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Abstract

Over the last decade, in response to the slowing or end of Moore’s law, the High

Performance Computing (HPC) community has turned towards heterogeneous sys-

tems. Performance prediction of scientific applications across systems becomes in-

creasingly important in today’s diverse computing environments. A wide range of

choices in execution platforms pose new challenges to researchers in choosing a sys-

tem which best fits their workloads and administrators in scheduling applications

to the best performing systems. While previous studies have employed simulation-

or profile-based prediction approaches, such solutions are time-consuming to be de-

ployed on multiple platforms. To address this problem, we use two collaborative

filtering techniques to build analytical models which can quickly and accurately

predict the performance of workloads across different multicore systems. The first

technique leverages information gained from performance observed for certain ap-

plications on a subset of systems and use it to discover similarities among applica-

tions as well as systems. The second collaborative filtering based model learns latent

features of systems and workloads automatically and use these features to charac-

terize the performance of applications on different platforms. We evaluated both

the methods using 30 workloads chosen from NAS Parallel Benchmarks, BOTS and

Rodinia benchmarking suites on ten different systems. Our results show that such

collaborative filtering methods can make predictions with RMSE as low as 0.6 and

with an average RMSE of 1.6.

The graphic processing units (GPUs) have become a primary source of hetero-

geneity in today’s computing systems. With the rapid increase in number and types

of GPUs available, finding the best hardware accelerator for each application is a

challenge. For that matter, it is time consuming and tedious to execute every appli-

cation on every GPU system to learn the correlation between application properties

and hardware characteristics. To address this problem, we extend our previously

proposed collaborating filtering based modeling technique, to build an analytical

model which can predict performance of applications across different GPU systems.

Our model learns representations, or embeddings (dense vectors of latent features)
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for applications and systems and uses them to characterize the performance of var-

ious GPU-accelerated applications. We improve state-of-the-art collaborative filter-

ing approach based on matrix factorization by building a multi-layer perceptron.

In addition to increased accuracy in predicting application performance, we can

use this model to simultaneously predict multiple metrics such as rates of mem-

ory access operations. We evaluate our approach on a set of 30 well-known micro-

applications and seven NVIDIA GPUs. As a result, we can predict expected instruc-

tions per second value with 90.6% accuracy in average.
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Chapter 1

Introduction

1.1 Motivation

Modeling and predicting computer system performance has been and still is a cru-

cial component in our road towards better, faster and more reliable computer sys-

tems. With Moore’s law on its last legs and heterogeneity a part of our everyday life,

predicting performance across systems is perhaps more important now than ever

before.

Knowing how to extrapolate or project performance across systems is useful

across the entire hardware stack, ranging from small embedded systems, all the way

up to large distributed high-performance machines. Cloud-services such as Amazon

[4] or Microsoft [39] can assess user requirements using predictive tools and deliver

neither more nor less than what the customers and their applications require, sub-

ject only to the agreed-upon quality-of-service protocols. Cloud-users can similarly

evaluate and predict their cloud needs and pinpoint the exact service to invest in.

System administrators and users can (prior to purchase) approximate the impact of

replacing system components. Software designers can similarly estimate how their

applications run on next-generation hardware, whereas researchers use predictive

models as a tool to see future trends and potential pitfalls.

Graphics Processing Units (GPUs) are today the de-facto source of performance

in High-Performance Computing (HPC), and the vast majority of current top super-

computers [60] include them in their system setup. These powerful devices are ex-

plicit vector machines, whose programming model allows the programmer to lever-

age the large amount of parallelism they offer. Unlike general-purpose processors,
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which focus on exploiting instruction-level parallelism (and focus on latency), GPUs

focus on thread-level parallelism, masking/hiding long-latency operations (e.g. ex-

ternal memory accesses) by time-sharing computational resources. Despite their

similar programming model, GPUs are constantly undergoing architectural changes

across generation (e.g. mixed-precision Arithmetic Logic Units, per thread program

counters, diverse amount of floating-point units), which makes their performance

non-trivial to reason around and predict.

Predicting GPU performance is a challenging and hard task. Despite sharing a

programming model (CUDA [45] and OpenCL [58]), their architectural differences

between generations can be substantial. Furthermore, with the advent and popu-

larity of Deep-Learning, the type and target audience of GPUs is diversifying. As

a result, GPUs specialized in inference, training, gaming, and scientific computing

are emerging [46]. Given this vast array of current and emerging GPU types, how

do users choose which to invest in? Today, most users blindly buy the fastest next-

generation accelerator for their workload, which is more than likely not the most

optimal choice. There is a need for a simple and effective performance model that

assist users in choosing accelerators suitable for the workloads they care about.

1.2 Problem Statement

Predicting or modeling performance has been researched ever since the 1960s [51].

Unfortunately, the vast majority of work attempts (with more or less success) to

develop system-specific models that are unique to a particular system. These models

require either detailed knowledge about hardware [48] (e.g. pipeline stacks, reorder

buffer sizes, etc.) or rely on a cherry-picked set of hardware counters (e.g. [53]),

which may or may not exist across architectures.

Processor performance prediction has historically leveraged hardware perfor-

mance counters to extrapolate expected application or system behavior. Numer-

ous studies have collected large amount of hardware counter information and tried

to model application behavior as a function of these. Early on modeling was per-

formed by regression (linear or otherwise), while lately deep-learning is being ap-

plied. Given the large amount of research carried out with performance prediction
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in mind, what drives us to seek an alternative solution to the problem?

There are two main reasons why any method based on amassing information

from hardware performance counters is sub-optimal. The first drawback is the la-

bor involved in constructing the models, which typically involved running several

microbenchmarks [53, 17, 2] that stress the system in different ways (that is, isolate

various features), and then manually regressing the model to the data collected. It is

a lengthy and tedious labor process that in the end only yields a machine-specific per-

formance model. The second drawback is that the machine-specific models based on

the hardware counter-based method are inapplicable across systems. The number

and type of hardware performance counters can vary significantly between systems

to the point where many proposed performance models are unusable on modern

hardware. Furthermore, hardware counters are often unique to a particular system

or instruction set architecture (ISA) and even counters named similar can have am-

biguous meanings across ISAs, vendors and architectures.

Other methods exists, but are either orthogonal or complementary to our ap-

proach, or come with problems of their own. One approach is to simulate the perfor-

mance on a hypothetical machine using simulators such as gem5 [44] or simics [50]

as it was done for x86-64 Hammer prior to hard existing [16]). The simulators pro-

vides reasonable good accuracy and enough details to understand what is happen-

ing to the system. Unfortunately, they are also many orders of magnitudes slower

and machine specification does not exist for all processors. Faster and more abstract

analytic models such as LogP [13], Roofline model [54]) allow for fast estimation of

performance, but are often hard to use without detailed knowledge of the algorithm

at hand. Other methods include estimating performance inside the compiler [12]

or using detailed and thus difficult to obtain machine specifications such as reorder

buffer sizes and pipeline-depths [48]. We considered these methods complementary

to the one we present in the paper, as they can be incorporated into our proposed

method to potentially further improve accuracy.
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1.3 Proposal and Contributions

To address the previously mentioned challenges, we present the following contribu-

tions:

1. We perform an in-depth analysis of two scientific benchmarks using a cloud

platform and two supercomputers. We find that cloud instances exhibit good

compute performance with low performance variability after optimizing the

benchmarks with number of threads and MPI ranks. These instances prove

to be a good fit for compute-intensive and memory-intensive application with

little communication.The performance exhibited by these cloud instances is

comparable to our in-house supercomputers. Thus, they can be adopted as a

replacement to on-premises hardware deployments for such workloads.

2. With the increasing heterogeneity in systems, the problem of modeling per-

formance of scientific applications across different systems has become more

important now than ever before. We show the feasibility of using collabora-

tive filtering (CF) methods for predicting performance using a pilot study. We

construct performance datasets and implement two CF based methods to pre-

dict performance across multi-core processors.We show the capability of ma-

trix factorization based CF to uncover latent features that explain hardware-

program interactions using statistical methods.

3. We extend our previous matrix factorization based prediction approach to Graph-

ics Processing Units (GPUs). We evaluate a set of 30 applications on 7 different

generations of GPUs ranging from Kepler to Volta.

4. We design and propose a neural network architecture to learn complex hardware-

program interactions to further improve the accuracy of our prediction model.

We show that augmenting multiple performance metrics affect the prediction

accuracy.
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1.4 Thesis Outline

The document is organized as follows. We discuss the context of this work by giv-

ing some background knowledge in Chapter 2. We then evaluate performance of

some scientific benchmarks on different systems and discuss the need to focus on

cross-architecture performance models. We follow by the body of the work in the

next three chapters.Chapter 4 relates our model and analysis to predict performance

across different processors on multicore systems. Chapter 5 presents our exisit-

ing model solution to model GPU performance. This Chapter also introduces a

new model using multilayer perceptron in order to improve the prediction accu-

racy.Finally, we make concluding remarks in Chapter 6 along with future directions.
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Chapter 2

Background

2.1 Recommender Systems

Recommender Systems (RSs) are software tools and methods that provide sugges-

tions to a user for items that can be of use. These suggestions can be related to var-

ious decision-making processes, such as what items to buy, what movie to watch,

or what news to highlight in a user’s social media account. “Item” is what the sys-

tem recommends to users. A RS focuses on a specific type of item and three things

related to the item in question: 1) the item’s design, 2) the item’s graphical user in-

terface (GUI) and 3) the recommendation technique that is used to generate the rec-

ommendations. The recommendations are then customized to provide useful and

effective suggestions for that specific type of item.

FIGURE 2.1: Movie Recommender System

RSs are designed for users who lack sufficient personal experience or competence
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to evaluate the potentially overwhelming number of alternative items. A case in

point is a movie recommender system in figure 2.1 that assists users to select a movie

to watch.

2.2 Collaborative Filtering

Collaborative filtering techniques [3] are the most popular and widely implemented

techniques in building recommender systems. They generate automatic predictions

(filtering) about the interests of a user by collecting preferences or information from

many users (collaborating) present in the system. One of the most publicized appli-

cations of collaborative filtering is the Netflix challenge. The goal of the challenge

was to improve Netflix’s movie recommendation system, Cinematch by providing

valid movie recommendations to its users. The prize was won by BellKor’s Prag-

matic Chaos [64, 36, 8] after improving Cinematch by over 10% using a combination

of different collaborative filtering techniques.

The collaborative filtering techniques are grouped in two general classes of neigh-

borhood and model-based methods. In neighborhood-based collaborative filtering,

the user-movie ratings stored in the system are directly used to predict ratings for

new movies. It can be done in two ways known as user-based or movie-based col-

laborative filtering. User-based systems evaluate the interest of a user u given a

movie m. The evaluation is performed by identifying neighbors of u that have sim-

ilar rating pattern as u, and looking at how those very neighbors, called v, rated m.

Identifying which neighbors belong to u is done by looking at how well shared items

of u and v correlated with each other.

Movie-based approaches take a different stand and predict the rating of a user

u for a movie m by looking at how u rated movies similar to m. In this way, two

movies are similar if several users found them similar. In contrast to neighborhood-

based methods, which use the stored ratings directly in the prediction, model-based

approaches use these ratings to learn a predictive model. The core idea is to model

the user-movie interactions with factors representing the latent characteristics of the

users and movies in the system. The model is then trained using the available data

and later used to predict missing ratings of users for movies.
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2.2.1 Neighborhood-based Recommendation

k-Nearest Neighbor (kNN) is an intuitive approach to implement collaborative fil-

tering. For a given application and system, we want to predict its performance score.

kNN works by identifying the k closest points (nearest neighbors) of either the ap-

plication or system. The underlying idea is that similar applications (or systems)

tend to cluster together based on their similar performance scores. This neighbor-

hood approach is highly dependent on defining an appropriate similarity metric.

We use Pearson correlation to measure the similarity between applications as well

as systems. We implement two types of neighborhood-based collaborative filtering:

application-based collaborative filtering and system-based collaborative filtering.

User-based Rating Prediction

We first construct a Na×Na matrix and populate the matrix by calculating similarity

for each pair of applications using the Pearson correlation. The Pearson correlation

coefficient, sim(i, j) between any two applications i and j is a measure of strength of

the linear relationship between them. The value of coefficient ranges from -1 to 1. A

coefficient of -1 indicates a perfect negative linear relationship between applications,

a coefficient value of 0 indicates no relationship while a coefficient of 1 indicates a

positive linear relationship. It is calculated using the formula below:

Here, S(a1) is the set of all systems for which the performance score of applica-

tion a1 is known; S(a2) is the set of all systems for which the performance score of

application a2 is known; S(a1) ∩ S(a2) is a set of systems for which scores of both

applications a1 and a2 are known.

We want to predict the performance score for an application a on a system s. We

begin by finding the k most similar applications for which the performance scores on

the system s is known. We denote these neighbors of application a by Ns(a). Then,

we find the predicted score by taking the weighted average using the performance

scores of k applications and their similarity values w.r.t system s. The prediction of a
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performance score pas using application-based collaborative filtering is obtained as:

p̂as = p̄a +

∑
k∈Ns(a)

sim(a, k)(pks − p̄k)

∑
k∈Ns(a)

|sim(a, k)|

The prediction accuracy depends on k, the number of nearest neighbors. So, we try

different value of k in the training set and evaluate the corresponding performance

by measuring the RMSE.

Movie-based Rating Prediction

We construct a Ns × Ns similarity matrix for Ns number of systems. We calculate

the similarity values between each pair of systems and then apply kNN method to

predict the performance score as:

p̂as = p̄s +

∑
k∈Na(s)

sim(s, k)(pak − p̄k)

∑
k∈Na(s)

|sim(s, k)|

2.2.2 Matrix Factorization

Matrix factorization models are the most popular implementations of model-based

collaborative filtering. The core idea is to uncover latent features or factors among

applications and systems that explain the known performance scores. These models

map both applications and systems to a joint latent factor space of dimensionality

r, such that application-system interactions are modeled as inner products in that

space.

