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ABSTRACT 

This thesis is about improving safety of urban expressways. In order to achieve this goal, a real-

time crash prediction model (RTCPM) and intervention is proposed. The idea of real-time crash 

prediction to identify the hazardous traffic condition leading to crash in advance to take measures 

to avoid the crash. RTCPMs are highly dependent on high quality and high density traffic and 

crash data. These data are collected from the detectors or sensors installed on road networks. For 

this thesis, route 3 Shibuya (11.9 km) and route 4 Shinjuku (13.5 km) - two radial routes of Tokyo 

metropolitan expressway were chosen because of the availability of traffic data collected round 

the clock, every minute from detectors which are on average 250 meters spaced.  

Most RTCPMs studies are based on the detector data which are already installed and are fixed. 

For this reason, different approaches were taken by researchers to design the data collection 

process which effects the RTCPMs. As the construction of an RTCPM is computationally costly, 

it is not efficient if a model has to be built from scratch for every route and every detector layout. 

Additionally, instrumental failure of detectors are common. Hence rises the importance of a 

method to create uniformly distributed simulated detectors. A macroscopic model called cell 

transmission model (CTM) is adopted to serve this purpose. CTM takes traffic data from the 

existing detectors and divide it into ‘cells’ each of which consists of traffic flow data. Additionally, 

the CTM was modified to accommodate an intervention method called variable speed limit (VSL). 

The traffic data from CTM was compared to the existing detector data and it was found that the 

CTM can generate traffic flow data with an error of about 13%. 

The performances and transferability of the CTMs were investigated by constructing RTCPMs. 

For RTCPMs, a machine learning method called Bayesian network (BN) and dynamic Bayesian 

network (DBN) was employed. Because, these methods are capable of adopting new traffic data 

and updating themselves. Moreover, BN has the property to handle missing data, which means, in 

case of instrumental failure, the model will still be able to predict crash likelihood with partially 

available data. These two are important properties to build a RTCPM. After validating the 

RTCPMs built with CTM generated data, it was found that the 11 out of 16 CTM-based RTCPMs 

(BN) outperformed the loop detector based RTCPMs, similar result was seen when RTCPMs were 

built with DBN.  
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 VSL was chosen as an intervention method. Previously, in several studies VSL was applied to 

regulate traffic flow by limiting the allowable speeds on the road network. There are several 

situations when a lowering speeds could be effective, such as in situations of adverse weather, if 

an incident takes place at downstream, or congestion occurs in a specific segment of road etc.   

Different studies focused on objectives such as- reducing congestion, active traffic management, 

regaining bottleneck capacity on freeways etc. Few studies also focused on improving safety. 

Different strategies were selected by researchers to apply VSL. Still, there are some critical issues 

which have not been addressed such as- the optimum location of VSL control, duration of VSL 

control, transferability of the control strategy, effect of VSL control on crash risk. This thesis 

adopted deep learning methods called Q-learning (QL) and a deep reinforcement learning method 

called deep Q-learning (DQL). These methods getting popularity because of the model-free nature, 

which does not require to decide on a strategy for implementation, rather the model itself learns 

from its experience. To explain in brief, there is an ‘agent’ (the model) that observes different 

‘states’ (traffic flow parameters, e,g, flow, speed, density etc.) and takes ‘actions’ (selects VSL 

values) in order to gain ‘rewards’ under a ‘policy’ (reducing crash risk). Hence, the model learns 

which VSL values are to be taken in which traffic condition to keep the crash risk under a threshold 

given. In this thesis, a crash risk threshold of 10 was chosen after investing RTCPM’s 

performances and transferability in the earlier chapter. VSL was applied to a 0.90 km long segment 

of route 4 Shinjuku between Eifuku and Hatagaya with. By comparing both of the method with no 

speed control cases, it was found that the QL and DQL were able to improve the safety of the study 

location at the targeted segment where VSL was applied. In few cases, improvement at the 

upstream of the target location was also observed. By comparing the two method- QL and DQL, 

it was apparent that the DQL performed better than QL for the same study segment.  

The necessity of establishing a universal RTCP and intervention method is undeniable, considering 

it is data intensive, computational labor dependent. Although, the idea of a model-free intervention 

method is still a new concept, it has a potential towards the universal crash prevention method. 

The goal of this thesis was to go one step forward to achieve the universality of RTCP and 

intervention method.     
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CHAPTER 1 

 INTRODUCTION  

1.1 Background and context  

1.1.1 Context  

Road traffic crashes are one of the world’s largest public health and injury prevention problems. 

According to WHO, approximately 1.3 million people die each year on the world's roads. Several 

crash prediction models have been built as a tool to augment road safety. A huge concern regarding 

the conventional models was their incapability to predict crashes that may be caused due to the 

suddenly developed unfavorable driving condition on a specific road section (Oh et al, 2001; Lee 

et al., 2003a,b). Oh et al. (2001) introduced a fourth component alongside road geometry and 

environment, vehicle and human; - the traffic dynamics. They suggested that crashes can occur 

even if the vehicle, environment and road geometry are favorable to safe driving. This happens 

due to sudden formation of hazardous traffic condition causing driving discomfort. Also, complex 

traffic dynamics instigates driving errors (Hossain and Muromachi, 2009). This contrived the 

opportunity to improve the shortcoming of the conventional crash prediction models that employ 

aggregated measures of traffic flow variables to identify hazardous locations. The findings lead to 

the necessity to predict the instantaneous crash risks for given road sections. Lee et al. (2003b) 

have compared this new idea with the already existing incident prediction models and implied that 

the proactive nature of the real-time crash prediction model contains much higher potential in 

improving road safety than the incident prediction models that minimizes the consequences of a 

crash by preventing secondary crashes. 

With the advancement of Intelligent Transportation System (ITS) and development of advanced 

transportation information systems (ATIS), traffic data collection has become easier. 

Consequently, numerous Real-time Crash Prediction Models (RTCP) assessing crash or nearly 

crash-prone situations of highways and expressways were introduced. The concept of real time 

crash prediction is based on the hypothesis that the probability of a crash on a specific road section 

can be predicted for a very short time window using the instantaneous traffic flow data (Lee et al. 

2002 and 2003a, b; Pande and Abdel-Aty, 2005; Hossain and Muromachi, 2010a,b). 
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The modern traffic data sensing technologies now present an array of options (inductive loop 

detectors, magnetic sensors, video image processors, microwave radar sensors, infrared sensors, 

laser radar sensors, etc.). Many of the modern sensor technologies have the ability to classify 

vehicles by their length and report vehicle presence, flow rate, occupancy, and speed for each class. 

The recent widespread availability of GPS technologies for in-vehicle navigation systems along 

with the advancements in the telecommunication sector and hand held devices such as smart 

phones have created the opportunity to collect traffic flow data directly from the vehicles which 

has, to a great extent, eliminated the needs of incrementing the expressways with sensors. When 

the data are available, they can be fed into the real-time crash prediction models and the output of 

these models can be utilized through the means to inform the road users about the prevailing road 

condition and/or providing driving guidance. The means can be posting warning message (Lee and 

Abdel-Aty, 2008) through variable message signs (VMS), variable speed limits, also known as 

VSL (Abdel-Aty et al., 2006b,c, 2008b;Lee and Abdel-Aty, 2008) and ramp metering (Lee et al., 

2006b;Abdel-Aty et al., 2007). 

1.1.2 Real-time crash prediction model 

The task of real-time crash prediction is to detect the hazardous traffic condition formation. 

Recognizing hazardous traffic conditions from real-time traffic data is very important as it provides 

with knowledge about the crash mechanism, which in turn helps to introduce interventions for 

real-time traffic management.  

Appropriate traffic variables needs to be chosen for RTCPM building, which can locate hazardous 

and non-hazardous traffic situations. The necessity of learning about hazardous situations and the 

availability of high density traffic data from the detectors have raise the importance of studying 

crash mechanisms for intervention application. 

There are several limitations when it comes to use detector data. The most common is instrumental 

failure. For this, alternative detector spacing should also be available to ensure unhindered 

monitoring of the area of interest. This will also enable in identifying the optimum detector layout 

plan. In addition to detector data, sufficient amount of crash data must be available for RTCPMs. 

The model can only perform well when the quality of the data is ensured by removing all the faulty 

data. 
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Then, the next goal is to select a highly flexible modeling method should be chosen that can 

perform these activities without needing to re-build or re-calibrate itself from the scratch. The 

model should be able to update itself with the addition of new data, it should be able to incorporate 

new variables, and must be able to predict crash even if few data are missing 

Most real-time crash prediction studies use volume/occupancy/speed parameters data extracted 

from sampled floating cars or road side detectors. It has been indicated that for different 

combinations of upstream and downstream traffic states, the crash involvement rates and crash 

risk ratios (ratio of crash cases and non-crash cases) are inconsistent. Considering that a crash can 

be induced by the disturbance of traffic flow before the crash occurs, time series traffic data 

consisting of several time intervals should be used to illustrate the dynamic process of traffic flow 

before crash occurrence. Thus, it is inessential to establish a single model that can address such 

time series data and the evolving process of traffic flow. Therefore, in this study, Bayesian network 

(BN) and dynamic Bayesian network (DBN) model of time sequence traffic data has been 

proposed to investigate the relationship between crash occurrence and dynamic traffic flow data 

with one-minute-interval of six months on one of the busiest Tokyo Metropolitan Expressway 

(March to August, 2014) kindly provided by the Tokyo Metropolitan Expressway Company 

Limited. 

1.1.3 Macroscopic traffic model 

The existing RTCPMs are developed depending on the detector layout that exists in the study area. 

Hence, variation in detector layout raises the issue of spatial transferability of the RTCPMs as 

altering the locations or installing new detectors to replicate the detector layout of the model is 

neither practical nor cost effective. Moreover, even for new roads, it may not always be plausible 

to follow a specific detector spacing. To address these issues, there has been an urge to devise a 

mechanism to simulate traffic sensor data of desired spacing from any detector layout that can be 

fed into an RTCPM. This study employed a macroscopic dynamic freeway traffic model called 

CTM, introduced by Daganzo (1994,1995), which is consistent with the hydrodynamic theory of 

traffic flow (Lighthill, 1955), to transform the traffic states obtained from non-uniform detector 

layouts into a pre-defined detector layout. The CTM was chosen for its analytical simplicity and 

ability to reproduce congestion propagation dynamics. 
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1.1.4 Real-time intervention 

Several studies showed that it is possible to reduce the risks of road crashes by altering the traffic 

states with suitable interventions. For a real-time intervention, a threshold of crash likelihood can 

be a useful measure to formulate a proactive control strategy (Lee et al., 2004). Studies on real-

time interventions followed either a traffic simulation program (Lee et al., 2004, 2006; Abdel-Aty 

et al., 2006a,b,2007a,b,2008, Yu and Abdel-Aty, 2014; Abdel-Aty and Wang, 2017) or a driving 

simulator (Lee and Abdel-Aty, 2008) to reproduce pre-crash traffic conditions and various 

countermeasures such as a variable-message sign (VMS) (Lee and Abdel-Aty, 2008) and a variable 

speed limit (VSL) (Lee et al., 2004; Abdel-Aty et al., 2006a,b,2007a,b,2008; Lee and Abdel-Aty, 

2008; Yu and Abdel-Aty, 2014; Abdel-Aty and Wang, 2017). Similarly, a coordinated or 

uncoordinated ramp metering (Lee et al., 2006; Abdel-Aty et al., 2007a,b; Abdel-Aty and Gayah, 

2010) helped control the crash-prone traffic conditions effectively. Park et al. (2018) used 

warnings in order to avoiding the secondary crashes. 

Variable speed limit (VSL) triggered through RTCPMs were adopted in a number of studies which 

reduced the crash probability effectively (Lee et al., 2004; Li et al., 2016, 2017; Abdel-Aty et al., 

2006a, 2007b, 2008). Lee et al. (2004) reduced the speed when a crash probability measured by 

an RTCPM crossed a predetermined threshold. Abdel-Aty et al. (2006a) was successful by 

changing the speed limit gradually every 10 min at 5 mph rate: an abrupt change in space; a 

reduction for upstream while an increase for downstream. Abdel-Aty et al. (2006b, 2007b, 2008) 

found that VSL was effective for medium to high speed regimes and had a limited impact for lower 

speeds. Later on, Abdel-Aty et al. (2008) suggested a homogeneous speed zone for VSL 

implementation. Lee and Abdel-Aty (2008) stated that VMS and VSL in tandem could reduce 

speed variations. Abdel-Aty et al. (2006b) found improved safety in the zone of VSL 

implementation but the high-crash potential was relocated at the downstream. Carlson et al. (2011) 

and Lu et al. (2011) applied VSL at the upstream of the bottleneck area to control the outflow of 

the VSL section. This way, the capacity drop at the bottleneck can be avoided, and the bottleneck 

capacity can be retrieved. A solution to the shifting of crash risk can be found in Yu and Abdel-

Aty (2014) who proposed an optimization algorithm to minimize the overall crash risk for the total 

VSL corridor. Li et al. (2014) employed VSL close to the freeway recurrent bottlenecks to reduce 

rear-end collision risks where the control strategy included a controlling of start-up threshold,  a 



 

16 
 

target speed limit (56.33 km/h), and a speed change rate (16.09 km/h every 30 s). Later on, Li et 

al. (2016) considered a start-up threshold of 20% as a control strategy to activate the VSL in a 

large-scale freeway segment and found that the crash risk was reduced by 22.62% and injury 

severity by 14.67%. Recently, Abdel-Aty and Wang (2017) applied VSL successfully to the 

congested weaving sections of an expressway for reduction of crash risk. 

The aforementioned studies on the combination of RTCPM and VSL focused only on adjusting 

the speed limit in respect of control strategy, VSL control zone, time of control, and response time 

considering the pattern of hazardous traffic state. Accordingly, the objective was limited to bring 

the traffic back to normal in the best possible way using a predetermined set of VSL-based 

interventions administered during a specified time interval. Therefore, they lack the embedded 

intelligent agent capable of learning by itself to tackle non-recurrent complex traffic patterns. 

Reinforcement learning (RL), an artificial intelligence-based semi-supervised machine learning 

algorithm, can support VSL in this regard. In RL, an agent reacts with the environment through 

several trial and error to optimize the total reward by choosing a state-action pair for every time 

step (Watkins, 1989; Sutton and Barto, 1998; Hasselt, 2011). Thus, an RL agent exhibits ability 

for decision making in respect of proactive speed control (Li et al., 2017; Zhu and Ukkusuri, 2014, 

Davarynejad et al., 2011). The ability to take real-time proactive control decisions without the need 

for a model architecture makes RL appealing in ITS field (Rezaee et al., 2012; El-Tantawy et al., 

2010; Abdulhai et al., 2003). A Q-learning-based multi-agent RL, which is the most commonly 

used RL algorithm, was used in studies to reduce crash risk by optimizing the ramp metering 

(Davarynejad et al., 2011; Rezaee et al., 2012), while, in another study (El-Tantawy et al., 2010), 

a multi-agent RL was used in conjunction with game theory to alleviate traffic gridlock. An R-

Markov average reward technique (R-MART)-based RL was used to optimize VSL control for 

reducing travel time and vehicle emission (Zhu and Ukkusuri, 2014). Li et al. (2014, 2016) 

improved on their genetic algorithm-based VSL optimization strategy by using Q-learning-based 

RL at a freeway recurrent bottleneck (Li et al. 2017). Isele et al. (2018) learned policies and active 

sensing behaviors employing RL that exceeded the capabilities of the commonly used heuristic 

approaches in several categories such as task completion time, goal success rate, and ability to 

generalize the problem, for navigating occluded intersections with autonomous vehicles. 
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Although, Q-learning for VSL-controlled optimization performed pretty well compared to the 

traditional feedback-based VSL control, there are a few issues, such as adaptability of continuous 

traffic states, location of VSL control sections, and the reliability of the VSL models in real time 

in terms of crash risk reduction, which are yet to be resolved. In this study, Q-learning and deep 

Q-network (DQN) are adopted to design the self-learning intelligent agents for real-time proactive 

VSL control. The study commences by simulating the traffic state data from Shinjuku 4 routes of 

Tokyo Metropolitan Expressways Company Limited when no crash took place using the CTM- a 

microsimulation model. Then, Bayesian Network based four different RTCPMs were constructed 

considering different variable combinations. Afterwards, a deep reinforcement learning-based 

intelligent intervention is designed applying Q-learning and DQN for VSL control, which was 

programmed with Python based library called Keras which is integrated to the CTM. Eventually, 

the whole system utilizes the crash risk predicted with RTCPMs to evaluate real-time safety and 

compare the proactive safety management performances of QL and DQN-based VSL interventions 

with situations when ‘no VSL control’ was administered. 

1.2 Definitions and terminologies 

1.2.1 Definitions and terminologies: Traffic flow  

The Highway Capacity Manual (2000) provides the following definitions of the basic traffic 

related terminologies. The symbols 𝑥 and 𝑡 represents distance (measured in the direction of traffic 

flow) and time respectively.  

Speed 𝒗 (𝒙, 𝒕): Speed is the rate of motion expressed as distance per unit time.  Depending on how 

it is measured, it can be either space mean speed or time mean speed. The speed of a vehicle is 

defined as the distance it travels per unit of time. Most of the time, each vehicle on the roadway 

will have a speed that is somewhat different from those around it. 

Space-mean speed: It is computed by dividing the length of a road by the average time it takes for 

vehicles to traverse it. It is the arithmetic mean of the speed of those vehicles occupying a given 

length of road at a given instant. 

Time-mean speed: It is measured by taking average of the speeds of the vehicles observed passing 

a given point. Time-mean speed can be obtained directly from a measuring device, sensor or 
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detector. It is the arithmetic mean of the speed of vehicles passing a point during a given time 

interval. 

Free-flow speed 𝒗 (𝒙, 𝒕): It is the average speed of the traffic measured under conditions of low 

volume, when vehicles can freely move at their desired speed.  

Volume (𝒙, 𝒕): Volume is simply the number of vehicles that pass a given point on the roadway 

in a specified period of time. By counting the number of vehicles that pass a point on the roadway 

during a 15-minute period, you can arrive at the 15-minute volume. Volume is commonly 

converted directly to flow (q), which is a more useful parameter. 

Flow 𝒒 (𝒙, 𝒕): It is the total number of vehicles that pass by the point 𝑥, given a time interval 𝑡, 

divided by the length of the time interval. It is usually expressed as an hourly rate and is easily 

measured with road sensors. Flow is one of the most common traffic parameters. Flow is the rate 

at which vehicles pass a given point on the roadway, and is normally given in terms of vehicles 

per hour. The 15-minute volume can be converted to an hourly flow by multiplying the volume by 

four. If our 15-minute volume were 100 vehicles, we would report the flow as 400 vehicles per 

hour. For that 15-minute interval of time, the vehicles were crossing our designated point at a rate 

of 400 vehicles/hour. 

Density 𝒌 (𝒙, 𝒕): It is the number of vehicles occupying a length of road about point 𝑥 at time 

instant 𝑡. This measurement is difficult as it requires observation of a stretch of road. Instead, it is 

often approximated from measurements of flow and speed as: 

𝑘 (𝑥, 𝑡) =
𝑞(𝑥,𝑡)

𝑣(𝑥,𝑡)
                      (2.4) 

Density refers to the number of vehicles present on a given length of roadway. Normally, density 

is reported in terms of vehicles per mile or vehicles per kilometer. High densities indicate that 

individual vehicles are very close together, while low densities imply greater distances between 

vehicles. 

Headway (𝒕): Headway is a measure of the temporal space between two vehicles. Specifically, 

the headway is the time that elapses between the arrival of the leading vehicle and the following 

vehicle at the designated test point. Headway between two vehicles can be measured by starting a 
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chronograph when the front bumper of the first vehicle crosses the selected point, and subsequently 

recording the time that the second vehicle’s front bumper crosses over the designated point. 

Headway is usually reported in units of seconds. 

Spacing (𝒙): Spacing is the physical distance, usually reported in feet or meters, between the front 

bumper of the leading vehicle and the front bumper of the following vehicle. Spacing complements 

headway, as it describes the same space in another way. Spacing is the product of speed and 

headway. 

Gap (𝒙): Gap is very similar to headway, except that it is a measure of the time that elapses 

between the departure of the first vehicle and the arrival of the second at the designated test point. 

Gap is a measure of the time between the rear bumper of the first vehicle and the front bumper of 

the second vehicle, where headway focuses on front-to-front times. Gap is usually reported in units 

of seconds. 

Clearance (𝒙): Clearance is similar to spacing, except that the clearance is the distance between 

the rear bumper of the leading vehicle and the front bumper of the following vehicle. The clearance 

is equivalent to the spacing minus the length of the leading vehicle. Clearance, like spacing, is 

usually reported in units of feet or meters. 

Demand: It is the number of vehicles that desire to use a given facility during a specified time 

period.  

Capacity: It’s the maximal hourly rate at which vehicles reasonably can be expected to traverse a 

point or a uniform section of a lane or a roadway during given time period under prevailing 

roadway, traffic and control conditions.  

Bottleneck: It is defined as any road element where demand exceeds capacity. Freeway 

bottlenecks sometimes appear near heavy on-ramps, where a localized increase in demand is 

combined with a decrease in capacity due to lane changing.  

Jam density 𝒌𝒋 (𝒙, 𝒕):  the density when speed and flow are zero. 
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Shockwaves: Shockwaves occur as a result of differences in flow and density which occur when 

there are constrictions in traffic flow. These constrictions are called bottlenecks. The speed of 

growth of the ensuing queue is the shockwave, and is the difference in flow divided by the 

difference in density. 

Hazardous state: In this thesis, hazardous state refers to the traffic states 3 minutes before a crash 

took place. 

Normal state: In this thesis, normal state refers to the traffic states on a normal or no-crash day, 3 

minutes before corresponding to the hazardous state. 

1.2.2 Definitions and terminologies: Cell transmission model 

Cell: It is the subdivision of a road network which is generated by CTM and from where traffic 

flow parameters can be generated. 

Links: Inside a network, each cell is connected with links with one another. 

Nodes: There are three kinds of nodes- simple, diverge and merge. The cells, which has a diverging 

location, it is called a diverge node, if it has a merging location, it’s called a merge node, all other 

nodes are called simple nodes. 

1.2.3 Definitions and terminologies: Real time crash prediction 

Real-time: It describes computing systems that are able to deal with and use new information 

immediately and therefore influence or direct the actions of the objects supplying that information 

(Cambridge Advanced Learner's Dictionary, 2018). 

Intelligent: A model or agent can be called intelligent if it is able to acquire knowledge from the 

surroundings or environment given and can come up with reasoning and is able to formulate 

solutions accordingly.   

Road safety management system: a system that is capable of monitoring and evaluating the road 

safety condition in real-time by instantaneously sensing the traffic flow data, introducing 

appropriate intervention upon detecting sign of hazardous traffic formation, varying its evaluations 
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and/or interventions in response to varying situations and past experience, and updating itself 

through its inherent capability to adapt to new situations (Hossain, dissertation 2011). 

1.2.4 Definitions and terminologies: Deep reinforcement learning 

Supervised learning: In the field of ML, there are three types of tasks that can be done- supervised 

learning, unsupervised learning and reinforcement learning. Supervised learning is learning from 

a training set of labeled examples provided by a knowledgeable external supervisor. 

Unsupervised learning: Unsupervised learning is typically about finding structure hidden in 

collections of unlabeled data. Reinforcement learning (RL) is the task of learning how agents ought 

to take sequences of actions in an environment in order to maximize cumulative rewards. 

Reinforcement learning: whereas RL is different from unsupervised learning because it tries to 

maximize a reward signal instead of trying to find hidden structure. Reinforcement learning 

algorithms study the behavior of subjects in an environment and learn to optimize that behavior. 

Deep Learning: DL is a branch of machine learning that uses what’s called “supervised” learning 

– where the neural network is trained using labeled data – or “unsupervised” learning – where the 

network uses unlabeled data and looks for recurring patterns.  

Deep reinforcement learning: Deep reinforcement learning is the combination of reinforcement 

learning (RL) and deep learning. 

Agent: An agent is a program that observes its environment and collects data, then performs some 

actions following a policy in order to maximize reward.  

Environment: An environment is where an agent interacts via states and actions. 

Reward: This is the self-evaluation method of an agent about the quality of the action it takes 

following a policy.   
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1.3 Objective and scope  

1.3.1 Objective  

The main objective of this thesis is to affirm traffic safety on urban expressway. As discussed in 

the previous section, traffic safety analysis has been a crucial issue in the field of transportation 

engineering for a long time. Over the last few decades several methods have been employed to 

achieve a universal way to prevent crash and maintain uninterrupted traffic flow, especially in the 

urban context where traffic flow is huge.  

To achieve this objective, two major tasks needs to be done- predict the crash and prevent it from 

happening. This research’s focus is to build a real-time crash prediction model in order to receive 

the information of a possible occurrence of crash or, the crash likelihood before it takes place so 

that we can take preventive measures.  

The concept of real-time crash prediction is yet considered as ‘emerging’. Several researchers has 

proposed different methodologies to build an efficient RTCPM by introducing different 

modifications and incorporating various features to improve the model. Whilst, it is necessary to 

explore different arenas for improvements, it is also important to have a common ground or 

universality for an RTCPM in order to ensure transferability and applicability of the model. This 

is because of the obvious fact that the traffic modelling requires handling of tremendous amount 

of data and long time for model training and development. Due to the huge computational cost, it 

is inefficient to construct RTCPMs from scratch every time, individually for every road networks 

all over the world. The efficient way to build an RTCPM is to add such features which would 

increase its universality, so that in future, a model built for one road network could be used for 

predicting crash of another one. Hence, a modified version of a classic macroscopic traffic model 

based on kinematic wave theory called the cell transmission model (CTM) is adopted in this 

research. The idea is to apply CTM to divide the study area into homogeneous small sections called 

‘cell’. These cells would act as virtual detectors encompassing traffic flow parameters from the 

existing detectors. The advantages of uniformly distributed detectors are two fold- (a) the ability 

of collecting and controlling traffic data at preferred sections of study area, and (b) creating a scope 

of transferability in terms of geometric design of a road network.   
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The second major task is to prevent the predicted crash. Amongst different methods, the variable 

speed limit (VSL) is adopted here as an intervention. But, VSL control has few limitations such as 

deciding when, where and what amount of speed needs to be decreased/ increased in order to 

prevent crash while maintaining uninterrupted traffic flow. Instead of deciding these matters by 

ourselves, which could be confusing at times because of versatility of intervention policies by 

different transportation experts, an intelligent deep reinforcement learning (DRL) agent is given 

the task of deciding upon the policies. DRL is gaining popularity recently due to its model-free 

features, which enables the DRL agent to learn from the environment through interaction by taking 

actions, then learning whether the decision of taking those actions aere actually good or not by 

receiving rewards over time. Because of its model-free property, we do not have to feed the agent 

with labeled data to train it like we usually do in case of classification or regression, or other 

machine learning problems. The agent can observe the states in an environment e.g. traffic data, 

take an action e.g. select a VSL value, then get a positive or negative reward for taking that action, 

e.g. positive if safety improves, negative otherwise- by doing it over and over, and the agent learns 

which actions are the best ones in which states. This is the basic concept of DRL which is utilized 

in this thesis for deciding VSL-based intervention modeling.  

Hence, the objectives of this research is to address the answers of the following questions- 

 How to predict crash risk in real-time? 

 In what way the universality of a RTCPM can be improved? 

  How to decide on a policy for an intervention to prevent crash? 

1.3.2 Scope  

The scope of this research is exclusively limited to the urban expressways. The entire research is 

conducted with the traffic flow data i.e. flow (veh/min), speed (km/h) and occupancy (%) collected 

during march, 2014 to August, 2014 from the two major radial routes- route 3 Shibuya and route 

4 Shinjuku of Tokyo metropolitan expressway company ltd. The route 3 Shibuya is a 11.9 km long 

two-lane radial route stretching between Takaido and Gaien consists of (43+41) freeway detectors 

and 6 on-ramp and 5 off-ramp detectors in the inbound and outbound directions. Route 4 Shinjuku 

is 13.5 km long radial route located between Yoga and Takagicho harboring (50+40) freeway, 10 
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on-ramp and 11 off-ramp active detectors altogether including both lanes and both directions. 

These are the detectors which were found to be in excellent working conditions throughout the day 

and collect traffic flow data 24x7 which was later aggregated to one minute. Data was extracted 

during March 2014 to August, 2014. This high density data makes these routes suitable candidates 

for RTCPM and intervention construction. Moreover, the route encompasses about 300 crash cases 

recorded from reported data. Additionally, both of the routes has long freeway segment which was 

required for the CTM model in order to avoid merging and diverging conditions. The detectors are 

spaced about 250 meters on average. The high density data with accuracy and fairly equidistant 

detector layout and availability of long basic freeway segment etc. makes this study location 

appropriate for this research.   

1.4 Contributions 

 The contributions of this thesis are situated on two main components of the traffic safety- RTCPM 

and intervention, and on the synergy that emerges when they are considered together. 

1.4.1 Real-time crash prediction 

A machine learning algorithm namely Bayesian network and dynamic Bayesian network was 

adopted for RTCPM construction with the traffic flow parameters extracted from the loop detectors. 

The models were built and validated with various combinations of information parameters to 

investigate the robustness of the models and to ensure the adaptability property of the BN 

algorithm. The most influential traffic parameters in terms of crash prediction was also identified 

which later on, were used to build the intervention model. 

1.4.2 Macroscopic traffic simulation  

The first order kinematic wave theory based macroscopic traffic model called the cell transmission 

model (CTM) was used to generate uniformly distributed simulated detectors to achieve the second 

objective mentioned earlier. The CTM was then modified to enable it for incorporating variable 

speed limit (VSL). The reason for modifying the original CTM was to use it for traffic data 

simulation when VSL is activated. The original CTM model is driven by a fixed fundamental 

diagram (FD) introduced by Daganzo (1994, 1995), but the modified CTM has the flexibility to 
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change its FD depending on the speed condition of the study location and the on the intervention 

model. 

1.4.3 Real-time intervention  

The final contribution of this thesis is the real-time intervention for the crash predicted earlier. 

This is done by introducing a deep reinforcement learning (DRL) based model-free intervention 

method where an intelligent ‘agent’ will observe ‘states’ its ‘environment’ and will take ‘actions’ 

in order to receive ‘rewards’. The agent’s goal is to maximize the rewards, and to do that, it 

undergoes numerous episodes of observations to learn the appropriate actions according to several 

states. This state-action relationship results in policy optimization. In this study, the agent observes 

traffic data, and looking at the crash risks associated with the traffic data observed at a specific 

time, takes an action of changing the speed limit and gets a positive or negative reward depending 

on the improvement in safety of the target location.  

1.5 Outline  

The outline of thesis is described below. A schematic diagram of the flow of the thesis is shown 

in Figure 1.1. 

The thesis is divided into six chapters, chapter 1 being the introduction, where a general idea of 

the real-time crash prediction (RTCP) and intervention methods are discussed. Then the objectives, 

scope and contribution of the thesis is defined.  

Chapter 2 is the literature review discussing the evolution and current condition of macroscopic 

models, RTCPMs and VSL control methods are explained along with the scope of improvements. 

Chapter 3 is on the study area and construction of CTM-based macro simulation and validation. 

The necessity of uniformly distributed simulated detectors and how to generate those are discussed 

here. 

Chapter 4 is about the RTCPMs constructed with BN and DBN method. Although, later on, only 

the BN-based RTCPMs were adopted for intervention, a comparison between the performance of 

BN and DBN models in terms of predicting crash likelihood is shown. 
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Chapter 5 is the deep reinforcement learning- based real-time intervention is explained. A brief 

overview of te evolution of deep learning (DL) and reinforcement learning (RL) is also discussed 

as these are comparatively new in the field of traffic management. 

Finally, chapter 6 concludes the findings and discusses the results in terms of achieving the 

objectives along with future scope of work. 

1.5 Chapter Conclusion 

Road safety management has always been an essential topic in the field of transportation 

engineering. Several attempts have been made to ‘perfect’ the crash prediction models. RTCPMs 

are one of those attempts which utilizes the advancement of ITS and active traffic management 

systems. The main issue in improving RTCPMs was found to be the adaptability and transferability 

of the models, so that the model could update itself when new traffic data is received without 

requiring to build from scratch. Another issue addressed here is the inconsistency of the inter-

Figure 1. 1 Schematic diagram of the flow of the thesis. 
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detector spacing throughout the route, which requires to take different data collection and 

modeling methods for different routes. A uniformly distributed detector layout could solve this 

issue while addressing the situations of instrumental failure or inaccessible road geometry. And, 

last but not the least, the intervention which is intelligent enough to learn and decide by itself how 

to control the allowable speed limit when a crash prone situation occurs is discussed. It is an 

emerging technology, yet with high potential. 

 

1.6 Chapter References 

Abdel-Aty M. and Pande A. (2005) Identifying crash propensity using specific traffic speed 

conditions, Journal of Safety Research, Vol. 36 No.1, pp. 97-108. Abdel-Aty, M. Uddin, N. And 

Pande, A. (2005). Split Models for Predicting Multivehicle Crashes During High-Speed and Low-

Speed Operating Conditions on Freeways. Transportation Research Record: Journal of the 

Transportation Research Board, No. 1908, TRB, National Research Council, Washington, D. C., 

pp. 51-58.  

Abdel-Aty M., Gayah V., 2010. Real-time crash risk reduction on freeways using coordinated and 

uncoordinated ramp metering approaches. Transportation Engineering 136, 410-423. 

Abdel-Aty, M. and Pande, A. (2006). ATMS Implementation System for Identifying Traffic 

Conditions Leading to Potential Crashes. IEEE Transactions on Intelligent Transportation Systems, 

Vol. 7, No. 1. pp. pp. 78-91. Abdel-Aty, M., J. Dilmore, and L. Hsia. (2006a) Applying Variable 

Speed Limits and the Potential for Crash Migration. In Transportation Research Record: Journal 

of the Transportation Research Board, No. 1953, Transportation Research Board of National 

Academics, Washington, D.C.,. 2006, pp. 21-30.  

Abdel-Aty, M., and Wang, L., 2017. Implementation of variable speed limits to improve safety of 

congested expressway weaving segments in microsimulation, Transportation Research Procedia 

27, 577-584. 

Abdel-Aty, M., Cunningham, R.J., Gayah, V.V., Hsia, L., 2008. Dynamic variable speed limit 

strategies for real-time crash risk reduction on freeways. In: Transportation Research Record: 



 

28 
 

Journal of the Transportation Research Board, No. 2078, Transportation Research Board of the 

National Academies, Washington, D.C. pp. 108-116. 

Abdel-Aty, M., Dilmore, J. and Dhindsa, A. (2006b). Evaluation of Variable Speed Limits for 

Realtime Freeway Safety Improvement. Journal of Accident Analysis and Prevention. Vol. 38. No. 

2 pp. 335-345.  

Abdel-Aty, M., Dilmore, M.J., Gayah, V.V., 2007a. Considering various ALINEA ramp metering 

strategies for crash risk mitigation on freeways under congested regime. Journal of Transportation 

Research, Part C 15(2), 113-134. 

Abdel-Aty, M., Dilmore, M.J., Hsia, L., 2006b. Applying variable speed limits and the potential 

for Crash Migration. In: Transportation Research Record: Journal of the Transportation Research 

Board, No. 1953, Transportation Research Board of the National Academies, Washington, D.C., 

pp. 21-30. 

Abdel-Aty, M., Pande, A., Das, A. and Knibbe, W. J. (2008a). Assessing Safety on Dutch 

Freeways with Data from Infrastructural-based Intelligent Transportation Systems. Transportation 

Research Record: Journal of the Transportation Research Board, No. 2083, TRB, National 

Research Council, Washington, D. C., pp. 153-161.  

Abdel-Aty, M., Pande, A., Lee, C., 2007b, Gayah, V., Santos, C. D., 2007b. Crash risk assessment 

using intelligent transportation systems data and real-time intervention strategies to improve safety 

on freeways. Journal of Intelligent Transportation Systems 11(3), 107-120. 

Abdel-Aty, M., Pemmanaboina, R. And Hsia, L. (2006c). Assessing Crash Occurrence on Urban 

Freeways by Applying a System of Interrelated Equations. Transportation Research Record: 

Journal of the Transportation Research Board, No. 1953, TRB, National Research Council, 

Washington, D. 47 C., pp. 1-9. 

Abdulhai, B., Pringle, R., Karakoulas, G.J., 2003. Reinforcement learning for true adaptive traffic 

signal control. Journal of Transportation Engineering, ASCE 129, 278-285. DOI: 

10.1061/(ASCE)0733-947X(2003)129:3(278). 



 

29 
 

Carlson, R.C., Papamichail, I., Papageogiou, M., 2011. Local feedback based mainstream traffic 

flow control on motorways using variable speed limits. IEEE Trans. Intell. Transp. Syst., 12(4), 

1261-1276. 

Daganzo, C. F. Fundamentals of transportation and traffic operations. Oxford: Pergamon, 1997. 

Daganzo, C. F. The Cell Transmission Model, Part II: Network Traffic. Transportation Research 

Part B, Vol. 29, 1995, pp. 79–93. 

Daganzo, C. F. The Cell Transmission Model: A Dynamic Representation of Highway Traffic 

Consistent With the Hydrodynamic Theory. Transportation Research Part B, Vol. 28, 1994, pp. 

269–287. 

Davarynejad, M., Hegyi, A., Vrancken, J., van den Berg, J., 2011. Motorway Ramp-Metering 

Control with Queuing Consideration using Q-learning, Proc. 14th IEEE Int. Conf. Intell. Transp. 

Syst., Washington, DC, USA, pp. 1652-1658. 

El-Tantawy S., Abdulhai, B., 2010. Towards multi-agent reinforcement learning for integrated 

network of optimal traffic controllers. Transp. Letters 2(2), 89-110. 

Hasselt, H.V., Guez, A., Silver, D., 2016. Google DeepMind. Deep Reinforcement Learning with 

Double Q-Learning, Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence 

(AAAI-16), pp. 2094-2100. 

Hasselt, H.V., Insights in Reinforcement Learning. PhD thesis, 2011. Utrecht University, the 

Netherlands. 

Hossain, M., Abdel-Aty, M., Quddus, M. A., Muromachi, Y. and Nafis, S. S. Real-time crash 

prediction models: state-of-the-art, design pathways and ubiquitous requirements, In the Journal 

of Accident Analysis and Prevention, Vol. 124, pp. 66-84. 

Hossain, M., Muromachi, Y., 2012. A Bayesian network based framework for real-time crash 

prediction on the basic freeway segments of urban expressways. Accident Analysis and Prevention. 

45, 373-381. http://doi.org/10.1016/j.aap.2011.08.004. 



 

30 
 

Hossain, M., Muromachi, Y., 2013. Real-time crash prediction model for the ramp vicinities of 

urban expressway. IATSS Research 37(1), 68-79. http://doi.org/10.1016/j.iatssr.2013.05.001. 

Hossain, M., Muromachi, Y., 2013a. Understanding crash mechanism on urban expressways using 

high-resolution traffic data. Accid. Anal. Prev. 57, 17–29.  

Isele, D., Rahimi, R., Cosgum, A., Subramanian, K., Fujimura, K., 2018. Navigating occluded 

intersections with autonomous vehicles using deep reinforcement learning. 

https://arxiv.org/pdf/1705.01196.pdf 

Jensen, F.V., Nielsen, T.D., 2007. Bayesian networks and decision graphs. Springer, NY. 

Katrakazas, C., Quddus, M.A., Chen, W.H., 2017. A simulation study of predicting conflict-prone 

traffic conditions in real-time. Presented at the Transportation Research Board 96th Annual 

Meeting, Washington D.C., USA, 8-12 January 8-12 2017. 

Kojima, S., Muromachi, Y., 2017. Study on Safety Measures using a Real-time Traffic Accident 

Prediction Model on Urban Expressway, Proceedings of 37th Traffic Engineering Research 

Presentation, Japan Society of Traffic Engineers, pp. 235-238. 

