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Abstract

In large-scale multi-agent systems, consensus problems form one of

the fundamental problems related to distributed algorithms. There,

agents interact locally and exchange their information with each other

in order to arrive at the global objective of sharing a common value. In

recent years, security problems in multi-agent systems have become

a critical issue. Malicious attacks can lead the systems to undesir-

able operations or even accidents. In an uncertain environment where

faults or even adversarial attacks can be present, it is of great impor-

tance to defend consensus algorithms by raising their security levels

so as to avoid being influenced by such uncertainties in their decision

makings.

This thesis studies the problem of resilient consensus in multi-agent

systems where attackers may update the adversary agents value ar-

bitrarily. The objective of adversary agents is to prevent the regular

agents from reaching consensus. We focus on solving the resilient con-

sensus problem with emphasis on resource saving. In particular, we

study the saving of four resources: (1) Communication resources, (2)

memory resources, (3) energy resources, and (4) graph resources. The

thesis consists of four parts dealing with these issues as follows:

(1) We consider resilient versions of discrete-time multi-agent consen-

sus in the presence of faulty or even malicious agents in the network.



To save communication resources, we develop event-triggered update

rules, which can mitigate the influence of the malicious agents and

at the same time reduce the communication. Each regular agent up-

dates its state based on a given rule using its neighbors’ information.

Only when the triggering condition is satisfied, they send their cur-

rent states to their neighbors. Otherwise, the neighbors will continue

to use the state received in the last time. Assuming that a bound

on the number of malicious nodes is known, we propose two update

rules with event-triggered communication. They follow the so-called

mean subsequence reduced (MSR) type algorithms and ignore val-

ues received from potentially malicious neighbors. We provide full

characterizations for the necessary connectivity in the network for

the algorithms to perform correctly, stated in terms of the notion of

graph robustness. A numerical example is provided to demonstrate

the effectiveness of the approach.

(2) We further extend the event-triggered update scheme for the prob-

lem of multi-agent consensus in the presence of faulty and malicious

agents within the network. To save memory resources, we focus on the

case where the agents take integer (or quantized) values. This quan-

tization approach is moreover combined with the event-based com-

munication protocols for solving the resilient consensus problem. To

keep the regular agents from being affected by the behavior of faulty

agents, algorithms of the MSR type are employed, where neighbors

taking extreme values are ignored in the updates. Different from the

real-valued case, the quantized version requires the update rule to be

randomized. We characterize the error bound on the achievable level

of consensus among the agents as well as the necessary structure for



the network in terms of the notion of robust graphs. We verify via a

numerical example the effectiveness of the proposed algorithms.

(3) We study the problem of resilient consensus in multi-agent net-

works with bounded input constraints. To save energy resources,

model predictive control schemes are introduced to solve the resilient

consensus problem with input constraints under synchronous and asyn-

chronous communications. Each regular agent solves a constrained

finite-time optimal problem with the states of its neighbors and up-

dates its state based on a predetermined update rule. Assuming that

the maximum number of malicious nodes is known, we derive algo-

rithms which ignore the large and small values from neighbors to avoid

the influence of the malicious nodes. It is guaranteed to attain resilient

consensus under the topological condition expressed in terms of graph

robustness. Simulation examples are provided to demonstrate the ef-

fectiveness of the proposed algorithm.

(4) To save graph resources, several modified MSR algorithms are

proposed to solve resilient consensus problem for the case of mobile

adversary models. We first discuss the three typical mobile malicious

models in the area of computer science and apply them to the resilient

consensus problem in multi-agent systems. We check that the related

results for binary agreement in complete graphs can guarantee approx-

imate resilient consensus. Moreover, we extend the mobile malicious

models to non-complete graphs and propose several novel protocols

which are guaranteed to work under certain classes of network connec-

tivity conditions. In addition, based on the so-called Garay’s mobile

malicious model, we improve the update rules for the cured agents to

reduce the necessary connections. Numerical examples are provided



to check the efficacy of our results.
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Chapter 1

Introduction

1.1 Background

In recent years, because of the development of communication networks, new op-

portunities and challenges have been brought to various industrial and societal

domains from electric power grids to smart cities. To build a connection between

the traditional computer network and physical components becomes a hot topic.

The related problems have attracted a lot of researchers. Cyber-physical systems

(CPS) form the mechanism that combines computational elements and sensors or

other devices. The fusion of physical, computational and communication elements

plays an important role in the CPS. Unlike more traditional embedded systems,

CPS is usually a network of interacting elements rather than alone devices ([2]).

A typical application of CPS is the sensor based autonomous systems with com-

munications. For example, wireless sensor networks to monitor the environment

and share the processed information to a central or neighbor agent. Other appli-

cations of CPS include smart grid ([22; 35]), industrial cloud technologies ([13]),

smart cities ([91]) and so on.

A focus on the control system aspects of CPS is the Cyber-physical security

1



1.1 Background

problem ([47]). A famous example of cyber attacks affect the CPS is the Stuxnet,

which is a malicious computer worm for attacking the modern supervisory control

and data acquisition (SCADA) and programmable logic controllers (PLCs) sys-

tems. It is believed that Stuxnet cause serious damage to Iran’s nuclear program.

In 2015, a Malware called BlackEnergy attacks the power grid in Ukraine and

leads to a power outage as a result. Because of the wide applications of CPS, the

security problems in CPS are becoming a hot topic recently.

It is recognized that cyber security for such systems is a critical issue since

the extensive use of networks for the interactions among agents creates numer-

ous vulnerabilities for potential attacks (e.g., [70]). Applications such as those

in robotics involve physical aspects, and hence, different from cyber attacks lim-

ited to the domain of information technology, attacks may lead to damages in

equipments or even accidents. Conventional control approaches usually cannot

guarantee control objective in an unreliable network. Any fault or cyber attack

by an external attacker can seriously affect the system behavior and make it

difficult for control objective to be attained. Novel approaches to enhance the re-

liability and resiliency has gained much attention in networked control ([38; 70]).

The desired goal is to address how to mitigate the influence of uncertainties in

the system and to design resilient algorithms to guarantee control objective even

under worst-case scenarios.

Another issue of the background is resources saving. The necessity of resource

saving has been claimed in a wide range of studies. The resource saving in

computer science([4; 89]) and control theory ([26]) mainly focus on the saving of

communication resources, energy resources and computation resources. Popular

approaches include event-based control, quantization, model predictive control

and so on.

This thesis follows the general background of security problems in CPS, and

2



1.2 Cyber security of multi-agent systems

focus on the consensus type problems in CPS. The goal of consensus problem is to

reach a common value or interval within in a safety area. Each agent can only use

information from neighbor agents. Applications of consensus problems include

clock synchronization ([33; 42; 73]), rendezvous ([51; 63]), formation control ([31;

59]), PageRank ([29; 30]) and so on. In this research, we focus on the issue

of security in multi-agent systems. One of the fundamental problem is the so

called resilient consensus problem, which is the consensus problem with some

adversary agents inside. In such problems, the regular agents are trying to reach

consensus in cooperate with each other. The adversary agents can update their

values arbitrarily, which may affect the updates of regular agents. Our goal is to

make the regular agents to reach consensus in a safety interval and in addition,

save resources such as computation resources, energy resources, communication

resources.

1.2 Cyber security of multi-agent systems

As mentioned above, the developing of networks and communication technology

has made the system control to be more convenient and efficient. However, the

cyber security problem also becomes a critical issue. Malicious attacks can lead

the systems to undesirable operations or even accidents. Safe distributed algo-

rithms are sufficiently discussed in computer science (e.g. [40; 48; 78]) and control

(e.g. [61; 67]).

1.2.1 Overview of cyber attacks

Cyber attacks in multi-agent systems are categorized into Denial-of-Service (DoS)

attack, replay attack, zero dynamics attack, false data injection attack and so on

([79]). DoS attack mainly focus on the communication connections in the network,

3



1.2 Cyber security of multi-agent systems

which leads to the failures in data communication or packet losses ([12; 65]).

Replay attack includes recording and replaying. The attacker first record the

dynamics of system and then replay the recorded data ([57]). Zero dynamics

attack requires the attacker has a perfect system knowledge. The designed zero

dynamics attacks can guarantee the residue to be zero so that such attacks cannot

be detected by residuals ([79]). False data injection attack, which is trying to

modify the agent values in the multi-agent systems and then affects the data

integrity ([58]). In this research, we focus on the adversary behaviors in each

agent. The false data injection behavior is called malicious, and the DoS behavior

is called jamming respectively. We assume that every regular agent knows the

maximum number of adversary agent in the whole graph is F , which is called F -

total model. We analyze the graph condition under the related resilient consensus

algorithms, which is called robust graph.

Another attack model comes from the works of computer science ([5; 9]),

which is called mobile malicious model. In such models, the malicious agent

is dynamic and it can move at any time step. Based on the behavior of the

malicious movement and left infected agent, more detailed mobile models such as

Buhrman’s model ([9]), Garay’s model ([24]), Bonnet’s model ([5]) are proposed.

Based on each model, the related resilient algorithm is proposed and the graph

condition is also different from the static malicious model.

1.2.2 Overview of security solutions

In multi-agent systems, there are mainly two popular techniques to deal with the

effect of malicious attacks:

1. Fault Detection and Isolation (FDI)

In these solutions, each regular agent is equipped with a observer to identify

the possible malicious agents using the past information. Such solutions

4



1.2 Cyber security of multi-agent systems

are called the Fault Detection and Isolation problems ([64; 76]). The main

purpose of FDI is to develop an algorithm to detect the malicious agents and

then avoid the influence of them. However, to detect the malicious behavior

requires much information and it is difficult to detect every malicious cases.

Moreover, such algorithms usually require the whole topology of graphes,

which is difficult in distributed algorithms. In this research, we mainly focus

on the resilient control approaches.

2. Resilient control

In such approaches, the fault detection ability is not necessary. Each regu-

lar agent ignores the furthest values from itself and then the misguide from

malicious agent can be mitigated. In the area of distributed algorithms in

computer science, resilient versions of consensus algorithms have long been

studied (see, e.g., [15; 40; 48]), and our work follows this line of research.

For each regular agent, a simple but effective approach to reduce the in-

fluence of potentially misleading information is to ignore the agents whose

states are the most different from its own. It is assumed that the nodes

know a priori the maximum number F of adversarial agents in the network.

Hence, it is useful to remove the F largest values as well as the F smallest

values among those received from the neighbors. This class of algorithms

are sometimes called the mean subsequence reduced (MSR) algorithms and

has been employed in computer science (e.g., [52; 82]), control theory (e.g.,

[16; 45; 92]), and robotics (e.g., [25; 63; 69]). The sketch of MSR algorithm

is shown in Fig. 1.1. An important recent progress lies in the characteri-

zation of the necessary requirement on the topology of the agent networks.

This was initiated by [45; 82], where the relevant notion of robust graphs

was proposed. It is also remarked that, as a different class of cyber at-

tacks, the effects of jamming and denial-of-service attacks on multi-agent

5



1.3 Resilient consensus problems with limited resources

consensus have recently been analyzed in [41; 74]. In [77], a resilient version

of distributed optimization is studied by employing MSR-like mechanisms

to remove outliers in neighbors. A resilient state estimation approach for

linear time-invariant systems is discussed in [56] to deal with the fault in

the networks.

Figure 1.1: Typical MSR algorithm with F = 1

1.3 Resilient consensus problems with limited

resources

In large-scale multi-agent systems, consensus problems form one of the funda-

mental problems (e.g., [55]). There, agents interact locally and exchange their

information with each other in order to arrive at the global objective of sharing a

common value. In an uncertain environment where faults or even adversarial at-

tacks can be present, it is of great importance to defend consensus algorithms by

raising their security levels so as to avoid being influenced by such uncertainties

6



1.3 Resilient consensus problems with limited resources

in their decision makings. In this context, adversarial agents are those that do

not follow the given algorithms and might even attempt to keep the nonfaulty,

regular agents from reaching consensus.

In this research, we emphasis on the resource saving features in consensus

problems. Four resources are discussed: Communication resources, memory re-

sources, energy resources and connection resources.

Resilient consensus with limited communication

In Chapter 3, we develop distributed protocols for resilient consensus with a

particular emphasis on the communication loads for node interactions. We re-

duce the transmissions in MSR algorithms through the so-called event-triggered

protocols (e.g., [27]). Under this method, nodes make transmissions only when

necessary in the sense that their values sufficiently changed since their last trans-

missions. In certain cases, the agents may make only a finite number of trans-

missions to neighbors. The advantage is that the communication can be greatly

reduced in frequency and may be required only a finite number of times, while the

tradeoff is that the achievable level of consensus may be limited, leaving some

gaps in the agents’ values. Time-triggered protocols may be a simpler way to

reduce the communication load, but will not be able to determine when to stop

the communication.

More concretely, we develop two protocols for resilient consensus under event-

based communication. Their convergence properties are analyzed, and the re-

quirement for the network topology is fully characterized in terms of robust

graphs. We will show through a numerical example how the two protocols differ in

the amounts of communication needed for achieving consensus. Event-based pro-

tocols have been developed for conventional consensus without malicious agents

in, e.g., [19; 26; 39; 49; 53; 54; 75]. Related results can be found in [33], where

7



1.3 Resilient consensus problems with limited resources

event-based consensus-type algorithms are developed for the synchronization of

clocks possessed by the nodes in wireless sensor networks (WSNs).

The difficulty in applying event-based communication in the context of re-

silient consensus based on MSR algorithms is due to the handling of the errors

between the current values and their last transmitted ones. In our approach, we

treat such errors as noise in the system. This approach can be seen as an extension

of [42], where a resilient version of the WSN clock synchronization problem in [33]

mentioned above is analyzed; the exchange of two clock variables creates decay-

ing noises in the consensus-type algorithms. By contrast, in our problem setting,

the errors are due to triggering and do not entirely decay to zero. Moreover, we

study a different class of adversarial nodes as we clarify later.

Another feature of Chapter 3 is that we deal with event-driven protocols

for consensus algorithms in the discrete-time domain. This is in contrast to

the conventional works that deal with event-based consensus in continuous time

(e.g., [19; 39; 49; 75]). In such cases, the agents must continuously monitor their

states to detect when their states reach the thresholds for triggering events. This

mechanism may require special resources for computation. Furthermore, events

with short intervals may occur, which can result in undesirable Zeno behaviors.

On the other hand, there are works such as [26; 53; 54], where sampled-data

controllers are employed for agents with system dynamics in continuous time.

It is interesting to note that in discrete time, event-based consensus algorithms

have to be designed differently. This issue has also been discussed in the work

[33], which essentially deals with discrete-time asynchronous update rules without

adversaries. It is emphasized that in the presence of attacks, this aspect seems

even more crucial. In Chapter 3, we present two resilient consensus algorithms,

but also discuss a third potential approach. The differences among them are

modest: At the updates, each agent has the option of using its own state or its

8



1.3 Resilient consensus problems with limited resources

own last transmitted state. We will however see that analysis methods can differ,

leading to various levels of conservatism in the bounds on the parameters for the

event triggering functions.

Our work follows the line of research on MSR algorithms. It is the first

to introduce event-based communication among the agents. Recently, resilient

consensus problems based on MSR have gained much attention, and we would

like to discuss some works in the following. The early works [45; 82] dealt with

first-order agents with synchronous updates. In [16], MSR-type algorithms are

developed for agents having second-order dynamics, which may hence be applica-

ble to autonomous vehicles. Moreover, in [17], delays in communication as well as

asynchronous updates are taken into account. The work [44] studied the MSR-

based resilient synchronization problem in a more general setting with agents

having higher-order dynamics, operating in continuous time. While most studies

mentioned so far deal with agents whose states take real values, the work [18]

considers agents with quantized (i.e., integer-valued) states. Also, there is a line

of graph theoretic studies (e.g., [81; 92; 93]), which discuss methods to identify

the robustness of certain classes of graphs with specified levels of robustness, for

both undirected and directed graphs.

Resilient consensus with limited memory

In order to save memories in multi-agent systems, we propose a quantized

approach into the updates. The focus of Chapter 4 is to develop distributed

protocols for resilient consensus problems by taking account of limited capabilities

in communications and computations of the agents. To this end, we combine the

effects of quantization and event-triggered communication. It turns out that even

for the case without adversarial agents, this combination has not been studied

much in the literature (see, e.g., [90]).

9
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Quantization in consensus has been addressed in a number of recent works

(e.g., [3; 10; 11; 18; 34; 36; 43]). Due to the states taking integer values, the

system operates over a discrete state space, and thus the analysis method differs

from the real-valued cases. In particular, it is known to be crucial to incorporate

randomization in the algorithms (e.g., [80]) to avoid the states to reach steady

states with no consensus. This can be done by randomization in the updating

times of agents (sometimes called gossiping) or by the use of probabilistic quan-

tizers. In this paper, we take the latter approach and extend the results of [18],

which corresponds to simpler case where the agents communicate at every time

step.

On the other hand, the updating times are regulated by an event-triggered

scheme. It enable us to reduce the amount of transmissions among the agents.

The idea is to make new transmissions only when necessary in the sense that

the new data is sufficiently different from the previously transmitted one. Such

schemes have been employed in various problems in multi-agent consensus [19;

21; 26; 75]. It is interesting to note that most of these works deal with consensus

problems in the continuous-time domain; in this case, the triggering condition

must be checked continuously and may consume a lot of computation resources.

By contrast, our study is carried out in discrete time, which is more suitable for

digital implementation; for related results, see also [33].

In Chapter 3, we have studied MSR-type algorithms for the case when agents

take real-valued states. Here, we develop parallel results for the quantized case

and, in particular, derive necessary and sufficient conditions for achieving resilient

consensus. In general, while event-triggered schemes are effective in decreasing

the frequency of communication, the achievable level of consensus can be limited,

potentially leaving some gaps among the state values of the agents. Our results

expose the tradeoff between the amount of communication and the size of the

10



1.3 Resilient consensus problems with limited resources

gap. As in Chapter 3, we provide two update schemes whose difference may

appear minor, but results in different upper bounds on the gaps for approximate

consensus.

Resilient consensus with limited energy

In Chapter 5, in order to save energy, we consider the resilient consensus

problem with input constraint. In addition, we formulate an energy function and

study an optimization-based consensus problem, where the agents are subject to

input constraints due to limitations in the actuators. The agents aim at reaching

the global objective of finding a common value through their interactions. To this

end, we employ model predictive control techniques. At each update time, the

nonfaulty, regular agents individually solve finite-horizon optimal control prob-

lems. They then implement all or some of the optimal control inputs calculated.

By repeating the process, they are guaranteed to come to agreement. Such tech-

niques have been implemented, for example, in platoon control of vehicles [1],

[94].

We briefly discuss the background on model predictive control (MPC) in the

context of multi-agent systems. Distributed MPC-based schemes have been stud-

ied for cooperative control of agents with general dynamics in, e.g., [20], [37].

Furthermore, to deal with uncertainties within agent systems, robust distributed

MPC methods are developed for linear systems [68] and nonlinear systems [46].

It is however noted that all results mentioned above consider stabilization prob-

lems for a priori known setpoints while they use the cost functions as Lyapunov

functions.

Even though it is desirable to achieve optimal consensus by distributed MPC

scheme, there have been few results for the agent states to agree upon a point not

specified beforehand. The work [32] employs negotiation techniques to reach op-
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1.3 Resilient consensus problems with limited resources

timal consensus by implementing the primal dual decomposition and incremental

sub-gradient algorithm. In [23], consensus problems are studied for agents hav-

ing first-order and second-order dynamics, and conditions for achieving consensus

are developed by exploiting some geometry properties of the optimal path. We

follow the analysis approach of [23] and apply it to our problem formulation. The

work [60] provides a framework for the discrete-time case of distributed model

predictive control. Regarding security issues, in [95], replay attacks on formation

control of vehicle networks are studied from the MPC perspective. In [83], a

resilient distributed MPC-type algorithm is proposed and shown to be effective

via simulation studies.

Resilient consensus with limited connection

In Chapter 6, we discuss resilient consensus problem in the mobile malicious

model. Compared with the conventional computer science works that discuss the

mobile malicious model in complete graphs ([9; 24; 72]), we concentrate on the

non-complete graph and robust graph. It is obvious that our protocols require

less connections. The mobile malicious behaviors have closer relationship with

the dynamic multi-agent systems, for example, mobile sensor networks ([62]),

mobile robot networks ([14; 66]), epidemic models ([8]), mobile ad hoc networks

([50]). Protecting mobile agents against malicious hosts is another a popular

topic ([28; 71]).

It is interesting to remind that most mobile malicious behaviors are discussed

under the complete graph. There is limited works discussing the mobile malicious

behaviors under the non-complete graphs. Pierpaoli et al discussed the fault

tolerant control approaches for networked mobile robots under a non-complete

graph in [66] and follows the FDI line to propose a two-stage technique for solving

the FDI problem. In Chapter 6, we follow the resilient control line and propose
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1.4 Contributions of the thesis

several novel protocols to solve the resilient consensus problem under the non-

complete graphs.

1.4 Contributions of the thesis

This thesis focuses on the topic of resilient consensus problems in multi-agent sys-

tems. In such problems, regular agents are trying to reach agreement on a safe

value or interval by local communication. Meanwhile, the adversary agents are

allowed to know the global information and trying to mislead the regular agents.

Such problems has been long studied in the area of distributed algorithms in

computer science since 1980s. However, from the viewpoint of multi-agent con-

trol such as unmanned aerial vehicle (UAV) and wireless sensor networks, new

motivations and problem settings are recently recognized. Recently, from the

multi-agent control viewpoint, several works such as [17; 18; 45] are discussing

the convergence of different types of resilient consensus problems. From syn-

chronous systems to asynchronous systems, first-order systems to second-order

systems, fruitful contributions are found in this background recently. This thesis

also follows the research line. Compared with the previous works, not only the

convergence of new resilient consensus algorithms, we also pay attention to the

resource saving features of such algorithms.

Based on the type of adversary agents, we would like to explain the contribu-

tions of the thesis in a more explicit way.

Static adversary model

The first three major topics of this thesis are based on the static adversary

model, which is widely applied in the multi-agent control works. We can highlight

the contributions of these parts in three aspects as follows:
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1. New protocols for resilient consensus with advantage of commu-

nication saving

This topic is motivated by the performance of conventional MSR algorithms.

In the time based MSR algorithms, the communication is happening at each

time. Even the regular agents have reached resilient consensus, the com-

munication is still happening. Our goal is to stop communicating when the

regular agents reach resilient consensus. Motivated by the communication

reduction performance of event-based protocols in continuous systems, we

are trying to apply similar protocols to resilient consensus problems and an-

alyze the convergence of such algorithms. We provide full characterizations

for the necessary connectivity in the network for the algorithms to perform

correctly, which are stated in terms of the notion of graph robustness.

2. New protocols for resilient consensus with advantage of memory

saving

This study follows the basic framework of event-based protocols for resilient

consensus. We extend quantized versions of event-based MSR in Chapter 4.

Compared with the real-valued version, these protocols have the advantage

of memory saving since all regular states are integer. In addition, the quan-

tized version requires the update rule to be randomized. We characterize

the error bound on the achievable level of consensus among the agents as

well as the necessary structure for the network in terms of the notion of

robust graphs.

3. New protocols for resilient consensus with advantage of energy

saving

This study is motivated by applying resilient control to autonomous vehicles

and robots. In many applications, there exists an upper bound for control
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inputs. Moreover, the energy consumption is also a serious problem. Our

study emphasis on such problems and we formulate the resilient consen-

sus problem with input constraint in Chapter 5. Each regular agent solves

a constrained finite-time optimal problem with the states of its neighbors

and updates its state based on a predetermined update rule. Schemes are

proposed to solve the problem with synchronous and asynchronous commu-

nications.