The input to the model is a sparse matrix A, with one row per application and one

column per system. The first step in a matrix factorization technique is to decompose

A into U, λ and V such that:

A ≈ UλVT

Given the matrix A (n applications, m systems), we factorize it into n× r matrix

U (n applications, r latent features), r× r diagonal matrix λ (strength of each latent

feature), and m× r matrix V (m systems, r latent features). Figure 4.1 illustrates this



10 Chapter 2. Background

FIGURE 2.2: Factorization of matrix A into sub matrices U, λ and V
using the latent features.

idea. The λ diagonal matrix contains the similarity concepts identified by the ma-

trix factorization technique. The U matrix is interpreted as the application-to-feature

similarity matrix, while the V matrix is the system-to-feature similarity matrix. For

instance, two or more applications can be similar in one latent feature (they both

benefit from a large L3 cache) but different in others (only one benefits from high

clock frequency). These latent features contain the singular values which are sorted

in decreasing order. The application-to-feature matrix represents the strength of the

associations between an application and the r latent features. In this way, each ap-

plication is described using a r-dimensional space. Similarly, the system-to-feature

matrix identifies each system using a r-dimensional space.

Let us denote Qn×r = U and PT
r×m = λVT. The prediction of an application a on

a system s can be calculated as the dot products as their vectors:

p̂as = qs.pT
a

= ∑
r

qsr.par

Now we may obtain P and Q by applying any dimensionality reduction technique

such as Singular Value Decomposition (SVD) to the matrix A.

2.3 Latent features

The performance of a program on a given system is guided by the complex interac-

tions between the program’s properties and system’s characteristics. The most com-

mon approach taken towards building analytical models is to first perform a detailed
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characterization of applications on systems and collect various performance metrics

such as execution time, hardware counters [63, 24]. Second, it needs to explicitly

list all the features that can capture the inter-dependencies between the application

and system at hand such as clock rate, cache size, floating point operations per sec-

ond (FLOPS) etc. Most previous works use an intuitive approach when selecting the

number of features in order to determine a set of good explanatory features. How-

ever, missing just one crucial feature from these carefully handpicked features can

greatly (and negatively) affect the prediction accuracy. Third, we need to test each

possible subset of those features finding the one which minimizes the error. This

is an exhaustive search of the feature space, and is computationally expensive and

unfeasible for all but the smallest of feature sets. Feature selection algorithms come

handy when it comes to finding the most impactful feature subsets but it comes with

an extra effort of selecting the appropriate algorithm and its parameters.

While considering tens or more of applications and systems, manually defining

features for each set of application and system is practically impossible. For building

a cross-architecture predictive model – such as the one we are targeting – we focus on

two things: 1) We do not want to manually define feature for each application and

system 2) we want our model to learn the features automatically from the known

performance of a subset of applications executed on a subset of systems and leverage

this information to predict performance.

2.4 Embeddings

The concept of representation learning is grounded in the idea that often the infor-

mation needed to characterize or classify high dimensional data can be found in

a low-dimensional manifold, or mapped into a dense vector. For instance, natu-

ral language processing systems use word embeddings to represent (embed) words

in a continuous vector space where semantically similar words have similar vector

representations (embeddings)[40]. Recommender systems employ similar represen-

tations to describe its entities (e.g. users and items) and call them as latent features.

We assume that there is a number of important features, called latent features,

which characterize systems and applications. We use a machine learning model to
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learn these features as a by-product of predicting known runtime metrics. In our

model, we have application and system feature vectors. Two or more applications

can be similar in one latent feature (they both benefit from high memory bandwidth)

but different in others (only one benefits from high core clock frequency).
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Chapter 3

Performance Evaluation

3.1 Introduction

High performance computing (HPC) systems are fundamental to solving complex

scientific problems by utilizing the high computation power of thousands of proces-

sors and high-throughput networks. However, the use of HPC systems for Big Data

problems is becoming more common across HPC centers. Big Data refers to the di-

verse, complex, and massive data sets that can contain structured, semi-structured

and unstructured data. These data sets are difficult to be stored, processed, and

analyzed by traditional database technologies. Hence, we seek a set of new tech-

nologies and advanced data analytics methods for data distribution, management,

and processing. The trend in the recent decade has been to extend the application

of HPC systems beyond the computationally-intensive scientific domain to data-

intensive domains, or the domain of "Big Data". While HPC has its roots in solving

compute-intensive scientific and large-scale distributed problems, Big Data prob-

lems have been proven to benefit from typical HPC environments: high processing

power, low-latency networks, and non-blocking communications [23]. Also, such

environments are used for running some typical data analytics problems such as

graph processing and its application in cybersecurity, social networks, medical in-

formatics etc. There have been various approaches proposed for employing HPC

to support data-intensive applications e.g. Map-Reduce-MPI [33], Pilot-MapReduce

[35] etc.

HPC has given the most significant contribution to scientific discovery and is ex-

panding its applications to analytics. However, the use of HPC systems is limited
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to scientists and researchers who have access to supercomputing labs and centers.

With HPC extending its application space from scientific applications to big data

analytics, the increasing demand for resources in HPC centers may not be met im-

mediately. Hence, it is important to study alternative HPC solutions and the extent

to which these solutions can be employed for different classes of computing and

their applications.

Public cloud computing has gained significant popularity over the past decade.

It exhibits pay-as-you-go facilities, elasticity, flexibility, usability, and scalability, which

have been attracting clients to use these environments as a cost effective measure to

run their applications or businesses. Cloud environments can help in bringing HPC

access to users who can’t afford complex setup and huge infrastructure costs. While

Cloud for HPC has always been a point of concern with the HPC community, there

has been growing efforts by cloud service providers to build new solutions that tar-

get HPC audiences. Amazon Elastic Compute Cloud (Amazon EC2), the leading in-

frastructure as a service (IaaS) provider, is the most studied cloud platform to evalu-

ate the capabilities of their instances for running HPC applications. They announced

the new generation of compute-optimized instances, C4 [7] in 2015 with the aim of

enabling HPC in cloud. These instances are supposed to offer the power of an HPC

system while leveraging the flexibility of the cloud, ideal for the true HPC-Big Data

convergence. To the best of our knowledge, these C4 instances have yet to be tested

yet, which is a motivating factor of this work.

This work assesses the performance trade-off when using the latest generation

of HPC-like clouds versus dedicated HPC systems. For this evaluation, we compare

the performance of a traditional HPC scientific mini-application, NICAM, and a tra-

ditional Big Data benchmark, Graph500, on TSUBAME2.5 supercomputer, TSUBAME-

KFC supercomputer, and Amazon EC2 C4 instances.

3.2 Related work

There have been several studies in the past that examine the feasibility of using pub-

lic clouds for high performance computing with different goals and focuses. The

Magellan Report on Cloud Computing Science [61] in 2011 was a two-year study to
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investigate the potential role of cloud computing in addressing the computing needs

for DOE Office of Science (D0E), particularly for mid-range computing and future

data-intensive workloads. It assessed the performance of various scientific appli-

cations on Amazon cloud and systems at two DOE labs and concluded that scien-

tific applications with minimal communication and I/O were best suited for clouds.

There was much focus on evaluating cloud platforms for tightly-coupled, MPI-based

applications [22, 27, 42]. Also, there was a study to assess the cost-effectiveness

of cloud environments for running scientific workloads [25]. With the announce-

ment of Amazon EC2 Cluster Compute Instances (CCI) in 2011, there was a study

for comparing in-house cluster with EC2 CCI for MPI applications [67, 65]. Since

then, Amazon EC2 has introduced many different instances intended for high per-

formance science and engineering applications. They offered the latest generation

of compute-optimized instances, C4 instances in 2015 with the highest performing

processors in all the instances. Capabilities of these instances for different HPC as

well as for data-intensive workloads have yet be studied.

3.3 Methods

3.3.1 Machines Used in Study

We present the specifications of TSUBAME2.5, TSUBAME-KFC, and Amazon C4

instance in Table 3.1.

TSUBAME2.5

TSUBAME2.5 is a production supercomputer operated by Global Scientific Infor-

mation and Computing Center (GSIC), Tokyo Institute of Technology. It consists

of more than 1400 thin compute nodes interconnected by 2xQDR InfiniBand i.e.

80 Gbps network. Each TSUBAME2.5 node has two Intel Xeon X5670 processors,

NVIDIA Tesla K20X, and 54 GB of local memory. The compute nodes share a scal-

able storage system constructed with Lustre parallel file system with a capacity of

7.13 PB. Codes were compiled on TSUBAME2.5 using gcc 4.3.4 and OpenMPI 1.6.5.
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TSUBAME-KFC

TSUBAME-KFC is a prototype for next-generation TSUBAME 3.0 supercomputer

operated by Global Scientific Information and Computing Center (GSIC), Tokyo In-

stitute of Technology. It is composed of forty-two compute nodes interconnected by

4xFDR InfiniBand i.e. 54 Gbps network. Each compute node is equipped with two

Intel Xeon E5-2620 v2 processors (Ivy Bridge EP) and four NVIDIA Tesla K80 GPU

boards. These compute nodes share 1.1 TB SSD-based storage system. Codes were

compiled on TSUBAME-KFC using gcc 4.8.5 and OpenMPI 1.6.5.

Amazon EC2

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides In-

frastructure as a Service (IaaS), enabling the creation and management of virtual

machines. We used the latest generation of compute-optimized instances, c4.8xlarge

instances in our cloud experiments. Each c4.8xlarge instance has an Intel Xeon E5-

2666 v3 (Haswell) 2.9 GHz & 3.5 GHz with Intel Turbo Boost, processors with 60GB

memory and 36 vCPUs. These instances are interconnected with 10 Gigabit Ethernet

and offer Elastic Block Store (EBS) [6]. EBS are block-level storage volumes and they

can be attached to any running instance within the same availability zone.

We created a virtual EC2-based cluster using our customized Amazon Machine

Image (AMI) [5] on c4.8xlarge instances for our experiments. For shared file system,

we attached an Amazon EBS volume to one of the instances. On top of the EBS

volume, we built a standard Linux ext4 file system that was exported via NFS to all

of the virtual cluster nodes. We ran all our experiments in the Asia Pacific (Tokyo)

region. Also, we launched our instances using a placement group which ensures

that the virtual machines were created within one region only.

3.3.2 Applications Used in Study

NICAM-DC-MINI

NICAM-DC-MINI is a Fiber miniapp that is developed and maintained at RIKEN

Advanced Institute for Computational Science [37, 38]. It is a subset of NICAM-DC
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TABLE 3.1: Specification of the evaluated platforms.

Specs TSUBAME2.5 TSUBAME-KFC Amazon EC2
c4.8xlarge in-
stance

Cores 12 Physical 12 Physical 36 Virtual
Memory 54 GB 64 GB 60 GB
Processor Intel Xeon X5670

(Westmere-EP)
Intel Xeon E5-
2620v2 (Ivy
bridge)

Intel Xeon E5-
2666v3 (Haswell)

Core Frequency 2.93 GHz 2.10 GHz 2.9 GHz
Network 80 Gbps (2XQDR

Infiniband)
54 Gbps (4xFDR
Infiniband)

10 Gbps Ethernet

Storage 7.13 PB (Lus-
tre parallel file
system)

1.1 TB (Local SSD)
and 30 TB (NFS
over 10 Gigabit
Ethernet)

Elastic Block Store

application and contains the minimum computational procedures to run the baro-

clinic wave test case Jablonowski [26]. Jablonowski is a well-known benchmark of

atmospheric general circulation model reproducing unsteady baroclinic wave oscil-

lation. It is a stencil code on icosahedral grid with the explicit method of Runge-

Kutta. The icosahedral grid is divided into blocks and distributed among nodes.

Each node then transfers the boundary data to the nearest-neighbor nodes. The al-

gorithm pattern of NICAM-DC-MINI corresponds to the structured grid of Berkeley

Dwarfs [9].

Graph500 benchmark

Graph500 [20] is a data-intensive benchmark based on large-scale graph analysis. It

performs breadth-first searches on weighted, undirected large graphs generated by

scalable data generator based on a Kronecker graph. Graph500 consists of two ker-

nels: The first kernel constructs an undirected graph used by the second kernel. The

second kernel performs a breadth-first search (BFS) of the graph from a randomly

chosen source vertex in the graph. Both the kernels are timed and this benchmark

uses the performance metric Traversed Edges Per second (TEPS) to compare the

benchmark performance across multiple architectures, programming models, and

frameworks. TEPS is measured by benchmarking the second kernel.
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3.3.3 Experiment Setup for NICAM-DC-MINI

We have performed weak scaling tests using the Jablonowski test case of NICAM-

DC-MINI on all three systems. The default test case is an 11-day simulation with 224

km horizontal grid spacing and 792 time steps. For our experiments, we reduced the

simulation time by setting the number of time steps to 264. The weak scaling test

cases of Jablonowski are provided for 10, 40, and 160 MPI processes. The simulation

size for each test case is depicted in Table 3.2.

TABLE 3.2: Weak scaling test cases of Jablonowski.

# of MPI ranks # of horizontal grids (total) total # of grids
10 11,560 947,920
40 46,240 3,791,680
160 184,960 15,166,720

Amazon EC2 C4 instances use custom Intel Xeon E5-2666 v3 (Haswell) proces-

sors as stated by Amazon. /proc/cpuinfo on a c4.8xlarge instance results in 2 sockets

and 9 cores per socket. Also, Amazon has mentioned the breakdown of 36 vCPUs

as 18 cores with each core running two hyperthreads [7]. But since it is a virtualized

environment, we evaluated both 10 and 20 MPI process per c4.8xlarge instance. Both

TSUBAME2.5 and TSUBAME-KFC have 12 physical cores per node, so we used 10

MPI process per node in our experiments. We profiled the miniapp using ScoreP

2.0.2 [62]. The total execution time of the miniapp is broken down into: application

(App) time, stall time and MPI time. Stall refers to the time spent on MPI_WaitAll

and MPI time is time spent on all other MPI calls. We have measured performance

variability in all the evaluated platforms by performing 5 trials of our experiments

on each platform.

