = 100s
on grids of different resolutions.

respectively. It is clear that as the grids refined, the velocity profile converges to Ghia’s

results [119].

To verify the performance of present solver on moving grids, we move the computa-

tional grids from t = 100s where the fluid flow is observed to be in a steady state.

The grid velocity is set as ug = (−0.01(y − 0.5)e2−50r2 , 0.01(x − 0.5)e2−50r2) with

r2 = (x− 0.5)2 + (y − 0.5)2. As shown in Figure 5.4 (b), mesh is heavily distorted in

the central area at time t = 120s. We plot the velocity profiles again at different time

sequences in Figure 5.6. We can find that mesh movement almost has no impact for the

numerical solution.
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FIGURE 5.6: (a) u profiles along x = 0.5, (b) v profiles along y = 0.5 at different time
sequences on the mesh with 12800 cells.
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In this computation, Poisson equation is solved by the preconditioned conjugate gradi-

ent (PCG) method with diagonal-based incomplete cholesky (DIC) preconditioner. We

also investigate the effect of mesh quality on the iterative numbers for solving Poisson

equation, since it serves as the major part of computational cost. The iterative toler-

ance is set as 1e−6. The test is performed up to 200s for the case with 800 cells, where

computational grid is rotated between 100 − 200s and keeps stationary for other pe-

riods. Figure 5.7(a) plots the time history of mesh quality, which is evaluated based

on non-orthogonality and skewness, as defined in Appendix D. The mesh quality gets

worse from 100s to 120s, since the mesh rotates in the domain center. We show the time

history of iterative numbers in Figure 5.7 (b). In the initial stage of computation where

mesh keeps stationary, the iterative number decreases with time and finally reduces to

only 0 or 1 iteration. When the mesh deforms, the iterative number increases but still

in an acceptable value. Mesh quality reaches to maximum non-orthogonality of 61.52o
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FIGURE 5.7: Time history of mesh quality (a) and iterative numbers (b) for the case
with 800 cells.

and skewness of 0.31 at time t = 120s. After that, the iterative number again decreases



Chapter 5. Incompressible flows and fluid-solid body interaction 113

and finally still needs only 0 or 1 iterations since the mesh keeps still.

5.5.3 Oscillating cylinder in quiescent water

The numerical model for incompressible Navier-Stokes equations on moving grids is

firstly validated by a test case about a circular cylinder oscillating in a quiescent fluid.

The cylinder with the diameter of unit (D = 1) is forced to have a harmonic oscillation

in the y-direction. The analytical displacement of cylinder is given by

y(t) = −A sin(2πft), (5.39)

where A is the amplitude of the motion and f is the frequency. As reported in the lit-

erature [3, 120–122], the phenomenon is characterized by two non-dimensional param-

eters, the Reynolds number Re = UmaxD
ν

and the Keulegan-Carpenter number KC =
Umax

fD
, where Umax is the maximum velocity of the cylinder motion. The parameters are

set as Re = 100 and KC = 5 in this calculation. The computational domain is set as a

circular surface of diameter 50D with the circular cylinder located at the center of do-

main initially. We partition the computational domain into 12,624 triangular elements

in total with 120 and 80 segments around the cylinder and the outer far field boundary

respectively. Since the cylinder moves in a prescribed velocity, the boundary conditions

of the moving interface can be set exactly.

We present a time sequence of flow patterns in Figure 5.8, which show a good agree-

ment with results in published works [3, 120]. Figure 5.9 plots the fluid velocities

at four cross-sections for three different phases, which agrees well with experiments

[3]. Quantitative analysis is performed on the time variation of inline force, which is

compared with experimental results of Dütsch in Figure 5.10. A least-square fitting is

calculated for the inline force to obtain the drag and added-mass coefficients (cd and ci).

The computed coefficients are compared with some existing works as shown in Table

5.3. Both qualitative and quantitative analyses prove the feasibility of present numerical

TABLE 5.3: The comparison of the drag and added-mass coefficients.

cd ci
present 2.07 1.46
Dütsch et al. [3] 2.09 1.45
Su, Cao & Zhao [120] 2.08 1.51

model on moving domain.
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 5.8: A time sequence of pressure isolines and vorticity isolines around the
cylinder. (a) (b) (c) and (d) are pressure isolines at phase position 0o, 96o, 192o and

288o respectively. (e) (f) (g) and (h) are corresponding vorticity isolines.

5.5.4 Vortex Induced Vibration (VIV) of a circular cylinder

In this section, we validate the numerical model for FSI problems which concerns an

elastically mounted circular cylinder in a free-stream. The cylinder is allowed to have

two translational degrees of freedom. Supposing that the spring system has the same

specification in each direction, the cylinder motion can be expressed as

msẍ + csẋ + ksx = f , (5.40)

where x is the displacement of cylinder center, f the force evaluated from fluid flow, ms

the mass per unit length of solid body, cs and ks the damping constant and the stiffness

constant respectively. To make comparisons with published works [123, 124], we define

the non-dimensional parameters as follows. The mass ratio m∗ = ms
ρD2 , the reduced

velocity U∗ = U∞
fsD

, the natural vibration frequency of the cylinder fs = 1
2π

√
ks
ms

, and

the damping ratio ζs = cs
2
√
ksms

. Here, D is the diameter of cylinder, U∞ the free-stream

speed. We set D = 1, U∗ = 5, ζs = 0.01 and Re = 200 in the simulation.

We first calculated the case that fluid and solid body have similar density with m∗ = 1

by the weakly coupled scheme for computational efficiency. The computational domain
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FIGURE 5.9: Comparisons of numerical and experimental results of x-component
(left column) and y-component (right column) of fluid velocity in four different cross-

sections at three phases: (1) 180o: (a) (b); (2) 210o: (c) (d); (3) 330o: (e) (f).
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FIGURE 5.10: Comparison of inline force between present results and Dütsch’s results
[3].

is set as [−10D, 30D]× [−10D, 10D] and the cylinder is located at the origin initially.

The velocity of the inlet flow from the left boundary U∞, and a outlet condition is set to

the right boundary. The slip boundary condition is set on the top and bottom walls. The

simulation is carried out up to time t = 100 on three kinds of grids: grid A, grid B and

grid C where 160, 320 and 640 grid nodes are uniformly distributed around the cylinder,

respectively. For saving computational cost, triangular elements with relatively small

sizes are clustered around the cylinder and its downstream region to accurately resolve

the fluid/solid interaction and the vortex shedding, while coarse mesh is generated in the

region far from the cylinder where the flow has less variation in space. To achieve the

synchronization regime of VIV, the natural frequency of cylinder fs is set as same as the

frequency of the vortex shedding. In the initial stage of computation, the symmetrical

wake forms around the cylinder which is pushed forward by the free stream. With

time evolving, the symmetry breaks due to the instability, and finally vortex shedding

forms and interacts with the periodically moving cylinder. Figure 5.11 gives a snapshot

of vorticity contours for the free oscillating cylinder, which is a classic 2S mode (two

single vortices per cycle of motion) [125].

FIGURE 5.11: A snapshot of vorticity contours for a free oscillating cylinder in a free
stream at Re = 100 and m∗ = 1.
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As the vortex shedding develops, the cylinder moves in a periodic trajectory. Figure

5.12 (a) presents the displacement trajectory of the cylinder computed on different

meshes. With the gradually refined mesh, the displacement trajectories converged to

an eight-shape and the equilibrium position of the oscillating cylinder is at x = 0.64D,

which is close to Blackburn’s results (x = 0.62D) and Yang and Stern’s prediction

(x = 0.65D). Displacement-velocity phase displayed in 5.12 (b) and (c) present the

convergence trend. We also plot the time history of drag and lift coefficients, as shown

in Figure 5.13.
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FIGURE 5.12: Displacement diagram of a free oscillating cylinder in a free-stream of
Re=200. Numerical results on grid A (coarse), grid B (medium) and grid C (fine) are

compared with Blackburn’s results [4] where a spectral element method is used.

Semi-implicit interface coupling scheme is used for computation of VIV with small

mass ratio m∗ = 0.5, since the weakly coupled scheme is unstable for light-body-

involved free oscillation. The simulation is performed on grid B and the same boundary

condition is specified. We perform the simulations by setting different tolerance er-

ror. The trajectories of cylinder center are plotted in Figure 5.14. It is observed that

the numerical result converges with the tolerance error smaller than 1e − 5. We then
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FIGURE 5.13: Drag and lift force coefficients for a free oscillating cylinder in a free-
stream at Re=200.
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FIGURE 5.14: Trajectories of cylinder center with different tolerance error.

compare the iteration numbers of semi-implicit coupling as shown in Figure 5.15 and

Figure 5.16. Figure 5.15 plots the iteration numbers of semi-implicit coupling at the ini-

tial stage of the computation (0-0.25s). We can find that the iteration numbers rapidly

reduce to acceptable values. Meanwhile, we can observe that the smaller tolerance error

requires more iterations. Figure 5.16 shows the iteration numbers for whole computa-

tion times. After the initial stage, the simulation just takes a few iterations by setting

different tolerance value, which justifies the efficiency of present semi-implicit coupling

scheme.

Figure 5.17 plots the displacement and velocity phase diagrams of both cases (m∗ = 1

and m∗ = 0.5) for comparison. The equilibrium position for the lighter body is driven

far away which can be clearly observed in Figure 5.17 (a). The phase diagrams are quite

similar to the simulation of Liu and Hu [124] by using immersed boundary method.
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FIGURE 5.15: Comparisons of iteration numbers for semi-implicit coupling by setting
different tolerance error at the initial stage of computation (0-0.25s).
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FIGURE 5.16: Iterative numbers for semi-implicit coupling by setting different toler-
ance error during whole computation time (0-100s). (a) ε = 1e− 5, (b) ε = 1e− 6, (c)

ε = 1e− 7.