Krizhevsky, A., Sutskever, I., Hinton, G., 2012. ImageNet classification with deep convolutional 

neural networks. Adv. Neural Inf. Process. Syst. 25, 1106-1114. 

Lee, C., Abdel-Aty, M., 2008. Testing effects of warning messages and variable speed limits on 

driver behavior using driving simulator. In: Transportation Research Record: Journal of the 

Transportation Research Board, No. 2069, Transportation Research Board of the National 

Academies, Washington, D.C., pp. 55-64. 

Lee, C., Hellinga, B., and Ozbay, K., 2006. Quantifying effects of ramp metering on freeway safety. 

Journal of Accident Analysis and Prevention 38(2), 279-288. 

Lee, C., Hellinga, B., Saccomanno, F., 2003. Real-time crash prediction model for the application 

to crash prevention in freeway traffic. Transportation Research Record: Journal of the 

Transportation Research Board, 1840: 67–77. 



 

31 
 

Lee, C., Hellinga, B., Saccomanno, F., 2004. Evaluation of variable speed limits to improve traffic 

safety. Transport. Res. Part C: Emerg. Technol 14(3), 213-228. 

Li, Z., Liu, P., Wei Wang, Chengcheng Xu, 2014. Development of a control strategy of variable 

speed limits to reduce rear-end collision risks near freeway recurrent bottlenecks, J. Central South 

Univ., 21(6), 2526-2538. 

Li, Z., Liu, P., Xu, C., Duan, H., and Wang, W., 2016. Optimal mainline variable speed limit 

control to improve safety on large-scale freeway segments. Computer-Aided Civil and 

Infrastructure Engineering 31, 366-380. 

Li, Z., Liu, P., Xu, C., Duan, H., and Wang, W., 2017. Reinforcement learning-based variable 

speed limit control strategy to reduce traffic congestion at freeway recurrent bottlenecks. IEEE 

Transactions on Intelligent Transportation Systems 18(11). 

Lighthill, M., and G. Whitham. On kinematic waves II. A theory of traffic flow on long crowded 

roads. Proceedings Royal Society of London, Part A, Vol. 229, No. 1178, 1955. 

http://dx.doi.org/10.1098/rspa/1955.0089. 

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D., 2016. 

Continuous Control with Deep Reinforcement Learning. Google DeepMind, conference paper at 

ICLR, London, UK, 2016. 

Lin, L., Wang, Q., Sadek, A.W., 2015. A novel variable selection method based on frequent pattern 

tree for real-time traffic accident risk prediction. Transportation Research Part C: Emerging 

Technologies 55, 444-459. http://doi.org/10.1016/j.trc.2015.03.015. 

Liu, M., Chen, Y., 2017. Predicting real-time crash risk for urban expressways in China. 

Mathematical Problems in Engineering, Article ID: 6263726. 

Lu, X.Y., Kim, Z., Cao, M., Varaiya, P. and Horowitz, R., 2010. Deliver a Set of Tools for 

Resolving Bad Inductive Loops and Correcting Bad Data. California PATH Research Report. 

Lu, X.Y., Varaiya, P., Horowitz, R., Su, D., and Shladover, S., 2011. Novel freeway traffic control 

with variable speed limit and coordinated ramp metering. Transp. Res. Rec., 2229, 55-65. 



 

32 
 

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M., 

2013. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602. 

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., 

Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., 

King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D., 2015. Human-level control through 

deep reinforcement learning. Nature 518, 529-533. 

Oh, C., Oh, J., Ritchie, S., Chang, M., 2001. Real-time estimation of freeway accident likelihood. 

In: Presented at the 80th Annual Meeting of the Transportation Research Board, Washington, D.C. 

Pande, A., Abdel-Aty, M., 2005. A Freeway Safety Strategy for Advanced Proactive Traffic 

Management. Journal of Intelligent Transportation Systems, Vol. 9, No. 3, pp. 145–158. 

Park, H., Haghani, A., Samuel, A., Knodler, M.A., 2018. Real-time prediction and avoidance of 

secondary crashes under unexpected traffic congestion. Accident Analysis and Prevention 112, 

39-49. 

PTV-AG, VISSIM 5.10 User Manual. 2008. 

Rezaee, K., Abdulhai, B., Abdelgawad, H., 2012. Application of Reinforcement Learning with 

Continuous State Space to Ramp Metering in Real-World Conditions. Proc. 15th IEEE Int. Conf. 

Intell. Transp. Syst. (ITSC), Sep 2012, pp. 1590-1595. 

Roy, A., Hossain, M., and Muromachi, Y., 2018a. Enhancing the prediction performance of real-

time crash prediction model: A Cell Transmission-Dynamic Bayesian Network approach, 97th 

Annual Meeting of Transportation Research Board, Washington D.C.  

Roy, A., Hossain, M., and Muromachi, Y., 2018b. Development of Robust Real-Time Crash 

Prediction Models Using Bayesian Networks, Asian Transportation Studies, Volume 5, Issue 2, 

349-361.  

Sun, J., Sun, J., 2015. A Dynamic Bayesian Network model for real-time crash prediction using 

traffic speed conditions data. Transportation Research Part C: Emerging Technologies 54, 176-

186. http://doi.org/10.1016/j.trc.2015.03.006. 



 

33 
 

Sutton, R.,S., and Barto, A.,G. 1998. Introduction to Reinforcement Learning. MIT Press. 

Thrun, S., Shwartz, A., Lee, C.B., 1993. Issues in Using Function Approximation for 

Reinforcement Learning. Proceedings of the 1993 Connectionist Models Summer School, 

Lawrence Erlbaum Publisher, Hillsdale, NJ. 

Wang, Z., Schaul, T., Hessel, M., Hasselt, H.V., Lanctot, M., Freitas, N., 2016. Google DeepMind 

London UK. Dueling Network Architectures for Deep Reinforcement Learning, Proceedings of 

the 33rd International Conference on Machine Learning, JMLR: W & CP 48, New York, NY, 

USA. 

Watkins, C. J. C. H., 1989. Learning from delayed rewards. PhD thesis, University of Cambridge, 

England. 

Wu, Y., Abdel-Aty M., 2018. Developing an algorithm to assess the rear-end collision risk under 

fog conditions using real-time data, Transportation Research C 87, 11-25. 

Yang, K., Wang, X., Quddus, M., Yu, R., 2018. Deep learning for real-time crash prediction on 

urban expressways, 97th Annual Meeting of Transportation Research Board, Washington D.C. 

Yu, R., and Abdel-Aty, M., 2014. An optimal variable speed limits system to ameliorate traffic 

safety risk, Journal of Transportation Research: Part C 46, 235-246. DOI: 

10.1016/j.trc.2014.05.016. 

Yuan, J.H., Abdel-Aty, M., Wang, L., Lee, J.Y., Wang, X.S., Yu, R.J., 2018. Real-Time Crash 

Risk Analysis of Urban Arterials Incorporating Bluetooth, Weather, and Adaptive Signal Control 

Data. Accepted for presentation at 97th Annual Meeting of the Transportation Research Board, 

TRB No. 18-00590, Washington DC, January 2018. 

Zhu, F., Ukkusuri, S.V., 2014. Accounting for dynamic speed limit control in a stochastic traffic 

environment: A reinforcement learning approach. Transportation Research Part C 2014, 41, 30-

47. 

 



 

34 
 

CHAPTER 2 

 LITERATURE REVIEW  

2.1 Macroscopic traffic flow model 

The first beginnings for traffic flow descriptions on a highway are derived from observations by 

Greenshields, firstly shown to the public exactly 75 years ago (Proc., 13th Annual Meeting of the 

Highway Research Board, Dec. 1933). He carried out tests to measure traffic flow, traffic density 

and speed using photographic measurement methods for the first time. Greenshields postulated a 

linear relationship between speed and traffic density, as shown in Figure 2.1 using the relation: 

flow = density * speed. 

The linear speed–density relation converts into a parabolic relation between speed and traffic flow.  

Increasingly even the term “flow” was not known 75 years ago and Greenshields called that term 

“density-vehicles per hour” or density of the second kind. In this model some traffic flow 

characteristics are expressed well. It shows a maximal traffic flow with the related optimal traffic 

density. In the q-v-diagram exists two regimes, meaning it is possible to have two speeds at the 

same traffic flow. By this the traffic flow is classified in a stable and an unstable regime. 

Greenshields linear relation would be called a univariate model, because both regimes are 

calculated with the same formula. Early studies at traffic capacity of motorways had two different 

approaches. On the one side speed–traffic density relations were analyzed. Here a constant (free) 

speed was implied. 

𝑞 = 𝑣𝑓 ∗ 𝑘                  (2.1) 

On the other side distance phenomenon at high traffic density were analyzed and as easiest 

approach a constant reaction time tr was implied, which brings you to the gross headway 

𝑙 = 𝑙0 + 𝑣 ∗  𝑡𝑟  𝑤𝑖𝑡ℎ, 𝑘 = 1/𝑙                        (2.2) 

𝑞 = − 𝑙0 𝑡𝑟 ∗ (𝑘 − 𝑘𝑚𝑎𝑥)⁄  𝑤𝑖𝑡ℎ, 𝑘𝑚𝑎𝑥 = 𝑙/𝑙0                      (2.3) 
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Also a linear relationship between q and k, but with a negative congestion broadening speed—l0/tr 

as proportionality constant. Summarizing both regimes creates a triangle function as traffic flow–

traffic density relation. Lighthill and Whitham as well as Richards preached this triangle function 

as flow–density–curve and the use of the Kinematic wave theory on road traffic as instrument to 

combine both fields and to explain the dispersion of shock waves as reverted going congestion 

front (LWR theory). Also the q-k-relation established by Lighthill and Whitham has a parabolic 

curve progression and it’s a one field model, too. The maximum stands for the expected road 

capacity of a motorway section. The insights of Greenshields inspired the development of two- 

and multiple-regime models in the aftermath.  

2.1.1 Microscopic model and macroscopic model 

There exists two fundamentally different approaches for traffic modelling. The microscopic 

approach seeks to reproduce the behavior of an individual vehicle, as its driver responds to its 

environment by adjusting its speed and lane. Microscopic models typically involve variables such 

as vehicle positions, speed and headway. On the other hand, the macroscopic approach ignores the 

dynamics of individual vehicles and instead attempts to replicate the aggregate response of a large 

number of cars. These models represent traffic as a compressible fluid in terms of flow, speed, 

density. Traffic engineering has benefitted immensely from macroscopic models. They are widely 

used in the design of freeway facilities, and they are present nearly in all model-based ramp 

metering designs. Because of its emphasis on quick and quantitative assessment, the tools for 

operational planning and procedures are based on macroscopic models that are easier to assemble, 

Figure 2. 1 Speed–density relation V (Greenshields 1934) and The first Fundamental Diagram 

as q-v diagram (Ku ̈hne,R.D.,2011) 
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calibrate and automate compared to their microscopic counterparts. Carrying out micro-

simulations for all plausible actions is not practical in every situation.  

2.1.2 First order kinematic wave theory for macroscopic model: The Lighthill-

Witham-Richards (LWR) (1956) 

Many approaches to the macroscopic, analytical descriptions of traffic on a single homogenous 

road have been developed over the years. Its theory and impact on DNL and dynamic traffic 

assignment (DTA) literature are summarized next, to quickly converge to the elements that are 

important for the development of the link model for our network model. The fundamentals of 

kinematic wave theory for traffic have been described by LWR-theory (Lighthill and Whitham, 

1955) and (Richards, 1956) more than half a century ago. It is composed of a partial differential 

equation (PDE) that represents the conservation of vehicles, and a fundamental relation (Figure 

2.2) between instantaneous flow and local density called the fundamental diagram (FD). The 

LWR-PDE is described in function of the density of vehicles along a road. Classical first order 

finite difference approaches (Godunov, 1959) for numerically solving PDEs are widely used in 

practice, e.g. CTM of (Daganzo, 1994) or (Lebacque, 1996). These methods operate on a 

computation grid that discretizes space in cells and time in slices to provide an approximate 

solution to the PDE. The solutions have interesting physical properties like storage of vehicles (in 

terms of vehicle densities) along a link, the formation of shock waves and the relations between 

traffic states along characteristic speeds such as observed on real roads. However, this method is 

also computationally demanding requiring a link to be cut into smaller cells and updating times to 

be limited by the Courant Friedrich and Lewy (CFL) conditions (Courant et al., 1967). These CFL-

conditions state that the time discretization should not be longer than the shortest possible travel 

time of traffic over a cell. With short cells and high speeds, this time step is in realistic networks 

typically in the order of a few seconds. 

This thesis is built on the seminal work of Newell on simplified theory of kinematic waves (Newell, 

1993a, 1993b, 1993c). He simplified the FD to a triangular shape that proves to be efficient for 

numerical schemes in realistic networks (Yperman et al., 2005), and more importantly, he used 

cumulative vehicle number (CVN) functions to represent traffic. This intermediate abstraction 

(Moskowitz, 1965) by CVN functions (referred to as (𝑥,) at location 𝑥 and time instant 𝑡) has also 

been of great importance for building exact solutions. It was formalized by (Claudel and Bayen, 
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2010a; Daganzo, 2005a; Friesz et al., 2013; Laval and Leclercq, 2013) using theory of variations 

and Hamilton Jacobi (HJ) PDEs for general FD. Solutions to HJ-PDEs are described in function 

of CVN from which travel times and densities are easily derived (Szeto and Lo, 2005). The 

numerical evaluation of the CVNs involves the convex Legendre-Frechel transformation of the 

FD and the use of Lax-Hopf formulas to translate the initial values and boundary conditions into 

a traffic state at any location or time within the homogenous link (Mazaré et al., 2011). This Lax-

Hopf formula can also be used to construct a grid that leads to exact and efficient solutions using 

dynamic programming techniques while assuming a simplified triangular FD (Daganzo, 2005b). 

Such grids become increasingly difficult to define in large networks (Raadsen et al., 2014) so a 

simpler rectangular grid is assumed, with a triangular FD defined for each link. The grid is 

evaluated by an iterative procedure such that for each result only locally (at each grid point) the 

Lax-Hopf formula holds. This leads to faster algorithms, with substantially less grid points to be 

stored by the algorithm, while still computing a good approximate solution that is sufficient for 

practical applications. 

2.1.3 Triangular fundamental diagram 

The existence of a fundamental relation between traffic states has been empirically proven and 

many approximations have been proposed in literature (Greenberg, 1959; Greenshields et al., 

1935; Underwood, 1961). Usually this relation is illustrated by plotting the instantaneous flow 

(𝑣𝑒ℎ/ℎ) in function of the local density (𝑣𝑒ℎ/𝑘𝑚). An example of observed aggregated traffic data 

(density and flow) on a highway lane and an approximate triangular shaped fundamental relation 

is shown in Figure 2.2. Free-flow states are represented by diamond markers and triangular 

markers represent congested traffic states. The hypocritical and hypercritical branch of the 

triangular function can be found by simple regression techniques on both sets of points. The slope 

of both linear approximations represent the characteristic wave speeds, in this case the free flow 

speed (𝛾) in uncongested traffic and the spillback speed of perturbations in congestion (−𝜔). Also 

the maximum storage capacity or jam density of a link (𝑗) and the maximum throughput (𝑐) at the 

critical density (𝑘𝑐) are defined on the graph. 
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Figure 2. 2 Speed–density relation V (Greenshields 1934) and The first Fundamental 

Diagram as q-v diagram (Ku ̈hne,R.D.,2011) 

he triangular shape is often used because it leads to efficient numerical solution schemes (CTM, 

LTM). The Lax-Hopf equations (see discussion in the next section) are reduced significantly in 

this case because only two characteristic kinematic wave speeds (one forward and one backward) 

govern the prevailing traffic states (Claudel and Bayen, 2010b; Daganzo, 2005b; Han et al., 2012b; 

Jin, 2015). In principle the iterative procedure that is proposed in the next sections can be adopted 

to handle any concave FD.  

2.1.4 An overview of existing macroscopic models 

Real-time crash prediction model (RTCPM) is based on the hypothesis that the probability of a 

crash on a specific road section can be predicted for a very short time window using the 

instantaneous traffic flow data (Lee et al, 2003; Pande et al, 2005). Current RTCPMs are mostly 

based on traffic flow data from dual loop detectors, placed at fixed locations beneath the road 

surface where the inter-detector spacing varied substantially with an average of around 0.80 km 

and had high standard deviation (Abdel-Aty et al, 2012, Hossain and Muromachi, 2011; Shi et al, 

2015). A study (Abdel-Aty et al, 2012) showed a range of standard deviation between 0.88 and 

3.60 km for an AVI system. Another study (Shi et al, 2015) reported a minimum spacing of 0.16 

km to a maximum of 5.90 km with a standard deviation ranging between 0.16 and 1.56 km. Hong 

and Fukuda, 2012 used cell transmission model (CTM) with ensemble Kalman filter (EnKF) in 

estimating the impact of various detector location configurations on estimation of travel speed and 
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concluded that sensors located at large distances from each other without location optimization 

lead to an overestimation of travel speed, whereas sensor numbers can be reduced if their locations 

are optimal to achieve a better estimate of travel speed. Many studies attempted to minimize the 

number of detectors (Bianco et al, 2001; 2006; 2007) whereas Morrison and Martonosi, 2014 

examined whether there are sufficient conditions for optimal solutions for the detector locations. 

This non-uniformity in existing detector layouts along with high variability in detector spacing 

among expressways/freeways raise questions about the universality as well as transferability of 

such models. The doubt gets further bolstered by the studies (Abdel-Aty et al, 2012; Hossain and 

Muromachi, 2010) where the authors examined the performances of RTCPMs built with traffic 

data collected from six different combinations of detector layouts and found different results for 

each combination. Therefore, there is sufficient evidence postulating that variation in detector 

layout has an impact on the states of traffic flow variables.  

The existing RTCPMs are developed depending on the detector layout that exists in the study area. 

Hence, variation in detector layout raises the issue of spatial transferability of the RTCPMs as 

altering the locations or installing new detectors to replicate the detector layout of the model is 

neither practical nor cost effective. Moreover, even for new roads, it may not always be plausible 

to follow a specific detector spacing. To address these issues, there has been an urge to devise a 

mechanism to simulate traffic sensor data of desired spacing from any detector layout that can be 

fed into an RTCPM.  

Crashes occurring on freeways/expressways are considered to relate closely to preceding traffic 

states occurring before the crash, which are time-varying (Mihajlovic et al, 2001). Thus, it is 

essential to establish a single model that can address such time series data and the evolving process 

of traffic flow to predict crash risk in real time. Substantial effort has been put into improving the 

RTCPMs by employing sophisticated modeling methods such as artificial neural networks, 

Bayesian structural equations, Bayesian networks (BNs), dynamic Bayesian networks (DBNs), 

Bayesian classifier, support vector machines, genetic programming etc.(Hossain and Muromachi, 

2001, Sun et al, 2015, 2016; Lee et al, 2006). Among these, the modeling architecture of a dynamic 

Bayesian network (DBN) conforms to this requirement (Mihajlovic et al, 2001; Sun et al, 2015; 

Roy et al, 2016).  
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This study employed a macroscopic dynamic freeway traffic model called CTM, introduced by 

Daganzo (1994, 1995), which is consistent with the hydrodynamic theory of traffic flow (Lighthill 

et al, 1955), to transform the traffic states obtained from non-uniform detector layouts into a pre-

defined detector layout. The CTM was chosen for its analytical simplicity and ability to reproduce 

congestion propagation dynamics. Then, RTCPMs were built by simulating uniformly spaced 

detector data from fixed detector layouts and using BD and DBNs as the modeling method to 

distinguish between crash prone and normal traffic conditions.  

2.1.5 Daganzo’s (1996) kinematic wave theory based on the triangular fundamental 

diagram 

The CTM proposed by Daganzo (1994, 1995) is based on the relationship between traffic flow (q) 

and density (k). If the relationship can be expressed in a triangular form as in Figure 2.2, then the 

Lighthill, Whitham, and Richards (LWR) equations for a single highway link can be approximated 

by a set of difference equations where current conditions (the state of the system) are updated with 

every clock interval as: 

𝑞 = min{𝑉𝐹𝑘, 𝑞𝑚𝑎𝑥, 𝑤 (𝑘𝑗 − 𝑘)} ,                         for 0 ≤ 𝑘 ≤ 𝑘𝑗                    (2.5) 

Where 𝑉𝐹 is the free flow speed,  

𝑞𝑚𝑎𝑥 is the maximum flow (or capacity), 

𝑤 is the back wave or wave speed, and  

𝑘𝑗 is the jam density. 

In the CTM, a road segment is divided into several homogeneous cells, i, whose length is equal to 

the free flow speed times one clock interval. The state of the system at instant t is then given by 

the number of vehicles contained in each cell, n_i (t). The following parameters are defined for 

each cell: 

𝑁𝑖(𝑡) = maximum number of vehicles that can be present in cell 𝑖 at time 𝑡;  
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𝑄𝑖(𝑡) = maximum number of vehicles that can flow into cell 𝑖 when the clock advances from 𝑡 to 

𝑡 + 1. 

The flow evolution in each cell can be expressed as: 

𝑛𝑖(t + 1) = 𝑛𝑖(t) + 𝑦𝑖(t) – 𝑦𝑖+1(t)                          (2.6) 

where 𝑦𝑖(t) is the inflow to cell i in the time interval (t, t + 1), given by 

𝑦𝑖 (t) = min {𝑛𝑖−1(t), 𝑄𝑖(t), d[𝑁𝑖(t) – 𝑛𝑖(t)]}                         (2.7) 

where d = w/v 

2.1.6.1 Velocity based cell transmission model 

As mentioned earlier, the primary parameters of a CTM are defined by the left limb, the right limb 

and the apex of the triangle of the FD. The left limb decides the sending flow from an upstream 

cell to the downstream cell and the right limb decides how much flow it can receive depending on 

its current capacity. Generally, the FD for a link or segment remains the same throughout the 

simulation which is one of the positive sides of using a macroscopic traffic model. However, the 

model has to be in such a way so that the FD does not remain fixed throughout the simulation. The 

left and right limbs, or the sending and receiving functions needs to be adjusted to accommodate 

the VSL values (Mihn et al, 2015). So, the sending and receiving functions shown of the traditional 

CTM will be changed to the followings- 

𝑠𝑖(𝑡) = min{𝑉𝑆𝐿(𝑡). 𝑘𝑖(𝑡), 𝑄𝑉𝑆𝐿 } ; Where, 𝑉𝑆𝐿(𝑡) ∈ [ 𝑎𝑡 ]                (2.8) 

𝑟𝑖(𝑡) = min {𝜔𝑖. (𝑘𝑖,𝑗𝑎𝑚 − 𝑘𝑖(𝑡)) , 𝑄𝑉𝑆𝐿 }        (2.9) 

Where, 𝑠𝑖(𝑡) is the sending flow at time t, 𝑟𝑖(𝑡) is the receiving flow, 𝑎𝑡 is the action set which 

will be decided by the RL agent.  

The flow in a cell 𝑖 can be defined by the following receiving function: 

𝑞𝑖(𝑡) = min{𝑠𝑖−1(𝑡), 𝑟𝑖(𝑡)}         (2.10) 
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The density evolution can be determined by the following equation: 

𝑘𝑖(𝑡 + 1) = 𝑘𝑖(𝑡) + ∆𝑇/𝐿𝑖(𝑞𝑖−1(𝑡) − 𝑞𝑖(𝑡))      (2.11) 

Here, ∆𝑇 is the simulation time step, which is equal to the time with which a vehicle passes a cell 

at free-flow speed. 𝐿𝑖 is the cell length of cell 𝑖. The speed within each cell can be determined 

according to the current density, 𝑘𝑖(𝑡) and speed limit, 𝑉𝑆𝐿: 

𝑣𝑖(𝑡) = {
min{𝑉𝑆𝐿(𝑡 − 1), 𝑉𝐹 }             𝑖𝑓 𝑘𝑖(𝑡) ≤   𝑘𝑉𝑆𝐿

(𝑘𝑖,𝑗𝑎𝑚(𝑡) − 𝑘𝑖(𝑡).
 𝑤𝑖

 𝑘𝑖(𝑡)
)           𝑖𝑓 𝑘𝑖(𝑡)  >   𝑘𝑉𝑆𝐿           

   (2.12) 

Where,  𝑑𝑉𝑆𝐿 is the density associated with the flow 𝑄𝑉𝑆𝐿 (Figure 2.3.) under the speed limit 𝑉𝑆𝐿. 

To summarize, in order to build the modified CTM model, the basic parameters of an FD which 

are free-flow speed, back wave speed, jam density and the maximum flow will be estimated from 

the traffic flow data from the loop detectors and these parameters will remain fixed. Then, similar 

as the traditional CTM, the simulation time step will be decided to get the cell length according to 

the formula cell length = free-flow speed times time step. This is to ensure that the vehicles don’t 

cross multiple cells at a time step. So, after calculating the free-flow speed and deciding a suitable 

cell length, the time step is calculated. Next, unlike the traditional FD, the modified FD (Figure 

2.3.) whose left limb can be moved lower depending on the VSL value chosen, will be constructed 

with a sending and receiving function as shown in the equation 2.8 and 2.9 . The sending function 

will choose either the maximum flow under current VSL value, 𝑄𝑉𝑆𝐿 or the actual flow under 

current VSL value (𝑉𝑆𝐿(𝑡). 𝑘𝑖(𝑡)) whichever is the minimum. At the same time, the receiving 

function will follow equation 2.8, and receive the minimum of the maximum flow under current 

VSL value, 𝑄𝑉𝑆𝐿  and the back-wave speed calculated from the jam density and current 

density, 𝜔𝑖. (𝑘𝑖,𝑗𝑎𝑚 − 𝑘𝑖(𝑡)). According to Daganzo’s original CTM theory, the sending flow of 

upstream cell (𝑖 −1) is the receiving flow of downstream cell 𝑖.  Hence, the flow entering cell 𝑖 

will follow the minimum of the sending flow of cell (𝑖 −1) and receiving flow of cell 𝑖, according 

to equation 2.10. As for the speed evolution in a cell, it will depend on, if the current density falls 

to the left or right hand side of the density under current VSL value. If it falls on the left region, 
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the speed will be dominated by either the 𝑉𝐹 or VSL value; on the other hand, if it falls under the 

right-hand side, the speed will be decided by the jam density and the back-wave speed. 

 

 

 

 

 

 

2.2 Real-time crash prediction models 

The concept of real-time proactive road safety management in general comprises of detection of 

hazardous traffic formation (which is known as real-time crash prediction) and subsequent 

introduction of interventions to reduce the chance of a crash occurrence in real-time. Sometimes, 

the data that have been collected for model construction are also utilized for knowledge discovery. 

This holds paramount importance as knowing the crash mechanism can help in building more 

accurate models as well as designing effective countermeasures. In other words, the RTCP model 

should be able to answer – 'how can an implementable real-time crash prediction model be built 

to ensure timely detection of hazardous traffic formation?'. 

In order to choose the appropriate variables for model building, it is important to know which 

variables have higher capacity to distinguish between a hazardous and normal traffic condition. 

This has created the necessity to perform an in-depth study on crash mechanism using high 

resolution real-time traffic sensor data that will provide insight into crash phenomena and help to 

identify the most significant variables for model building. 

It is quite common for a detector to go out of order due to natural wear and tear. For this, alternative 

detector spacing should also be available to ensure unhindered monitoring of the area of interest. 

This can be achieved by carefully choosing a study area that is densely packed with detectors 

having relatively uniform inter-detector spacing. This will enable in identifying the optimum 
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Figure 2. 3 The modified CTM with VSL control 
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detector layout plan. It should also be noted that the study area must have a large enough crash 

sample to give the models acceptability. 

A highly flexible modeling method should be chosen that can perform these activities without 

needing to re-build or re-calibrate itself from the scratch: i) update itself in short time interval and 

with partially available data, ii) add new variables if and when needed, iii) make predictions with 

partially missing data, and iv) possess capability to handle highly correlated data. 

Crashes occurring on freeways/expressways are considered to relate closely to previous traffic 

conditions occurred before the crash, which are time-varying. Meanwhile, most studies use 

volume/occupancy/speed parameters data extracted from sampled floating cars or road side 

detectors. It has been indicated that for different combinations of upstream and downstream traffic 

states, the crash involvement rates and crash risk ratios (ratio of crash cases and non-crash cases) 

are inconsistent. Considering that a crash can be induced by the disturbance of traffic flow before 

the crash occurs, time series traffic data consisting of several time intervals should be used to 

illustrate the dynamic process of traffic flow before crash occurrence. Thus, it inessential to 

establish a single model that can address such time series data and the evolving process of traffic 

flow. Therefore, in this study, a dynamic Bayesian network (DBN) model of time sequence traffic 

data has been proposed to investigate the relationship between crash occurrence and dynamic 

traffic flow data with one-minute-interval of six months on one of the busiest Tokyo Metropolitan 

Expressway (March to August, 2014) provided by the Tokyo Metropolitan Expressway Company 

Limited. 

2.2.1 A review of existing RTCPMs 

Since last few decades, there had been several studies targeting the improvement of RTCPMs. 

Different researchers have tried to construct RTCPMs in different ways depending on the goals, 

study locations, base and derivative of traffic parameters, road geometry, weather condition, type 

of crash, type of vehicles etc. A brief review is given below.  

Oh et al. (2001) developed the first real-time crash prediction model where he separated traffic 

dynamics into two categories – disruptive and normal, and assessed the likelihood of future traffic 

flow data falling into either of these two categories. Normal condition was specifically defined as 
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a 5 minute period occurring at 30 minutes prior to the crash and the disrupted condition was defined 

as the 5 minute time period just before the crash. They used 52 crash data and corresponding traffic 

data from loop detectors and applied nonparametric Bayesian approach (Oh et al. 2005a) to 

identify the real-time crash likelihood. In the later study (Oh et al. 2005b) they applied Probabilistic 

Neural Network (PNN). They employed t-test on the mean and deviation of three variables – 

occupancy, flow and speed, to identify the crash indicator. However, there was no suggestion 

explaining if they have tested the data for normality as t-test is applicable only with the assumption 

that the data follow normal distribution. Some later studies (e.g., Luo et al., 2006) found that the 

standard deviation of speed on freeways does not follow normal distribution. Another study 

(Ulfarssonet al., 2005) indicated that mean and standard deviation of speed are correlated. Oh et 

al., in their first two studies (2001, 2005a) identified standard deviation of speed to be the most 

significant variable. But in a later study (Oh et al., 2005b) they selected standard deviation of speed 

as well as the average occupancy to be the predictors. Later they evaluated their newly built model 

by randomly selecting 30 crash data from their sample and testing their outcome and repeating the 

process for 30 times. They used two threshold values and the prediction success was respectively 

38.2% and 44.9%. 

The motivation for Golob et al. (2002) to develop a real-time crash prediction model was to 

understand the complex relationship between traffic flow and traffic crashes rather than to develop 

a proactive highway safety system. The study by Lee et al. (2002) was the first of its kind to point 

out the potential of real-time crash prediction to be applied as a proactive road safety management 

system, i.e., anticipate future crashes and apply counter measures to prevent it from taking place. 

They introduced a new term called 'crash precursors', which was defined as traffic conditions that 

exist before the occurrence of a crash. Their second study (Lee et al., 2003) basically reduced the 

number of assumptions they made in the first study to make it more acceptable. In their latest 

model they selected speed variations along a lane, traffic queue and traffic density at given road 

geometry, weather condition and time of the day as predictors and applied aggregated first order 

log-linear model to predict crash. The study used 234 crash data. Data for the normal traffic 

condition traffic were collected by acquiring the traffic data of 2 week days with clear weather 

condition when no crash happened. The developed model was not validated with another dataset 

and the prediction success was represented with the overall model fit, statistical significance of the 

coefficients and the consistency of the coefficients with the order of levels of crash precursors.  
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The study by Abdel-Aty and Pande (2004) and Abdel-Aty and Abdalla (2004) are acceptable due 

to relatively larger sample size, meticulous considerations for modeling, choice of predictors and 

acceptable model validation method. In the first study (Abdel-Aty and Pande, 2004), they used a 

sample size of 148 crashes, of which, 100 were used to generate the model and the rest 48 were 

used for validation. They used the concept of logistic regression and odds ratio to develop a new 

index called 'Hazard ratio', which essentially represents the factor with which the risk of observing 

a crash in the vicinity of the 'station of the crash' will increase with unit increase in the 

corresponding risk factor (here, the predictors of crash). Lastly, they used Probabilistic Neural 

Network (PNN) to distinguish between crash and non crash situation. They found the coefficient 

of variation in the speed obtained from the station near the crash and two stations immediately 

preceding in the upstream direction prior to crash to be the most suitable predictors. Although their 

study produced by far the best results to predict crashes, the overall classification, i.e., for both 

crash and non-crash situations together, was poor (62%). In a later study (Abdel-Aty and Abdalla, 

2004) they used Generalized Estimating Equation method where they included road geometry as 

variables as well. The study found that high variability in speed for a period of 15 minutes for a 

specific location increases the likelihood of crash and also, low variability in volume over 15 

minutes at a given location increases the crash likelihood in the downstream. 

Alongside these successful studies, there are two more mentionable studies that could not find any 

relationship between crashes and their prior traffic conditions. The first one was conducted by 

Kockelmanet al. (2004) where they used variation of speed as well as average speed both along 

the lane and for different defined sections to predict future crashes. They used several conventional 

statistical distributions to calculate the likelihood of crash and concluded that speed or its measures 

of dispersion were not correlated according to their data. They further used a very low data 

aggregation (30 seconds) but came down to the same conclusion. One of the latest additions in 

real-time crash prediction has been the study by Luo and Garber (2006) which conducted a 

comprehensive critical review of the major past studies concluding that the previous studies are 

weak in one or more of the three areas - unrealistic data requirements, inconsiderate to the 

interaction among variables and selecting predictors without validating them with pattern 

recognition techniques. Therefore, Luo and Garber (2006) invested substantial amount of labor in 

identifying crash patterns with three different methods – K means clustering, Naive Bayes method 

and Discriminant Analysis. They also studied the joint effects of two or more traffic variables to 
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identify traffic patterns leading to crash. They considered daytime and nighttime crashes separately, 

too. However, the outcome of the study was inconclusive. 

Road crash is a complex phenomenon and it is yet to be known how to classify a traffic condition 

to be hazardous or normal by observing the traffic flow variables. Another major concern with 

these models is the possibility of calibration in future as it can be expected that driving behavior 

varies depending on demography and each model associated with specific detectors needs to be 

calibrated separately (Kuchangi, 2006). This may even require addition or truncation of some 

demography related variables. An actionable model must use variables which are universal (e.g., 

traffic flow) to most of the types of detectors and the model must have capability to update itself 

with time as, quite understandably, the initial model will be built with very few samples. So far 

the concentration in previous studies has been on how to improve the prediction success and for 

that, the researchers used complex forms of traffic flow variables and different statistical models 

(mainly). In this study, we attempt to address these issues by developing a real-time crash 

prediction model with readily available variables and use a real-time risk assessment method – the 

Bayesian Network. The idea of developing models for predicting crash in real-time for 

expressways from high resolution sensor data is now more than a decade old.  

2.2.2 Shortcomings of the existing models 

In spite of several improvements which have been made for an efficient RTCPM, there are still 

some lacking which needs to be addressed.  

 Location of detector 

The performance of RTCPM largely depends on the quality of data which are collected from 

detectors. Hence, it is important to consider type, spacing and layout of detectors. Most studies 

uses traffic data from fixed loop detectors (Abdel-Aty et al., 2004, 2005; Abdel-Aty and Pande, 

2005) which are installed on the road network usually without any preliminary analysis about 

which would be the optimum location to install those. Roshandel et al. (2015) pointed this out as 

their location is fixed on the road and their distance from crash locations cannot be controlled. 

Several studies have been conducted in order to find the optimum detector location for RTCPM. 

For example, Hossain and Muromachi (2011) showed that if a detector pair is 750 meters apart 
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with the upstream detector more closely spaced to the location of crash occurrence, the model can 

predict with about 65% accuracy. The issue of optimum detector location is still being studied.  

 Variable Space 

The major traffic variable used for RTCPMs are flow, speed and occupancy, and/ or their 

derivatives (Lee et al., 2003b, 2006a; Pande and Abdel-Aty, 2006b). Several other studies have 

adopted weather conditions, visibility and road geometry as variable to construct RTCPMs too 

(Pande and Abdel-Aty, 2006a; Lee et al., 2003b), while other researchers also considered 

congestion index as a variable congestion index (Dias et al., 2009). Some studies employed 

engineering judgment to choose the variables, others applied statistical methods (testing the 

significance by developing logistic regression models with one variable at a time) as a solution to 

the problem (Abdel-Aty et al., 2004,2005; Abdel-Aty and Pande, 2005; Pande and Abdel-Aty, 

2005, 2006a, 2007; Zheng et al., 2010). Choosing an appropriate variable space is important 

because the inappropriate variables might result in a huge variable space within a small data set. 

The variable space might also suffer from the correlation problems as traffic variables are closely 

related. Moreover, in situations, where a variable is not available, another variables should be able 

to capture the traffic situation properly. So, choosing variables which are influential to RTCPMs 

are important.    

 Modeling Method 

With the advancement of ITS and availability of high density traffic data, numerous modeling 

methods have been adopted over the decades. These methods can broadly divided into two 

categories- statistical (Abdel-Aty et al., 2004, 2005; Abdel-Aty and Pande, 2005; Pande and 

Abdel-Aty, 2007; Lee et al.,2006a; Zheng et al., 2010) and machine learning based such as neural 

networks (Abdel-Aty et al., 2008a; Abdel-Aty and Pande, 2005; Pande and Abdel-Aty,2006a; Oh 

et al., 2005a,b), fuzzy logic (Oh et al., 2006) and classification trees (Pande and Abdel-Aty, 2006b) 

etc. As mentioned earlier, traffic variables are highly related, which could be a problem while 

modeling with statistical approaches like regression analysis due to co-linearity problem. Machine 

learning can overcome this problem. Although, ML-based modeling requires a vast amount of 

database and huge computational time.    
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2.3 Decision support system for Intervention: A comparative analysis of existing 

traffic intervention methods 

In the field of intelligent transportation system (ITS) real-time crash prediction and interventions 

have been one of the major concerns. With the increase in application of advance ITS technologies 

it is now possible to get access to the high quality real-time traffic data which calls for proactive 

traffic safety measure to reduce the crash risks on a road network. To introduce a proactive safety 

measure, it is important to understand the crash mechanism under different traffic conditions to 

identify the contributors to crash occurrence. Given that the traffic parameters change over time, 

the crash likelihood must be predicted in real-time. Numerous real-time crash prediction models 

(RTCPMs) have been developed over the years to predict crash risks given the real-time traffic 

data. A number of cutting edge modelling methods, such as, various kinds of Neural Networks 

(Liu and Chen, 2017; Park et al., 2018), Support Vector Machine (Katrakazas et al., 2017), 

Bayesian Network (Hossain and Muromachi, 2013), Dynamic Bayesian Network (Roy et al., 

2018), Deep Neural Network (Yang et al., 2018), etc.; they are to some extent transferrable (Park 

et al., 2018); and their accuracy in predicting crash is commendable (Yang et al., 2018 – 96%, Wu 

et al., 2018 – 87%) with low false alarm (Yang et al., 2018 – 10%, Wang et al., 2017a – 2.7%). 

For real-time intervention, a certain threshold of real-time crash likelihood can be used as a 

measurement to formulate a proactive control strategy (Lee et al., 2004). Several studies have 

concluded that abrupt change in speed plays a vital role for crash occurrence, such as increase in 

speed limit can cause higher fatal crashes (Kloeden et al., (2001); Ossiander et al., 2002). Generally, 

the low speed limit reduces the dissemination of speeds and hence reduces the possibility of vehicle 

collisions. Additionally, lower speed limits decrease the chance of high crash. Variable speed limit 

(VSL) control has been proven as a well-established and innovative technique to reduce crash risks 

in mainline freeways (Lee et al., 2004; Li et al., 2016, 2017; Abdel-Aty et al., 2006, 2007, 2008). 