3.3.4 Experiment Setup for Graph500 benchmark

Implementations and Problem Size

The Graph500 benchmark provides four implementations: simple, replicated, replicated-

csc, one-sided. All these four implementations use level-synchronized BFS, which

means that all vertices at a given level of the BFS tree must be processed before any
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TABLE 3.3: BFS time with different MPI ranks and OpenMP threads
in TSUBAME2.5

# of MPI ranks 16 8 8 8 4 4 2 2 1 1
OpenMP threads 1 1 2 3 3 6 6 12 24 12
Total threads 16 8 16 24 12 24 12 24 24 12
BFS time 0.79 0.84 0.68 0.57 0.61 0.56 0.60 0.56 0.55 0.62

TABLE 3.4: BFS time with different MPI ranks and OpenMP threads
in TSUBAME-KFC

# of MPI ranks 16 8 8 8 4 4 2 2 1 1
OpenMP threads 1 1 2 3 3 6 6 12 24 12
Total threads 16 8 16 24 12 24 12 24 24 12
BFS time 3.65 4.05 3.63 2.61 2.76 2.56 2.73 2.49 2.33 2.69

vertices from a lower level in the tree are processed. Each of these implementations

has four phases: graph generation, graph construction, BFS, validation. The graph

size is determined by two inputs: Scale and edgefactor. Scale is the logarithm base

of the number of vertices and edgefactor is the ratio of the graph’s edge count to

its vertex count. The total number of vertices (N) and edges (M) are given by 2Scale

and edgefactor*N. There are different problem classes defined with respect to Scale

parameter. Scale 26 comes under the problem class Toy (level 10) and it requires 1010

bytes and 17GB of memory.

We tested the Graph500 benchmark simple implementation and observed that

each of its 64 BFS took longer than that of replicated_csr and replicated_csc im-

plementations. This is because the simple implementation is single-threaded and

thus BFS can’t be parallelized. The Graph500 benchmark one-sided implementa-

tion makes use of Remote Memory Access (RMA) or one-sided communication in-

troduced by MPI-2 standard. For MPI versions without RMA support, the imple-

mentation enables emulation of one-sided functionality with some overhead. For

these reasons, we tested only the replicated_csr and replicated_csc implementations

in our performance evaluation. Since both implementations use MPI and Open-

MPI, we conducted experiments to determine the optimal number of MPI ranks and

OpenMP threads on TSUBAME2.5, TSUBAME-KFC, and Amazon EC2 C4 instances.

Each TSUBAME2.5 node has two sockets for 6-core Intel Xeon X5670 processors

with hyperthreading enabled and each node in TSUBAME-KFC has dual sockets
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TABLE 3.5: BFS time with different MPI ranks and OpenMP threads
in AWS EC2 C4 instances

# of MPI ranks 16 16 8 8 8 4 4 2 2 1 1
OpenMP threads 1 2 4 2 1 9 4 9 18 36 18
Total threads 16 32 36 16 8 36 16 18 36 36 18
BFS time 1.52 1.52 1.43 1.53 2.79 1.34 1.51 1.34 1.33 1.24 1.44

for 6-core Intel Xeon E5-2620v2 processors with hyperthreading enabled, so the to-

tal number of threads were 24 on both the platforms. We tested different MPI ranks

and OpenMP threads with replicated_csr implementation on a node with Scale 24 on

TSUBAME2.5 and with Scale 26 on TSUBAME-KFC as shown in Table 3.3 and 3.4.

The results showed that 1 MPI rank and 24 threads achieved the best result for BFS

time in both the environments. We used the same configuration for replicated_csc

implementation on both the platforms.

Since Amazon EC2 C4.8xlarge instances has 36 virtual cores, we used different

combinations of MPI ranks and OpenMP threads on one c4.8xlarge instance with

Scale 26 as shown in Table 3.5. We repeated the experiments five times considering

the performance variability caused by virtualization in account. The results are pre-

sented as an average of multiple runs which shows that 1 MPI rank and 36 OpenMP

threads achieved the best BFS time. Also, we used these combination of MPI and

OpenMP for running replicated_csc implementation on Amazon EC2 C4.

We used Graph500 benchmark version 2.1.4 and OpenMPI 1.6.5 for our experi-

ments on the three evaluated platforms. We wanted to profile the execution time of

the second kernel i.e. each of 64 breadth-first searches in each run. For that, we used

mpiP 3.4.1 [29] which is a lightweight profiling library for MPI applications.The run

time of BFS time is divided into two components: 1) App Time 2) MPI Time. MPI

Time is the time spent on MPI calls while App Time is calculated by deducting MPI

Time from the total time. We disabled the validation check at the end of each BFS

run. For strong scaling experiments, we chose Scale 26 for our experiments since it’s

the largest scale that a node in TSUBAME2.5, TSUBAME-KFC and a C4 instance in

AWS EC2 can handle. For weak scaling experiment, we used Scales 26, 27, 28, 29,

30, and 31 for 1, 2, 4, 8, 16, and 32 nodes, respectively. This ensures that the graph

size handled by each node remains the same since the size of the graph doubles with
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each larger scale.

3.4 Results

3.4.1 NICAM-DC-MINI Results

FIGURE 3.1: Execution breakdown for weak scaling experiments with
NICAM-DC-MINI and performance variability on TSUBAME2.5,

TSUBAME-KFC, and Amazon EC2 c4.8xlarge instances

Figure 3.1 shows the weak scaling results in all the three tested environments.

The execution time on each system represents the average of 5 runs on that system.

In case of 10 MPI process per c4.8xlarge instance in Figure ??, Amazon EC2 C4 per-

formance was almost 2x faster than TSUBAME-KFC. The total execution time was

dominated by the application time which was the time spent on computation for

running the simulation. TSUBAME2.5 was 2x slower than TSUBAME-KFC and up

to 4x slower than Amazon EC2 C4 with 10 MPI process per instance. On running

20 MPI ranks per c4.8xlarge instance in Figure ??, we found that the communica-

tion becomes the dominant factor with increased nodes. As we double the number

of MPI process per instance, there is up to 4x increase in MPI time in Amazon EC2

C4. However, the compute performance by c4.8xlarge instances was still better than

both TSUBAME2.5 and TSUBAME-KFC. The overall performance of TSUBAME2.5
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was up to 3x slower than using 20 MPI process per c4.8xlarge instance. The results

in Figure ?? shows performance variability as percentage of ratio of the standard de-

viation to the average of total time on each platform. c4.8xlarge instances exhibit up

to 4% standard deviation whereas TSUBAME-KFC was characterized by up to 5%

performance variance. TSUBAME2.5 shows an increase in standard deviation as we

increased MPI processes, with 17.5% for 16 nodes.

3.4.2 The Graph500 Benchmark Results

FIGURE 3.2: Execution breakdown for strong scaling experiments
with Graph500 benchmark replicated_csr implementation on TSUB-

AME2.5, TSUBAME-KFC, and AWS EC2 c4.8xlarge instances

FIGURE 3.3: Execution breakdown for strong scaling experiments
with Graph500 benchmark replicated_csc implementation on TSUB-

AME2.5, TSUBAME-KFC, and AWS EC2 c4.8xlarge instances

Strong Scaling Results

This section presents the strong scaling results for both replicated_csr and repli-

cated_csc implementations. We ran our experiments using Scale 26 and the graphs
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are shown in Figures 3.2 and 3.3. Comparing replicated_csr on both the evaluated

platforms, we can see that the BFS App Time is reduced to half with increasing

number of nodes in all three environments. However, the MPI time is increased

due to the increased communication among MPI processes in nodes. There is a sig-

nificant MPI time increase in Amazon EC2 C4 instances than TSUBAME-2.5 and

TSUBAME-KFC. The BFS App Time in Amazon EC2 C4 instances is almost half than

on TSUBAME2.5 and TSUBAME-KFC. But, the increase in MPI time in Amazon EC2

C4 instances with increased nodes makes the total time comparable to the total time

on both TSUBAME2.5 and TSUBAME-KFC. In replicated_csc implementation, the

overall performance of Amazon EC2 C4 instance was slightly better than the others

except for 32 nodes.

Weak scaling Results

FIGURE 3.4: Execution breakdown for strong scaling experiments
with Graph500 benchmark replicated_csr implementation on TSUB-

AME2.5, TSUBAME-KFC, and AWS EC2 c4.8xlarge instances

FIGURE 3.5: Execution breakdown for strong scaling experiments
with Graph500 benchmark replicated_csc implementation on TSUB-

AME2.5, TSUBAME-KFC, and AWS EC2 c4.8xlarge instances
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We present the weak scaling results of both replicated_csr and replicated_csc in

this section. Results from these experiments are shown in Figures 3.4 and 3.5. In case

of replicated_csr implementation, the execution time is increased as the number of

nodes increases in TSUBAME2.5, TSUBAME-KFC and Amazon EC2. While there

is considerable increase in BFS MPI time as the number of nodes increase in Ama-

zon EC2, BFS App time in AWS is still lower than BFS App time in TSUBAME2.5

and TSUBAME-KFC. In case of using 16 and 32 nodes for Scale 30 and Scale 31 re-

spectively, the communication becomes the dominant factor and AWS performance

drops. However, the performance of these two scales on AWS is comparable to

TSUBAME2.5 performance. In replicated_csc results, the performance pattern was

almost similar to replicated_csr and there is significant MPI performance drop for 16

and 32 nodes in TSUBAME2.5.

FIGURE 3.6: Performance variability for strong and weak scaling
experiments with Graph500 replicated_csr and replicated_csc im-
plementations on TSUBAME2.5, TSUBAME-KFC, and Amazon EC2

c4.8xlarge instances

Figure 3.6 shows the performance variability for strong and weak scaling ex-

periments with Graph500 replicated_csr and replicated_csc implementations on the

three evaluated platforms. It corresponds to 5 trials of experiments on TSUBAME2.5

and 3 trials on both TSUBAME-KFC and Amazon EC2 C4. We could not conduct
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additional 2 trials on TSUBAME-KFC because of the recent system update. TSUB-

AME2.5 shows high variability with 16 and 32 nodes in almost all the cases. How-

ever, the graph of weak scaling experiments with replicated_csr implementation

shows two peaks on using 2 and 32 nodes and a small peak on using 8 nodes in

TSUBAME2.5. Our initial investigation attributed this behavior to variability in ex-

ecution time for MPI_Allgather and MPI_Allreduce routines used in the BFS phase.

Further study is needed to establish its root cause by using a detailed profiling tool.

TSUBAME-KFC exhibit less than 5% variability in all the cases except for 16 nodes

in strong scaling experiments with replicated_csr implementation whereas Amazon

EC2 C4 instances show less than 5% variability for both the implementations.

3.5 Discussion

3.5.1 Application Time

The difference in application times among the three evaluated platforms can be

characterized by different Intel processors’ microarchitectures used by the systems.

Haswell processors on Amazon EC2 C4 instances are successor to Ivy bridge and

Westmere-EP microachitectures on TSUBAME-KFC and TSUBAME2.5 respectively.

Haswell microachitecture includes support for Advance Vector Extensions version

2.0 (AVX2) as compared to AVX instruction on Ivy Bridge microarchitecture. Us-

ing 10 MPI processes per C4 instance, the application time was 2x faster and 3x

faster than TSUBAME-KFC and TSUBAME2.5 respectively. However, with 20 MPI

processes per C4 instance, the application time was slowed down by up to 1.5x. The

performance on using 10 and 20 MPI processes on 1 instance is mostly the same. But,

the increased communication induced by doubling MPI processes per instance while

using 4 and more instances affected the performance. In Graph500 results, Ama-

zon EC2 was 2x faster in application time than TSUBAME-KFC. For replicated_csr

implementation, TSUBAME2.5 and TSUBAME-KFC show comparable performance

but for replicated_csc implementation, TSUBAME-KFC was almost 2x faster than

TSUBAME2.5.
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3.5.2 Communication Time

While TSUBAME-KFC uses FDR Infiniband with the communication performance

of a maximum of 54 Gbps, Amazon EC2 C4 instances offers 10 Gbps Ethernet net-

work. As expected, TSUBAME-KFC outperforms Amazon EC2 C4 in both cases of

using 10 and 20 MPI processes per C4 instance with NICAM-DC-MINI miniapp.

TSUBAME2.5 with dual-rail QDR Infiniband network is expected to exhibit bet-

ter performance than Amazon EC2 C4 instances. However, TSUBAME2.5’s com-

munication time for 16 nodes was 2.5x slower than Amazon EC2 C4 with 20 MPI

processes per instance. We need further study to establish the reason behind this

performance difference. In strong scaling results with Graph500 implementations,

since BFS is parallelized by OpenMP threads and we use one MPI process per node

and c4.8xlarge instance, the overall performance has lesser effect from communica-

tion time than non-MPI time. The performance of non-MPI time in Amazon EC2

C4 helps in achieving the overall performance comparable to TSUBAME2.5 and

TSUBAME-KFC for replicated_csr implementation. In weak scaling tests, since the

communication is getting dominant with larger nodes, Amazon EC2 C4 perfor-

mance drops. TSUBAME2.5 and TSUBAME-KFC exhibit comparable communica-

tion performance in BFS MPI time in strong scaling results. However, it was not

the same case with weak scaling results. Figures ??, ?? and Figures ??, ?? show the

difference in BFS App to BFS MPI ratio with increasing number of nodes. We plan

to look into the communication performance of TSUBAME2.5 to verify the results.