5.5.5 Galloping rectangular bodies

In addition to vortex-induced vibration (VIV), galloping is also a well-known fluid-

structure interaction phenomenon. For VIV, the natural frequency of structure is com-

parable to the vortex shedding frequency, and it is always characterized with synchro-

nization or lock-in phenomenon. However, galloping is the flow-induced vibration that

happens at frequencies much lower than the wake vortex shedding frequency behind

the structure which always associates with a non-circular structure in a flow with a large

incoming velocity. We limit our numerical tests to case where there is only one DOF

in the structure motion, i.e. transverse or rotational galloping. We are interested in the

galloping phenomenon of solid bodies shaped with a rectangular cross-section, which is
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FIGURE 5.17: The displacement and velocity phase diagrams for a free oscillating
cylinder in a free-stream at Re = 200. — is for mass ratio m∗ = 1 and — for mass

ratio m∗ = 0.5.

calculated for validating our FSI numerical model. The rectangular cross-section bodies

are characterized with the thickness ratio Λ = L
D

, where L is the length of the body and

D its thickness (D = 1).

5.5.5.1 Transverse galloping

A fixed rectangular cross-section body with Λ = 1 is firstly put in the free-stream of

Reynolds number Re = 250. The computational domain and boundary conditions are

set as same as in section 5.5.4. The triangular mesh is also refined around the cylinder

and the segments located on the rectangular body are of size D/60. The mass ratio

m∗ = ms
ρD2 is set as 20 for comparison with [5]. We carry out the numerical calculation

up to time t = 1000, and a snapshot of periodic vortex shedding is plotted in Figure

5.18.

For transverse galloping, the motion for the solid body is also modelled as a mass-

spring-damping system, but with one degree of freedom motion in y-direction. Thus, it
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FIGURE 5.18: Vorticity contour of a fixed rectangular cross-section body with Λ = 1
in a free-stream at Re = 250.

can be formulated as

myÿ + cyẏ + kyy = fy, (5.41)

where y and fy are the y-component of the solid body displacement and the force exerted

from fluid flow respectively. The non-dimensional parameters are: the reduced velocity

Uy = 40, the damping ratio ζy = 0.0037 and the natural frequency fy = 0.025 which

is much lower than the vortex shedding frequency. Figure 5.19 presents the responds

of the body in the cross flow, which has a good agreement with the simulation by a

spectral element simulation [5]. The frequency of vortex shedding is 0.14. A snapshot
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FIGURE 5.19: The y-component displacement of a square cross-section body Λ = 1
in a free-stream at Re = 250, U∗y = 40, ζy = 0.0037 and m∗ = 20. — is the present

simulation and • denotes the results by a spectral element simulation [5].

of vorticity contour is given in Figure 5.20.
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FIGURE 5.20: Vorticity contour of transverse galloping with Λ = 1 in a free-stream at
Re = 250, U∗y = 40, ζy = 0.0037 and m∗ = 20.

5.5.5.2 Rotational galloping

One degree-of-freedom torsional model of a rectangular body can be formulated as

Iθθ̈ + cθθ̇ + kθθ = Tθ (5.42)

where θ is the rotational angle of the body around its center, Iθ = 1
12
ρsDL(D2 + L2)

the moment of inertia of the body per unit length, cθ the torsional damping constant,

kθ the torsional stiffness constant and Mθ the torque. To compare the results with [5],

we define some non-dimensional parameters as: the mass moment of inertia ratio I∗ =
Iθ
ρD4 , the reduced velocity U∗θ = U∞

fθD
, the natural vibration frequency of the structure

fθ = 1
2π

√
kθ
Iθ

and the damping ratio ξθ = cθ
2
√
kθIθ

. In this calculation, we set parameters

as: Λ = 4, U∞ = 1, Re = 250, U∗θ = 40, ξθ = 0.25 and I∗θ = 400.

The computational domain is set as same as the previous test with [−10D, 30D] ×
[−10D, 10D], and the same boundary conditions are prescribed. The domain is par-

titioned into 209,266 triangular elements and the size of element segments around the

rectangular body is D/60. In the calculation, the rectangular cross-section body has

one DOF rotational motion after the stable vortex shedding breaks. We measure the

rotational displacement responds of the solid body and compare it with Robertson’s

simulation results [5] as shown in Figure 5.21. The body has the maximum rotational

responds of 15o and the rotational frequency is 0.0188.

We give the vorticity snapshots around the body during a clockwise rotation from the

balanced position to the positive peak position in Figure 5.22 (a) (b) (c) and from the
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FIGURE 5.21: Rotational galloping responds of a rectangular cross-section body with
Λ = 4 in a free stream at Re = 250, U∗θ = 40, ξθ = 0.25 and I∗θ = 400. — is the

present simulation and • denotes the result by a spectral element simulation [5].

balanced position to the negative peak position in Figure 5.22 (d) (e) (f). The boundary

layer separates at the leading sharp corner of a leeward surface and then the complex

vortices form around the leeward surface. Finally, vortices shed at the rear end of the

rectangular body.

(a) −0.3o (b) 6.4o (c) 14.9o

(d) 0.8o (e) −7.4o (f) −15.0o

FIGURE 5.22: Vorticity snapshots of a one DOF rotational rectangular cross-section
body with Λ = 4 in a free stream at Re = 250, U∗θ = 40, ξθ = 0.25 and I∗θ = 400.

5.5.5.3 Two galloping bodies

Two interactive galloping bodies are calculated to present the capability of the present

method for multiple bodies in this section. A transverse galloping body with Λ = 1 and

a rotational galloping body with Λ = 4 which studied in the previous section are placed

in a free stream in tandem arrangement. The free-stream is still set at the same Reynolds

number with Re = 250. The parameters for the transverse galloping body with square



Chapter 5. Incompressible flows and fluid-solid body interaction 124

cross-section are: U∗y = 40, ζy = 0.0037 and m∗ = 20. The rotational galloping body

with rectangular cross-section body is placed behind the square cross-section body with

U∗θ = 40, ξθ = 0.25 and I∗θ = 400.
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FIGURE 5.23: The transverse galloping responds of a square cross-section body Λ = 1
in a free-stream at Re = 250, U∗y = 40, ζy = 0.0037 and m∗ = 20. — denotes a

single body in a free stream and — denotes two bodies in a tandem arrangement.

To mitigate the boundary effect, a relatively larger computational domain with [−20D, 60D]×
[−20D, 20D] is used. The size of element segments around the two bodies are still set

as D/60. Figure 5.24 shows the comparison of the transverse galloping responds of

a square cross-section body in the single-body and two-body configurations. For the

upstream body, which is slightly affected by the downstream body, the transverse am-

plitude gets a little higher and the displacement profile becomes irregular for each pe-

riod. The rotational body is significantly affected by vortices behind the upstream body.

The rotational amplitude becomes obviously lower comparing to the case with a single

rectangular body as shown in Figure 5.24. The trend of galloping amplitudes for both

bodies is similar to Yang’s simulation results [123].
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FIGURE 5.24: The rotational galloping responds of a square cross-section body Λ = 4
in a free-stream at Re = 250, U∗θ = 40, ξθ = 0.25 and I∗θ = 400. — denotes a single

body in a free stream and — denotes two bodies in a tandem arrangement.
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Figure 5.25 shows a few snapshots of vorticity contour around two bodies. Figure 5.25

(a) (b) (c) give the image for the upstream body moving from the equilibrium position to

the positive translational peak, while Figure 5.25 (d) (e) (f) represent the transformation

from the balanced position to the negative peak position.

(a) (b)

(c) (d)

(e) (f)

FIGURE 5.25: Vorticity snapshots of two galloping bodies in a free stream at Re =
250. (a) y/D = 0.09, θ = 6.87; (b) y/D = 0.69, θ = 4.22; (c) y/D = 1.37, θ =
−6.20; (d) y/D = −0.01, θ = −7.43; (e) y/D = −0.63, θ = −4.73; (f) y/D =

−1.36, θ = 7.92.

5.5.6 Vortex Induced Vibration (VIV) of a sphere

The VIV of a sphere is calculated in this part for 3D validation. It is observed that

the flow regime is dominated by a highly organized periodic vortex shedding when the

Reynolds number is larger than 270. Thus, we set the Reynolds number Re = 300 in

this section, with which many published works are available for comparison.
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5.5.6.1 A stationary sphere

A stationary sphere with a diameter of D = 1 in a free-stream U∞ = 1 is firstly

calculated to verify the performance of fluid solver. The computational domain is set as

a cuboid with [−8D, 32D]× [−8D, 8D]× [−8D, 8D]. The domain is then partitioned

into 5.85 million tetrahedral elements with smaller elements clustered around the sphere

as shown in Figure 5.26. The edge size of triangular elements on the sphere surface

is about 0.02D. Inlet and outlet boundary conditions are set for left and right patches

respectively, and slip condition is prescribed for other surrounding walls.

FIGURE 5.26: Computational mesh for a sphere in a free stream (5.85 million tetrahe-
dral elements).

We performed the simulation up to time t = 110s. The computational results are quan-

titatively analyzed in terms of the drag coefficient Cd, lateral coefficient Cl, and side

coefficient Cs, which are defined as the followings.

Cd =
fx

1
8
πρU2

∞D
2
, Cl =

fl
1
8
πρU2

∞D
2

and Cs =
fs

1
8
πρU2

∞D
2
, (5.43)

where fx is the force exerted on the sphere in the streamwise direction, fs the force

normal to the mean flow symmetry plane, and fl the force perpendicular to the plane

spanned by fx and fs. We plot the time history of these three coefficients in Figure 5.27.

Then, the time-average drag coefficient Cd were calculated by Cd = 1
t2−t1

∫ t2
t1
Cd(t)dt

with [t1 : t2] covering several vortex periods for reducing the statistical error. Besides,
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FIGURE 5.27: Time history of three force coefficients: Cd, Cl and Cs for a stationary
sphere in a free stream at Re = 300.

TABLE 5.4: Time-averaged drag coefficient and the Strouhal number for 3D stationary
sphere Re = 300.