Mobile adversary model

Another topic of this thesis is based on the mobile adversary model, which is

mainly discussed in distributed algorithms in computer science. From the view-

point of multi-agent control, limited literature could be found. In this research,

we are trying to apply the related mobile adversary models into the resilient con-

sensus problem. The main features of this part are two aspects: (i). Based on the

three typical mobile malicious models in computer science works ([5; 9; 24]), we

apply them to the resilient consensus problems both complete and non-complete

graphs. (ii). Based on Garay’s mobile malicious model in [24], we have improved

the update rules for the cured agents and reduced the necessary connections as

the result.

Table 1.1: Contributions of this thesis

Time-triggered Event-triggered
Synchronous [45] This work
Asynchronous [17] This work
Quantized [18] This work

Input constraint This work Open problem
Mobile malicious This work Open problem
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1.5 Outline of the thesis

This thesis is organized as follows.

In Chapter 2, we introduce some general notions from graph theory to robust

graphes. Then, the adversary models and notion for resiliency are formulated.

In Chapter 3, we focus on the resilient consensus problem with communication

resources saving. We develop event-triggered update rules which can mitigate the

influence of the malicious agents and at the same time reduce the communication.

Chapter 4 discusses the saving of memory resources in resilient consensus

problems. we focus on the case where the agents take integer (or quantized)

values. Different from the real-valued case, the quantized version requires the

update rule to be randomized.

Chapter 5 studies the problem of resilient consensus in multi-agent networks

with bounded input constraints. Each regular agent solves a constrained finite-

time optimal problem with the states of its neighbors and updates its state based

on a predetermined update rule.

Chapter 6 focuses on the resilient consensus problem under mobile mali-

cious models. Three typical mobile malicious models are applied to several non-

complete graphs. Three novel protocols are proposed to solve the resilient con-

sensus problem with related mobile models.

Finally, Chapter 7 gives a summary for the results and open problems. Some

interesting directions for the future research are also given in this chapter.
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Chapter 2

Preliminaries

In this chapter, as the basis of the thesis, some general notions from graph theory

to robust graphes are introduced at first. Then, we formulate the adversary

models and give the notion for resiliency.

2.1 Multi-agent networks on graphs

Some basic notations related to graphs are introduced for the analysis in this

thesis.

Consider the directed graph G = (V,E) consisting of n nodes. Here the set of

nodes is denoted by V = {1, 2, . . . , n} and the edge set by E ⊆ V× V. The edge

(j, i) ∈ E indicates that node j can send a message to node i and is called an

incoming edge of node i. Let Ni = {j : (j, i) ∈ E} be the set of neighbors of node i.

The number of neighbors of node i is called its degree and is denoted as di = |Ni|

The path from node i1 to node ip is denoted as the sequence (i1, i2, . . . , ip), where

(ij, ij+1) ∈ E for j = 1, 2, . . . , p− 1. The graph G is said to have a spanning tree

if there exists a node from which there is a path to all other nodes of this graph.
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2.2 Robust graphs

2.2 Robust graphs

To establish resilient consensus results, an important topological notion is that

of robustness of graphs [45].

Definition 2.2.1. The graph G = (V,E) is called (r, s)-robust (r, s < n) if for

any two nonempty disjoint subsets V1,V2 ⊆ V, one of the following conditions is

satisfied:

1. Xr
V1

= V1,

2. Xr
V2

= V2,

3. |Xr
V1
|+ |Xr

V2
| ≥ s,

where Xr
Vi

is the set of all nodes in Vi which have at least r neighbors outside Vi

for i = 1, 2. The graph is said to be r-robust if it is (r, 1)-robust.

Figure 2.1: Network topology with (3, 3)-robustness

In Fig. 2.1, we display an example graph with seven nodes. It can be checked

to have just enough connectivity to be (3,3)-robust. If any of the edges are

removed, this level of robustness will be lost.

We summarize some basic properties of robust graphs [45]. Here, the ceil

function ⌈y⌉ gives the smallest integer greater than or equal to y.
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Lemma 2.2.1. An (r, s)-robust graph G satisfies the following:

1. G is (r′, s′)-robust, where 0 ≤ r′ ≤ r, 1 ≤ s′ ≤ s, and in particular, it is

r-robust.

2. G has a directed spanning tree. Moreover, it is 1-robust if and only if it has

a directed spanning tree.

3. r ≤ ⌈n/2⌉. Furthermore, it holds r = ⌈n/2⌉ if and only if G is a complete

graph.

4. The degree di for i ∈ V is lower bounded as di ≥ r + s − 1 if s < r and

di ≥ 2r − 2 if s ≥ r.

Moreover, a graph G is (r, s)-robust if it is (r + s− 1)-robust.

In consensus problems, the property 2) in the lemma is of interest. Robust

graphs may not be strongly connected in general, but this property indicates

that the notion of robust graphs is a generalization of graphs containing directed

spanning trees, which are of great relevance in the literature of consensus [55].

As we will see, robust graphs play a key role in characterizing the necessary

network structure for achieving resilient consensus. It should however be noted

that checking the robustness of a given graph involves combinatorial computation

and is thus difficult in general [81; 92; 93].

2.3 Adversary model and resiliency notions

For each regular node in the set R, its state xi(k) is updated by

xi(k + 1) = xi(k) + ui(k). (2.1)
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2.3 Adversary model and resiliency notions

where ui(k) is the control given by

ui(k) =
∑
j∈Ni

aij(k) (xj(k)− xi(k)) . (2.2)

For each adversarial node i in the set A, its control ui(k) can take arbitrary

values at any k. Such nodes may have knowledge on the entire network including

its topology, the values of all normal nodes, and their update rules. In this

respect, we take account of their worst-case behaviors. For their communication,

we employ the malicious model introduced in [45] and the jamming model as

follows:

Definition 2.3.1. Two adversarial classes are given as follows:

• Malicious: We say that an adversarial agent is malicious if it makes updates

in its value arbitrarily at each time and sends the same value to all of its

neighbors each time a transmission is made.

• Jamming: We say that an adversarial agent is jamming if it does not send

any value to any of its neighbors each time a transmission is made.

Adversarial nodes more difficult to deal with are those that can transmit

different values to different neighbors in an arbitrary way. Such nodes are referred

to as being Byzantine [82]. The motivation for considering malicious nodes as

defined above comes, for example, from the applications of WSNs, where sensor

nodes communicate to their neighbors by broadcasting their data.

We also set a bound on the number of malicious nodes in the network. In

this thesis, we will deal with networks of the so-called F -total model as defined

below.

Definition 2.3.2. (F -total model): For F ∈ N, we say that the adversarial set

A follows an F -total model if |A| ≤ F .
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2.3 Adversary model and resiliency notions

Let the number of malicious agents be denoted by Nm = |A|. Then, let

|R| = |V| −Nm be the number of regular agents.

Now, we introduce the notion of resilient consensus for multi-agent systems.

Definition 2.3.3. (Resilient consensus): Given c ≥ 0, if for any possible sets

and behaviors of the malicious agents and any initial state values of the regular

nodes, the following conditions are satisfied, then the multi-agent system is said

to reach resilient consensus at the error level c:

1. Safety condition: There exists an interval S ⊂ R such that xi(k) ∈ S for all

i ∈ R, k ∈ Z+.

2. Consensus condition: For all i, j ∈ R, it holds that lim sup
k→∞

|xi(k)− xj(k)| ≤

c.

Figure 2.2: Resilient consensus problem
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Chapter 3

Resilient Consensus Through

Event-based Communication

In this chapter, we consider resilient versions of discrete-time multi-agent consen-

sus in the presence of faulty or even malicious agents in the network. In particular,

we develop event-triggered update rules which can mitigate the influence of the

malicious agents and at the same time reduce the communication. Each regular

agent updates its state based on a given rule using its neighbors’ information.

Only when the triggering condition is satisfied, the regular agents send their cur-

rent states to their neighbors. Otherwise, the neighbors will continue to use the

state received the last time. Assuming that a bound on the number of malicious

nodes is known, we propose two update rules with event-triggered communica-

tion. They follow the so-called mean subsequence reduced (MSR) type algorithms

and ignore values received from potentially malicious neighbors. We provide full

characterizations for the necessary connectivity in the network for the algorithms

to perform correctly, which are stated in terms of the notion of graph robustness.

A numerical example is provided to demonstrate the effectiveness of the proposed

approach. This part is published in [87].
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3.1 Problem formulation

We introduce the event-based protocol for the regular nodes to achieve consensus.

It can be outlined as follows: At each discrete-time instant k ∈ Z+, the nodes

make updates, but whether they transmit their current values to neighbors de-

pends on the triggering function. More concretely, each node i has an auxiliary

variable which is its state value communicated the last time and compares it with

its own current state. If the current state has changed sufficiently, then it will be

sent to its neighbors and the auxiliary variable will be replaced.

The update rule for agent i is described by

xi(k + 1) = xi(k) + ui(k), (3.1)

where xi(k) ∈ R is the state and ui(k) is the control given by

ui(k) =
∑
j∈Ni

aij(k) (x̂j(k)− xi(k)) . (3.2)

Here, x̂j(k) ∈ R is an auxiliary state, representing the last communicated state

of node j at time k. It is defined as

x̂j(k) = xj(t
j
l ), k ∈ [tjl , t

j
l+1),

where tj0, t
j
1, . . . denote the transmission times of node j determined by the trig-

gering function to be given below. The initial values xi(0), x̂j(0) are given, and

aij(k) is the weight for the edge (j, i). Also, let aii(k) = 1−
∑

j∈Ni
aij(k). Assume

that γ ≤ aij(k) < 1 when aij(k) ̸= 0 for i, j ∈ V, where γ is the lower bound with

0 < γ ≤ 1/2. In the resilient consensus algorithms to be introduced, the neigh-

bors whose values are used for updates change over time, and hence, the weights
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3.2 Protocol 1 for event-based consensus

aij(k) are time varying. The update rule above can be seen as a discrete-time

counterpart of the event-based consensus algorithms in, e.g., [26; 49; 75].

We now introduce the triggering function. Denote the error at time k between

the updated state xi(k+1) and the auxiliary state x̂i(k) by ei(k) = x̂i(k)−xi(k+1)

for k ≥ 0. Then, let

fi(k) = |ei(k)| −
(
c0 + c1e

−αk
)
, (3.3)

where c0, c1, and α > 0 are positive constants. If fi(k) > 0, agent i transmits its

new state xi(k+1) to the neighbors at time k. This mechanism will be discussed

further later.

3.2 Protocol 1 for event-based consensus

In this section, we outline a distributed protocol to solve the resilient consensus

problem. As discussed above, every node makes an update at every time step

in a synchronous manner, but only when an event happens, the auxiliary values

will be updated and then sent to neighbors. The basis of the algorithm follows

those in the works of, e.g., [16; 17; 45]. The algorithm in this chapter is called

the event-based mean subsequence reduced (E-MSR) algorithm.

The E-MSR algorithm has four steps as follows:

1. (Collecting neighbors’ information) At each time step k, every regular node

i ∈ R uses the values x̂j(k), j ∈ Ni, most recently communicated from the

neighbors as well as its own value xi(k) and sorts them from the largest to

the smallest.

2. (Deleting suspicious values) Comparing with xi(k), node i removes the F

largest and F smallest values from its neighbors. If the number of values

larger or smaller than xi(k) is less than F, then all of them are removed.

24



3.2 Protocol 1 for event-based consensus

The removed data is considered as suspicious and will not be used in the

update. The set of the node indices of the remaining values is written as

Mi(k) ⊂ Ni.

3. (Local update) Node i updates its state by

xi(k + 1) = xi(k) +
∑

j∈Mi(k)

aij(k) (x̂j(k)− xi(k)) . (3.4)

4. (Communication update) Node i checks if its own triggering function fi(k)

in (3.3) is positive or not. Then, it sets x̂i(k + 1) as

x̂i(k + 1) =

xi(k + 1) if fi(k) > 0,

x̂i(k) otherwise.

(3.5)

The communication rule in this algorithm shows that only when the current

value has varied enough to exceed a threshold, then the auxiliary variable will be

updated, and only at this time the node sends its value to its neighbors. This

event triggering scheme can significantly reduce the communication burden as we

will see in the numerical example in Section 3.4.

The first protocol of this chapter is the E-MSR algorithm as stated above,

which will be referred to as Protocol 1. We are now ready to present our main

result for this protocol.

We introduce two kinds of minima and maxima of the states of the regu-

lar agents: The first involves only the states as x(k) = max
i∈R

xi(k) and x(k) =

min
i∈R

xi(k) while the second uses also the auxiliary variables as x̂(k) = mini∈R{xi(k),

x̂i(k)} and x̂(k) = maxi∈R{xi(k), x̂i(k)}. The safety interval S is chosen as

S =
[
x̂(0), x̂(0)

]
. It is noted that at initial time, x̂i(0) need not be the same

as xi(0).
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Theorem 3.2.1. Under the F -total model, the regular agents with E-MSR using

(3.4) and (3.5) reach resilient consensus at an error level c if and only if the

underlying graph is (F + 1, F + 1)-robust. The safety interval is given by S =[
x̂(0), x̂(0)

]
, and the consensus error level c is achieved if the parameter c0 in the

triggering function (3.3) satisfies

c0 ≤
γ|R|c

4|R|
. (3.6)

Proof. (Necessity) This essentially follows from [45], which considers the special

case without the triggering function, that is, c0 = c1 = 0.

(Sufficiency) We first show that the interval S =
[
x̂(0), x̂(0)

]
satisfies the

safety condition by induction. Note that the update rule (3.4) can be rewritten

as

xi(k + 1) = aii(k)xi(k) +
∑

j∈Mi(k)

aij(k)x̂j(k), (3.7)

where aii(k) = 1−
∑

j∈Mi(k)
aij(k).

At time k = 0, it is clear by definition that xi(0), x̂i(0) ∈ S, i ∈ R. Suppose

that for each regular agent i, xi(k), x̂i(k) ∈ S. Then, for agent i, its neighbors in

Mi(k) take values only in S, since there are agents with values outside S at most

F , and they are ignored in step 2 of the E-MSR. From (3.7), we have xi(k+1) ∈ S.

Moreover, by (3.5), it follows that x̂i(k + 1) ∈ S. Thus, S is the safety interval.

We next establish the consensus condition. Note that for time k ∈ (til, t
i
l+1)

between two triggering instants, we have fi(k) ≤ 0. Moreover, for the neighbor

node j ∈ Ni, if fj(k) > 0, then we have x̂j(k + 1) = xj(k + 1). If fj(k) ≤ 0, then

x̂j(k+1) = x̂j(k) = xj(k+1)+ej(k). As a result, it holds x̂j(k) = xj(k)+êj(k−1)
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for k ≥ 1, where

êj(k) =

ej(k) if fj(k) ≤ 0,

0 otherwise.

Note that

|êj(k)| ≤ c0 + c1e
−αk, ∀k ≥ 0. (3.8)

Then, we can write (3.7) as

xi(k + 1) = aii(k)xi(k) +
∑

j∈Mi(k)

aij(k) (xj(k) + êj(k − 1)) . (3.9)

This can be bounded by using the maximum state x(k) as

xi(k + 1) ≤ aii(k)x(k) +
∑

j∈Mi(k)

aij(k) (x(k) + êj(k − 1))

= x(k) +
∑

j∈Mi(k)

aij(k)êj(k − 1)

≤ x(k) + max
j∈Mi(k)

|êj(k − 1)| . (3.10)

Thus, by (3.8) it follows

xi(k + 1) ≤ x(k) + c0 + c1e
−α(k−1).

Let V (k) = x(k)− x(k). Then we introduce two sequences given by

x0(k + 1) = x0(k) + c0 + c1e
−α(k−1), (3.11)

x0(k + 1) = x0(k)− c0 − c1e
−α(k−1), (3.12)

where x0(0) = x(0) − σ0, and x0(0) = x(0) + σ0 with σ0 = σV (0). We next
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introduce another sequence ε0(k) defined by

ε0(k + 1) = γε0(k)− (1− γ)σ0, (3.13)

where ε0(0) = εV (0). Take the parameters ε and σ so that

ε+ σ =
1

2
, 0 < σ <

γN

1− γN
ε. (3.14)

For the sequence ε0(k), let

X0(k, ε0(k)) = {j ∈ V : xj(k) > x0(k)− ε0(k)} ,

X0(k, ε0(k)) = {j ∈ V : xj(k) < x0(k) + ε0(k)} .

These two sets are both nonempty at time k = 0 and, in particular, each contains

at least one regular node; this is because by definition, x(0) > x0(0)− ε0(0) and

x(0) < x0(0) + ε0(0).

In the following, we show that X0(k, ε0(k)) and X0(k, ε0(k)) are disjoint sets.

To this end, we must show

x0(k)− ε0(k) ≥ x0(k) + ε0(k).

By (3.11) and (3.12) for x0(k) and x0(k), we have

(x0(k)− ε0(k))− (x0(k) + ε0(k)) =

(
x0(0) + c0k + c1

1− e−α(k−1)

1− e−α

)
−
(
x0(0)− c0k − c1

1− e−α(k−1)

1− e−α

)
− 2ε0(k).

(3.15)

Then by substituting x0(0) = x(0)−σ0 and x0(0) = x(0)+σ0 into the right-hand
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side of (3.15), we obtain

(x0(k)− ε0(k))− (x0(k) + ε0(k))

= (x(0)− x(0))− 2σ0 + 2c0k + 2c1
1− e−α(k−1)

1− e−α
− 2ε0(k)

= V (0)− 2σV (0) + 2c0k + 2c1
1− e−α(k−1)

1− e−α
− 2ε0(k). (3.16)

By (3.13) and 0 < γ ≤ 1/2, we easily have that ε0(k + 1) < ε0(k), and hence

ε0(k) < ε0(0) = εV (0). We thus obtain

(x0(k)− ε0(k))− (x0(k) + ε0(k))

> (1− 2σ − 2ε)V (0) + 2c0k + 2c1
1− e−α(k−1)

1− e−α
> 0,

where the last inequality holds since σ + ε = 1/2 from (3.14). Consequently, it

follows that X0(k, ε0(k)) and X0(k, ε0(k)) are disjoint sets.

From the above, we have that the two sets X0(0, ε0(0)) and X0(0, ε0(0)) are

nonempty with at least one regular node in each and moreover disjoint. Therefore,

by the assumption of (F + 1, F + 1)-robustness, there are three cases:

1. All nodes in X0(0, ε0(0)) have F + 1 neighbors or more from outside.

2. All nodes in X0(0, ε0(0)) have F + 1 neighbors or more from outside.

3. The total number of nodes in X0(0, ε0(0)) and X0(0, ε0(0)) having F + 1

neighbors or more from outside of its own set is no smaller than F + 1.

Notice that in any of the three cases, there exists at least one regular agent

i ∈ R in either X0(0, ε0(0)) or X0(0, ε0(0)) that has F +1 neighbors or more from

outside of its own set. In the following, we suppose that this node i belongs to

X0(0, ε0(0)). A similar argument holds for the case when it is in X0(0, ε0(0)).
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Now, we go back to (3.9) and rewrite it by partitioning the neighbor node set

Mi(k) of node i into two parts: The nodes which belong to X0(k, ε0(k)) and those

that do not. Since node i has at least F + 1 neighbors outside X0(k, ε0(k)), the

latter set is nonempty. Hence, we obtain

xi(k + 1) = aii(k)xi(k) +
∑

j∈Mi(k)∩X0

aij(k)xj(k)

+
∑

j∈Mi(k)\X0

aij(k)xj(k) +
∑

j∈Mi(k)

aij(k)êj(k − 1),

where we use the shorthand notation X0 for X0(k, ε0(k)). Then, we can bound

this from above as

xi(k + 1) ≤ aii(k)x(k) +
∑

j∈Mi(k)∩X0

aij(k)x(k) +
∑

j∈Mi(k)\X0

aij(k) (x0(k)− ε0(k))

+
∑

j∈Mi(k)

aij(k)êj(k − 1)

=

1−
∑

j∈Mi(k)\X0

aij(k)

x(k) +
∑

j∈Mi(k)\X0

aij(k) (x0(k)− ε0(k))

+
∑

j∈Mi(k)

aij(k)êj(k − 1). (3.17)

We next show that x(k) ≤ x0(k) + σ0 (and similarly, x(k) ≥ x0(k) − σ0) by

induction. For k = 0, by definition, we have x(0) = x0(0) + σ0. Suppose that

x(k) ≤ x0(k) + σ0. Then, from (3.10) and (3.11), we have

x(k + 1) ≤ x(k) + max
j

|êj(k − 1)| ≤ x(k) + c0 + c1e
−α(k−1)

≤ x0(k) + σ0 + c0 + c1e
−α(k−1) = x0(k + 1) + σ0.
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Then, (3.17) can be further bounded as

xi(k + 1) ≤

1−
∑

j∈Mi(k)\X0

aij(k)

 (x0(k) + σ0) +
∑

j∈Mi(k)\X0

aij(k) (x0(k)− ε0(k))

+
∑

j∈Mi(k)

aij(k)êj(k − 1)

≤ x0(k) +

1−
∑

j∈Mi(k)\X0

aij(k)

σ0 −
∑

j∈Mi(k)\X0

aij(k)ε0(k)

+
∑

j∈Mi(k)

aij(k)|êj(k − 1)|. (3.18)

We also show that ε0(k) > 0 holds for k = 0, 1, . . . , |R|. It is clear from (3.13)

that ε0(k + 1) < ε0(k). Thus we only need to guarantee ε0(|R|) > 0. By (3.13),

ε0(|R|) can be written as

ε0(|R|) = γ|R|ε0(0)−
|R|−1∑
i=0

γi(1− γ)σ0

= γ|R|εV (0)− 1− γ|R|

1− γ
(1− γ)σV (0)

=
(
γ|R|ε− (1− γ|R|)σ

)
V (0).

This is positive because we have chosen σ as in (3.14).

Hence, (3.18) can be written as

xi(k + 1) ≤ x0(k) + (1− γ) σ0 − γε0(k) + c0 + c1e
−α(k−1)

= x0(k + 1)− ε0(k + 1), (3.19)

where in the inequality, we used the fact that there always exists j not in

X0(k, ε0(k)). This relation shows that if an update happens at node i, then

this node will move out of X0(k + 1, ε0(k + 1)). We note that inequality (3.19)
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also holds for the regular nodes that are not inside X0(k, ε0(k)) at time k. This

means that such nodes cannot move in X0(k+1, ε0(k+1)). It is also similar with

X0(k + 1, ε0(k + 1)).

Thus, after |R| time steps, all regular nodes will be out of at least one of the

two sets X0(|R|, ε0(|R|)) and X0(|R|, ε0(|R|)). We suppose that X0(|R|, ε0(|R|))∩R

is empty. Then we have x(|R|) ≤ x0(|R|)− ε0(|R|). It hence follows that

V (|R|) = x(|R|)− x(|R|)

≤ x0(|R|)− ε0(|R|)− x0(|R|) + σ0

= x0(0)− x0(0) + 2c0|R|+ 2

|R|−1∑
i=0

c1e
−αi − ε0(|R|) + σ0

= (x(0)− σ0)− (x(0) + σ0) + 2c0|R|+ 2c1
1− e−α|R|

1− e−α
− ε0(|R|) + σ0

= V (0) + 2c0|R|+ 2c1
1− e−α|R|

1− e−α
− σV (0)−

(
γ|R|ε−

(
1− γ|R|) σ)V (0)

=
(
1− γ|R|(ε+ σ)

)
V (0) + 2c0|R|+ 2c1

1− e−α|R|

1− e−α
.

By ε+ σ = 1/2 in (3.14), we have

V (|R|) ≤
(
1− γ|R|

2

)
V (0) + 2c0|R|+ 2c1

1− e−α|R|

1− e−α
.