The core idea of VSL is- it is an ITS device which is triggered in order to improve the traffic 

operation by changing the allowable speed limit of a road segment once a certain threshold of 

control factor is exceeded. Previous studies have suggested a number of strategies to apply VSL 

control. For example, Lee et al. (2004) considered four start-up thresholds of crash potential (0, 

2.5, 12, 18) depending on the road geometry, while a set of durations of intervention (2, 5, 10, 15 

min) were chosen and the magnitude of VSL was selected from- a set of seven fixed speed limits, 
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or, the average speed of downstream detector, or, average of up and downstream detectors of the 

current location (transition speed). Their study showed that the overall crash potential and travel 

time (in case of threshold 12) was reduced by 5-17% and 0.4% respectively when the transition 

speed was selected as the magnitude of the VSL control. In another study (Li et al., 2016) 

considered a start-up threshold of 0.2 as a control strategy to activate the VSL in a large scale 

freeway segment and found that the crash risk was reduced by 22.62% and injury severity by 

14.67%. In a later study (Li et al., 2014), the authors employed VSL close to freeway recurrent 

bottlenecks to reduce rear-end collision risks where the control strategy included start-up threshold 

(25%), target speed limit (35mile/h) and speed change rate (10mile/h/30sec). Few studies (Carlson 

et al., 2011; Lu et al., 2011) applied VSL at the upstream of the bottleneck area in order to control 

the outflow of the VSL section. This way the capacity drop at the bottleneck can be avoided and 

the bottleneck capacity can be retrieved. However, by reducing the capacity at the VSL section, a 

congestion might form at the bottleneck, propagating further upstream which in turn resulting in 

increased risks of rear-end collisions in the upstream area. Hence, the VSL control strategy that 

reduces delay, might increase rear-end crash risks at the VSL section of a freeway recurrent 

bottleneck. Abdel-Aty et al. (2008) used VSL strategies to reduce rear-end and lane-changing crash 

risks in a network with huge speed differences between up and downstream. They concluded that 

VSL is effective in reducing crash risk during uncongested condition only. From these studies it’s 

evident that the strategy of VSL application in freeways to reduce crash risk is yet to be well 

established.  

Besides setting the VSL strategies, the optimization of the strategy is also an eminent issue while 

designing the real-time intervention. A popular optimization method is the automated control 

strategies by PARAMICS (Lee et al., 20046, Abdel-Aty et al., 2005, 2006, 2008) which has been 

vastly used due to its scalability and proven application on freeways. It has been employed to 

optimize VSL strategies of split models for multi-vehicle crashes during both congested and 

uncongested conditions (Lee et al., 200, Abdel-Aty et al., 2005, 2006), for rear-end and lane 

changing crash risk reduction in homogenous speed zones while inducing 60, 80, 90% loading of 

traffic volumes to the model (Abdel-Aty et al., 2008). In contrast to the traditional optimization 

method, Abdulhai et al. (2003) introduced an artificial intelligence based semi-supervised machine 

learning algorithm called reinforcement learning (RL) to find the optimal control of traffic signal 

in a heavily congested condition. In RL, an agent reacts with the environment through several trial 
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and error to optimize the total reward by choosing a state-action pair for every time step (Watkins, 

1989; Sutton and Barto, 1998; Hasselt, 2011). RL is gaining popularity in traffic control problems 

since it does not require a model structure per se which reduces its dependency on the previous 

information of the system to be controlled enabling it to tackle non-recurrent complex traffic 

patterns. A Q-learning based multi-agent RL, which is the most commonly used RL algorithm, 

was used in a study for motorway ramp-metering control with queuing consideration (Davarynejad 

et al., 2011) and traffic control performance evaluation (Rezaee et al., 2012). Another study (El-

Tantawy et al., 2010) a multi-agent RL was used in conjunction with the game theory to alleviate 

traffic gridlock. An R-Markov average reward technique (R-MART) based RL was used to 

optimize VSL control for reducing travel time and vehicle emission (Zu et al., 2014). A study by 

Li et al. (2014, 2016) applied genetic algorithm for VSL optimization. However, in later study Li 

et al. (2017) used Q-learning based RL at a freeway recurrent bottleneck to optimize VSL control. 

The RL based solution was applied to a metro station in Shanghai and it proved its efficacy in 

minimizing safety risk and simultaneously alleviating passenger congestion at certain stations. 

Unsignalized intersections are considered as one of the most crash prone locations on a road 

network and therefore, training autonomous vehicles to drive at such locations is a difficult 

challenge. Isele et al. (2018) learned policies and active sensing behaviors employing RL that 

exceeded the capabilities of commonly-used heuristic approaches in several categories, such as, 

task completion time, goal success rate and ability to generalize the problem.  

In spite of the promising success records of application of Q-learning for VSL control optimization 

compared to traditional feedback based VSL control method, there are few issues such as 

adaptability of non-discretized (continuous) traffic states, location of VSL control sections and the 

reliability of the VSL models in terms of crash risk reduction in real-time is still under vigilance. 

Another new RL method namely dueling DQN (Mihn et al., 2013, 2015; Hasselt et al., 2016) 

which can accommodate continuous traffic states and can more quickly identify the correct action 

during policy evaluation as redundant or similar actions are added to the learning problem. has 

been used in Hence, to address these issues and inspired by the recent success of Q-learning and 

dueling DQN in designing intelligent agents to solve transportation problems in real-time, two 

reinforcement learning based intelligent frameworks for real-time proactive variable speed limit 

control are being proposed in this manuscript. 



 

52 
 

2.4 Chapter References 

Abbess, C., Jarett, D. and Wright, C.C. (1981). Accidents at Blackspots: Estimating the 

Effectiveness of Remedial Treatment, With Special Reference to the Regression-to-Mean Effect. 

Traffic Engineering and Control, Vol. 22, No. 10, pp. 535-542.  

Abdel-Aty M. and Abdalla F. (2004). Linking Roadway Geometrics and Real-Time Traffic 

Characteristics to Model Daytime Freeway Crashes Using Generalized Extreme Equations for 

Correlated Data. Journal of the Transportation Research Board, No. 1897, pp. 106-115.  

Abdel-Aty M. and Pande A. (2005) Identifying crash propensity using specific traffic speed 

conditions, Journal of Safety Research, Vol. 36 No.1, pp. 97-108. Abdel-Aty, M. Uddin, N. And 

Pande, A. (2005). Split Models for Predicting Multivehicle Crashes During High-Speed and Low-

Speed Operating Conditions on Freeways. Transportation Research Record: Journal of the 

Transportation Research Board, No. 1908, TRB, National Research Council, Washington, D. C., 

pp. 51-58.  

Abdel-Aty M., Gayah V., 2010. Real-time crash risk reduction on freeways using coordinated and 

uncoordinated ramp metering approaches. Transportation Engineering 136, 410-423. 

Abdel-Aty, M. and Pande, A. (2006). ATMS Implementation System for Identifying Traffic 

Conditions Leading to Potential Crashes. IEEE Transactions on Intelligent Transportation Systems, 

Vol. 7, No. 1. pp. pp. 78-91. Abdel-Aty, M., J. Dilmore, and L. Hsia. (2006a) Applying Variable 

Speed Limits and the Potential for Crash Migration. In Transportation Research Record: Journal 

of the Transportation Research Board, No. 1953, Transportation Research Board of National 

Academics, Washington, D.C.,. 2006, pp. 21-30.  

Abdel-Aty, M., and Wang, L., 2017. Implementation of variable speed limits to improve safety of 

congested expressway weaving segments in microsimulation, Transportation Research Procedia 

27, 577-584. 

Abdel-Aty, M., Cunningham, R.J., Gayah, V.V., Hsia, L., 2008. Dynamic variable speed limit 

strategies for real-time crash risk reduction on freeways. In: Transportation Research Record: 



 

53 
 

Journal of the Transportation Research Board, No. 2078, Transportation Research Board of the 

National Academies, Washington, D.C. pp. 108-116. 

Abdel-Aty, M., Dilmore, J. and Dhindsa, A. (2006b). Evaluation of Variable Speed Limits for 

Realtime Freeway Safety Improvement. Journal of Accident Analysis and Prevention. Vol. 38. No. 

2 pp. 335-345.  

Abdel-Aty, M., Dilmore, M.J., Gayah, V.V., 2007a. Considering various ALINEA ramp metering 

strategies for crash risk mitigation on freeways under congested regime. Journal of Transportation 

Research, Part C 15(2), 113-134. 

Abdel-Aty, M., Dilmore, M.J., Hsia, L., 2006b. Applying variable speed limits and the potential 

for Crash Migration. In: Transportation Research Record: Journal of the Transportation Research 

Board, No. 1953, Transportation Research Board of the National Academies, Washington, D.C., 

pp. 21-30. 

Abdel-Aty, M., H. M. Hassan, M. Ahmed, and A. S. Al-Ghamdi. Real-time Prediction of Visibility 

Related Crashes. Transportation Research Part C, Vol. 24, 2012, pp. 288–298.  

Abdel-Aty, M., Pande, A., Das, A. and Knibbe, W. J. (2008a). Assessing Safety on Dutch 

Freeways with Data from Infrastructural-based Intelligent Transportation Systems. Transportation 

Research Record: Journal of the Transportation Research Board, No. 2083, TRB, National 

Research Council, Washington, D. C., pp. 153-161.  

Abdel-Aty, M., Pande, A., Lee, C., 2007b, Gayah, V., Santos, C. D., 2007b. Crash risk assessment 

using intelligent transportation systems data and real-time intervention strategies to improve safety 

on freeways. Journal of Intelligent Transportation Systems 11(3), 107-120. 

Abdel-Aty, M., Pemmanaboina, R. And Hsia, L. (2006c). Assessing Crash Occurrence on Urban 

Freeways by Applying a System of Interrelated Equations. Transportation Research Record: 

Journal of the Transportation Research Board, No. 1953, TRB, National Research Council, 

Washington, D. 47 C., pp. 1-9. 

Abdel-Aty, M., Uddin, N., Pande, A., Abdalla, M. F. and Hsia, L. (2004) Predicting Freeway 

Crashes from Loop Detector Data by Matched Case-control Logistic Regression. Transportation 



 

54 
 

Research Record: Journal of the Transportation Research Board, No. 1897, TRB, National 

Research Council, Washington, D. C., pp. 88-95. 46  

Abdulhai, B., Pringle, R., Karakoulas, G.J., 2003. Reinforcement learning for true adaptive traffic 

signal control. Journal of Transportation Engineering, ASCE 129, 278-285. DOI: 

10.1061/(ASCE)0733-947X(2003)129:3(278). 

Ahmed, M., Abdel-Aty, M., Yu, R., 2012. A Bayesian updating approach for real-time safety 

evaluation using AVI data. Transp. Res. Rec. 2280, 60–67. 

Balke, K. et al. (2005). Dynamic Traffic Flow Modeling For Incident Detection and Short-Term 

Congestion Prediction. Year 1 Progress Report Prepared For the Texas Department of 

Transportation Research and Technology Implementation Office, Austin, Texas, USA. Bliss, T. 

(2004). Implementing the Recommendations of the World Report on Road Traffic Injury 

Prevention, Transport Note No. TN – 1, World Bank, Washington DC, USA.  

Bianco, L., G. Confessore, and M. Gentili. Combinatorial Aspects of the Sensor Location Problem. 

Annals of Operations Research, Vol. 144, No. 1, 2006, pp. 201–234. 

Bianco, L., G. Confessore, and P. Reverberi. A Network Based Model for Traffic Sensor Location 

with Implications on O/D matrix Estimates. Transportation Science, Vol. 35, No. 1, 2001, pp. 50–

60. 

Bianco, L., R. Cerulli, and M. Gentili. New Resolution Approaches for the Sensor Location 

Problem. Presented at Tristan VI Symposium, Phuket Island, Thailand, 2007. 

Bliss, T. and Breen J. (2009). Country Guidelines for the Conduct of Road Safety Management 

Capacity Reviews and the Specification of Lead Agency Reforms, Investment Strategies and Safe 

System Projects. The World Bank Global Road Safety Facility, Washington DC, USA. 

Bossche, F. V., Wets, G., and Brijs, T. (2006). Predicting Crashes using Calendar Data. 85th TRB 

Annual Meeting, Washington DC., USA. Brodsky, H., Hakkert, A.S., (1988). Risk of a Road 

Accident in Rainy Weather. Journal of Accident Analysis and Prevention. Vol. 20, No. 2, pp. 161–

176. 



 

55 
 

Caliendo, C., Guida, M. and Parisi, A. (2007). A Crash-prediction Model for Multilane Roads. 

Accident Analysis and Prevention, Vol. 39. pp. 657-670. Cambridge Advanced Learner's 

Dictionary. (2010).  

Carlson, R.C., Papamichail, I., Papageogiou, M., 2011. Local feedback based mainstream traffic 

flow control on motorways using variable speed limits. IEEE Trans. Intell. Transp. Syst., 12(4), 

1261-1276. 

Chow, A. H. F., G. Gomes, A. A. Kurzhanskiy, and P. Varaiya. AURORA RNM – A Macroscopic 

Simulation Tool for Arterial Traffic Modeling and Control. PATH Technical Note, Institute of 

Transportation Studies, University of California, Berkeley. 2009. 

Chow, A. H. F., G. Gomes, A. A. Kurzhanskiy, and P. Varaiya. AURORA RNM – A Macroscopic 

Simulation Tool for Arterial Traffic Modeling and Control. PATH Technical Note, Institute of 

Transportation Studies, University of California, Berkeley. 2009. 

Coifman, B. Using Dual Loop Speed Traps to Identify Detector Errors, TRR, 2014. 

Daganzo, C. F. The Cell Transmission Model, Part II: Network Traffic. Transportation Research 

Part B, Vol. 29, 1995, pp. 79–93. 

Daganzo, C. F. The Cell Transmission Model: A Dynamic Representation of Highway Traffic 

Consistent With the Hydrodynamic Theory. Transportation Research Part B, Vol. 28, 1994, pp. 

269–287. 

Davarynejad, M., Hegyi, A., Vrancken, J., van den Berg, J., 2011. Motorway Ramp-Metering 

Control with Queuing Consideration using Q-learning, Proc. 14th IEEE Int. Conf. Intell. Transp. 

Syst., Washington, DC, USA, pp. 1652-1658. 

Delen, D., Sharda, R., Besson, M., (2006). Identifying Significant Predictors of Injury Severity in 

Traffic Accidents using a Series of Artificial Neural Networks. Journal of Accident Analysis and 

Prevention. Vol. 38, 434–444. 



 

56 
 

Dervisoglu, G., G. Gomes, J. Kwon, R. Horowitz, and P. Varaiya. Automatic Calibration of the 

Fundamental Diagram and Empirical Observations on Capacity. Presented at the Transportation 

Research Board 88th Annual Meeting, 2009. 

El-Tantawy S., Abdulhai, B., 2010. Towards multi-agent reinforcement learning for integrated 

network of optimal traffic controllers. Transp. Letters 2(2), 89-110. 

Garber, N. and Luo, L. (2006). Identification of Traffic Patterns Leading to Crashes. Research 

Report Prepared For the Center of ITS Implementation Research. U.S. DOT University 

Transportation Center, Virginia, USA. Research Report No. UVACTS-15-0-101. 

Garber, N. J. and Wu, L. (2001). Stochastic Models Relating Crash Probabilistic with Geometric 

and Corresponding Traffic Characteristics Data. Project Report Prepared For the National ITS 

Implementation Research Center, USA. Report No. UVACTS-15-5-54. 

Golob, T. and Recker, W. (2001). Relationships Among Urban Freeway Accidents, Traffic Flow, 

Weather and Lighting Conditions. California PATH Working Paper UCB-ITS-PWP-2001-19, 

Institute of Transportation Studies. Berkeley, University of California. 

Golob, T. F., Recker, W. W., and Alvarez, V. M. (2004). Freeway Safety as a Function of Traffic 

Flow. Journal of Accident Analysis and Prevention, Vol. 36, No. 6, 933-946. 

Golob, T., Recker, W., Pavlis, Y., 2008. Probabilistic models of freeway safety performance using 

traffic flow data as predictors. Saf. Sci. 46 (9), 1306–1333.  

Greenberg, H. A Mathematical Analysis of Traffic Flow. Tunnel Traffic Capacity Study, Port of 

New York Authority, New York, 1958.  

Greenberg, H. An Analysis of Traffic Flow. In Operations Research, Vol.7, No.1, 1959.  

Greenshields, B. D., and F. M. Weids. Statistics with Applications to Highway Traffic Analyses. 

Eno Foundation for Highway Traffic Control, Saugatuck, Conn., 1952.  



 

57 
 

Hasselt, H.V., Guez, A., Silver, D., 2016. Google DeepMind. Deep Reinforcement Learning with 

Double Q-Learning, Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence 

(AAAI-16), pp. 2094-2100. 

Hasselt, H.V., Insights in Reinforcement Learning. PhD thesis, 2011. Utrecht University, the 

Netherlands. 

Hellinga, B. and Samimi, A. (2007). Safety Evaluations Using a Real-Time Crash Potential Model: 

Sensitivity to Model Calibration. In: Proceedings of the ITE Canadian District Annual Conference, 

May, 2007, Toronto, Canada. 

Heydecker, B.G., J. Wu (2001) Identification of Sites for Road Accident Remedial Work by 

Bayesian Statistical Methods: An Example of Uncertain Inference. Advances in Engineering 

Software, Vol. 32, pp. 859-869. 

Hong, Z., and D. Fukuda. Effects of Traffic Sensor Location on Traffic State Estimation. 15th 

Meeting of the EURO Working Group on Transportation, Procedia - Social and Behavioral 

Sciences, Vol. 54, 2012, pp. 1186–1196. 

Hossain, M., Abdel-Aty, M., Quddus, M. A., Muromachi, Y. and Nafis, S. S. Real-time crash 

prediction models: state-of-the-art, design pathways and ubiquitous requirements, In the Journal 

of Accident Analysis and Prevention, Vol. 124, pp. 66-84. 

Hossain, M., Abdel-Aty, M., Quddus, M. A., Muromachi, Y. and Nafis, S. S., 2019, Real-time 

crash prediction models: state-of-the-art, design pathways and ubiquitous requirements, In the 

Journal of Accident Analysis and Prevention, Vol. 124, pp. 66-84. 

Hossain, M., and Y. Muromachi. A Bayesian Network Based Framework for Real-time Crash 

Prediction on the Basic Freeway Segments of Urban Expressways. Accident Analysis and 

Prevention, Vol. 45, 2011, pp. 373–381 

Hossain, M., and Y. Muromachi. A Real-time Crash Prediction Model for the Ramp Vicinities of 

Urban Expressway. IATSS Research, Vol. 37, No. 1, 2013, pp. 68–79. 



 

58 
 

Hossain, M., and Y. Muromachi. Optimum Detector Spacing for Real-Time Monitoring of 

Hazardous Locations on Urban Expressways. Japanese Society of Civil Engineers, Vol. 27, No. 5, 

2010, pp. 1045–1054. 

Hossain, M., Muromachi, Y., 2012. A Bayesian network based framework for real-time crash 

prediction on the basic freeway segments of urban expressways. Accident Analysis and Prevention. 

45, 373-381. http://doi.org/10.1016/j.aap.2011.08.004. 

Hossain, M., Muromachi, Y., 2013a. Understanding crash mechanism on urban expressways using 

high-resolution traffic data. Accid. Anal. Prev. 57, 17–29.  

Hu, J., Sun, J., Zhao, L., 2014. Some Flow Features at Urban Expressway On-ramp Bottlenecks in 

Shanghai. In: Presented at the 93rd Annual Meeting of the Transportation Research Board, 

Washington, D.C. 

Hu, J., Zhang, L., Liang, W., 2012. Opportunistic predictive maintenance for complex multi-

component systems based on DBN-HAZOP model. Process Saf. Environ. Prot. 90 (5), 376–388. 

Isele, D., Rahimi, R., Cosgum, A., Subramanian, K., Fujimura, K., 2018. Navigating occluded 

intersections with autonomous vehicles using deep reinforcement learning. 

https://arxiv.org/pdf/1705.01196.pdf 

J. Sun, J. Sun, 2015. Dynamic Bayesian network model for real-time crash prediction using traffic 

speed conditions data.Transportation Research Part C 54 (2015) 176–186. 

Jensen, F.V., Nielsen, T.D., 2007. Bayesian networks and decision graphs. Springer, NY. 

Jovanis, P. P., and Chang, H. L. (1986) Modeling the Relationship of Accidents to Miles Traveled. 

In Transportation Research Record: Journal of the Transportation Research Board, No. 1068, 

Transportation Research Board of the National Academics, Washington, D.C., pp. 42-51. 

Katrakazas, C., Quddus, M.A., Chen, W.H., 2017. A simulation study of predicting conflict-prone 

traffic conditions in real-time. Presented at the Transportation Research Board 96th Annual 

Meeting, Washington D.C., USA, 8-12 January 8-12 2017. 



 

59 
 

Kjaerulff, U. B., and Madsen, A. L. (2007). Bayesian Networks and Influence Diagrams: A Guide 

to Construction and Analysis. Springer, New York, USA. 

Kojima, S., Muromachi, Y., 2017. Study on Safety Measures using a Real-time Traffic Accident 

Prediction Model on Urban Expressway, Proceedings of 37th Traffic Engineering Research 

Presentation, Japan Society of Traffic Engineers, pp. 235-238. 

Kown, J., Varayiya, P. California’s bottlenecks, 2005, submitted ot the GoCalifornia Expert 

Review Panel. 

Krizhevsky, A., Sutskever, I., Hinton, G., 2012. ImageNet classification with deep convolutional 

neural networks. Adv. Neural Inf. Process. Syst. 25, 1106-1114. 

Kurzhanskiy, A. A., and P. Varaiya. Active Traffic Management on Road Networks: A 

Macroscopic Approach. Philosophical Transactions of the Royal Society A, Vol. 368, 2010, pp. 

4607–4626. 

Kurzhanskiy, A. A., and P. Varaiya. Active Traffic Management on Road Networks: A 

Macroscopic Approach. Philosophical Transactions of the Royal Society A, Vol. 368, 2010, pp. 

4607–4626. 

Lee, C., Abdel-Aty, M., 2008. Testing effects of warning messages and variable speed limits on 

driver behavior using driving simulator. In: Transportation Research Record: Journal of the 

Transportation Research Board, No. 2069, Transportation Research Board of the National 

Academies, Washington, D.C., pp. 55-64. 

Lee, C., B. Hellinga, and F. Saccomanno. Real-time Crash Prediction Model for the Application 

to Crash Prevention in Freeway Traffic. Transportation Research Record: Journal of the 

Transportation Research Board, No. 1840, 2003, pp. 67–77. 

Lee, C., Hellinga, B., and Ozbay, K., 2006. Quantifying effects of ramp metering on freeway safety. 

Journal of Accident Analysis and Prevention 38(2), 279-288. 

Lee, C., Hellinga, B., Saccomanno, F., 2004. Evaluation of variable speed limits to improve traffic 

safety. Transport. Res. Part C: Emerg. Technol 14(3), 213-228. 



 

60 
 

Lee, C., M. Abdel-Aty, and L. Hsia. Potential Real-time Indicators of Sideswipe Crashes on 

Freeways. Transportation Research Record: Journal of the Transportation Research Board, No. 

1953, 2006, pp. 41–49. 

Lee, C., Saccomanno, F., Hellinga, B., 2003. Real-time crash prediction model for the application 

to crash prevention in freeway traffic. Transp. Res. Rec. 1840, 67–77. 

Li, Z., Liu, P., Wei Wang, Chengcheng Xu, 2014. Development of a control strategy of variable 

speed limits to reduce rear-end collision risks near freeway recurrent bottlenecks, J. Central South 

Univ., 21(6), 2526-2538. 

Li, Z., Liu, P., Xu, C., Duan, H., and Wang, W., 2016. Optimal mainline variable speed limit 

control to improve safety on large-scale freeway segments. Computer-Aided Civil and 

Infrastructure Engineering 31, 366-380. 

Li, Z., Liu, P., Xu, C., Duan, H., and Wang, W., 2017. Reinforcement learning-based variable 

speed limit control strategy to reduce traffic congestion at freeway recurrent bottlenecks. IEEE 

Transactions on Intelligent Transportation Systems 18(11). 

Li, Z., Liu, P., Xu, C., Duan, H., and Wang, W., 2017. Reinforcement learning-based variable 

speed limit control strategy to reduce traffic congestion at freeway recurrent bottlenecks. IEEE 

Transactions on Intelligent Transportation Systems 18(11). 

Lighthill, M., and G. Whitham. On kinematic waves II. A theory of traffic flow on long crowded 

roads. Proceedings Royal Society of London, Part A, Vol. 229, No. 1178, 1955. 

http://dx.doi.org/10.1098/rspa/1955.0089. 

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D., 2016. 

Continuous Control with Deep Reinforcement Learning. Google DeepMind, conference paper at 

ICLR, London, UK, 2016. 

Lin, L., Wang, Q., Sadek, A.W., 2015. A novel variable selection method based on frequent pattern 

tree for real-time traffic accident risk prediction. Transportation Research Part C: Emerging 

Technologies 55, 444-459. http://doi.org/10.1016/j.trc.2015.03.015. 



 

61 
 

Liu, M., Chen, Y., 2017. Predicting real-time crash risk for urban expressways in China. 

Mathematical Problems in Engineering, Article ID: 6263726. 

Lu, X., Kim, Z., Cao, M., Varaiya, P., Horowitz, R. Deliver a Set of Tools for Resolving Bad 

Inductive Loops and Correcting Bad Data, California PATH Research Report, 2010. 

Lu, X.Y., Kim, Z., Cao, M., Varaiya, P. and Horowitz, R., 2010. Deliver a Set of Tools for 

Resolving Bad Inductive Loops and Correcting Bad Data. California PATH Research Report. 

Lu, X.Y., Varaiya, P., Horowitz, R., Su, D., and Shladover, S., 2011. Novel freeway traffic control 

with variable speed limit and coordinated ramp metering. Transp. Res. Rec., 2229, 55-65. 

Mihajlovic, V., and M. Petkovic. Dynamic Bayesian Network: A State of Art. Doctoral 

Dissertation, University of Twente, the Netherlands, 2001. 

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M., 

2013. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602. 

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., 

Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., 

King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D., 2015. Human-level control through 

deep reinforcement learning. Nature 518, 529-533. 

Morrison, D., and S. Martonosi. Characteristics of Optimal Solutions to the Sensor Location 

Problem. Annals of Operations Research, Vol. 226, No. 1, 2014, pp. 463–478. 

https://doi.org/10.1007/s10479-014-1638-y.  

Muñoz, L., Sun, X., Sun, D., Horowitz, R. and Alvarez, L. Traffic Density Estimation with Cell 

Transmission Model, Proceedings of the American Control Conference Denver, Colorado.2003. 

Murphy, K., 2002. Doctoral dissertation, Dynamic BayesianNetworks: Representation, Inference 

and Learning. 

Oh, C., Oh, J., Ritchie, S., Chang, M., 2001. Real-time estimation of freeway accident likelihood. 

In: Presented at the 80th Annual Meeting of the Transportation Research Board, Washington, D.C. 



 

62 
 

Pande, A., Abdel-Aty, M., 2005. A Freeway Safety Strategy for Advanced Proactive Traffic 

Management. Journal of Intelligent Transportation Systems, Vol. 9, No. 3, pp. 145–158. 

Park, H., and A. Haghani. Real-time Prediction of Secondary Incident Occurrences using Vehicle 

Probe Data. Transportation Research Part C, Vol. 70, 2015, pp. 69–85. 

Park, H., Haghani, A., Samuel, A., Knodler, M.A., 2018. Real-time prediction and avoidance of 

secondary crashes under unexpected traffic congestion. Accident Analysis and Prevention 112, 

39-49. 

PTV-AG, VISSIM 5.10 User Manual. 2008. 

Rezaee, K., Abdulhai, B., Abdelgawad, H., 2012. Application of Reinforcement Learning with 

Continuous State Space to Ramp Metering in Real-World Conditions. Proc. 15th IEEE Int. Conf. 

Intell. Transp. Syst. (ITSC), Sep 2012, pp. 1590-1595. 

Roy, A., Hossain, M., and Muromachi, Y., 2018a. Enhancing the prediction performance of real-

time crash prediction model: A Cell Transmission-Dynamic Bayesian Network approach, 97th 

Annual Meeting of Transportation Research Board, Washington D.C.  

Roy, A., Hossain, M., and Muromachi, Y., 2018b. Development of Robust Real-Time Crash 

Prediction Models Using Bayesian Networks, Asian Transportation Studies, Volume 5, Issue 2, 

349-361.  

Roy, A., R. Kobayashi, M. Hossain, and Y. Muromachi. Real-time Crash Prediction Model for 

Urban Expressway Using Dynamic Bayesian Network. Journal of Japan Society of Civil Engineers, 

Series D3, Vol. 72, No. 5, 2016, pp. 1331–1338.  

Shi, Q., and M. Abdel-Aty. Big Data Applications in Real-time Traffic Operation and Safety 

Monitoring and Improvement on Urban Expressways. Transportation Research Part C, Vol. 58, 

2015, pp. 380–394. 

Sun, J. and J. Sun. Dynamic Bayesian Network Model for Real-time Crash Prediction Using 

Traffic Speed Conditions Data, Transportation Research Part C, Vol. 54, 2015, pp. 176–186. 



 

63 
 

Sun, J., and J. Sun. Real-time Crash Prediction on Urban Expressways: Identification of Key 

Variables and a Hybrid Support Vector Machine Model. IET Intelligent Transport Systems, Vol. 

10, No. 5, 2016, pp. 331–337. 

Sun, J., Sun, J., 2015. A Dynamic Bayesian Network model for real-time crash prediction using 

traffic speed conditions data. Transportation Research Part C: Emerging Technologies 54, 176-

186. http://doi.org/10.1016/j.trc.2015.03.006. 

Sutton, R.,S., and Barto, A.,G. 1998. Introduction to Reinforcement Learning. MIT Press. 

Thrun, S., Shwartz, A., Lee, C.B., 1993. Issues in Using Function Approximation for 

Reinforcement Learning. Proceedings of the 1993 Connectionist Models Summer School, 

Lawrence Erlbaum Publisher, Hillsdale, NJ. 

Wang, Z., Schaul, T., Hessel, M., Hasselt, H.V., Lanctot, M., Freitas, N., 2016. Google DeepMind 

London UK. Dueling Network Architectures for Deep Reinforcement Learning, Proceedings of 

the 33rd International Conference on Machine Learning, JMLR: W & CP 48, New York, NY, 

USA. 

Watkins, C. J. C. H., 1989. Learning from delayed rewards. PhD thesis, University of Cambridge, 

England. 

Wu, Y., Abdel-Aty M., 2018. Developing an algorithm to assess the rear-end collision risk under 

fog conditions using real-time data, Transportation Research C 87, 11-25. 

Xu, C., Wang, W., Liu, P., 2013. A genetic programming model for real-time crash prediction on 

freeways. IEEE Trans. Intell. Transp. Syst. 14 (2), 574–586. 

Xu, C., Wang, W., Liu, P., Guo, R., Li, Z., 2014a. Using the Bayesian updating approach to 

improve the spatial and temporal transferability of real-time crash risk prediction models. 

Transport. Res. Part C: Emerg. Technol. 38, 167–176. 

Xu, C., Wang, W., Liu, P., Zhang, F., 2014b. Development of a real-time crash risk prediction 

model incorporating the various crash mechanisms across different traffic states. Traffic Injury 

Prevent. 16 (1), 28–35. 



 

64 
 

Yang, H., Bartin, B., Ozbay, K., 2014. Mining the characteristics of secondary crashes on 

highways. J. Transport. Eng. 140 (4), 04013024. 

Yang, K., Wang, X., Quddus, M., Yu, R., 2018. Deep learning for real-time crash prediction on 

urban expressways, 97th Annual Meeting of Transportation Research Board, Washington D.C. 

Yeo, H., Jang, K., Skabardonis, A., Kang, S., 2013. Impact of traffic states on freeway crash 

involvement rates. Accid. Anal. Prev. 50, 713–723. 

Yu, R., and Abdel-Aty, M., 2014. An optimal variable speed limits system to ameliorate traffic 

safety risk, Journal of Transportation Research: Part C 46, 235-246. DOI: 

10.1016/j.trc.2014.05.016. 

Yuan, J.H., Abdel-Aty, M., Wang, L., Lee, J.Y., Wang, X.S., Yu, R.J., 2018. Real-Time Crash 

Risk Analysis of Urban Arterials Incorporating Bluetooth, Weather, and Adaptive Signal Control 

Data. Accepted for presentation at 97th Annual Meeting of the Transportation Research Board, 

TRB No. 18-00590, Washington DC, January 2018. 

Zhang, K., Taylor, M.A.P., 2006. Effective arterial road incident detection: a Bayesian network 

based algorithm. Transport. Res. Part C: Emerg. Technol. 14 (6), 403–417. 

Zheng, Z., Ahn, S., Monsere, C.M., 2010. Impact of traffic oscillations on freeway crash 

occurrences. Accid. Anal. Prev. 42 (2), 626–636. 

Zhu, F., Ukkusuri, S.V., 2014. Accounting for dynamic speed limit control in a stochastic traffic 

environment: A reinforcement learning approach. Transportation Research Part C 2014, 41, 30-

47. 

  



 

65 
 

CHAPTER 3 

STUDY AREA, DATA COLLECTION AND DEVELOPMENT OF 

MACROSCOPIC TRAFFIC MODEL: THE CELL TRANSMISSION MODEL 

(CTM) 

3.1 Introduction 

The concept of a real-time crash prediction model (RTCPM) building is based on the hypothesis 

that the probability of a crash on a specific road section can be predicted for a very short time 

window using the instantaneous traffic flow data ((Lee et al, 2003; Pande et al, 2005). Most 

existing literature has made use of traffic flow data from dual loop detectors, placed at fixed 

locations beneath the road surface where the inter-detector spacing varied substantially with an 

average of around 0.80 km and had high standard deviation (Abdel-Aty et al, 2012, Hossain and 

Muromachi, 2011; Shi et al, 2015). A study (Abdel-Aty et al, 2012) showed a range of standard 

deviation between 0.88 and 3.60 km for an AVI system. Another study (Shi et al, 2015) reported 

a minimum spacing of 0.16 km to a maximum of 5.90 km with a standard deviation ranging 

between 0.16 and 1.56 km. Hong and Fuduka, 2012 used cell transmission model (CTM) with 

ensemble Kalman filter (EnKF) in estimating the impact of various detector location 

configurations on estimation of travel speed and concluded that sensors located at large distances 

from each other without location optimization lead to an overestimation of travel speed, whereas 

sensor numbers can be reduced if their locations are optimal to achieve a better estimate of travel 

speed. Many studies attempted to minimize the number of detectors (Bianco et al, 2001; 2006; 

2007) whereas Morrison and Martonosi, 2004 examined whether there are sufficient conditions 

for optimal solutions for the detector locations. This non-uniformity in existing detector layouts 

along with high variability in detector spacing among expressways/freeways raise questions about 

the universality as well as transferability of such models. The doubt gets further bolstered by the 

studies (Abdel-Aty et al, 2012; Hossain and Muromachi, 2010) where the authors examined the 

performances of RTCPMs built with traffic data collected from six different combinations of 

detector layouts and found different results for each combination. Therefore, there is sufficient 

evidence postulating that variation in detector layout has an impact on the states of traffic flow 

variables.  
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The existing RTCPMs are developed depending on the detector layout that exists in the study area. 

Hence, variation in detector layout raises the issue of spatial transferability of the RTCPMs as 

altering the locations or installing new detectors to replicate the detector layout of the model is 

neither practical nor cost effective. Moreover, even for new roads, it may not always be plausible 

to follow a specific detector spacing. To address these issues, there has been an urge to devise a 

mechanism to simulate traffic sensor data of desired spacing from any detector layout that can be 

fed into an RTCPM. This study employed a macroscopic dynamic freeway traffic model called 

CTM, introduced by Daganzo (1994, 1995), which is consistent with the hydrodynamic theory of 

traffic flow (Lighthill et al, 1955), to transform the traffic states obtained from non-uniform 

detector layouts into a pre-defined detector layout. The CTM was chosen for its analytical 

simplicity and ability to reproduce congestion propagation dynamics. 

Crashes occurring on freeways/expressways are considered to relate closely to preceding traffic 

states occurring before the crash, which are time-varying (Mihajlovic et al, 2001). Thus, it is 

essential to establish a single model that can address such time series data and the evolving process 

of traffic flow to predict crash risk in real time. Substantial effort has been put into improving the 

RTCPMs by employing sophisticated modeling methods such as artificial neural networks, 

Bayesian structural equations, Bayesian networks (BNs), dynamic Bayesian networks (DBNs), 

Bayesian classifier, support vector machines, genetic programming etc. (Hossain and Muromachi, 

2001, Sun et al, 2015, 2016; Lee et al, 2006). Among these, the modeling architecture of a dynamic 

Bayesian network (DBN) conforms to this requirement (Mihajlovic et al, 2001; Sun et al, 2015; 

Roy et al, 2016). Therefore, this study develops RTCPMs by simulating uniformly spaced detector 

data from fixed detector layouts and uses DBNs as the modeling method to distinguish between 

crash prone and normal traffic conditions. Finally, the model performance is compared with the 

models constructed with fixed detector layouts and for which BNs are employed as the modeling 

method. 
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3.2 study area and data collection 

Tokyo Metropolitan Expressway’s 11.9 km long route 3 Shibuya and 13.5 km long route 4 

Shinjuku are the two routes of this study which sustains substantial number of crashes throughout 

the year. The routes have two lanes in each direction with 43 and 41 detectors in the inbound and 

outbound direction respectively for route 3; and 50 and 44 detectors in the inbound and outbound 

direction respectively for route 4 (roughly 250 m apart)  as shown in Table 3.1. Figure 3.1 shows 

both routes and the distribution of active detectors which were found to be valid and functioning 

without errors in the inbound direction (route 4) and outbound direction (route 3). The fixed loop 

detectors collect flow, average speed, and occupancy for each minute round the clock.  

 

Figure 3. 1 Tokyo Metropolitan Expressway Route 4 (Shinjuku) and Route 3 (Shibuya)  

Source: Tokyo Metropolitan Expressway Co. Ltd. Website 

Table 3. 1 Tokyo Metropolitan Expressway Route 4 (Shinjuku) and Route 3 (Shibuya) 

number of detectors 

 

 

 Route 4 detectors Route 3 detectors 

   

 BFS On-ramp Off-ramp BFS On-ramp Off-ramp 

Inbound 50 7 3 43 2 4 

Outbound 44 3 7 41 4 1 
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In order to construct RTCPMs, both crash data and corresponding high-resolution detector data 

are needed. Therefore, the study collected detector data and the matching crash data from Route 3 

(Shibuya) and Route 4 (Shinjuku) of the Tokyo Metropolitan Expressway for a period from March 

2014 to August 2014. The pre-crash traffic data were then extracted for 101 crash cases for which 

complete matching detector data were found. The one-minute pre-crash data was collected, three 

minutes prior to the occurrence of the crash, and the corresponding normal (or no-crash) data was 

collected for the same time frame, but from the days when no crashes took place. The data 

comprising the time and location of the crash helped when matching the crash and detector 

databases. The fixed loop detectors collected the cumulative vehicle count (veh/min), average 

speed (km/h), and average occupancy (%) aggregated for every minute, round the clock.  