Time-averaged Cd Strouhal number St
Present 0.642 0.133
Behara et al. [126] 0.600 0.132
Tomboulides [127] 0.671 0.136
Johnson & Patel [128] 0.656 0.137
Roos & Willmarth [129] 0.626 -

we computed the Strouhal number as St = fs
d
U∞

where fs is the vortex frequency. We

compare Cd and St of our numerical results with other existing works in Table 5.4.

Furthermore, we give a snapshot of the wave structure around the sphere visualized

with Q-criterion [6] in Figure 5.28. A chain of hairpin vortices is clearly observed in

the downstream of the sphere, which is the typical structure of a stationary sphere in

the freestream of Re=300. Both qualitative and quantitative analyses verify the capa-

bility of the present fluid solver to accurately simulate the 3D flow structures around

stationary objects. The fluid solver were then used for the computations of fluid-sphere

interactions shown next.

5.5.6.2 Vortex Induced Vibration (VIV) of an elastically mounted sphere

In this section, we present the numerical results of an elastically mounted sphere D = 1

with three degrees of freedom immersed in a free stream of Re=300. The sphere is

supposed to move translationally in three dimensions without rotational motions. Thus,

the motion equation of the sphere is same as Eq (5.40). All non-dimensional parameters



Chapter 5. Incompressible flows and fluid-solid body interaction 128

FIGURE 5.28: Wave structures visualized with Q-criterion [6] for a stationary sphere
in a free stream at Re = 300. The contour surface (Q = 0.02) is colored by the
magnitude of fluid velocity. The top figure is viewed in x−y plane and the bottom one

is viewed in x− z plane.

used in 2D case are applied to 3D, except the mass ratio which is formulated as m∗ =
ms
ρD3 . The parameters are set as m∗ = 2, ζs = 0 and U∗ = 7 for comparison with [126].

The weak coupling scheme is used for fluid/solid coupling since the mass ratio is not

crucial.

The simulation was carried out from an initially stationary sphere in a free stream of

Re=300. Figure 5.29 plots the trajectories of the sphere, where Figure 5.29 (a) and

(b) are viewed in 3D space and the y-z plane, respectively. Figure 5.30 gives the time

history of the three force coefficients (Cd, Cl, and Cs) for the sphere.

At the initial stage of computation, the sphere is significantly affected by the drag force

while the lift force and side force are less dominant, which causes the motion of the

sphere in the streamwise direction immediately. Since the sphere is mounted on the

spring, the force exerted from spring always drives it back to the equilibrium position.

Thus the sphere has a long trajectory in the x-direction as shown in Figure 5.29 (a). The

oscillation amplitude of drag force gradually decreases, meanwhile the vortex around

the sphere becomes unstable. Finally, the periodical vortices formed in the downstream

of the sphere. The drag coefficient and lift coefficient vary periodically in time. The

peak-to-peak amplitude of drag coefficient Cd and Cl are 0.113 and 0.326 respectively.

The larger fluctuation in the lift force drives a more significant motion of the sphere in
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FIGURE 5.29: Trajectories of the mass center viewed in 3D space (a), and y-z plane
(b) for an elastically mounted sphere in a free stream of Re = 300, m∗ = 2, ζs = 0,

and U∗ = 7.
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FIGURE 5.30: Time history of three force coefficients: Cd, Cl and Cs for a moving
sphere in a free stream at Re=300, m∗ = 2, ζs = 0 and U∗ = 7.

the transverse plane (x-z plane) compared to the streamwise direction. It is observed that

the sphere oscillates along a line path in the transverse plane after the periodic vortex

shedding has developed as shown in Figure 5.29 (b), which agrees well with Behara’s

observation [126]. The length of line path in the transverse plane in our simulation is

0.72D and the length of Behara’s result is around 0.70D. A time sequence of the wave

structures generated by the sphere is shown in Figure 5.31, where the Q-criterion iso-

surfaces are snapshotted at every other second from top to bottom. We can see that the

hairpin vortex structure is well resolved under the present mesh resolution.
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FIGURE 5.31: A time sequence of wave structures visualized with Q-criterion [6] for
an elastically mounted sphere in a free stream at Re = 300, m∗ = 2, ζs = 0 and
U∗ = 7. The contour surface (Q = 0.02) is flooded by the magnitude of fluid velocity.

The snapshots are captured every other second from top to bottom.
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5.6 Short summary

In this chapter, numerical model for incompressible flows on moving grids is developed

based on multi-moment finite volume method and applied to fluid-rigid body interaction

problems. In this multi-moment finite volume method, both VIA and PV are treated as

the computational variables and used for high order polynomial reconstruction on un-

structured grids. The spatial discretization is based on the multi-moment reconstruction

of quadratic polynomials for 2D triangular or 3D tetrahedral element. Numerical com-

parisons of the present scheme and a conventional 3rd order FVM for advection test

demonstrate the superiority of the present multi-moment finite volume method as an

accurate and efficient spatial discretization approach.

Incompressible Navier-Stokes equations are solved by a fractional step procedure, where

the momentum equation is cast into an integral and a differential formulations for up-

dating VIA and PV of fluid velocity respectively in an ALE framework. Convection and

diffusion equations are firstly computed to put forward the intermediate fluid velocity.

Velocity-pressure coupling equation is then solved through a semi-implicit step to ob-

tain the pressure field at next time level, which is then used to correct both VIA and PV

of fluid velocity to satisfy the continuity equation.

It is noted that the multi-moment finite volume method possesses at least two advan-

tages, when applied to the ALE framework for fluid/solid interactions on unstructured

grids. Firstly, with more locally increased degrees of freedom, quadratic or higher-order

polynomial reconstruction can be built on compact stencil, which is not a trivial task for

conventional FVM on unstructured grids, and secondly, the fluid-solid interface can be

treated in a more accurate and convenient manner since the PVs are always located on

the material interface so that the extra numerical step to retrieve the physical values is

not needed.

In this study, the rigid body is moved by either a prescribed motion or an interactive

motion with the surrounding fluid where the body is supposed to be mounted on elastic

supports. In the latter case, the mass-spring-damping system of the solid motion is cast

into second order ordinary differential equations (ODEs). We have developed two cou-

pling schemes for fluid-rigid body interaction in this work, i.e. the explicit weak cou-

pling scheme and the semi-implicit strong coupling scheme. Both schemes have been

verified with benchmark tests that have different mass ratios between fluid and solid.

In the cases where the mass of the solid body is light, the semi-implicit scheme has to

be used to realize the equilibrium between fluid and solid at each time step through an

iteration computation, so as to stabilize the FSI computation.
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We have extensively verified the present numerical model with various benchmark tests

in 2 and 3 dimensions in comparison with other methods reported in the literature.

One typical benchmark test is VIV of a circular cylinder, where the case with mass

ratio m∗ = 1 is calculated by weak coupling scheme for efficiency, while semi-implicit

coupling scheme is employed for the case with mass ratio m∗ = 0.5 to ensure the

numerical stability. The iterations rapidly reduce to only 2 ∼ 3 times in each time step

after the initial stage of computation, by setting convergence tolerance between 1e−5 ∼
1e−7, which verifies the efficiency of semi-implicit coupling. In 3D case, VIV of an

elastically mounted sphere is computed with Re=300. When periodic vortex formed,

the sphere moves almost in a straight-line in transverse plane. The length of line path of

our result is 0.72D, which is very close to Behara’s result 0.70D. The numerical results

substantiate the accuracy and robustness of our numerical model.



Chapter 6

Moving body in free surface flow

6.1 Brief introduction

Two-phase flows interacting with moving bodies occur in many engineering applica-

tions, such as naval hydrodynamics, process engineering like ink jet printers, etc.. In

this phenomenon, three kinds of materials (usually gas, liquid and solid) interact with

time where not only the moving boundary of fluid and structure, but also the interface of

different fluids are of great interest. The numerical simulation is rather challenging due

to the complexity of the geometrical shape and multi-physics interaction. For two-phase

flows, the movement and deformation of the free interface is very flexible, and it may be

associated with breakup and coalescence. Though there are some attempts to track the

free surface by using moving grids, it is limited to simple geometries and simple phys-

ical problems. And undoubtedly it can hardly handle the phenomena with breakup and

coalescence. Thus, the gas and liquid is formulated into one-fluid model, and the free

interface is supposed to captured in this study. Then the remaining problem will be the

interaction of fluid and structure which can be directly solved by the proposed model as

shown in Chapter 5. In this chapter, a preliminary numerical model for solid-liquid-gas

interaction is constructed as shown in Figure 6.1, where free surface flow is interacted

with a moving body.

6.2 One fluid model for two-phase flow

The basic well-known governing equations for single phase flow, so-called Navier-

Stokes equation, can be applied to describe two-phase flow. A simple and most popular

133
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one fluid model
Solid-liquid-gas interaction model

FIGURE 6.1: Illustration of building solid-liquid-gas interaction model.

numerical model for simulating two-phase flow is one fluid model (or homogeneous

fluid model), which is adopted in this study.

To introduce one fluid model, we first consider two kinds of fluids filling in computa-

tional domain Ω, where Ω1 denotes the region of fluid 1 and Ω2 for fluid 2. As shown

in Figure 6.2, fluid 1 and fluid 2 are separated by interface ∂ΩI . In order to distinguish

Ω1

Ω2

fluid 1

fluid 2

B1

B2

FIGURE 6.2: Computational domian with two kinds of fluids.

two fluids, it is nature to define a field function H(x, t) to indicate a given point x falls

in fluid 1 or fluid 2 by

H(x, t) =

1 x ∈ Ω1

0 x ∈ Ω2.
(6.1)

Provided that the computational domain Ω is divided into non-overlapped elements Ωi,

(i = 1, 2, · · · , I), the volume fraction in cell Ωi is then defined by

φi(t) =
1

|Ωi|

∫
Ωi(x)

H(x, t)dx, (6.2)

where |Ωi| is the volume of cell i. Thus, volume fraction φi is equal to 1 for the cell

containing only fluid 1 (blue region in Figure 6.2), 0 for fluid 2 (grey region), and is

between 0 and 1 for interface cells (green region).
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Instead of using two sets of governing equations to describe fluid 1 and fluid 2 respec-

tively, one fluid model uses only one set of averaged physical quantities, and separate

different fluids with explicitly solved interfaces. We denote the mixed or averaged phys-

ical quantities in cell Ωi as Bi, which are expressed by

Bi = φiB1 + (1− φi)B2. (6.3)

Here, physical quantitiesB represent density ρ, pressure p, velocity u and so on,B1 and

B2 are quantities of fluid 1 and fluid 2 respectively. In this way, single-phase governing

equation can be extended to describe two-phase flow with a set of averaged physical

quantities by just introducing surface tension force at interface. Thus our proposed

numerical model can be directly adopted for two-phase flow based on one-fluid model.