3.6 Summary

We performed the evaluation of an HPC mini-app, NICAM-DC-MINI and data-

intensive benchmark, Graph500 on three systems: 1) our in-house production super-

computer TSUBAME2.5, 2) the energy-efficient TSUBAME-KFC supercomputer and

3) AWS EC2’s latest generation of compute-optimized instances, C4. We conducted

this study in an attempt to measure the capabilities of C4 instances for representa-

tive HPC and Big Data applications. Our finding demonstrates that Amazon EC2 C4

instances exhibit good compute performance with low performance variability. The

10 Gbps Ethernet network in these instances is the chief bottleneck for scaling the
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workloads. So, C4 instances can be a good fit for compute-intensive and memory-

intensive application with little communication. We optimized the Graph500 bench-

mark for C4 instances by finding the optimal number of threads and MPI ranks

and achieved performance comparable to our in-house supercomputers. Similarly,

we achieved good performance using both 10 and 20 MPI ranks per C4 instance

for NICAM-DC-MINI. Thus, C4 instances can be adopted as a replacement to on-

premises hardware deployments for such workloads.

For future work, we want to perform a detailed analysis on low performance

variability in C4 instances to see if it corresponds to customized Intel Haswell pro-

cessors and/or less virtualization overheads. Also, we intend to run different work-

loads corresponding to different motifs (or dwarfs) and ogres on more diverse archi-

tectures and computing hardware from other public cloud providers.
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Chapter 4

Predicting CPU Performance

4.1 Introduction

Modeling and predicting computer system performance has been and still is a cru-

cial component in our road towards better, faster and more reliable computer sys-

tems. With Moore’s law on its last legs and heterogeneity a part of our everyday life,

predicting performance across systems is perhaps more important now than ever

before.

Knowing how to extrapolate or project performance across systems is useful

across the entire hardware stack, ranging from small embedded systems, all the way

up to large distributed high-performance machines. Cloud-services such as Amazon

[4] or Microsoft [39] can assess user requirements using predictive tools and deliver

neither more nor less than what the customers and their applications require, sub-

ject only to the agreed-upon quality-of-service protocols. Cloud-users can similarly

evaluate and predict their cloud needs and pinpoint the exact service to invest in.

System administrators and users can (prior to purchase) approximate the impact of

replacing system components. Software designers can similarly estimate how their

applications run on next-generation hardware, whereas researchers use predictive

models as a tool to see future trends and potential pitfalls.

Predicting or modeling performance has been researched ever since the 1960s [51].

Unfortunately, the vast majority of work attempts (with more or less success) to de-

velop system-specific models that are unique to a particular system. These models

require either detailed knowledge about hardware [48] (e.g. pipeline stacks, reorder

buffer sizes, etc.) or rely on a cherry-picked set of hardware counters (e.g. [53]),
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which may or may not exist across architectures.

A different approach, which is also the approach we take and propose, is to lever-

age machine learning to build the predictive model. Unlike system-specific models,

we put no formal requirement (although we do empirically evaluate its impact in

section 4.2.3) regarding how many benchmarks to execute. The user provides ex-

isting data and our machine learning algorithm fills in the gaps. Our proposed ap-

proach allows users to remain oblivious regarding what data need to be extracted

and its potential impact on the prediction. Unlike previous work, our approach al-

lows us to be less obsessed by system-details, and instead let the machine learning

process recognize the underlying features linking systems and applications together.

To summarize, we contribute with:

• Design and implementation of performance models based on two types of col-

laborative filtering (kNN and matrix factorization),

• Empirically evaluate our predictive models on a set of 30 benchmarks span-

ning three well-used benchmark suites and 10 different systems, showing that

our predictive models can predict instructions per second (IPS) with RMSE as

low as 0.6 and with an average RMSE of 1.6.

4.2 Motivation and Related work

Processor performance prediction has historically leveraged hardware performance

counters to extrapolate expected application or system behavior. Numerous studies

have collected large amount of hardware counter information and tried to model

application behavior as a function of these. Early on modeling was performed by

regression (linear or otherwise), while lately deep-learning is being applied. Given

the large amount of research carried out with performance prediction in mind, what

drives us to seek an alternative solution to the problem?

There are two main reasons why any method based on amassing information

from hardware performance counters is sub-optimal. The first drawback is the la-

bor involved in constructing the models, which typically involved running several

microbenchmarks [53, 17, 2] that stress the system in different ways (that is, isolate
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various features), and then manually regressing the model to the data collected. It is

a lengthy and tedious labor process that in the end only yields a machine-specific per-

formance model. The second drawback is that the machine-specific models based on

the hardware counter-based method are inapplicable across systems. The number

and type of hardware performance counters can vary significantly between systems

to the point where many proposed performance models are unusable on modern

hardware. Furthermore, hardware counters are often unique to a particular system

or instruction set architecture (ISA) and even counters named similar can have am-

biguous meanings across ISAs, vendors and architectures.

Other methods exists, but are either orthogonal or complementary to our ap-

proach, or come with problems of their own. One approach is to simulate the perfor-

mance on a hypothetical machine using simulators such as gem5 [44] or simics [50]

as it was done for x86-64 Hammer prior to hard existing [16]). The simulators pro-

vides reasonable good accuracy and enough details to understand what is happen-

ing to the system. Unfortunately, they are also many orders of magnitudes slower

and machine specification does not exist for all processors. Faster and more abstract

analytic models such as LogP [13], Roofline model [54]) allow for fast estimation of

performance, but are often hard to use without detailed knowledge of the algorithm

at hand. Other methods include estimating performance inside the compiler [12]

or using detailed and thus difficult to obtain machine specifications such as reorder

buffer sizes and pipeline-depths [48]. We considered these methods complementary

to the one we present in the paper, as they can be incorporated into our proposed

method to potentially further improve accuracy.

4.2.1 Fast and Accurate Prediction

The key requirement to predict an application’s performance across different sys-

tems is to identify the relationship between the application and system at hand and

their inter-dependencies. Previous work limit themselves to predicting performance

of a single system, which demands tedious and detailed characterization of applica-

tions on that system. The resulting performance model is often unique to that system

and is not portable across other systems, forcing users with the task of repeating the

characterization process for all systems they are interested in.
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We focus on building a prediction model that does not require an application

to be executed on all target systems. Many modeling-based schemes rely on exe-

cuting the workloads on a target system multiple times and carefully handpicking

the features to build the prediction model. As there could be tens or hundreds of

thousands of such features in the data set, the analysis of such a large number of

feature set is impossible. Feature selection algorithms which help users in selecting

impactful features are not perfect, and even missing one crucial feature can lead to a

bad performance model. Our aim is to develop a prediction model which leverages

information it already has seen about the associations between applications and sys-

tems. The model then uses this information to express the performance of a new

application on a target system as a combination of known applications. We build

our prediction models using collaborative filtering.

4.2.2 Collaborative Filtering

Collaborative filtering techniques [3] are the most popular and widely implemented

techniques in building recommender systems. They generate automatic predictions

(filtering) about the interests of a user by collecting preferences or information from

many users (collaborating) present in the system. One of the most publicized appli-

cations of collaborative filtering is the Netflix challenge. The goal of the challenge

was to improve Netflix’s movie recommendation system, Cinematch by providing

valid movie recommendations to its users. The prize was won by BellKor’s Prag-

matic Chaos [64, 36, 8] after improving Cinematch by over 10% using a combination

of different collaborative filtering techniques.

The collaborative filtering techniques are grouped in two general classes of neigh-

borhood and model-based methods. In neighborhood-based collaborative filtering,

the user-movie ratings stored in the system are directly used to predict ratings for

new movies. It can be done in two ways known as user-based or movie-based col-

laborative filtering. User-based systems evaluate the interest of a user u given a

movie m. The evaluation is performed by identifying neighbors of u that have sim-

ilar rating pattern as u, and looking at how those very neighbors, called v, rated m.

Identifying which neighbors belong to u is done by looking at how well shared items

of u and v correlated with each other.
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Movie-based approaches take a different stand and predict the rating of a user

u for a movie m by looking at how u rated movies similar to m. In this way, two

movies are similar if several users found them similar. In contrast to neighborhood-

based methods, which use the stored ratings directly in the prediction, model-based

approaches use these ratings to learn a predictive model. The core idea is to model

the user-movie interactions with factors representing the latent characteristics of the

users and movies in the system. The model is then trained using the available data

and later used to predict missing ratings of users for movies.

4.2.3 Pilot study: Is collaborative filtering a good match for performance

prediction?

While considering whether collaborative filtering can be applied to predict perfor-

mance, we first began by making an analogy between movie recommendation and

performance prediction. In movie recommendation scenario, the data sets with hun-

dreds or thousands of users, movies and hundred of thousands of ratings are read-

ily available. While for the latter, we can start with building performance database

consisting of tens of systems and applications (which is a one time effort) and the

database will grow over period of time. The movie recommendation systems rely

on the assumption that each user has rated a small subset of movies (for user-based

collaborative filtering) and each movie has been rated by at least a small subset of

users (for movie-based collaborative filtering).

Removed ratings per user Sparsity RMSE

5 93.99% 0.974
10 94.28% 0.969
15 94.58% 0.976
18 94.76% 0.993
19 94.82% 1.011

TABLE 4.1: Neighborhood-based collaborative filtering using Movie-
Lens data set used in the pilot study.

In our case, we need each application to be executed on a few systems in order

to uncover its hidden associations with other applications and similarly for systems.

We then conducted a pilot study using a data set by MovieLens [15] which contained

100k movie ratings (1-5) from 943 users and a selection of 1682 movies. The sparsity
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of the data set was 93.7% in which each user had rated at least 20 movies. We started

looking at how the prediction accuracy will be affected if we have fewer ratings per

user. We prepared five training sets by removing a few ratings per user and pre-

dicted the ratings using a neighborhood-based collaborative filtering model. Table

4.1 illustrates the removed ratings per user, sparsity of the training set and the pre-

diction error. We used root mean squared error (RMSE) in equation 4.1 to measure

the accuracy of predictions.

We began by removing five ratings per user from the data set and got the RMSE

as low as 0.974. As we further increased the sparsity of the data set, the predic-

tion error stayed almost the same. This shows that once there are enough ratings to

identify the number of clusters of users (or movies) having similar preferences (or

characteristics), the collaborative filtering model is able to predict with similar ac-

curacy. Accordingly, in case of performance prediction, the number of applications

and systems should represent a good coverage of scientific workloads and diverse

architectures. Our hypothesis is that collaborative filtering can similarly work to

predict performance (movie ratings) given a certain computer system (movie) and

application (user).

4.3 Prediction Models

We implemented two collaborative filtering techniques to see how well an applica-

tion will run across different hardware systems available. In this section, we begin

with the formal description of the problem, population of the data set which is then

followed by the description of the two collaborative filtering techniques.

4.3.1 Problem Formulation

Let us denote the number of applications by Na and the number of systems by Ns.

We then construct an application-system matrix M of size Na × Ns. Each cell in the

matrix M has value as:

Mas =

⎧⎪⎪⎨
⎪⎪⎩

pas, known performance score

0, not known
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So, our goal is to predict all the zero entries of the matrix M. Let p̂as be the

predicted performance score of application a corresponding to system s. We divide

the performance scores into a training set ptrain which is used to learn and a test set

ptest used to calculate the prediction accuracy. RMSE [57] is a de-facto method to

measure accuracy of collaborative filtering algorithms. We used RMSE to evaluate

the accuracy of our models as:

RMSE =

√
1

|ptest| ∑
pas∈ptest

( p̂as − pas)
2 (4.1)

4.3.2 Data Normalization

We need to normalize performance scores in matrix M to map these scores to a con-

tinuous scale. We use mean-centering normalization scheme. The rationale behind

using mean-centering is to determine whether a given performance score is posi-

tive or negative by comparing it to the mean score. In application-mean-centered

normalization, a raw performance score pas is transformed to a mean-centered score

h(pas) by subtracting to pas the average p̄a of the known scores from running the

application on systems:

h(pas) = pas − p̄a

In the same way, the system-mean-centered normalization of Pas is as follows:

h(pas) = pas − p̄s

4.3.3 Neighborhood-based Model

k-Nearest Neighbor (kNN) is an intuitive approach to implement collaborative fil-

tering. For a given application and system, we want to predict its performance score.

kNN works by identifying the k closest points (nearest neighbors) of either the ap-

plication or system. The underlying idea is that similar applications (or systems)

tend to cluster together based on their similar performance scores. This neighbor-

hood approach is highly dependent on defining an appropriate similarity metric.

We use Pearson correlation to measure the similarity between applications as well

as systems. We implement two types of neighborhood-based collaborative filtering:
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application-based collaborative filtering and system-based collaborative filtering.

Application-based collaborative filtering

We first construct a Na×Na matrix and populate the matrix by calculating similarity

for each pair of applications using the Pearson correlation. The Pearson correlation

coefficient, sim(i, j) between any two applications i and j is a measure of strength of

the linear relationship between them. The value of coefficient ranges from -1 to 1. A

coefficient of -1 indicates a perfect negative linear relationship between applications,

a coefficient value of 0 indicates no relationship while a coefficient of 1 indicates a

positive linear relationship. It is calculated using the formula below:

Here, S(a1) is the set of all systems for which the performance score of applica-

tion a1 is known; S(a2) is the set of all systems for which the performance score of

application a2 is known; S(a1) ∩ S(a2) is a set of systems for which scores of both

applications a1 and a2 are known.

We want to predict the performance score for an application a on a system s. We

begin by finding the k most similar applications for which the performance scores on

the system s is known. We denote these neighbors of application a by Ns(a). Then,

we find the predicted score by taking the weighted average using the performance

scores of k applications and their similarity values w.r.t system s. The prediction of a

performance score pas using application-based collaborative filtering is obtained as:

p̂as = p̄a +

∑
k∈Ns(a)

sim(a, k)(pks − p̄k)

∑
k∈Ns(a)

|sim(a, k)|

The prediction accuracy depends on k, the number of nearest neighbors. So, we try

different value of k in the training set and evaluate the corresponding performance

by measuring the RMSE.