In order to build the RTCPMs, about 101 crash cases and 1732 no-crash cases were considered for 

model building and validation. While validating, to distinguish between crash and no-crash cases, 

different thresholds of probability of crash prediction was tested. In several studies by Abtel-Aty 

et al. (2005), Sun J. (2015), Hellinga et al. (2003a) crash and corresponding normal cases were 

selected in the similar manner as is in this study which is a well-established method of sampling 

in RTCP modeling. In addition, unlike several statistical methods, machine learning methods such 

as BN and DBN has adaptation property which makes the models incorporate new real-time traffic 

data into the model while fading away the old traffic data which is one of the important features 

of these models. 

The issue inappropriate mixture of traffic conditions relating to crash and non-crash cases is 

referred as data imbalance (Kui et al, 2018). Several studies tried to address it by approximately 

balancing the data which caused biased outcomes. Deep neural network (DNN) was used for 

predicting crash-prone traffic conditions (Kui et al., 2018) where they found that DNN can predict 

63-65% of the crashes with 5% false alarm rate. Furthermore, it also addressed the class- balancing 

issue of the training data and concluded that the prediction performance degrades with the 

increasing size of balanced data as huge amount of data gets eliminated during class balancing of 

data and deep learning methods like DNNs requires big data. 
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3.3 Theoretical background of CTM 

The workflow followed in this study is illustrated by Figure3.2. According to the CTM (Daganzo, 

1995; Lee et al, 2006), if the relationship between traffic flow (q) and density (k) can be expressed 

in a triangular form as in Figure 3.3, then the Lighthill, Whitham, and Richards (LWR) equations 

for a single highway link can be approximated by a set of difference equations where current 

conditions (the state of the system) are updated with every clock interval as: 

𝑞 = min{𝑉𝐹𝑘, 𝑞𝑚𝑎𝑥, 𝑤 (𝑘𝑗 − 𝑘)} ,                         for 0 ≤ 𝑘 ≤ 𝑘𝑗                          (3.1) 

Where 𝑉𝐹 is the free flow speed,  

𝑞𝑚𝑎𝑥 is the maximum flow (or capacity), 

𝑤 is the back wave or wave speed, and  

𝑘𝑗 is the jam density. 

In the CTM, a road segment is divided into several homogeneous cells, 𝑖 whose length is equal to 

the free flow speed times one clock interval. The state of the system at instant t is then given by 

the number of vehicles contained in each cell, 𝑛𝑖(t). The following parameters are defined for each 

cell: 

𝑁𝑖(𝑡) = maximum number of vehicles that can be present in cell 𝑖 at time 𝑡;  

𝑄𝑖(𝑡) = Maximum number of vehicles that can flow into cell 𝑖 when the clock advances from 𝑡 

to 𝑡 + 1. 

If cells are numbered consecutively starting with the upstream end of the road from 𝑖 = 1 to I, the 

recursive relationship of the CTM can be expressed as: 

𝑛𝑖(t + 1) = 𝑛𝑖(t) + 𝑦𝑖(t) – 𝑦𝑖+1(t)                                    (3.2) 

Where  𝑦𝑖(t) is the inflow to cell i in the time interval (t, t + 1), given by 

𝑦𝑖 (t) = min {𝑛𝑖−1(t), 𝑄𝑖(t), d [𝑁𝑖(t) – 𝑛𝑖(t)]}                          (3.3) 

Where d = w/v 
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Figure 3. 2 Workflow diagram 

 

3.4 Development and validation of CTM 

3.4.1 Experimental setup and model development 

The objective of this thesis was to observe the crash risk situation with and without VSL control. 

In order to do that, a simulated traffic model was essential. Previously, microscopic simulation 

model has been constructed using loop detector data. Hence, to investigate an alternative way to 

investigate and compare the crash risk situation with and without VSL control, in this thesis, the 

CTM was adopted to simulate the traffic data using the high density loop detector data.  

Moreover, in order to resolve the issue of non-uniform detector spacing, CTM was employed. If 

CTM transforms the inter-detector spacing into a homogeneous distribution then it can be used 

anywhere in the world with any detector spacing with necessary modification. This uniformity in 

detector layout also provides with the opportunity to investigate the optimal location problems for 

traffic data collection and VSL control application. 

The fundamental diagrams (FD) with VSL control have been chosen in various ways in the 

previous studies. For example, a study (Frejo, J. R. D., 2018) combined first order (Hegyi and 

Hoogendoorn, 2010) and second order (Carlson et al., 2010, 2011) macroscopic model to find a 

better FD in order to ensure safety and resolution of traffic congestion. In their proposed model, 

the compliance affects the VSL-induced critical density and capacity. So, the model changes with 

the change in compliances. The other parameters such as k_c and Q_c can be adjusted accordingly. 
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Their study found that the Kc increases with decrease of VSL, Q_c  decreased with reduction of 

VSL, For low densities, compliance can be very low and When densities are increased, the VSL-

induced speeds start to decrease substantially. The proposed model can accommodate both of the 

models, though has some limitations. 

Another study by Papageorgiou et al., 2008 found that the parameters of FD do not necessarily 

remain constant, in fact, the parameters may change considerably from day to day without any 

obvious reasons. They found that the application of VSLs decrease the slope of the flow–

occupancy diagram at under critical conditions, and shift the critical occupancy to higher values, 

and enable higher flows at the same occupancy values in overcritical conditions.  

Nunzio et al., 2014, took an attempt to generate a variable length model (VLM) with the influence 

of both traffic light and VSL control to analyze steady-state behavior of the system. In this 

particular model, Q_max of the road segment remains fixed, and the max allowed speed (VSL), 

back-wave (w), jam density (k_j) etc. are uniquely defined after the nominal critical density (k_c). 

The objective functions included traveling time reduction, infrastructure utilization and energy 

consumption reduction. The outcome showed that if congestion doesn’t spill back or disappear, 

the system is stable and multiple equilibrium points can be reached via VSL. Location of operation 

control and desired traffic conditions were identified but did not meet all of the objective functions. 

The ‘traditional CTM’ or the general CTM proposed by Daganzo, C.F.  (1994) is with the shape 

of a trapezoid where the back-wave speed is less than the free-flow speed and the flow in a cell is 

decided by the equations (3.1 to 3.3). The physical meaning could be vehicle moving at a free-

flow speed till the first critical density, then face the increasing density and the move toward a 

congested situation then will move with a congested speed. 

In the modified CTM, the maximum flow, jam-density, back-wave speed are assumed to be fixed 

for the day on April, 8, 2014. Only the free-flow speed can be changed according to the VSL 

control value decided by the RL-agent (value selected from the action set). This is to keep the 

VSL-based CTM model simple and more flexible to accommodate VSL values at times of crash 

risk ≥10. If all the parameters (back-wave, capacity flow, jam density etc.) kept susceptible to 

change, it becomes difficult to execute VSL control along with RL-based intervention as RL-based 

simulation requires several time consuming simulations. Hence, in order to allow the CTM model 
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incorporate the VSL property into it, the three parameters of FD is kept fixed for the study segment 

for the day. 

The general procedure for networks involves two steps for each clock interval. 

(i) Determine the flow on each link with the equivalent of Equation (3.3). 

(ii) Update the cell occupancies by transferring the flows of step (i) from the beginning cell to the 

end cell of each link. 

 

Figure 3. 3 Fundamental diagram and nodes (simple, diverge and merge) of CTM 

In CTM, a road segment is described by nodes and directed arcs where each arc possesses some 

physical data that includes its length and the parameters defining a flow–density relation for a 

steady state of traffic of the type shown in Figure 3.3. There are three kinds of cells: (i) ordinary, 

(ii) diverge, and (iii) merge cell as shown. 

For this study, five days (April 1, August 21, June 26, March 26, and May 2, 2014) were selected 

as on these days most of the detectors in Shibuya Route 3 line inbound direction were in sound 

condition (fewer missing data) and there was enough traffic flow to ensure the fundamental 

diagram (FD) to fulfill the conditions to form the CTM. The FD was generated in the following 

way. 

𝑘𝑗

1
𝑣

+
1
𝑤

 

𝑞𝑚𝑎𝑥 

𝑘𝑗  

𝑤 𝑣 
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1. For each sound detector on the freeway, the flow and density data were extracted. 

2. The maximum value of the flow was considered as the capacity, 𝑞𝑚𝑎𝑥. 

3. According to Dervisoglu et al. (2009) and Kurzhanskiy and Varaiya (2009, 2010), the 

density–flow pair provides a good fit for free flow speed,𝑣. The least-squares method was 

used to estimate the free-flow speed, 𝑣. 

4. The critical density was found using 𝑘𝑐 =  
𝑞𝑚𝑎𝑥

𝑉𝐹
. 

5. The constrained least-squares method was employed to determine the back-wave speed, w. 

Afterwards, CTM was applied to the entire Shibuya Route 3 (inbound direction) for 24 hours on 

the aforementioned five days using traffic flow data for each minute (total of 1440 minutes a day). 

Since the cell length is the product of free flow speed and time step, to keep the cell length 

approximately uniform, the time step was chosen accordingly. To build the CTM model, the 

AuroraRNM (Kurzhanskiy, 2009) simulator was used and it has an option that enables the user to 

choose different time steps for different links. The traffic flow data generated using CTM was 

validated using the traffic data extracted from the fixed loop detectors. 

3.4.2 Model validation 

To employ the CTM to the entire route, a FD of traffic was generated using a flow–density graph. 

Figure 3.4 (a) and (b) show examples of good and poor datasets, respectively. 

 The values of FD parameters ranged as follows: capacity (𝑞𝑚𝑎𝑥) 1800–3900 vehicles/h; free flow 

speed (𝑣) 66.92–139.2 km/h; critical density (𝑘𝑐) 22.6–31.52 vehicles/km; jam density (𝑘𝑗) 75–

130 vehicles/km; and back wave (w) 33.6–40.3 km/h. The cell length was kept at 240 m, the 

average inter-detector spacing for this study route, to generate uniformly distributed detectors. 
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Figure 3. 4 Estimating the fundamental diagram: (a) good data; and (b) poor data 

Validation of the CTM was done by comparing traffic flow parameters of the cells located closest 

to each of the 35 detectors. For example, on June 26, 2014 between detectors 03-01-24 and 03-01-

27, the free flow speed was found to be 139.2 km/h with the distance between these two detectors 

being 1.14 km. To maintain the cell length to be approximately 240 m, the average inter-detector 

spacing for this route, a time interval of 6 seconds was chosen (cell length = free flow speed times 

time interval). Three cells in the link between detectors 03-01-24 and 03-01-27 were generated by 

the CTM (Figure 3.5). Between 07:00 and 09:00, the flow in this segment was uninterrupted and, 

therefore, a plot of the flow, speed, and occupancy data during this time stretch was generated to 

allow a comparison between the CTM and loop detector data. For comparative purpose, cell 2 

which is closest to detector 03-01-26 was selected. It can be observed from Figure 3.5 that the 

simulated value follows the measured value well when it comes to flow and occupancy data; 

however, the speed data differ from the original data to some extent. Such a comparison was 

conducted for all 35 detectors with their nearest cells for 24 h for every minute of 5 days as 

suggested by previous study (Muñoz et al, 2003). The mean percentage error (MPE) defined by 

Equation3.4 was calculated to validate the data, where N = total number of data for a day = number 

of detectors × time (min) = 35 × 1440 (Table 3.2). 

1

𝑁
∑ |

𝑉𝑎𝑙𝑢𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙−𝑉𝑎𝑙𝑢𝑒𝐶𝑇𝑀

𝑉𝑎𝑙𝑢𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
|𝑁

1                  (3.4) 
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Figure 3. 5 Measured and simulated flow, speed, and occupancy between detector 03-01-27 

and 03-01-24 on June 26, 2014 (07:00–09:00)  

 

Table 3. 2 Mean percentage error for flow, speed, and occupancy estimates 

  Mean percentage error (%) 

Date Flow Speed Occupancy 

APRIL 1 0.177 0.403 0.080 

AUGUST 21 0.040 0.180 0.057 

JUNE 26 0.090 0.314 0.108 

MARCH 26 0.084 0.111 0.064 

MAY 2 0.025 0.142 0.071 

3.5 Development and validation of modified CTM 

In the previous sections, the construction and validity of a CTM was performed using traffic data 

of route 3 Shibuya. Later on, in this thesis, a variable speed limit is used as intervention, for which 
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traffic data of route 4 Shinjuku is employed. The intervention is integrated with the CTM model 

with the help of python program. Hence, in this section the construction of the CTM for route 4 

Shinjuku will be discussed.  

As mentioned earlier, the primary parameters of a CTM are defined by the left limb, the right limb 

and the apex of the triangle of the FD. The left limb decides the sending flow from an upstream 

cell to the downstream cell and the right limb decides how much flow it can receive depending on 

its current capacity. The theoretical background of the basic CTM has been discussed in the earlier 

section. Now, to incorporate the VSL, as a measure for reducing crash risk, the CTM needs to be 

modified.  

Generally, the FD for a link or segment remains the same throughout the simulation which is one 

of the positive sides of using a macroscopic traffic model. In this thesis, the VSL control 

optimization and policy making will be conducted by a reinforcement learning method, hence, the 

modified CTM model does not have to be burdened with solving the optimality problem for crash 

risk reduction. However, the model has to be in such a way so that the FD does not remain fixed 

throughout the simulation. The left and right limbs, or the sending and receiving functions needs 

to be adjusted to accommodate the VSL values. So, the sending and receiving functions of the 

traditional CTM will be changed to the followings- 

𝑠𝑖(𝑡) = min{𝑉𝑆𝐿(𝑡). 𝑘𝑖(𝑡), 𝑄𝑉𝑆𝐿 } ; Where, 𝑉𝑆𝐿(𝑡) ∈ [ 𝑎𝑡 ]               (3.5) 

𝑟𝑖(𝑡) = min {𝜔𝑖. (𝑘𝑖,𝑗𝑎𝑚 − 𝑘𝑖(𝑡)) , 𝑄𝑉𝑆𝐿 }       (3.6) 

Where, 𝑠𝑖(𝑡) is the sending flow at time t, 𝑟𝑖(𝑡) is the receiving flow, 𝑎𝑡 is the action set which 

will be decided by the reinforcement learning (RL) agent. For example, 𝑎𝑡 = {±20, ±0, 𝑉𝐹} km/h, 

which means the current speed could be reduced or increased by 20km/h, or the free flow speed 

for the segment will be chosen, depending on the optimization target- reducing crash risk at a target 

cell. 𝑉𝐹 is the free-flow speed, 𝑉𝑆𝐿(𝑡)is the speed limit chosen at time k, 𝑘𝑖(𝑡)is the density, 𝑄𝑉𝑆𝐿is 

the maximum flow under current speed limit 𝑉𝑆𝐿(𝑡), 𝜔𝑖  is the back wave speed and 𝑘𝑖,𝑗𝑎𝑚is the 

jam density.  

The flow in a cell 𝑖 can be defined by the following receiving function: 
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𝑞𝑖(𝑡) = min{𝑠𝑖−1(𝑡), 𝑟𝑖(𝑡)}         (3.7) 

The density evolution can be determined by the following equation: 

𝑘𝑖(𝑡 + 1) = 𝑘𝑖(𝑡) + ∆𝑇/𝐿𝑖(𝑞𝑖−1(𝑡) − 𝑞𝑖(𝑡))      (3.8) 

Here, ∆𝑇 is the simulation time step, which is equal to the time with which a vehicle passes a cell 

at free-flow speed. 𝐿𝑖 is the cell length of cell 𝑖. The speed within each cell can be determined 

according to the current density, 𝑘𝑖(𝑡) and speed limit, 𝑉𝑆𝐿: 

𝑣𝑖(𝑡) = {
min{𝑉𝑆𝐿(𝑡 − 1), 𝑉𝐹 }             𝑖𝑓 𝑘𝑖(𝑡) ≤   𝑘𝑉𝑆𝐿

(𝑘𝑖,𝑗𝑎𝑚(𝑡) − 𝑘𝑖(𝑡).
 𝑤𝑖

 𝑘𝑖(𝑡)
)           𝑖𝑓 𝑘𝑖(𝑡)  >   𝑘𝑉𝑆𝐿           

   (3.9) 

Where,  𝑑𝑉𝑆𝐿 is the density associated with the flow 𝑄𝑉𝑆𝐿 (Figure 3.6.) under the speed limit, 𝑉𝑆𝐿. 

 

Figure 3. 6 The modified CTM with VSL control 

To summarize, in order to build the modified CTM model, the basic parameters of an FD which 

are free-flow speed, back wave speed, jam density and the maximum flow will be estimated from 

the traffic flow data from the loop detectors and these parameters will remain fixed. Then, similar 

as the traditional CTM, the simulation time step will be decided to get the cell length according to 

the formula cell length = free-flow speed times time step. This is to ensure that the vehicles don’t 

cross multiple cells at a time step. So, after calculating the free-flow speed and deciding a suitable 

−𝑤 𝑉𝐹 

𝑄𝑉𝑆𝐿 
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cell length, the time step is calculated. Next, unlike the traditional FD, the modified FD (Figure 

3.6.) whose left limb can be moved lower depending on the VSL value chosen, will be constructed 

with a sending and receiving function as shown in the Equation 3.5 and  3.6. The sending function 

will choose either the maximum flow under current VSL value, 𝑄𝑉𝑆𝐿 or the actual flow under 

current VSL value (𝑉𝑆𝐿(𝑡). 𝑘𝑖(𝑡)) whichever is the minimum. Not to mention, the VSL values will 

be chosen by the RL agent that can choose a value ranging from [10km/h to 110 km/h,𝑉𝐹, no-

control] etc. At the same time, the receiving function will follow Equation 3.6 and choose the 

minimum of the maximum flow under current VSL value, 𝑄𝑉𝑆𝐿  and the back-wave speed 

calculated from the jam density and current density𝜔𝑖. (𝑘𝑖,𝑗𝑎𝑚 − 𝑘𝑖(𝑡)). According to Daganzo’s 

original CTM theory, the sending flow of upstream cell (𝑖 −1) is the receiving flow of downstream 

cell, 𝑖.  Hence, the flow entering cell 𝑖 will follow the minimum of the sending flow of cell (𝑖 −1) 

and receiving flow of cell,𝑖, according to Equation 3.7. As for the speed evolution in a cell, it will 

depend on the if the current density fall to the left or right hand side of the density under current 

VSL value. If it falls on the left region, the speed will be dominated by either the 𝑉𝐹, or VSL value; 

on the other hand, if it falls under the right-hand side, the speed will be decided by the jam density 

and the back-wave speed. 

In this thesis a modified CTM is considered to incorporate VSL control properties into it. The 

CTM is based on FD where the three major parameters- capacity flow, free flow speed and jam 

density needs to be defined. The left limb of the triangular FD represents free-flow condition and 

the right limb represents congested condition. In order to incorporate VSL control, the FD of the 

modified CTM has flexibility to change its free-flow limb, whereas the right limb remained fixed 

assuming the back-wave speed will not be controlled by this modified CTM. However, the change 

of the traffic condition with the change of the FD for different speed limits can be demonstrated 

briefly as follows- 

The sending and receiving function of the modified CTM is expressed as: 

𝑠𝑖(𝑡) = min{𝑉𝑆𝐿(𝑡). 𝑘𝑖(𝑡), 𝑄𝑉𝑆𝐿  } ;  

Where,𝑉𝑆𝐿(𝑡) ∈ [ 𝑎𝑡 = 10, 20 … . , 𝑛𝑜 𝑐𝑜𝑛𝑡𝑟𝑜𝑙, 𝑉𝐹]      
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In case, when the there is no congestion, the traffic is in free-flow condition. Hence, all the flow 

values will be on the left limb. Let’s assume a traffic state 𝑎 on the left limb and a speed limit 𝑉𝑆𝐿 

was applied. If 𝑞𝑎 < 𝑄𝑉𝑆𝐿 ,  then after applying the 𝑉𝑆𝐿 , the traffic state 𝑎  will move to 𝑎𝑛𝑒𝑤 

position which means higher density with the same flow, 𝑞𝑎. 

Figure 3. 7 modified CTM when 𝒒𝒂 < 𝑸𝑽𝑺𝑳, 

In case, when the there is no congestion, the traffic is in free-flow condition. Hence, all the flow 

values will be on the left limb. Let’s assume a traffic state 𝑎 on the left limb and a speed limit 𝑉𝑆𝐿 

was applied. If 𝑞𝑎 > 𝑄𝑉𝑆𝐿 ,  then after applying the𝑉𝑆𝐿 , the traffic state 𝑎  will move to 𝑎𝑛𝑒𝑤 

position which means higher density with the lower flow, 𝑄𝑉𝑆𝐿. 

Figure 3. 8 modified CTM when 𝒒𝒂 > 𝑸𝑽𝑺𝑳 
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Algorithm for modified CTM 

Algorithm-1: modified CTM 

Initialize CTM 

Define CTM parameters using FD: 𝑞𝑚𝑎𝑥, 𝑉𝐹 , 𝑘𝑗 , 𝑤, 𝑘𝑐 ,  ∆𝑇, 𝐿𝑖 

 

 Generate traffic flow parameters in cells using equation 6 and 7 

 At time=t 

If Crash risk > threshold, activate VSL                        

                                                                       [crash risk by RTCPM] 

                                                                      [VSL by RL] 

 

   Select  𝑄𝑉𝑆𝐿 for chosen 𝑉𝑆𝐿. 

Get Speed 𝑣𝑖(𝑡) 

𝑣𝑖(𝑡) = {
min{𝑉𝑆𝐿(𝑡 − 1), 𝑉𝐹 }          𝑖𝑓 𝑘𝑖(𝑡) ≤   𝑘𝑉𝑆𝐿

(𝑘𝑖,𝑗𝑎𝑚(𝑡) − 𝑘𝑖(𝑡).
 𝑤𝑖

 𝑘𝑖(𝑡)
)          𝑖𝑓 𝑘𝑖(𝑡)  >   𝑘𝑉𝑆𝐿           

 

 

   
Calculate cell flow, 𝑞𝑖(𝑡): 

𝑠𝑖−1(𝑡) {
𝑉𝑆𝐿 . 𝑘𝑖(𝑡)                                           𝑖𝑓 (𝑉𝑆𝐿 . 𝑘𝑖(𝑡)) < 𝑄𝑉𝑆𝐿

𝑄𝑉𝑆𝐿                                                                    , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑟𝑖(𝑡) {
𝝎𝒊. (𝒌𝒊,𝒋𝒂𝒎 − 𝒌𝒊(𝒕))                     𝑖𝑓 (𝑉𝑆𝐿 . 𝑘𝑖(𝑡)) < 𝑄𝑉𝑆𝐿

𝑄𝑉𝑆𝐿                                                                , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Get flow 𝑞𝑖(𝒕) = min{𝑠𝑖−1(𝒕), 𝑟𝑖(𝒕)} 

 Update density,  

𝒌𝒊(𝒕 + 𝟏) = 𝒌𝒊(𝒕) + ∆𝑻/𝑳𝒊(𝒒𝒊−𝟏(𝒕) − 𝒒𝒊(𝒕)) 
Repeat for t= t+1 

 

For this thesis, traffic data of inbound direction on April 8th, 2014 is chosen for data collection 

and simulation as on this day, no crashes occurred and the traffic was steady. There are two 

segments of route 4: segment 1 (2.09 km) and 2 (2.52 km) which encompasses the longest 

expressway segments. So, these two segments will be used for intervention application in chapter 

5. First of all, to construct the CTM for route 4, the FD needs to be defined. FD was generated 

using traffic data collected during 12:00-12:01 to 17:59-18:00 time from segment 1 and 2 (Figure 

3.1), because, during this time the traffic was steady whilst with the presence of back wave. Both 
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free-flow and back wave is necessary to construct the FD to generate left and right hand side of 

the triangle. In Figure 3.9, the space-time diagram of speed data, speed is color coded from green 

(higher speed) to red (lower speed). It shows that the traffic was more or less steady in both 

segments 1 (detector 62 to 54) and 2 (detector 48 to 39) except for the segment 2 during 16:00-

16:15 when there was a back-wave generated probably due to the sudden rush hour. After 

considering the availability of steady flow, the FD was constructed as shown in Figure 3.8.  

 

 

 

Figure 3. 9 Space-time diagram of speed of route 4 segments 1 (detector 62 to 54) and 2 

(detector 48 to 39) during 12:00-12:01 to 17:59-18:00 

In order to investigate the variation of FDs among each detectors in a segment, and to compare the 

day-to-day variations, the min, max, average plots of the parameters of FDs are generated (Figure 

3.1 and Appendix I). The parameters are tabulated in the following tables as well and the 

individual FDs are enclosed in the Appendix I. From the plot, it was found that the parameters 

change from detector to detector and from day to day. This plot is from five Tuesdays in the study 

segment. The inter-detector variations: maximum flow varied between 4000 to 3400 veh/h, free-

flow speed 166 to 109 km/h, critical density 34 to 22veh/km, jam density 180 to 109 veh/km, 

congested speed 24 to 43 km/h. The day-to-day variations were also considerable (Figure 3.10) 

maximum flow varied between 4000 to 3700 veh/h, minimum flow varied between 3400 to 3600 

veh/h; maximum free-flow speed varied between 166 to 146 km/h, minimum free-flow speed 

varied between 141 to 109 km/h; maximum critical density varies between 34 to 27veh/km, 

minimum critical density 22 to 25veh/km ; maximum jam density varied between 180 to 150 

veh/km, minimum jam density varied between 125 to 109 veh/km; maximum congested speed 
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varied between 43 to 35 km/h, minimum congested speed varied between 24 to 27 km/h. The value 

of free-flow speed and the back-wave speed of some fundamental diagrams (FDs) were higher 

than the usual range. For example, the free-flow speed was found to be 154km/h on March 18 near 

detector number 40 (Table 3 in Annex I) and back-wave speed was found to be 43km/h on June 3 

and April 8 at detector 48 (Table 1, 2 in Annex I). The reason for this could be unusual speed of 

some vehicles and also a sudden change in the traffic flow due to sudden release of congestion, 

which later on contributed in the formation of a steady flow at those particular detector regions. 

However, the average values of the parameters more or less were similar to the FD built with the 

aggregated data of all the detectors in the segment as shown in the Figure 3.10-  
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Figure 3. 10 Variations of FD parameters of each detectors in the study segment and on 

different days 

 

For this thesis, the FDs were generated for 5 freeway segments of route 4, and FDs were 

investigated days of the week basis. For this thesis the aggregated (all detectors in a freeway 

segments) FD is constructed for the study segments based on days of the week. 
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Figure 3. 11 Fundamental diagram (FD) for route 4 Shinjuku 

 

3.5.1 Model construction and validation  

The values of FD parameters are as follows: capacity (𝑞𝑚𝑎𝑥) 3780 vehicles/h; free flow speed (𝑉𝐹) 

135 km/h; critical density (𝑘𝑐) 28 vehicles/km; jam density (𝑘𝑗) 120 vehicles/km; and back wave 

(w) 41 km/h. The cell length was kept at 240 m, the average inter-detector spacing for this study 

route, to generate uniformly distributed detectors. Additionally, the 𝑄𝑉𝑆𝐿 values were calculated 

for different 𝑉𝑆𝐿 values using the FD i.e.𝑉𝑆𝐿,𝑄𝑉𝑆𝐿 = {(10,750), (20,1350), (30,1830), (40,2220), 

(50,2520), (60,2880), (70,3060), (80,3240), (90,3420), (100,3600), (110,3720)}.  

Validation of the CTM was done by comparing traffic flow parameters of the cells located closest 

to original detectors. To maintain the cell length to be approximately 150 m, the average inter-

detector spacing for this route, a time interval of 4 seconds was chosen (cell length = free flow 

speed times time interval). As shown in Figure 3.12, the cells generated through the CTM are 

validated by comparing traffic data from the nearest original detector. For example, cell 1 and 2 

comparing with detector data from detector number 62 and so on. The mean percentage error 

(MPE) defined by Equation 3.4 was calculated to validate the data, where N = total number of 

data for six hours = number of detectors × time (min) x variables = 18 × 360 x 3= 19440. After 

cleaning the data, 18348 data were found. MPE is found to be 0.0825, 0.1667, and 0.0449 for flow, 

speed and occupancy respectively and an average MPE of about 10% was calculated.   
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Figure 3. 12 CTM simulated detector arrangement alongside original detector layout 

 

 

 

 

 

 

 

 

 

Figure 3. 83 Flow, speed and occupancy from loop detector and modified CTMs 

 

The Courant–Friedrichs–Lewy or CFL condition is a condition for the stability of unstable 

numerical methods that model convection or wave phenomena. CFL condition states- the full 

numerical domain of dependence must contain the physical domain of dependence (Laney, 1998). 

It means, the distance that any information travels during a time-step within the cell must be lower 

than the distance between cell elements. The Courant number is a dimensionless quantity and can 

be stated as follows: 

𝐶 = 𝑎 
∆𝑡

∆𝑥
       (3.10) 
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Where 𝑎the magnitude of the velocity (length/time) is, ∆𝑡 is the time step (time), ∆𝑥 is the length 

interval (length). For any explicit simple linear convection problem, the Courant number must be 

equal or smaller than 1 (Courant, R.; Lewy, H.; Friedrichs, 1928). 

The Courant number was observed for the speed values with given cell length (150 m) and time 

step (4 seconds). If the values are less than or equal to 1, the condition is considered met. From the 

Courant number for six hours speed data, it can be seen that the value is less than 1 and thus meets 

the CFL condition. The values are shown in the Appendix I. 

3.6 Chapter conclusion 

In this chapter, a method of dividing a route uniformly into same length cells using a macroscopic 

traffic model called the cell transmission model (Daganzo, 1994, 1995) was generated with the 

loop detector data. The idea behind this is to create a uniform layout of simulate detectors. This 

will give us more flexibility over controlling the data collection locations. Many times, due to 

instrumental fault or geographical difficulties, traffic data cannot be collected from every location 

a transport researcher would require. This macroscopic model could be of a solution to that issue. 

Moreover, over the years accident researchers have used different data collection methods and 

layouts, to create crash prediction models. This CTM-based model would provide a universal 

layout generation technique for future. 

A traditional CTM model was constructed with route 3 detector data and the model was validated 

which was able to produce traffic data with an average MPE of 13%. This model will be used in 

chapter 4 for constructing RTCPMs. Furthermore, as the goal of this thesis is to propose an 

intervention along with crash prediction, a modified CTM is also introduced. This CTM 

incorporates the property of accommodating a flexible FD, which is used to incorporate VSL into 

the model. Generally, there is an optimization problem which is addressed while using VSL as an 

intervention for crash prevention. In this thesis, that will be conducted with a reinforcement 

learning (RL) agent in chapter 5. Hence, this modified CTM does not require to address the 

optimization into it. The modified CTM was constructed with the route 4 Shinjuku data for April 

8, 2014 and was validated with the loop detector data which has showed an average MPE of about 

10%. In chapter 5, it is checked how the model performs in conjunction with the RL agent.    



 

87 
 

3.7 Chapter References 

Abdel-Aty, M., H. M. Hassan, M. Ahmed, and A. S. Al-Ghamdi. Real-time Prediction of Visibility 

Related Crashes. Transportation Research Part C, Vol. 24, 2012, pp. 288–298.  

Bianco, L., G. Confessore, and M. Gentili. Combinatorial Aspects of the Sensor Location Problem. 

Annals of Operations Research, Vol. 144, No. 1, 2006, pp. 201–234. 

Bianco, L., G. Confessore, and P. Reverberi. A Network Based Model for Traffic Sensor Location 

with Implications on O/D matrix Estimates. Transportation Science, Vol. 35, No. 1, 2001, pp. 50–

60. 

Bianco, L., R. Cerulli, and M. Gentili. New Resolution Approaches for the Sensor Location 

Problem. Presented at Tristan VI Symposium, Phuket Island, Thailand, 2007. 

Chow, A. H. F., G. Gomes, A. A. Kurzhanskiy, and P. Varaiya. AURORA RNM – A Macroscopic 

Simulation Tool for Arterial Traffic Modeling and Control. PATH Technical Note, Institute of 

Transportation Studies, University of California, Berkeley. 2009. 

Coifman, B. Using Dual Loop Speed Traps to Identify Detector Errors, TRR, 2014. 

Daganzo, C. F. Fundamentals of transportation and traffic operations. Oxford: Pergamon, 1997. 

Daganzo, C. F. The Cell Transmission Model, Part II: Network Traffic. Transportation Research 

Part B, Vol. 29, 1995, pp. 79–93. 

Daganzo, C. F. The Cell Transmission Model: A Dynamic Representation of Highway Traffic 

Consistent With the Hydrodynamic Theory. Transportation Research Part B, Vol. 28, 1994, pp. 

269–287. 

Dervisoglu, G., G. Gomes, J. Kwon, R. Horowitz, and P. Varaiya. Automatic Calibration of the 

Fundamental Diagram and Empirical Observations on Capacity. Presented at the Transportation 

Research Board 88th Annual Meeting, 2009. 



 

88 
 

Hong, Z., and D. Fukuda. Effects of Traffic Sensor Location on Traffic State Estimation. 15th 

Meeting of the EURO Working Group on Transportation, Procedia - Social and Behavioral 

Sciences, Vol. 54, 2012, pp. 1186–1196. 

Hossain, M., and Y. Muromachi. A Bayesian Network Based Framework for Real-time Crash 

Prediction on the Basic Freeway Segments of Urban Expressways. Accident Analysis and 

Prevention, Vol. 45, 2011, pp. 373–381 

Hossain, M., and Y. Muromachi. A Real-time Crash Prediction Model for the Ramp Vicinities of 

Urban Expressway. IATSS Research, Vol. 37, No. 1, 2013, pp. 68–79. 

Hossain, M., and Y. Muromachi. Optimum Detector Spacing for Real-Time Monitoring of 

Hazardous Locations on Urban Expressways. Japanese Society of Civil Engineers, Vol. 27, No. 5, 

2010, pp. 1045–1054. 

Kurzhanskiy, A. A., and P. Varaiya. Active Traffic Management on Road Networks: A 

Macroscopic Approach. Philosophical Transactions of the Royal Society A, Vol. 368, 2010, pp. 

4607–4626. 

Lee, C., B. Hellinga, and F. Saccomanno. Real-time Crash Prediction Model for the Application 

to Crash Prevention in Freeway Traffic. Transportation Research Record: Journal of the 

Transportation Research Board, No. 1840, 2003, pp. 67–77. 

Lee, C., M. Abdel-Aty, and L. Hsia. Potential Real-time Indicators of Sideswipe Crashes on 

Freeways. Transportation Research Record: Journal of the Transportation Research Board, No. 

1953, 2006, pp. 41–49. 

Lighthill, M., and G. Whitham. On kinematic waves II. A theory of traffic flow on long crowded 

roads. Proceedings Royal Society of London, Part A, Vol. 229, No. 1178, 1955. 

http://dx.doi.org/10.1098/rspa/1955.0089. 

Lu, X., Kim, Z., Cao, M., Varaiya, P., Horowitz, R. Deliver a Set of Tools for Resolving Bad 

Inductive Loops and Correcting Bad Data, California PATH Research Report, 2010. 



 

89 
 

Mihajlovic, V., and M. Petkovic. Dynamic Bayesian Network: A State of Art. Doctoral 

Dissertation, University of Twente, the Netherlands, 2001. 

Morrison, D., and S. Martonosi. Characteristics of Optimal Solutions to the Sensor Location 

Problem. Annals of Operations Research, Vol. 226, No. 1, 2014, pp. 463–478. 

https://doi.org/10.1007/s10479-014-1638-y.  

Muñoz, L., Sun, X., Sun, D., Horowitz, R. and Alvarez, L. Traffic Density Estimation with Cell 

Transmission Model, Proceedings of the American Control Conference Denver, Colorado.2003. 

Pande, A., and M. Abdel-Aty. A Freeway Safety Strategy for Advanced Proactive Traffic 

Management. Journal of Intelligent Transportation Systems, Vol. 9, No. 3, 2005, pp. 145–158. 

Park, H., and A. Haghani. Real-time Prediction of Secondary Incident Occurrences using Vehicle 

Probe Data. Transportation Research Part C, Vol. 70, 2015, pp. 69–85. 

Roy, A., R. Kobayashi, M. Hossain, and Y. Muromachi. Real-time Crash Prediction Model for 

Urban Expressway Using Dynamic Bayesian Network. Journal of Japan Society of Civil Engineers, 

Series D3, Vol. 72, No. 5, 2016, pp. 1331–1338.  

Shi, Q., and M. Abdel-Aty. Big Data Applications in Real-time Traffic Operation and Safety 

Monitoring and Improvement on Urban Expressways. Transportation Research Part C, Vol. 58, 

2015, pp. 380–394. 

Sun, J. and J. Sun. Dynamic Bayesian Network Model for Real-time Crash Prediction Using 

Traffic Speed Conditions Data, Transportation Research Part C, Vol. 54, 2015, pp. 176–186. 

Sun, J., and J. Sun. Real-time Crash Prediction on Urban Expressways: Identification of Key 

Variables and a Hybrid Support Vector Machine Model. IET Intelligent Transport Systems, Vol. 

10, No. 5, 2016, pp. 331–337. 

 

 

 



 

90 
 

CHAPTER 4 

REAL-TIME CRASH PREDICTION MODEL (RTCPM) 

4.1 Introduction 

Predicting crash likelihood in real-time is a relatively much newer concept as compared to the 

conventional crash prediction models. Even the inspiration to build RCPMs in some way was 

derived from the willingness to improve the existing crash prediction models. However, this thesis 

takes a stand in suggesting that these two are very different types of models and has their own non-

overlapping utility in road safety. For this, the distinctions between real-time and non- real-time 

crash prediction models were analyzed based on three broad categories – contextual issues, policy 

and practice related issues, methodological issues. The contextual issues are pertaining to the 

notion behind conducting the study, i.e., purpose and objectives. Policy and practice related issues 

refer to how the outcome of the models could be used in practice as well as to formulate policies. 

The methodological issues discuss how the model building processes differ. Due to their high 

interdependency, the contextual and policy and practice related issues are merged together in the 

following discussion. 

4.2 Theoretical background  

4.2.1 Bayesian Network 

Bayesian Belief Net, also known as Bayesian Network, is a probabilistic graphical modeling 

method where we represent a system with a graph and a joint probability distribution compacted 

with the notion of conditional independence. Later, we can use this model of system to understand 

the dynamics within the system and also to predict the state of variables in lights of the evidence 

on any one or more variables. Figure 4.1(a) presents a simple BBN involving five variables. Here, 

each variable is represented with a node and the influence of one variable on others is demonstrated 

with directed edges (may or may not represent causality). We would like to mention here that these 

graphs are acyclic in nature and are called acyclic directed graph (DAG). The nodes from which 

edges generate are parents to the child nodes where the directed edge ends. In case of prediction 

modeling, the variable which we are predicting is called the “outcome variable” and the rest are 

called “decision variables”. Now, as per Figure 4.1 (a), A is a parent to B, B is a parent to D and 
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C is a parent to B, D and E. Nodes D and E are parents to none. Now, regarding the joint probability 

distribution, if a BBN has a universe of variable U = {A1, …., An} then using the chain rule of 

probability, its joint probability distribution can be presented as: 

P(U) =  ∏ 𝑃(𝐴𝑖|𝐴1 … 𝐴𝑛−1)𝑛
𝑖=1                                   (4.1) 

Now, BBN suggests that assuming conditional independence of the variables, Eq. 1 can be 

compacted as: 

P(U) =  ∏ 𝑃(𝐴𝑖|𝑃𝑎(𝐴𝑖)
𝑛
𝑖=1 )                 (4.2) 

Where Pa(𝐴𝑖) is the set of parents of 𝐴𝑖. This substantially reduces the size of the conditional 

probability tables (CPTs) of different nodes. Now, if we have evidence 𝑒1 … … . 𝑒𝑚 on m number 

of variables out of n (n > m), then we can re-write Equation 4.2 as: 

P(U, e) =  ∏ 𝑃(𝐴𝑖|𝑃𝑎(𝐴𝑖)) ∏ 𝑒𝑗
𝑚
𝑗=1

𝑛
𝑖=1                 (4.3) 

 

 

Figure 4. 1 An example Bayesian Belief Net 

At this point, the probability of any variable A from the universal variable space U can be 

calculated by marginalizing P(U,e)  as follows: 

𝑃(𝐴|𝑒) =  
∑ 𝑃(𝑈,𝑒)𝑈/𝑒

𝑃(𝑒)
=  

∑ 𝑃(𝑈,𝑒)𝑈/𝐴

𝑃(𝐴,𝑒)
                                     (4.4) 

Hence, our BBN in Figure 4.1 can be written as: 
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P(A,B,C,D,E) = P(A)P(B|A,C)P(C)P(D|B,C)P(E|C)           (4.5) 

Now, assume that a new variable F gets introduced as presented with Figure 4.1(b). Then the 

model equation can be updated as: 

P(A,B,C,D,E,F) = P(A)P(B|A,C)P(C)P(D|B,C)P(E|C,F)P(F)         (4.6) 

We can observe here that the addition of a new variable could be accommodated only by partially 

updating the existing model keeping most of it almost unchanged. 