6.3 Governing equations for two-phase flow

The indicator function H(x, t) follows the Lagrangian invariant relation of advection,

d

dt
(H(x, t)) = 0, (6.4)

where d
dt

denotes the material derivative in respective to time. Given the velocity of the

fluid particle u, the time evolution of the indicator of Eulerian representation can be

cast in the following advection equation,

∂H

∂t
+ u∇ ·H = 0. (6.5)

By integrating over a spatial control volume, it also can be represented as

∂φ

∂t
+∇ · (uφ) = φ∇ · u. (6.6)

In one-fluid model, Navier-Stokes equations are used to describe the incompressible

two-phase flows in Eulerian coordinates as

∇ · u = 0, (6.7)

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+∇ · ~τ + ρg + ρFs. (6.8)
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In these equations, ρ is the density of the fluid, p the pressure, u the velocity of the fluid,

~τ the shear stress tensor, g the gravitational accelerate, and Fs surface tension force acts

on two-phase interface. For Newtonian fluids,the shear stress can be obtained from the

constitutive equation below,

τij =

µ
(
∂ui
∂xj

+
∂uj
∂xi

)
, i 6= j

µ
(

2∂ui
∂xi
− 2

3
∇ · u

)
, i = j

(6.9)

where, µ is dynamic viscosity of the fluid. The kinematic viscosity is denoted as ν = µ
ρ
.

The shear stress ~τ can also be written into∇ · ~τ = ∇ · (µ∇u) +∇u · ∇µ.

Surface tension forces Fs are singular forces active on the phase interface, which is an

import interface force that should be seriously treated in the simulation of two-phase

flow, the expression of surface tension force shows as

Fs =

∫
Γ

σκδ(x− xs)ndΓ(xs), (6.10)

where, Γ is the two fluid interface, δ(x− xs) is the three dimensional (3D) Dirac delta

function, x represents the point coordinate in all fluid region, and xs only the point

coordinate in interface, n is the normal vector in the interface.

The Continuum Surface Force (CSF) model, proposed by Brackbill [130], is employed

in this research to approximate the singular force. In the CSF model, the interface is

represented as a region of finite thickness, where density and viscosity are regularized

as smooth functions and the surface tension acting on the interface is transformed into a

localize volume force. We perform a volume integral over Ωi for equation (6.10), This

gives for the surface tension term∫
Ωi

FsdΩ =

∫
Γ∩Ωi

σκndΓ(xs) =

∫
Ωi

σκ∇φdΩ

where, Γ ∩ Ωi is the section of the interface that lies in Ωi. Furthermore, the local

interfacial curvature κ is obtained from the volume fraction using

κ = −∇ · n (6.11)

with

n =
∇φ
|∇φ| . (6.12)
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In order to devise a balanced model for gravity force, a modified pressure is used as

pr = p− ρg ·x, where pr represents the pressure obtained by removing the hydrostatic

pressure from the total pressure, which results in

∇p = ∇pr +∇ (ρg · x) = ∇pr + ρg + g · x∇ρ. (6.13)

Thus, the final form of momentum equation can be formulated as

∂ρu

∂t
+∇ · (ρu⊗ u) = (∇ · (µ∇u) +∇u · ∇µ)−∇pr − g · x∇ρ+ σκ∇φ. (6.14)

6.4 Numerical solution procedure

By treating body movement as boundary conditions of fluid domain, the problem can

be solved by one-fluid model on moving mesh. We summarize the numerical procedure

for solving two-phase flow as follows:

1. Advection equation for volume fraction Eq.(6.6) is specially solved by an alge-

braic interface capturing scheme, THINC-QQ scheme, which will be introduced

in section 6.5;

2. In one fluid model, the dynamic effects of different fluids are realized by updat-

ing the material quantities, like density and viscosity, based on updated volume

fraction φ as:

ρ = ρ1φ+ ρ2(1− φ) and µ = µ1φ+ (1− φ)µ2 (6.15)

where ρ1 and ρ2 are the densities, µ1 and µ2 the viscosity coefficients of fluid 1

and fluid 2.

3. Navier-Stokes equations for variable density incompressible flows are numeri-

cally solved by projection method, which are summarized as follows for fluid

variables from time tn to tn+1:

(a) Given the velocity un at step n, compute the convection and diffusion terms

of momentum equation (6.14) to put forward the intermediate velocity u∗



Chapter 6. Moving body in free surface flow 138

by ALE integral and differential formulations as,

∂
∂t

∫
Ωχ(t)

ρudΩ = −
∫

Γ(t)
(u− ug)⊗ ρnun · ndΓ +

∫
Γ(t)

µn∇un · ndΓ

+∇un
∫

Γ(t)
µn · ndΓ

∂u
∂t

∣∣
χ

= −(u− ug) · ∇un + νn∇2un +∇un · ∇νn.
(6.16)

(b) Update the intermediate velocity from u∗ to u∗∗ by adding the effect of

surface tension and gravity force,

u∗∗ − u∗
∆t

=
1

ρ
(σκ∇φ− g · x∇ρ) (6.17)

(c) Generally, the intermediate velocityu∗∗ does not satisfy the continuity equa-

tion. Thus, we calculate the pressure by solving Poisson equation to enforce

the divergence-free constraint condition

∇ ·
(

1

ρ
∇pn+1

r

)
=

1

∆t
∇ · u∗∗. (6.18)

(d) Correct the velocity by the correction step equivalently by

un+1 − u∗∗
∆t

= −1

ρ
∇pn+1

r . (6.19)

It is obvious that by this procedure the updated velocity in the next time step

satisfies the continuity property.

As we can see from the procedure, step 2 is very straightforward and step 3 is similar

as section 5.2.2, thus does not need further explanation. The problem remained here is

to solve advection equation of volume fraction, which will be presented in next section.

6.5 THINC/QQ scheme for interface capturing

6.5.1 Semi-discrete finite volume formulation for advection equa-
tion

To achieve mass conservativeness, the advection equation Eq.(6.5) is formulated as

∂H

∂t
+∇ · (uH) = H∇ · u. (6.20)
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Thus, the integration over a moving control volume casts into

∂

∂t

∫
Ωχ(t)

HdΩ +

∫
Γ(t)

(u− ug)H · ndΓ =

∫
Ω(t)

H∇ · udΩ, (6.21)

where ug is the grid velocity. Finally, we can obtain the semi-discrete finite volume

formulation for advection equation on arbitrarily moving domain as

∂φVi
∂t

= −
J∑
j=1

(
uΓij − uΓgij

)
·nij|Γij|

Q∑
q=1

ωqH̃i(xq)iup+φi

J∑
i=1

(uijnij|Γij|) , (6.22)

where H̃i(xq)iup stands for the reconstruction value at Gaussian quadrature point xq
of upwinding cell. 4-point Gaussian quadrature is used for 2D edge line. For time

integration, we use 3rd-order TVD-Runge-Kutta scheme.

6.5.2 Reconstruction of indicator function

When we get the distribution of volume fraction in the field, the key point is how to

exactly decide the interface distribution in spatial space, which is so called interface

reconstruction. Generally, there are two ways to do reconstruction, the one is geo-

metrical reconstruction and the other is algebraic reconstruction. It is known that the

conventional geometrical reconstruction like PLIC is one of the most accurate recon-

struction methods, however, a 3D implementation is a troublesome task. The other

one is algebraic VOF method, so-called tangent of hyperbola for interface capturing

(THINC) [131] method, which uses a hyperbolic tangent function to retrieve the jump

distribution in the volume fraction function. The numerical flux is directly computed

from the THINC reconstruction function. Fully multi-dimensional THINC schemes

can be devised in a straightforward way by using multi-dimensional hyperbolic tangent

function. In this study, quadratic multi-dimensional THINC formulation, proposed by

Xie [132], is adopted for capturing the interface.

To evaluate the numerical solutions in Eq.(6.22), the indicator function is approximated

by a hyperbolic tangent function in 2D local coordinate system ξ − η for the target

element Ωi as

H̃i(ξ, η) =
1

2
(1 + tanh (β (Pi(ξ, η) + di))) , (6.23)

where β determines the steepness of the jump in the interpolation function and is set as

3.0 in this study. Pi(ξ, η) + di can be explained as the signed distance to the interface

[133], thus Pi(ξ, η) + di = 0 implicitly describes the interface. Interested readers may
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refer to [132] for 3D formulations. For quadratic representation of the interface, Pi(ξ, η)

is approximated by a quadratic polynomial

Pi(ξ, η) = a20ξ
2 + a02η

2 + a11ξη + a10ξ + a01η, (6.24)

where coefficients ast(s, t = 0, 1, 2, s+t <= 2) are determined by the constraints based

on the interfacial geometrical features, i.e. the unit normal vector and curvature tensors,

as follows 

∂P
∂ξ

(ξic) = ϕξ

∂P
∂η

(ξic) = ϕη

∂2P
∂ξ2

(ξic) = ϕξ2

∂2P
∂η2

(ξic) = ϕη2

∂2P
∂ξη

(ξic) = ϕξη

=⇒



a10 = ϕξ − ϕξ2 − ηicϕξη
a01 = ϕη − ϕη2 − ξicϕξη
a11 = ϕξη

a20 = 1
2
ϕξ2

a02 = 1
2
ϕη2

(6.25)

In these formulations, the unit normal vector (ϕξ, ϕη) and curvature tensors

ϕab =
1

2

(
∂ϕa
∂b

+
∂ϕb
∂a

)
(6.26)

are approximated at cell center by following procedures:

1. Transform the first order derivatives at cell vertices from global coordinates (φxik, φyik)

to local coordinates (φξik, φηik).