If there are more updates by node i after time k = |R|, this argument can be
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extended further as

V (l|R|) ≤
(
1− γ|R|

2

)
V ((l − 1)|R|) + 2c0|R|+ 2c1

1− e−α|R|

1− e−α
e−(l−1)α|R|

≤
(
1− γ|R|

2

)l

V (0) +
l−1∑
t=0

(
1− γ|R|

2

)l−1−t

×
(
2c0|R|+ 2c1

1− e−α|R|

1− e−α
e−(t−1)α|R|

)

≤
(
1− γ|R|

2

)l

V (0) +
1−

(
1− γ|R|

2

)l
1−

(
1− γ|R|

2

) 2c0|R|

+ 2c1
1− e−α|R|

1− e−α

(
1− γ|R|

2

)l
1− (1− γ|R|

2
)−le−α|R|l

1−
(
1− γ|R|

2

)−l

e−α|R|
. (3.20)

From (3.6), we can easily obtain

lim sup
l→∞

V (l|R|) ≤ 2c0|R|

1−
(
1− γ|R|

2

) =
4c0|R|
γ|R| ≤ c. (3.21)

Now, we show the dynamics of V (l|R|+t) for t = 0, 1, . . . , |R|−1. The analysis

is similar, and we can obtain an inequality like (3.20), where the only difference

is that in the derivation, V (0) is replaced with V (t). From the safety condition,

we know that V (k) ≤ |S| for all k. Therefore, we finally arrive at

lim sup
l→∞

V (l|R|+ t) ≤ 4c0|R|
γ|R| ≤ c.

This completes the proof of the consensus condition.

The above result shows that the multi-agent system is guaranteed to reach

resilient consensus despite the presence of F -total malicious agents. First, the

width of the safety interval S is determined by the initial states of the regular
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agents. Second, the error that may remain after achieving resilient consensus

meets the specified bound c by selecting the key parameter in the triggering

function c0, proportionally to c. This parameter can be set by the designer and,

clearly, by taking c0 = 0, exact consensus can be achieved at the expense of having

more communications. The role of c1 and α is to reduce the communication during

the transient stage by making the threshold in the triggering function large. We

note that the exponential decaying bound by c1 and α can also decrease the

communication in the long run.

As a result of effects of triggering parameters c0, c1 and α, c0 can efficiently

reduce the communications and can avoid communications in a long period of

time. c1 and α can efficiently reduce the communications in the initial times

and do not affect the consensus error level. However, in the long time effect

of reducing communications is not as effective as c0. We will see the effects of

the parameters of the event-triggering function through a numerical example in

Section 3.4.

In the literature of event-based consensus, conventional schemes often employ

triggering functions whose thresholds go to zero over time, in both continuous-

and discrete-time domains (e.g., [19; 26; 49; 53; 54]). By contrast, [39; 75] use

thresholds which always take positive values as in our study. In comparison,

our upper bound for the consensus error is more conservative. Because of the

malicious agents, the analysis cannot apply the methods in previous works and

must follow those in resilient consensus problems such as [17]; as a consequence,

the bound on consensus errors grows exponentially with |R| (see (3.21)). In the

conventional results of [39; 75], the bounds depend on |R| linearly as well as on

the Laplacian matrix.

A related result for the case of F -local model for the adversarial nodes can

be found in [42] with a particular application to clock synchronization in WSNs.
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It studies a resilient consensus problem with decaying noise that arises in the

system due to the interactions among clock states.

Remark 3.2.1. We should highlight that in the discrete-time domain, event-

based consensus algorithms must be carefully designed especially in the resilient

case. We can construct another resilient consensus algorithm motivated by the

structures found in [75; 88], which deal with continuous-time multi-agent systems,

as

xi(k + 1) = xi(k) +
∑

j∈Mi(k)

aij(k) (x̂j(k)− x̂i(k)) . (3.22)

The modification may be minor as the only difference is that x̂i(k) is used instead

of xi(k) in the second term of the right-hand side. Compared with Protocol 1,

to guarantee the consensus error level of c, the choice of c0 must be half as

c0 ≤ γ|R|/8|R|, which may increase the communication load. These results can

be obtained by following a proof similar to that of Theorem 3.2.1.

In the next section, we present yet another protocol by further changing the

terms in the update rule.

3.3 Protocol 2 for event-based consensus

In this section, we provide our second resilient consensus algorithm, referred to

as Protocol 2.

To this end, we modify the update rule (3.4) in a way different from the

protocol (3.22) discussed in Remark 3.2.1. It is pointed out that in Protocol 1,

for obtaining the new state xi(k+1) of agent i, its own data appears only through

the current state xi(k). On the one hand, this means that even when the new

state is not communicated, it still needs to be stored at every time step. On

the other, as the current state xi(k) is newer than x̂i(k), it seems desirable for
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speeding up the convergence. We will however show that it may be better to use

only x̂i(k) for both storage and convergence reasons. The protocol introduced

below is motivated by those in [33; 88].

In the local update, for k ∈ Z+, every regular node i ∈ R updates its current

state by

xi(k + 1) = x̂i(k) +
∑

j∈Mi(k)

aij(k) (x̂j(k)− x̂i(k)) . (3.23)

Note that the new state xi(k+1) need not be stored until the next time step, but

is merely used for checking the condition of the triggering function fi(k) in (3.3).

Accordingly, in the E-MSR, steps 1 and 2 should be adjusted so that agent i uses

x̂i(k) instead of xi(k) in determining the neighbor set Mi(k). The Comparison

of storage period for current value xi(k) is shown in Fig. 3.1. It is Clear that

protocol 2 requires less storage.

Figure 3.1: Storage period for xi(k)

Then we are ready to present our second main result of this chapter, which is

regarding Protocol 2.

Theorem 3.3.1. Under the F -total malicious model, the normal agents with E-

MSR using (3.23) and (3.5) reach resilient consensus if and only if the underlying
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graph is (F + 1, F + 1)-robust. The safety interval is given by S =
[
x̂(0), x̂(0)

]
,

and the consensus error level c is achieved if the parameter c0 in the triggering

function (3.3) satisfies

c0 ≤
γ|R|−1(1− γ)c

1− γ|R|−1
. (3.24)

Proof. The necessity part follows similar lines as those in the proof of Theo-

rem 3.2.1. In the following, we thus give the sufficiency part.

First, we establish the safety condition in the sense of xi(k), x̂i(k) ∈ S for

regular nodes i. This is done by induction. At k = 0, for each i ∈ R, it holds

xi(0), x̂i(0) ∈ S by definition. Next, assume that at time k, we have xi(k), x̂i(k) ∈

S for i ∈ R. Then, for agent i, its neighbors j ∈ Mi(k) satisfy x̂j(k) ∈ S since

there are at most F agents with values outside S, and they are ignored in step 2

of the E-MSR. From the update rule (3.23), we have

xi(k + 1) = aii(k)x̂i(k) +
∑

j∈Mi(k)

aij(k)x̂j(k)

≤ aii(k)x̂(k) +
∑

j∈Mi(k)

aij(k)x̂(k) = x̂(k), (3.25)

where aii(k) = 1 −
∑

j∈Mi(k)
aij(k). The inequality (3.25) means that the upper

bound of every regular node is nonincreasing. Similarly, we have xi(k+1) ≥ x̂(k),

so we obtain xi(k) ∈ S for k ≥ 0. Furthermore, by (3.5), it holds that x̂i(k+1) ∈ S.

Hence, we have S as the safety interval.

For the consensus condition part, we first sort the regular communicated val-

ues x̂i(k), i ∈ R, at time k in the entire graph from the smallest to the largest.

Denote by si(k) the index of the agent taking the ith value from the smallest.

Hence, the values are sorted as x̂s1(k) ≤ x̂s2(k) ≤ · · · ≤ x̂s|R|(k).

Introduce two sequences of conditions for the relation of each gap between

two nodes. The first is given from below as
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• A1: x̂s2(k)− x̂s1(k) ≤ (c0 + c1e
−αk)/γ,

• A2: x̂s3(k)− x̂s2(k) ≤ (c0 + c1e
−αk)/γ2,

• · · ·

• AN−1: x̂s|R|(k)− x̂s|R|−1
(k) ≤ (c0 + c1e

−αk)/γ|R|−1.

The other sequence is from above as

• BN : x̂s|R|(k)− x̂s|R|−1
(k) ≤ (c0 + c1e

−αk)/γ,

• BN−1: x̂s|R|−1
(k)− x̂s|R|−2

(k) ≤ (c0 + c1e
−αk)/γ2,

• · · ·

• B2: x̂s2(k)− x̂s1(k) ≤ (c0 + c1e
−αk)/γ|R|−1.

Denote by jA the minimum j, 1 ≤ j ≤ |R| − 1, such that the condition Aj is

not satisfied. Also, denote by jB the maximum j, 2 ≤ j ≤ |R|, such that the

condition Bj is not satisfied. Thus we have

x̂sjA+1
(k)− x̂sjA

(k) >
c0 + c1e

−αk

γjA
,

x̂sjB
(k)− x̂sjB−1

(k) >
c0 + c1e

−αk

γ|R|−jB+1
.

(3.26)

Moreover, the conditions A1 to AjA−1 and BjB+1 to BN are satisfied. Then, for

0 ≤ k ≤ k′, we introduce two sets

X1(k, k
′) =

{
j ∈ V : x̂j(k

′) < x̂sjA
(k) + c0 + c1e

−αk
}
,

X2(k, k
′) =

{
j ∈ V : x̂j(k

′) > x̂sjB
(k)− c0 − c1e

−αk
}
.

There are two cases concerning the relationship between jA and jB. We study

them separately below.
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Case 1: jA < jB. Let the two subsets of the regular nodes be

V1 = {s1(k), s2(k), . . . , sjA(k)} and V2 =
{
sjB(k), . . . , s|R|(k)

}
. Note that all

nodes in V1 are inside X1(k, k), and those in V2 are inside X2(k, k). Hence,

X1(k, k) and X2(k, k) are nonempty. They are moreover disjoint. This is because

by using the two inequalities in (3.26), from 1 ≤ jA < jB ≤ N and 0 < γ ≤ 1/2,

it follows that

x̂sjB
(k)− x̂sjA

(k) > max

{
1

γjA
,

1

γ|R|−jB+1

}(
c0 + c1e

−αk
)

≥ 2
(
c0 + c1e

−αk
)
.

Thus, the (F + 1, F + 1)-robust graph guarantees that some regular node i in

X1(k, k) or X2(k, k) has at least F + 1 neighbors outside. We suppose that i ∈

X1(k, k). By (3.23),

xi(k + 1) = aii(k)x̂i(k) +
∑

j∈Mi(k)∩X1

aij(k)x̂j(k) +
∑

j∈Mi(k)\X1

aij(k)x̂j(k),

where the simplified notation X1 is used for X1(k, k). Since Mi(k) \ X1(k, k) is

not empty, we have

xi(k + 1) ≥ (1− γ)x̂s1(k) + γx̂sjA+1
(k). (3.27)

Using the conditions A1 to AjA−1, we can bound x̂s1(k) from below as

x̂s1(k) ≥ x̂s2(k)−
c0 + c1e

−αk

γ

≥ x̂s3(k)−
(
1

γ
+

1

γ2

)(
c0 + c1e

−αk
)
≥ · · ·

≥ x̂sjA
(k)−

(
1

γ
+

1

γ2
+ · · ·+ 1

γjA−1

)(
c0 + c1e

−αk
)
.
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Substitute this into (3.27) and obtain

xi(k + 1) ≥ x̂sjA
(k) + γ

(
x̂sjA+1

(k)− x̂sjA
(k)
)

− 1

γjA−1
(c0 + c1e

−αk) + (c0 + c1e
−αk)

> x̂sjA
(k) + γ

c0 + c1e
−αk

γjA

− 1

γjA−1
(c0 + c1e

−αk) + (c0 + c1e
−αk)

= x̂sjA
(k) + (c0 + c1e

−αk), (3.28)

where the second inequality follows by (3.26). Thus, this node i is moved out of

set X1(k, k + 1) at time k + 1.

We next show that the regular nodes not in X1(k, k) at time k will not move

in X1(k, k + 1) at time k + 1. If node j has some neighbors inside X1(k, k), then

(3.27) and (3.28) hold and we know that the node does not move in X1(k, k+1).

If node j has neighbors only in V \ X1(k, k), then we have

xj(k + 1) ≥ x̂sjA+1
(k) > x̂sjA

(k) +
c0 + c1e

−αk

γjA
.

Clearly, node j does not move in X1(k, k + 1) in this case.

Therefore, the regular nodes in X1(k, k + 1) decrease in number as

X1(k, k + 1) ∩ R ( X1(k, k) ∩ R.

Similar results also hold if i ∈ X2(k, k), and we have x̂i(k + 1) decreases more

than c0 + c1e
−αk compared with x̂sjB

(k).

As a result, if the conditions AjA and BjB with jA < jB are not satisfied,

after |R| steps, the set X1(k, k + |R|) or X2(k, k + |R|) becomes empty in regular

nodes. It then follows that x̂(k+ |R|) increases more than c0+c1e
−αk or x̂(k+ |R|)
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decreases more than c0 + c1e
−αk.

A special case in Case 1 is when jA = jB − 1. It corresponds to having only

one pair of nodes whose difference in values does not satisfy the condition. By

applying a similar analysis, we have that x̂(k+|R|) increases more than c0+c1e
−αk

or x̂(k + |R|) decreases more than c0 + c1e
−α|R|.

Case 2: jA ≥ jB. This case is impossible. We can show this by contradiction

as follows. Since jA ≥ jB, we know that AjB−1 and BjA+1 are both satisfied.

Combined with AjA and BjB not being satisfied, we have

c0 + c1e
−αk

γ|R|−jB+1
< x̂sjB

(k)− x̂sjB−1
(k) ≤ c0 + c1e

−αk

γjB−1
, (3.29)

c0 + c1e
−αk

γjA
< x̂sjA+1

(k)− x̂sjA
(k) ≤ c0 + c1e

−αk

γ|R|−jA
. (3.30)

The inequalities in the first relations in (3.29) indicate that it must hold jB >

(|R| + 1)/2. The second set of inequalities in (3.30) also implies jA < |R|/2.

Consequently, we have jA < jB, which is in contradiction with jA ≥ jB.

We can now conclude that after a finite number of time steps, all conditions

from A1 to Am and Bm+2 to B|R|, where 0 ≤ m ≤ |R| − 1, must be satisfied.

Otherwise the difference between x̂(k) and x̂(k) will decrease more than c0 by

an update induced by an event. From the analysis for the safety condition, we

know that x̂(k) is nonincreasing and x̂(k) is nondecreasing. Hence, if the events

continuously occur, x̂(k) − x̂(k) will become smaller and eventually negative,

which cannot happen. This completes the proof.

Protocol 2 enables us to achieve resilient consensus with data communicated

via event-based protocols. We can see by directly comparing with the result for

Protocol 1 that the bound obtained here for the parameter c0 is larger, indicating

that it is less conservative. Hence, to achieve the same level c of consensus

error, we may use a larger c0 in Protocol 2, which will result in less frequent
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3.3 Protocol 2 for event-based consensus

transmissions. We confirm this property later in Section 3.4 through numerical

simulations.

A unique aspect of Protocol 2 is that the proof technique used in Theo-

rem 3.3.1 is different from those used in the recent works such as [16; 17; 18; 44; 45]

and also in the proof of Theorem 3.2.1. The conventional technique could be em-

ployed here, but this will result in the same bound on c0 as in Theorem 3.2.1.

In fact, as we see below, the bound obtained in Theorem 3.3.1 is tight for some

graphs.

Remark 3.3.1. We present an example of a multi-agent system whose error in

consensus among the agents is equal to the bound obtained in Theorem 3.3.1.

Such a graph may be called a worst-case graph. Consider the network in Fig. 3.2

with four nodes which are all regular and thus F = 0. Note that the graph

contains a directed spanning tree. The initial values xi(0) of the nodes and the

(constant) weights aij(k) on the edges are indicated in the figure. Since the

weights are all 1/2 (and thus γ = 1/2), for nodes having two neighbors, their

own values are not used in the update rule (3.23). Moreover, for the node in the

far left, a self-loop is shown to indicate that this node uses its own value. The

node in the far right has no incoming edge, and thus its value will not change

over time.

By setting the parameters for the triggering function as c0 = 1 and c1 = 0, it

follows that there will be no event at any time. The difference in their values is 14,

which can be obtained as c by equating the inequality (3.24) in Theorem 3.3.1.

In comparison, for Protocol 1, the bound c on the difference will be 256 by

Theorem 3.2.1; this is much larger, indicating the conservatism of the approach.

Note that the graph structure in Fig. 3.2 is obtained based on the proof of

Theorem 3.3.1. It is a bit special in the sense that not all agents have self-loops.

To comply with the theory, we can extend this example by adding self-loops; it
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will not be a worst-case graph any longer, but the difference in the values will be

larger than other graphs.

Figure 3.2: Worst-case graph with |R|=4

3.4 Numerical example

In this section, we illustrate the proposed resilient protocols via numerical simu-

lations. We first examine a small-scale network and then focus on the scalability

for larger systems.

3.4.1 Small network

We consider the multi-agent system with seven nodes whose connectivity graph

is shown in Fig. 2.1; as already mentioned, this graph is (3, 3)-robust. We com-

pare the performance of Protocols 1 and 2 using different parameters in event-

triggering. In particular, we test the two cases of c0 > 0 and c0 = 0. Here, nodes 5

and 7 are set to behave maliciously by continuously oscillating their values; in all

simulations, we used the same state values for them. The initial state was chosen

the same for each run as well at x(0) = [1 2 3 5 4 6 4]T . We also took γ = 0.3.

First, we examine the case of c0 > 0. We fixed the consensus error bound

as c = 1. For Protocol 1, based on Theorem 3.2.1, we chose c0 = 1.22 × 10−4.

The remaining parameters were selected as c1 = 0.5 and α = 0.03. The time
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3.4 Numerical example

responses are shown in Fig. 3.3, where the x-axis represents the sampling time k,

and the y-axis the values of the agents. Moreover, the time instants when each

node makes a broadcast are shown by the markers • in the color corresponding

to that of its time response curve. On the other hand, for Protocol 2, we chose

c0 = 5.72×10−3 according to Theorem 3.3.1, and other parameters were taken as

above with c1 = 0.5 and α = 0.03. The time responses of Protocol 2 are plotted

in Fig. 3.4.

We observe that both protocols managed to achieve the desired level of consen-

sus specified by c = 1 based on event-triggered communication. Moreover, there

is very little sign of being influenced by the behavior of the malicious nodes. In

fact, for Protocol 1, after 600 steps, the consensus error among the regular nodes

became 5.24 × 10−5, with 5.4 times of transmissions on average for the regular

nodes. On the other hands, for Protocol 2, the consensus error was 8.63× 10−3,

with 4.6 times of transmissions on average. Thus, we confirm that Protocol 2 is

less conservative for the given c = 1.

Next, by setting c0 = 0, we demonstrate that exact resilient consensus can

be attained while reducing the number of transmissions. To this end, for both

protocols, we set c1 = 0.5 and α = 0.03 as in the previous simulations. In this

case, the threshold that determines the timings of events eventually goes to zero

(due to c0 = 0).

The time responses of the two protocols are shown in Figs. 3.5 and 3.6. For

Protocol 1, after 600 steps, the consensus errors among the regular nodes became

essentially zero at 5.71 × 10−9, where the average number of triggering times

for the regular nodes is 10. Similarly, for Protocol 2, the consensus error at

time k = 600 was 1.73 × 10−8 with 12.4 triggering times on average per regular

node. Protocol 1 is particularly impressive in terms of the limited amount of

communication. In contrast, for Protocol 2, information exchange among the
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Figure 3.3: Protocol 1 with c0 = 1.215× 10−4, c1 = 0.5, and α = 0.03
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Figure 3.4: Protocol 2 with c0 = 5.72× 10−3, c1 = 0.5, and α = 0.03

nodes takes place for a longer time.

Further comparisons were made by implementing time-triggering communi-

cation in both protocols. Periodic transmissions are made so that after 600 time

steps, the regular nodes make the same number of triggering times as those in

the event-triggered case with c0 = 0 above. This means that for Protocol 1, each

node transmits every 60 steps and for Protocol 2 every 50 steps. At time k = 600,

the consensus error was 5.04 × 10−8 for Protocol 1 and 5.80 × 10−3 for Proto-

col 2. It is clear that under both protocols, the event-triggered schemes perform

better. Their time responses are shown in Figs. 3.7 and 3.8. Due to the periodic

transmission, the convergence is slow and the responses between the transmission
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times are oscillatory.

3.4.2 Scalability of the proposed approach

In this part, we carry out a number of simulations to check the scalability of the

proposed protocols using large-scale networks. In particular, we focus on how the

number of transmissions can be kept low even if the numbers of neighbors and

even the malicious ones are large. As in the previous simulations, the two cases

of c0 > 0 and c0 = 0 are examined and compare with the time-triggered case.
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Figure 3.5: Protocol 1 with c0 = 0, c1 = 0.5, and α = 0.03
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Figure 3.6: Protocol 2 with c0 = 0, c1 = 0.5, and α = 0.03

We employ three complete graphs with 10 nodes, 50 nodes, and 100 nodes.
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Figure 3.7: Protocol 1 under periodic communication with period 60
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Figure 3.8: Protocol 2 under periodic communication with period 50

By Lemma 2.2.1, we know that a 10-node complete graph is (5, 5)-robust. Thus,

we introduce four malicious nodes. Similarly, in the 50- and 100-node cases, we

set 24 and 49 nodes to be malicious, respectively.

The first case is with c0 > 0. In particular, for both Protocols 1 and 2,

we chose c0 = 0.1, c1 = 1, and α = 2. For each graph, we performed Monte

Carlo simulations for 100 runs by randomly taking initial states under uniform

distribution between 0 and 100. Each agent made updates until the consensus

error becomes 0.01 for Protocol 1 and 0.3 for Protocol 2. The performance of

Protocols 1 and 2 is displayed in Tables 3.1 and 3.2 in terms of the average number

of triggering times per regular node.
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Table 3.1: Protocol 1 with consensus error 0.01

Event-Triggered Time-
Graphs c0 = 0.1 c0 = 0 Triggered
10 nodes 4.9 4.4 9.8
50 nodes 6.5 5.4 11.4
100 nodes 7.1 5.7 11.9

Table 3.2: Protocol 2 with consensus error 0.3

Event-Triggered Time-
Graphs c0 = 0.1 c0 = 0 Triggered
10 nodes 4.7 3.8 6.9
50 nodes 5.9 5.6 8.1
100 nodes 6.2 6.5 8.4

It is noticed that in general, as the number of agents increases, triggering

times increase only mildly to reach the same consensus error for both protocols.

There is a slight difference in the performance between the protocols as discussed

after Theorem 3.3.1. In particular, for the same size of c0, Protocol 1 achieves

smaller error than Protocol 2.

We proceed to the second case with c0 = 0. Specifically, for Protocol 1, we

used c0 = 0, c1 = 0.5, and α = 0.05. For Protocol 2, we used the same c0

and c1, but a smaller α = 0.01. The results are summarized in the same tables.

Compared to the case with c0 > 0, we observe that the triggering times are

similar, though the scalability may be less in that the triggering times increase

as the graph sizes increase.

Finally, in the two tables, we display the number of triggering times for the

time-triggered case, where every node transmits its value at every time step. It

is evident that the event-triggered case performs much better for both proto-

cols. From these simulations, we can conclude that the event-based protocols can

efficiently eliminate the amount of communications.
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3.4.3 The effects of triggering parameters

In this part, we observe the effects of triggering parameters c0, c1 and α through

a comparison simulation in Protocol 1. The first set of parameters are chosen

as c0 = 0.1, c1 = 0.5, α = 0.03. The second set of parameters are chosen as

c0 = 0.1, c1 = 0.5, α = 0.03. The time responses are plotted in Fig 3.9 and

Fig 3.10. We can see that with positive c0, the triggering points are effectively

reduced, and it stops to communicate with each other when the regular agents

are close. If c0 = 0, then the triggering points keep happen in a long time period.

From another viewpoint, the error level with positive c0 cannot decrease to 0.