4.2.2 Structural Learning: NPC-Algorithm 

When the interaction among variables within a problem domain is not known, we can employ 

structural learning algorithms to determine the direction of the edges in a BBN. In order to 

understand NPC-Algorithm it is important to understand its predecessor PC-Algorithm. Both the 

algorithms explore the data to come up with a set of conditional dependence and independence 

relationship through statistical tests and then based on that they decide the direction of the edges. 

In PC-Algorithm, at first, the conditional independence of all pairs of variables in the BBN is 

evaluated through statistical tests. Then an undirected graph is drawn by adding connections 

between those pairs of variables for which no conditional independences were found. Next, the 

pairs of links which meet at a node (also known as colliders) are identified in such a way that the 

BBN remains a DAG. Afterwards, using the colliders and positively identified conditional 

independences, directions of undirected edges are established. Lastly, for those links which still 

remains undirected, their directions are randomly assigned ensuring that the BBN remains a DAG. 

PC-algorithm performs well when there is no limitation in sample size. NPC-Algorithm overcomes 

this weakness of the PC-algorithm by adding an extra constrain of existence of a path: 

“the necessary path condition for the absence of an edge says that in order for two variables X 

and Y to be independent (in a DAG faithful data set) conditional on a minimal set SXY, there must 

exist a path between X and every Z ∈SXY (not crossing Y) and between Y and every Z ∈SXY 

(not crossing X), For those edges where decisive directions cannot be found (also known as 

ambiguous zone), the researchers can use their expert opinion to choose those direction. 
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4.2.3 Batch Learning (EM-Algorithm) and Sequential Learning (Adaptation 

Algorithm) 

The task of EM-Algorithm in BBN is to determine the conditional probability tables (CPTs) for 

nodes based on prior probabilities and availability of new N number of records. The algorithm has 

two steps – calculating the expected sufficient statistics and then maximizing its likelihood. To 

elaborate more, if no probability is assigned to a variable for which we are estimating the 

parameters, a uniform distribution is assumed. Then, with presence of a batch of data, the new 

parameter is estimated in such way that first, the expected sufficient statistics under that parameter 

is calculated and then the log-likelihood of that parameter under the expected sufficient statistics 

is maximized. This is an iterative process and it stops when one of these two criteria are satisfied 

–i) the maximum number of iteration specified by the user has exceeded, or, ii) the relative log-

likelihood between two successive iterations is smaller than the preset minimum difference value. 

Here, it is important to mention that the EM-algorithm does not need data on each of the variables 

to update the model. The adaptation algorithm (Lauritzen, 1995) is similar to the EM-algorithm 

with the exception that here the evidence from each record is propagated throughout the network 

and the parameters for each of the variables are updated accordingly. 

4.3 Dynamic Bayesian Network 

One of the evolving areas that would certainly occupy computer scientists in the next decade is 

concerned with building software, which will be able to make conclusions based on information 

gathered from various sources. Interesting path to the solution of this problem would be to simulate 

reasoning process of humans, based on their ability to sense the environment in multiple ways and 

to integrate this sensed information in one global picture of the environment.  

Human beings as well as the other animals integrate observations received from multiple senses 

to comprehend the environment and to take proper actions. Probability theory, thus, with its 

inherent notions of uncertainty and confidence had found widespread popularity in the 

multisensory fusion community. Various researchers had proposed many different probabilistic 

models for this purpose.  
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In this thesis, focus will be given in BNs and their extensions that try to unify temporal dimension 

with uncertainty. It starts with the simple concepts and then introduce static Bayesian networks, as 

well as basics of dynamic Bayesian networks as powerful tools for representing such uncertain 

events. Different levels in creating DBNs are presented. 

Most of the events that we meet in our everyday life are not detected based on a particular point in 

time, but they can be described through a multiple state of observations that yield a judgment of 

one complete final event. Statisticians have developed numerous methods for reasoning about 

temporal relationships among different entities in the world. This field is generally known as time-

series analysis. According to (Adhikari et al, 2013) time-series is a sample realization of a 

stochastic process consisting of a set of observations made sequentially over time.  

Time is also an important dimension in the field of AI and reasoning. However, BNs do not provide 

direct mechanism for representing temporal dependencies. In attempting to add temporal 

dimension into the BN model various approaches has been suggested. Frequent names used to 

describe this new dimension in BN models are “temporal” and “dynamic”. However, the difference 

between these models and their denomination cannot uniquely point to one typical model. Sterritt 

et al. tried to distinguish these categories in the manner that would be described below.  

Dynamic Bayesian Networks (DBN) should be a name of a model that describes a system that is 

dynamically changing or evolving over time. This model will enable users to monitor and update 

the system as time proceeds and even predict further behavior of the system. In such models word 

dynamic is connected with a “motive force”. Changing the nature of the static BN to model 

“motive forces” can then be thought of as adapting it to dynamic model. Although every system 

that changes its state involve time, authors differentiate between the two terms dynamic and 

temporal. In temporal models explicitly model time as continuous permanent category as opposed 

to other changes in the system such as the change in state or a system. Hence, temporal models 

would be a sub-class of dynamic. If every time slice of a temporal model corresponds to one 

particular state of a system, and if the movement between the slices reflects a change in state 

instead or time, in most cases that model is classified as a dynamic model.  

According to the same authors, considering time representation, temporal approaches could be 

classified into two main categories, namely those models, which represent time as points 
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(instances) or as time intervals. However time intervals can be thought of as a set of consecutive 

time points. Therefore, time-point representation seems to be more appropriate and more 

expressive.  

 

Figure 4. 2 Diagram showing approach where time slice is used to present a snapshot of the 

evolving temporal process 

Figure 4.2 represents an approach where time slice is used to represent snapshot of the evolving 

temporal process. It can be said that the belief network consists of a sequence of sub-models each 

representing the system at a particular point or interval in time (time slice). These time slices are 

interconnected by temporal relations, which are represented by the arcs joining particular variables 

from two consecutive time slices.  

Figure 4. 3 Temporal model with duplicated time slices over time 

Figure 4.3 represents another model where the network is composed of identical sub-models 

duplicated over each time slice. This means that it has the same temporal structure as previous 

model. However, links between state variables within a time slice are here disallowed.  

Dynamic Bayesian Networks are usually defined as special case or singly connected Bayesian 

Networks specifically aimed at time series modeling like stated in previous section. All the nodes, 

edges and probabilities that form static interpretation of a system is identical to BN variables here 

can be denoted as the state of a DBN, because they include a temporal dimension. The states or 

any system described as a DBN satisfy the Markovian condition that is defined as follows: The 

state of a system at time t depends only on its immediate past. i.e. its state at time t-1. Also, this 
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property is frequently considered as a definition of First order Markov property: the future is 

independent of the past given present. 

Now, as we can see, the BN model is expanded, we can allow not only connections within time 

slice known as intra-slice connections, but also the one between time slices. These temporal 

connections incorporate condition probabilities between variables from different time slices. The 

transition matrix that represents these time dependencies is often called a Conditional Probability 

Table (CPT), since it represents the CPD in tabular form, Intra-slice CPDs can also be represented 

by CPTs, i.e. in tabular form. 

The states of a dynamic model do not need to be directly observable. They may influence some 

other variables that we can directly measure or calculate. Also, the state or some system needs not 

to be a unique, simple state. It may be regarded as a complex structure of interacting states. Each 

state in a dynamic model at one time instance may depend on one or more states at the previous 

time instance or/and on some states in the same time instance. It was shown that complex structures 

like this could also be represented as DBNs. So, generally, in DBN states of a system at time, 𝑡 

may depend on systems states at time t-1 and possibly on current states of some other nodes in the 

fragment of DBN structure that represents variables at time t. 

We can describe DBN saying that it consists of probability distribution function on the sequence 

of T hidden-state variables X ={𝑋0 ,...,𝑋𝑇−1 }  and the sequence of T observable variables Y= 

{𝑌0 ...,𝑋𝑇−1 }, where T is the time boundary for the given event we are investigating. This can be 

expressed by the following term:  

Pr(𝑋, 𝑌) =  ∏ Pr(𝑥𝑡 |𝑥𝑡−1)

𝑇−1

𝑡−1

 ∏ Pr(𝑦𝑡 |𝑥𝑡) . Pr(𝑥0)                                                                     

𝑇−1

𝑡−0

(4.7) 

 

In order to completely specify a DBN we need to define three sets of parameters:  

• State transition pdfs 𝑃𝑟(𝑋𝑇 |𝑋𝑇−1 ) that specifies time dependencies between the states  
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• Observation pdfs 𝑃𝑟(𝑌𝑇 |𝑋𝑇 ) that specifies dependencies of observation nodes regarding to other 

nodes at time t and 

• Initial state distribution  𝑃𝑟(𝑋0 )  that brings initial probability distribution in the beginning of 

the process.  

First two parameters had to be determined for all states in all time slices t= 1....T. There is a 

possibility that conditional pdfs can depend on time instance, that is to be time-varying 

(𝑃𝑟(𝑋𝑇 |𝑋𝑇−1 ) =  𝑃𝑟(𝑋𝑇 |𝑋𝑇−1 , 𝑡)), or time invariant. Time invariant conditional pdfs can be 

parametric (𝑃𝑟(𝑋𝑇 |𝑋𝑇−1 ) =  𝑃𝑟(𝑋𝑇 |𝑋𝑇−1 , 𝜃)), or nonparametric, when they are described using 

probability tables (CPTs). Depending on the type of the state space or hidden and observable 

variables, a DBN can be discrete, continuous, or combination of these two. 

Similarly, as we propose in static BNs, in DBNs we may be interested in the following tasks:  

1. Inference: estimate the pdf of unknown states given some known observations, and initial 

probability distribution. 

2. Decoding: find the best-fitting probability values for sequence or hidden states that have 

generated the known sequence or observations.  

3. Learning: given a number of sequences of observations, estimate parameters of a DBN such 

that they best fit to the observed data, and make the best model for the system. 

4. Pruning: distinguishing which nodes are semantically important for inference in DBN structure, 

and which are not, and removing them from the network. 

Within every time slice it is possible to identify a subset of the nodes that describes current state 

of the world (environment), denoted as 𝑊1(𝑡) … . . 𝑊𝑞(𝑡), which represents either the entire world 

state, or the part we want to inspect. We call these the designated world nodes. These nodes are 

chosen in the way that if their states are known, then nodes V(𝑡𝑘). where 𝑡𝑘 < 𝑡 , are no longer 

relevant to the overall goal of the inference. If for every 𝑖 in [1 … … 𝑞] there is an ‘s’ such that 

(Pr (𝑊𝑡(𝑡) =  𝑠𝑖) = 1 , then the general pruning action is as follows: (I) delete all nodes 

V(𝑡𝑘)where 𝑡𝑘 < 𝑡 , and (2) explicitly incorporate knowledge that W, (t) = s,. We explicitly 
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incorporate the information that 𝑊𝑖(𝑡) =  𝑠𝑖 is known to be in state 𝑠𝑖 , by deleting all states except 

for state  𝑠𝑖, and in that way, reducing the state space. Also, if a node V(t) has no successors and 

if Pr(𝑉(𝑡) = 𝑠) = 0, then we can delete state ‘s’.  

In a special case, when the node V(T) has no predecessors, its state is known to be 𝑠𝑖 and its other 

states 𝑠𝑗≠𝑠𝑖 , are deleted, the conditional probability tables of its successor nodes must be updated 

to reflect this. Now, there may exist states that are impossible. All such states must then be deleted, 

and the pruning procedure performed recursively on successors.  

These are just some basic pruning procedures, and they are not sufficient for controlling the 

inference complexity. There are also some marginal pruning procedures. For example, if there is 

no initialization information, no pruning will be performed. Even with initialization information, 

if a DBN models sensors failure there is always a small chance that the data is incorrect.  

The basis of making a pruning decision is the tradeoff between the savings on execution of the 

inference versus the likelihood of making an error. 

4.3.1 Methodology 

In this study, the hidden state variables are the crash likelihood and the observation variables are 

the traffic flow variables (i.e. flow, speed, occupancy, difference between upstream and 

downstream flow, speed, occupancy, etc.). Thus, the state transition could be denoted as Pr 

(crash|previous crash).  

Traffic data was collected from the nearest upstream and downstream loop detectors of the crash 

location. In the case of CTM-based RTCPMs, for each crash case, one the segment of the road was 

selected where both upstream and downstream detectors were present and traffic flow data was 

extracted from the closest upstream and downstream cells from the crash location. RTCPMs are 

highly dependent on the information variables chosen. In previous studies (Mihajlovic et al, 2001; 

Sun et al, 2015; Roy et al, 2016) BN and DBN models were generated using various combinations 

of traffic flow variables, i.e. flow, speed, occupancy, etc., along with their descriptive statistics. 

Existing literature also suggests that the overall performance of DBN models built with a 

combination of traffic parameters are better than the models with only one traffic parameter (Lee 

et al, 2006; Roy et al, 2016). From these studies, it was established that the information variables 
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such as downstream speed, occupancy, difference of upstream and downstream speed occupancy, 

and upstream flow are suitable predictors to develop BN and DBN models. In this study, 16 

different combinations of 6 base variables and 3 relative variables were produced (Table 4.1) to 

construct BN and DBN models to compare their performances in terms of sensitivity, specificity 

etc. to identify the best possible combination of the variables. 

Table 4. 1 List of BN and DBN Models 

Models 1, 3, and 5 consist of all downstream variable and one relative variable assuming that the 

downstream traffic condition is more reliable to demonstrate a crash prone situation. Models 2, 4, 

and 6 include the upstream variables along with a relative variable that deals with the changes in 

traffic upstream of the incident. Models 7–11 basically account for all the relative traffic 

parameters intending to detect the crash prone situation from only the longitudinal changes of 

traffic. Models 12 and 13 consist of only the base variables whereas models 14–16 are developed 

with different combinations of base and relative traffic variables to investigate the performance of 

models in the case of missing predictors. 

Description of RTCPMs (both BN and DBN) 

Model 1 Downstream flow, speed, occupancy, difference of upstream and downstream flow 

Model 2 Upstream flow, speed, occupancy, difference of upstream and downstream flow 

Model 3 Downstream flow, speed, occupancy, difference of upstream and downstream 

occupancy 

Model 4 Upstream flow, speed, occupancy, difference of upstream and downstream occupancy 

Model 5 Downstream flow, speed, occupancy, difference of upstream and downstream speed 

Model 6 Upstream flow, speed, occupancy, difference of upstream and downstream speed 

Model 7 Difference of upstream and downstream flow, speed, occupancy, downstream 

occupancy 

Model 8 Difference of upstream and downstream flow, speed, occupancy, upstream occupancy 

Model 9 Difference of upstream and downstream flow, speed, occupancy, downstream flow 

Model 10 Difference of upstream and downstream flow, speed, occupancy, upstream flow 

Model 11 Difference of upstream and downstream flow, speed, occupancy, downstream speed 

Model 12 Downstream flow, speed, occupancy 

Model 13 Upstream flow, speed, occupancy 

Model 14 Downstream speed, occupancy, difference of upstream and downstream flow 

Model 15 Upstream speed, occupancy, difference of upstream and downstream flow 

Model 16 Difference of upstream and downstream flow, speed, occupancy, upstream speed 
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In this manuscript, 30 crash cases and corresponding 748 normal cases were extracted to construct 

BN and DBN based RTCPMs. The objective of such models is to maintain a high detection rate 

for the detection of crash prone traffic conditions but at the same time maintain low false alarm. 

In order to construct the model, first, the raw data was screened for faulty detectors and the accurate 

crash time was estimated from the reported crash time by investigating the upstream and 

downstream detector’s traffic data for each crash. Since the traffic data is recorded every minute, 

the variation in traffic flow variables were evident and it was possible to locate the actual time of 

each crash. Then, for crash cases, data was collected for 1 minute just before the incident occurred. 

For the corresponding normal data, traffic flow data was collected from the same detectors and 

cells during the same time as crash cases, but for those days when no incident took place. For 

example, if a crash had occurred on Wednesday March 3 at 15:00, then traffic flow data on March 

3 at 14:59 was counted as crash data and traffic flow data from all other Wednesdays at 14:59 was 

considered normal data. In addition, for a DBN model with three time slices, traffic data was 

extracted at 14:59, 14:58, and 14:57 timestamps as 1, 2, and 3 minutes before crash, respectively. 

Traffic data was collected during a six-month period. Thus, for a single crash case there are 

approximately (5 months × 4 days + 1 month × 3 days = 23 days × 33 crash cases =) 759 days of 

normal data was found; of which 748 were selected after removing erroneous data. This data was 

divided into training (20 crash and corresponding 496 normal) and test (10 crash and 

corresponding 252 normal) data for RTCPM building and validation purposes, respectively. 

Several studies conducted by Abdel-Aty et al. (2012), Sun and Sun (2016), and Lee et al. (2003) 

used both crash and normal traffic data to construct RTCPMs in a similar manner. A total of 16 × 

2 × 2 = 64 BN- and DBN-based RTCPMs were generated by employing existing loop detectors 

and the simulated CTM data. Performances based on accuracy of crash detection and false alarm 

rate were calculated using validation data.  

4.3.2 ANALYSIS, RESULTS, AND DISCUSSION 

In chapter 3, the procedure of constructing CTM and validation is explained in details. In this 

chapter the RTCPMs with CTM and loop detector data will be explained. To employ the CTM to 

the entire route, a FD of traffic was generated using a flow–density graph. If a detector with poor 

data was found, the next closest detector data was used for analysis. 
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Figure 4. 4 BN model structure (left) and DBN model structure with three time slices 

(right) 

The values of FD parameters ranged as follows: capacity (𝑞𝑚𝑎𝑥) 1800–3900 vehicles/h; free flow 

speed (𝑣) 66.92–139.2 km/h; critical density (𝑘𝑐) 22.6–31.52 vehicles/km; jam density (𝑘𝑗) 75–

130 vehicles/km; and back wave (𝑤) 33.6–40.3 km/h. The cell length was kept at 240 m, the 

average inter-detector spacing for this study route, to generate uniformly distributed detectors. 

Validation of the CTM was done by comparing traffic flow parameters of the cells located closest 

to each of the 35 detectors.  

To generate traffic flow data for crash prediction analysis. While generating BN and DBN models, 

CTMs were reproduced separately for each road segment corresponding to a crash for each day, 

thus the FDs for separate detectors were different based on their locations and days of data 

collection. A BN and corresponding DBN model structure of model 13 is shown in Figure 4.4. 
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Figure 4. 5 Comparison of overall crash prediction performances (%).FIGURE 4.5 

Comparison of overall crash prediction performances (%). 

Separate test data was used to validate all (16 × 4) BN and DBN models built with both loop 

detectors and the CTM data for different threshold values. Crash prediction accuracy and 

sensitivity–specificity were calculated for each model (Table 4.2). Figure 4.5 shows the 

comparison of overall accuracy of prediction of crash likelihood of DBN- and BN-based models 

built with the loop detectors and the CTM data. All the models can predict with an overall accuracy 

over 65%. In the case of loop detectors, both BN- and DBN-based models perform well and 10 

BN models showed better prediction accuracy than the DBN models. Similar results are seen in 

the case of models with the CTM data. Since the cells are shorter in length (150 m) than the average 

loop detector spacing, this result shows that the cells can generate traffic flow data that can be used 

for RTCPMs. In addition, in situations of faulty detectors, the CTM can be used to produce the 

traffic data from the vicinity of that incident. 
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Table 4. 2 Performance Evaluation of BN- and DBN-based Real-time Crash Prediction 

Models with Loop Detectors and CTM Data 

Modeling 

method 

BN DBN 

Data 

Type 

Model 

Number 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

False 

alarm 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

False 

alarm 

(%) 

L
o

o
p

 D
et

ec
to

r 
D

a
ta

 (
L

P
) 

1 0.50 0.82 0.81 0.18 0.30 0.73 0.71 0.27 

2 0.60 0.85 0.84 0.15 0.20 0.88 0.85 0.12 

3 0.20 0.85 0.82 0.15 0.40 0.86 0.84 0.14 

4 0.40 0.85 0.83 0.15 0.40 0.84 0.83 0.16 

5 0.20 0.82 0.79 0.18 0.20 0.82 0.80 0.18 

6 0.50 0.78 0.77 0.22 0.40 0.85 0.84 0.15 

7 0.60 0.73 0.73 0.27 0.20 0.74 0.72 0.26 

8 0.70 0.65 0.65 0.35 0.20 0.68 0.66 0.32 

9 0.60 0.77 0.76 0.23 0.40 0.77 0.76 0.23 

10 0.70 0.69 0.69 0.31 0.30 0.70 0.68 0.30 

11 0.60 0.71 0.71 0.29 0.20 0.74 0.72 0.26 

12 0.10 0.96 0.93 0.04 0.20 0.94 0.92 0.06 

13 0.20 0.74 0.72 0.26 0.10 0.76 0.73 0.24 

14 0.60 0.92 0.91 0.08 0.20 0.93 0.90 0.07 

15 0.70 0.85 0.84 0.15 0.30 0.86 0.83 0.14 

16 0.70 0.71 0.71 0.29 0.20 0.73 0.71 0.27 

C
el

l 
tr

a
n

sm
is

si
o
n

 m
o

d
el

 d
a

ta
 (

C
T

M
) 

1 0.70 0.85 0.84 0.15 0.60 0.84 0.83 0.16 

2 0.60 0.83 0.82 0.17 0.60 0.83 0.82 0.17 

3 0.80 0.82 0.82 0.18 0.70 0.83 0.82 0.17 

4 0.80 0.85 0.84 0.15 0.60 0.83 0.82 0.17 

5 0.80 0.85 0.84 0.15 0.80 0.84 0.84 0.16 

6 0.60 0.81 0.81 0.19 0.60 0.83 0.82 0.17 

7 0.80 0.83 0.82 0.17 0.80 0.83 0.83 0.17 

8 0.80 0.83 0.82 0.17 0.80 0.82 0.82 0.18 

9 0.70 0.81 0.81 0.19 0.80 0.82 0.82 0.18 

10 0.40 0.82 0.80 0.18 0.60 0.81 0.80 0.19 

11 0.80 0.83 0.82 0.17 0.80 0.81 0.81 0.19 

12 0.20 0.81 0.79 0.19 1.00 0.82 0.83 0.18 

13 0.60 0.82 0.81 0.18 0.60 0.85 0.84 0.15 

14 0.80 0.84 0.84 0.16 1.00 0.86 0.86 0.14 

15 0.80 0.81 0.81 0.19 0.60 0.82 0.81 0.18 

16 0.44 0.84 0.81 0.16 0.44 0.84 0.81 0.16 
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From the overall accuracy of prediction of crash likelihood, loop-detector-based model 12 has the 

highest performance of 93% (BN) and 92% (DBN) with false alarm rates of 4% and 6%, 

respectively. In the case of CTM-based models, the overall accuracy of prediction of crash 

likelihood of model 14 was 84% (BN) and 86% (DBN) and with false alarm rates was 16% and 

14%, respectively. The information variables of models 12 and 14 are: downstream flow, speed, 

occupancy, difference of upstream and downstream flow. In previous studies (Pande and Abdel-

Aty, 2005; Morison et al, 2013,Roy et al, 2016; Hossain and Muromachi, 2013), downstream flow 

and speed and the relative flow value were found to play a significant role in RTCPM. Model 12 

consists of downstream flow, speed, and occupancy, which implies that the change in traffic 

situation at the downstream of a crash location can detect an impending hazardous situation. On 

the other hand, information variables of model 14 explain hazardous situations with not only 

downstream speed and occupancy, but also with the sudden change of traffic flow. Compared with 

loop detectors, 11 out of 16 BN models using the CTM data showed on average 8% more overall 

accuracy of prediction of crash likelihood, whereas 9 out of 16 DBN models showed on average 

10% more overall accuracy. 

4.3.3 Transferability of the models 

Four RTCPMs are chosen which includes downstream speed, downstream occupancy and 

difference of up and downstream flow as the hyperparameters because, from chapter 3, these 

parameters were found to be the most influential ones for predicting crash. Data was collected 

from Route 4 (the Shinjuku Expressway) to construct the RTCPM, and separate validation data 

from both Route 4 and Route 3 (the Shibuya Expressway) were employed to check the 

transferability of the model. the existing practice of real-time intervention design in the literature 

is to adopt one highly accepted RTCPM construction methodology and focus on the intervention 

planning and design, and the RTCPM employed for this thesis follows the literature (Hossain and 

Muromachi, 2012; Roy et al., 2018 [a, b]). In these studies, it was evident that BN-based RTCPMs 

possess properties of adaptability and can withstand data that are missing due to infrastructural 

failure. The adaptability of the models enables them to be transferable. In this study, the 

transferability was tested with data from Routes 3 and 4. As shown in Table 4.3 and Figures 4.7 

and 4.8, the overall performance and the predictive accuracy of the of four models built with route 

4 data after validating separately with data from Routes 3 and 4. Figures 4.7 and 4.8 show the 
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overall accuracy of crash likelihood predictions of the four models corresponding to four 

thresholds. The RTCPMs were built with route 4 data and validated with route 4 and 3 data 

respectively. In the figures route 4 means model validated with route 4 data, route 3 means model 

validated with route 3 data. It can be observed that the models are able to predict crash likelihood 

from the data for both routes with decent accuracy. 

 

Figure 4. 6 Four BN-based RTCPMs for rash risk calculation  

 

 

 

Figure 4. 7 Overall accuracy (%) of the four RTCPMs with respect to four thresholds (%). 
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Figure 4. 8 Crash likelihood (%) of the four RTCPMs with respect to four thresholds (%). 

Table 4.3 summarizes the performances of the four models in terms of overall accuracy and crash 

detection accuracy (crash likelihood) evaluated with respect to four threshold values – 5%, 10%, 

15%, and 25% respectively.   

The performance of the RTCPMs can be expressed in terms of prediction accuracy of crash 

likelihood and overall accuracy. These indices are explained below.  

Table 4. 3 Confusion matrix 

 

 

 

In the confusion matrix,  

TP= crashes predicted as crashes (T) 

FP= normal cases predicted as crashes (F) 

FN= crashes predicted as normal cases (F) 

TN= normal cases predicted as normal cases (T) 

  Predicted 

Actual  

 Crash  No crash 

Crash TP FN 

No crash FP TN 



 

107 
 

The prediction accuracy of crash likelihood, or also known as true positive, or sensitivity is 

estimated in the following way- 

probability of crash likelihood (%) = (
𝑇𝑃

𝑇𝑃+𝐹𝑁
)       (4.8) 

Which is the ratio of number of crashes predicted correctly and the actual total number of crashes.  

On the other hand, the overall accuracy is defined as follows- 

Overall accuracy (%) = (
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
)        (4.9) 

Which is the ratio of total number of crash and normal cases predicted correctly and the total 

number of crash and normal cases. 

The confusion matrix for model-3 for threshold 10 is given below- 

Table 4. 4 Confusion matrix for model 3 

 

 

The accuracy of crash likelihood decreases with the increase of threshold as the model tends to 

give more false negative values, which means, with the increase of threshold, the model 

categorizes actual crashes as normal conditions. Whereas, in case of overall accuracy, the models 

performance increases with increase of threshold. Because, overall accuracy represents the 

model’s capacity to identify both crash and normal cases correctly. In this case, the model is able 

to identify more normal cases correctly with the increase of threshold, which means it gives lower 

false alarm. The accuracy of crash likelihood varied because the accuracies were estimated for 

threshold of 5, 10, 15 and 25 and the distribution of probability of crash likelihood among the crash 

cases were more concentrated near the value of 10% probability as that’s approximately the 

average crash prediction probability of the model. 

There are few other indices in addition to overall accuracy and true positive rate or, sensitivity, to 

indicate model’s performance, such as misclassification rate: which explains overall, how often 

the model predicts wrong; false positive rate: it refers to when it's actually no crash, how often 

Threshold=10  Predicted 

Actual 

 Crash No crash 

Crash 14 16 

No crash 103 439 
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does it predict yes; prevalence: it means how often does the crash condition actually occur in the 

sample, etc. Another way to show model’s performance is by using an ROC curve.  

Figure 4. 9 ROC curve for model 1, 2 ,3 ,4 at different threhsolds. 

A receiver operating characteristic curve (ROC) is shown below. The ROC curve is a sensitivity 

versus (1-specificity) curve. It demonstrates how much model is capable of distinguishing between 

correct and the wrong prediction by the model with respective to different threshold values. The 

higher is the area under the ROC curve, the better is the performance of the model. From the 

Figure 4.9, it can be seen that the area under ROC curve for model 3 and 1 are larger than model 

2 and 4. 

In the practical scenario, experts can set the threshold values based on their experience considering 

their priorities, available countermeasures to calm down the traffic condition and costs associated 

with not predicting a future crash and cost of false alarms due to misclassifying a normal traffic 

condition. They can even set different threshold value at different time of day. 

It is clear that a lower threshold value will help the model predict most of the crashes at the cost 

of misclassifying normal situations causing a low overall accuracy and vice versa. All the models 

have exhibited overall accuracy over 49% with the highest being 94% (Model 2) which means that 

Model 2 is able to identify 94% of the crash and no-crash conditions correctly at a threshold of 25. 

Model 1 and 4 can classify most number of crashes accurately (60%) for a threshold of 5, which 

means that the model is able to identify 60% of the crashes correctly with the risk ≥ 5%. 
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Additionally, it can also be observed that the crash detection rate (%) decreases vastly with the 

increase in threshold in the case of Models 1, 2, and 4, whereas the value remained fairly consistent 

for Model 3. The observations from Figure 4.7 and 4.8 are- 

 From the overall accuracy, it can be seen that the overall accuracy has increased with 

increase in thresholds for all four models. 

 However, the accuracy of predicting crash likelihood decreased with increase in threshold 

for all four models, especially model -1, 2 and 4. 

 Model-3 on the other hand showed a consistency in prediction accuracy and the value was 

kept over 20% for all thresholds.  

 In case of transferability, even with validated by route 3 data, all four models showed 

overall accuracy at least over 49%. And in case of threshold 5, the overall accuracy was 

higher than model validated with route 4 for all the models, whereas at threshold 25, it was 

almost the same. For threshold 10 and 15, it was either higher or the same. From the 

prediction accuracy of crash likelihood, at threshold 5, model-1 and 3 performed better 

when validated with rote 3 data. At threshold 10, model-1 and 4 performed better; at 

threshold 15, model-1, 2 and 4 performed better; at threshold 25, model- 1 and 4 performed 

better. Hence, model- 1 was able to adopt the transferability the most. However, model-1's 

prediction accuracy is lower than other three models. 

Hence, to summarize, model- 3 showed consistency in prediction accuracy of crash likelihood at 

all thresholds and both validation. From Figure 4.8, for model- 3, although the highest accuracy 

was found at threshold 5 and 10 (when validated with route 4), the overall accuracy of model-3 at 

threshold 5 (49%) was less compared to threshold 10 (60%). So, in the later chapters of this thesis, 

model-3 will be used as the RTCPM and crash risk threshold of 10% will be the threshold for 

intervention decision making. 

From previous studies by Lee et al. (2003), Pande et al. (2005), Lu et al. (2010) and Roy et al. 

(2018) it was evident that an impending hazardous traffic condition can be detected with higher 

accuracy by those RTCPMs using as information variables the downstream flow, speed, 
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occupancy, and difference in traffic flows upstream and downstream of the crash location. These 

information variables proved to be more reliable in identifying hazardous situations. Model 3 has 

the information variables of downstream flow, speed, and relative flow, and showed a consistent 

performance in predicting crash likelihood compared to the other three models. Therefore, Model 

3 is used in the later part of the study for evaluating the efficacy of RL-based VSL application. 

Table 4. 4 Crash prediction accuracy for the RTCPMs 

Crash Risk Threshold Validation 

Routes 

5 10 15 25 

Model 1 

 

Overall Accuracy 

(%) 

Route 4 54.20 77.97 83.22 94.06 

Route 3 68.90 77.80 89.90 93.50 

Crash Likelihood 

(%) 

Route 4 56.67 26.67 6.67 0.00 

Route 3 60.00 30.00 13.00 8.50 

Model 2 

 

Overall Accuracy 

(%) 

Route 4 63.81 74.48 84.97 94.23 

Route 3 72.60 81.30 85.00 94.10 

Crash Likelihood 

(%) 

Route 4 40.00 30.00 16.67 03.33 

Route 3 40.00 30.00 23.30 0.00 

Model 3 

 

Overall Accuracy 

(%) 

Route 4 49.13 60.14 63.99 77.45 

Route 3 56.30 64.20 71.50 79.20 

Crash Likelihood 

(%) 

Route 4 50.00 50.00 40.00 30.00 

Route 3 55.00 46.70 32.00 20.00 

Model 4 

 

Overall Accuracy 

(%) 

Route 4 51.40 73.08 83.39 93.36 

Route 3 71.30 82.30 86.40 92.80 

Crash Likelihood 

(%) 

Route 4 60.00 26.67 6.67 00.00 

Route 3 40.00 30.00 26.70 6.70 
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4.3.4 The CTM and unsteady traffic state 

In case of the CTM, the traffic condition in a cell is assumed to be steady. Hence, it might seem 

like that the model can only operate at steady state conditions of traffic. However, the CTM does 

not assume steady traffic condition among the cells, i.e. inter-cell traffic can still be unsteady. In 

this thesis, the RTCPMs were constructed with traffic flow parameters such as downstream flow, 

speed and difference of up and downstream density. Hence, the difference of traffic parameters 

between the adjacent cells were used as information variables of the RTCPMs which can capture 

if the traffic condition between adjacent cells were unsteady depending on the threshold given. 

Hence, a unsteady traffic situation can be captured from the inter-cell traffic difference of a CTM.    

Figure 4 .9 Traffic parameters collection from crash location 

In order to construct RTCPMs, in this thesis, the crash data was collected from 3 minutes before 

the crash occurred, and normal data was collected for similar duration from a day when no crash 

occurred. The traffic conditions before the crash took place is considered as the hazardous traffic 

condition; similarly, the traffic state during the no crash data is considered normal condition.  

The RTCPMs were trained with the combinations of these data, and were validated with the 

hazardous and normal conditions data separately to check the model’s prediction accuracy at 

different thresholds. 

For example, if the threshold is set to 5, the model will predict all the traffic conditions which led 

to probability of crash likelihood of 5 or more. In the confusion matrix, it is shown that at threshold 

5, the model identifies 1 crash cases correctly, but also predicts 188 normal cases as crash, which 

is false alarm (34% false alarm rate). Because, it was decided by setting the threshold that above 

it, all the traffic conditions will be considered as hazardous. 
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Figure 4 .10 Example of number of crashes over threshold = 5 

According to the definition of hazardous and normal state, all the crashes took place in hazardous 

state. Hence, the total number of crashes (101 crashes) are considered happened in hazardous state. 

However, the number of crashes are not only defined from the raw traffic data, but also from the 

RTCPM output. If the probability of crash is found more than equal to the threshold set, the model 

outputs all those cases as the harardous states and vice-versa. 

4.4 Chapter Conclusion 

In this study it has been attempted to establish a method for using a uniformly and densely 

distributed simulated detector layout to create a framework for developing a real-time crash 

prediction model which is transferrable over space. A simple method of the CTM was employed 

in the study route to generate the simulated detector data. It was found that the CTM-based method 
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could reproduce values of the traffic flow variables with an average error of 13% where the speed 

data showed higher MPE as compared to flow and occupancy data. One of the reasons is that the 

basic FD does not allow us to control speed resulting in simulated speed values unresponsive of 

the traffic situation. However, with a flexible FD the speed can be controlled which could generate 

speed data with greater accuracy. Moreover, recent studies identified (Coifman, 2014; Lu, 2010) 

speed data to be the most vulnerable data considering the detector type, traffic state, and the quality 

of other traffic variables. 

The performance of BN- and DBN-based RTCPMs built with traffic data from both fixed detectors 

and CTM has been also investigated. A series of models with different information variables 

suggested the most influential variables to be downstream flow, speed, and occupancy, difference 

of upstream and downstream flow. Although, the results showed that the loop detector based 

RTCPMs performed slightly better than the CTM based models, it is too early to draw statistically 

significant conclusions. In any case, it is certain that these preliminary results indicate that CTM 

is able to generate reliable traffic parameters to overcome the transferability and facilitate a 

solution to the missing data problem of the future universal RTCPMs. One area of future work 

will be to the investigation of the optimum location of the simulated detectors or cells by 

experimenting with different cell lengths and different locations (50, 100, and 150 m upstream and 

downstream). Moreover, other than freeway stretches, the model in future can be upgraded to 

incorporate ramps rather than considering only the basic freeway segments. The RTCPM is highly 

dependent on the quantity as well as the quality of the traffic flow data. Therefore, it is 

recommended that more case studies and different time-steps should be incorporated to ensure an 

efficient model that can be implemented in real-time. 

After investigating the transferability of the four RTCPMs, model- 3 showed consistency in 

prediction accuracy of crash likelihood at all thresholds and both validation. For model- 3, 

although the highest accuracy was found at threshold 5 and 10 (when validated with route 4), the 

overall accuracy of model-3 at threshold 5 (49%) was less compared to threshold 10 (60%). So, in 

the later chapters of this thesis, model-3 will be used as the RTCPM and crash risk threshold of 

10% will be the threshold for intervention decision making. 
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CHAPTER 5 

REAL-TIME INTERVENTION MODEL: DEEP REINFORCEMENT 

LEARNING-BASED VARIABLE SPEED LIMIT 

5.1 Introduction 

Deep learning (DL) has flourished with enormous success in last few decades in a variety of 

application domains. This new field of machine learning has been growing rapidly since 2012 and 

has been applied to most traditional application domains like computer vision, image processing, 

speech recognition etc., as well as some new areas that present more opportunities. Different 

methods have been proposed based on different categories of learning, including supervised, semi-

supervised, and un-supervised learning. Several advances have occurred in the area of Deep 

Learning (DL), starting with the Deep Neural Network (DNN) (Rosenblatt, 1957). The survey 

goes on to cover Convolutional Neural Network (CNN) (LeCun, 1989), Recurrent Neural Network 

(RNN) (Schmidhuber et al, 1997), including Long Short-Term Memory (LSTM) (Schmidhuber et 

al, 1997) and Gated Recurrent Units (GRU), Auto-Encoder (AE) (Liou et al, 2014), Deep Belief 

Network (DBN) (Hinton, 2009), Generative Adversarial Network (GAN) (GoodFelow, 2014), and 

AlexNet (Krizhevsky, 2014).  