2. Compute the normalized derivatives at each vertex:ϕξik = φξik/|φik|
ϕηik = φηik/|φik|

for k = 1, 2, · · · ,P (6.27)

3. Approximate the unit normal vector and curvature tensors at mass center by inter-

polation and differentiation from the piecewise polynomialϕγ(ξ) =
∑P

k=1 ϕγikNik(ξ)

with γ denoting either ξ or η,Nik(ξ) being the basis functions as presented in Ta-

ble 3.4.

Once the coefficients ast are determined, the only unknown di, which indicates the

location of interface, can be determined by the volume fraction values by

1

|Ωi|

∫
Ωi(ξ)

H̃i(ξ, η)dξη = φi. (6.28)
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Since there is no general analytical expression for multi-dimensional integral of the

function H̃(ξ), A fully multi-dimensional Gaussian quadrature is used to approximate

the integral of the tangent hyperbolic function, which greatly simplifies the numerical

procedures for arbitrary unstructured grids. The Gaussian quadrature is formulated as

following
Q∑
q=1

ωiq

(
1

2
(1 + tanh (β (Pi(ξiq) + di)))

)
= φi, (6.29)

where ξiq and ωiq(q = 1, 2, · · · , Q) are the coordinates and weights of Gaussian points

in element Ωi. It is noted that the weights satisfy
∑Q

q=1 ωiq = 1. Thus, the unknown di
can be computed by employing Newton-Raphson method which takes a few iterations

to converge in practice.

6.6 Numerical tests

It is challenging to calculate the phenomena where a moving body is close to or in-

tersects a free surface, since the interaction of three phases should be formulated and

integrated correctly. Some numerical experiments are conducted in this section to verify

the robustness and accuracy of the model.

6.6.1 Generation of a solitary wave by moving a wave paddle

Wave generation is an active research field in coastal engineering. According to the

wave maker theory [134], a specific wave can be generated with an appropriate paddle

movement. A typical example for generating a solitary wave [135, 136] is by setting

the wave paddle velocity as

u[x(t), t] =
cη

h+ η
(6.30)

where η is the free surface displacement that is defined as

η(x(t), t) = Hsech2

(√
3H

4h3
(x(t)− ct+ x0)

)
. (6.31)

In these formulations, H is wave height, h still water depth, c =
√
g(h+H) the phase

velocity of the wave train with g being the gravitational acceleration, x0 = 4h√
H/h

the

distance between the origin and the crest of the wave train at t = 0, x(t) =
∫ t

0
udt the
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location of the paddle at time t. The parameters are set as H = 0.1m, h = 1.0m and

g = 9.81m/s2.

The computational domain is set as 100m × 1.4m with a wave paddle on the left. We

partitioned the domain into a finite number of uniform quadrilateral elements. For grid

independent study, coarse, medium and fine mesh are used with grid size (∆x = ∆y)

being 0.2m, 0.1m and 0.05m respectively. A radiation boundary condition is prescribed

at the right wall. In the simulation, the mesh movement is given as

ug(x, t) = (
100− x
100− xp

up, 0), (6.32)

where xp and up are the x-component of displacement and velocity of wave paddle

respectively.

We show the free surface variation from t = 0s to t = 8s in Figure 6.3. The wave paddle

accelerates from rest and moves towards right, which makes the free surface pushed up

and transmit toward right. Afterwards, the wave paddle slows down and finally comes

down to be silent. As a result, a solitary wave is sent out.
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FIGURE 6.3: Generation of a solitary wave train by the prescribed wave paddle motion

We plot the time history of free surface displacement at x = 5m and x = 20m for

different grids and compare with the analytical solution in Figure 6.4. As the grid
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refined, the numerical solution converges to the exact solution, which demonstrates the

feasibility of present solver for wave generation.
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FIGURE 6.4: Free surface displacement at x = 5m and x = 20m for different meshes
and the comparison with the exact solution

6.6.2 Water exit of a circular cylinder

We then calculate the case about the water exit of a circular cylinder in 2D by following

the set up of [7, 136]. As shown in Figure 6.5, the computational is given as a rectangu-

lar with length L = 40m and height H = 40m. The water depth is set as h = 22.5m.

A horizontal circular cylinder with radius r = 1m is initially put below the water sur-

face at a distance of d = 1.25m. We partition the domain by structured quadrilateral

elements for most area with size of ∆x = ∆y = 0.25m and triangular elements around

the cylinder whose perimeter is uniformly divided by 128 segments as shown in Figure

6.6. In the calculation, the cylinder is forced to move upward with a constant velocity

V = 0.39m/s, and the gravity acceleration is fixed to be g = 1.0m/s. The set up gives

the non-dimensional parameters ε = r/d = 0.8 and Fr = V√
gd

= 0.39.

We carry out the computation up to a normalized time T = V t
d

= 3 and a series of

snapshots about the water surface profile are presented in Figure 6.7. The surface pro-

files agree well with some references [136, 137]. We also compare the obtained surface

profile with a boundary element method as shown in Figure 6.8. The good agreement

proves the feasibility of our numerical solver for simulating water exit problem.
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FIGURE 6.5: Computational domain of water exit of a circular cylinder
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FIGURE 6.6: Computational mesh around the circular cylinder.
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FIGURE 6.7: Free surface profile of horizontal cylinder
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FIGURE 6.8: Comparisons of free surface profile with a simulation by boundary ele-
ment method [7].

6.6.3 Free falling of a wedge

To verify the dynamic coupling between fluid and structure, we compute a free falling

symmetric wedge impacting on the free surface by following the study of Zhao et al.

[8]. The wedge is given with deadrise angle 30o and the breadth of 0.5m as presented

in Figure 6.9. In the experiment of Zhao et al. [8], it is three dimensional structure

with the total length of 1m where the length of measure section is 0.2m. The total

weight of drop rig is 241kg and weight of the measure section is 14.5kg. Five points

(P1, P2, P3, P4 and P5 as shown in Figure 6.9) are located on the edge of the wedge

to measure the pressure in the experiment. The wedge is given only degree of freedom

in vertical motion and with the initial vertical velocity V = −6.15m/s.
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FIGURE 6.9: The geometry of the wedge.
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The computational domain is set as [0, 10]m × [0, 10]m and partitioned by triangular

and quadrilateral elements where the area near the wedge is refined. To study the grid

dependency, three kinds of grids (coarse, medium and fine) are used where the sizes

of cell edges along the wedge are 0.01m, 0.005m and 0.0025m respectively. The free

surface is initially located at the middle of the domain with y = 5m. The water has

density of 1000kg/m3 and kinematic viscosity of 1.0 × 10−6m/s2. The density and

kinematic viscosity of air are 1kg/m3 and 1.8× 10−5m/s2. The gravity acceleration is

set as −9.8m/s2.

We present the free surface profiles at time t = 0.0202s calculated on the above three

grids as shown in Figure 6.10. Obviously, the water jets can be captured more clearly

with finer mesh. We also plot the time history of falling velocity and slamming force
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FIGURE 6.10: Free surface profiles at time t=0.0202s for different grids.

exerted on the wedge in Figure 6.11. Our numerical results converge with the refined

mesh. And the good agreement is achieved with the solution of Zhao et al. [8].

We further present the pressure contours around the wedge at three time instants as

shown in the left panels of Figure 6.12, and plot the pressure along the wedge boundary

in the right panels of Figure 6.12. The pressure distributions from the present model are

compared with the experimental and numerical results of Zhang et al. [8]. The close

pressure profiles prove the feasibility of this solver for fluid-solid interaction.

6.7 Short summary

In this chapter, a preliminary numerical model is presented for free surface flow involv-

ing with a moving body. We use moving grids to track the boundary of fluid and solid,

and capture the free surface of two phase flow on a modestly moving mesh. In one-

fluid model, two kinds of fluids are described by Navier-Stokes equations with a set of
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FIGURE 6.11: Grid dependence tests for a free falling wedge (a) Time history of
falling velocity (b) Time history of slamming force. The present numerical results are

compared with experimental and numerical results of Zhao et al. [8].

mixed physical quantities. And the interaction of two fluids are formulated by adding

the surface tension term in the governing equations, where the interface is captured by

THINC-QQ method. Fluid flows are coupled with moving body by solving governing

equations of two-phase flow on moving grids. Finally, we verify the numerical model

by calculating cases, such as wave generation, water exit of a circular cylinder and free

falling of a wedge. The good agreement with reference results indicates the feasibility

of present model.
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FIGURE 6.12: Pressure contour (left panels) and the comparisons of pressure along the
wedge boundary (right panels) for different time instants. (a) (b) t=0.00435s; (c) (d)
t=0.0158s; (e) (f) t=0.0202s. V (t) denotes the wedge velocity at time t. y is the vertical
coordinate on the wedge surface. p0 is the initial pressure at the nose of wedge. y0 is
the initial vertical coordinate of wedge nose, i.e. y0 = 5m. yb is the vertical coordinate

of wedge nose at time t and yd is the draft of the body.





Chapter 7

Conclusions and future work

7.1 Full picture of this thesis

In the numerical simulation of fluid flows with moving interfaces or boundaries, we

prefer to use interface tracking technique to achieve accurate solutions around the in-

terfaces. In this study, we proposed a moving mesh framework for fluid flows based

on multi-moment finite volume method, where two kinds of moments, VIA and PV, are

treated as prognostic computational variables. Moreover, with the proposed fluid model,

we constructed a practical and reliable numerical solver for fluid-structure interaction

problems of engineering applications.