System-based collaborative filtering

We construct a Ns × Ns similarity matrix for Ns number of systems. We calculate

the similarity values between each pair of systems and then apply kNN method to
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predict the performance score as:

p̂as = p̄s +

∑
k∈Na(s)

sim(s, k)(pak − p̄k)

∑
k∈Na(s)

|sim(s, k)|

4.3.4 Matrix Factorization Model

Matrix factorization models are the most popular implementations of model-based

collaborative filtering. The core idea is to uncover latent features or factors among

applications and systems that explain the known performance scores. These models

map both applications and systems to a joint latent factor space of dimensionality

r, such that application-system interactions are modeled as inner products in that

space.

The input to the model is a sparse matrix A, with one row per application and one

column per system. The first step in a matrix factorization technique is to decompose

A into U, λ and V such that:

A ≈ UλVT

FIGURE 4.1: Factorization of matrix A into sub matrices U, λ and V
using the latent features.

Given the matrix A (n applications, m systems), we factorize it into n× r matrix

U (n applications, r latent features), r× r diagonal matrix λ (strength of each latent

feature), and m× r matrix V (m systems, r latent features). Figure 4.1 illustrates this

idea. The λ diagonal matrix contains the similarity concepts identified by the ma-

trix factorization technique. The U matrix is interpreted as the application-to-feature

similarity matrix, while the V matrix is the system-to-feature similarity matrix. For

instance, two or more applications can be similar in one latent feature (they both

benefit from a large L3 cache) but different in others (only one benefits from high
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clock frequency). These latent features contain the singular values which are sorted

in decreasing order. The application-to-feature matrix represents the strength of the

associations between an application and the r latent features. In this way, each ap-

plication is described using a r-dimensional space. Similarly, the system-to-feature

matrix identifies each system using a r-dimensional space.

Let us denote Qn×r = U and PT
r×m = λVT. The prediction of an application a on

a system s can be calculated as the dot products as their vectors:

p̂as = qs.pT
a

= ∑
r

qsr.par

Now we may obtain P and Q by applying any dimensionality reduction technique

such as Singular Value Decomposition (SVD) to the matrix A. In our work, however,

we use Stochastic Gradient Descent (SGD) [31] to iteratively optimize pairs of pi and

qj corresponding to existing entries aij. This approach allows us to add new systems

or benchmarks when needed and re-train only corresponding rows of P or columns

of Q matrices. We can reformulate our model as an optimization problem in which

we have to find matrices P and Q such that:

min
P,Q

∑
training

(pas − p̂as)
2 + β

[
∑

a
||pa||2 + ∑

s
||qs||2

]

After each step, eas, qs and pa are updated as follows:

eas ← pas − p̂as

qs ← qs + α(eas · pa − β · qs)

pu ← pu + α(eas · qs − β · pu)

Where α is learning rate and β is regularization parameter. The result of SGD is

the dense Q.PT matrix using which we construct the missing performance scores in

matrix A. When evaluating this model on our data set, we used α as 0.01 and β as

0.001.
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Dwarf Workloads

Dense Linear Algebra

Alignment, SparseLU, Kmeans, LU
Decomposition (LUD), Nearest Neighbour

(NN), Stream Cluster (SC), Block Tri-diagonal
solver (BT), Lower-Upper Gauss-Seidel

Solver(LU)

Structured Grid
Multi-Grid (MG), Scalar Penta-diagonal solver

(SP), Heartwall, Hotspot2D, Hotspot3D,
Leukocyte Tracking, Myocyte, SRAD

Graph Traversal
Integer Sort (IS), Fibonacci, Sort, UTS, BFS,

Health
Sparse Linear Algebra Conjugate Gradient (CG)

Spectral Methods 3D Fast Fourier Transform (FT)
Unstructured Grid CFD Solver (CFD)

Map Reduce Embarassingly Parallel (EP)
N-Body Methods LavaMD

Dynamic Programming Needleman-Wunsh
Backtrack and Branch-and-Bound NQueens, Floorplan

TABLE 4.2: Workloads

4.4 Experimental Setup

4.4.1 Systems

We evaluated the models using ten diverse systems. We selected architectures that

are well-known in both high-performance computing (HPC) and cloud infrastruc-

ture (x86-64 Xeon’s, Xeon Phi’s), embedded computing (ARM Cortex, Intel Atom)

and general-purpose stationary systems (Intel i7). Note that the gap between HPC

and embedded systems domains is shrinking, and for example the expected RIKEN

Post-K [49] HPC system will amass ARM processing cores, which also motivated us

to include this family of processors. The configurations of these systems are shown

in Table 4.3. The heterogeneity of the machines is with respect to ISA (ARM vs

x86-64), interconnect/memory hierarchy (Xeon Phi vs ARM vs Xeon) and power

consumption (embedded vs desktop vs server).

4.4.2 Workloads

We used 30 workloads chosen from three well-known benchmark suites: The NAS

Parallel Benchmarks (NPB) version 3.3.1 [43], Barcelona OpenMP Task Suite (BOTS)

1MCDRAM configured as last-level cache in cache mode.
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System ghz sockets cores threadspercore mem(gb) LLC(MB)

Xeon E52650 v3 2.30 2 10 2 251 26
Xeon E52650 v4 2.20 2 12 2 251 31

Xeon X5650 2.67 2 6 2 46 12
Xeon E5-2699 v3 2.30 1 18 2 125 46

Xeon Phi 7295 1.50 1 72 4 94 163841

Xeon Phi 7210F 1.30 1 64 4 94 163841

i7-3930K 3.20 1 6 2 15 12
i7-3770K 3.50 1 8 2 15 8

Atom C2750 2.40 1 8 1 7.8 1
ARM Cortex-A7 0.90 1 4 1 0.9 0.3

TABLE 4.3: Specifications of the systems used.

[11] and Rodinia benchmark suite [55] version 3.1. Table 4.2 illustrates the work-

loads and their corresponding domains and dwarfs. These workloads represent ten

classes of numerical methods that are widely used in scientific applications. We

managed to compile eight benchmarks from NPB, eight benchmarks from BOTS, six

kernels and eight applications from Rodinia on all the ten systems. Two benchmarks

from BOTS (fft and strassen) and four kernels from Rodinia (backprop, b+tree, parti-

clefilter and streamcluster) were not included as we came across compilation issues

and segmentation faults on the ARM board.

The workloads were compiled using GCC versions 6.3.0 (ARM), 5.4.0 (Intel Atom)

and linked against the GCC OpenMP library (libgomp). Each workload was exe-

cuted five times and the mean was taken to represent its performance. IPS (and

related counters) were obtained using Linux perf. All applications were executed

in isolation. We executed all the workloads serially as well as in parallel. For serial

runs, each of the workloads was executed with 1 thread. In parallel runs, we al-

low each application unrestricted access to all of the processor’s threads (including

hyper-threads).

4.4.3 Performance Scores

We populate M with normalized scores that represents how well an application per-

forms on a system. We use the number of instructions per second (IPS), a function of

instructions per cycle (IPC, a well-known proxy for performance [34, 56, 30, 1]) and

the processor clock-frequency.
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Execution mode Minimum Maximum Mean

Singlethreaded 0.05× 109 13.07× 109 3.78× 109

Multithreaded 0.05× 1010 22.99× 1010 3.48× 1010

TABLE 4.4: Range of IPS values in our data set.

(A) Application-based CF (B) System-based CF (C) Sparsity vs. RMSE

FIGURE 4.2: kNN collaborative filtering with performance data cor-
responding to serial execution of workloads.

For the end-user, predicting application execution time is the ultimate goal. How-

ever, execution time is a poor candidate to predict simply because it can drastically

vary between applications. IPS allows us to estimate runtime since the number of

instructions often remains constant. Furthermore, for applications that never end

(such as services), predicting execution time is impossible while predicting IPS is

not. Additionally, IPS is useful by itself, as it characterizes system utilization. The

range of IPS values in our data set is shown in table 4.4. We pre-process the perfor-

mance scores corresponding to serial execution by dividing each IPS value by 109.

The new scores then lie within [0.05, 13.07] and 3.78 is the mean value of the per-

formance data. Similarly, for multithreaded execution, we divide each score by 1010

which results in new range of IPS values i.e. [0.05, 22.99] with 3.48 as the mean.

4.5 Results

In this section, we present and discuss the results of both collaborative filtering based

models.
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4.5.1 kNN

We present the results of using neighborhood-based collaborative filtering model on

our data set. We used kNN as explained in section 4.3.3 on both singlethreaded (ST)

and multithreaded (MT) execution of workloads on systems. Figure 4.2 illustrates

the plots corresponding to ST execution. Figures 4.2a and 4.2b show the number

of nearest neighbors on the x-axis and RMSE on the y-axis in application-based col-

laborative filtering (CF) and system-based CF respectively. The baseline shows the

mean value from the training data set in each case and the sparsity of training data

set is 50% in figures 4.2a, 4.2b and 4.3a, 4.3b.

The model aims to characterize the performance of a workload w on a system s

using one parameter, k (number of nearest neighbors). In case of application-based

CF, kNN finds the top-k most similar workloads to w for which the performance

scores on the system s are known, for different values of k. As our data set consists

of 30 workloads, the value of k ranges from 1 to 30. Even when k = 1, the model

finds the most similar workload to w and predicts its performance score on system s

with 45% and 55% improvement over the baseline for application-based and system-

based CF respectively. We tested RMSE for different values of k and found that

k = 15 gives the best RMSE in case of application-based CF.

In case of system-based CF, kNN finds the top-k most similar systems to s for

which the performance scores on the workload w are known. The k varies from

1 to 10 for the total number of systems in our data set. k = 4 achieves the best

RMSE in figure 4.2b. In both cases, initially the prediction improves as the model is

considering additional neighbors of application (or system) and then remains almost

the same after it has discovered groups of similar applications (systems).

Figure 4.2c shows the sparsity vs RMSE when k = 15 in application-based CF and

k = 4 for system-based CF. As the sparsity of data set increases, the prediction suffers

as kNN is not able to find similar workloads (or systems) and there is not enough

information to make a good prediction. Also, system-based CF is able to make bet-

ter predictions than application-based CF. Each workload wi for i = 1, 2, ..., 30 can

be characterized by a tuple with 10 elements, wi(s1, s2, ..., s10) where each element

corresponds to one of the ten systems. Whereas, each system sj where j = 1, 2, ..., 10
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can be characterized by a tuple with 30 elements, sj(w1, w2, ..., w30) for a total of 30

workloads. With more workloads than systems, each system tends to have more

performance scores than each workload. So, the system-based collaborative filtering

method could better capture the similarities among systems even when the sparsity

was 90%.

(A) Application-based CF (B) System-based CF (C) Sparsity vs. RMSE

FIGURE 4.3: kNN collaborative filtering with performance data cor-
responding to multithreaded execution of workloads.

(A) Factors vs.
RMSE, ST

(B) Sparsity vs.
RMSE, ST

(C) Factors vs.
RMSE, MT

(D) Sparsity vs.
RMSE, MT

FIGURE 4.4: MF collaborative filtering with performance data corre-
sponding to serial and multithreaded execution of workloads.

Figure 4.3 shows the plots corresponding to MT execution of workloads. The

best RMSE was observed for k = 18 in application-based CF in figure 4.3a. For

system-based CF, k = 5 resulted in the best RMSE. Figure 4.3c shows sparsity vs

RMSE for k = 18 in application-based CF and k = 5 in system-based CF. In this

case, application-based collaborative filtering makes better prediction than the other

when the sparsity of data set is below 50%. This signifies that the model identi-

fies more similar neighbors of workloads than systems. The RMSE for both ap-

proaches meets the baseline when the sparsity is 70% and further the prediction

error increases.
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The different range of IPS values for ST and MT execution contributes to the

difference observed in RMSE values for both the executions. We also want to point

out that the multithreaded execution of workloads involves far more elements of

uncertainty (false sharing, sub-linear scalability, lock-contention, runtime overheads

etc.) that needs to be considered in future work.

We conclude by stating that our kNN model can predict IPS with RMSE as low as

1.8 even when only 30% of the data is known, which will manifest itself in that users

only need to profile 1
3 of their applications to use our model. Indeed, our results

point towards the need to integrate more metrics when predicting performance us-

ing kNN in order to obtain even better accuracy. We plan to tackle it in future work.

4.5.2 Matrix Factorization

We present the results of matrix factorization based collaborative filtering in this sec-

tion. Figure 4.4 illustrates the plots corresponding to ST and MT execution of work-

loads respectively. Figure 4.4a shows the prediction accuracy on varying the number

of latent factors. The number of latent features is smaller than the number of work-

loads and systems such that each latent feature can describe relationship among two

or more workloads (or systems). Since there are 30 workloads and 10 systems used,

the number of latent features can range from 1 to 10. The model learns the number

of latent features represented at x-axis automatically and uses them to predict IPS

for the workloads and systems. Even just using one latent feature performs better

than kNN and results in lower RMSE. The model automatically identifies six such

latent features as shown in figure 4.4a which results in the lowest error.

Figure 4.4b shows the error vs sparsity of the dataset. The best RMSE is achieved

with 10% sparsity i.e. when the matrix is 90% dense. As sparsity of the data set

grows, RMSE increases. Similar results are observed for MT execution as shown in

figures 4.4c and 4.4d. In figure 4.4c, initially the error decreases as the model is mak-

ing predictions by adding new latent features. However, the error starts increasing

when the model uses more than five such features. This is caused by overfitting

of the training data. Our matrix factorization based model generated better predic-

tions than kNN with 32% and 49% improvement over its predictions for ST and MT

respectively.
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(A) Workloads in singlethreaded
mode. (B) Systems in singlethreaded mode.

(C) Workloads in multithreaded
mode. (D) Systems in multithreaded mode.

FIGURE 4.5: Variance in performance data set w.r.t workloads and
systems using two principal components.

4.5.3 Analysis of Learned Representations

We analyze learned representations (latent features) to validate that our model could

indeed learn meaningful features, as well as to show how these representations can

be used to compare systems and benchmarks.