However, the error level with c0 = 0 can zero a zero error level when time goes to

infinity. The role of c0 can be seen as a asymptotic tolerance level, and the role

of c1 and α can be seen as tolerance reduction factor.
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Figure 3.9: Time responses with c0 = 0.1, c1 = 0.5, α = 0.03 in Protocol 1
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Figure 3.10: Time responses with c0 = 0, c1 = 0.5, α = 0.03 in Protocol 1
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Chapter 4

An Event-Triggered Approach to

Quantized Resilient Consensus

In this chapter, we consider an event-triggered update scheme for the problem of

multi-agent consensus in the presence of faulty and malicious agents within the

network. In particular, we focus on the case where the agents take integer (or

quantized) values. To keep the regular agents from being affected by the behavior

of faulty agents, algorithms of the mean subsequence reduced (MSR) type are

employed, where neighbors taking extreme values are ignored in the updates.

Different from the real-valued case, the quantized version requires the update

rule to be randomized. We characterize the error bound on the achievable level

of consensus among the agents as well as the necessary structure for the network

in terms of the notion of robust graphs. We verify via a numerical example the

effectiveness of the proposed algorithms. This part is published in [84].
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4.1 Problem formulation

4.1 Problem formulation

The quantized event-based consensus protocol can be outlined as follows: At

each discrete-time instant k ∈ Z+, each node makes an update in its state value

xi(k). It decides to broadcast its current value to its neighbors depends on the

triggering function. More concretely, each node i is equipped with an auxiliary

variable x̂i(k) which stores the last communicated value before time k. This is

compared with the updated state xi(k + 1). If the state has changed sufficiently,

then it will be sent to its neighbors and the auxiliary variable will be replaced.

We employ the following quantized event-based update rule for the multi-

agent system:

xi(k + 1) = xi(k) +Q

(∑
j∈Ni

aij(k) (x̂j(k)− xi(k))

)
,

where xi(k) ∈ Z is the state of node i, and x̂j(k) ∈ Z is the last commu-

nicated state of node j at time k. The latter is defined as x̂j(k) = xj(t
j
l ),

k ∈ [tjl , t
j
l+1), where tj0, t

j
1, . . . denote the transmission times determined by the

triggering function to be given below. The initial values xi(0), x̂j(0) are given.

The weight aij(k) for the edge (j, i) ∈ E satisfies γ ≤ aij(k) < 1 or aij(k) = 0,

and
∑

j∈Ni(k)
aij (k) = 1, where γ > 0 is the lower bound of the weights.

Here, Q(y) denotes the probabilistic quantizer function. It is given by

Q(y) =

⌊y⌋ with probability p(y),

⌈y⌉ with probability 1− p(y),

where p(y) = ⌈y⌉ − y.

We note that the the quantizer has to be chosen carefully and neither floor

nor ceil quantizer can guarantee resilient consensus. In Fig. 4.1, we provide an
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example to explain that in some cases, floor or ceil quantizer cannot reach resilient

consensus.

Figure 4.1: Example of floor and ceil quantizer

Denote the error between the updated state xi(k + 1) and the last communi-

cated state x̂i(k) by ei(k + 1) = x̂i(k)− xi(k + 1) with ei(0) = 0. The triggering

function is given as

fi(k + 1) = |ei(k + 1)| −
⌊
c0 + c1e

−α(k+1)
⌋
, (4.1)

where c0, c1, α > 0 are positive constants.

Now, we introduce the notion of quantized resilient consensus for multi-agent

systems.

Definition 4.1.1. (Quantized resilient consensus) If for any possible sets and

behaviors of the malicious agents and any state values of the regular nodes, the

following two conditions are satisfied, then we say that the regular agents reach

quantized resilient consensus almost surely:

1. Safety condition: There exists a bounded interval S ⊂ Z determined by the

initial states of regular agents such that x(k) ∈ S for all i ∈ R, k ∈ Z+.
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4.2 Quantized resilient consensus protocol

2. Consensus condition: There exists a finite time ka > 0 with probability one

such that xi(k) ∈ Cβ for all k > ka and i ∈ R, where the approximate

consensus set Cβ for β ≥ 0 is given by Cβ = {x ∈ Zn : |xj − xi| ≤ β}.

In this section, we would like to design event-based update rules for the regular

agents to reach quantized resilient consensus under the F -total model by using

only local information obtained from their neighbors.

The resilient consensus algorithms developed in this paper follows the basic

approach from [16; 17; 45]. We present two resilient algorithms that can be seen

as extensions of our recent work [85], which dealt with the real-valued states case.

The main difference in the algorithms is that they are randomized due to the use

of the probabilistic quantizer.

On the other hand, for the quantization in resilient consensus problem, our

approach is based on [18], where the advantages and the necessity of such quan-

tizers are discussed in detail. In fact, our study can be viewed as a generalization

since in the case of c0 = c1 = 0, the proposed update rules coincide with the one

without event-triggered protocols studied there.

4.2 Quantized resilient consensus protocol

In this section, we outline our first protocol to solve the quantized resilient con-

sensus problem, which will be referred to as Protocol 1.

In this protocol, the regular nodes make updates at every time step in a

synchronous manner, but only when an event happens, they update the auxiliary

values and then send them to neighbors. This algorithm is called the Quantized

Event-Based Mean Subsequence Reduced (QE-MSR) algorithm.

The QE-MSR algorithm can be described by the four steps as follows:

1. (Collecting neighbors’ information) At each time step k, every regular node
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i ∈ R uses the values x̂j(k), j ∈ Ni most recently communicated from the

neighbors as well as its own value xi(k) and sorts them from the largest to

the smallest.

2. (Deleting suspicious values) Comparing with xi(k), node i removes the F

largest and F smallest values from its neighbors. If the number of values

larger or smaller than xi(k) is less than F, then all of them are removed.

The removed data is considered as suspicious and will not be used in the

local update at this time step. The set of agents whose values remain is

written by Mi(k) ⊂ Ni.

3. (Local update) Node i updates its state by

xi(k + 1) = xi(k) +Q

 ∑
j∈Mi(k)

aij(k) (x̂j(k)− xi(k))

 . (4.2)

4. (Communication update) Node i checks its own triggering function if its

own triggering function fi(k + 1) in (4.1) is positive or not. Then, it sets

x̂i(k + 1) as

x̂i (k + 1) =

xi(k + 1) if fi(k + 1) > 0,

x̂i(k) otherwise.

(4.3)

The communication rule in this algorithm shows that only when the current

value has sufficiently changed to exceed a threshold for the triggering function,

then the auxiliary variable will be updated, and only at this time, the node

sends its value to its neighbors. This event triggering scheme can significantly

reduce the communication burden; we will see this in the numerical example in

Section 4.4.

We are now ready to present our main result for Protocol 1 of this section. Let
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the interval S be given as S =
[
x̂(0), x̂(0)

]
, where x̂ (k) = mini∈R{xi(k), x̂i(k)}

and x̂ (k) = maxi∈R{xi(k), x̂i(k)}.

Theorem 4.2.1. Under the F -total malicious model, the regular agents with the

QE-MSR using (4.2) and (4.3) reach quantized resilient consensus in finite time

almost surely if and only if the underlying graph is (F + 1, F + 1)-robust. The

safety interval is given by S =
[
x̂(0), x̂(0)

]
, and the approximate consensus set Cβ

is given with

β = min

{
|S| ,

⌊
2c0

(
2|R|
γ|R| + 1

)⌋}
, (4.4)

where |S| = x̂(0)− x̂(0).

The proof of this theorem relies on the technical result from [36] (Theorem 2).

We present it here as a lemma with minor modifications adapted for our problem

setup.

Lemma 4.2.1. Consider the network of agents interacting over the graph G

through the QE-MSR algorithm. Suppose that the following three conditions are

satisfied for the regular agents:

(C1) xi(k), x̂i(k) ∈ S for all i ∈ R and k ∈ Z+.

(C2) For each x(k) = x0, x̂(k) = x̂0, there exists a finite time kx such that

Prob{x(k + kx), x̂(k + kx) ∈ Cβ | x(k) = x0, x̂(k) = x̂0} > 0.

(C3) If x(k), x̂(k) ∈ Cβ, then x(k′), x̂(k′) ∈ Cβ, k
′ ≥ k.

Then, the regular agents reach quantized resilient consensus in finite time almost

surely.

Proof of Theorem 4.2.1: (Necessity) This essentially follows from [18], which

considers the special case without the triggering function, that is, c0 = c1 = 0.
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(Sufficiency) We must show that the three conditions in Lemma 4.2.1 are met.

We first show (C1) by induction. Note that the update rule (4.2) can be

expressed as follows:

xi(k + 1) = Q

 ∑
j∈Mi(k)

aij(k)x̂j(k) + aii(k)xi(k)

 , (4.5)

where

aii(k) = 1−
∑

j∈Mi(k)

aij(k). (4.6)

At time k = 0, it is clear that x̂i(0), xi(0) ∈
[
x̂(0), x̂(0)

]
, i ∈ R. The nodes

in Mi(k) take values in S, since the nodes outside S are at most F and will be

removed by the QE-MSR. Then from (4.5), we have xi(k + 1) ∈ S. Moreover,

by (4.3), it follows x̂i(k + 1) ∈ S and hence (C1) is satisfied with this interval S.

This implies that Cβ ⊂ S and thus β ≤ |S|.

We next check (C2). Note that for time k between two triggering instants,

we have fi(k) ≤ 0. Moreover, for the neighbor j ∈ Ni, if fj(k) > 0, then

x̂j(k) = xj(k) and otherwise x̂j(k) = x̂j(k − 1) = xj(k) + ej(k). Thus, by letting

êj(k) =

ej(k) if fj(k) ≤ 0,

0 otherwise,

it always holds from (4.1) that x̂j(k) = xj(k) + êj(k) and

|êj(k)| ≤ c0 + c1e
−αk, ∀k ≥ 0. (4.7)

Then, from (4.5), due to the probabilistic quantization in (4.2), it holds with
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positive probability,

xi(k + 1) =

⌊
aii(k)xi(k) +

∑
j∈Mi(k)

aij(k)xj(k) +
∑

j∈Mi(k)

aij(k)êj(k)

⌋
. (4.8)

Let x(k) = maxi∈R xi(k) and x(k) = mini∈R xi(k). Then, with positive probabil-

ity, we have

xi(k + 1) ≤
⌊
aii(k)x(k) +

∑
j∈Mi(k)

aij(k)x(k) +
∑

j∈Mi(k)

aij(k)êj(k)

⌋

=

⌊
x(k) +

∑
j∈Mi(k)

aij(k)êj(k)

⌋
≤
⌊
x(k) + max

j∈Mi(k)
|êj(k)|

⌋
.

Thus, by (4.7) it follows

xi(k + 1) ≤
⌊
x(k) + c0 + c1e

−αk
⌋
. (4.9)

Let V (k) = x(k) − x(k) and V̂ (k) = x̂(k) − x̂(k). Then, we introduce two

sequences given by

x0(k + 1) = x0(k) + c0 + c1e
−αk, (4.10)

x0(k + 1) = x0(k)− c0 − c1e
−αk, (4.11)

where x0(0) = x(0) − σ0, and x0(0) = x(0) + σ0 with σ0 = σV (0). We next

introduce another sequence ε0(k) defined by

ε0(k + 1) = γε0(k)− (1− γ)σ0, (4.12)
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where ε0(0) = εV (0). Take the parameters ε, σ > 0 so that

ε+ σ =
1

2
, σ <

γN

1− γN
ε. (4.13)

For the sequence ε0(k), let

X0(k, ε0(k)) = {j ∈ V : xj(k) > x0(k)− ε0(k)} ,

X0(k, ε0(k)) = {j ∈ V : xj(k) < x0(k) + ε0(k)} .

In the following, we show that X0(k, ε0(k)) and X0(k, ε0(k)) are disjoint sets.

To this end, we show

x0(k)− ε0(k) > x0(k) + ε0(k), (4.14)

By the update rules of x0(k) and x0(k) in (4.10) and (4.11),

(x0(k)− ε0(k))− (x0(k) + ε0(k)) =

(
x0(0) + c0k + c1

1− e−αk

1− e−α

)
−
(
x0(0)− c0k − c1

1− e−αk

1− e−α

)
− 2ε0(k).

(4.15)

Then by substituting x0(0) = x(0)−σ0 and x0(0) = x(0)+σ0 into the right-hand

side of (4.15), we obtain

(x0(k)− ε0(k))− (x0(k) + ε0(k))

= (x(0)− x(0))− 2σ0 + 2c0k + 2c1
1− e−αk

1− e−α
− 2ε0(k)

= V (0)− 2σV (0) + 2c0k + 2c1
1− e−αk

1− e−α
− 2ε0(k). (4.16)
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Because of (4.12) and 0 < γ < 1, we easily have that ε0(k+1) < ε0(k), and hence

ε0(k) < ε0(0) = εV (0). We thus obtain

(x0(k)− ε0(k))− (x0(k) + ε0(k)) > (1− 2σ − 2ε)V (0) + 2c0k + 2c1
1− e−αk

1− e−α
> 0,

where the last inequality holds since σ + ε = 1/2 from (4.13). Consequently, we

have (4.14).

From the above, we have that the two sets X0(0, ε0(0)) and X0(0, ε0(0)) are

nonempty with at least one regular node in each and moreover disjoint. Therefore,

by the assumption of (F+1,F+1)-robustness, there are three cases:

1. All nodes in X0(0, ε0(0)) have F+1 neighbors or more from outside.

2. All nodes in X0(0, ε0(0)) have F+1 neighbors or more from outside.

3. The total number of nodes in X0(0, ε0(0)) and X0(0, ε0(0)) having F+1

neighbors or more from outside of its own set is no smaller than F+1.

Notice that in any of the three cases, there exists at least one regular agent

i ∈ R in either X0(0, ε0(0)) or X0(0, ε0(0)) that has F+1 neighbors or more from

outside of its own set. In the following, we suppose that this node i belongs to

X0(0, ε0(0)). A similar argument holds for the case when it is in X0(0, ε0(0)).

Now we go back to (4.8) and rewrite it by partitioning the neighbor set Mi(k)

of node i into two parts: The nodes which belong to X0(k, ε0(k)) and those that

do not. Since node i has at least F + 1 outside X0(k, ε0(k)), the latter set is

nonempty. Hence, with positive probability, we obtain

xi(k + 1) =
⌊
aii(k)xi(k) +

∑
j∈Mi(k)∩X0

aij(k)xj(k)

+
∑

j∈Mi(k)\X0

aij(k)xj(k) +
∑

j∈Mi(k)

aij(k)êj(k)
⌋
,
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where we use the shorthand notation X0 for X0(k, ε0(k)). Then, we can bound

this from above as

xi(k + 1) ≤
⌊
aii(k)x(k) +

∑
j∈Mi(k)∩X0

aij(k)x(k)

+
∑

j∈Mi(k)\X0

aij(k) (x0(k)− ε0(k)) +
∑

j∈Mi(k)

aij(k)êj(k)

⌋

=

⌊(
1−

∑
j∈Mi(k)\X0

aij(k)

)
x(k)

+
∑

j∈Mi(k)\X0

aij(k) (x0(k)− ε0(k)) +
∑

j∈Mi(k)

aij(k)êj(k)

⌋
. (4.17)

We next show by induction that x(k) ≤ x0(k) + σ0 with positive probability

(and similarly, x(k) ≥ x0(k) − σ0). For k = 0, by definition, we have x(0) =

x0(0)+σ0. Suppose that x(k) ≤ x0(k)+σ0 with positive probability. Then, from

(4.9) and (4.10), with positive probability, we have

x (k + 1) ≤
⌊
x(k) + c0 + c1e

−αk
⌋

≤
⌊
(x0(k) + σ0) + c0 + c1e

−αk
⌋

= ⌊x0(k + 1) + σ0⌋ ≤ x0(k + 1) + σ0.

Thus we have x(k) ≤ x0(k) + σ0 with positive probability.
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On the other hand, (4.17) can be further bounded as

xi(k + 1) ≤
⌊(

1−
∑

j∈Mi(k)\X0

aij(k)

)
(x0(k) + σ0)

+
∑

j∈Mi(k)\X0

aij(k) (x0(k)− ε0(k)) +
∑

j∈Mi(k)

aij(k)êj(k)

⌋

≤
⌊
x0(k) +

∑
j∈Mi(k)∩X0

aij(k)σ0

−
∑

j∈Mi(k)\X0

aij(k)ε0(k) +
∑

j∈Mi(k)

aij(k)|êj(k)|
⌋
. (4.18)

We also show that from (4.12), it holds ε0(k) > 0 for k = 0, 1, . . . , |R|. It is

clear that ε0(k + 1) < ε0(k), and hence we need to guarantee only ε0(|R|) > 0.

By (4.12), ε0(|R|) can be written as

ε0(|R|) = γ|R|ε0(0)−
|R|−1∑
i=0

γi(1− γ)σ0

=
(
γ|R|ε− (1− γ|R|)σ

)
V (0).

This is positive because we have chosen σ as in (4.13).

Hence, (4.18) can be written as

xi(k + 1) ≤
⌊
x0(k) + (1− γ)σ0 − γε0(k) + c0 + c1e

−αk
⌋

= ⌊x0(k + 1)− ε0(k + 1)⌋

≤ x0(k + 1)− ε0(k + 1), (4.19)

for k = 0, 1, . . . , |R| − 1, where in the first inequality, we used the fact that

there always exists j not in X0 (k, ε0 (k)) and the equality follows from (4.10)

and (4.12). This relation shows that once an update happens at node i, then this
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node will move out of X0 (k + 1, ε0 (k + 1)) with positive probability. We note that

inequality (4.19) also holds for the regular nodes that are not inside X0 (k, ε0 (k)).

This means that the nodes outside will not move in X0 (k + 1, ε0 (k + 1)) with

positive probability. Similar results hold for the other set X0(k + 1, ε0(k + 1)).

Hence, after time |R|, all the regular nodes will be out of at least one of the two

sets X0 (|R|, ε0 (|R|)) and X0 (|R|, ε0 (|R|)) with positive probability. We suppose

that X0 (|R|, ε0 (|R|))∩R is empty. When such an event occurs, it clearly follows

that x (|R|) ≤ x0 (|R|) − ε0 (|R|). From the definition of V (k), with positive

probability, we have

V (N) = x (|R|)− x (|R|)

≤ (x0 (|R|)− ε0 (|R|))− (x0 (|R|)− σ0)

= x0 (0)− x0 (0) + 2c0|R|+ 2

|R|−1∑
i=0

c1e
−αi − ε0 (|R|) + σ0

= (x (0)− σ0)− (x (0) + σ0) + 2c0N + 2c1
1− e−α|R|

1− e−α
− ε0 (|R|) + σ0

= V (0) + 2c0|R|+ 2c1
1− e−α|R|

1− e−α
− σV (0)−

(
γ|R|ε−

(
1− γ|R|)σ)V (0)

=
(
1− γ|R| (ε+ σ)

)
V (0) + 2c0N + 2c1

1− e−α|R|

1− e−α
.

By ε+ σ = 1/2 in (4.13), with positive probability, we have

V (|R|) ≤
(
1− γ|R|

2

)
V (0) + 2c0|R|+ 2c1

1− e−α|R|

1− e−α
.

If there are more updates by node i after time k = |R|, this argument can be
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extended further. Hence, with positive probability, for any ℓ ≥ 1, it holds

V (ℓ|R|) ≤
(
1− γ|R|

2

)
V ((ℓ− 1)|R|) + 2c0|R|+ 2c1e

−(ℓ−1)α|R|1− e−α|R|

1− e−α

≤
(
1− γ|R|

2

)ℓ

V (0) +
ℓ−1∑
t=0

(
1− γ|R|

2

)ℓ−1−t(
2c0N + 2c1e

−(t−1)α|R|1− e−α|R|

1− e−α

)

≤
(
1− γ|R|

2

)ℓ

V (0) + 2c0|R|
1−

(
1− γ|R|

2

)ℓ
1−

(
1− γ|R|

2

)
+ 2c1

1− e−α|R|

1− e−α

(
1− γ|R|

2

)ℓ 1−
(
1− γ|R|

2

)−ℓ

e−α|R|ℓ

1−
(
1− γ|R|

2

)−ℓ

e−α|R|
. (4.20)

In (4.20), because 0 < γ < 1, it is clear that as ℓ → ∞, the upper bound on the

far right-hand side converges to

2c0|R|
1

1−
(
1− γ|R|

2

) =
4c0|R|
γ|R| .

This indicates that for any δ > 0, with positive probability, there exists a finite

L0 > 0 such that for ℓ ≥ L0, it holds V (ℓ|R|) ≤ 4c0|R|/γ|R| + δ.

Similarly, we can analyze V (ℓ|R| + t) for t = 0, 1, . . . , |R| − 1 and obtain a

bound like (4.20), where the difference is that V (0) is replaced with V (t). Hence,

we have that with positive probability, there exists a finite Lt > 0 such that for

ℓ ≥ Lt

V (ℓ|R|+ t) ≤ 4c0|R|
γ|R| + δ. (4.21)

Thus, with positive probability, we have that |xi(k)−xj(k)| ≤ 4c0|R|/γ|R|+ δ for

all k ≥ maxt Lt|R| and i, j ∈ R.

64



4.2 Quantized resilient consensus protocol

On the other hand, V̂ (k) can be similarly bounded. By (4.7),

V̂ (k) ≤ V (k) + 2(c0 + c1e
−αk).

Hence, by (4.21), with positive probability, there exists L′ > 1 such that for

ℓ > L′ and t = 0, 1, . . . , |R| − 1,

V̂ (ℓ|R|+ t) ≤ 4c0|R|
γ|R| + 2c0 + δ. (4.22)

Since V (k) and V̂ (k) take integer values, and we can arbitrarily choose δ, it

is now clear from (4.21) and (4.22) that with positive probability

V (k), V̂ (k) ≤
⌊
2c0

(
2|R|
γ|R| + 1

)⌋
, ∀k > max{Lt, L

′}|R|.

As the last step, it remains to show (C3) in Lemma 4.2.1. When all regular

current values and communicated values are inside Cβ at time k′, from (4.5), it

is straightforward that all the regular values xi(k) cannot move outside Cβ at

time k > k′. Moreover, the same holds for the regular auxiliary values x̂i(k)

since they can take only the same values as xi(k) over time. Thus, (C3) has been

established. This concludes the proof. �
Theorem 4.2.1 deals with the quantized version of the event-based resilient

consensus problem studied in [85]. It is interesting to note that for quantized

consensus even for the case without malicious nodes, event-based schemes have

not been considered much in the literature (see, e.g., [90]).

This protocol has several interesting features as follows.

(i) The (F +1, F +1)-robust graph is a necessary and sufficient condition for

the conventional resilient consensus problems without event-triggered protocol

for real-valued nodes in [45] and for quantized-valued nodes in [18].
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4.2 Quantized resilient consensus protocol

(ii) Consensus can be achieved in finite time with some approximation due to

the event-based scheme. Clearly, communication will be less with greater error

in consensus at the end. We note that finite time convergence can be realized

by algorithms for resilient quantized consensus in [18] without event-based rules

though communication among agents is necessary at every step in the synchronous

case.

(iii) In the triggering function, the parameter c0 sets the level of approxima-

tion. As seen in (4.4), by using smaller c0, the approximate level expressed by

β becomes smaller. Observe that as c0 → 0, exact consensus with β = 0 be-

comes possible. We however show below that for exact consensus, it is in fact

sufficient to use c0 < 1. It is also noted that in the triggering function (4.1), the

time-varying part c1e
−α(k+1) affects only the transients. It can be replaced by any

nonincreasing function of time that always takes nonnegative values and goes to

zero in a finite number of steps. The analysis will remain essentially the same.

(iv) As a technical difference from the real-valued case studied in [85], the

bound on the approximate consensus set Cβ requires an arbitrarily small δ > 0 in

the derivation in the proof. This is necessary due to the probabilistic arguments

there to guarantee that with positive probability the agents’ values will eventually

go into Cβ. With δ = 0, the probability will be zero as in (4.20), it requires an

infinite number of steps.