DL is a subset of machine learning that uses a cascade of many layers of nonlinear processing units 

for feature extraction and transformation (Deng and Yu, 2016; Bengio et al, 2013, 2015; 

Schmidhuber, 2015). Each successive layer uses the output from the previous layer as input. The 

algorithms may be supervised or unsupervised and applications include pattern analysis 

(unsupervised) and classification (supervised). DL can be represented in many ways such as a 

vector of intensity values per pixel, or in a more abstract way as a set of edges, regions of particular 

shape, etc. Some representations are better than others at simplifying the learning task (e.g., face 

recognition or facial expression recognition (Glauner, 2015). One of the promises of deep learning 

is replacing handcrafted features with efficient algorithms for unsupervised (where input data are 

not labeled) or semi-supervised (when part of input dataset is labeled) feature learning and 

hierarchical feature extraction (Song et al, 2013). In some articles, DL has been described as a 

universal learning approach that is able to solve almost all kinds of problems in different 

application domains. In other words, DL is not task specific (Bengio, 2009). 
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5.2 Variable speed limit and deep reinforcement learning 

Advancement in intelligent transportation systems (ITS) has made it possible to obtain high-

quality real-time traffic data that calls for a proactive traffic safety management system to reduce 

crash risks on a road network. However, this also demands assessing crash risk with changing 

traffic conditions reliably. In response to that, numerous real-time crash prediction models 

(RTCPMs) have been developed over the years to predict crash risks based on the real-time traffic 

data. A number of cutting-edge modeling methods, such as, various types of Neural Networks (Liu 

and Chen, 2017; Park et al., 2018), Support Vector Machine (Katrakazas et al., 2017), Bayesian 

Network (Hossain and Muromachi, 2013), Dynamic Bayesian Network (Roy et al., 2018a), Deep 

Neural Network (Yang et al., 2018), etc. have been employed successfully. The accuracy of the 

recent RTCPMs in predicting crash risk is observed to be commendable (crash risks: Yang et al., 

2018 – 96%, Wu et al., 2018 – 87%; low false alarms: Yang et al., 2018 – 10%, Wang et al., 2017a 

– 2.7%). Some of these models are even transferrable to a limited extent (Park et al., 2018). 

A proactive safety management can systematically reduce the risks of road crashes by altering the 

traffic states with suitable measures. For a real-time intervention, a threshold of crash likelihood 

can be a useful measure to formulate a proactive control strategy (Lee et al., 2004). Studies on 

real-time interventions followed either a traffic simulation program (Lee et al., 2004, 2006; Abdel-

Aty et al., 2006a,b,2007a,b,2008, Yu and Abdel-Aty, 2014; Abdel-Aty and Wang, 2017) or a 

driving simulator (Lee and Abdel-Aty, 2008) to reproduce pre-crash traffic conditions and various 

countermeasures such as a variable-message sign (VMS) (Lee and Abdel-Aty, 2008) and a variable 

speed limit (VSL) (Lee et al., 2004; Abdel-Aty et al., 2006a,b,2007a,b,2008; Lee and Abdel-Aty, 

2008; Yu and Abdel-Aty, 2014; Abdel-Aty and Wang, 2017). Similarly, a coordinated or 

uncoordinated ramp metering (Lee et al., 2006; Abdel-Aty et al., 2007a,b; Abdel-Aty and Gayah, 

2010) helped control the crash-prone traffic conditions effectively. Park et al. (2018) used 

warnings such as ‘watch out’ or ‘pay attention’ to enable the drivers more vigilant thereby avoiding 

the secondary crashes. 

A number of studies reduced the crash probability effectively by implementing VSL triggered 

through RTCPMs (Lee et al., 2004; Li et al., 2016, 2017; Abdel-Aty et al., 2006a, 2007b, 2008). 

Lee et al. (2004) reduced the speed when a crash probability measured by an RTCPM crossed a 

predetermined threshold. Abdel-Aty et al. (2006a) was successful by changing the speed limit 
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gradually every 10 min at 5 mph rate: an abrupt change in space; a reduction for upstream while 

an increase for downstream. Abdel-Aty et al. (2006b, 2007b, 2008) found that VSL was effective 

for medium to high speed regimes and had a limited impact for lower speeds. Later on, Abdel-Aty 

et al. (2008) suggested a homogeneous speed zone for VSL implementation. Lee and Abdel-Aty 

(2008) stated that VMS and VSL in tandem could reduce speed variations. Abdel-Aty et al. 

(2006b) found improved safety in the zone of VSL implementation but the high-crash potential 

was relocated at the downstream. Carlson et al. (2011) and Lu et al. (2011) applied VSL at the 

upstream of the bottleneck area to control the outflow of the VSL section. This way, the capacity 

drop at the bottleneck can be avoided, and the bottleneck capacity can be retrieved. A solution to 

the shifting of crash risk can be found in Yu and Abdel-Aty (2014) who proposed an optimization 

algorithm to minimize the overall crash risk for the total VSL corridor. Li et al. (2014) employed 

VSL close to the freeway recurrent bottlenecks to reduce rear-end collision risks where the control 

strategy included a start-up threshold, a target speed limit (56.33 km/h), and a speed change rate 

(16.09 km/h every 30 s). Later on, Li et al. (2016) considered a start-up threshold of 20% as a 

control strategy to activate the VSL in a large-scale freeway segment and found that the crash risk 

was reduced by 22.62% and injury severity by 14.67%. Recently, Abdel-Aty and Wang (2017) 

applied VSL successfully to the congested weaving sections of an expressway for reduction of 

crash risk. 

Although the combination of RTCPM and VSL is promising and also proactive in some aspects, 

there are still scope of improvements, especially in terms of self-learning or using ‘intelligence’. 

The aforementioned studies focused only on adjusting the speed limit in respect of control strategy, 

VSL control zone, time of control, and response time considering the pattern of hazardous traffic 

state. Accordingly, the objective was limited to bring the traffic back to normal in the best possible 

way using a predetermined set of VSL-based interventions administered during a specified time 

interval. Therefore, they lack the embedded ‘intelligent agent’ capable of learning by itself to 

tackle non-recurrent complex traffic patterns. Reinforcement learning (RL), an artificial 

intelligence-based semi-supervised machine learning algorithm, can support VSL in this regard. 

In RL, an agent reacts with the environment through several trial and error to optimize the total 

reward by choosing a state-action pair for every time step (Watkins, 1989; Sutton and Barto, 1998; 

Hasselt, 2011). Thus, an RL agent exhibits ability for decision making in respect of proactive speed 

control (Li et al., 2017; Zhu and Ukkusuri, 2014, Davarynejad et al., 2011). The ability to take 
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real-time proactive control decisions without the need for a model architecture makes RL 

appealing in ITS field (Rezaee et al., 2012; El-Tantawy et al., 2010; Abdulhai et al., 2003). A Q-

learning based multi-agent RL, which is the most commonly used RL algorithm, was used in a 

study for motorway ramp-metering control with queuing consideration (Davarynejad et al., 2011). 

In another study (Rezaee et al., 2012) Q-learning based RL method was employed to a freeway 

road for ramp-metering to compare its performance with ALINEA controller and found that the 

Q-learning based controller was able to reduce travel time by 17%. Another study (El-Tantawy et 

al., 2010) a multi-agent RL was used in conjunction with the game theory to alleviate traffic 

gridlock. An R-Markov average reward technique (R-MART)-based RL was used to optimize VSL 

control for reducing travel time and vehicle emission (Zhu and Ukkusuri, 2014). Li et al. (2014, 

2016) improved on their genetic algorithm-based VSL optimization strategy by using Q-learning-

based RL at a freeway recurrent bottleneck (Li et al. 2017). Isele et al. (2018) learned policies and 

active sensing behaviors employing RL that exceeded the capabilities of the commonly used 

heuristic approaches in several categories such as task completion time, goal success rate, and 

ability to generalize the problem, for navigating occluded intersections with autonomous vehicles. 

Most of these studies mentioned about the major advantage of RL’s model-free property, reduced 

computational complexity and its ability to accommodate non-recurrent traffic patterns. An RL 

agent continuously gathers information over different traffic patterns and adapts their control 

policy on-line, making them suitable for complex traffic network control problem with many non-

recurrent patterns. 

Previous studies on VSL control can be categorized into two- rule-based and proactive approaches 

(Khondoker et al., 2015). The former approach used a preset thresholds of traffic parameters to 

activate fixed VSL values on various locations in order to improve safety (Rama, 1999, Piao and 

McDonald, 2008). The proactive or model predictive approach (MPC) approach refers to 

preventing problems before it actually takes place, usually, with a target to reduce travel time (TT) 

and improve safety (Khondoker, 2015). It is a dynamic process and the VSL values are updated 

and coordinated with new dataset. For example, a Dutch study (Hoogen et al., 1994) tried to 

homogenize the traffic flow with two speed limits 70km/h and 90km/h, updated every minute. In 

France, VSL control activated only when the flow exceeded 3000 veh/h and the maximum VSL 

limit was set to 110km/h (Rivey, 2010). In other studies (Allaby et al., 2007, Lee et al, 2004) logic 

tree-based VSL algorithm was used using threshold values of traffic parameters, which showed 
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improvement in safety but increased TT in all scenarios. A review paper on VSL control (Lu et al., 

2014) concluded that improvement of traffic flow was not observed in most VSL approaches 

targeting safety improvement and that the most VSL strategies are yet immature and ad-hoc. 

Moreover, in another study, it was shown that even in the proactive approach, with the absence of 

online traffic prediction models, the VSL controllers cannot perform (Li et al., 2017).  

Reinforcement learning (RL)-based VSL control allows agents to automatically determine the 

ideal actions within a specific context to maximize its performance (Watkins et al, 1992, Sutton 

and Barto, 1998, Barto, 2003). After getting trained an RL agent can, theoretically, make 

predictions on system evolution and achieve a proactive control scheme. A study by Zhu and 

Ukkusuri (2014) used an RL approach for dynamic VSL control in a large roadway network, where, 

the VSL value in each link was allowed to fluctuate from the real-world VSL value to select the 

optimal dynamic speed limit scheme. Li et al. (2017) incorporated the RL in VSL control strategies 

to reduce traffic congestion at recurrent merge bottlenecks on freeways where the bottleneck 

density control was set as the reward function or objective. The advantage of deep RL is, it can 

incorporate real-time traffic parameters and can decided appropriate VSL values from a set, and 

decide when and in what location to trigger depending on the predefined threshold (here, in this 

thesis a crash risk of 10). 

In spite of the success records of Q-learning for VSL-controlled optimization compared to the 

traditional feedback-based VSL control, there are a few issues, such as adaptability of continuous 

traffic states, location of VSL control sections, and the reliability of the VSL models in real time 

in terms of crash risk reduction, which are yet to be resolved. Another new adaptation of RL, 

namely, dueling DQN (Mihn et al., 2013, 2015; Hasselt et al., 2016), which can accommodate 

continuous traffic states and identify the correct action quickly during policy evaluation, has 

emerged recently.  

Before jumping into the VSL strategies, deep learning and reinforcement learning is explained in 

section 5.2 to 5. with theoretical explanations, history and algorithms. 
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5.3 Artificial intelligence and machine learning: 

The terms ‘artificial intelligence (AI)’ and ‘machine learning (ML)’ are often tossed around 

interchangeably, but they are not exactly the same thing. If anything, ML is a subset of AI. In the 

Google Trends graph (Figure 5.1), it can be seen that AI was the more popular searched term until 

machine learning passed it for good around August, 2015. ML has become one of – if not the – 

main applications of artificial intelligence. 

 

Figure 5. 1 Google trends graph of the term AI and ML (2012- 2019) 

Figure-5.2 shows the taxonomy of AI. AI can be considered the all-encompassing umbrella. It 

refers to computer programs being able to “think,” behave, and do things as a human being might 

do them. It’s usually classified as either general or applied/narrow (specific to a single area or 

action). 

ML goes beyond AI. It involves providing machines with the data they need to “learn” how to do 

something without being explicitly programmed to do it. An algorithm such as decision tree 

learning, inductive logic programming, clustering, reinforcement learning, or Bayesian networks 

helps them make sense of the inputted data.  
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Figure 5. 2 Taxonomy of Artificial intelligence 

 

5.4 Deep Learning 

5.4.1 The Definition of ‘deep learning’: 

Deep Learning (DL) is a branch of ML- a new take on learning representations from data that puts 

an emphasis on learning successive layers of increasingly meaningful representations. DL is a new 

area of ML research, which has been introduced with the objective of moving ML closer to one of 

its original goals: Artificial Intelligence (AI). DL uses what’s called “supervised” learning – where 

the neural network is trained using labeled data – or “unsupervised” learning – where the network 

uses unlabeled data and looks for recurring patterns. 

The term ‘deep learning’ was first introduced to the machine learning community by Rina Dechter, 

a Professor of Computer Science at the University of California in 1986. In her paper, she proposed 
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a solution to the dead-end situation of intelligent backtracking in PROLOG or Truth-Maintenance-

Systems (TMS) in case of search efficiency (Dechter, 1986). Her solution was a constraint 

recording method as a learning process for making efficient future decisions. She coined the term 

‘deep learning’ while exploring solution to constraint satisfaction problems (CSP) using deep 

second- order learning. 

Geoffrey Hinton is a pioneer in the field of artificial neural networks (ANN) and co-published the 

first paper (Hinton, 2006) on the backpropagation (BP) algorithm for training multilayer 

perceptron (MLP) networks which is the basic unit of a DL network. He may have started the 

introduction of the phrasing “deep” to describe the development of large-scale artificial neural 

networks (Hinton and Salakhutdinov, 2006, 2009). According to Hinton, Deep Belief Networks 

were the start of deep learning in 2006 and that the first successful application of this new wave 

of deep learning was to speech recognition in 2009 (Abdel-Rahman et all, 2010).  

One of the major contribution of DL is its ability of working with large number of data or 

scalability. In addition to scalability, another often cited benefit of DL models is addressed by 

Peter Norvig (director of research at Google) (Russel and Norvig, 2010)- “it is a kind of learning 

where the representation formed have several levels of abstraction, rather than a direct input to 

output”. This means DL models have the capability to perform automatic feature extraction from 

raw data via feature learning (Bengio, 2012). According to Andrew Ng (Andrew Ng’s talk in 

ExtractConf, 2015), chief scientist at Baidu research and former founder of Google Brain, the core 

of deep learning is the existence of fast enough computers and enough data to actually train large 

neural networks. He also put emphasis on the scale of the data- the more data are available, the 

better will be the performance. Jeff Dean from Google Brain project and one of the founder of 

TensorFlow put emphasis on large-scale neural networks while defining DL (Jeff Dean’s talk at 

Startup Campus Korea, 2016). The ‘deep’ in ‘deep learning’ does not refer to any kind of deeper 

understanding achieved by the approach; rather it stands for this idea of successive layers of 

representations. It came from the several hierarchal concepts represented by multiple or, deep 

layers that allows the computer to learn complicated concepts by building them out of simpler ones 

(GoodFellow and Bengio, 2016). Yann LeCun is the director of Facebook Research has agreed 

with the above statement. He also, defined DL as the development of large convolutional neural 
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network (CNN) because, like MLP, this method scales with data and model size and can be trained 

with backpropagation (LeCunn et al, 1998).   

5.4.2 How does DL work? 

The way how DL works can be divided into three parts- (a) parameterizing a deep neural network 

(DNN) by its weights, (b) measuring the quality of the output with loss function, and (c) adjusting 

of weights using feedback. DNN takes input and maps those to targets via deep sequence of layers 

by exposure to examples (Figure 5.3).  

Firstly, the input data is stored as a layer’s weights. The target is finding a set of values for the 

weights of all layers in the network so that the network will correctly learn to map inputs to their 

associated targets. Secondly, to control the output, it’s important to measure how far away it is 

from the target and this difference (or, score) is measured by the loss function. Lastly, the score 

measured is used as a feedback signal (by backpropagation) to the network to adjust the value of 

the weights in a way so that the current loss function is minimized. And this adjustment is done by 

the optimizer that carries out the backpropagation. Initially, random values are assigned to the 

weights, which naturally outputs a value far from the target, hence giving a high score of loss 

function. Eventually, with every example the network processes, the loss score minimizes leading 

the network towards the correct direction. This is how a DL program is trained.  
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Figure 5. 3 Mechanism of deep learning (François Chollet, 2017) 

DL uses layers of algorithms to process data. Figure 5.4 shows a schematic diagram of an ordinary 

DNN. Information is passed through each layer, with the output of the previous layer providing 

input for the next layer. The first layer in a network is called the input layer, while the last layer is 

called an output layer. All the layers between the two are referred to as hidden layers. Each layer 

is typically a simple, uniform algorithm containing one kind of activation function.  

Figure 5. 4 Schematic representation of a typical deep neural network 

Feature extraction is another aspect of Deep Learning. Feature extraction uses an algorithm to 

automatically construct meaningful “features” of the data for purposes of training, learning, and 

understanding.  
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5.4.3 Types of deep learning approaches 

DL refers to a rather wide class of machine learning techniques and architectures, with the hallmark 

of using many layers of non-linear information processing that are hierarchical in nature. 

Depending on how the architectures and techniques are intended for use, e.g., synthesis/generation 

or recognition/ classification: 

Supervised learning 

This is by far the most common case. Deep networks for supervised learning are intended to 

directly provide discriminative power for pattern classification purposes, often by characterizing 

the posterior distributions of classes conditioned on the visible data. In this method, the model 

learns to map input data to known targets (annotations). Target label data are always available in 

direct or indirect forms for such supervised learning.  

Example: There are different supervised learning approaches for deep leaning, including Deep 

Neural Networks (DNN), Convolutional Neural Networks (CNN), Recurrent Neural Networks 

(RNN), including Long Short Term Memory (LSTM), and Gated Recurrent Units (GRU), 

regression and classification, linear regression, Sequence generation, Syntax tree prediction, 

Object detection, Image segmentation etc.  

 Unsupervised learning 

This consists of finding interesting transformations of the input data without the help of any targets, 

for the purpose of better understanding the correlations present in the data at hand. Deep networks 

for unsupervised or generative learning are intended to capture high-order correlation of the 

observed or visible data for pattern analysis or synthesis purposes when no information about 

target class labels is available. In the case of unsupervised learning, the network is provided with 

some labeled input data and it learns the structure of the data so that it can apply this knowledge 

to a new input. In this case, the agent learns the internal representation or important features to 

discover unknown relationships or structure within the input data.  

Example: There are several members of the deep learning family that are good at clustering and 

non-linear dimensionality reduction, including Auto-Encoders (AE), Restricted Boltzmann 
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Machines (RBM), and the recently developed GAN. In addition, RNNs, such as LSTM and RL, 

are also used for unsupervised learning in many application domains. 

Semi-supervised learning 

Semi-supervised learning is learning that occurs based on partially labeled datasets. Hybrid deep 

networks, where the goal is discrimination which is assisted, often in a significant way, with the 

outcomes of generative or unsupervised deep networks. This can be accomplished by better 

optimization or/and regularization of the deep networks by supervised learning. The goal can also 

be accomplished when discriminative criteria for supervised learning are used to estimate the 

parameters in any of the deep generative or unsupervised deep networks. 

Example: In some cases, DRL and Generative Adversarial Networks (GAN) are used as semi-

supervised learning techniques. GAN is discussed in Section 7. Section 8 surveys DRL approaches. 

Additionally, RNN, including LSTM and GRU, are used for semi-supervised learning as well. 

Self-supervised learning 

This is a specific instance of supervised learning, but it’s different enough to deserve its own 

category. It is the supervised learning without human-annotated labels. The inputs are still labelled 

like in supervised learning, but the labels are generated from the input data, typically using a 

heuristic algorithm. Self-supervised can be interpreted as either supervised or unsupervised 

depending on whether the focus is on the learning mechanism or on the context of its application. 

Example: Autoencoders.  

Reinforcement learning 

Reinforcement learning has its roots in behavioral psychology. An agent is trained by rewarding 

it for correct behavior and punishing it for incorrect behavior. In the context of deep reinforcement 

learning, a network is shown input data and is given a positive or negative reward based on whether 

it produces the correct output from that input. Thus, in reinforcement learning, we have sparse and 

time-delayed labels. Over many iterations, the network learns to produce the correct output.  
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In RL, an agent receives information about its environment and learns to choose actions that will 

maximize some reward. For example, a neural network looks at a video of a game screen and 

outputs gaming actions in order to maximize its score, which is trained by RL. 

The pioneer in the deep reinforcement learning space was a small British company called 

DeepMind, which in 2013 published a paper (Mnih, 2013) describing how a convolutional neural 

network (CNN) could be taught to play Atari 2600 video games by showing it screen pixels and 

giving it a reward when the score increases. The same architecture was used to learn seven different 

Atari 2600 games, in six of which the model outperformed all previous approaches, and it 

outperformed a human expert in three. 

5.4.4 A brief history of deep learning: 

Until recently, most machine learning and signal processing techniques had exploited shallow-

structured architectures. These architectures typically contain at most one or two layers of 

nonlinear feature transformations. The concept of DL originated from the artificial neural network 

(ANN). For a long time, training a NN in an efficient way had been a problem until mid-1980s, 

when several researchers independently rediscovered backpropagation (BP). BP is a way to train 

chains of parametric operations in NN using gradient descent optimization. But, BP alone didn’t 

work well when it came to large number of hidden layers (Bengio, 2009; Glorot and Bengio, 2010) 

while optimization- it often got stuck in the local optima, instead of global optima, especially when 

the network is deep. This is one of the reasons why ML researchers went back to focusing on 

shallow algorithms like support vector machines (SVMs).   

This optimization problem was solved with the introduction of an unsupervised learning 

algorithm- deep belief net (DBN) (Hinton et al, 2006; Hinton and SalaKhutdinov, 2006). A deep 

belief net (DBN) is composed of a stack of restricted Boltzmann machines (RBMs). The core 

component of DBN is a greedy, layer-by-layer learning algorithm which optimizes DBN weights. 

Initializing the weights of an multilayer perceptron (MLP) with a correspondingly configured deep 

belief net (DBN), often produces much better results than that with the random weights.  So, this 

type of MLPs with many hidden layers or, in other words, deep neural networks (DNNs), which 

are learned with unsupervised deep belief net (DBN) pre-training, followed by BP fine-tuning is 

sometimes called the DBNs by some researchers (Dahl et al, 2012; Mohamed et al, 2012,a,b). 
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Even sometimes, when DBN is used to initialize the training of a DNN, the resulting network is 

called DBN-DNN. Recently, researchers are more careful in distinguishing between DBN and 

DNN. 

The very first successful practical application of NN came in 1989 when Yann LeCun combined 

the ideas of CNN and BP (LeNet) to the problem of hand written zip code classification. After that, 

in 1995, Vapnik and Cortes came up with a kernel method called ‘Support Vector Machine (SVM)’. 

SVMs aim at solving classification problems by finding good decision boundaries between two 

categories. Decision boundary is a line or surface separating the training data into spaces 

corresponding to two categories. But SVM had some limitations when it came to large scale 

datasets and it didn’t provide good results for perceptual problems like image classification. A 

significant amount of researches were conducted around 2000-2010s on neural networks. In 2011, 

Dan Ciresan from IDSIA (Switzerland) began to win academic image classification competitions 

with GPU-trained DNNs. Then in 2012, G. Hinton’s team lead by Alex Krizhevsky, participated 

in the ImageNet competitions, which means to classify a dataset of 1.4 million high resolution 

images into 1000 categories. They were able to achieve an accuracy of 83.6% which was a 

significant breakthrough. Ever since, the competition has been dominated by deep CNNs 

(Convnets) every year and by the year 2015, an accuracy of 96.4% were achieved and the problem 

was considered solved entirely. Since 2012, Convnets have become a popular algorithm for all 

computer vision tasks. By 2015-2016 there were numerous researches on convnets in terms of 

computer vision problems and began to flourish in other type of problems like natural language 

processing (NLP) or voice recognition etc. Convnet has replaces SVM and random forest (RF) 

completely in wide range of applications.  

There have been a lot of developments and advancements in the DL fields over the past 80 years 

(Figure 5.6). The evolution of DL can be summarize with a rough timeline (Table 5.1): 
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Table 5. 1 The history of deep learning (1940- 2019) 

1943 McCulloch & Pitts show that neurons can be combined to construct a ‘Turing 

Machine’ 

1958 Rosenblatt shows that perceptron’s will converge if what they are trying to 

learn can be represented 

1965 Alexey Ivakhnenko and V.G. Lapa proposed the first working deep learning 

networks 

1980 Kunihiko Fukushima introduced Neocognitron: a hierarchical neural 

network capable of visual pattern recognition 

1985 The backpropagation algorithm by Geoffrey Hinton et al. revitalizes the 

field. 

1989 CNNs with Backpropagation for document analysis by Yann LeCun 

2006 The Hinton lab solves the training problem for DNNs 

2015 Generative Adversarial Networks (GAN) 

2016-

present 

A variety of deep learning algorithms are increasingly emerging 

 

5.4.5 Why DL became popular now? 

The two key ideas of DL– CNN and BP were already understood in 1989. The long-short term 

memory (LSTM) algorithm was developed in 1997 and has barely changed since. Hence the 

question arises why DL is taking over now?  

In general, three technical forces are driving advances in ML: 

 Hardware 

 Datasets and benchmarks 

 Algorithmic advances 

The true bottlenecks throughout 1990-2000 were the data and hardware. And during this period, 

the internet took off and high-performance graphic chips were developed due to the boosting of 

the gaming market. 

Hardware- Between 1990 and 2010, the CPUs became about 5000 times faster. But typical DL 

models for image classification, speech recognition etc. requires more computational power than 

CPUs. Throughout the 2000s, companies like NVIDIA and AMD have been investing billions of 

dollars to develop massively parallel chips- GPUs. In 2007, NVIDIA launched CUDA- a 

programming interface for its line of GPUs. Nowadays, the DL industry is approaching beyond 
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the GPUs by investing in increasingly specialized and efficient chips for DL. In 216, Google 

revealed its TPU project, which is 10 times faster and far more energy efficient than GPUs. 

Datasets and benchmarks- Over the last 20 years, the rise of the internet made it possible to get 

access to huge database for ML. The most popular datasets- image, video, natural language etc. 

are only accessible due to internet (e.g. Flicker, YouTube, Wikipedia etc.).  

Algorithmic advances- In addition to hardware and data, a reliable way to train very deep networks 

was missing until the late 2000s. Early NNs were shallow and were inferior to other ML algorithms 

like SVMs or RFs. The main issue was that the feedback signal which was used to train a NN, 

(gradient propagation) would fade away with increasing number of layers. In 2009-2010, there 

were better activation functions, weight initialization and optimization schemes (e.g. RMSProp, 

ADAM etc.). Finally, during 2014-2016, more advanced ways of gradient propagation were 

discovered, such as batch normalization, residual connections and depth-wise separable 

convolutions.    

5.4.6 Properties of DL 

DL has several properties that justify its status as an AI revolution. As it is still emerging very fast, 

in future, there might be more advanced NN, but even that NN would be something inherited from 

the core concept of today’s DL. These core properties can be broadly categorized into four: 

1. Simplicity: DL replaces the requirement of feature engineering – heavy engineering 

pipeline with simple end-to-end trainable models. 

2. Scalability: DL is highly amenable to parallelization on GPUs or TPUs. In addition, DLs 

iterate over small batches of data while training, which allows them to be trained by 

arbitrary size of datasets.  

3. Versatility and reusability: Unlike previous ML approaches, DL models does not require 

retraining on additional data from scratch. It makes DL viable for continuous online 

learning. Moreover, trained DL models are repurposable, hence reusable. It means, a DL 

model trained on image classification problem, can be used for video processing pipeline.     
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4.  Universal Learning Approach: The DL approach is sometimes called universal learning 

because it can be applied to almost any application domain. 

5.5 A brief history of RL 

The early RL had two major threads- one deals with learning by trial-and-error which basically 

started in the field of psychology, and the other deals with the problem of optimal control and its 

solution using dynamic programming and value functions. However, there is a third and less 

distinct thread which deals with the temporal difference (TD) method. The modern RL is the 

product of intertwining of these three threads (Sutton and Barto, 2017).  

The basic concept of trial-and-error was succinctly expressed by Throndilke (1911) with the ‘Law 

of Effect’.  It describes in psychological terms how the animals would grow a tendency to select 

certain actions based on the events (related to those actions) experienced by them. The term 

‘reinforcement’ appeared in the English translation of Pavlov's (1927) monograph in the context 

of animal’s conditional reflexes. But, Alan Turing (1948) was the first to employ the trial-and-

error learning in terms of computer learning calling it the ‘pleasure-pain-system’. Several electro-

mechanical machines were built using the concept of trial-and-error such as SNARCs (Stochastic 

Neural-Analog Reinforcement Calculators) introduced by Minsky (1954). This influenced the rise 

of several other electro-mechanical machines based on the same concept, but many of those shifted 

their focus from the trial-and-error learning to supervised learning (Clark and Farley, 1955) and 

created a blurry area where researchers working with supervised learning started to believe they 

were working on RL. For example, neural network pioneers such as Rosenblatt (1962) and Widrow 

and Hoff (1960) used the language of rewards and punishments-but the systems they studied were 

supervised learning systems suitable for pattern recognition and perceptual learning. The 

confusion could have arose due to the fact that NNs use terms like trial –and –error to update the 

weights during the process of training. But this is not the same as the RL because, in RL the actions 

are selected on the basis of evaluative feedbacks (rewards) without any reliance on the information 

about which action is correct. Influential works were conducted by Donald Michie where he 

described RL learner called MENACE to play tic-tac-toe (1963). They applied RL learner GLEE 

and RL controller BOXES to the task of learning to balance a pole hinged to a movable cart on the 

basis of a failure signal occurring only when the pole fell or the cart reached the end of a track 

(Michie and Clakson, 1968). This was one of the best example of early RL and several researchers 
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adopted different versions of this example in their work (Barto, Sutton, and Anderson, 1983; 

Sutton, 1984). Research on learning automata had a more direct influence on the trial-and-error 

thread leading to modern reinforcement learning research. Learning automata are simple, low-

memory machines for improving the probability of reward in these problems (Narendra and 

Thathachar, 1974, 1989). John Holland introduced classifier systems, true RL systems including 

association and value functions (Holland, 1976, 1986). A key component of Holland's classifier 

systems was the ‘bucket-brigade algorithm’ for credit assignment.  

The individual most responsible for reviving the trial-and-error thread to reinforcement learning 

within artificial intelligence was Harry Klopf (1972, 1975, 1982). Klopf recognized that essential 

aspects of adaptive behavior were being lost as learning researchers came to focus almost 

exclusively on supervised learning. What was missing, according to Klopf, were the hedonic 

aspects of behavior, the drive to achieve some result from the environment, to control the 

environment toward desired ends and away from undesired ends. This is the essential idea of trial-

and-error learning. Klopf's ideas were especially influential on the authors because our assessment 

of them (Barto and Sutton, 1981a) led to our appreciation of the distinction between supervised 

and reinforcement learning, and to our eventual focus on reinforcement learning. Other studies 

showed how reinforcement learning could address important problems in neural network learning, 

in particular, how it could produce learning algorithms for multilayer networks (Barto, Anderson, 

and Sutton, 1982; Barto and Anderson, 1985; Barto and Anandan, 1985; Barto, 1985, 1986; Barto 

and Jordan, 1987).  

Another thread of RL- optimal control and dynamic programming, which describes the problem 

of designing a controller to minimize a measure of a dynamic system’s behavior over time. One 

of the approaches developed is a functional equation called ‘Bellman’s equation’ uses the concepts 

of a dynamical system's state and of a value function. The methods for solving optimal control 

problems by solving this equation came to be known as dynamic programming (Bellman, 1957a). 

Dynamic programming suffers from what Bellman called ‘the curse of dimensionality’ meaning 

that its computational requirements grow exponentially with the number of state variables, but it 

is still far more efficient and more widely applicable than any other general method. Bellman 

(1957b) also introduced the discrete stochastic version of the optimal control problem known as 

Markovian decision processes (MDPs), and Ronald Howard (1960) devised the policy iteration 
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method for MDPs. All of these are essential elements underlying the theory and algorithms of 

modern reinforcement learning. Optimal control and dynamic programming was disconnected 

from learning for a long time possibly because they belong to different disciplines. Also because, 

the simplest form of dynamic programming is a computation that proceeds backwards in time, 

making it difficult to see how it could be involved in a learning process that must proceed in a 

forward direction. The full integration of dynamic programming methods with on-line learning did 

not occur until the work of Chris Watkins in 1989, whose treatment of reinforcement learning 

using the MDP formalism has been widely adopted (Watkins, 1989). Since then these relationships 

have been extensively developed by many researchers, most particularly by Dimitri Bertsekas and 

John Tsitsiklis (1996). 

The third and final thread of RL is the temporal difference (TD) learning. This thread is smaller 

and less distinct than the other two, but it has played a particularly important role in the field, in 

part because TD methods seem to be new and unique to RL. TD learning methods are distinctive 

in being driven by the difference between temporally successive estimates of the same quantity. 

Arthur Samuel (1959) was the first to propose and implement a learning method that included TD 

ideas, as part of his celebrated checkers-playing program, which was later studies extensively by 

Minsky (1961). Later, a method was developed by integrating TD learning with trial-and-error 

learning, known as the ‘actor critic architecture’, which was applied to Michie and Chambers's 

pole-balancing problem (Barto, Sutton, and Anderson, 1983). Witten's 1977 paper spanned both 

major threads of reinforcement learning research: trial-and-error learning and optimal control-

while making a distinct early contribution to TD learning. As mentioned earlier, the TD and 

optimal control threads were fully brought together in 1989 with Chris Watkins's development of 

Q-learning. 

5.5.1 Definition of Reinforcement learning 

In the field of ML, there are three types of tasks that can be done- supervised learning, 

unsupervised learning and reinforcement learning. Supervised learning is learning from a training 

set of labeled examples provided by a knowledgeable external supervisor; whereas unsupervised 

learning is typically about finding structure hidden in collections of unlabeled data. Reinforcement 

learning (RL) is the task of learning how agents ought to take sequences of actions in an 

environment in order to maximize cumulative rewards. RL is different from unsupervised learning 
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because it tries to maximize a reward signal instead of trying to find hidden structure. 

Reinforcement learning algorithms study the ‘behavior’ of subjects in an ‘environment’ and learn 

to optimize that behavior. Deep reinforcement learning is the combination of reinforcement 

learning (RL) and deep learning.  

The key aspects of RL are- an agent which learns a ‘good behavior’ incrementally and through 

trial-and-error of ‘experiences’. Hence, the agent works without requiring any prior knowledge, 

only acquiring information by interacting with the environment. RL uses ‘offline’ or ‘online’ 

learning methods. In the offline method, the experience is gathered a priori and then is used as a 

batch for learning. On the other hand, in online learning method, the sequential data is fed to the 

agent to progressively update its behavior. The basic learning algorithm for both methods are the 

same except, the online method has to deal with the ‘exploration and exploitation dilemma’. 

Exploitation means to take the same action which leads to a high reward known to the agent by far 

without trying look for actions which might result in even higher rewards. Exploration enables the 

agent to explore and try actions which may not lead to a high reward immediately but leading to 

new actions resulting in higher rewards in the long run at the expense of time spent for exploration. 

So, a balance between these two is important.  

5.5.2 Framework of RL or MDPs 

The problem of sequential decision making with RL can be formalized using ideas from dynamical 

systems theory like Markov decision processes (MDPs). MDPs are a classical formalization of 

sequential decision making, where actions influence not just immediate rewards, but also 

subsequent situations, or states, and through those future rewards. The components of MDPs are 

agent, environment, state action and reward. The agent-environment interface of MDPs are 

explained below (Figure 5.5). 

For the sake of simplicity, let us consider the case of Markovian stochastic control processes as 

(Norris, 1998). 
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Figure 5. 5 Agent- environment interaction in finite MDPs (Sutton and Barto, 2017) 

In MDPs, there is a decision maker, called an ‘agent’ that interacts with the ‘environment’ it is 

placed in. These interactions occur sequentially over time. At each time step, 𝑡 = 0, 1, 2, … . , 𝑛, the 

agent will get some representation of the environment’s state, 𝑆𝑡 ∈ 𝑺. Given this state, the agent 

takes an action, 𝐴𝑡 ∈ 𝑨 . The environment is then transitioned into a new state, 𝑆𝑡+1 ∈ 𝑺 and the 

agent is given a reward, 𝑅𝑡+1 ∈ 𝑹 as a consequence of the previous action. The algorithm of MDPs 

is explained in the following steps- 

1. At time,  𝑡, the environment is in state, 𝑆𝑡.  

2. The agent observes the current state, 𝑆𝑡 and selects action, 𝐴𝑡. 

3. The environment transitions to state, 𝑆𝑡+1 and grants the agent reward, 𝑅𝑡+1. 

4. This process then starts over for the next time step, 𝑡 + 1. 

Hence, the trajectory representing the sequential process of MDPs can be represented as- 

𝑆0, 𝐴0, 𝑅𝑡 , 𝑆𝑡, 𝐴𝑡, 𝑅𝑡+1, 𝑆𝑡+1, 𝐴𝑡+1, 𝑅𝑡+2, … ..         (5.1) 

In a finite MDP, the sets of states, actions, and rewards (𝑆, 𝐴, 𝑅) all have a finite number of elements 

and have well defined discrete probability distributions dependent only on the preceding state and 

action. For example, let’s choose a random state, 𝑠′ ∈ 𝑺 , action 𝑎′ ∈ 𝑨 and reward, 𝑟′ ∈ 𝑹. The 

probability of receiving reward 𝑟′ by transitioning to (𝑠′, 𝑎′) at time 𝑡, given particular values of 

the preceding state, 𝑠 ∈ 𝑺 and action 𝑎 ∈ 𝑨(s) can be defined as- 

Pr(𝑠′, 𝑟′|𝑠, 𝑎) =  Pr (𝑆𝑡 =  𝑠′, 𝑅𝑡 = 𝑟′| 𝑆𝑡−1 =  𝑠, 𝐴𝑡−1 = 𝑎 )        (5.2) 
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This means that the future of the MDP only depends on the current observation, and the agent has 

no interest in looking at the full history. 

 An MDP can also be defined in terms of a tuple (𝑆, 𝐴, 𝑇, 𝑅, 𝛾) (Sutton and Barto, 2017, Levet et 

al, 2018), where  

 𝑆 is state space. 

 𝐴 is action space. 

 𝑇 is transition function: set of conditional transition probabilities between states. 

 𝑅 is reward function: set of possible rewards (continuous values in a range of [0, 𝑅𝑚𝑎𝑥]). 

 𝛾 ∈ [0, 1]is the discount factor. 

At each time step 𝑡, the probability of transitioning to state, 𝑆𝑡+1  by taking action, 𝐴𝑡 is given by 

the transition function 𝑇(𝑆𝑡, 𝐴𝑡 , 𝑆𝑡+1) and for that the reward received is given by the reward 

function 𝑅(𝑆𝑡, 𝐴𝑡 , 𝑆𝑡+1) (Figure 5.6). 

 

 

 

 

 

 

Figure 5. 6 Illustration of MDPs (Levet et al, 2018) 

 

5.5.3 Policy of MDP 

Which action, 𝑎 ∈ 𝑨 would the agent choose is defined by the policy, 𝜋: 𝑆 → 𝐴. It’s the mapping 

from states to actions. Policies could be either stationary (continuing) or non-stationary (episodic). 

A non-stationary policy refers to an agent collecting cumulative rewards within a finite number of 

time steps (Bertsekas et al., 1995), whereas stationary policy deals with cumulative rewards 

acquired from an infinite horizon. Another criterion to categorize policies is either deterministic, 

𝜋 (𝑠) or stochastic, 𝜋 (𝑠, 𝑎). Now the question that arises is how to define the optimality of policies 
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and which criterion should be optimized when finding policies. This is discussed later in the policy 

and value function section of this thesis. In this thesis we consider infinite-horizon optimality, 

which means that all rewards received by the agent are taken into account. 

5.5.4 Expected Return of MDP 

The agent in MDP follows a reward hypothesis which is to maximize the expected cumulative 

reward in the long run. It can be formalized mathematically as follow- 

𝐺𝑡 =  𝑅𝑡+1 + 𝑅𝑡+2 +  𝑅𝑡+3 + ⋯ +  𝑅𝑇        (5.3) 

Where, 𝐺𝑡 is the return at time  , 𝑅𝑡+1 + 𝑅𝑡+2 …. are the possible future rewards calculated at time 

𝑡, and 𝑇 is the final time step. In case of non-stationary (episodic) policy, the time step, 𝑇 is finite 

and known. In the stationary (continuing) case, 𝑇 =  ∞. But, if the final time step is infinite, the 

return itself could become infinite. To tackle this problem, the concept of discounted return is 

introduced.  