Principal Component Analysis

Principal Component Analysis (PCA) is a statistical method to find patterns in high-

dimensional data sets. PCA computes n new variables, called principal components,

which are linear combinations of n original variables, such that all principal compo-

nents are uncorrelated. The amount of variance captured by the first component is

larger than the amount of variance on the second component and so on. The di-

mensionality of the data set is reduced by neglecting those components with a small
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contribution to the variance. We used PCA to find equivalence classes of workloads

as well as systems with similar characteristics.

Figure 4.5 shows two-dimensional PCA projection of learned latent features of

workloads and systems for ST and MT execution respectively. Workloads which

exhibit similar performance dynamics on a set of hardware platforms are grouped

together in one or both dimensions. Figure 4.5a shows the workload mix using NPB,

BOTS and Rodinia benchmark suites. These benchmark suites form small clusters

with every cluster having similar workloads where nqueens from BOTS is the out-

lier. Since the PCA components are constructed by using one metric i.e. IPS, we

think that other metrics can be used to cover the crucial differences among work-

loads. Also, more benchmark suites or real-world workloads can be used to ensure

a wider application coverage. Selecting performance metrics to fully represent a

set of workloads is a research challenge on its own and is outside the scope of this

work. This work is focused on studying collaborative filtering methods to analyti-

cally characterize the performance by using a given set of workloads, systems and

performance metric.

In Figure 4.5b, the systems show interesting behaviors on being grouped together

based on similar performance characteristics for a set of workloads. The three Intel

Xeon E5 processors used in the study are projected closer to each other while Xeon

X5650, a legacy processor shows disparate performance. The Intel i7 lies closer to

the Xeons while its Atom processor takes the farthest area in the space with the

two Xeon Phi and ARM processor. The serial performance of the two Xeon Phi and

Atom processor matches with that of ARM Cortex A7. This explains how the model

is able to characterize performance of a completely different ARM processor having

a different ISA using the performance seen on Intel Knights Landing, Knights Mill

and Atom processors.

In Figure 4.5c, the workloads form two groups while nqueens remains the out-

lier. Most kernels and applications from Rodinia are grouped together occupying

the leftmost area in the space while most benchmarks from NPB are in the mid-

dle area. Whereas benchmarks from BOTS are evenly distributed between Rodinia

and NPB spaces. A thorough examination with other multithreaded benchmarks

along with representative performance metrics is required to establish a single set of
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(A) Workloads in singlethreaded
mode. (B) Systems in singlethreaded mode.

(C) Workloads in multithreaded
mode. (D) Systems in multithreaded mode.

FIGURE 4.6: Dendrograms showing similarity between workloads
and systems for two different executions.

workloads with sufficient coverage. In figure 4.5d, PCA forms three groups of sys-

tems with similar performance characteristics for a set of workloads. One of them is

all Intel Xeons, other is the two Xeon Phis and the last is with Intel i7, Intel Atom,

the legacy Intel X5650 and ARM Cortex. The multithreaded performance of Intel

Knights Landing and Knights Mill processors separate them from ARM and Intel

Atom as earlier observed in PCA system components for ST execution in figure 4.5b.

While the Intel Xeons are still grouped togther as they were earlier, the two Intel i7

processors’ performance aligns with that of ARM and Intel X5650.

Hierarchical Clustering

Here we present the hierarchical clustering which discovers meaningful clusters that

exist in the data. It assigns data objects to groups so that the objects in the same

groups are more similar than objects in different groups. The similarity between
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every pair of data objects in the data set is determined using distance measures. Hi-

erarchical clustering algorithms successively cluster objects within found clusters,

producing a set of nested cluster organized as a hierarchial tree (dendrogram). We

used SciPy hierarchical clustering method, linkage to perform the hierarchical clus-

tering on our data set consisting of performance score for each pair of workload and

system.

Figure 4.6a shows the three benchmark suites for ST execution. The vertical lines

indicate the cluster merges while the horizontal line shows the labels (workloads)

or clusters that were a part of the merge forming the new cluster. The length of the

horizontal line represents the distance that needed to be bridged to form the new

cluster. Thus, the magnitude of the link between any two labels (or clusters of labels)

shows the measure of dissimilarity between those labels. The serial performance

of Mycoyte and Health are fairly similar, while that of Nqueens differs significantly

from the these two workloads. While LavaMD and Needle are spatially close but

they belong to two different clusters in the figure. They are dissimilar than LUD

and Hostspot2D. It is also evident from this dendrogram that these three benchmark

suites cover different application spaces, with most clusters containing workloads

from NPB, BOTS and Rodinia. Figure 4.6b shows the dendrogram for systems for

ST execution of workloads. It depicts how all Xeon E5 and i7-3930K form one cluster

while Xeon Phis, ARM Cortex, Atom are grouped in a different cluster. The serial

performance of Intel X5650 is more similar to the cluster having Xeon Phis. This

matches with the system mix plot shown using PCA components in figure 4.5b.

Figures 4.6c and 4.6d show the dendrograms for workloads and systems corre-

sponding to MT execution. As compared to dendrogram obtained for ST execution

in figure 4.6a, this has roughly two major clusters while Nqueens is still an outlier.

The first cluster (spanning from CFD to LavaMD) shows a good mix of workloads

with has 6 NPB, 3 BOTS, 4 Rodinia workloads, while the other (spanning from Stream

Cluster to Health) has 2 NPB, 4 BOTS, 10 Rodinia workloads. We can verify how most

Rodinia workloads are placed towards the left in the workload mix plot using PCA

in figure 4.5c. The MT performance of these benchmark suites on systems shows a

little bit different associations in figure 4.6d. All Intel Xeons E5 form a cluster while

Xeon Phis form a separate cluster. ARM Cortex now aligns with Atom and i7-3770K
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processor, while the legacy processor X5650 is grouped with i7-3930K.

4.6 Conclusions

We have presented two analytical methods to predict the performance of both serial

and parallel applications. These methods are based on two collaborative filtering

algorithms, kNN and Matrix Factorization. kNN finds similarity among workloads

( application-based collaborative filtering) and systems (system-based collaborative

filtering) using Pearson correlation and uses the similarity scores to characterize the

performance among other workloads and systems. Matrix factorization methods

learns latent features that explain the associations among workloads and systems

and the strength of every such association to make accurate predictions.

We evaluated both methods using NPB, BOTS and Rodinia workloads on ten

varied systems ranging from x86 to ARM instruction set architectures. We show

that both kNN and Matrix Factorization methods can accurately estimate the per-

formance of workloads with even when the data set is up to 70% sparse. While kNN

is simple and intuitive to implement, Matrix Factorization uncovers latent features

among workloads and systems and makes better predictions.

These collaborative filtering methods prove to be useful in identifying suitable

system(s) favourable for specific workloads. Also, these methods can complement

other simulation-based prediction methods which can then characterize the perfor-

mance of a system selected using such collaborative filtering approaches. Addition-

ally we demonstrate that benchmarks and systems themselves can be analyzed and

compared using feature vectors which are obtained as a by-product of matrix factor-

ization method. Using techniques like principal component analysis and clustering,

it is easy to find benchmarks and systems with similar or alternatively, abnormal

performance characteristics.

In future work, we will investigate our approach for a wider application space

and different systems. Also, we will identify a set of performance metrics that

capture different performance components and use them to improve our analytical

models.
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Chapter 5

Predicting GPU Performance

5.1 Introduction

Graphics Processing Units (GPUs) are today the de-facto source of performance in

High-Performance Computing (HPC), and the vast majority of current top super-

computers [60] include them in their system setup. These powerful devices are ex-

plicit vector machines, whose programming model allows the programmer to lever-

age the large amount of parallelism they offer. Unlike general-purpose processors,

which focus on exploiting instruction-level parallelism (and focus on latency), GPUs

focus on thread-level parallelism, masking/hiding long-latency operations (e.g. ex-

ternal memory accesses) by time-sharing computational resources. Despite their

similar programming model, GPUs are constantly undergoing architectural changes

across generation (e.g. mixed-precision Arithmetic Logic Units, per thread program

counters, diverse amount of floating-point units), which makes their performance

non-trivial to reason around and predict.

Performance prediction is (and will continue to be) a core pillar in computer

science, and is used to assess the performance (or other metrics such as power-

consumption) of a (non-) fictional system prior to acquisition. The usage of predict-

ing system performance ranges from private user’s reasoning around which cloud

solution fits their performance and price-budget best, to HPC system administra-

tors understanding what components to expand their system with, all the way to

researchers attempting to map and reason around performance trends and direc-

tions. And with the end of Moore’s law near [14], prediction and understanding

performance is more crucial than ever.
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Predicting GPU performance is a challenging and hard task. Despite sharing a

programming model (CUDA [45] and OpenCL [58]), their architectural differences

between generations can be substantial. Furthermore, with the advent and popu-

larity of Deep-Learning, the type and target audience of GPUs is diversifying. As

a result, GPUs specialized in inference, training, gaming, and scientific computing

are emerging [46]. Given this vast array of current and emerging GPU types, how

do users choose which to invest in? Today, most users blindly buy the fastest next-

generation accelerator for their workload, which is more than likely not the most

optimal choice. There is a need for a simple and effective performance model that

assist users in choosing accelerators suitable for the workloads they care about.

Existing methods to predict GPU performance are either constrained by the pro-

gramming environment (and the necessity of mapping algorithms to existing GPU

features) [32, 19], or based on compiler-based approaches [10] to extract GPU-specific

micro-architectural features. Such methods often work well on the targeted GPU,

but are inapplicable across GPU types and architectures as these methods are system-

specific. A different approach based on collaborative filtering (CF) was recently pro-

posed by Salaria et al.[52], and was shown to work well on general-purpose proces-

sors (CPUs) that were diverse in both instruction set architecture (ISA) and archi-

tecture, even when the sampling data was sparse. As their approach was limited to

CPUs, we ask ourselves the question whether CF-based methods can also work on

the more challenging (compared to their evaluated CPUs) GPUs.

In this paper, we evaluate the CF-based prediction methods on GPU-based sys-

tems. We focus on building a prediction model that does not burden users to need-

lessly execute an application on all target systems. Manually defining which pro-

gram properties are crucial to describe its performance on a given system is critical

to build an accurate model. Our aim is to develop a model that leverages informa-

tion it already has seen about the associations between applications and systems.

The model then uses this information to express the performance of another appli-

cation on a target system as a combination of known applications.

The main contributions of this work are as follows:

1. We show that CF can be used to capture and predict performance for GPUs.



5.2. Motivation and Related work 51

2. We introduce a neural network architecture to learn representations of appli-

cations and systems and test whether using auxiliary training objectives can

further improve its predictive power.

3. We evaluate and analyze our performance model empirically on a large and di-

verse set of well-known benchmarks and multiple generations of GPUs, quan-

tifying the prediction accuracy.

5.2 Motivation and Related work

In this section, we introduce topics relevant to this work, and discuss prior work

related to them.

5.2.1 Explicit Features

The performance of a program on a given system is guided by the complex interac-

tions between the program’s properties and system’s characteristics. The most com-

mon approach taken towards building analytical models is to first perform a detailed

characterization of applications on systems and collect various performance metrics

such as execution time, hardware counters [63, 24]. Second, it needs to explicitly

list all the features that can capture the inter-dependencies between the application

and system at hand such as clock rate, cache size, floating point operations per sec-

ond (FLOPS) etc. Most previous works use an intuitive approach when selecting the

number of features in order to determine a set of good explanatory features. How-

ever, missing just one crucial feature from these carefully handpicked features can

greatly (and negatively) affect the prediction accuracy. Third, we need to test each

possible subset of those features finding the one which minimizes the error. This

is an exhaustive search of the feature space, and is computationally expensive and

unfeasible for all but the smallest of feature sets. Feature selection algorithms come

handy when it comes to finding the most impactful feature subsets but it comes with

an extra effort of selecting the appropriate algorithm and its parameters.

While considering tens or more of applications and systems, manually defining

features for each set of application and system is practically impossible. For building

a cross-architecture predictive model – such as the one we are targeting – we focus on
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two things: 1) We do not want to manually define feature for each application and

system 2) we want our model to learn the features automatically from the known

performance of a subset of applications executed on a subset of systems and leverage

this information to predict performance.

5.2.2 Representation Learning

The concept of representation learning is grounded in the idea that often the infor-

mation needed to characterize or classify high dimensional data can be found in

a low-dimensional manifold, or mapped into a dense vector. For instance, natu-

ral language processing systems use word embeddings to represent (embed) words

in a continuous vector space where semantically similar words have similar vector

representations (embeddings)[40]. Recommender systems employ similar represen-

tations to describe its entities (e.g. users and items) and call them as latent features.

We assume that there is a number of important features, called latent features,

which characterize systems and applications. We use a machine learning model to

learn these features as a by-product of predicting known runtime metrics. In our

model, we have application and system feature vectors. Two or more applications

can be similar in one latent feature (they both benefit from high memory bandwidth)

but different in others (only one benefits from high core clock frequency).

5.2.3 Collaborative Filtering

Collaborative filtering [3] is considered to be the most popular and widely imple-

mented technique in recommender systems. It automatically generates predictions

(filtering) about the interests of a user by collecting preferences or information from

many users (collaborating) present in the system. One of its most publicized appli-

cations is the Netflix challenge for improving Netflix’s movie recommender system,

Cinematch, by providing valid movie recommendations to its users. The prize was

won by BellKor’s Pragmatic Chaos [64, 36, 8] after improving Cinematch by over

10% using a combination of different collaborative filtering techniques.
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Model-based CF approaches transform both users and items to the same latent

feature space. The latent space is then used to explain ratings by characterizing both

products and users in terms of factors automatically inferred from user feedback.
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FIGURE 5.1: Mapping of applications and systems into a shared latent
space using matrix factorization.