We now consider when exact consensus with C0 can be attained. It turns out

that with the parameter c0 < 1, this is possible. In this case, with a sufficiently

large kf , we have c0 + c1e
−αk < 1 for k > kf . This indicates that after time kf ,

at each moment k the current value changes for any regular agent, an event is

guaranteed to happen, and thus it holds xi(k) = x̂i(k). Thus, we can rewrite the
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update rule (4.2) as

xi(k + 1) = xi(k) +Q

 ∑
j∈Mi(k)

aij(k) (xj(k)− xi(k))

 (4.23)

for k > kf . This coincides with the quantized resilient consensus update rule of

[18]. We state this fact as a corollary.

Corollary 4.2.1. If c0 < 1, then under the F -total model, the regular agents with

the QE-MSR using (4.2) and (4.3) reach quantized resilient consensus with β = 0

in finite time almost surely if and only if the underlying graph is (F + 1, F + 1)-

robust. The safety interval is given by S =
[
x̂(0), x̂(0)

]
.

We note that if we set c1 = 0 together with 0 ≤ c0 < 1, then the protocol will

reduce to that in [18] from the initial time. However, it is one of the features of

the quantized case that exact consensus can be guaranteed even if c0 > 0. This is

in contrast to the real-valued case studied in, e.g., [75], where the approximation

error will always remain and its level depends on the size of c0 > 0.

4.3 An alternative QE-MSR algorithm

We next provide our second resilient consensus algorithm, which will be referred

to as Protocol 2. It is quite similar to the first protocol, but the system behavior

as well as the approximate consensus bound are different.

The difference in the protocols is simple. For Protocol 2, to compute the

new state xi(k + 1) of agent i, we propose to replace in (4.3) the current state

xi(k) with the last communicated state x̂i(k). Notice that in Protocol 1, the data

of its own comes in only through xi(k) and x̂i(k) is not used. This may seem

desirable since the current state xi(k) is newer, which might potentially help the

convergence speed. An advantage of the approach for Protocol 2 is that xi(k+1)
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need not be stored but will be used only for checking the triggering condition.

This structure in the protocol is motivated by those in [33] and [88].

Protocol 2 follows the steps of Protocol 1 except that in the local update of

Step 3, for k ∈ Z+, every regular node i ∈ R updates its current state by

xi(k + 1) = Q

x̂i(k) +
∑

j∈Mi(k)

aij(k) (x̂j(k)− x̂i(k))

 . (4.24)

As in Protocol 1, the initial regular communicated values satisfy x̂i(0) ∈
[
x̂(0), x̂(0)

]
,

i ∈ R.

The results for Protocol 2 are presented in a manner parallel to those for

Protocol 1. We first give the result for general case.

Theorem 4.3.1. Under the F -total model, the regular agents with the QE-MSR

using (4.24) and (4.3) reach bounded quantized resilient consensus in finite time

almost surely if and only if the underlying graph is (F + 1, F + 1)-robust. The

safety interval is given by S =
[
x̂(0), x̂(0)

]
, and the approximate consensus set Cβ

is given with

β = min

{
|S|,
⌊
c0

1− γ|R|−1

γ|R|−1 (1− γ)

⌋}
. (4.25)

Outline of the Proof: The theorem can be proven by following similar lines

as those in the proof of Theorem 4.2.1. For the sufficiency part, we must establish

the three conditions (C1)–(C3) in Lemma 4.2.1. This can be done by following

the analysis for Protocol 2 in the real-valued case from Chapter 3. For (C1) and

(C3), we must show that x(k) and x̂(k) are nonincreasing functions and that x(k)

and x̂(k) are nondecreasing functions of time k. For proving (C2), due to the use

of the probabilistic quantizer in the current setting, the proof must be modified

from the real-valued case in Chapter 3, where the protocol is deterministic. For
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Protocol 2, certain parts must be shown to hold only with positive probability,

which is enough to guarantee the condition (C2). �
Compared with Protocol 1, Protocol 2 is simpler as only the data communi-

cated via event-based protocols is used to achieve resilient consensus. In general,

this feature results in slower triggering of transmission events and hence lower

communication rate, especially when the values of the regular nodes become close

to each other. As a consequence, larger error among regular nodes may remain

for consensus when same parameters are used for the triggering functions in the

two protocols. Interestingly, however, from the theoretical viewpoint, the advan-

tage of Protocol 2 is that the upper bound in Theorem 4.3.1 for the approximate

consensus set Cβ is smaller than the one in Theorem 4.2.1. It is noted that the

bound in Theorem 4.2.1 can be shown to be valid for the current case also by

employing the proof method there.

From Theorem 4.3.1, we also observe that exact consensus can be attained by

taking the parameter c0 in the triggering rule small. Similarly to Protocol 1, it

is in fact sufficient to set c0 < 1, as demonstrated in the next corollary.

Corollary 4.3.1. If c0 < 1, then under the F -total model, the regular agents

with the QE-MSR using (4.24) and (4.3) reach quantized resilient consensus with

β = 0 if and only if the underlying graph is (F + 1, F + 1)-robust. The safety

interval is given by S =
[
x̂(0), x̂(0)

]
.

Proof. The proof is similar to that of Corollary 4.2.1. After finite time steps in

this protocol, the two states in each agent i become the same, xi(k) = x̂i(k).

Thus, the update rule in (4.24) reduces to that of (4.23).
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Figure 4.2: Network topology with (2, 4)-robustness

4.4 Numerical example

In this section, we illustrate the proposed two resilient consensus approaches via

a numerical example.

We consider the multi-agent system with 7 nodes whose connectivity graph

is shown in Fig. 4.2. As mentioned earlier, this graph is (2, 4)-robust. Hence,

according to our theoretical results, with up to one malicious agent (i.e., F = 1),

the regular agents should reach consensus. The parameters of the triggering

function are chosen as c0 = 0.1, c1 = 1, and α = 2. The initial states were set as

x(0) = [10 25 13 8 20 18 13]T for all simulations.

Node 7 is chosen as the malicious node and continuously oscillates its value

over time. The time responses for the two protocols are depicted in Figs. 4.3 and

4.4. In each plot, the time instants when each node broadcasts are shown by the

markers ∗ in the color corresponding to that of its time response curve. As ex-

pected, we observe that both protocols reach exact resilient quantized consensus.

Moreover, for this simulation, Protocol 2 is slower than Protocol 1 in convergence

time.

Another simulation was performed by modifying the critical parameter c0 in

the triggering function as c0 = 1.1. The time responses for the two protocols are
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exhibited in Figs. 4.5 and 4.6. In this case, as expected, exact resilient quan-

tized consensus cannot be guaranteed and approximation errors remain for both

protocols. The error is larger for Protocol 2 though the number of transmissions

required overall is smaller. Hence, we should highlight the tradeoff between the

achievable level of consensus and the required communication among the agents.
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Figure 4.3: Protocol 1 with c0 = 0.1
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Figure 4.4: Protocol 2 with c0 = 0.1
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Figure 4.5: Protocol 1 with c0 = 1.1
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Figure 4.6: Protocol 2 with c0 = 1.1
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Chapter 5

A Distributed Model Predictive

Scheme for Resilient Consensus

with Input Constraints

In this chapter, we study the problem of resilient consensus in multi-agent net-

works with bounded input constraints. The resilient update rules takes account

of the presence of attacks by malicious agents in the network. Each regular agent

solves a constrained finite-time optimal problem with the states of its neighbors

and updates its state based on a predetermined update rule. Schemes are pro-

posed to solve the problem with synchronous and asynchronous communications,

assuming that the maximum number of malicious nodes is known. We derive

algorithms which ignore the large and small values from neighbors to avoid the

influence of the malicious nodes. It is guaranteed to attain resilient consensus

under the topological condition expressed in terms of graph robustness. Simu-

lation examples are provided to demonstrate the effectiveness of the proposed

algorithm. This part is published in [86].
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5.1 Problem formulation

5.1.1 Model predictive consensus protocol with input con-

straints

Consider the multi-agent system where each agent is described by the following

discrete-time single-integrator model

xi(k + 1) = xi(k) + ui(k), (5.1)

where xi(k) ∈ R is its state and ui(k) ∈ R is the control input.

The basic objective of these agents is to attain consensus, that is, xi(k) −

xj(k) → 0 as k → ∞ for all i, j ∈ V in an iterative manner by interacting with

each other through exchanges of their state values. Under the model predictive

control scheme, the control input of agent i is determined by locally solving an

optimal control problem with a finite horizon formulated as follows. LetNi ≥ 1 be

the length of the prediction horizon for node i. We introduce the input sequence

Ui(k) = [ui(k) ui(k + 1) · · · ui(k +Ni − 1)]T and the cost function is set as

Ji(xi (k) , zi(k), Ui (k)) = Jx
i (xi (k) , zi (k) , Ui (k)) + Ju

i (Ui (k)) ,

where the costs for the states and the inputs are given, respectively, as

Jx
i (xi (k) , zi (k) , Ui (k)) = αi

Ni∑
j=1

|xi (k + j)− zi (k)|2,

Ju
i (Ui (k)) = βi

Ni−1∑
j=1

|ui (k + j)|2. (5.2)

Here, zi (k) is called the target point for agent i and is the state that the agent

aims at reaching in the next step; it will be discussed more later. The parameters
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αi and βi are the weights.

Agent i calculates the optimal control sequence the optimal control sequence

U o
i (k) by solving the following problem at each time k:

min
Ui(k)

Ji (xi (k) , zi (k) , Ui (k)) , (5.3)

subject to the agent dynamics (5.1) and the input constraint given by

|ui (k)| ≤ ui,max. (5.4)

We write the optimal solution U o
i (k) as

U o
i (k) = [uo

i (k|k) , · · · , uo
i (k +Ni − 1|k)]T ,

and choose our control law as ui(k) = uo
i (k|k) for k ∈ Z+. In what follows,

we may simplify the notation and write uo
i (k) for u

o
i (k|k) whenever no confusion

arises.

5.1.2 MP-MSR algorithm

Here, we outline the fault-tolerant consensus protocol to solve the resilient con-

sensus problem with input constraint. The algorithm is called the Model Predic-

tive based Mean Subsequence Reduced (MP-MSR) algorithm. We consider the

adversary model of F − total malicious.

The MP-MSR has four steps as shown below:

Algorithm 5.1.1. (MP-MSR Algorithm, Protocol 1)

1. (Collecting neighbour information) At time step k ∈ Z+, every regular node

i collects the neighbours’ value xj(k), j ∈ Ni, and sorts them from the

largest to the smallest (including its own value xi(k)).
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2. (Deleting suspicious values) Comparing with xi(k), node i removes the F

largest and F smallest values from its neighbours. If the number of val-

ues larger (or smaller) than xi(k) is less than F , then delete all of them.

The deleted data is considered as suspicious data and will not be used in

the following local updates. The set of the remaining values is written by

Mi(k) ⊂ Ni.

3. (Local optimization) Every regular node i solves the optimization problem

min
Ui(k)

Ji (xi (k) , zi (k) , Ui (k))

subject to the constraints (5.1) and (5.4), where the target point zi(k) is

given by

zi (k) = xi (k) +
∑

j∈Mi(k)

aij (k) (xj (k)− xi (k)) . (5.5)

4. (Local update) The initial input is set as ui(k) = uo
i (k|k), then the state is

updated by (5.1).

It will be established that as long as the agent network is sufficiently connected

in the sense of robustness, the MP-MSR algorithm is capable to reach resilient

consensus.

5.2 Main results on synchronous MP-MSR al-

gorithm

In this section, the main results on the synchronous MSR algorithm based on

model predictive control are presented.
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5.2.1 Properties on the optimal control input

Here, we provide a preliminary result concerning the optimal control input. We

first introduce a modified expression of the update rule (5.1) for the regular nodes

under the model predictive control scheme discussed above. It takes the form of

conventional consensus but with a time-varying parameter. Specifically, it is

written as

xi (k + 1) = xi (k) + ηi (k)
∑

j∈Mi(k)

aij (k) (xj (k)− xi (k)), (5.6)

where the parameter ηi(k) is given by

ηi (k) =


uo
i (k|k)∑

j∈Mi(k)

aij(k)(xj(k)−xi(k))
if

∑
j∈Mi(k)

aij (k) (xj (k)− xi (k)) ̸= 0,

1 otherwise.

(5.7)

Regarding the parameter ηi(k), the following result exhibits an important

property, showing that it is lower bounded by a constant at all times.

Proposition 5.2.1. Under the MP-MSR algorithm, there exists a positive con-

stant c ∈ (0, 1) such that c ≤ ηi ≤ 1 for each regular node i and each k ∈ Z+.

The proof of this proposition uses certain geometric arguments, for which

we need to introduce the notion of paths in the state space. Given the control

sequence Ui(k) of length Ni, we call the sequence of states Xi(xi(k), Ui(k)) =

[xi(k), xi(k+1), · · · , xi(k+Ni)] to be the Ni-path from xi(k) to xi(k+Ni). More

specifically, such paths are defined as below.

Definition 5.2.1. The N-path TA = (x0, · · · , xN−1) is pointing towards z ∈ R if

1. |xj+1 − z| ≤ |xj − z|, j ∈ {0, 1, . . . , N − 2},
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2. xj ∈ [min(x1, z),max(x1, z)], j ∈ {1, 2, . . . , N}.

The following lemma from Theorem 5 in [23] gives the necessary geometric

properties to be used in our analysis.

Lemma 5.2.1. Let [x0 · · · xN−1]
T ∈ RN be an N-path. Given z ∈ R, there

always exists an N-path [y0 · · · yN−1]
T ∈ RN with y0 = x0 pointing towards z

and satisfying the following inequalities:

1. |yj − z| ≤ |xj − z|, j ∈ {0, 1, . . . , N − 1},

2. |yj+1 − yj| ≤ |xj+1 − xj|, j ∈ {0, 1, . . . , N − 2}.

This lemma gives the basic properties of N -path, these two properties can

guarantee an shortest path from one point to another. We next present basic

properties of the optimal control input.

Lemma 5.2.2. Under the MP-MSR algorithm, the following facts hold for each

regular node i:

1) Xo
i (xi (k) , U

o
i (k)) is an Ni-path from xi(k) to zi(k).

2) If xi(k) ̸= zi(k), then U o
i (k) ̸= 0.

3) If xi(k) ̸= zi(k), then uo
i (k|k) ̸= 0.

Proof. 1). We prove by contradiction. Suppose that Xo
i (xi (k) , U

o
i (k)) is not

pointing towards zi(k). From Lemma 5.2.1, we know that there exists an Ni-path

X̂i (k) = [x̂i (k) , · · · , x̂i (k +Ni)] with x̂i (k) = xo
i (k) pointing towards zi(k).

Then, it follows that for ∀j = 0, . . . , Ni − 1,

|x̂j (k + j + 1)− zi (k)| ≤ |xo
i (k + j + 1)− zi (k)| ,

|x̂j (k + j + 1)− x̂j (k + j)| ≤ |xo
i (k + j + 1)− xo

i (k + j)| .
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From the definition of Jx
i (xi (k) , zi (k) , Ui (k)) in (5.2), we have the following

inequalities:

Jx
i

(
x̂i (k) , ẑi (k) , Ûi (k)

)
≤ Jx

i (x
o
i (k) , z

o
i (k) , U

o
i (k)) ,

Ju
i

(
x̂i (k) , ẑi (k) , Ûi (k)

)
≤ Ju

i (xo
i (k) , z

o
i (k) , U

o
i (k)) .

This implies that Xo
i (xi(k), U

o
i (k)) is not optimal. Hence the optimal path

Xo
i (xi(k), U

o
i (k)) has to point towards zi(k).

2). We prove again by contradiction. Suppose that xi(k) ̸= zi(k), and the

optimal solution is U o
i (k) = 0. Then,

Ji (xi (k) , zi (k) , U
o
i (k)) = αiNi|xi (k)− zi (k)|2. (5.8)

Take the control vector as U i (k) =
[
δ (zi (k)− xi (k)) 0 · · · 0

]T
, with 0 <

δ < 1 and |δ (zi (k)− xi (k))| ≤ ui,max. The path resulting from this control is

denoted by X i (lNi) = [xi (k) , · · · , xi (k +Ni)]. Then, we have

Ju
i

(
xi (k) , zi (lNi) , U i (k)

)
= βiδ

2|xi (k)− zi (lNi)|2. (5.9)

By this control, we can obtain the states as xi (k +Ni) = xi (k +Ni − 1) = · · · =

xi (k + 1) and

xi (k + 1) = xi (k) + ui (k) = xi (k) + δ (zi (k)− xi (k))

= (1− δ) xi (k) + δzi (k) .
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Then, we obtain

Jx
i

(
xi (k) , zi (k) , U i (k)

)
= αiNi|xi (k + 1)− zi (lNi)|2

= αiNi(1− δ)2|xi (k)− zi (lNi)|2. (5.10)

By (5.9) and (5.10), the cost function is

Ji
(
xi (k) , zi (k) , U i (k)

)
=
(
αiNi(1− δ)2 + βiδ

2
)
|xi (k)− zi (k)|2. (5.11)

By comparing (5.8) and (5.11), we choose δ sufficiently small that

δ <
2αiNi

αiNi + βi

.

It will then follow

Ji
(
xi (k) , zi (k) , U i (k)

)
< Ji (xi (k) , zi (k) , U

o
i (k)) .

Hence, U o
i (k) = 0 is not the optimal solution.

3). This fact is shown by contradiction as well. Suppose that the optimal

solution takes the form as

U o
i (k) =

[
0 uo

i (k + 1) · · · uo
i (k +Ni − 1)

]T
.

We also consider the input

U i (k) =
[
uo
i (k + 1) · · · uo

i (k +Ni − 1) 0
]T

.

Denote the state resulting from this input by xi(k+1), . . . , xi(k+Ni) with xi(k) =

xi(k). It is easy to see that this control input satisfies the input constraint (5.4)
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just as the optimal solution does. Then it follows

Ju
i

(
xi (k) , zi (k) , U i (k)

)
= Ju

i (xi (k) , zi (k) , U
o
i (k)) ,

and

Ji
(
xi (k) , zi (k) , U i (k)

)
− Ji (xi (k) , zi (k) , U

o
i (k))

= αi

Ni∑
j=1

|xi (k + j)− zi (k)| − αi

Ni∑
j=1

|xo
i (k + j)− zi (k)|

= αi

∣∣∣xi (k) +

Ni−1∑
j=1

uo
i (k + j)− zi (k)

∣∣∣− αi |xi (k)− zi (k)| .

From 1) and 2), we know that compared with xi(k), xi (k) +
Ni−1∑
j=1

uo
i (k + j) is

closer to zi(k). Hence,

αi

∣∣∣xi (k) +

Ni−1∑
j=1

uo
i (k + j)− zi (k)

∣∣∣− αi |xi (k)− zi (k)| < 0.

This indicates that U o
i (k) is not the optimal solution. Therefore, we have uo

i (k|k) ̸=

0 if xi(k) ̸= zi(k).

Proof of Proposition 5.2.1: It is first proven that

|uo
i (k|k)| ≤

∣∣∣∣∣∣
∑

j∈Mi(k)

aij (k) (xj (k)− xi (k))

∣∣∣∣∣∣ (5.12)

if the right-hand side is nonzero. This will be shown by contradiction. Suppose

that

|uo
i (k|k)| >

∣∣∣∣∣∣
∑

j∈Mi(k)

aij (k) (xj (k)− xi (k))

∣∣∣∣∣∣ ,
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and

U o
i (k) =

[
uo
i (k) uo

i (k + 1) · · · uo
i (k +Ni − 1)

]T
.

Then, we choose a different control input as

ui(k) =
∑

j∈Mi(k)

aij (k) (xj (k)− xi (k)) ,

and let

U i (k) =
[
ui (k) uo

i (k + 1) · · · uo
i (k +Ni − 1)

]T
.

It is obvious that we are led to the contradiction:

Jx
i (xi (k) , zi (k) , U

o
i (k)) > Jx

i

(
xi (k) , zi (k) , U i (k)

)
,

Ju
i (xi (k) , zi (k) , U

o
i (k)) > Ju

i

(
xi (k) , zi (k) , U i (k)

)
.

Therefore, (5.12) has been shown.

Next, we prove that the signs of uo
i (k) and

∑
j∈Mi(k)

aij (k) (xj (k)− xi (k)) are

the same. To show by contradiction, suppose that
∑

j∈Mi(k)

aij (k) (xj (k)− xi (k))

is positive, and uo
i (k) is negative (since uo

i ̸= 0 from property 3) of Lemma 5.2.2

where the optimal solution is U o
i (k) =

[
uo
i (k) uo

i (k + 1) · · · uo
i (k +Ni − 1)

]T
.

From the update rule (5.1), we know that

xi (k + 1) /∈ [min (xi (k) , zi (k)) ,max (xi (k) , zi (k))] ,

which is a contradiction with 1).

By applying (5.12) and the fact that the signs of uo
i (k) and∑

j∈Mi(k)

aij (k) (xj (k)− xi (k)) are the same, we know that 0 < ηi(k) ≤ 1. It

remains to show that there exists a positive constant c ∈ (0, 1) such that c ≤ ηi(k).

We prove this fact by discussing the value of uo
i (k). Suppose that uo

i (k) and
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∑
j∈Mi(k)

aij (k) (xj (k)− xi (k)) are positive. In the following, the analysis is divided

into two cases.

(i) The case of ui,max ≥
∑

j∈Mi(k)

aij (k) (xj (k)− xi (k)): Assume βi ≤ αi, and

let the optimal control sequence be

U o
i (k) =

[
uo
i (k) uo

i (k + 1) · · · uo
i (k +Ni − 1)

]T
.

Then, we choose another control input as

ui(k) =
∑

j∈Mi(k)

aij (k) (xj (k)− xi (k)) ,

and the corresponding sequence as

U i (k) =
[
ui (k) 0 · · · 0

]T
.

It follows that

Ji (xi (k) , zi (k) , U
o
i (k)) > αi

∣∣∣∣∣∣uo
i (k)−

∑
j∈Mi(k)

aij (k) (xj (k)− xi (k))

∣∣∣∣∣∣
2

,

and

Ji
(
xi (k) , zi (k) , U i (k)

)
= βi

∣∣∣∣∣∣
∑

j∈Mi(k)

aij (k) (xj (k)− xi (k))

∣∣∣∣∣∣
2

.

Now, consider the case

uo
i (k) ≤

(
1−

√
βi

αi

) ∑
j∈Mi(k)

aij (k) (xj (k)− xi (k)).
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We then arrive at Ji (xi (k) , zi (k) , U
o
i (k)) > Ji

(
xi (k) , zi (k) , U i (k)

)
, which is a

contradiction. Hence, we can take c1 = 1−
√
βi/αi and have ηi (k) > c1. In the

case of βi ≥ αi, we can similarly find a constant c2.

(ii) The case of ui,max <
∑

j∈Mi(k)

aij (k) (xj (k)− xi (k)): Assume that βi ≤

(1/2)αi. Then, the corresponding optimal input becomes

U o
i (k) =

[
uo
i (k) uo

i (k + 1) · · · uo
i (k +Ni − 1)

]T
.

We can choose another control input ui(k) = ui,max, where the corresponding

sequence becomes

U i (k) = [ui (k) − ui (k) + uo
i (k) + uo

i (k + 1) uo
i (k + 2) · · · ]T .