5.5.5 Discounted Return of MDP 

In general, the agent seeks to maximize the expected return, where the return, denoted by  𝐺𝑡 is 

defined as some specific function of the reward sequence (equation 5.3). In cases the agent–

environment interaction does not break naturally into identifiable episodes, but goes on continually 

without limit, the concept of discounted return is applied. According to this approach, the agent 

tries to select actions, 𝐴𝑡 so that the sum of the discounted rewards 𝐺𝑡 it receives over the future is 

maximized (equation 5.4). 

 

𝐺𝑡 ≐  𝑅𝑡+1 + 𝛾𝑅𝑡+2 +  𝛾2𝑅𝑡+3 + ⋯ 

     = ∑ 𝛾𝑘𝑅𝑡+𝑘+1
∞
𝑘=0           (5.4) 

 Where, 𝛾 is the discount rate [0 ≤ 𝛾 ≤ 1]. It ensures that rewards received in the near future are 

more important than rewards received later. So, when the agent calculates the rewards it expects 

to receive in the future, the more immediate rewards have more influence when it comes to making 

a decision about taking a particular action. Equation 5.4 can also be expressed as below- 
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𝐺𝑡 ≐  𝑅𝑡+1 + 𝛾𝑅𝑡+2 +  𝛾2𝑅𝑡+3 + ⋯ 

      =  𝑅𝑡+1 + 𝛾(𝑅𝑡+2 +  𝛾𝑅𝑡+3 + ⋯ ) 

     =  𝑅𝑡+1 +  𝛾 𝐺𝑡+1                     (5.5) 

Equation 5.5 shows how the successive returns are related to one another. It also shows that even 

though the return at time 𝑡 is the sum of infinite future returns, it is actually finite as long as the 

reward is nonzero and constant, and 𝛾 < 1. For example, if the reward at each time step is a 

constant 1 and 𝛾 < 1 then the return is- 

𝐺𝑡 = ∑ 𝛾𝑘𝑅𝑡+𝑘+1
∞
𝑘=0        = ∑ 𝛾𝑘           =  

1

1− 𝛾

∞
𝑘=0                  (5.6) 

Hence, the infinite sum yields a finite result. 

5.5.6 Policies, Value Functions and their Optimalities: 

5.5.6.1 Policy, 𝝅:  

Reinforcement learning methods specify how the agent’s policy is changed as a result of its 

experience. There are two questions that arise while discussing the MDPs- 

How probable is it for an agent to select any action from a given state? 

How good is any given action or any given state for an agent? 

The first question is addressed by policies. As mentioned earlier, a policy is a function, 𝜋 (𝑎𝑡|𝑠𝑡) 

that maps a given state, 𝑠𝑡 to probabilities of selecting each possible action, 𝑎𝑡 ∈ 𝑨(s) from that 

state.  

The second question is addressed by value function. Value functions are functions of states, or of 

state-action pairs, that estimate how good it is for an agent to be in a given state, or how good it is 

for the agent to perform a given action in a given state. This notion of how good a state or state-

action pair is given in terms of expected return. Since the way an agent acts, is influenced by the 

policy it's following, hence, value functions are defined with respect to policies. There are two 

kinds of value functions- 
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5.5.6.2 State Value Function, 𝒗𝝅:  

The state value function for policy 𝜋, denoted by 𝑣𝜋 refers to how good any given state is for an 

agent following policy 𝜋. It gives the value of a state under 𝜋. Generally, the value of state, 𝑠 under 

policy 𝜋 is the expected return from starting from 𝑠 at time 𝑡 and following policy 𝜋 thereafter. 

This can be expressed mathematically as- 

𝑣𝜋(𝑠) ≐  𝐸𝜋[𝐺𝑡| 𝑆𝑡 = 𝑠] 

           ≐  𝐸𝜋[∑ 𝛾𝑘𝑅𝑡+𝑘+1
∞
𝑘=0 | 𝑆𝑡 = 𝑠]           (5.7) 

For all 𝑠 ∈ 𝑆. 

5.5.6.3 State-action Value Function, 𝒒𝝅: 

Similarly, the state-action value function for policy 𝜋, denoted by 𝑞𝜋 refers to how good is it for 

an agent to take any given action from a given state while following policy 𝜋. It gives the value of 

an action under 𝜋. Generally, the value of an action, 𝑎 in state 𝑠 under policy 𝜋 is the expected 

return from starting from 𝑠 at time 𝑡, taking action, 𝑎 and following policy 𝜋 thereafter. This can 

be expressed mathematically as- 

𝑞𝜋(𝑠, 𝑎) ≐  𝐸𝜋[𝐺𝑡| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

           ≐  𝐸𝜋[∑ 𝛾𝑘𝑅𝑡+𝑘+1
∞
𝑘=0 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]          (5.8) 

For all 𝑠 ∈ 𝑆 and a ∈ 𝐴. Conventionally, the action-value function 𝑞𝜋(𝑠, 𝑎) is referred to as the Q-

function, and the output from the function for any given state-action pair is called a Q-value. The 

letter “Q” is used to represent the quality of taking a given action in a given state.  

 

5.5.6.4 Optimal Policy, 𝝅∗: 

Solving a reinforcement learning task means, roughly, finding a policy that achieves a lot of reward 

over the long run.  In terms of return, a policy, 𝜋 is considered to be better than or the same as 
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policy 𝜋′if the expected return of 𝜋 is greater than or equal to the expected return of 𝜋′ for all 

states. It means, 𝜋 ≥ 𝜋′, if and only if, 𝑣𝜋(𝑠)  ≥  𝑣𝜋′(𝑠) for all 𝑠 ∈ 𝑆. Hence, a policy that is better 

than or at least the same as all other policies is called the optimal policy, 𝜋∗. 

5.5.6.5 Optimal State Value Function, 𝒗∗: 

Although there may be more than one optimal policy, all the optimal policies are denoted by 𝜋∗. 

They share the same state-value function, called the optimal state-value function, denoted by 𝑣∗, 

and defined as 

𝑣∗(𝑠) =  𝑚𝑎𝑥𝜋𝑣𝜋(𝑠)         (5.9) 

For all 𝑠 ∈ 𝑆. In other words, 𝑣∗ gives the largest expected return achievable by any policy 𝜋 for 

each state. 

5.5.6.6 Optimal State-action Value Function, 𝒒∗: 

Similarly, the optimal policy has an optimal action-value function, or optimal Q-function, which 

we denote as 𝑞∗ and define as- 

𝑞∗(𝑠, 𝑎) =  𝑚𝑎𝑥𝜋𝑞𝜋(𝑠, 𝑎)                 (5.10) 

For all 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴(𝑠). In other words, 𝑞∗ gives the largest expected return achievable by any 

policy 𝜋 for each state-action pair (𝑠, 𝑎). 

5.5.6.7 Bellman optimality equation for 𝒗∗ and 𝒒∗: 

The fundamental property of value function is to satisfy the recursive relationship of the already 

established value function.  So, from the action value function, for any policy 𝜋, and any state 𝑠, 

the recursive relationship between values of 𝑠 and values of its possible successor states- 

𝑣𝜋(𝑠) ≐  𝐸𝜋[𝐺𝑡| 𝑆𝑡 = 𝑠]                                (by 5.7) 

           =  𝐸𝜋[𝑅𝑡+1 +  𝛾 𝐺𝑡+1| 𝑆𝑡 = 𝑠]                                           (by 5.5) 

           = ∑  𝜋(𝑎|𝑠) ∑ ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)

𝑟𝑠′

[𝑟 + 𝛾𝐸𝜋[ 𝐺𝑡+1| 𝑆𝑡 = 𝑠]]

𝑎

 



 

144 
 

          = ∑  𝜋(𝑎|𝑠) ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)𝑠′,𝑟  [𝑟 + 𝛾𝑣𝜋(𝑠)]𝑎                                                     (5.11) 

For 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴(𝑠) and 𝑟 ∈ 𝑅 . The equation 5.11 is called Bellman equation for 𝑣𝜋, expressing 

the relationship between values of a state and values of its successor states. The relationship can 

be expressed with the backup diagram (Figure 5.7). In this figure, the open circles are the states 

and the solid circles are the state-action pairs. Only three of them are shown here. Starting from 

state 𝑠, the agent could take any of the action sets depending on its policy and dynamics given by 

the function 𝑝 and achieve next state 𝑠′ with a reward  𝑟. The Bellman Equation (5.11) averages 

over all the possibilities, weighting each by its probability of occurring. It states that the value of 

the start state must equal the (discounted) value of the expected next state, plus the reward expected 

along the way. 

Figure 5. 7 ‘Backup diagram’ for v_π and q_π (Sutton and Barto, 2017) 

As mentioned in section 5.5.6.5, 𝑣∗ is the optimal value function for a policy, so it must satisfy the 

self-consistency condition given by the Bellman equation for state values (equation 5.11). 

Intuitively, the Bellman optimality equation expresses the fact that the value of a state under an 

optimal policy must equal the expected return for the best action from that state: 

𝑣∗(𝑠) =  𝑚𝑎𝑥𝑎∈𝐴(𝑠)𝑞𝜋∗
(𝑠, 𝑎)         

           =  𝑚𝑎𝑥𝑎𝐸𝜋∗
[𝐺𝑡| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

          =  𝑚𝑎𝑥𝑎𝐸𝜋∗
[𝑅𝑡+1 + 𝛾𝐺𝑡+1| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

        =  𝑚𝑎𝑥𝑎𝐸[𝑅𝑡+1 + 𝛾𝑣∗𝑆𝑡+1| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]                                  (5.12) 
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        =  𝑚𝑎𝑥𝑎 ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)𝑠′,𝑟  [𝑟 + 𝛾𝑣∗(𝑠′)]              (5.13) 

Equation 5.12 and 5.13 are called the Bellman optimality equations for 𝒗∗.  

The similar can be derived for optimal action value function, 𝑞∗: 

𝑞∗(𝑠, 𝑎) =  𝑚𝑎𝑥𝑎𝐸[𝑅𝑡+1 + 𝛾𝑞∗(𝑆
𝑡+1

, 𝑎′)| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]                      (5.14) 

𝑞∗(𝑠, 𝑎) =  𝑚𝑎𝑥𝑎 ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)𝑠′,𝑟  [𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑞∗(𝑠′, 𝑎′)]                       (5.15) 

The meaning of the equation is, for any state-action pair (𝑠, 𝑎) at time 𝑡 the expected return from 

starting in state (𝑠) , selecting action (𝑎)  and following the optimal policy (𝑞∗) thereafter (also 

known as the Q-value of this pair) is going to be the expected reward we get from taking action 

(𝑎)  in state (𝑠), which is 𝑅𝑡+1, plus the maximum expected discounted return that can be achieved 

from any possible next state-action pair.  

Since the agent is following an optimal policy, the following state 𝑠𝑡+1 will be the state from which 

the best possible next action 𝑎′can be taken at time 𝑡 + 1. The Bellman equation can be used to 

find 𝑞∗  and then the optimal policy can be determined because, with  𝑞∗ , for any state 𝑠 , a 

reinforcement learning algorithm can find the action 𝑎 that maximizes 𝑞∗(𝑠, 𝑎). 

 

The optimal policy 𝜋∗ can be obtained from the 𝑞∗: 

𝜋∗(𝑠) =  𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴𝑞∗(𝑠, 𝑎)                         (5.16) 

  

5.6 Deep reinforcement learning 

The DRL is the combination of DL and reinforcement learning. The general schema of DRL is 

shown in Figure 5.8. 
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Figure 5. 8 General schema of deep reinforcement learning 

5.6.1 Basic Q-learning (QL) 

It is a form of simple yet the most popular model-free RL algorithm where an agent learns the best 

actions suitable for given states by estimating a long-term discounted reward in controlled 

Markovian domain. According to Watkins et al. (1989), it is an asynchronous dynamic 

programming that learns via ‘temporal difference’ method. At time step, 𝑡 , the agent experiences 

a state, 𝑆𝑡 from a state set under the given environment and selects an action, 𝑎𝑡 from the action 

set. This selection of action by observing a state is the behavioral policy of the agent. Then, the 

agent updates the state to a new state 𝑆𝑡+1, which brings in a reward of 𝑟𝑡+1 to evaluate the change 

of state. After repeating this process several times, the agent learns the actions that led to maximum 

accumulated rewards over time. Each state-action pair receives a Q-value [𝑄𝑡(𝑆𝑡, 𝑎𝑡)] at every 

time step, which is updated with new training data on a continuous basis using Equation. 5.17. 

𝑄𝑡+1 (𝑆𝑡, 𝑎𝑡) ←  (1 − 𝛼)𝑄𝑡 (𝑆𝑡, 𝑎𝑡) +  𝛼[𝑟𝑡+1 + 𝛾 𝑚𝑎𝑥 𝑄𝑡 (𝑆𝑡+1, 𝑎𝑡+1)]   (5.17) 

Here 𝛾 is the discount factor (0 ≤ 𝛾 ≤ 1) that ensures that a higher reward is assigned to the recent 

actions taken compared to the actions to be taken in the future because the certainty about selecting 

a state-action pair gets lesser as it goes closer to the future; 𝛼 is the learning rate that controls the 

updating rate of the Q-value where the goal of the agent is to maximize the reward over time. 

Although it is common for an agent to make imprecise estimates while learning at the beginning, 

QL runs a maximization step that tends to choose overestimated values that caused possibly by 

erroneous action values irrespective of the source of approximation error (Thrun and Schwartz 
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1993). The QL agent runs each action for each state multiple times until the convergence of Q-

value thereby completing the learning process. As the agent learns the optimum actions for given 

states provided with the largest Q-values, it can determine the optimal control strategy for the 

system (Li et al., 2017; Abdulhai et al., 2003). 

The Q-learning is conducted with the use of a table which has actions in the horizontal axis and 

states in the vertical axis, and the table is called Q-table. The table is filled with Q-values that the 

agent received for taking an action in a particular state. Initially the Q-table is filled with zeroes as 

the agent doesn’t know which action is better. Hence, the agent will start at a random selection of 

action while maintaining the exploration and exploitation using the 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 method, where 

𝜀 [0, 1], the higher the value is, the more will be the exploitation. So, it is wise to start with a lower 

𝜀 value so that the agent will explore more, meaning that the agent will take different actions from 

the same state during different episodes. After going through few episodes, the agent will slow 

down the exploration as it has now experienced all the (s, a) pairs a few times, and will tend to 

exploit more, that is, the agent will take the actions leading to high rewards more often to gain 

higher expected returns. All these happens by running several episodes and updating the Q-table 

with new Q-values with the goal of reducing the loss between the Q-value (𝑞𝜋) and the optimal Q-

value (𝑞∗). So, from equation 5.8 and 5.15- 

𝐿𝑜𝑠𝑠 = 𝑞∗(𝑠, 𝑎)  − 𝑞𝜋(𝑠, 𝑎)        (5.18) 

𝐿𝑜𝑠𝑠 = 𝐸[𝑅𝑡+1 + 𝛾𝑚𝑎𝑥𝑎′𝑞
∗
(𝑠′, 𝑎′)] − 𝐸[∑ 𝛾𝑘𝑅𝑡+𝑘+1

∞
𝑘=0 ]  (5.19) 

Another question that arises while running Q-function is the ‘learning rate (𝛼)’, which refers to the 

frequency of updating the Q-table. The agent doesn't just overwrite the old Q-value, but rather, it 

uses the learning rate as a tool to determine how much information to keep about the previously 

computed Q-value for the given state-action pair versus the new Q-value calculated for the same 

state-action pair at a later time step. The higher the learning rate, the more quickly the agent will 

adopt the new Q-value. For example, if the learning rate is 1, the estimate for the Q-value for a 

given state-action pair would be the straight up newly calculated Q-value and would not consider 

previous Q-values that had been calculated for the given state-action pair at previous time steps. 

The equation to calculate the new Q-value for state-action pair (𝑠, 𝑎) at time, 𝑡 is: 
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𝑞𝑛𝑒𝑤(𝑠, 𝑎) = (1 − 𝛼) 𝑞(𝑠, 𝑎) + 𝛼[𝑅𝑡+1 + 𝛾 𝑚𝑎𝑥𝑎′  𝑞 (𝑠′, 𝑎′)]             (5.20) 

 

The algorithm of Q-learning is as follows- 

Algorithm-5.1: Q-learning  

Initialize Q-table Q [num_states, num_actions] 

Arbitrarily observe initial state s  

Repeat 

 Select and carryout a section a  

Observe reward r and move to new state 𝑠′.  

 𝑞𝑛𝑒𝑤(𝑠, 𝑎) = (1 − 𝛼) 𝑞(𝑠, 𝑎) + 𝛼[𝑅𝑡+1 + 𝛾 𝑚𝑎𝑥𝑎′  𝑞 (𝑠′, 𝑎′)] 
𝑠 = 𝑠′ 

Until game over 

The algorithm is basically doing stochastic gradient descent on the Bellman equation, 

backpropagating the reward through the episodes and averaging over many trials (or epochs). 

5.6.2 Real-time intervention: Variable speed limit with Q-learning 

Back to the application of variable speed limit (VSL). The real-time crash prediction and 

intervention is designed by integrating a real-time crash prediction model with a real-time 

intervention model. The RTCPMs are built with the BN using the traffic data received from the 

macro simulation model CTM (chapter 3). In this chapter, the CTM for Shinjuku route 4 of Tokyo 

metropolitan expressway is employed for traffic data extraction to construct a uniformly 

distributed virtual detector layout, to which DRL-based VSL intervention will be integrated using 

Keras- a python-based open source deep learning library (https://keras.io/). Several attempts have 

been taken over the years by researchers to introduce various VSL strategies depending upon the 

location, traffic condition and detector locations. Most of the cases, the strategies were set by the 

researchers themselves based on their expertise and experience. Hence, there is no particular 

strategy to be singled out which can be claimed to be the ‘best’ one. In this thesis, DRL is adopted 

to find out VSL strategies in order to utilize the benefit of DRL’s model-free learning ability. 

Which means, without the assistance of any external force (the model designer), the agent of the 

model itself will figure out the strategies of VSL from the information it receives from the 

environment (the traffic data). The procedure is described in the following sub-sections. The 

algorithm is shown in Figure 5.9. 

Old Q-value Learned value 
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Figure 5. 9 Algorithm for RTCP and DRL-based intervention model. 

 

The detailed explanation is described in the following sections starting from BN-based RTCPM 

building, CTM-based macrosimulation for traffic data generation, and DRL-based VSL control 

for intervention model. 

5.6.3 The RTCPMs 

To construct a DRL-based (Q-learning) intervention, at first a Q-table is required which includes 

the possible actions and states of the model to be tabulated. The states are the traffic data (flow, 

speed, occupancy) and the corresponding crash risks. Chapter 4 explains the methodology of BN-

based RTCPMs in details. In this chapter, the models and their results are shown directly. A study 

by Roy et al. (2018 (a)) employed different combinations of six base parameters (flow, speed, 

occupancy, etc.) and three relative parameters (difference of upstream and downstream flow, etc.) 

to generate 16 BN- and DBN-based RTCPMs. In their study, some of the RTCPMs had four 

information parameters and others had three. After judging the overall prediction performances, it 

was clear that the number of information parameters did not influence the prediction accuracy of 

the models significantly. The four information parameters found to be the most influential in 

predicting a crash were: downstream flow (veh/min), speed (km/h), occupancy (%), and difference 
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values of upstream and downstream flow (veh/min). In this study, four BN-based RTCPMs are 

built with different combinations of nine information variables: flow (veh/min), speed (km/h), 

occupancy (%) data from upstream and downstream; and their differences. 

After considering the prediction accuracy of crash likelihood and overall accuracy, out of four BN-

based RTCPMs model-3 with the information variables downstream speed, downstream 

occupancy and the difference of up and downstream density was chosen for constructing the Q-

table. In order to construct a Q-table the continuous traffic data needs to be discretized into classes. 

Here, the traffic values are discretized into 5 classes and the corresponding crash risks are also 

recorded from the BN-based RTCPM (Table 5.2).  

Table 5. 2 Discretization of traffic parameters 

Elements Class ① Class ② Class ③ Class ④ Class ⑤ 

𝑉𝑑𝑜𝑤𝑛 (𝑘𝑚/ℎ) <49.52 49.52-64.83 64.83-70.69 70.69-76.11 76.11< 

𝐾𝑑𝑜𝑤𝑛 (𝑣𝑒ℎ/𝑘𝑚) <22.54 22.54-30.66 30.66-40.19 40.19-59.02 59.02< 

∆𝑄 (𝑣𝑒ℎ) <−6.50 −6.50-−1.50 −1.50-1.50 1.50-6.50 6.50< 

5.6.3 QL-Based VSL Strategy 

A Q-table is basically a look up table for the RL agent. The rows of the table represents states and 

the columns all the possible actions. In this case, with three traffic parameters each categorized 

into five classes, in total 53 = 125 states are created and all possible actions are either {20, 30, 40, 

50, 60, 70, 80, 90, 100, 110, no control} km/h or {±10, ±0, 𝑉𝑓𝑟𝑒𝑒−𝑓𝑙𝑜𝑤} 𝑘𝑚/ℎ depending on the 

current state of the environment. Hence, there are two Q-tables with (125 x 11) and (125 x 5) sizes. 

The states and action sets are explained in the following section of this chapter. The Q-table would 

possibly look like Table 5.3. Each cell in the Q-table is filled with zeros initially, afterwards, the 

table is updated with Q-values that the agent receives over the time after several iterations.  

Table 5. 3 Sample of a Q-table 

States Action 1 Action 2  ………….. Action 11 

State 1 Q-value 1 Q-value 2 …………… Q-value 11 

State 2     

.     

.     

State 125    Q-value 125 
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For QL application, the 2.52-km-long segment of route 4 Shinjuku is selected because it qualifies 

as the longest freeway segment harboring ten detectors (detectors 48 to 39) and has steady state 

flow during the off-peak hour. The target location where the crash risk needs to be reduced is 

between cells 12 and 17 (loop detector 42 and 39) (Figure 5.10). For the purpose of learning by 

the QL agent, simulation is run during 12:00-17:59 with a warm-up period of an hour, hence data 

for 5h simulation was collected. Total 36 iterations were done and the duration of each simulation 

time step is set to 1 min (total simulation time = 5 h × 60 min × 36 iterations = 10,800 min). Q-

value is calculated for each action taken. In the case of the action ‘no control’, which means at the 

beginning when no VSL is activated and the crash risk has not exceeded, Q-value is calculated 

using the simulated data from only one section at cells (14-15), because these two are the central 

cells of the target section and calculating Q-value with each cell’s value would cause 

computational cost which is not necessary during steady state of traffic. Three major parameters 

are required to define for Q-learning- states, actions and rewards. These are described below. 

 

 

 

 

Figure 5. 10 QL-based VSL controlled segment 

 

State, 𝒔𝒕: For QL, states needs to be discretized and defined for learning the speed control strategy 

by observing simulated traffic flow data from a detector. In this study, the cells 12 to 17 are selected 

as a section for VSL application, for defining states and is represented by traffic parameters of 

RTCP Model. The states are discretized into five classes (Table 5.2) generating (53 ) = 125 

combinations of states. 

Rewards, 𝒓𝒕: The target location for calculating the crash risk is between the cells 12 to 17 from 

which simulated traffic data is collected during 13:01-17:59, and crash risk is calculated based on 

the 125 states defined in (i) for which 125 crash risks are stored. For this, the crash risk threshold 
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is set to 10. In case of receiving rewards by the agent, if the crash risk between the target section 

is lower than 10, a reward of 𝑟𝑡 = +1 is provided, whereas a reward of 𝑟𝑡 =  −1 is given otherwise. 

Action, 𝒂𝒕: A set of 11 values of speed control is selected that includes {20, 30, 40, 50, 60, 70, 80, 

90, 100, 110, no control} km/h, where ‘no control’ suggests that the speed is the same as the free-

flow speed for that segment. While executing VSL control, there are two possible situations: (1) 

VSL control is not running in current state, 𝑠𝑡 and (2) VSL control is running in current state, 𝑠𝑡. 

For the former situation of ‘no VSL control’, 𝑎𝑡 is running in current state, 𝑠𝑡, and the set of actions 

from which the agent can choose an action is-  

𝑎𝑡+1 = {20, 30, 40, 50, 60, 70, 80, 90, 100, 110, no control}𝑘𝑚/ℎ. For the latter case, when VSL 

control is running at current state, 𝑠𝑡 , the choice of actions would be, 𝑎𝑡+1 = {±10, ±0,

𝑉𝑓𝑟𝑒𝑒−𝑓𝑙𝑜𝑤} 𝑘𝑚/ℎ for every speed in the VSL speed control set {20, 30, 40, 50, 60, 70, 80, 90, 

100, 110, no control} km/h. For example, if the VSL is activated currently and the speed observed 

at current state,  𝑠𝑡  is 70 km/h, then the choices of actions would be, 𝑎𝑡+1 =

{80, 60, 70, 𝑉𝑓𝑟𝑒𝑒−𝑓𝑙𝑜𝑤. } km/h. 

The learning rate refers to how frequently the RL agent will update its Q-values, which means how 

much it will remember the old learning and how much it will replace with new experience is 

decided by the learning rate (𝛼). The learning rate was set to about 0.0001 at first. The discount 

factor represents the importance given to the predicted possible future rewards compared to the 

current reward. The value of discount factor (𝛾) was kept around 0.9. And the final parameter (𝜀) 

explains the exploration and exploitation ratios of the agent while training. The value is set to 1 so 

that the model can explore more and gradually decrease it with every iteration. 

5.6.4 Outcome of the QL-Based VSL Strategy 

A comparison is performed between the crash risks before and after applying the VSL control 

between the cells 12 to 17. Figure 5.11 demonstrates a space-time diagram of the difference of 

number of events that had crash risk higher than 10, i.e., the number of events with risk higher 

than 10 are stored before and after VSL was applied. Then the difference of the number of events 

are plotted against space and time during 13:01-17:59 along the entire segment between cells 12 

to 17 (detector 42-39). The red and green colors represent the increase and decrease in number of 
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events due to application of VSL control (with risk higher than 10), respectively, whilst the white 

color means no improvement or deterioration in crash risk. Hence, the green color is the desired 

outcome of VSL control and vice-versa. Additionally, the first row at the bottom of the s-t diagram 

represents if the VSL was triggered or not. If yes then its colored orange. The second row 

represents the VSL values taken by the agent at that time, which was selected from the action set 

(color code of the action set is shown). The color code is shown at the bottom, speed increases 

gradually from red via orange and yellow to green, and the darkest green color is for ‘no control’ 

or free-flow speed. Thus, it can be observed that the QL agent has chosen an action that lowers the 

speeds in most of the cases. Few other occasions, such as between 14:00-14:10, 14:20-14:30 pm, 

the agent chose to increase the existing speed limit that led to either improvement or no change of 

the crash risk most of the times. At one point during 15:10-15:20, after lowering the speed limit, 

there was a sudden increase of number of events with risk (NER) ≥10, which within next 2 minutes 

improved the number of crashes significantly. Also, interestingly, few cases can be observed when 

the VSL control improved NER ≥10 upstream to the target location during 17:30-18:00. 

 

Figure 5. 11 Space-time diagram of change in crash risk before and after the application of 

VSL control using QL 
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A bar chart was generated to show if the model was able to lower the number of crashes with risk 

≥10 at the target location. Figure 5.12 compares the NER ≥10 with and without VSL Control. It 

is verbatim that, VSL control could improve the crash risk at the upstream of the study location 

(cell 1 to 11) but not significantly, in fact the opposite was observed at cell5 and 6. However, it 

was able to reduce crash risk at the VSL controlled area (cells 12 to 17) which was the target 

location to reduce crash risk. 

Figure 5. 12 Comparison of NER ≥10 with and without VSL Control (QL) 

From Table 5.4, improvements can be observed at the targeted location if the risk threshold is set 

to risk ≥10 whereas deterioration of the risk was also observed at the targeted location if the 

threshold is set risk = 50. Which means, if the threshold is set to a value as high as 50, the model 

would not be able to recognize crash prone events. Hence, will take actions only in fewer cases 

which may in turn cause increase of crash likelihood.  
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Table 5. 4 Comparison of NER ≥10 and NER = 50 (cells 12 to 17) 

Cells Section No control Control Difference No control Control Difference 

  Risk = 50 Risk ≥10 

1 0 9 9 0 83 82 1 

2  9 9 0 83 82 1 

3 1 0 0 0 77 76 1 

4  0 0 0 77 76 1 

5 2 8 8 0 57 58 -1 

6  8 8 0 57 58 -1 

7 3 5 5 0 51 50 1 

8  5 5 0 51 50 1 

9 4 4 4 0 54 53 1 

10 5 7 7 0 48 43 5 

11  7 7 0 48 43 5 

12 6 9 7 2 58 50 8 

13  9 7 2 58 50 8 

14 7 7 6 1 64 55 9 

15  7 6 1 64 55 9 

16 8 3 5 -2 56 49 7 

17  3 5 -2 56 49 7 

 

Figure 5. 13 Comparison of NER  ≥10 with and without VSL Control (QL) 

 

Figure 5.13 shows a space-time diagram of the entire route during 12:01-17:59 when VSL was 

applied (bottom of the figure) and there was no speed control. While the goal is to improve crash 

safety, it is also important to consider the functionability of the route. If a capacity drop appears 
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due to the VSL control, that might cause not only congestion but also increase the possibility of 

rear-end crashes. From Figure 5.13, it can be seen that the speed control has created a back-wave 

and a cluster of slow moving vehicles probably due to congestion during 15:30-16:00 which is 

concerning. This is one of the limitations of the model.  

While QL is a useful method for learning policies, it has its other limitations too. As mentioned 

earlier that the traffic parameters needs to be discretized in order to create the Q-table, which in 

turn returned with a set of 125 state values. With 125 states and 11 actions there are 1375 state-

action combinations that the agent has to monitor at every iteration. But the traffic parameters are 

continuous and if not discretized, the model would suffer from a huge number of parameters 

causing slow simulation which is inefficient. Hence, QL method has no scalability and cannot 

accommodate continuous values, or multiple sections as input parameters. On the other hand, there 

are neural networks which works better in handling continuous data and are scalable. In the 

following section, another reinforcement learning method combined with the deep neural network 

called deep Q-learning (DQL) is introduced to apply VSL.  

5.7 Deep Q-Network (DQN) 

Deep Q-learning is the is the first deep reinforcement learning (DRL) method proposed by Mihn 

et al. (2015) that combines RL with DL (a multi-layered deep CNN) (Krizhevsky et al., 2012) to 

create a single algorithm addressing a range of challenging tasks. The deep CNN consists of 

hierarchical layers of convolutional filters that enable the algorithm to accept data in abstract form 

and to categorize the objects directly from the raw sensor data. Similar to QL, deep Q-network 

(DQN) consists of an agent dealing with the state-action pairs in an environment while receiving 

rewards with the goal of maximizing the cumulative future rewards. In this case, the deep NN is 

applied for estimating the Q-value: 

𝑄∗(𝑠, 𝑎) = 𝑚𝑎𝑥𝜋𝔼[𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 … . . +𝛾𝑛𝑟𝑡+𝑛 | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝜋]   (5.21) 

where 𝑄∗(𝑠, 𝑎) is the maximum sum of rewards, 𝑟𝑡 discounted by 𝛾 at each time step, 𝑡, (𝑠) is state, 

(𝑎) is action, and the behavioral policy is denoted by 𝜋 = 𝑝(𝑎|𝑠). 
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Since NNs have local connectivity (that is, each neuron is connected to only a local region of its 

input), it avoids these impossible or improbable input combinations. Hence a NN can be used to 

model a Q-function very effectively.  

Experience reply and target network 

DQN overcomes unstable learning of RL using two techniques: experience reply and target 

network. Experience reply randomizes over data, removing the correlations in the state sequences 

and smoothing the data distribution. In the case of target network, the Q-values are updated only 

periodically towards the target values thereby reducing the correlations with the target. The agent’s 

strategy would logically be to train the network to predict the best next state‘s'’ given the current 

state (s, a, r). It turns out that this tends to drive the network into a local minimum. The reason for 

this is that consecutive training samples tend to be very similar. To counter this, during observation 

of states, it collects all the previous moves (s, a, r, s') into a large fixed size queue called the reply 

memory. The reply memory represents the experience of the network. When training the network, 

it generates random batches from the reply memory instead of the most recent (batch of) 

transactions. Since the batches are composed of random experience tuples (s, a, r, s') that are out 

of order, the network trains better and avoids getting stuck in local minima. Yet another approach 

is to collect experiences by running the network in observation mode for a while in the beginning, 

when it generates completely random actions (𝜀 = 1) and extracts the reward and next state from 

the game and collects them into its experience reply queue. 

An approximate value function 𝑄(𝑠, 𝑎, 𝜃𝑖)  using the deep CNN is estimated, in which 𝜃𝑖 

represents the weight given to the DQN at iteration 𝑖. In experience reply, agent’s experiences, 𝑒𝑡 

(𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) are stored at each time-step 𝑡 in a set of data, 𝐷𝑡  {𝑒1,…, 𝑒𝑡}. The relationship 

updated by QL as in Eq. (1) is applied on experiences (𝑠𝑡, 𝑎𝑡, 𝑅, 𝑠𝑡+1) ~ U (D), which is selected 

randomly from the samples. The QL update at iteration 𝑖 uses the following loss function presented 

in Eq. (3): 

𝐿𝑖(𝜃𝑖) = 𝔼(𝑠,𝑎,𝑟,𝑠𝑡+1)  ~ U (D)[(𝑅 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠𝑡+1, 𝑎𝑡+1, 𝜃𝑖
−) − 𝑄(𝑠𝑡, 𝑎𝑡, 𝜃𝑖))2]  (5.22) 
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Where, 𝜃𝑖 are the parameters of the DQN at iteration i and 𝜃𝑖
− are the network parameters, used to 

compute the target at iteration i. The target network parameters 𝜃𝑖
−are only updated with the DQN 

parameters (𝜃𝑖) periodically and are held fixed between individual updates. 

The algorithm for DQL is: 

Algorithm-1: Deep Q-learning with experience reply 

Initialize memory 𝒟 to capacity 𝑁 

Initialize action- value function 𝑄 with random weights 

For episode= 1, 𝑀 do 

 Initialize sequence 𝑠1 = {𝑥1} and preprocessed sequenced ∅1 =  ∅ (𝑠1) 

For t=1, 𝑇 do 

 With probability 𝜖 select a random action 𝑎𝑡 

Otherwise select 𝑎𝑡 =  𝑚𝑎𝑥𝑎𝑄∗(∅ (𝑠𝑡), 𝑎;  𝜃) 

Execute action 𝑎𝑡 in emulator and observe reward 𝑟𝑡 and image 𝑥𝑡+1 

Set 𝑠𝑡+1 =  𝑠𝑡, 𝑎𝑡, 𝑥𝑡+1 and preprocess ∅𝑡+1 =  ∅ (𝑠𝑡+1) 

Store transition (∅𝑡, 𝑎𝑡, 𝑟𝑡, ∅𝑡+1) in 𝒟 

Sample random mini batch of transitions (∅𝑡, 𝑎𝑡, 𝑟𝑡, ∅𝑡+1) from 𝒟 

Set 𝑦𝑗 =  {
𝑟𝑗                                                                 𝑓𝑜𝑟 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 ∅𝑗+1 

𝑟𝑗+𝑚𝑎𝑥
𝑎′𝑄∗(∅𝑗+1),𝑎′; 𝜃)                  𝑓𝑜𝑟 𝑛𝑜𝑛 − 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 ∅𝑗+1

 

Perform a gradient descent step on (𝑦𝑗 − 𝑄( ∅𝑗,  𝑎𝑗;  𝜃)2  according to the 

equation of loss function 

 end for 

end for 

Algorithm credit: (https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf) 

5.7.1 Deep Q-Network (DQN) based VSL strategy 

As described in the previous section, DQN consists of neural network, which means, it has an input 

layer, an output layer and in between these two layers, all the layers are hidden layers. In this 

scenario, the neurons in the input layer will take states as inputs, which are traffic parameters. The 

output layer consists of multiple neurons each of those are actions to be taken. For each given state 

input, the network outputs estimated Q-values for each action that can be taken from that state.  

The objective of this network is to approximate the optimal Q-function which will satisfy the 

Bellman equation- 
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𝑞∗(𝑠, 𝑎) =  𝑚𝑎𝑥𝑎 ∑ 𝑝(𝑠′,  𝑟|𝑠, 𝑎)𝑠′,𝑟  [𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑞∗(𝑠′,  𝑎′)]  or,   (5.23) 

𝑞∗(𝑠, 𝑎) = 𝐸 [𝑟𝑡+1 + 𝛾𝑚𝑎𝑥𝑎′𝑞∗(𝑠′,  𝑎′)]         (5.24) 

This is because, the Bellman equation can be used to find optimal value function, 𝑞∗(𝑠, 𝑎). Once 

𝑞∗(𝑠, 𝑎) is found, the optimal policy can be determined, because, knowing 𝑞∗(𝑠, 𝑎) and with state 

𝑠 as input, the RL agent can find the action 𝑎 that maximizes 𝑞∗(𝑠, 𝑎). Then the loss from the 

network is calculated by comparing the outputted Q-values to the target Q-values (Equation 5.18 

to 5.20) from the right-hand side of the Bellman equation, and as with any network, the objective 

here is to minimize this loss. After the loss is calculated, the weights within the network are 

updated via SGD and backpropagation. This process is done over and over again for each state in 

the environment until the network sufficiently minimizes the loss and get an approximate optimal 

Q-function.  

 

 

 

 

 

 

 

 

Figure 5. 14 DQN-architecture 

Similar to the Q-learning method, the states, rewards and actions needs to be defined for DQL as 

follows: 

State, 𝒔𝒕: States of DQN are the traffic parameters collected from simulation from the similar 

segment of route 4 consisting cells 1 to 17 (detectors 48-39)  (Figure 5.15) during 13:01-17:59 

(deducting the warm up period), except, there will be two cases with different target locations- 
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first one consists of cells 9 to 17 (about 1.35 km long) and the second one is longer from cell 5 to 

17 (about 1.95 km long).  

Figure 5. 15 DQN-based VSL controlled segments (cells 12 to 17) 

Rewards, 𝒓𝒕: The target location for calculating the crash risk is between cells 9 to 17 (detector  

44 and 39). The crash risk threshold for receiving rewards is set to 10. If the crash risk at the target 

location is lower than 10, a reward of 𝑟𝑡 = +1 is provided,  −1 is given otherwise.  

Action, 𝒂𝒕: In case of QL, an action set of 11 actions were used for the case when VSL control 

was not activated. Now in case of DQN, a set of 8 values of speed control is selected eliminating 

the lower speed values (10, 20, 30 km/h etc.). This action set includes {40, 50, 60, 70, 80, 90, 100, 

no control} km/h. The another action set is for the situation when there is an VSL control activated 

at current state,𝑠𝑡, and a possible crash risk is observed (i.e. a state leading to crash risk ≥10) the 

set of actions to be taken is 𝑎𝑡+1 = {±20, ±0, 𝑉𝑓𝑟𝑒𝑒−𝑓𝑙𝑜𝑤} km/h . For example, if the speed 

observed at current state,  𝑠𝑡  is 70 km/h, then the choices of actions would be, 𝑎𝑡+1 =

{90, 70, 50, 𝑉𝑓𝑟𝑒𝑒−𝑓𝑙𝑜𝑤. }km/h and the agent will receive a positive or negative reward (𝑟𝑡 = +1, -

1) based on how well the agent performed by taking that particular action at time t which then 

changed the current state, 𝑠𝑡 to 𝑠𝑡+1. Simulation is run during 13:00-17:59 the duration of each 

simulation time step is 1 min (total simulation time= 5 h × 60 min × 36 iterations = 10,800 min). 