To describe fluid flows on an arbitrarily moving configuration, Arbitrary Lagrangian

Eulerian (ALE) viewpoint is adopted. Thus, governing equations are formulated into

ALE integral form and differential form for updating two kinds of moments, VIA and

PV, respectively. The VIAs are computed by a finite volume method (FVM) that ensures

the rigorous numerical conservativeness, while the PVs are defined at cell vertices and

updated efficiently by a finite difference formulation. By employing both VIA and PVs

at vertices of each cell as computational variables, multi-moment finite volume method

possesses at least following advantages for moving mesh and FSI computations:

• With locally defined DOFs, quadratic or higher-order polynomials can be easily

built on unstructured grids.

• PVs are always available at grid points, and can be directly used in moving mesh

and FSI computations with efficiency and accuracy.

• The VIA is solved by an FVM formulation and thus rigorously conserved.
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This idea is treated as the basis of our study to develop numerical models on moving

grids for both compressible and incompressible fluid flows, and finally we want to con-

struct numerical solver for practical FSI computations.

Chapter 3 presents the multi-moment finite volume ALE scheme for Euler equations.

Euler equations are cast into integral form with respect to conservative variables for

updating VIA, and differential form in terms of primitive variables for solving PVs

at cell vertices. We started from one dimensional scheme by using CIP-CSL3 recon-

struction and then extended to two dimensional case with multi-moment finite volume

reconstruction. In 2D, the edges of computational mesh are always kept in straight-line

during the movement, which simplifies the numerical procedure for satisfying GCL but

does not degrade the convergence rate for ALE framework. A uniformly 3rd-order ac-

curacy is achieved for both 1D and 2D case. Accuracy test in 1D shows that, with the

same mesh resolution, numerical errors of present scheme reduce to 15 ∼ 20% of a

conventional 3rd-order finite volume scheme no matter mesh moves or not, while the

computational cost only increases 20 ∼ 25%. To explore the robustness of 2D moving

mesh computation, we run the case of isentropic vortex until the program stops, and

roughly conclude that the present scheme can endure the worst mesh quality of maxi-

mum non-orthogonality of around 70o. Numerical tests also reveal that the Lagrangian

framework tracks the contact discontinuities well in compressible flows.

Chapter 4 extends the multi-moment finite volume method to solve viscous compress-

ible Navier-Stokes equations on moving grids. Numerical formulations for inviscid

fluxes are similar with Chapter 3, while the PV moments are calculated from the differ-

ential equation in respect of conservative variables. Thus, it is more direct for adding

viscous term. With the finite volume form of viscous fluxes for VIA moments, viscous

term for PV moments is simply calculated by T EC formula, which interpolates the vis-

cous effect from the VIA to PV moments. For solving compressible flows involved

with force moving body, we implement an efficient and robust moving mesh method,

radial basis function (RBF) interpolation, which transfers the boundary movement to

internal mesh points. To verify the numerical model, benchmark tests for compressible

flows with high Mach number are firstly calculated, and then fluid flows past over a

forced oscillating cylinder are investigated. In this phenomenon, the vortex structure

is significantly affected by the oscillating amplitude and frequency. We observe the

lock-in phenomena by setting cylinder oscillating frequency f = 0.9 and f = 1.1, and

oscillating amplitude A = 0.3, which agrees well with published studies. We evaluate

the efficiency of RBF interpolation, the RBF code takes only 3.4% of the total com-

putational time by using coarsening technique in single-core calculation. Numerical
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results demonstrate the capability of present solver for solving viscous compressible

flows involved with forced moving body.

Chapter 5 presents the multi-moment finite volume method for incompressible flows

on unstructured moving grids and a numerical solver for fluid-rigid body interaction.

Fluid flows are described by incompressible Navier-Stokes equations, which are solved

by pressure projection procedure. Both VIA and PV of velocity field are treated as

prognostic computational variables and updated separately. With PVs defined at cell

vertices, it becomes more accurate and convenient to treat the multi-material interfaces.

Thus, we construct a FSI numerical solver, where the structures are simplified to be

rigid bodies and treated as a mass-spring-damping system for the sake of verification.

We have devised two coupling schemes, i.e. an explicit weak coupling scheme and a

semi-implicit strong coupling scheme, to formulate the interactions between fluid and

moving solid with a wide range of mass ratios. Various benchmark tests are calculated to

verify the present numerical solver. One typical numerical test is about VIV of a circular

cylinder. We compute the case with mass ratio m∗ = 1 by explicit weak coupling

scheme for efficiency, while the case with mass ratio m∗ = 0.5 is calculated by semi-

implicit coupling scheme to ensure the numerical stability. In practice, the iterations for

fluid-solid implicit coupling rapidly reduce to only 2 ∼ 3 times after short period of

calculation, which verifies the efficiency of semi-implicit coupling. A 3D case about a

VIV of an elastically mounted sphere with Re = 300 is finally computed. The sphere

moves almost in a straight-line in transverse plane after periodic vortex formed. And the

length of line path of our result is 0.72D, which is very close to Behara’s result 0.70D.

Chapter 6 presents a preliminary numerical solver for a moving body in free surface

flow. In this problem, three kinds of materials (gas, liquid and solid) co-exist and in-

teract. We use moving grids to track the boundary of fluid and solid, and capture the

free surface of two-phase flow on a modestly moving grids. Based on one-fluid model,

two kinds of fluids are described by incompressible Navier-Stokes equations with a set

of averaged physical quantities. Two kinds of fluids are distinguished by VOF func-

tion, whose transportation represents the evolution of free surface. The advection equa-

tion of VOF function is specially solved by an algebraic interface capturing method,

THINC-QQ scheme, which is efficient and can quadratically represents the interfaces

on unstructured grids. In this work, the movement of solid body can be directly treated

as the boundary conditions of fluid domain. Numerical tests, such as wave generation

by moving paddle, water exit of a circular cylinder, and free falling of a wedge, are

calculated to show the feasibility of present solver.
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7.2 Major contribution of current study

The novelty and major contribution of this study can be categorized into following two

parts:

1. We present a novel moving mesh framework for fluid flows based on multi-

moment finite volume method. By employing both VIA and PV, it not only

ensures rigorous numerical conservativeness as same as conventional FVM, but

also provides a simple and efficient way for quadratic or higher-order polynomial

reconstruction on compact stencils especially for unstructured grids. More im-

portantly, with PVs defined at cell vertices, the solution points can coincide with

interfaces between different materials which benefits the accuracy and efficiency

of interface tracking. During mesh movement, cell edges (surfaces) always keep

in straight-line (plane), which simplifies the numerical procedure for satisfying

GCL but does not degrade the convergence rate in ALE framework. A uniformly

third order accuracy can be achieved for 2D arbitrarily moving mesh, which is

rarely obtained in conventional FVM.

2. We build practical and reliable FSI solvers for engineering applications. An effi-

cient and robust moving mesh technique, RBF interpolation, is included in our nu-

merical solver to transfer the boundary movement to internal mesh points, which

is of great significance for practical use. For fluid-solid interaction, we devised

not only explicit weak coupling, but also semi-implicit strong coupling where

several iterations are performed at each time step to realize the energy equilib-

rium through the interface. We also extensively solve gas-liquid-solid interaction,

by using an algebraic interface capturing method, THINC-QQ scheme, for repre-

senting and evolving free surface of two-phase flow, and tracking the fluid-solid

interface by numerical model on moving grids. Finally, we can solve a large class

of FSI problems and numerical results demonstrate the appealing performance of

present solver.
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7.3 Limitations and future work

In the end, we mention the limitations or deficiencies of present work and point out the

directions for future studies. The limitations or deficiencies are firstly listed as follows:

1. The present numerical solver is devised on arbitrarily moving grids, but undoubt-

edly limited by the mesh quality. As shown in the benchmark test of isentropic

vortex, the present numerical model can endure the mesh deformation to the max-

imum non-orthogonality of around 70o.

2. Though we have implemented the RBF interpolation for smoothing the compu-

tational mesh, it is hard for handling large body movement, especially for large

rotation, since the mesh topology does not change during the movement.

3. We realize that the present solver is hard to solve fluid flows involved with two

collision bodies without extra techniques. A possible way to remedy this defi-

ciency may be by employing overset mesh method.

Directions of our future work are summarized from the following four parts:

1. We have presented the one-way coupling solver for compressible flows involved

with forced moving body. However, the interaction between fluid and struc-

ture, namely, two-way coupling, needs further study in the framework of multi-

moment finite volume method. The difficulty is to devise strong coupling schemes,

since the compressible Navier-Stokes equations should be solved implicitly which

is not straightforward by using multi-moment finite volume method.

2. We are considering including remesh method with the change of mesh topology

and remapping procedures to improve the robustness of present solver. Futher-

more, we also want to try overset mesh method for practical applications.

3. For gas-liquid-solid interaction, we have just tested the numerical model for a

few simple benchmark tests in 2D. 3D applications and efficiency improvement

of parallel computing are the next step of our study.

4. In CFD application, especially for two-phase flow, numerical viscosity is gener-

ally larger than physical viscosity. Considering the thin boundary layer on the

solid surface, we want to try slip boundary condition for two-phase flows with

moving bodies in our future study.