It holds that

Ji (xi (k) , zi (k) , U
o
i (k))

= αi

∣∣∣∣∣∣uo
i (k)−

∑
j∈Mi(k)

aij (k) (xj (k)− xi (k))

∣∣∣∣∣∣
2

+ αi

Ni−1∑
d=1

∣∣∣uo
i (k) +

d∑
e=1

uo
i (k + e)−

∑
j∈Mi(k)

aij (k) (xj (k)− xi (k))
∣∣∣2

+ βi|uo
i (k)|

2 + βi

Ni−1∑
d=1

|uo
i (k + d)|2, (5.13)
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and

Ji
(
xi (k) , zi (k) , U i (k)

)
= αi

∣∣∣∣∣∣ui,max −
∑

j∈Mi(k)

aij (k) (xj (k)− xi (k))

∣∣∣∣∣∣
2

+ αi

Ni−1∑
d=1

∣∣∣uo
i (k) +

d∑
e=1

uo
i (k + e)−

∑
j∈Mi(k)

aij (k) (xj (k)− xi (k))
∣∣∣2

+ βi|ui,max|2 + βi|−ui,max + uo
i (k) + uo

i (k + 1)|2 + βi

Ni−1∑
d=2

|uo
i (k + d)|2.

(5.14)

By comparing (5.13) and (5.14), if

uo
i (k) < 2

∑
j∈Mi(k)

aij (k) (xj (k)− xi (k))−
(
1 +

2βi

αi

)
ui,max,

then we arrive at

Ji (xi (k) , zi (k) , U
o
i (k)) > Ji

(
xi (k) , zi (k) , U i (k)

)
,

which is a contradiction. So we have

ηi (k) ≥ 2−
(
1 +

2βi

αi

)
ui,max∑

j∈Mi(k)

aij (k) (xj (k)− xi (k))
≥ αi − 2βi

αi

.

Thus we can take c3 = (αi − 2βi)/αi and have ηi (k) ≥ c3. We note that in

case of βi ≥ 1
2
αi, we can similarly find such a constant c4.

In conclusion, we can always find a constant c = min{c1, c2, c3, c4} such that

c ≤ ηi(k) ≤ 1. �
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5.2.2 Resilient consensus via the MP-MSR algorithm

Based on the properties discussed in Proposition 5.2.1, we can proceed to obtain

the main result of this chapter, stating that resilient consensus can be attained

under the MP-MSR algorithm. To this end, we introduce the maxima and minima

of the states of the regular agents: Let

x (k) = max
i∈R

xi (k) , x (k) = min
i∈R

xi (k)

The safety interval S is chosen as

S = [x (0) , x (0)].

Theorem 5.2.1. Under the F -total malicious model, the normal agents with

MP-MSR will reach resilient consensus if and only if the underlying graph is

(F + 1, F + 1)-robust. The safety interval is given by S = [x(0), x(0)].

Proof. (Necessity) The necessity part essentially follows from [45].

(Sufficiency) We first show the safety condition. At time k = 0, by (5.5), we

have

zi (0) =

1−
∑

j∈Mi(k)

aij (0)

 xi (0) +
∑

j∈Mi(k)

aij (0)xj (0) .

It is easy to see that x(0) ≤ xi(0) ≤ x(0) and x(0) ≤ zi(0) ≤ x(0). We next

assume that at time k, it holds x(0) ≤ xi(k) ≤ x(0) and x(0) ≤ zi(k) ≤ x(0).

Again, from (5.5) we have

zi (k + 1) = xi (k + 1) +
∑

j∈Mi(k+1)

aij (k + 1) (xj (k + 1)− xi (k + 1)) . (5.15)
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Based on the analysis in Proposition 5.2.1, we have

xi (k + 1) ∈ [min (xi (k) , zi (k)) ,max (xi (k) , zi (k))] . (5.16)

By applying x(0) ≤ xi(k) ≤ x(0) and x(0) ≤ zi(k) ≤ x(0) we have x(0) ≤

xi(k + 1) ≤ x(0), which implies that x(0) ≤ zi(k + 1) ≤ x(0) from (5.15).

Next we show the consensus condition part. Let V (k) = x(k) − x(k) for

k ∈ Z+. Here, we fix the time k. Let the sequence ε0(l), l ≥ k be given by

ε0(l) =


x(k)−x(k)

2
if l = k,

ηi(l − 1)γε0(l − 1) if l > k.

(5.17)

Further, introduce the two sets

X (k, k′, ε0 (k
′)) = {j ∈ V : xj (k

′) > x (k)− ε0 (k
′)} ,

X (k, k′, ε0 (k
′)) = {j ∈ V : xj (k

′) < x (k) + ε0 (k
′)} ,

where k′ ≥ k. Then, by the choice of ε0(k) in (5.17), it is clear that these two sets

X (k, k′, ε0 (k
′)) and X (k, k′, ε0 (k

′)) with k′ = k are disjoint. By assumption, the

graph is (F +1, F +1)-robust. Thus, by definition, one of the sets X (k, k, ε0 (k))

and X (k, k, ε0 (k)) has at least F + 1 nodes having neighbours from outside the

set to which it belongs. We first suppose that the former set X (k, k, ε0 (k)) has

this property. It further indicates that this set has one regular node i having

neighbors outside.

We focus on this node i and divide its neighbor set Mi(k) into two parts:

Mi(k)∩X(k, k, ε0(k)) and Mi(k) \X(k, k, ε0(k)); note that, by the choice of node

i, the latter set is nonempty. We use the short-hand notation X for X(k, k, ε0(k)).
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Then, from (5.6), it follows

xi (k + 1) =

1− ηi (k)
∑

j∈Mi(k)

aij (k)

 xi (k) + ηi (k)
∑

j∈M(k)∩X

aij (k)xj (k)

+ ηi (k)
∑

j∈M(k)\X

aij (k)xj (k)

≤

1− ηi (k)
∑

j∈Mi(k)

aij (k)

x (k) + ηi (k)
∑

j∈M(k)∩X

aij (k)x (k)

+ ηi (k)
∑

j∈M(k)\X

aij (k) (x (k)− ε0 (k))

= x (k)− ηi (k)
∑

j∈M(k)\X

aij (k)ε0 (k) . (5.18)

Because node i has one or more neighbors outside X(k, k, ε0(k)), it holds from

(5.18)

xi (k + 1) ≤ x (k)− ηi (k) γε0 (k) . (5.19)

This inequality indicates that after the update, the regular node i ∈ X(k, k, ε0(k))

moves out of X(k, k + 1, ε0(k + 1)) due to (5.17).

Note that this inequality (5.18) also holds for all regular nodes outside

X(k, k, ε0(k)), and thus, they do not enter X(k, k + 1, ε0(k + 1)). Hence, the

number of regular nodes in the set X(k, k + 1, ε0(k + 1)) decreases from that in

X(k, k, ε0(k)):

∣∣X (k, k+1, ε0 (k + 1)) ∩ R
∣∣< ∣∣X (k, k, ε0 (k)) ∩ R

∣∣ .
The same argument holds if the set X(k, k + 1, ε0(k + 1)) has the property that

one of its nodes has a regular node as a neighbor outside the set. Thus, we can
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repeat this argument for |R| steps, at which point, the set

X (k, k+ |R| , ε0 (k + |R|)) (5.20)

or

X (k, k+ |R| , ε0 (k + |R|)) (5.21)

will become empty.

We first consider the case where the set in (5.20) is empty. Then, we have

xi (k + |R|) ≤ x (k)−

|R|−1∏
j=0

ηi (k + j)

 γ|R|ε0 (k) , ∀i ∈ R.

It follows that

x (k + |R|) ≤ x (k)−

|R|−1∏
j=0

ηi (k + j)

 γ|R|ε0 (k) .

Then we have

V (k + |R|) = x (k + |R|)− x (k + |R|)

≤ x (k)−

|R|−1∏
j=0

ηi (k + j)

 γ|R|ε0 (k)− x (k + |R|) .

From the safety condition part (5.16), we can easily obtain that x(k + |R|) ≥
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x(k + |R| − 1) ≥ · · · ≥ x(k). Thus we have

V (k + |R|) ≤ x (k)−

|R|−1∏
j=0

ηi (k + j)

 γ|R|ε0 (k)− x (k)

≤ V (k)−

|R|−1∏
j=0

ηi (k + j)

 γ|R|1

2
V (k)

=

1− γ|R|

2

|R|−1∏
j=0

ηi (k + j)

V (k)

≤
(
1− (cγ)|R|

2

)
V (k),

where in the last inequality, we used Proposition 5.2.1. A similar result can be

obtained in the other case, where the set in (5.21) is empty.

Finally, we can repeat this argument and arrive at

V (k + l |R|) ≤
(
1− (cγ)|R|

2

)l

V (k).

By 0 < γ ≤ 1 and 0 < c ≤ 1, we have V (k) → 0 as k → ∞. This completes the

proof of the consensus condition part.

5.3 Resilient consensus problem with asynchronous

communication

In this section, we discuss the resilient consensus problem with asynchronous

communication. Compared with the problem formulated in Section 5.1, we add

an asynchronous communication rule that each normal agent i communicates

with its neighbors every Ni steps.
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5.3.1 Protocol 2 for asynchronous resilient consensus prob-

lem

For Protocol 2, the steps 3) and 4) in MP-MSR algorithm are slightly modified

as follows.

Algorithm 5.3.1. (Protocol 2)

3. (Local optimization) Since node i can only receive the last communicated

value from its neighbors, so the update rule for the target point is

zi (k) = xi (k) +
∑

j∈Mi(k)

aij (k) (x̂j (k)− xi (k)) , (5.22)

where x̂j (k) is the last communicated value.

4. (Local update) The normal node i not only updates its value, but also de-

termines if it sends its value to the neighbors. So in step 4), node i chooses

ui(k) = uo
i (k|k) and updates the state xi(k + 1) by (5.1).

Its communicated value is updated by

x̂i(k + 1) =

xi(k + 1) if k + 1 = lNi, l ∈ Z+,

x̂i(k) otherwise.

(5.23)

From the update rule, we have

xi (k + 1) = xi (k) + η′i (k)
∑

j∈Mi(k)

aij (k) (x̂j (k)− xi (k)), (5.24)

where

η′i (k) =
uo
i (k|k)∑

j∈Mi(k)

aij (k) (x̂j (k)− xi (k))
.
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5.3 Resilient consensus problem with asynchronous communication

Then similarly to the synchronous case, we can show that η′i(k) is lower bounded.

Proposition 5.3.1. For the MP-MSR algorithm with asynchronous communica-

tion, there exists a positive constant 0 < c < 1 such that c ≤ η′i (k) ≤ 1.

Proof. The proof follows a similar line as that of Proposition 5.2.1. We show the

outline as below. The three facts in Lemma 5.2.2 about geometric properties do

not change. Note that these three facts hold for a general selecting of zi(k). It

remains to show the following two facts:

1. |uo
i (k|k)| ≤

∣∣∣∣∣ ∑j∈Mi(k)

aij (k) (x̂j (k)− xi (k))

∣∣∣∣∣.
2. The sign of uo

i (k|k) and
∑

j∈Mi(k)

aij (k) (x̂j (k)− xi (k)) are the same.

Since the geometric approach is mainly based on contradiction, in the argument

of Proposition 5.2.1, it suffices to replace xj(k) with x̂j(k). Then we can obtain

the same result. Then, we can establish that 0 < η′i (k) ≤ 1. The next step is

to show that there exists a positive constant 0 < c < 1 such that η′i (k) ≥ c.

The remaining of the proof can be also obtained by replace xj(k) as x̂j(k) in

Proposition 5.2.1.

For this problem formulation, we introduce another maximum and minimum

of the states of the regular agents: x̂ (k) = max
i∈R

{xi (k) , x̂i (k)} and x̂ (k) =

min
i∈R

{xi (k) , x̂i (k)}. The safety interval S is chosen as S = [x̂(0), x̂(0)]. Then

we have the following result.

Theorem 5.3.1. Under the F -total malicious model, the normal agents with

MP-MSR under asynchronous communication will reach resilient consensus if

and only if the underlying graph is (F + 1, F + 1)-robust. The safety interval is

given by S = [x̂(0), x̂(0)].
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Proof. Since we use the old data x̂j(k), the proof in Theorem 5.2.1 cannot be

directly used here, and thus we conduct a proof with some modifications. The

safety interval part is similar as that in Theorem 5.2.1. We replace the role of

x(k) and x(k) with x̂(k) and x̂(k), by following a similar analysis, we can obtain

that S = [x̂(0), x̂(0)] is a safety interval and moreover, x̂(k + 1) ≤ x̂(k) and

x̂(k + 1) ≥ x̂(k).

We discuss consensus condition part in the following. Let V̂ (k) = x̂(k)− x̂(k)

and introduce the four sets

X (k, k′, ε0 (k
′)) =

{
j ∈ V : xj (k

′) > x̂ (k)− ε0 (k
′)
}
,

X (k, k′, ε0 (k
′)) =

{
j ∈ V : xj (k

′) < x̂ (k) + ε0 (k
′)
}
,

X̂ (k, k′, ε0 (k
′)) =

{
j ∈ V : x̂j (k

′) > x̂ (k)− ε0 (k
′)
}
,

X̂ (k, k′, ε0 (k
′)) =

{
j ∈ V : x̂j (k

′) < x̂ (k) + ε0 (k
′)
}
, (5.25)

where k′ ≥ k. We choose ε0 (k) = (x̂(k)− x̂(k))/2. Note that X̂ (k, k, ε0 (k)) and

X̂ (k, k, ε0 (k)) are disjoint. The same holds for X (k, k, ε0 (k)) and X (k, k, ε0 (k)).

From (5.24), we have

xi (k + 1) ≤ x̂ (k)− η′i (k)
∑

j∈M(k)\X̂

aij (k)ε0 (k) ,

By the (F + 1, F + 1)-robust graph condition, there exists a normal node

having neighbours in X̂ (k, k, ε0 (k)). Thus, we have

xi (k + 1) ≤ x̂ (k)− η′i (k) γε0 (k) . (5.26)

We choose ε0 (k + 1) = η′i (k) γε0 (k). Then after updating, the current state xi(k)

of normal node i is moved out of X (k, k+1, ε0 (k + 1)). Note that (5.26) also holds
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for the nodes outside X (k, k, ε0 (k)). Thus the current states of regular nodes

cannot move in X (k, k + 1, ε0 (k + 1)). After Ni steps, for regular node i, it has

to update the communicated value. Since its current state xi(k+Ni) is still outside

X (k, k+1, ε0 (k + 1)), at time k+Ni, x̂i(k+Ni) is outside X̂ (k, k+1, ε0 (k + 1)).

We denote N = max{Ni}, then we have that after N steps, at least one of the

regular nodes has to move its current state xi(k+N) outside X (k, k+1, ε0 (k + 1))

and is communicated state x̂i(k +N) outside X̂ (k, k+1, ε0 (k + 1)).

Repeat this argument and set

ε0 (k + l) =

(
l−1∏
j=0

η′i (k + j)

)
γlε0 (k) , l = 1, 2, . . . , |R|.

Then after N |R| steps, one of the pairs of sets

X (k, k+ |R| , ε0 (k + |R|)) and X̂ (k, k+ |R| , ε0 (k + |R|))

and

X (k, k+ |R| , ε0 (k + |R|)) and X̂ (k, k+ |R| , ε0 (k + |R|)) ,

will be empty.

We suppose the first pair of sets to be empty. Then, we have

x̂
(
k +N |R|

)
≤ x̂ (k)−

|R|−1∏
j=0

η′i (k + j)

 γ|R|ε0 (k) .
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Hence,

V̂
(
k +N |R|

)
= x̂ (k + |R|)− x̂ (k + |R|)

≤ x̂ (k)−

|R|−1∏
j=0

η′i (k + j)

 γ|R|ε0 (k)− x̂ (k + |R|) .

From the safety condition part, we can easily know that x̂(k+ |R|) ≥ x̂(k+ |R|−

1) ≥ · · · ≥ x̂(k). Thus we have

V̂
(
k +N |R|

)
≤ x̂ (k)−

|R|−1∏
j=0

η′i (k + j)

 γ|R|ε0 (k)− x̂ (k)

≤ V̂ (k)−

|R|−1∏
j=0

η′i (k + j)

 γ|R|1

2
V̂ (k)

=

1− γ|R|

2

|R|−1∏
j=0

η′i (k + j)

 V̂ (k) .

Because of 0 < γ ≤ 1 and c ≤ η′i (k + j) ≤ 1, j ∈ {1, 2, · · · , |R| − 1}. By an

analysis similar to Theorem 5.2.1, we have V̂ (k) → 0 as k → ∞. This completes

the proof of the consensus condition part.

5.3.2 Protocol 3 for asynchronous resilient consensus prob-

lem

We propose another MPC based algorithm in case of asynchronous communica-

tion. The main feature of this approach is that the calculation for the MPC part

is reduced. In particular, since each node i communicates with neighbors every

Ni steps, we solve the optimization problem only at the beginning of the period

[lNi, (l + 1)Ni]. Thus the steps 3 and 4 in MP-MSR algorithm are modified as
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follows:

Algorithm 5.3.2. (Protocol 3)

3. (Local optimization) At every Ni steps, the regular node i solves the opti-

mization problem min
Ui(lNi)

Ji (xi (lNi) , zi (lNi) , Ui (lNi)) with constraints (5.1)

and (5.4), where

zi (lNi) = xi (lNi) +
∑

j∈Mi(lNi)

aij (lNi) (x̂j (lNi)− xi (lNi)) .

4. (Local update) We write the optimal solution U o
i (k) as

U o
i (lNi) =

[
uo
i (lNi|lNi) , u

o
i (lNi + 1|lNi) , · · · , uo

i (lNi +Ni − 1|lNi)
]T
,

and we choose our control law as: ui(k) = uo
i (k|lNi), lNi ≤ k < (l + 1)Ni.

Then update the state by (5.1).

From the update rule, we have

xi ((l + 1)Ni) = xi (lNi) + η′′i (lNi)
∑

j∈Mi(lNi)

aij (lNi) (x̂j (lNi)− xi (lNi)),

where

η′′i (lNi) =

Ni−1∑
j=0

uo
i (lNi + j|lNi)∑

j∈Mi(k)

aij (lNi) (x̂j (lNi)− xi (lNi))
.

Our analysis follows similarly to the previous two cases.

Proposition 5.3.2. For the modified MP-MSR algorithm, there exists a positive

constant 0 < c < 1 such that c ≤ η′′i (lNi) ≤ 1.

Proof. Note that in this algorithm, the three geometric properties in Lemma 5.2.2

also hold. The proof for the part of 0 < η′′i (lNi) ≤ 1 follows a similar line as that

96



5.3 Resilient consensus problem with asynchronous communication

in Proposition 5.2.1. It remains to show c ≤ η′′i (lNi). Rewrite η′′i (lNi) as

η′′i (lNi) =

Ni−1∑
j=1

uo
i (lNi + j|lNi)∑

j∈Mi(k)

aij (lNi) (x̂j (lNi)− xi (lNi))
+

uo
i (lNi|lNi)∑

j∈Mi(k)

aij (lNi) (x̂j (lNi)− xi (lNi))

=

Ni−1∑
j=1

uo
i (lNi + j|lNi)∑

j∈Mi(k)

aij (lNi) (x̂j (lNi)− xi (lNi))
+ η′i (lNi) .

(5.27)

Apply the first property of Lemma 5.2.2. We know that

Ni−1∑
j=1

uo
i (lNi + j|lNi)∑

j∈Mi(k)

aij (lNi) (x̂j (lNi)− xi (lNi))
≥ 0.

Thus we have

η′′i (lNi) ≥ η′i (lNi) ≥ c.

Now we can proceed to obtain the main result.

Theorem 5.3.2. Under F -total malicious model, the normal agents with modified

MP-MSR with asynchronous communication reach resilient consensus if and only

if the underlying graph is (F + 1, F + 1)-robust. The safety interval is given by

S = [x̂(0), x̂(0)].

Proof. The proof follows a similar line as that of Theorem 5.3.1. We replace η′i (k)

with η′′i (lNi). Note that finally we obtain the consensus condition

lim
l→∞

V (lNi) = 0.

97



5.4 Numerical example

This indicates that at every Ni time instant, the values of regular agents reach

resilient consensus. Then we discuss the times between lNi and (l + 1)Ni. For

lNi < k < (l + 1)Ni, we apply the fact that Xo
i (xi (lNi) , U

o
i (lNi)) is an Ni-path

from xi(lNi) to zi(lNi). We can also show that

lim
l→∞

max{zi(lNi)} −min{zi(lNi)} = 0.

Thus we say that

lim
k→∞

V (k) = 0.

5.4 Numerical example

In this section, we illustrate the proposed resilient consensus approaches based

on model predictive control via a numerical example.

Figure 5.1: Network topology with (2,2)-robustness

Consider the multi-agent system with five nodes whose underlying network is

the (2, 2)-robust graph shown in Fig. 5.1. Node 5 is set to behave in an noncoop-

erative manner, and thus we set F = 1. For the model predictive control part, we

choose the input constraint as ui,max = 0.02. The parameters of the cost function

are set as αi = βi = 1
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5.4.1 Simulations in conventional MPC approach

We first check the conventional MPC based consensus algorithm with malicious

nodes. We apply two types of malicious behaviors to break the safe condition

and consensus condition. In the first simulation, malicious node takes a negative

value −1 and tries to mislead the other regular nodes to follow this wrong number.

The time responses are depicted in Fig. 5.2, it is clear that all regular nodes are

mislead to −1 after 300 steps. In the second simulation, malicious node is set to

behave by continuously oscillating their values. The time responses are depicted

in Fig. 5.3. It shows that the consensus error between the regular nodes cannot

decrease to zero.

5.4.2 Simulations in Protocols 1, 2 and 3

We study three algorithms: (i) MP-MSR algorithm with synchronous communi-

cation (Protocol 1). (ii) MP-MSR algorithm with asynchronous communication

(Protocol 2). (iii) Modified MP-MSR algorithm with asynchronous communica-

tion (Protocol 3).

We first show the performance of protocol 1. The number of receding horizon

time steps is set as Ni = 5. Then the time responses with state constraints are

plotted in Fig. 5.4, where the y-axis represents the value of each agent and the

x-axis indicates the common sampling instants k. Though the malicious node 5

(in magenta) exhibits an oscillatory behavior, we observe that the regular nodes

reach consensus within the safety interval relatively fast.

The influence of the malicious node to the final consensus result may be

present, but is minor. Taking a closer look at the responses, we notice that

up to time 100 or so, nodes 2 and 3 (in yellow and red, respectively) fluctuate

in their values. This occurs because node 4 (in green) is far from the rest of

the regular nodes, and thus, it is considered to be suspicious under the proposed
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Figure 5.2: Conventional MPC approach with false value malicious node
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Figure 5.3: Conventional MPC approach with oscillating malicious node

MSR algorithm; instead, the value of the malicious node is used in the updates

of the regular nodes.

Further, the control inputs of the regular nodes are shown in Fig. 5.5. It

is clear that all of them satisfy the input constraint. This explains the slow

convergence of the state of node 4 in Fig. 5.4; its initial state is the furthest from

the other regular nodes, and it travels only at the constant velocity determined

by ui,max. It is further noticed that the control inputs are optimized since some

inputs do not take the maximum value to quickly move to the target point, but

rather gently applies the control that decays to zero in a short period of time.
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See, for example, the inputs of nodes 2 and 3 around time 100 though these may

be partly due to using the value of the malicious node during this time period as

discussed above. The calculation time of Protocol 1 is 6.08 seconds for 600 time

steps.

In the simulation of Protocol 2, the communication period is different from

each node. We choose the communication period as [5, 6, 7, 8, 9]T and the receding

horizon keep the same as communication period, N1 = 5, N2 = 6, N3 = 7, N4 =

8, N5 = 9. The time responses and control inputs are plotted in Fig. 5.6 and

Fig. 5.7. The calculation time of Protocol 2 is 6.17 seconds for 600 time steps.

In the simulation of Protocol 3, we choose the communication period as

[5, 6, 7, 8, 9]T and the receding horizon is kept the same as the communication

period, N1 = 5, N2 = 6, N3 = 7, N4 = 8, N5 = 9. The time responses of the states

and the control inputs are plotted in Figs. 5.8 and 5.9. The calculation time of

Protocol 3 is 1.07 seconds for 600 time steps.