CF has recently been studied to predict performance across different processor

architectures [52]. Matrix factorization (MF) is a model-based CF technique used in

this work to model the interactions between applications and systems. While train-

ing, MF associates each of m applications and n systems with real-valued vectors of

latent features of size r as shown in Figure 5.1. It infers these latent features automat-

ically by uncovering hidden patterns in performance observed on systems. In order

to predict performance of a benchmark a on system s, MF calculates the predicted

score by taking the dot product of their latent features.

5.3 Prediction Models

We first discuss the limitations of matrix factorization and then present a neural net-

work architecture that can learn complex application-system representations using

additional training objectives.

5.3.1 Multi-Layer Perceptron Model

MF models the two-way interactions of applications and systems as a dot product

of their latent features in a latent space. However, the linear combination of latent

features with the same weight can limit its capability to model all application-system

interactions in the low-dimensional latent space. Also, using a large number of latent
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features in order to capture both linear and non-linear interactions may affect the

generalization of the model (e.g. overfitting the data). We address this limitation of

MF by learning latent features using deep neural networks.
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FIGURE 5.2: Multi-layer perceptron model using latent features

We propose a multi-layer perceptron (MLP) to learn the interactions between ap-

plication and system latent features as shown in Figure 5.2. Each application and

system in dataset is identified by a sparse vector with one-hot encoding. These

sparse representations are used to create dense vectors called embeddings. The ob-

tained application (system) embedding can be seen as the latent feature vector for

application (system) in the context of matrix factorization model. The application

and system embeddings are fed into a multi-layer neural network to learn the inter-

action between the corresponding application and system.

Let xa and ys denote the embeddings for application a and system s, respectively.

Then, the MLP model is defined as:

l1 = (xa, ys) = [xa ys]

φ(l1) = a1(W1l1 + b1),

.......

φ(ln) = an(Wnln + bn),

(5.1)
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where Wx, bx, ax and (xa, ys) denote the weight matrix, bias vector, activation

function for the xth’s layer perceptron and concatenation of xa and ys embeddings

respectively.

5.3.2 Multiple Training Objectives

In our study, we focus on predicting instructions per second (IPS) metric as the most

reasonable proxy to application performance; however we can easily collect addi-

tional runtime metrics and use them for training. We choose loads per second (LPS)

and stores per second (SPS).

Predicting multiple metrics is useful by itself for gaining better insight into ap-

plication behavior. Additionally, we want to investigate if additional training objec-

tives can improve performance prediction itself. Auxiliary losses have been used in

machine learning models in various domains to improve statistical efficiency and to

build better representations [66, 28, 41].

As with IPS, we use root mean squared error (RMSE) as an actual loss function

for each of the additional metrics. We sum all losses for backpropagation and report

only IPS component of total loss for fair comparison with the model which is trained

with single metric.

5.3.3 Automated Architecture Search

We assume that a neural network that works better in the case of training with a

single metric would not necessarily be the same as for training with multiple objec-

tives. Although our model is elegantly simple and it is not uncommon to develop

such models manually, we would like to avoid possible pitfall of subconsciously

dedicating more attention to fine-tuning a model. As if it performs better, it would

support our hypothesis of handpicking features. Additionally, because the problem

is relatively small, we can afford to train and evaluate multiple architectures in a

short time. For these reasons we perform a grid search for the best model archi-

tectures for cases of training with single and auxiliary objectives. We constrain the

model to be a multi-layer feed forward network with an arbitrary number of layers

and neurons in each layer.
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5.4 Experimental Setup

5.4.1 Machine Specification

To demonstrate robustness of our approach, we selected GPUs as shown in Table

5.1. These hardware accelerators are commonly used in both HPC and cloud sys-

tems. The heterogeneity of these accelerators are with respect to micro-architecture

(Kepler, Maxwell, Pascal and Volta) and the number of streaming multiprocessors

(SM), L2 cache size, core frequency and memory bandwidth within accelerators hav-

ing similar micro-architectures. We also show the type of Intel Xeon processor used

along with each GPU in our experiments.

TABLE 5.1: Specifications of the GPUs used in our experiments.

GPU arch SMs cores/SM L21 mem2 corefreq.3 memfreq.4 cpu used

K20m Kepler 13 192 1.5 5 706 208 E5-2670v3
K20X Kepler 14 192 1.5 6 732 250 E5-2650
K40c Kepler 15 192 1.5 12 745 288 E5-2699v3

GTX-980Ti Maxwell 22 128 3 6 1225 337 E5-2650v3
P100-PCIE Pascal 56 64 4 16 1329 721 E5-2650v3
P100-SXM2 Pascal 56 64 6 16 1480 721 E5-2630v4
V100-SXM2 Volta 80 64 6 16 1530 897 Gold 6140

5.4.2 Benchmarks

We selected a diverse set of benchmarks from a variety of domains, as shown in

Table 5.2. These workloads are from two well-known benchmark suites: Rodinia

benchmark suite [55] version 3.3.1 and Polybench GPU version 1.0 [21].

The benchmarks were compiled using CUDA version 9.2.88 on P100-PCIE, V100-

SXM2 and CUDA version 9.1.85 on all the other systems. We used nvprof [47] to

collect three performance metrics which are inst_executed (instructions executed),

gld_transactions (global load transactions) and gst_transactions (global store trans-

actions). We executed each benchmark in isolation and recorded the total execution

time for each benchmark.
1L2 size in MiB.
2Memory size in GiB.
3Core frequency in MHz.
4Peak memory bandwidth in GB/s.
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TABLE 5.2: Workloads used in our experiments along with their do-
mains.

Domain Benchmark

Linear Algebra gaussian, 2mm, 3mm, atax, bicg, gemm,
gesummv,gramschmidt, mvt, syrk, syr2k

Data Mining & Pattern Recognition correlation, covariance, nearest neighbor (nn),
back-propogation (backprop)

Stencils 2dconvolution, 3dconvolution, fdtd-2d
Signal Processing discrete wavelet transform 2D (dwt2d)
Image Processing heartwall, srad, particlefilter

Simulation hotspot2D, hotspot3D, myocyte
Graph Traversal breadth-first search (bfs), b+tree, pathfinder

Fluid and Molecular Dynamics lavamd
Bioinformatics needleman-wunsh (nw)

5.4.3 Methodology

Problem Formulation.

Let M and N denote the number of applications and systems, respectively. We con-

struct an application-system interaction matrix, Y ∈ RM×N . Each cell in the matrix

Y has value as:

yas =

⎧⎪⎪⎨
⎪⎪⎩

pas, if application a was executed on system s

0, otherwise
(5.2)

Here pas indicates the observed performance score when application a was exe-

cuted on system s. Our goal is to predict all the zero entries of Y.

Datasets.

We constructed three datasets with IPS, LPS and SPS values respectively for our

experiments. In order to map these scores to a continuous scale, we performed z-

score normalization of scores in each of the datasets. For each application a, we

obtained mean score, p̄a and standard deviation, σa in performance exhibited by the

application on all the systems. The normalization of a performance score, pas can be

obtained as:

zscore(pas) =
pas − p̄a

σa
(5.3)
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Evaluation.

We used Chainer [59] to construct the MLP with Rectifier Linear Units (ReLU) [18]

as the activation function. The network was trained to minimize RMSE and the

optimizations were done by performing stochastic gradient descent (SGD)[31].

Let p̂as be the predicted performance score of application a corresponding to sys-

tem s. We divide the performance scores into a training set ytrain, which is used to

learn, and a test set ytest, which is used to calculate the prediction accuracy. RMSE

[57] is a de-facto method to measure accuracy of CF algorithms. We used RMSE to

evaluate the accuracy of our models as:

RMSE =

√
1

|ytest| ∑
pas∈ytest

( p̂as − pas)
2 (5.4)

5.5 Results

In this section, we conduct experiments with the aim of answering the following

research questions:

R1 Does collaborative filtering based matrix factorization approach work with GPUs?

R2 Can we improve the prediction quality by using deep neural networks?

R3 Does training with other performance metrics alongside IPS improve the predic-

tion accuracy?

5.5.1 Performance of Matrix Factorization (R1)

Figure 5.3a shows the performance of MF with respect to the number of latent fea-

tures on the IPS dataset. When we use one latent feature to represent each bench-

mark as well as system, the RMSE is 0.57. As we increase the features, MF projects

each benchmark and system as data points in a higher dimensional space that de-

scribes the correlations between benchmarks and systems. As a result, the prediction

improves by analyzing the linear associations between benchmarks and systems.

The best RMSE is 0.40 when each benchmark and system is defined by five features.

As we further increase the number of latent features to six, MF starts over-fitting the

training data that performs poorly on the test dataset thereby increasing the error.
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(A) Latent features vs. RMSE (B) Training and test loss (features=5)

(C) Actual vs. predicted normalized IPS
scores

FIGURE 5.3: Prediction performance of matrix factorization using la-
tent features with IPS dataset.

We show the training and test losses when using five latent features in figure

5.3b. We can see that with more epochs, the training and test RMSE gradually de-

crease. The most effective updates are observed in the first 100 iterations for the

training dataset. Although for the test dataset, the loss keeps decreasing and it starts

saturating after 175 iterations at a RMSE of 0.4.

Figure 5.3c shows the scatter plot of actual vs predicted normalized IPS scores.

Ideally, all the points in the plot should lie on or close to the regressed diagonal line.

First, this plot tells us that the normalized actual scores lie within the range of -1.6 to

2.3. Second, MF make predictions close to the diagonal line when the actual value

is greater than -1.5 and less than 1.5. While some of the values lie on the diagonal



60 Chapter 5. Predicting GPU Performance

line showing accurate predictions, many fall close to the line. There are two cases

when the actual score is near 1.0, that are estimated rather incorrectly. Third, when

the actual value is greater than 2.0, MF underestimates the actual scores. On further

inspection, we found that the three of these underestimated predictions are related

to benchmarks mvt, pathfinder and backprop on K20m.

Table 5.3 shows the accuracy of MF on 42 pairs of benchmarks and GPUs selected

from the test set. We can see that our model is able to predict a wide range of IPS

values (with a minimum of 95.33 and a maximum of 690 000 000). The minimum IPS

value corresponds to gaussian elimination application (gaussian) from the Rodinia

benchmark using data file as matrix4.txt. We also measured the prediction accu-

racy for each benchmark and GPU pair and reported the average accuracy across

all those pairs. We used the absolute value of the relative error ( Actual−Predicted
Actual ∗ 100)

to evaluate the accuracy. MF achieves an average (relative) error of 15.8% and geo-

metric mean (Gmean) of 7.4%, with minimum error of 0.02% and maximum error of

52.31%.

Answer to R1:

We extended collaborative filtering based matrix factorization approach to seven

GPUs using 30 benchmarks. Overall, MF achieves good predictions with an average

error of 15.8% (84.2% accuracy) and geometric mean of 7.4%.

5.5.2 Performance of Multi-Layer Perceptron (R2)

We constructed MLPs with one hidden layer (MLP-1) as well as two hidden layers

(MLP-2) to predict IPS as described in section 5.3.1. We tested each network with

number of neurons in each layer as [2, 4, 8, 16, 32, 64], the embedding size of 1 to 15.

We present the findings of our experiments in Table 5.4. MF serves as the baseline

performance with an RMSE of 0.40 with 5 latent features. MLP-1 with one hidden

layer of 4 neurons and embedding size of 11 results in 20% decrease in RMSE thereby

increasing prediction accuracy. While, MLP-2 with 32 and 8 neurons in the first

and second hidden layer respectively (32→8) achieves the best RMSE of 0.25 which

accounts for 37.5% improvement over the baseline.



5.5. Results 61

TABLE 5.3: Accuracy of the matrix factorization model.

Benchmark Suite GPU Actual IPS Predicted IPS Relative Error%

mycoyte rodinia V100-SXM2 12362329.33 12440673.99 0.63
hotspot2d rodinia V100-SXM2 628213.33 707013.49 12.54

mvt polybench K20m 2446784.0 1465271.07 40.11
gaussian rodinia K20m 95.33 92.74 2.72

srad1 rodinia K40c 169454.77 184485.42 8.87
mvt polybench K40c 699081.14 914765.62 30.85
2mm polybench K20m 685834240.0 699268041.2 1.96
atax polybench P100-PCIE 1204320.0 1254020.08 4.13

pathfinder rodinia K20m 651904.0 574757.98 11.83
gemm polybench K20X 6277120.0 5636040.41 10.21

backprop rodinia K40c 805745.29 1123610.02 39.45
gesummv polybench P100-PCIE 1557440.0 1572621.1 0.97
backprop rodinia GTX980Ti 1395922.2 1397639.04 0.12

atax polybench K20m 1631189.33 1630874.66 0.02
bicg polybench V100-SXM2 941926.4 1142419.5 21.29

heartwall rodinia P100-SXM2 97238507.25 87104974.98 10.42
nn rodinia K20X 9102.8 9657.58 6.09

mvt polybench P100-PCIE 963456.0 1322472.2 37.26
covariance polybench V100-SXM2 70272888.89 57696629.18 17.9
gesummv polybench P100-SXM2 2076629.33 2076142.74 0.02

gramschmidt polybench P100-PCIE 2316.76 3166.81 36.69
fdtd2d polybench K20X 110436.15 135592.53 22.78

covariance polybench K20X 47624371.2 59948517.91 25.88
backprop rodinia K20m 1880072.33 1569359.24 16.53

3dconvolution polybench K20X 4145.14 5518.12 33.12
syrk polybench K20X 39819673.6 35606924.25 10.58

3dconvolution polybench P100-PCIE 4204.9 4497.67 6.96
mycoyte rodinia K20m 12547497.2 14798852.29 17.94

gramschmidt polybench K20m 7524.22 6787.84 9.79
b+tree rodinia V100-SXM2 2646457.0 2541856.97 3.95

3dconvolution polybench GTX980Ti 5667.48 4943.69 12.77
heartwall rodinia GTX980Ti 54529707.29 56063846.0 2.81

syr2k polybench V100-SXM2 526275925.33 333587189.11 36.61
syrk polybench V100-SXM2 37499699.2 41851043.74 11.6

gesummv polybench K20m 2054570.67 1936674.13 5.74
syrk polybench P100-PCIE 44900352.0 43516292.35 3.08
mvt polybench GTX980Ti 963481.6 1203747.72 24.94

2dconvolution polybench K40c 3294354.29 3665771.31 11.27
syrk polybench GTX980Ti 30632618.67 39903543.09 30.26

backprop rodinia V100-SXM2 1186206.2 1144560.7 3.51
covariance polybench P100-PCIE 48332996.27 61818140.88 27.9

syr2k polybench K20X 268763136.0 409358367.43 52.31
Average 15.8
Gmean 7.4
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TABLE 5.4: Results of grid search for MLP-1 and MLP-2 parameters.