Appendix A

Eigenstructures of quasilinear form of
Euler equation

A.1 Form 1 in 1D

The quasi-linear form of 1D Euler equation in terms of primitive variables W = [ρ, u, p]

can be written as
∂W
∂t

∣∣∣∣
χ

+A(W)
∂W

∂x
= 0, (A.1)

with coefficient matrices

A(W) =


u− ug ρ 0

0 u− ug 1
ρ

0 γp u− ug


where all variables or notations are explained in section 3.1.2. The eigenvalues of

matrixA(W) are

λA1 = u− ug − c, λA2 = u− ug, λA3 = u− ug + c, (A.2)

with c =
√

γp
ρ

being sound speed. The corresponding left and right eigenvectors are

given by

LA =


0 − ρ

2c
1

2c2

1 0 − 1
c2

0 ρ
2c

1
2c2

 ,RA =


1 1 1

− c
ρ

0 c
ρ

c2 0 c2

 .
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A.2 Form 1 in 2D

The quasi-linear form of 2D Euler equation in terms of primitive variables W = [ρ, u, v, p]

can be written as
∂W
∂t

∣∣∣∣
χ

+A(W)
∂W

∂x
+B(W)

∂W

∂y
= 0, (A.3)

with coefficient matrices

A(W) =


u− ug ρ 0 0

0 u− ug 0 1
ρ

0 0 u− ug 0

0 γp 0 u− ug

 ,B(W) =


v − vg 0 ρ 0

0 v − vg 0 0

0 0 v − vg 1
ρ

0 0 γp v − vg

 ,

where all variables or notations are explained in section 3.1.2. The eigenvalues of

matrixA(W) are

λA1 = u− ug − c, λA2 = u− ug, λA3 = u− ug, λA4 = u− ug + c, (A.4)

with c =
√

γp
ρ

being sound speed. The corresponding left and right eigenvectors are

given by

LA =


0 1

2
0 − 1

2ρc

0 0 1 0

1 0 0 − 1
c2

0 1
2

0 1
2ρc

 ,RA =


−ρ
c

0 1 ρ
c

0 1 0 0

1 0 0 1

−ρc 0 0 ρc

 .

The eigenvalues of matrixB(W) are

λB1 = v − vg − c, λB2 = v − vg, λB3 = v − vg, λB4 = v − vg + c. (A.5)

The corresponding left and right eigenvectors are given by

LB =


0 0 1

2
− 1

2ρc

0 1 0 0

1 0 0 − 1
c2

0 0 1
2

1
2ρc

 ,RB =


−ρ
c

0 1 ρ
c

0 1 0 0

1 0 0 1

−ρc 0 0 ρc

 .



Appendix A Eigenstructures of quasilinear form of Euler equation 159

A.3 Form 2 in 2D

The quasi-linear form of 2D Euler equation in terms of conservative variables U =

[ρ, ρu, ρv, ρE] can be written as

∂U
∂t

∣∣∣∣
χ

+A(U)
∂U
∂x

+B(U)
∂U
∂y

= 0, (A.6)

with coefficient matrices

A(U) =


−ug 1 0 0

−u2 + 1
2 (γ − 1)V 2 (3− γ)u− ug (1− γ)v γ − 1

−uv v u− ug 0

u
[
1
2 (γ − 1)V 2 −H

]
H − (γ − 1)u2 (1− γ)uv γu− ug

 ,

B(U) =


−vg 0 1 0

−uv v − vg u 0

−v2 + 1
2 (γ − 1)V 2 (1− γ)u (3− γ)v − vg γ − 1

v
[
1
2 (γ − 1)V 2 −H

]
(1− γ)uv H − (γ − 1)v2 γv − vg

 ,
where all variables or notations are explained in section 3.1.2. The eigenvalues of

matrixA(U) are

λA1 = u− ug − c, λA2 = u− ug, λA3 = u− ug, λA4 = u− ug + c. (A.7)

The corresponding left and right eigenvectors are given by

LA =


(γ − 1)Vm

2c2
+ u

2c
−(γ − 1) u

2c2
− 1

2c
−(γ − 1) v

2c2
γ−1
2c2

−v 0 1 0

1− (γ − 1)Vm
c2

(γ − 1) u
c2

(γ − 1) v
c2

−γ−1
c2

(γ − 1)Vm
2c2
− u

2c
−(γ − 1) u

2c2
+ 1

2c
−(γ − 1) v

2c2
γ−1
2c2

 ,

RA =


1 0 1 1

u− c 0 u u+ c

v 1 v v

H − uc v Vm H + uc

 .

The eigenvalues of matrixB(U) are

λB1 = v − vg − c, λB2 = v − vg, λB3 = v − vg, λB4 = v − vg + c. (A.8)
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The corresponding left and right eigenvectors are given by

LB =


(γ − 1)Vm

2c2
+ v

2c
−(γ − 1) u

2c2
−(γ − 1) v

2c2
− 1

2c
γ−1
2c2

−u 1 0 0

1− (γ − 1)Vm
c2

(γ − 1) u
c2

(γ − 1) v
c2

−γ−1
c2

(γ − 1)Vm
2c2
− v

2c
−(γ − 1) u

2c2
−(γ − 1) v

2c2
+ 1

2c
γ−1
2c2

 ,

RB =


1 0 1 1

u 1 u u

v − c 0 v v + c

H − vc u Vm H + vc

 .
with Vm = 1

2
V 2.



Appendix B

Multi-moment constraint conditions

B.1 Triangular element

Given the reconstruction polynomial for triangular element Ωi on local coordinates

Φi(ξ, η) = c0 + c1ξ + c2η + c3ξη + c4ξ
2 + c5η

2, (B.1)

the coefficients can be determined as

φi(0, 0) = φi1

φi(1, 0) = φi2

φi(0, 1) = φi3

1
2

∫∫
Ω

φi(ξ, η)dξdη = φi

∂φi(ξ, η)

∂ξ

∣∣∣∣
( 1
3
, 1
3

)

= φξic

∂φi(ξ, η)

∂η

∣∣∣∣
( 1
3
, 1
3

)

= φηic

=⇒



c0 = φi1

c1 = −10
3
φi1 − 4

3
φi2 + 2

3
φi3 + φξic − 2φηic + 4φi

c2 = −10
3
φi1 + 2

3
φi2 − 4

3
φi3 + φηic − 2φξic + 4φi

c3 = 16
3
φi1 − 2

3
φi2 − 2

3
φi3 + 2φξic + 2φηic − 4φi

c4 = 7
3
φi1 + 7

3
φi2 − 2

3
φi3 − φξic + 2φηic − 4φi

c5 = 7
3
φi1 − 2

3
φi2 + 7

3
φi3 − φηic + 2φξic − 4φi,

(B.2)

with φi being the volume integrated average of cell Ωi, φik(k = 1, 2, 3) point values at

cell vertices, and (φξic, φηic) first order derivative with respect to local coordinates.
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B.2 Quadrilateral element

Given the reconstruction polynomial for quadrilateral element Ωi on local coordinates

Φi(ξ, η) = c0 + c1ξ + c2η + c3ξ
2 + c4η

2 + c5ξη + c6ξ
2η + c7ξη

2 + c8ξ
2η2. (B.3)

the coefficients can be determined as

Φi(−1,−1) = φi1

Φi(1,−1) = φi2

Φi(1, 1) = φi3

Φi(−1, 1) = φi3
1

4

∫∫
ω

Φi(ξ, η)dξdη = φi

∂Φi(ξ, η)

∂ξ

∣∣∣∣
(0,0

= φξic

∂Φi(ξ, η)

∂η

∣∣∣∣
(0,0

= φηic

∂2Φi(ξ, η)

∂ξ2

∣∣∣∣
(0,0

= φξ2ic

∂2Φi(ξ, η)

∂η2

∣∣∣∣
(0,0

= φη2ic

(B.4)

=⇒



c0 = − 1
32

(φi1 + φi2 + φi3 + φi4) + 9
8
φi − 1

8
(φξ2ic + φη2ic)

c1 = φξic

c2 = φηic

c3 = 1
2
φξ2ic

c4 = 1
2
φη2ic

c5 = 1
4
(φi1 − φi2 + φi3 − φi4)

c6 = 1
4
(−φi1 − φi2 + φi3 + φi4)− φηic

c7 = 1
4
(−φi1 + φi2 + φi3 − φi4)− φξic

c8 = 9
32

(φi1 + φi2 + φi3 + φi4)− 9
8
φi − 3

8
(φξ2ic + φη2ic)

(B.5)

with φi being the volume integrated average of cell Ωi, φik(k = 1, 2, 3, 4) point values at

cell vertices, (φξic, φηic) and (φξ2ic, φη2ic) first and second order derivatives with respect

to local coordinates respectively.
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B.3 Tetrahedral element

Given the reconstruction polynomial for tetrahedral element Ωi on local coordinates

Φi(ξ, η, ζ) = c0 + c1ξ + c2η + c3ζ + c4ξ
2 + c5η

2 + c6ζ
2 + c7(ξη + ηζ + ξζ), (B.6)

the coefficients can be determined as

Φi(0, 0, 0) = φi1

Φi(1, 0, 0) = φi2

Φi(0, 1, 0) = φi3

Φi(0, 0, 1) = φi4

6

∫∫∫
ω

Φi(ξ, η, ζ)dξdηdζ = φi

∂Φi(ξ, η, ζ)

∂ξ

∣∣∣∣
( 1
4
, 1
4

)

= φξi

∂Φi(ξ, η, ζ)

∂η

∣∣∣∣
( 1
4
, 1
4

)

= φηi

∂Φi(ξ, η, ζ)

∂ζ

∣∣∣∣
( 1
4
, 1
4

)

= φζi

=⇒



c0 = φi

c1 = −17
6
φi1 − 5

6
φi2 + 1

6
φi3 + 1

6
φi4 + 10

3
φi + φξi − φηi − φζi

c2 = −17
6
φi1 + 1

6
φi2 − 5

6
φi3 + 1

6
φi4 + 10

3
φi − φξi + φηi − φζi

c3 = −17
6
φi1 + 1

6
φi2 + 1

6
φi3 − 5

6
φi4 + 10

3
φi − φξi − φηi + φζi

c4 = 11
6
φi1 + 11

6
φi2 − 1

6
φi3 − 1

6
φi4 − 10

3
φi − φξi + φηi + φζi

c5 = 11
6
φi1 − 1

6
φi2 + 11

6
φi3 − 1

6
φi4 − 10

3
φi + φξi − φηi + φζi

c6 = 11
6
φi1 − 1

6
φi2 − 1

6
φi3 + 11

6
φi4 − 10

3
φi + φξi + φηi − φζi

c7 = 23
6
φi1 − 1

6
φi2 − 1

6
φi3 − 1

6
φi4 − 10

3
φi + φξi + φηi + φζi

(B.7)

with φi being the volume integrated average of cell Ωi, φik(k = 1, 2, 3, 4) point values

at cell vertices, (φξic, φηic, φζic) first order derivatives with respect to local coordinates

respectively.