Comparing the performance for the three protocols, we can see that Protocols

1 and 2 have similar converge speed and calculation time. It is interesting that the

control inputs in Protocol 2 are more sensitive to malicious behaviors compared

with Protocol 1. The possible reason is that the asynchronous communication

may lead to a relatively longtime effect of the malicious agents. Protocol 3 is the

least sensitive algorithm for malicious behaviors, and cost the least calculation

time. To discuss the factors that infect the dynamics of MP-MSR algorithms

may be an interesting problem in the future works.
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Figure 5.4: Time responses of Protocol 1
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Figure 5.5: Control inputs of Protocol 1
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Figure 5.6: Time responses of Protocol 2
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Figure 5.7: Control inputs of Protocol 2
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Figure 5.8: Time responses of Protocol 3
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Figure 5.9: Control inputs of Protocol 3
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Chapter 6

Resilient Consensus in Mobile

Malicious Model

In this chapter, we first discuss the three typical mobile malicious models in

the area of computer science ([5; 9; 24]) and apply them to the resilient con-

sensus problem in multi-agent systems. We check that the related results for

binary agreement in complete graph can guarantee approximate resilient consen-

sus in multi-agent systems. Moreover, we extend the mobile malicious models

to non-complete graphs and propose several novel protocols to solve the resilient

consensus problem. In addition, based on Garay’s mobile malicious model in

[24], we improve the update rules for the cured agents to reduce the necessary

connections. Numerical examples are provided to check the efficacy of our results.

6.1 Problem formulation

As seen in previous chapters, the conventional resilient consensus algorithms are

mainly based on the following update rule, which is called Mean Subsequence
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Reduced (MSR) algorithms in [7; 16; 45]. The typical update rule is written as

xi (k + 1) = xi (k) +
∑

j∈Mi(k)

aij (k) (xj (k)− xi (k))

The adversary model is chosen as the F -total malicious, and the related graph

structure is (F + 1, F + 1)-robust graph. The analysis is based on the static

adversary model and we next show that the mobile adversary can easily destroy

resilient consensus.

Consider a graph which is (2, 2)-robust where one of the agents is attacked and

is malicious. From the existing results, we know that if the adversary model is

static and the attacked agent remains the same node in the network, the normal

agents reach resilient consensus. However in the mobile model, the situation

changes. Suppose that, at one time, the adversary moves to a different normal

agent, which becomes malicious, and the previous agent recovers and become

normal but with a corrupted value left from the attack. At this moment, there

are two malicious agents in the network even if the attacker may only manipulate

one agent. In such a case, the conventional MSR algorithm cannot guarantee

resilient consensus.

Here, we introduce three classes of mobile malicious behaviors. The differences

are related to what happens when the adversary moves to another agent and,

especially, what the recovering agent is capable to do with the data which may

be corrupted. These classes are from the mobile works in [5; 9; 24]. We discuss

them one by one. The models are illustrated in Figs. 6.1(a) to 6.1(c).

Note here that the MSR-type algorithms consist of three basic steps in each

round [45]: Send, collect, and update. At time k, first, each regular agent i sends

its current value xi(k). Second, it collects the values of the neighbor agents, xj(k)

for j ∈ Ni. Then, after preprocessing to delete some of the neighbor values, the
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value is updated to xi(k + 1).

(a) Buhrman’s mobile model (b) Garay’s mobile model

(c) Bonnet’s mobile model

Figure 6.1: Mobile adversary models

1. Buhrman’s model [9]: In this model, the adversary can move from agent i

to another agent j only at the sending step (Fig. 6.1(a)). Hence, the cured

agent i can immediately collect the neighbors’ values and make an update.

In this model, the previously infected agents can be cured in one round. As

a result, at each round, there are at most F faulty values in the network.

2. Garay’s model [24]: The adversary can move from agent i to agent j at

any step in a round (Fig. 6.1(b)). In this model, in the first round after

becoming cured, agent i is not allowed to send its value to neighbors. That

is, agent i is aware that it was infected. Thus, it will only make an update

without its corrupted value.
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3. Bonnet’s model [5]: As in Garay’s model, the adversary agent can move at

any step during a round (Fig. 6.1(c)). The cured agent i is however not

aware of the fact and hence makes the next update as usual. In this case,

there are at most 2F faulty values in the network: F of them are because

of the attacks and the other F are those remaining from the infection in

the previous round. Note however that the values of the previously infected

agents can become regular in one round.

Our interest in this work is to characterize the necessary networks structure to

achieve resilient consensus under these mobile malicious agent models. In the

course, we will show that by allowing the cured agents to wait before adopting

the regular update rule, we can relax the requirement for the network. This is

shown in particular for Garay’s model.

4. Our algorithm in Garay’s model: The adversary agent can move at any

step during round k, but it takes the following two rounds k + 1 and k + 2

for the cured agent i to become normal again (Fig. 6.2). In the first round,

agent i does not send its value to the neighbors but only makes an update

by a rule different from that of regular agents. In the second round, agent

i again does not send, but updates its value by an update rule same with

regular agents. The values of the previously infected agents become regular

in two rounds.

The difference between our algorithm and Garay’s original algorithm is that,

for the regular agents, they remove fewer values and thus the graph condition

can be relaxed. Meanwhile, such regular update rule is more fragile to adversary

values. Thus we need the first round, which applies an update rule which removes

more values and then we can guarantee that all cured agents are inside a safety

area at the end of the first round.
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Figure 6.2: Our algorithm in Garay’s mobile model

6.2 Protocol 1 for Buhrman’s and Garay’s mod-

els

6.2.1 Modified MSR algorithm 1 (Protocol 1)

Here, we present the first protocol to mitigate the effects of the mobile adversaries,

it is a modified version of the MSR algorithm in, e.g., [16; 45]. It will be shown

that this protocol is effective to deal with the mobile malicious agents under

Buhrman’s model and Garay’s model.

The Protocol 1 has four steps as shown below. In step 1, the communication

part may change depending on the mobile adversary model.

Algorithm 6.2.1. (Protocol 1) At each round k, each regular agent i executes

the following four steps:

1. (Communication) Agent i sends its current value xi(k) to its neighbors ac-

cording to the mobile adversary model.

2. (Collecting neighbor information) Agent i collects the values of neighbors

xj(k), j ∈ Ni. Then, it sorts the received values and its own value in de-

scending order.
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3. (Deleting suspicious values) After the sorting, agent i deletes the F largest

and F smallest values. The deleted data will not be used in the update

of its value. The set of the agents of the remaining values is written as

Mi(k) ⊂ Ni.

4. (Local update) Agent i ∈ R updates its value by

xi (k + 1) = aii(k)xi(k) +
∑

j∈Mi(k)

aij (k)xj (k), (6.1)

where aii(k) +
∑

j∈Mi(k)

aij (k) = 1 and γ ≤ aij(k) ≤ 1

The difference of this algorithm from those in [16; 45] is mainly in step 3).

Here, 2F values are deleted regardless of the value of agent i, whereas in conven-

tional algorithms, this number depended on the current value of agent i. Specif-

ically, if the value of agent i is among the largest F (resp., the smallest F ), then

only those greater (resp., smaller) than xi(k) are deleted. Note that in the current

algorithm, agent i might not use its own value.

6.2.2 Convergence of Protocol 1 under Buhrman’s model

We establish that with Protocol 1, we can achieve resilient consensus under

Buhrman’s model. We first present the result for networks in the complete graph

forms. Let x(k) = max{xi(k), i ∈ R}, x(k) = min{xi(k), i ∈ R}.

Lemma 6.2.1. Consider an agent network that is represented as a complete

graph. Suppose that the model of the mobile adversaries is F -total malicious and

follows Buhrman’s behaviors. Then, regular agents using Protocol 1 reach resilient

consensus if and only if the graph satisfies |V| ≥ 2F + 1. The safety interval is

given by S = [x(0), x(0)].
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Proof. The necessity part directly comes from Theorem 6 in [6]. We next show

the sufficient part. Based on Theorem 1 (Tables 1 and 2) in [6], with F -total

mobile malicious (which is called symmetric in [6]) model, we must show that the

MSR algorithm Protocol 1 has the following two properties:

P1 For each regular agent, the recent updated value xi(k+1) should be inside

the range of last regular values [x(k), x(k)].

P2 The difference between regular agents is strictly smaller than the last time

whenever the difference is nonzero, that is, x(k+1)−x(k+1) < x(k)−x(k).

Then it follows that the resilient consensus is achieved when k → ∞.

We check the first property P1 by induction. By assumption, xj(0) ∈ [x(0), x(0)]

for regular agents. Next, suppose at time k, we have xj(k) ∈ [x(k), x(k)]. Suppose

that at the beginning of round 1, there are at most F malicious agents. Based on

the deleting step and F -total model, we know that if xj(k) /∈ [x(k), x(k)], then

it is deleted by its neighbors during their updates. So based on (6.1), we have

that ∀i ∈ R, xi(k + 1) ∈ [x(k), x(k)]. For the cured agents in Buhrman’s mobile

model, the possible corrupted value at round 1 also comes from the previous in-

fected value xi(k), such values will be deleted because of the deleting step. So for

i ∈ C we have

xi (k + 1) = aii(k)x̃i(k) +
∑

j∈Mi(k)

aij (k) xj (k),

where x̃i(k) ∈ [x(k), x(k)], and we have xi (k + 1) ∈ [x(k), x(k)]. The cured

agents all become regular agents at the end of round k + 1.

We next show P2, Suppose that x(k) < x(k). We observe that for agents that

satisfy xi(k) = x(k), there are at most F agents that are larger than xi(k), which

will be deleted in step 3. So we have x(k+1) ≤ x(k). Similarly, x(k+1) ≥ x(k).
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Now we show that x(k + 1) = x(k) and x(k + 1) = x(k) are impossible to be

met at the same time if |V| ≥ 2F + 1. Suppose that x(k + 1) = x(k). Then it

follows that the set X(k) = {j ∈ V : xj(k) < x(k)} has to satisfy that |X(k)| ≤ F .

This is because in the complete graph, each regular agent deletes the F small

values from the entire network. Because of |V| ≥ 2F + 1, we know that for the

set X(k) = {j ∈ V : xj(k) ≥ x(k)}, we have |X(k)| ≥ F + 1. By definition,

x(k) is the lower bound for regular agents. So for any regular agent i such that

xi(k) = x(k), we have that xi(k + 1) > x(k) since |X(k)| ≥ F + 1. Thus, we

have that x(k + 1) > x(k). As a result, if |V| ≥ 2F + 1, then x(k + 1) < x(k) or

x(k + 1) > x(k) or both have to be satisfied. Thus we have shown P2.

We note that in the references [40] and [6], the notion for resilient consensus

(which is called Byzantine Approximate Agreement in [6]) is slightly different.

The consensus condition in these works are given by: For any regular agent

i, j ∈ R, if k ≥ kf , then we have |xi(k)− xj(k)| ≤ ϵ, where kf is a finite time and

ϵ is an arbitrarily small positive real-valued tolerance. In the proof of Lemma

6.2.1, we have shown that our proposed algorithm belongs to the general class of

MSR algorithms discussed in [6], which studies the mobile models for the complete

graph case. In the following theorem, we extend the result for the non-complete

graph case, where a sufficient condition is provided on the graph connectivity for

the same algorithm to perform resilient consensus.

Theorem 6.2.1. Consider an agent network where the model of mobile adver-

saries is F -total malicious and follows Buhrman’s behaviors. Then, regular agents

using Protocol 1 reach resilient consensus if the following conditions are satisfied:

C1. |V| ≥ 4F + 4.

C2. There exists a number N such that N ≤ |V|/2 and for any N-agent sub-

graph, the agents inside have at least 2F + 1 neighbors from the subgraph.
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The safety interval is given by S = [x(0), x(0)].

Proof. Note that condition C1 is necessary for condition C2 to hold for some N .

The safety condition part is obvious from the proof of Lemma 6.2.1. hence, we

must prove the consensus condition part. We first introduce two sets:

X(k, k′, ε(k′)) = {j ∈ V : xj(k
′) > x(k)− ε(k′)}, (6.2)

X(k, k′, ε(k′)) = {j ∈ V : xj(k
′) < x(k) + ε(k′)}, (6.3)

where k′ ≥ k. We choose ε(k) = (x(k)− x(k))/2. Let X be the shorthand

notation for X(k, k, ε(k)), and X for X(k, k, ε(k)). Then there are mainly two

cases for discussing the agents in X:

1. |V \ X| ≥ N and |X| < N .

2. |V \ X| ≥ N and |X| ≥ N .

We note that for case |V \ X| < N , we have |X| < N and |V \ X| ≥ N , which is

similar to case 1 corresponding to the agents in X.

For case 1, we first show that ∀i ∈ X, agent i always has at least 2F + 1

neighbors from V \ X. Take any one agent i ∈ X and also N − 1 agents from

V\X. From the condition C2 on subgraphs, we know that agent i receives values

from at least 2F +1 neighbors in V\X. Moreover, the set Mi(k) ∩
(
V \ X

)
is not

empty under Protocol 1 at all rounds k. Then under Protocol 1, the update rule

(6.1) can be rewritten as

xi (k + 1) =
∑

j∈Mi(k)∩(V\X)

aij (k)xj (k) +
∑

j∈Mi(k)∩X

aij (k) xj (k) ≤ x(k)− γε(k).

(6.4)

For the agents i ∈ V\X, we first introduce the following fact: By the condition C2,
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since for any N -agent subgraph, the agents inside have at least 2F +1 neighbors

from the subgraph, this condition also holds for any N ′-agent subgraph, where

N ≤ N ′ ≤ |V|.

Since |V \ X| ≥ N , by this fact we know that the inequality (6.4) still holds

because that Mi(k) ∩
(
V \ X

)
is not empty under Protocol 1 and thus for all

regular agents i ∈ R, we have

xi (k + 1) ≤ x(k)− γε(k).

For case 2, by applying similar analysis, we know that for all regular agents,

they have at least 2F +1 neighbors from V\X, and Mi(k) ∩
(
V \ X

)
is not empty

under Protocol 1. Thus (6.4) also holds for this case. By choosing ε(k + 1) =

γε(k), we can guarantee that all regular agents are outside the set X(k, k+1, ε(k+

1)) at time k + 1.

Similarly, for the case |V\X| < N , we have that all regular agents are outside

the set X(k, k + 1, ε(k + 1)) at time k + 1.

So at time k + 1, at least one of the sets X(k, k + 1, ε(k + 1)) and X(k, k +

1, ε(k + 1)) does not contain any regular agents. We suppose the first set that

applies to. Then we have

V (k + 1) = x(k + 1)− x(k + 1)

≤ x(k)− γε(k)− x(k + 1)

≤ x(k)− γε(k)− x(k)

≤ V (k)− γε(k)

=
(
1− γ

2

)
V (k). (6.5)

The same bound holds for the other case. Thus we have V (k) → 0 when k →
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∞.

We note that for the class of graph discussed in Theorem 6.2.1, there is a

common property for them. The following lemma gives a necessary condition for

such graph.

Lemma 6.2.2. Assume that the graph G = (V,E) satisfies the condition C1 and

C2 of Theorem 6.2.1 for some F . Then the number of neighbors for each agent

in the graph satisfies |Ni| > |V|/2.

Proof. The proof comes from a contradiction. We suppose that |Ni| ≤ |V|/2 for

some i ∈ V and the condition C2 is satisfied. From |Ni| ≤ |V|/2 we know that

there are more than |V|/2 agents that are not the neighbors of agent i. Since

N ≤ |V|/2, we can take agent i and another N − 1 agents from the agents that

are not the neighbor of agent i. Then we obtain an N -agent subgraph and it

is clear that agent i does not have any neighbor from this subgraph, which is a

contradiction with C1.

Based on Lemma 6.2.2, the following corollary gives a class of graphs that

can guarantee resilient consensus under the adversary model in Theorem 6.2.1.

Compared with the graph discussed in Theorem 6.2.1, this class of graphs is easier

to check.

Corollary 6.2.1. Consider an agent network where the model of mobile adver-

saries is F -total malicious and follows Buhrman’s behaviors. Then, regular agents

using Protocol 1 reach resilient consensus if the following conditions are satisfied:

C1. |V| ≥ 4F + 4.

C2. For every agent i, the number of neighbors |Ni| ≥ 2F + 1 + |V|/2.

The safety interval is given by S = [x(0), x(0)].
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Proof. We would like to show that graphes satisfying C1 and C2 form is a subset

of the graphs discussed in Theorem 6.2.1. Delete any ⌈|V|/2⌉ agents in the graph,

we know that the remaining subgraph is ⌊|V|/2⌋-agent subgraph. Based on the

second condition, we know that every agent inside has at least 2F + 1 neighbors

from the subgraph. Thus we choose N = ⌊|V|/2⌋, and we have that for any

N -agent subgraph, the agents inside have at least 2F + 1 neighbors from the

subgraph.

Corollary 6.2.1 gives a general sketch for the non-complete graphs under

Buhrman’s model. In order to guarantee resilient consensus, we have to guar-

antee that each agent has neighbors more than half of the total agents. Note

that there is a gap between the graph conditions discussed in Theorem 6.2.1 and

Lemma 6.2.1. The reason is that we obtain a necessary and sufficient condi-

tion for complete graphs in Lemma 6.2.1. However, in Theorem 6.2.1, it is a

sufficient condition for non-complete graphs. To find a necessary condition for

non-complete graph is a challenging problem and we will study it in future works.

6.2.3 Convergence of Protocol 1 under Garay’s model

For Garay’s mobile model, the only difference with Buhrman’s mobile model is

that the cured agents cannot send their values in the curing round. This behavior

can be considered as F -total jamming behavior, and then at each round, we have

F -total malicious agents and F -total jamming agents in the worst case. Based

on an analysis similar to that in Lemma 6.2.1, we have the following lemma for

networks in the complete graph forms.

Lemma 6.2.3. Consider an agent network that is represented as a complete

graph. Suppose that the model of the mobile adversaries is F -total malicious and

follows Garay’s behaviors. Then, regular agents using Protocol 1 reach resilient
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consensus if and only if the graph satisfies |V| ≥ 3F + 1. The safety interval is

given by S = [x(0), x(0)].

In Garay’s model, there may be F cured agents that are not allowed to send

their values to neighbors. For this reason, in Protocol 1, regular agent i deletes

2F neighbor agents in step 3. The cured agents may also be inside the remaining

neighbor set Mi(k). So compared with Buhrman’s model, which is discussed in

Lemma 6.2.1, we need F more neighbors in Garay’s model. This argument also

holds for the results extended for non-complete graphs later. We thus obtain the

following theorem.

Theorem 6.2.2. Consider an agent network where the model of mobile adver-

saries is F -total malicious and follows Garay’s behaviors. Then, regular agents

using Protocol 1 reach resilient consensus if the following conditions are satisfied:

C1. |V| ≥ 6F + 4.

C2. There exists a number N such that N ≤ |V|/2 and for any N-agent sub-

graph, the agents inside have at least 3F + 1 neighbors from the subgraph.

The safety interval is given by S = [x(0), x(0)].

As we discussed, the condition C2 in Theorem 6.2.2 requires F more neighbors

than that in Theorem 6.2.1. Moreover, condition C1 is necessary for condition

C2.

In the following corollary, we give a class of graphs which are easy to check

and can also guarantee resilient consensus.

Corollary 6.2.2. Consider an agent network where the model of mobile adver-

saries is F -total malicious and follows Garay’s behaviors. Then, regular agents

using Protocol 1 reach resilient consensus if the following conditions are satisfied:
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C1. |V| ≥ 6F + 4.

C2. For every agent i, the number of neighbors |Ni| ≥ 3F + 1 + |V|/2.

The safety interval is given by S = [x(0), x(0)].

The results for Protocol 1 under Garay’s model are slightly different from

the ones under Buhrman’s model. Generally, the graph condition under Garay’s

model is stricter than Buhrman’s model because of the cured agents’ behavior.

Here we would like to highlight that the adversary’s behavior in Garay’s model

is more powerful since the adversary agent can move at any step. By contrast, in

Buhrman’s model, the adversary agent can only move at the send step.

We note that in Garay’s model, once the adversary agent moves away, the

cured agents know immediately that they have been infected and then avoid

sending their values to neighbors. However, in some cases in practice, this feature

cannot be guaranteed. For example, there is no fault detection algorithm in the

system. To deal with this problem, We discuss Bonnet’s mobile model, which

does not need cured agents detection. Meanwhile, we propose another protocol

to solve the resilient consensus problem for Bonnet’s mobile model.

6.3 Protocol 2 for Bonnet’s model

6.3.1 Modified MSR algorithm 2 (Protocol 2)

Here, we present a resilient protocol for Bonnet’s mobile model, which is a more

powerful mobile adversary model. In Bonnet’s model, since the cured agents do

not know that they were infected, they send corrupted values during the curing

round. Then the cured agents can be considered as F -total malicious and at

each round, the regular agents may receive at most 2F corrupted values (since

additional F corrupted values come from the adversary agents). So in Bonnet’s
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model, we slightly modify the deleting step 3. In particular, the values to be

deleted are charged from the F largest and F smallest values to the 2F largest

and 2F smallest values. We would like to show that this protocol is effective to

deal with the mobile malicious agents under Bonnet’s model.

Protocol 2 consists of four steps as follows.

Algorithm 6.3.1. (Protocol 2) At each round k, each regular agent i executes

the following four steps:

1. (Communication) Agent i sends its current value xi(k) according to the

mobile adversary model.

2. (Collecting neighbor information) Agent i collects the values of neighbors

xj(k), j ∈ Ni. Then, it sorts the received values and its own value in de-

scending order.

3. (Deleting suspicious values) After the sorting, agent i deletes the 2F largest

and 2F smallest values. The deleted data will not be used in the update of

its value. The set of remaining values is written as Mi(k) ∈ Ni.

4. (Local update) Agent i ∈ R updates its value by

xi (k + 1) = aii(k)xi(k) +
∑

j∈Mi(k)

aij (k)xj (k), (6.6)

where aii(k) +
∑

j∈Mi(k)

aij (k) = 1 and γ ≤ aij(k) ≤ 1

6.3.2 Convergence of Protocol 2 under Bonnet’s model

Since we remove more neighbors in Protocol 2, we need more neighbors compared

with the related graphs in Protocol 1. By an analysis similar to that in Lemma

6.2.1, Theorem 6.2.1 and Corollary 6.2.1, we have the following results.
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Lemma 6.3.1. Consider an agent network that is represented as a complete

graph. Suppose that the model of the mobile adversaries is F -total malicious and

follows Bonnet’s behaviors. Then, regular agents using Protocol 2 reach resilient

consensus if and only if the graph satisfies |V| ≥ 4F + 1. The safety interval is

given by S = [x(0), x(0)].

Theorem 6.3.1. Consider an agent network where the model of mobile adver-

saries is F -total malicious and follows Bonnet’s behaviors. Then, regular agents

using Protocol 2 reach resilient consensus if the following conditions are satisfied:

C1. |V| ≥ 8F + 4.

C2. There exists a number N such that N ≤ |V|/2 and for any N-agent sub-

graph, the agents inside have at least 4F + 1 neighbors from the subgraph.

The safety interval is given by S = [x(0), x(0)].

Corollary 6.3.1. Consider an agent network where the model of mobile adver-

saries is F -total malicious and follows Bonnet’s behaviors. Then, regular agents

using Protocol 2 reach resilient consensus if the following conditions are satisfied:

C1. |V| ≥ 8F + 4.

C2. For every agent i, the number of neighbors |Ni| ≥ 4F + 1 + |V|/2.

The safety interval is given by S = [x(0), x(0)].

By comparing our results for Bonnet’s model with Burhman’s model, we notice

that neither of them requires the functionality to detect the cured agents for

reaching resilient consensus. The only difference is that in Burhman’s model,

the adversary agent can move at the send step, while in Bonnet’s model, the

adversary agent can move at any step. It is obvious that Bonnet’s model is more

powerful. Thus we need a more strictive protocol to guarantee resilient consensus.
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Based on the results for Bonnet’s model, we observe that each agent needs 2F

more neighbors compared with Burhman’s model.