Model Network Features Epoch RMSE ↓ in RMSE

MF - 5 199 0.40 -
MLP-1 4 11 194 0.32 20%
MLP-2 32→ 8 3 154 0.25 37.5%

(A) Test Loss (B) Actual vs. Predicted Scores

FIGURE 5.4: Test loss and the scattered plot of actual vs predicted
normalized IPS scores using MLP.

Figure 5.4 shows the test loss and actual vs. predicted normalized IPS scores

for both MLP-based models. We can see that MLP-1 test loss decreases with more

epochs and it starts predicting better than MF after 130 epochs in Figure 5.4a. Whereas,

for MLP-2 the prediction performance on test dataset starts improving after 25 epochs.

The above findings w.r.t prediction performance i.e. MLP-2 > MLP-1 > MF provide

empirical evidence for the effectiveness of using deeper layers to improve prediction

accuracy.

We show the advantage of using a deep network to predict IPS in Figure 5.4b.

MLP-2 plots data points closer to the diagonal line than MLP-1. It is to be noted that

for all the actual values underestimated by MLP-1 such as when the actual values

are between 0.5 and 1.0 and also greater than 2.0, MLP-2 with just one more layer

learns better and make predictions near to their actual values.

Table 5.5 shows the relative errors using MLP-1 and MLP-2 models. For fair com-

parison, we selected the same pairs of benchmarks and GPUs as evaluated for MF
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FIGURE 5.5: Accuracy of MF, MLP-1 and MLP-2 using IPS dataset

and presented the accuracy of all the three models. First, the average error as well as

geometric mean show the same trend that MLP-2 > MLP-1 > MF. Second, overall,

MLP-1 predicts better than MF specially when the relative error when using MF is

greater than 20%. However, there are a few corner cases where MLP-1 underesti-

mates the actual value when MF has an error of less than 1%. This can be attributed

to those cases when a simple model is enough to describe the linear correlation be-

tween benchmark and system properties. In that case, using linear layers with ReLU

as an activation unit may cause some irregularities in prediction performance. Since

the main point of focus of this work is not to reason on how many and what features

are important to model performance across benchmarks and systems, a model like

MLP-1 which caters to the many of the cases is a better choice.

MLP-2 further decreases the large errors seen in MF and achieves the lowest

average error across all the predictions. It is to note that the maximum error seen in

MF is 51%, while in MLP-1 and MLP-2 are 49.26% and 34.45%. We summarize our

results for MF, MLP-1 and MLP-2 in Figure 5.5. An outlier which is common to MLP-

1 and MLP-2 in the box plot corresponded to a simulation application, myocyte from

the Rodinia benchmark suite on V100-SXM2.

We show the prediction performance of MF, MLP-1 and MLP-2 on V100-SXM2

GPU and K40c in Figures 5.6 and 5.7 respectively. MLP-2 predicted the best in all

the cases except for benchmarks myocyte and backprop on V100-SXM2.
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TABLE 5.5: Relative error using MF, MLP-1 and MLP-2 on the test set.

Benchmark Suite GPU Error MF% Error MLP-1% Error MLP-2%

srad1 rodinia K40c 8.87 8.09 5.51
b+tree rodinia V100-SXM2 3.95 0.86 1.79

backprop rodinia GTX980Ti 0.12 19.44 4.52
gaussian rodinia K20m 2.72 1.96 9.25
backprop rodinia V100-SXM2 3.51 2.03 8.09
mycoyte rodinia K20m 17.94 22.69 19.99

mvt polybench P100-PCIE 37.26 23.04 26.55
mycoyte rodinia V100-SXM2 0.63 49.26 34.45
heartwall rodinia P100-SXM2 10.42 9.97 6.36

mvt polybench GTX980Ti 24.94 8.5 8.86
gesummv polybench K20m 5.74 3.08 7.42

gramschmidt polybench P100-PCIE 36.69 0.02 16.58
syr2k polybench K20X 52.31 1.19 15.98
syrk polybench P100-PCIE 3.08 3.46 6.95

gesummv polybench P100-SXM2 0.02 2.95 2.18
nn rodinia K20X 6.09 20.82 6.43

backprop rodinia K40c 39.45 28.29 13.3
pathfinder rodinia K20m 11.83 3.27 3.71

atax polybench P100-PCIE 4.13 0.41 4.63
covariance polybench V100-SXM2 17.9 8.42 3.82

3dconvolution polybench GTX980Ti 12.77 7.56 11.29
syrk polybench V100-SXM2 11.6 6.51 2.33

gramschmidt polybench K20m 9.79 12.51 2.31
mvt polybench K20m 40.11 18.82 16.11

2dconvolution polybench K40c 11.27 15.5 10.61
atax polybench K20m 0.02 2.39 3.65

3dconvolution polybench P100-PCIE 6.96 1.55 8.69
heartwall rodinia GTX980Ti 2.81 5.62 2.51

mvt polybench K40c 30.85 22.86 3.29
gesummv polybench P100-PCIE 0.97 1.35 9.38

syrk polybench K20X 10.58 8.0 10.93
syrk polybench GTX980Ti 30.26 41.17 10.62
bicg polybench V100-SXM2 21.29 20.23 8.97

covariance polybench P100-PCIE 27.9 9.15 6.33
fdtd2d polybench K20X 22.78 9.66 0.83

hotspot2d rodinia V100-SXM2 12.54 15.31 3.35
3dconvolution polybench K20X 33.12 17.73 26.46

covariance polybench K20X 25.88 7.34 0.15
syr2k polybench V100-SXM2 36.61 31.29 15.3
2mm polybench K20m 1.96 13.4 0.09

gemm polybench K20X 10.21 1.26 21.93
backprop rodinia K20m 16.53 11.58 12.17
Average 15.8 11.9 9.4
Gmean 7.4 6.3 6.0
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FIGURE 5.6: Evaluation of MF, MLP-1 and MLP-2 on V100-SXM2
GPU

FIGURE 5.7: Performance of MF, MLP-1 and MLP-2 on K40c GPU

Answer to R2:

We investigated MLP with a curiosity to see whether using a deep network structure

is beneficial to the prediction. The MLP-1 (MLP with one hidden layer) predicted

with an average error of 11.9% (88.1% accuracy) and geometric mean of 6.3%. While

the MLP-2 (MLP with two hidden layers) predicted with an average error of 9.4%

(90.6% accuracy), geometric mean of 6% as compared to 84.2% accuracy, geometric

mean of 7.4% achieved with MF.

5.5.3 Training with additional metrics (R3)

We augmented training data (IPS) with two additional performance metrics, LPS

and SPS to determine if using multiple training objectives improve the predictions.

We performed a grid search for the best neural architectures for training with addi-

tional objectives.

Table 5.6 show the results of the grid search in order to find the best model cor-

responding to different training metrics. Training MLP-1 with IPS and LPS, we find
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TABLE 5.6: Performance of MLP when using additional training met-
rics, LPS and SPS.

Metric
MLP-1 MLP-2

Network Features RMSE Error% Network Features RMSE Error%
IPS 4 11 0.32 11.9% 32→8 3 0.25 9.4%

IPS+LPS 32 9 0.32 12% 16→32 5 0.28 11.5%
IPS+LPS+SPS 32 12 0.33 12.2% 32→32 8 0.28 10.7%

that a network with 32 neurons and embedding size of 9 shows the similar predic-

tive performance as with training MLP-1 with IPS. When we look at three metrics

case using MLP-1, there is a slight increase in RMSE and the average error across all

predictions. Overall, we can say that augmenting additional performance metrics

with IPS using MLP-1 results in a similar performance.

We repeated the grid search to find the best parameters using MLP-2 as well.

First, when training the model with IPS+LPS, the number of neurons increase from

16 to 32. So, it seems to be trading off the number of training metrics for depth as

it goes through the layers. By using an embedding size greater than while training

with only IPS, the model manages to achieve an average error of 11.5%. Similarly, for

3 metrics case, by increasing the number of neurons in the first layer and the embed-

ding size, the average error becomes marginally lower though the RMSE remains

the same.

Answer to R3:

This shows that IPS is the only metric that we need to predict performance across dif-

ferent benchmarks and GPUs. Using more additional optimization objectives in the

predictive model does not improve accuracy of predicted IPS values in this study.

5.6 Conclusions

In this work, we demonstrated that it is possible to collect performance metrics and

use collaborative filtering for GPU-based applications. We evaluated a set of 30 ap-

plications on 7 different generations of GPUs. Using the vanilla matrix factorization

method of collaborative filtering resulted in 84.2% accuracy when the actual IPS has
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a wide range of values, with a minimum of 95.3 and a maximum of 6.9 ∗ 108. We

then introduced neural network architectures to further improve the prediction ac-

curacy. While for predicting performance, IPS it the only metric which we need, we

showed that using additional optimization objectives in the predictive model (other

metrics such as LPS and SPS) results in the similar accuracy of predicted IPS values.

In total, we achieved 90.6% accuracy in average, with a geometric error mean of 6%

with our multi-layer perceptron implementation. We showed that the confidence

of predictions made varies between different kinds of applications. We leave it to

future work to develop a model which can predict this uncertainty explicitly.
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Chapter 6

Conclusion

6.1 Summary

Over the last decade, in response to the slowing or end of Moore’s law, the High

Performance Computing (HPC) community has turned towards heterogeneous sys-

tems. The trend in the recent decade has been to extend the application of HPC

systems beyond the computationally intensive scientific domain to data-intensive

domains, or the domain of Big Data. While HPC has its roots in solving compute-

intensive scientific and large-scale distributed problems, Big Data problems have

been proven to benefit from typical HPC environments: high processing power,

low-latency networks, and non-blocking communications. However, the use of HPC

systems is limited to scientists and researchers who have access to supercomputing

labs and centers. With HPC extending its application space from scientific appli-

cations to big data analytics, the increasing demand for resources in HPC centers

may not be met immediately. Hence, it is important to study alternative HPC solu-

tions and the extent to which these solutions can be employed for different classes

of computing and their applications. In the first step, we performed the evaluation

of an HPC mini-app, NICAM-DC-MINI and data-intensive benchmark, Graph500

on three systems: 1) our in-house production supercomputer TSUBAME2.5, 2) the

energy-efficient TSUBAME-KFC supercomputer and 3) AWS EC2’s latest genera-

tion of compute-optimized instances, C4. We conducted this study in an attempt to

measure the capabilities of C4 instances for representative HPC and Big Data ap-

plications. Our finding demonstrates that Amazon EC2 C4 instances exhibit good
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compute performance with low performance variability. The 10 Gbps Ethernet net-

work in these instances is the chief bottleneck for scaling the workloads. So, C4

instances can be a good fit for compute-intensive and memory-intensive application

with little communication. We optimized the Graph500 benchmark for C4 instances

by finding the optimal number of threads and MPI ranks and achieved performance

comparable to our in-house supercomputers. Similarly, we achieved good perfor-

mance using both 10 and 20 MPI ranks per C4 instance for NICAM-DC-MINI. Thus,

C4 instances can be adopted as a replacement to on-premises hardware deployments

for such workloads.

Performance prediction of scientific applications across systems becomes increas-

ingly important in today’s diverse computing environments. A wide range of choices

in execution platforms pose new challenges to researchers in choosing a system

which best fits their workloads and administrators in scheduling applications to

the best performing systems. While previous studies have employed simulation-

or profile-based prediction approaches, such solutions are time-consuming to be de-

ployed on multiple platforms. To address this problem, we use two collaborative

filtering techniques to build analytical models, which can quickly and accurately

predict the performance of workloads across different multicore systems. The first

technique leverages information gained from performance observed for certain ap-

plications on a subset of systems and use it to discover similarities among appli-

cations as well as systems. The second collaborative filtering based model learns

latent features of systems and workloads automatically and uses these features to

characterize the performance of applications on different platforms. We evaluated

both the methods using 30 workloads chosen from NAS Parallel Benchmarks, BOTS

and Rodinia benchmark suites on ten different systems. Our results show that such

collaborative filtering methods can make predictions with RMSE as low as 0.6 and

with an average RMSE of 1.6.

The graphic processing units (GPUs) have become a primary source of hetero-

geneity in today’s computing systems. With the rapid increase in number and types

of GPUs available, finding the best hardware accelerator for each application is a

challenge. For that matter, it is time consuming and tedious to execute every appli-

cation on every GPU system to learn the correlation between application properties
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and hardware characteristics. To address this problem, we extend our previously

proposed collaborating filtering based modeling technique, to build an analytical

model which can predict performance of applications across different GPU systems.

Our model learns representations, or embeddings (dense vectors of latent features)

for applications and systems and uses them to characterize the performance of var-

ious GPU-accelerated applications. We improve state-of-the-art collaborative filter-

ing approach based on matrix factorization by building a multi-layer perceptron.

In addition to increased accuracy in predicting application performance, we can

use this model to simultaneously predict multiple metrics such as rates of mem-

ory access operations. We evaluate our approach on a set of 30 well-known micro-

applications and seven NVIDIA GPUs. As a result, we can predict expected instruc-

tions per second value with 90.6% accuracy in average.
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