Appendix C

Riemann Solvers on moving domain

We use the symbol Ωij to denote the surrounding cells adjacent to the target cell Ωi

with the common boundary segment Γij (j = 1, 2, · · · , J). Given the approximated

values Ui and Uij at Gaussian quadrature points on edge Γij which are computed from

the reconstruction functions over Ωi and Ωij respectively, Riemann solvers are used to

calculate the flux at Gaussian quadrature point on edge Γij , whose outward unit normal

vector and length magnitude are nij and |Γij| respectively. As mentioned, the grid

velocity varies linearly along edge Γij and denoted as ugij .

We give known vectors of conservative variables and fluxes approximated from left and

right reconstructions as below

Ui =


ρi

Mi

(ρE)i

 , F(Ui) =


(ui − ugij) · nijρi
(ui − ugij) · nijMi + pi

¯̄I

(ui − ugij) · nij(ρE)i + piui


Uij =


ρij

Mij

(ρE)ij

 , F(Uij) =


(uij − ugij) · nijρij
(uij − ugij) · nijMij + pij

¯̄I

(uij − ugij) · nij(ρE)ij + pijuij


(C.1)

and then present the fluxes by different Riemann solvers in following sections.

C.1 Lax-Friedrichs flux

Lax-Friedrichs flux on edge Γij for moving grids is denoted by FLFij and formulated as

FLFij =
1

2
[F(Ui) + F(Uij)− αij (Uij − Ui)] (C.2)
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where αij is taken as

αij = max
(
|uni − ci|, |uni + ci|, |unij − cij|, |unij + cij|

)
(C.3)

with uni = (ui − ugij) · nij, unij = (uij − ugij) · nij , ui = Mi

ρi
, uij =

Mij

ρij
, ci =

√
γpi
ρi

,

cij =
√

γpij
ρij

, pi = (γ − 1)
[
(ρE)i − M2

i

2ρi

]
and pij = (γ − 1)

[
(ρE)ij − M2

ij

2ρij

]
.

C.2 HLL flux

The HLL flux on edge Γij for moving grids [83] is denoted by FHLLij and formulated as

FHLLij =


F(Ui) if 0 6 Si
SijF(Ui)−SiF(Uij)+SiSij(Uij−Ui)

Sij−Si if Si 6 0 6 Sij

F(Uij) if 0 > Sij

(C.4)

where signal velocities Si and Sij are defined as

Si = min [uni − ci, (û− ugij) · n− ĉ] , Sij = max
[
unij + cij, (û− ugij) · n + ĉ

]
,

(C.5)

with û and ĉ being the values computed by Roe-averaging for the velocity and the sound

speed.

C.3 HLLC flux

The HLLC flux on edge Γij for moving grids [83] is denoted by FHLLCij and formulated

as

FHLLCij =



F(Ui) Si > 0

F(U?
i ) Si 6 0 < S?

F(U?
ij) S? 6 0 6 Sij

F(Uij) Sij < 0

(C.6)

where

U?
i =


ρ?i

M?
i

(ρE)?i

 =
1

Si − S?


(Si − uni)ρi
(Si − uni)Mi + (p? − pi)n
(Si − uni)(ρE)i − piuni + p?S?

 , (C.7)
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U?
ij =


ρ?ij

M?
ij

(ρE)?ij

 =
1

Sij − S?


(Sij − unij)ρij
(Sij − unij)Mij + (p? − pij)n
(Sij − unij)(ρE)ij − pijunij + p?S?

 , (C.8)

F(U?
i ) =


S?ρ?i

S?M?
i + p?n

S?(ρE)?i + (S? + ugij · n)p?

 , (C.9)

F(U?
ij) =


S?ρ?ij

S?M?
ij + p?n

S?(ρE)?ij + (S? + ugij · n)p?

 , (C.10)

p? = ρi(uni − Si)(uni − S?) + pi = ρij(unij − Sij)(unij − S?) + pij, (C.11)

uni = (ui − ugij) · n, unij = (uij − ugij) · n, (C.12)

S? =
ρijunij(Sij − unij)− ρiuni(Si − uni) + pi − pij

ρij(Sij − unij)− ρi(Si − uni)
. (C.13)

Signal velocities Si and Sij are defined as

Si = min [uni − ci, (û− ugij) · n− ĉ] , Sij = max
[
unij + cij, (û− ugij) · n + ĉ

]
,

(C.14)

with û and ĉ being the values computed by Roe-averaging for the velocity and the sound

speed.





Appendix D

Mesh non-orthogonality and skewness

The mesh quality is evaluated based on non-orthogonality and skewness. Following

[65], we describe the surface non-orthogonality by the angle θ between the surface

vector Sf and the vector d which connects two neighbouring cell centers P and N as

shown in Figure D.1 (a). The cell is skewed when the line
−−→
PN does not go through the

surface center fc, thus the degree of skewness is defined as

ψs =
|m|
|d| , (D.1)

where the vector m and d are defined in Figure D.1 (b).

θ

P

N

f
Sf

d

(a)

P N

fcm

d

(b)

FIGURE D.1: Schematic diagrams for mesh non-orthogonality (a) and skewness (b).

169





Bibliography

[1] G. Koopmann, The vortex wakes of vibrating cylinders at low Reynolds numbers,

Journal of Fluid Mechanics 28 (3) (1967) 501–512.

[2] P. Anagnostopoulos, Numerical study of the flow past a cylinder excited trans-

versely to the incident stream. Part 1: Lock-in zone, hydrodynamic forces and

wake geometry, Journal of Fluids and Structures 14 (6) (2000) 819–851.
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[116] U. Küttler, W. A. Wall, Fixed-point fluid–structure interaction solvers with dy-

namic relaxation, Comput. Mech. 43 (1) (2008) 61–72.

[117] B. Irons, A version of the Aitken accelerator for computer iteration., Internat. J.

Numer. Methods Engrg. 1 (3) (1969) 275–277.

[118] B. Xie, X. Deng, S. Liao, High-fidelity solver on polyhedral unstructured grids

for low-Mach number compressible viscous flow, submitted to Comput. Methods

Appl. Mech. Engrg. .

[119] U. Ghia, K. N. Ghia, C. Shin, High-Re solutions for incompressible flow using

the Navier-Stokes equations and a multigrid method, Journal of computational

physics 48 (3) (1982) 387–411.

[120] X. Su, Y. Cao, Y. Zhao, An unstructured mesh arbitrary Lagrangian-Eulerian

unsteady incompressible flow solver and its application to insect flight aerody-

namics, Phys. Fluids 28 (6) (2016) 061901.

[121] C.-C. Liao, Y.-W. Chang, C.-A. Lin, J. McDonough, Simulating flows with

moving rigid boundary using immersed-boundary method, Computers & Fluids

39 (1) (2010) 152–167.

[122] J.-I. Choi, R. C. Oberoi, J. R. Edwards, J. A. Rosati, An immersed boundary

method for complex incompressible flows, J. Comput. Phys. 224 (2) (2007) 757–

784.



Bibliography 182

[123] J. Yang, F. Stern, A simple and efficient direct forcing immersed boundary frame-

work for fluid–structure interactions, J. Comput. Phys. 231 (15) (2012) 5029–

5061.

[124] C. Liu, C. Hu, Block-based adaptive mesh refinement for fluid structure interac-

tions in incompressible flows, Comput Phys Commun 232 (2018) 104–123.

[125] C. Williamson, R. Govardhan, Vortex-induced vibrations, Annu. Rev. Fluid

Mech. 36 (2004) 413–455.

[126] S. Behara, I. Borazjani, F. Sotiropoulos, Vortex-induced vibrations of an elasti-

cally mounted sphere with three degrees of freedom at Re= 300: hysteresis and

vortex shedding modes, J. Fluid Mech. 686 (2011) 426–450.

[127] A. G. Tomboulides, Direct and large-eddy simulation of wake flows: flow past a

sphere, Previews of Heat and Mass Transfer 6 (21) (1995) 563–564.

[128] T. Johnson, V. Patel, Flow past a sphere up to a Reynolds number of 300, J. Fluid

Mech. 378 (1999) 19–70.

[129] F. W. Roos, W. W. Willmarth, Some experimental results on sphere and disk drag,

AIAA J. 9 (2) (1971) 285–291.

[130] J. U. Brackbill, D. B. Kothe, C. Zemach, A continuum method for modeling

surface tension, Journal of computational physics 100 (2) (1992) 335–354.

[131] F. Xiao, Y. Honma, T. Kono, A simple algebraic interface capturing scheme us-

ing hyperbolic tangent function, International Journal for Numerical Methods in

Fluids 48 (9) (2005) 1023–1040.

[132] B. Xie, F. Xiao, Toward efficient and accurate interface capturing on arbitrary

hybrid unstructured grids: The THINC method with quadratic surface represen-

tation and Gaussian quadrature, Journal of Computational Physics 349 (2017)

415–440.

[133] L. Qian, Y. Wei, F. Xiao, Coupled THINC and level set method: A conservative

interface capturing scheme with high-order surface representations, Journal of

Computational Physics 373 (2018) 284–303.

[134] R. G. Dean, R. A. Dalrymple, Water wave mechanics for engineers and scientists,

vol. 2, World Scientific Publishing Company, 1991.



Bibliography 183

[135] D. G. Goring, Tsunamis–the propagation of long waves onto a shelf .

[136] P. Lin, A fixed-grid model for simulation of a moving body in free surface flows,

Computers & fluids 36 (3) (2007) 549–561.

[137] C. Mnasri, Z. Hafsia, M. Omri, K. Maalel, A moving grid model for simulation of

free surface behavior induced by horizontal cylinders exit and entry, Engineering

Applications of Computational Fluid Mechanics 4 (2) (2010) 260–275.