Next, we compare Bonnet’s model with Garay’s model. It is easy to see that

the adversary agent can move at any step in both Bonnet’s model and Garay’s

model. The difference comes from the defender’s viewpoint. In Garay’s model, if

a regular agent is influenced by an adversary agent, it becomes aware that it was

infected as soon as the adversary moves away.

However, in contrast, in Bonnect’s model, but the regular agents will never

be aware of being infected. Since there is no scheme for detection. So we say

that the defender is more capable in Garay’s model. Compared with Garay’s

model, we find that the related results in Bonnet’s model typically need F more

neighbors.

As discussed above, we can find that the graph conditions are related to the

adversaries’ power and defender’ power. We summarize the differences among

the three models in Table 6.1.

Table 6.1: Differences among the three models

Complete Non-complete
Models Adversary Defender graph graph

condition condition

Burhman’s weak weak |V| > 2F |V| ≥ 4F + 4
Garay’s strong strong |V| > 3F |V| ≥ 6F + 4
Bonnet’s strong weak |V| > 4F |V| ≥ 8F + 4

We note that in Garay’s model, the cured agents are guaranteed to become

regular in one round. However, to guarantee this feature, we have to design the

update rules carefully and such update rules may requires a more conservative

graph condition. If we can extend the one curing round in Garay’s model to

multiple rounds, then it is possible for us to find another class of algorithms to

guarantee resilient consensus under more relaxed graphs. The following section

follows this idea. We extend the curing to two rounds, and call them cure rounds
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1 and 2. There are different update rules in these rounds. The cured agents in

both cure rounds do not send their values. For this model, we propose another

protocol to achieve resilient consensus.

6.4 Protocol 3 for Garay’s model

In this section, we consider Garay’s model from a different viewpoint and develop

another resilient consensus algorithm, Protocol 3. Over Protocol 1 for the save

mobile malicious model, it has an advantage with respect to necessary network

connectivity. In Garay’s mobile model, the regular agents have the ability to

detect whether they are infected or not. Based on this property, we would like to

introduce different update rules for regular agents and cured agents to reduce the

necessary graph connections. The values of regular agents can be directly used

since they are healthy. However, the cured agents in cure round 1, whose values

are still infected, have to ignore their own values in the updates to guarantee the

security.

Algorithm 6.4.1. (Protocol 3) At each round k, each regular agent i executes

the following six steps:

1. (Cure round check) Agent i checks if it is a cured agent or not. If it is cured

agent, check the cure round.

2. (Communication) Regular agents send the updated value to all neighbors

while cured agents do not send.

3. (Collecting neighbor information) Regular and cured agents collect the neigh-

bors’ value xj(k), j ∈ Ni, and sort them from the largest to the smallest

(including its own value xi(k)).
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4. (Deleting behavior for agents in C1(k)) Agent i removes the F largest and F

smallest values. The deleted data is considered as suspicious data and will

not be used in the following local updates. The set of the remaining values

are written by Mi(k) ⊂ Ni.

5. (Deleting behavior for regular agents and agents in C2(k)) Comparing with

xi(k), agent i removes the F largest and F smallest values from its neigh-

bors. If the number of values larger or smaller than xi(k) is less than F ,

then all of them are removed. The set of the remaining values are written

by Mi(k) ⊂ Ni.

6. (Local update) Regular and cured agent updates its value by

xi (k + 1) = aii(k)xi(k) +
∑

j∈Mi(k)

aij (k)xj (k), (6.7)

where aii(k) +
∑

j∈Mi(k)

aij (k) = 1, γ ≤ aij(k) ≤ 1. Note that for agents in

cure round 1, aii(k) may be zero.

On the other hand, for the regular agents or the cured agents in cure round 2,

they apply the conventional MSR update rule. More specifically, the cured agents

in cure round 1 apply the modified MSR update rule as in Protocol 1, where the

difference is that the regular agents in Protocol 3 delete less connections. We

will see that Protocol 3 needs less connections in non-complete graphs. Then we

introduce the following theorem.

Theorem 6.4.1. Consider an agent network where the model of the mobile adver-

saries is F -total malicious and follows Garay’s mobile behaviors. Then, regular

agents using Protocol 3 reach resilient consensus if the graph is (4F +1, 2F +1)-

robust. The safety interval is given by S = [x(0), x(0)].
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Proof. We first show the safety condition part. Since the graph is (4F+1, 2F+1)-

robust, for both regular agents and cured agents, they have more than 4F + 1

neighbors. In Protocol 3, at most 2F values are deleted and 2F may be missing,

and thus the neighbor set Mi(k) is not empty. According to Garay’s model, at

the beginning of round 1, there are at most F adversary agents and F cured

agents. For regular agents and cured agents in cure round 2, i.e., those in C2(k),

based on the step 5, we know that if for neighbor j, xj(0) /∈ [x(0), x(0)], then it is

deleted. So based on (6.7), we have that ∀i ∈ R(k) ∪ C2(k), xi(1) ∈ [x(0), x(0)].

For the cured agents in C1(k), the possible corrupted value at time 0 also comes

from the previous infected value xi(0). Such values will be deleted because of the

step 4). Note that for i ∈ C1(k) we have the update rule (6.7), where aii(0) ̸= 0

only when xi(0) ∈ [x(0), x(0)]. Thus we have xi (1) ∈ [x(0), x(0)], that is, the

cured agents in C1(0) will be within the safety interval at the end of round 1.

Repeat this argument, we can obtain the safety condition.

Next we give the consensus condition. We first discuss the update of regular

agents. Let V (k) = x(k)− x(k) and introduce the two sets

X (k, k′, ε0 (k
′)) = {j ∈ V : xj (k

′) > x (k)− ε0 (k
′)} ,

X (k, k′, ε0 (k
′)) = {j ∈ V : xj (k

′) < x (k) + ε0 (k
′)} , (6.8)

where k′ = k, k + 1, . . .. We set the sequence ε0 (k
′) by

ε0 (k) =
(x(k)− x(k))

2
,

and

ε0 (k
′ + 1) = γε0 (k

′) , for k′ ≥ k.

Note that 0 ≤ ε0(k
′) ≤ ε0(k

′+1) for k′ ≥ k. Thus, X (k, k, ε0 (k)) and X (k, k, ε0 (k))
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are disjoint and nonempty with at least one regular node in each. Therefore, by

the assumption of (4F + 1, 2F + 1)-robust, we have the following three cases:

1. All agents in X (k, k′, ε0 (k
′)) have at least 4F + 1 neighbors from outside.

2. All agents in X (k, k′, ε0 (k
′)) have at least 4F + 1 neighbors from outside.

3. The total number of agents in X (k, k′, ε0 (k
′)) and X (k, k′, ε0 (k

′)) that have

at least 4F + 1 neighbors outside is no smaller than 2F + 1.

We would like to show that case 3 will eventually change into case 1 or 2

in the future time, so we first discuss case 3. We know that there are at least

F + 1 regular and cured agents in X(k, k, ε0(k)) and X(k, k, ε0(k)) that have at

least 4F + 1 neighbors from outside. We first show the updates for the agents in

X(k, k, ε0(k)). Note that the agents in X(k, k, ε0(k)) can be similarly analyzed.

Partition the agents in Mi(k) into two parts

• Mi(k) ∩ X(k, k, ε0(k)),

• Mi(k) \ X(k, k, ε0(k)).

We would like to show that, since ε0 (k + 1) = γε0 (k), the regular and cured

agents are moved outside X (k, k + 1, ε0 (k + 1)) at time k + 1.

We first discuss the regular agents and cured agents in C2(k), which follow

the regular deleting rule in step 5). From update rule (6.7), we have

xi (k + 1) = aii(k)xi(k) +
∑

j∈Mi(k)∩X

aij (k)xj (k) +
∑

j∈Mi(k)\X

aij (k)xj (k). (6.9)

Note that such agents have at least 4F +1 neighbors from outside X(k, k, ε0(k)).

There are at most 2F jamming agents and we remove at most F agents in

Mi (k) \ X(k, k, ε0(k)). So the set Mi (k) \ X(k, k, ε0(k)) is guaranteed to be
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nonempty. Thus we have

xi (k + 1) ≤ aii(k)x(k) +
∑

j∈Mi(k)∩X

aij (k)x (k) +
∑

j∈Mi(k)\X

aij (k) (x (k)− ε0(k))

≤ x(k)− γε0(k). (6.10)

On the other hand for the regular agents or the cured agents in cure round 2

outside X(k, k, ε0(k)), since xi(k) ≤ x(k) − ε0(k) and aii(k) ≥ γ, we can also

guarantee (6.10) from (6.9).

Similar results also hold for i ∈ X(k, k, ε0(k)). So we can see that at least

F + 1 regular and cured agents will be outside of X (k, k+1, ε0 (k + 1)) and

X (k, k+1, ε0 (k + 1)) at time k + 1.

Next we discuss the cured agents i ∈ X(k, k, ε0(k)) ∩ C1(k). These agents

apply the deleting rule in step 4). We have two possible update rules

xi (k + 1) =aii(k)xi(k) +
∑

j∈Mi(k)∩X

aij (k)xj (k) +
∑

j∈Mi(k)\X

aij (k) xj (k). (6.11)

and

xi (k + 1) =
∑

j∈Mi(k)∩X

aij (k)xj (k) +
∑

j∈Mi(k)\X

aij (k) xj (k). (6.12)

The update rule depends on whether agent i deletes its own value or not. Suppose

cured agent i has at least 4F +1 neighbors outside. There are at most 2F values

missing since cured agents do not send values and we remove at most 2F agents

in Mi (k) \ X(k, k, ε0(k)). So the set Mi (k) \ X(k, k, ε0(k)) is guaranteed to be

non-empty. Then we have that in both (6.11) and (6.12), it holds

xi (k + 1) ≤ x(k)− γε0(k). (6.13)
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Thus, since ε0 (k + 1) = γε0 (k), we have that at least F + 1 regular or cured

agents at round k move outside X (k, k+1, ε0 (k + 1)).

We then discuss the behavior of cured agents in C1(k) outside X(k, k, ε0(k)).

For i ∈ C1(k) \ X(k, k, ε0(k)), under Protocol 3, we have two possible update

rules (6.11) and (6.12). For update rule (6.11), we have similar argument and

then we have (6.10) for such class of cured agents. For update rule (6.12), we

note that for such cured agent i, its updated value xi(k + 1) may move inside

X (k, k+1, ε0 (k + 1)), for example, if the set Mi (k) \ X(k, k, ε0(k)) is empty.

Similar results also hold for i ∈ C1(k) \X(k, k, ε0(k)). Since there are at most

F agents that follow the deleting rule in step 4), we know that at most F cured

agents can move inside X (k, k+1, ε0 (k + 1)) or X (k, k+1, ε0 (k + 1)).

Summarize the argument so far, we know that at the beginning of round

k + 1, there are at most F cured agents move inside X (k, k+1, ε0 (k + 1)) or

X (k, k+1, ε0 (k + 1)), and at least F +1 regular agents move outside. Hence, the

number of such agents in X(k, k + 1, ε0(k)) is smaller than that in X(k, k, ε0(k))

at least by one agent. Repeating this process, we eventually have that there

is some time k + kf such that less than F + 1 regular agents inside each of

X (k, k+kf , ε0 (k + kf )) and X (k, k+kf , ε0 (k + kf )), where kf is a finite number.

We note that at time k + kf , we can check that X (k, k+kf , ε0 (k + kf )) and

X (k, k+kf , ε0 (k + kf )) are disjoint and nonempty. By the graph robustness, we

have the following three cases:

1. All agents in X (k, k + kf , ε0 (k + kf )) have at least 4F + 1 neighbors from

outside.

2. All agents in X (k, k + kf , ε0 (k + kf )) have at least 4F + 1 neighbors from

outside.

3. The total number of agents in X (k, k + kf , ε0 (k + kf )) and
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X(k, k + kf , ε0 (k + kf )) that have at least 4F + 1 neighbors outside is no

smaller than 2F + 1.

From the above analysis we know that there are less than F + 1 regular

and cured agents inside X (k, k+kf , ε0 (k + kf )) or X (k, k+kf , ε0 (k + kf )) at time

k + kf . So case 3) cannot be satisfied any more. Case 1) and/or case 2) has to

be satisfied. We summarize the updates in case 3) in Fig. 6.3.

Figure 6.3: Updates for regular and cured agents in case 3

We suppose that case 1) is satisfied. Then we would like to show that the set

X (k, k + kf , ε0 (k + kf )) will be empty for both regular agents and cured agents

at the end of round k + kf + 2. After the update step in round k + kf + 1, we

know that all regular and cured agents inside X (k, k + kf , ε0 (k + kf )) are moved

outside. And at most F cured agents in cure round 1 move inside, but such

cured agents do not send their values to neighbors at the send step in round

k+ kf +2. Thus at the send step in round k+ kf +2, there is no value sent from

the set X (k, k + kf , ε0 (k + kf )) and then the agents outside cannot move inside

anymore. At the beginning of round k + kf + 2, the cured agents that moved
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inside X (k, k + kf , ε0 (k + kf )) in the previous time step are now in cure round 2,

and thus they move outside after the update step in this round. Thus we know

that at the end of k + kf + 2, all regular agents and cured agents are outside

X (k, k + kf , ε0 (k + kf )). We summarize the updates in case 1) in Fig. 6.4.

Figure 6.4: Updates for regular and cured agents in case 1

Similar arguments also hold for the set X (k, k + kf , ε0 (k + kf )). Then at

the end of round k + kf + 2, one of the two sets is empty. Here, we suppose

X (k, k + kf , ε0 (k + kf )) is empty. Then we have

xi (k + kf + 2) ≤ x (k)− γkf ε0 (k) ,∀i ∈ R.

It follows that

x (k + kf + 2) ≤ x (k)− γkf ε0 (k) .

We note that x(k) is non-increasing and x(k) is non-decreasing based on the
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update rule (6.7). Then we have

V (k + kf + 2) = x (k + kf + 2)− x (k + kf + 2)

≤ x (k)− γkf ε0 (k)− x (k)

=

(
1− γkf

2

)
V (k).

Repeating this argument, we have

V (k + l (kf + 2)) ≤
(
1− γkf

2

)l

V (k).

Therefore, we have V (k) → 0 as k → ∞.

The reason that Protocol 3 may guarantee resilient consensus in a relaxed

graph mainly comes from the relaxed deleting rules applied to the regular agents.

Since we know that the current values of the regular agents are reliable, we can

evaluate the other neighbors’ value by a specific comparison with the current local

value, which is in detail explained in step 5). Compared with Protocol 1, the safe

values are more efficiently used in Protocol 3.

Compared with conventional MSR algorithms, there are three main differences

in the proof techniques:

• Not only the adversary agents in the graph send corrupted values, but also

the cured agents do not send values to neighbors, which is not a regular

behavior. Furthermore, the cured agents in C1(k) follow an update rule

different from regular agents. We have to analyze the convergence of such

cured agents separately.

• The behavior of the cured agents in C1(k) does not obey the desired update

rules for regular agents. Thus the cured agents outside X (k, k, ε0 (k)) may
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move inside the set X (k, k+1, ε0 (k + 1)), which does not appear in conven-

tional MSR algorithms analysis. This property leads us to some technical

difficulties in the analysis.

• The set X (k, k + kf , ε0 (k + kf )) is guaranteed to be empty at time k+kf+2,

which is two rounds later than the conventional MSR analysis. The reason

is the behavior of cured agents. From the proof we know that in the worst

case the cured agents will first move inside X (k, k + kf , ε0 (k + kf )) and

then move outside. In this work, we have to guarantee that the set is

empty for both regular and cured agents, while the conventional works only

requires the set to be empty for regular agents.

Compared with the non-complete results in Garay’s model, the graph condi-

tion discussed here is only determined by the total number of adversary agents

F . Moreover, we avoid the condition that every regular agent has at least more

than |V|/2 edges, which appears in Theorem 6.2.2 and Corollary 6.2.2. Here,

we must emphasize that for a given F , if |V| is large enough, the connectivity

in Theorem 6.4.1 may become less than that in Corollary 6.2.2. We give a non-

complete graph example that is (5, 3)-robust, but does not satisfy the conditions

in Theorem 6.2.2. This shows that the graph conditions in Theorem 6.4.1 are

more relaxed. Suppose that F = 1 and |V| = 10. Then we can easily check that

only the 10 agent complete graph satisfies the two conditions in Theorem 6.2.2.

We can also check that the graph in Fig. 6.5, that each agent has at least 8

neighbors is (5, 3)-robust graph. As shown in Fig. 6.5, the agents in the dash line

circle can fully communicate with each other. The arrows indicate the neighbor

information between dash line circles.
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Figure 6.5: An example of (5, 3)-robust graph

6.5 Numerical Examples

In this section, we would like to check the performance of conventional MSR

algorithm in mobile adversary model. Then, we illustrate the proposed protocols

in numerical examples.

The first graph that we consider here is a 14 agent graph, where agent 1 does

not have an in-neighbor from agent 14. Agents 2 to 14 do not have in-neighbor

from agent 1. The other connections are all connected. We can check that all

agents of the underlying graph in Fig. 6.6 have 12 neighbors. For F = 1, this

graph satisfies the conditions in Theorems 6.2.1, 6.2.2, 6.3.1 and 6.4.1. We would

like to check the effectiveness of Protocols 1 and 2 under this graph.

The second graph with 14 agent is shown in Fig. 6.7. We can check that this

graph is (5,3)-robust and the agents have at most 9 neighbors (agents 6-14 only

have 8 neighbors). Note that this graph does not satisfy the graph conditions in

Theorem 6.2.2 under Garay’s model. We would like to check the effectiveness of

Protocol 3 for Garay’s model under this graph.

The initial states are random numbers in the interval of [0, 8], and thus non-

negative. The adversary agent always takes a negative number −5 and moves

from agent 1 to agent 14.
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Figure 6.6: Graph 1

Figure 6.7: Graph 2

6.5.1 Simulations for conventional MSR

We first check the conventional MSR algorithm in mobile adversary models. We

apply the Buhrman’s mobile model under graph 1 and show the results in Fig. 6.8.

It is easy to see that the adversary agent can lead all regular agents to a negative

value, which is determined by the adversary agent. We note that the other mobile

adversary models can also lead to similar results. So the conventional MSR

algorithm cannot guarantee resilient consensus in any of the mobile adversary

models.

6.5.2 Simulations for Protocols 1 and 2 in graph 1

We check the effectiveness of the proposed Protocols 1 and 2 in graph 1. We

first give the result for Protocol 1 under Burhman’s model. The time responses
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Figure 6.8: Conventional MSR algorithm in Burhman’s model

are depicted in Fig. 6.9. From this plot we know that once the adversary agent

moves away, the cured agent can be recovered to regular agents in one round. For

Protocol 1 in Garay’s model, we also have a similar plot. Here, the cured agents

do not send their values. The difference is that adversary agent can move at any

step in a round and thus we may have at most 2F adversary values in one round.

For Protocol 2 under Bonnet’s model, by removing more neighbor values, we can

avoid the cured agent detection in Garay’s model, and the time responses are

depicted in Fig. 6.10. We found that in these numerical examples, the resilient

consensus are reached. Since the underlying graph satisfies the graph conditions

in Theorems 6.2.1, 6.2.2, 6.3.1, we have shown the effectiveness of these results.

6.5.3 Simulations for Protocol 3 in graph 2

Next we show that Protocol 3 for Garay’s model can solve the resilient consensus

problem in a relaxed graph. This simulation is conducted in graph 2, which is

(5,3)-robust. We give the results in Fig. 6.11. It is easy to see that Protocol 3

successfully solves the resilient consensus problem. Compared with the results in

graph 1, the convergence speed is slower because of the reduced connectivity.
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Figure 6.9: Protocol 1 in Burhman’s model
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Figure 6.10: Protocol 2 in Bonnet’s model
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Figure 6.11: Protocol 3 in Garay’s model
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Chapter 7

Conclusion

7.1 Summary of achievements

The main contribution of this thesis lies in the following four parts:

1. Event-based resilient consensus protocols with limited communi-

cations

In Chapter 3, we considered a resilient approach for the multi-agent consen-

sus problem to mitigate the influence of misbehaving agents due to faults

and cyber-attacks. Two protocols for the updates of the regular nodes have

been proposed, and their convergence properties as well as necessary net-

work structures have been characterized. In both cases, resilient consensus

can be achieved with reduced frequencies in communication among agents

through event triggering. This is possible at the expense of certain errors

in consensus determined by the parameters in the triggering function.

2. Quantized resilient consensus protocols with limited communica-

tions

In Chapter 4, we considered the quantized resilient approaches for the multi-

agent consensus problem to mitigate the influence of misbehaving agents

due to faults and cyber attacks. Two novel protocols for the updates of the
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regular nodes have been proposed, and the convergence properties as well

as necessary network structures have been characterized. The quantized

resilient consensus can be achieved with reduced frequencies in communi-

cation among agents through event triggering.

3. Resilient consensus protocols with input constraint

In Chapter 5, we have considered a model predictive based approach for the

multi-agent consensus problem in the presence of malicious agents. A model

predictive control based resilient protocol has been proposed. It follows the

MSR algorithm to mitigate the influence of the misbehaving adversaries,

while it optimizes the control by taking account of input constraints. We

have established that resilient consensus is reachable if the agent network

possesses robust properties as a graph.

4. Resilient consensus protocols under mobile adversary models

In Chapter 6, we have considered resilient protocols for the multi-agent

approximate consensus problem to mitigate the influence of mobile misbe-

having agents due to faults and cyberattacks. Two protocols are proposed

to solve the resilient consensus problem in three conventional mobile adver-

sary models. In addition, we have also proposed a new mobile adversary

model and the related resilient consensus protocol. In all cases, resilient

consensus can be achieved in certain class of graphs.

7.2 Future directions

Even though resilient control problems have recently become a hot topic and

the research has lead to fruitful achievements, there is still much room for im-

provement of this topic. Some of them such as the two open problems listed in

Table 6.1 may be straightforward to solve by exploiting existing results. However,
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there are many research directions that require further efforts and need formal

formulation and theoretical analysis.

1. Effect of noise

Resilient consensus algorithms with system noises for the event-triggered

case is one of the possible directions. Based on different noise models such

as Gaussian white noise or unknown but bounded noise, the performance of

MSR algorithms can be analyzed by making use of techniques in stochastic

or set theories.

2. More detailed mobile adversary models

The existing mobile models focus on the mobile time instant in a round.

There are many other aspects such as the possible mobile area, mobile fre-

quency and so on. If the mobile adversary can be formulated in more details,

the mobile models can be more realistic and useful. Moreover, epidemic

models in computer networks or social networks may provide inspirations

for such directions.

3. Leader-follow consensus in mobile adversary models

In Chapter 6, we discussed the approximate resilient consensus problems

under mobile adversary models. Another direction is the study the leader-

follower resilient consensus problem. If the mobile adversary model has

some protected area so that the leaders cannot be infected, then it is desir-

able to reduce the necessary connections compared with the approximate

resilient consensus in Chapter 6.

4. Resilient control in cooperation with fault detection approaches

Even though the major advantage of resilient control is not to use the

fault detections, it is meaningful to find a tradeoff between resilient control
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approaches and fault detection approaches. In resilient control works, more

connections are usually required to guarantee convergence. If a distributed

fault detection algorithm is equipped, it should be possible to reduce the

connections compared with the conventional resilient control algorithms.

5. Resilient consensus problem in other backgrounds

Many existing resilient consensus works are motivated by applications in

wireless sensor networks and mobile robot networks. It is interesting to

extend such approaches to other applications such as boolean networks.

The malicious behavior of applications may be different, and such difficulties

may motivate us to find novel models or approaches to solve them.

6. Other quantization approaches in quantized resilient consensus In

Chapter 4, we have employed a probabilistic quantizer to solve the quan-

tized resilient consensus problem. Based on the requirements, to study the

performance of other quantization approaches such as logarithmic quantiz-

ers is also an interesting problem.
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