To evaluate the policy established by the agent, Q-value is calculated for each action taken. For 

the target section between cell 12 to 17, the input, hidden and output neurons were (12, 36,36,4). 

The learning rate refers to how frequently the RL agent will update its Q-values, which means how 

much it will remember the old learning and how much it will replace with new experience is 

decided by the learning rate (𝛼). The learning rate was set to about 0.0001 at first. The discount 

factor represents the importance given to the predicted possible future rewards compared to the 

current reward. The value of discount factor (𝛾) was kept around 0.9. And the final parameter (𝜀) 
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explains the exploration and exploitation ratios of the agent while training. The value is set to 1 so 

that the model can explore more and gradually decrease it with every iteration. 

5.7.2 Outcome of the DQN- based VSL strategy (cell 12 to 17) 

The outcomes of the DQN-based VSL control strategy are presented in Figures 5.18. It shows the 

comparison of NER ≥10 with and without VSL control. Similar as in the case of QL, in the space- 

time diagram the green bars and the red bars represent improvement and deterioration of the crash 

risk respectively. It shows the increase or decrease of NER ≥10. 

 

 

 

Figure 5. 16 Space-time diagram of change in crash risk before and after the application of 

VSL control using QL (cell 12 to 17) 

From Figure 5.16 it can be observed that the crash risk has improved at the targeted location (cells 

9-17) in few cases, and deteriorated in others. Previously, QL based VSL control showed 

improvement of risk at the upstream of the targeted location, in case of DQN-based VSL control, 

improvement in the upstream cells were observed as well when the crash risk threshold was set to 
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≥10. The risk was improved due to lowering speed limit at most of the times, but increasing the 

limit caused improvement. This is also notable to mention that the action strategy was made in a 

way (±20, ±0, 𝑉𝑓𝑟𝑒𝑒−𝑓𝑙𝑜𝑤) km/h so that the consecutive VSL actions taken does not have a huge 

difference causing a sudden disruption in the traffic flow. Another observation from Figure 5.17 

and Table 5.5 is that there were cases (during 17:20, 17:30, 16:00, 15:30-15:40) when the VSL 

control worsen the risk at the targeted cells. Figure 5.17 and Table 5.5 shows the similar analogy 

about the reduction of NER ≥10 at the targeted location (cells 12-17) and improvements in the 

upstream (cells 10 and 11) of it. However, the improvements at the targeted location seems much 

higher than the one found in the QL-based VSL control. In the table, a comparison between no 

control and control cases with crash risk = 50 is also shown. It is evident that if the threshold is set 

to 50, the model barely detects any condition as crash prone and hence VSL control was not 

triggered and there is almost no changes in crash risk. 

Figure 5. 17 Comparison of NER ≥10 with and without VSL Control (QL) (cell 9 to 17) 
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Table 5. 5 Comparison of NER ≥10 and NER = 50 (cell 12 to 17) 

Cells Section No control Control Difference No control Control Difference 

  Risk = 50 Risk ≥10 

1 0 9 9 0 83 83 0 

2   9 9 0 83 83 0 

3 1 0 0 0 77 77 0 

4   0 0 0 77 77 0 

5 2 8 8 0 58 58 0 

6   8 8 0 58 58 0 

7 3 5 5 0 50 50 0 

8   5 5 0 50 50 0 

9 4 4 4 0 53 53 0 

10 5 7 7 0 45 43 2 

11   7 7 0 45 43 2 

12 6 9 7 2 58 50 8 

13   9 7 2 59 50 9 

14 7 7 6 1 69 54 15 

15   7 6 1 69 55 14 

16 8 3 5 -2 64 50 14 

17   3 5 -2 64 50 14 
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Figure 5. 18 Space-time diagram of speed during 12:01-17:59 at the entire section (cells 1-

17) after employing DQN-based VSL control (bottom half) and without control (upper 

half) 

Figure 5.18 shows a space-time diagram of the entire route during 12:01-17:59 when VSL was 

applied (bottom of the figure) and there was no speed control. While the goal is to improve crash 

safety, it is also important to consider the functionability of the route. If a capacity drop appears 

due to the VSL control, that might cause not only congestion but also increase the possibility of 

rear-end crashes. From diagram 5.20, few changes in the speed profile with the application of VSL 

control can be observed. The DQN model performed well not only in reducing NER ≥10, but also 

it did not generate any major fluctuation in the speed of the targeted location except for the slightly 

low speed occurred during 16:01-17:00. But, the speed remained well distributed overall even after 

employing the VSL control. 

5.8 Chapter conclusion 

In this chapter, RL-based VSL was introduced as intervention for the accident risk prevention. The 

reason for choosing RL-based VSL control is to utilize the model-free property of RL algorithm. 

As discussed in the introduction of this chapter, several previous studies have employed different 
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VSL strategies to improve crash risks, by implementing policies such as applying a VSL control 

value and incorporating functions for gradual increasing or decreasing of the VSL control speed 

etc. Few researchers even divided the study segment according to bottleneck location, VSL control 

location and transition from VSL control to bottleneck location to apply different VSL strategies 

to different segments. There is no concrete solution when it comes to deciding upon a strategy for 

VSL control. RL has been gaining popularity nowadays, especially among the video gaming 

community to discover an intelligent agent who can play video games on its own without any 

outside human player’s help. There is no need for constructing a structured model to teach the 

agent with labeled input data, rather it learns in a model-free way by playing the game and learning 

to take the best possible actions to win from it experience.  

This is an important property and could be utilized in many fields including transportation where 

decisions and policies needs to be made. Hence, in this thesis the RL method namely Q-learning 

and deep Q-learning is adopted. First, the classic Q-learning method that uses a Q-table to learn 

policies was used. It showed promising improvement in reducing NER ≥10. Although it caused a 

disruption in the speed of the vehicles leading to a congestion on the study location. Whilst this 

was a useful method for retrieving policy, the method fails when it comes to using continuous data 

and when the size of the state space increases. In order to overcome the scalability and the 

discretization issues, DQN-based RL was adopted for policy learning.  

Another observation of trying two thresholds- risk = 50 and risk ≥10, showed that the agent was 

not able to recognize most of the crash prone situations when the threshold was set to 50. This 

resulted in a drastic deterioration of the safety of the targeted location. Whereas the threshold of 

risk ≥10 performed well in terms of identifying crash prone situations and in decreasing the number 

of crashes in the target section.  
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Figure 5. 19 Comparison among Q-learning (0.9 km), DQN (0.9 km) 

 

Figure 5.19 the percent difference of NER ≥10. It is apparent that, between the QL and DQN with 

the same length (0.9 km), DQN performed better than the QL model. This is because of DQN’s 

ability to take continuous traffic parameters and scalability. Another observation is, that the QL 

model applied a VSL strategy of speed change according to the action set, 𝑎𝑡  = {±10, ±0,

𝑉𝑓𝑟𝑒𝑒−𝑓𝑙𝑜𝑤} 𝑘𝑚/ℎ , whereas DQN agent chose actions from the action set, 𝑎𝑡  = {±20, ±0,

𝑉𝑓𝑟𝑒𝑒−𝑓𝑙𝑜𝑤} 𝑘𝑚/ℎ . Hence, the action strategy of incrementing speed at a rate of  20 𝑘𝑚/ℎ 

depending on current states, proves to be better than an increment of 10 𝑘𝑚/ℎ. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE SCOPE OF WORK  

6.1 The Objectives 

Back to chapter 1 where the objectives of this research was established as the following questions- 

 How to predict crash risk in real-time? 

 In what way the universality of a RTCPM can be improved? 

  How to decide on a policy for an intervention to prevent crash? 

In order to achieve these objectives, in chapter 3, CTM and modified CTM were applied to the 

route 3 and 4 to generate uniformly distributed simulated detectors. To answer the first question 

of the objectives, BN and DBN- based RTCPMs were built with both fixed detector data and CTM 

generated data, and a comparison was made. For the last objective, in chapter 5 a deep RL-based 

model-free intervention method was employed to prevent possible crash predicted by the RTCPM. 

In the next section, the solutions or how the models performed overall is discussed in brief to draw 

a conclusion. 

6.2 Discussion on results 

6.2.1 The RTCPMs: with CTM and fixed detectors 

In this study it has been attempted to establish a method for using a uniformly and densely 

distributed simulated detector layout to create a framework for developing a real-time crash 

prediction model which is transferrable over space. A simple method of the CTM was employed 

in the study route to generate the simulated detector data. It was found that the CTM-based method 

could reproduce values of the traffic flow variables with an average error of 13% where the speed 

data showed higher mean percent error (MPE) as compared to flow and occupancy data. One of 

the reasons is that the basic FD does not allow us to control speed resulting in simulated speed 

values unresponsive of the traffic situation. However, with a flexible FD the speed can be 

controlled which could generate speed data with greater accuracy. Moreover, recent studies 
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identified (Coifman, 2014; Lu, 2010) speed data to be the most vulnerable data considering the 

detector type, traffic state, and the quality of other traffic variables. 

In order to apply the CTM to an existing road network, the Courant–Friedrichs–Lewy (CFL) 

condition needs to be met. According to the CFL condition, the cell length must be bound to the 

product of free-flow speed and the time step. This is to ensure that the vehicle does not pass more 

than one cell in a single time step. But, in practicality, while simulating, few vehicles might tend 

to pass multiple cells in a time step. To avoid that, the cell length must be considered longer than 

the exact calculated value. In this thesis, the cell length was estimated at 150 meters, which was 

kept constant along the 2.5km long study segment. In order to maintain the CFL condition 

(∆𝑡 ∗
𝑣𝑓

∆𝑥
≤ 1)(Courant, R.; Lewy, H.; Friedrichs, 1928), the cell length should be kept longer than 

actual calculated one. 

The performance of BN- and DBN-based RTCPMs built with traffic data from both fixed detectors 

and CTM has been also investigated with 16 RTCPMs. These 16 models with different information 

variables suggested the most influential variables to be downstream flow, speed, and occupancy, 

difference of upstream and downstream flow. The comparison results between loop detector and 

CTM generated BN and DBN models are show below- 

1. Comparison between BN and DBN with loop detector data showed that 7 (out of 16) DBN 

models performed better, which means, BN models dominated with crash prediction 

accuracy with loop detector data. 

2. Comparison between BN and DBN with CTM generated data showed that 6 (out of 16) 

DBN models performed better, which means, BN models dominated with crash prediction 

accuracy with CTM generated data. 

3. Comparison of BN models with loop detector and CTM generated data showed that (11 

out of 16) CTM models performed better, which means, CTM dominated over loop 

detector data. 
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4. Comparison of DBN models with loop detector and CTM generated data showed that (9 

out of 16) CTM models performed better, which means, CTM dominated over loop 

detector data. 

Although, the results showed that the CTM based RTCPMs performed slightly better than the loop 

detector based models, it is too early to draw significant conclusions. In any case, it is certain that 

these preliminary results indicate that CTM is able to generate reliable traffic parameters to 

overcome the transferability and facilitate a solution to the missing data problem of the future 

universal RTCPMs.  

The comparison between BN and DBN-based RTCPM built with CTM generated data showed 

that the BN-based model outperforms DBN-based models in most of the cases. This might be 

because of lack of training data while constructing the RTCPMs. The author believes that the 

overall prediction could be improved with the inclusion of more training data. 

Four RTCPMs were constructed with the most influential traffic parameters found from chapter 3 

(downstream speed, downstream occupancy and difference of up and downstream flow) with route 

4 data. The models were validated with both route 4 and route 3 data to investigate transferability 

of the models. The models’ performances were tested with four thresholds- 5, 10, 15 and 20%. 

The results showed that the model’s ability of identifying crash likelihood decreases with 

increasing threshold. In case of model-3, the crash likelihood decreased with increase of threshold, 

but yet kept over 20%. Hence, this model was selected for the VSL control later on.  

After investigating the transferability of the four RTCPMs, model- 3 showed consistency in 

prediction accuracy of crash likelihood at all thresholds and both validation. For model- 3, 

although the highest accuracy was found at threshold 5 and 10 (when validated with route 4), the 

overall accuracy of model-3 at threshold 5 (49%) was less compared to threshold 10 (60%). So, in 

the later chapters of this thesis, model-3 will be used as the RTCPM and crash risk threshold of 

10% will be the threshold for intervention decision making. 

6.2.2 The intervention: DRL-based VSL control 

In this chapter, RL-based VSL was introduced as intervention for the accident risk prevention. The 

reason for choosing RL-based VSL control is to utilize the model-free property of RL algorithm. 
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RL has been gaining popularity nowadays, especially among the video gaming community to 

discover an intelligent agent who can play video games on its own without any outside human 

player’s help. There is no need for constructing a structured model to teach the agent with labeled 

input data, rather it learns in a model-free way by playing the game and learning to take the best 

possible actions to win from it experience.  

This is an important property and could be utilized in many fields including transportation where 

decisions and policies needs to be made. Hence, in this thesis the RL method namely Q-learning 

and deep Q-learning is adopted. First, the classic Q-learning method that uses a Q-table to learn 

policies was used. It showed promising improvement in reducing the number of events with risk 

≥10 (NER ≥10). Whilst this was a useful method for retrieving policy, the method fails when it 

comes to using continuous data and when the size of the state space increases. In order to overcome 

the scalability and the discretization issues, DQN-based RL was adopted for policy learning.  

According to our analytical results, it is apparent that, between the QL and DQN with the same 

length (0.9 km), DQN performed better than the QL model. This is because of DQN’s ability to 

take continuous traffic parameters and scalability 

Another observation of trying two thresholds- risk = 50 and risk ≥10, showed that the agent was 

not able to recognize most of the crash prone situations when the threshold was set to 50. This 

resulted in a drastic deterioration of the safety of the targeted location. Whereas the threshold of 

risk ≥10 performed well in terms of identifying crash prone situations and in decreasing the number 

of crashes in the target section.  

The comparison of the performance of QL and DQN-based models can be done from two point of 

views- comparison with non-RL based VSL control and RL-based VSL control. From the previous 

studies discussed in section 5.2, it is evident that the application of VSL is an ad-hoc basis. The 

VSL strategies and control measurement is highly dependent on the traffic on the particular road 

network. RL-based VSL control has the advantage of adopting various traffic conditions and has 

the ability to apply VSL accordingly due to its model-free structure. Another way of comparison 

is between two RL-based VSL methods applied in this thesis: QL and DQN.  
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QL is the basic reinforcement learning method and DQN is a combination of QL and deep learning 

(neural network).  According to Hasselt et al., (2016), QL algorithm may overestimate action 

values under certain conditions, and another deep learning method such as Double DQN can help 

reduce the overestimation resulting in better learning. Another study (Li et al., 2017) showed that 

an offline QL-based VSL control reduced travel time by 49.34% in stable demand scenario 

compared to feedback-based VSL control. In this study, the QL and DQN-based VSL control were 

employed and it was found that the DQN-based VSL control outperformed QL-based VSL control 

method by 1.3% in terms of safety improvement. Since, the DQN has the ability of including 

continuous traffic data and has added advantage of random sampling from experience reply, it is 

expected that DQN would perform better given the learning rate and discount factor etc. remains 

the same. However, QL uses a set of pre-defined combinations of states and actions to iterate for 

each time step, hence the number of iterations can be limited by the state-action tuple. On the other 

hand, the DQN is dependent on the number of layers and the number of neurons and the rate of 

experience reply. The performance and the execution time (or, iteration number) is dependent on 

the combinations of the mentioned factors. For example, the deeper the layers are, the better would 

be the performance but at the cost of longer execution time. It takes several trials to decide upon a 

set of factors (i.e. neurons, layers, learning rate etc.). Considering the time and simulation 

complexities, DQN takes longer time and more effort which might give an impression that QL is 

a better choice. But, QL’s lack of scalability or inability to incorporate large scale continuous data 

is a big issue while handling complicated traffic data. Once established, DQN can be used for 

feeding more data with less trials to decide the more or less optimum values of the factors. Hence, 

in the long run, DQN will be a better choice over QL. 

No similar study is currently available to compare the significance of the difference of the 

performances between QL and DQN-based VSL control to reduce crash risk. As learning rate, 

number of study segment, iteration numbers influence the agent’s decision of selecting actions, 

further study is required to investigate with several scenarios, including additional objective 

functions such as TTT, and other RL-based algorithms such as Asynchronous Actor-Critic Agents 

(A3C) or Long-short-term memory (LSTM) methods etc. 
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6.3 Future scope of work 

1. Transferability of an RTCPM can be tested in three ways- terms of detector layout, adaptability 

and fading properties of the algorithm of the model. One of the properties for transferability is 

achieved by generating uniformity in detector layout by using CTM. The other properties i.e. 

adaptability and fading can be attained by employing machine learning algorithms like 

Bayesian network, K-nearest neighbors (KNN) etc. (Hossain and Muromachi, 2011, 

Katrakazas et al, 2017). These machine learning algorithms has an inherent ability to modify 

it to become transferable. However, the KNN was referred as performing in slow speed and 

BN requires high density data. In this thesis, BN and DBN was employed as traffic data was 

available for every minute (24h) and for six months. Once the RTCPM is built, the model 

would run based on the data it was trained on and with the addition of new data, the model 

updates itself and fades away the historical data. In future this features should be tested while 

investigating transferability of a model. Additionally, a crash prediction model of an 

expressway not only influenced by the traffic data, but also affected by the urban design 

(Hossain et al, 2018) and its surrounding environment, road geometry etc. A study ranked the 

predictive power of various factors by Granger causality analysis, and established the order of 

crash predictive power as traffic flow > traffic accident > geographical Position > weather + 

air quality + holiday + time period, the (Ren et al, 2017). Although, traffic parameters are the 

most influential ones, road geometry parameters should be considered as information variables 

while constructing RTCPMs in future to ensure transferability. 

2. In order to implement VSL, in thesis, the driving compliance of 100% is assumed. However, 

the assumption might be far from the reality. In case of the study location, route 4 of Tokyo 

metropolitan expressway, there is no VSL control available currently. Hence, verification of 

driver’s compliance is not possible for this thesis.  

Driver’s compliance or, how drivers respond after activating VSL (or, posted speed limit) is a 

significant issue which must be confirmed by comparing it with the observed speed value after 

posted speed limit from the field data. This ensures the effectiveness and real-world 

applicability of the VSL control.  
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One way to adopt driver’s compliance into VSL control could be done by observing the 

driver’s driving behavior. In real –world, a driver might choose to speed up after observing the 

posted speed limit in an unsaturated condition (Li et al., 2017). Hence, the difference between 

posted speed and the observed ‘after speed’ can be added to the posted speed limit which can 

be the revised VSL value,𝑉𝑆𝐿(𝑛𝑒𝑤) = min{𝑉𝐹, 𝑉𝑆𝐿 + ∆𝑉𝑜𝑣𝑒𝑟𝑠𝑝𝑒𝑒𝑑}. After simulating with the 

revised posted limit, the model’s performance can be checked with observed data. Based on 

the result, some kind of incentives can be introduced, so that drivers responds to the posted 

VSL value. However, this thesis did not consider driver’s compliance as an objective. The 

study area, route 3 and route 4 of Tokyo metropolitan expressway does not consist VSL control 

till date. Hence, the driver’s actual speeds after posted VSL cannot be measured to incorporate 

the ‘over speed’ value into the simulation and validation. 

3. With the advancement of hardware capacities, the use of RL models has increased 

tremendously (Chollet, F, 2016) which makes them capable of incorporating huge database. In 

the field of transportation RL is being used for active traffic management through congestion 

analysis (Rezaee et al., 2012), reducing traffic gridlock (El-Tantawy et al., 2010), even for 

VSL control for reducing travel time and vehicle emission (Zhu and Ukkusuri, 2014), in 

eliminating traffic congestions at recurrent bottlenecks (Li et al, 2017). In terms of reducing 

crash risk, few studies were conducted such as support vector machine (SVM) was used for 

crash prediction (Sun et al, 2017). Deep neural network (DNN) was used for predicting crash-

prone traffic conditions (Kui et al., 2018) where they found that DNN can predict 63-65% of 

the crashes with 5% false alarm rate. Furthermore, it also addressed the class- balancing issue 

of the training data and concluded that the prediction performance degrades with the increasing 

size of balanced data. Another study by (Dong et al, 2018) developed a deep learning model 

which includes an additional regression layer utilizing multivariate negative binomial (MVNB) 

model. This model showed improved performance in comparison to deep learning model 

without the additional regression layer and the SVM model. A study by Ren et al, 2018 applied 

long-short-term memory (LSTM) method to predict crash risk based on frequency of crash risk 

to capture temporal-spatial patterns of crashes.  

The two basic form of reinforcement learning- QL and DQN was employed in this thesis. The 

QL utilizes a Q-table which includes all the traffic states values in it. The QL agent’s target is 
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to maximize Q-value by selecting appropriate speed values in certain traffic conditions. On the 

other hand, DQN utilizes the function approximation capability of neural network by forward-

and-back propagating the network parameters (e.g. weights, biases etc.) to adjust the 

parameters in a way so that appropriate action which has the highest Q-value gets selected.  

4. Several studies (Lyles et al., 2004, Soriguera et al., 2013, Li et al., 2017 ) suggested that the 

for any VSL control implemented, it would not affect the flow elsewhere in the network, or 

the overall efficiency of the network. To ensure that, additional objectives such as total time 

spent (TTS), delays on queues (congestion control) etc. can be formulated in addition to crash 

risk reduction while implementing the VSL control. Furthermore, the traffic states before and 

after an event or incident can be observed and considered as a precursor, or state set in the RL-

based VSL control. 

5. In the past, various RTCPMs have been proposed which can broadly divided into- various 

types of logistic regression models, neural networks, Bayesian networks, and classifying 

methods, such as, classification and regression trees, support vector machine (SVM) or simple 

rule based classifier. From knowledge generation perspective, Bayesian network and 

classification based methods have advantages over other methods. Both the methods have 

graphical representations, making the interrelationship among variables easy to comprehend. 

Classification and regression trees mainly explains the direction of classification of an 

observation. For example, ‘crash’ can be a dependent variable and the method can identify 

combinations of the observations which are more likely to be associated with the crash. SVM 

models Li et al. (2012) can also evaluate the observation parameters in terms crash or injury 

severity which proved to have a decent accuracy considering roadway geometry and weather 

conditions (Qu et al., 2012). These methods can be considered in future RTCPM construction. 

Other DL (Deep Learning) methods such a LSTM, RNN can be used for RTCP, where the AI-

based traffic monitoring camera can capture image data of individual vehicle and generate data 

such as- vehicle type, vehicle capacity, number plate etc. With the help of these data and 

applying AI, traffic information like trip generation information, traffic dynamics can be 

understood. 
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6. In a recent study (Yuan et al., 2019) Bayesian conditional logistic models were developed by 

incorporating the Bluetooth, adaptive signal control, and weather data in addition to the 

traditional traffic data to predict crash in real-time, which indicated the most influential 

parameters to predict crash and for application of integrated active traffic management.   

7. The data can be collected using Bluetooth sensors, which can detect Bluetooth enabled vehicles 

using the fixed censors along roadside. This way, individual driver’s behavior, origin-

destination, speed, occupancy etc. can be extracted from the Bluetooth sensors with precision. 

This has been applied in Chuo expressway in Japan, some arterial roads in Australia and 

Bangkok. 

8. This goes without saying that in order to ensure throughput of a road network, the outflow of 

a bottleneck area needs to be controlled so that the inflow entering the bottleneck remains 

lower than the outflow from that bottleneck area until the discharge capacity is restored (Kerner, 

2007). This can be achieved with traffic control measures such as: ramp metering that limit the 

number of vehicles entering the bottleneck or/and VSL that reduce the speed of traffic to delay 

it from entering the bottleneck. Hence, these intervention methods must be considered in the 

proactive traffic control measurement in the future. 

9. One area of future work will be to the investigation of the optimum location of the simulated 

detectors or cells by experimenting with different cell lengths and different locations (50, 100, 

and 150 m upstream and downstream). Moreover, other than freeway stretches, the model in 

future can be upgraded to incorporate ramps rather than considering only the basic freeway 

segments. The RTCPM is highly dependent on the quantity as well as the quality of the traffic 

flow data. Therefore, it is recommended that more case studies and different time-steps should 

be incorporated to ensure an efficient model that can be implemented in real-time.  
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APPENDIX I 

 

 

 

 

 

 

 

 

 

Figure 1. Individual and aggregated fundamental diagram (detector 48-39), June3 
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Figure 2. Individual and aggregated fundamental diagram (detector 48-39), June3 
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  Figure 3. Individual and aggregated fundamental diagram (detector 48-39), April 8 
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Figure 4. Individual and aggregated fundamental diagram (detector 48-39), April 8 
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Figure 5. Individual and aggregated fundamental diagram (detector 48-39), March 18 
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Figure 6. Individual and aggregated fundamental diagram (detector 48-39), March 18 
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  Figure 7. Individual and aggregated fundamental diagram (detector 48-39), July 22 
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Figure 8. Individual and aggregated fundamental diagram (detector 48-39), July 15 
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Figure 9. Individual and aggregated fundamental diagram (detector 48-39), July 15 
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Table 1. Individual and aggregated fundamental diagram (detector 48-39), June 3 

Table 2. Individual and aggregated fundamental diagram (detector 48-39), April 8 

Table 3. Individual and aggregated fundamental diagram (detector 48-39), March 18 

Table 4. Individual and aggregated fundamental diagram (detector 48-39), July 22 

Table 5. Individual and aggregated fundamental diagram (detector 48-39), July 15 
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speed (km/h) C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value

77.05 0.6 76.95 0.6 74.7 0.6 81.45 0.6 86.95 0.6 80.1 0.6 81.95 0.6 88.55 0.7 85.1 0.6 80 0.6 86.15 0.6 77.7 0.6

81.15 0.6 84.5 0.6 77 0.6 76.5 0.6 89.55 0.7 85 0.6 77.85 0.6 87.55 0.6 87 0.6 83.35 0.6 79.45 0.6 87.7 0.6

81.5 0.6 86.7 0.6 88.45 0.7 79.45 0.6 83 0.6 87.5 0.6 87.3 0.6 87.05 0.6 89.25 0.7 84.6 0.6 81.15 0.6 84.5 0.6

78.95 0.6 82.75 0.6 87.55 0.6 75.65 0.6 81.6 0.6 86.3 0.6 85.25 0.6 96.2 0.7 90.1 0.7 80.2 0.6 79.65 0.6 82.75 0.6

81.45 0.6 84.95 0.6 82 0.6 79 0.6 81.9 0.6 85.05 0.6 71.6 0.5 94.25 0.7 94.3 0.7 85.7 0.6 80 0.6 83.45 0.6

85.85 0.6 82.75 0.6 81.5 0.6 77.3 0.6 83.55 0.6 84.1 0.6 79.9 0.6 80.7 0.6 89.1 0.7 87.7 0.6 83.15 0.6 83.55 0.6

91.6 0.7 86.1 0.6 81.75 0.6 83.05 0.6 81.6 0.6 83.55 0.6 79.85 0.6 80.8 0.6 77.6 0.6 85.35 0.6 83.6 0.6 82.6 0.6

84.1 0.6 84.95 0.6 84.95 0.6 86.2 0.6 86.95 0.6 82.25 0.6 79.15 0.6 84.5 0.6 77.85 0.6 79.2 0.6 88.7 0.7 83 0.6

72.6 0.5 87.45 0.6 91 0.7 92.75 0.7 83.7 0.6 81.45 0.6 78.7 0.6 91.35 0.7 93.4 0.7 78.8 0.6 78.9 0.6 83.75 0.6

79.9 0.6 80 0.6 84.6 0.6 88.25 0.7 93.25 0.7 82.55 0.6 79.85 0.6 87.15 0.6 92.05 0.7 82.25 0.6 79.4 0.6 80 0.6

87.55 0.6 82.3 0.6 77.8 0.6 88.3 0.7 93.5 0.7 93.7 0.7 78.9 0.6 86.95 0.6 89.5 0.7 80.65 0.6 78.15 0.6 76.95 0.6

89.8 0.7 83.55 0.6 78.6 0.6 77.2 0.6 87.25 0.6 97 0.7 81.3 0.6 89 0.7 87.7 0.6 82.55 0.6 79.7 0.6 78.4 0.6

87.3 0.6 87.95 0.7 78.3 0.6 79.75 0.6 74.2 0.5 91.55 0.7 84.1 0.6 89.8 0.7 84.7 0.6 85.1 0.6 84.7 0.6 80.8 0.6

85.35 0.6 85.25 0.6 80.85 0.6 84.7 0.6 79.9 0.6 81.5 0.6 87.15 0.6 93.75 0.7 86.1 0.6 85.65 0.6 90.85 0.7 86.8 0.6

85.1 0.6 84.65 0.6 82.25 0.6 86.35 0.6 88.65 0.7 83.2 0.6 84.2 0.6 84.4 0.6 86.5 0.6 86.1 0.6 88.75 0.7 83.2 0.6

89.9 0.7 86.05 0.6 81.05 0.6 87.7 0.6 93.05 0.7 94.3 0.7 80.3 0.6 70.1 0.5 77.3 0.6 84.8 0.6 89.6 0.7 81.9 0.6

89.45 0.7 87.45 0.6 85.65 0.6 85.6 0.6 93 0.7 100.2 0.7 81.4 0.6 75.8 0.6 77 0.6 85.4 0.6 100.2 0.7 84.7 0.6

90.65 0.7 86.55 0.6 90.35 0.7 84.9 0.6 83 0.6 88.95 0.7 81.1 0.6 89 0.7 80.4 0.6 73.6 0.5 97 0.7 84.1 0.6

79.6 0.6 87.45 0.6 89.8 0.7 81.95 0.6 82.85 0.6 86.25 0.6 85.35 0.6 88.9 0.7 81.7 0.6 75.45 0.6 81 0.6 86.2 0.6

75.2 0.6 77.6 0.6 84.6 0.6 81.65 0.6 84.65 0.6 88.15 0.7 89.7 0.7 89.75 0.7 78.15 0.6 87.2 0.6 80 0.6 78.4 0.6

81.7 0.6 84.75 0.6 73.1 0.5 84.95 0.6 81 0.6 84.05 0.6 89.85 0.7 86.6 0.6 81.65 0.6 87.1 0.6 90.15 0.7 78.8 0.6

78.3 0.6 84.2 0.6 70.25 0.5 78.2 0.6 88.7 0.7 90.5 0.7 88.05 0.7 81.5 0.6 78.5 0.6 86.3 0.6 93.85 0.7 84.8 0.6

83.45 0.6 84.4 0.6 85.2 0.6 75.45 0.6 79.6 0.6 88.2 0.7 93.1 0.7 77.05 0.6 77.65 0.6 86.7 0.6 91.45 0.7 87.4 0.6

84.25 0.6 80.85 0.6 88.75 0.7 81.05 0.6 77.4 0.6 81.3 0.6 91.1 0.7 76.4 0.6 74.45 0.6 81.1 0.6 92.7 0.7 83.75 0.6

81.8 0.6 83.3 0.6 89.7 0.7 80.85 0.6 77.35 0.6 77.9 0.6 81.3 0.6 81.1 0.6 79.75 0.6 81.05 0.6 93.4 0.7 81.25 0.6

80.05 0.6 85.1 0.6 82.25 0.6 86.1 0.6 78.55 0.6 87.75 0.7 78.85 0.6 74.2 0.5 84.85 0.6 83.05 0.6 94.75 0.7 80.3 0.6

81.35 0.6 87.15 0.6 81.05 0.6 81.5 0.6 73.85 0.5 81.35 0.6 92.85 0.7 80.45 0.6 78.6 0.6 81.95 0.6 93 0.7 82.35 0.6

85.75 0.6 97.65 0.7 79.65 0.6 80.8 0.6 79.25 0.6 79.1 0.6 93.35 0.7 82.65 0.6 79.4 0.6 79.6 0.6 86.3 0.6 88.6 0.7

76.9 0.6 91.25 0.7 81.75 0.6 81.45 0.6 80.3 0.6 87.95 0.7 89.4 0.7 81.35 0.6 78.35 0.6 77.45 0.6 73.6 0.5 88.7 0.7

77.65 0.6 81 0.6 79.7 0.6 83.8 0.6 79.6 0.6 88.6 0.7 89.25 0.7 80.05 0.6 81.1 0.6 81.1 0.6 84.1 0.6 79.4 0.6

83.05 0.6 81.75 0.6 69.7 0.5 85 0.6 85.35 0.6 87.5 0.6 87.45 0.6 77 0.6 83.15 0.6 82.85 0.6 92.8 0.7 84.1 0.6

80.35 0.6 80.45 0.6 77.5 0.6 76.2 0.6 85.2 0.6 86.15 0.6 83.95 0.6 81.6 0.6 78.25 0.6 80.05 0.6 87.95 0.7 82.4 0.6

78.85 0.6 82.65 0.6 81.8 0.6 78.75 0.6 75.4 0.6 86.65 0.6 88.55 0.7 87.3 0.6 80.3 0.6 81.7 0.6 85.1 0.6 81.8 0.6

81.35 0.6 87.65 0.6 79.7 0.6 87.85 0.7 80.45 0.6 71 0.5 86.65 0.6 90.65 0.7 87.05 0.6 81.9 0.6 87.15 0.6 85.05 0.6

76.35 0.6 86.6 0.6 79.7 0.6 86.45 0.6 85.2 0.6 68.9 0.5 81.7 0.6 88.15 0.7 88 0.7 83.1 0.6 86.15 0.6 81.5 0.6

84.65 0.6 90.1 0.7 74.45 0.6 88.65 0.7 88.7 0.7 87.05 0.6 84.15 0.6 80.4 0.6 83.5 0.6 85.95 0.6 85.05 0.6 87.15 0.6

90.8 0.7 81 0.6 75 0.6 83.85 0.6 81.7 0.6 84.75 0.6 83.35 0.6 82.05 0.6 75.5 0.6 84.5 0.6 89.85 0.7 88.15 0.7

88.7 0.7 84.2 0.6 77.25 0.6 83.25 0.6 81.1 0.6 85.15 0.6 85.3 0.6 82.15 0.6 73.15 0.5 72.7 0.5 86.8 0.6 96.15 0.7

76.9 0.6 81.35 0.6 79.15 0.6 81.3 0.6 79.1 0.6 80.35 0.6 85.6 0.6 80 0.6 79.15 0.6 77.3 0.6 74.3 0.6 91.5 0.7

speed (km/h) C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value

80.8 0.6 81.7 0.6 87.4 0.6 82.6 0.6 83.1 0.6 83.9 0.6 87.15 0.6 90.05 0.7 82.5 0.6 83.85 0.6 91.45 0.7 92.4 0.7

81.6 0.6 71 0.5 77.4 0.6 68 0.5 81.7 0.6 83.3 0.6 87.35 0.6 81.65 0.6 81 0.6 83.5 0.6 89.35 0.7 92.85 0.7

82.9 0.6 75.15 0.6 79.85 0.6 67.8 0.5 83.1 0.6 83.5 0.6 89.55 0.7 80.2 0.6 84.05 0.6 86 0.6 86.95 0.6 91.55 0.7

84.5 0.6 83.1 0.6 83.9 0.6 87.15 0.6 80.35 0.6 80.15 0.6 73.3 0.5 81.25 0.6 84.15 0.6 89.05 0.7 81.05 0.6 91.25 0.7

80.5 0.6 81.7 0.6 83.3 0.6 87.35 0.6 77.7 0.6 82.75 0.6 68.75 0.5 81.85 0.6 89.8 0.7 89.55 0.7 80.15 0.6 89.15 0.7

76.95 0.6 83.1 0.6 83.5 0.6 89.55 0.7 77.3 0.6 84.5 0.6 74.1 0.5 83.3 0.6 89.05 0.7 85.65 0.6 80.45 0.6 88.7 0.7

76.75 0.6 80.35 0.6 80.15 0.6 73.3 0.5 81.1 0.6 87.25 0.6 73.9 0.5 86.25 0.6 97.4 0.7 87.65 0.6 90.3 0.7 89.1 0.7

85 0.6 77.7 0.6 82.75 0.6 68.75 0.5 86.9 0.6 87.85 0.7 76.05 0.6 90.5 0.7 89 0.7 88.55 0.7 89.2 0.7 85.9 0.6

75.9 0.6 77.3 0.6 84.5 0.6 74.1 0.5 75.7 0.6 83 0.6 66.9 0.5 86.9 0.6 81.7 0.6 71.5 0.5 79.2 0.6 75.9 0.6

80.5 0.6 81.1 0.6 87.25 0.6 73.9 0.5 77.85 0.6 79.6 0.6 82.3 0.6 82.85 0.6 83.35 0.6 81.85 0.6 82.15 0.6 77.4 0.6

87.6 0.6 86.9 0.6 87.85 0.7 76.05 0.6 75.3 0.6 81.4 0.6 81.25 0.6 79.5 0.6 86.15 0.6 90.8 0.7 83 0.6 89.25 0.7

85.05 0.6 75.7 0.6 83 0.6 66.9 0.5 79.2 0.6 83.8 0.6 76.6 0.6 78.25 0.6 85.25 0.6 84 0.6 83.35 0.6 88.7 0.7

79.85 0.6 77.85 0.6 79.6 0.6 82.3 0.6 78.8 0.6 83.25 0.6 71.7 0.5 78.65 0.6 89.6 0.7 79.85 0.6 86.8 0.6 84.2 0.6

77.35 0.6 75.3 0.6 81.4 0.6 81.25 0.6 77.5 0.6 90.55 0.7 71.5 0.5 90.7 0.7 93.35 0.7 81.25 0.6 90.3 0.7 87.25 0.6

79.8 0.6 79.2 0.6 83.8 0.6 76.6 0.6 76.6 0.6 88.9 0.7 73.25 0.5 87.05 0.6 87.7 0.6 78.6 0.6 92.5 0.7 85.9 0.6

82.25 0.6 78.8 0.6 83.25 0.6 71.7 0.5 83 0.6 88.35 0.7 75.6 0.6 89.05 0.7 87.6 0.6 85.45 0.6 93.05 0.7 82 0.6

87.45 0.6 77.5 0.6 90.55 0.7 71.5 0.5 84.45 0.6 93.3 0.7 84.2 0.6 95.2 0.7 86.85 0.6 88.2 0.7 92.3 0.7 85.8 0.6

90.65 0.7 76.6 0.6 88.9 0.7 73.25 0.5 85.95 0.6 90.85 0.7 86.15 0.6 87.05 0.6 89.45 0.7 91.95 0.7 93.45 0.7 87 0.6

74.2 0.5 83 0.6 88.35 0.7 75.6 0.6 78.4 0.6 81.3 0.6 73.9 0.5 76.7 0.6 81.8 0.6 78 0.6 79.8 0.6 76 0.6

78.55 0.6 84.45 0.6 93.3 0.7 84.2 0.6 82.95 0.6 80.45 0.6 76.9 0.6 74.5 0.6 78.4 0.6 83.95 0.6 79.85 0.6 78.45 0.6

80.25 0.6 85.95 0.6 90.85 0.7 86.15 0.6 80.35 0.6 87.15 0.6 69.9 0.5 86.05 0.6 88.9 0.7 79.75 0.6 89.1 0.7 83.5 0.6

80 0.6 78.4 0.6 81.3 0.6 73.9 0.5 81.35 0.6 87.75 0.7 74.05 0.5 90.2 0.7 85.2 0.6 83.85 0.6 89.35 0.7 83.9 0.6

84.7 0.6 82.95 0.6 80.45 0.6 76.9 0.6 79.25 0.6 86.85 0.6 76.4 0.6 87.15 0.6 86.25 0.6 87.2 0.6 87.15 0.6 81.9 0.6

83.4 0.6 80.35 0.6 87.15 0.6 69.9 0.5 81.15 0.6 83.45 0.6 87.7 0.6 87.3 0.6 85.35 0.6 89.7 0.7 87.75 0.7 82.5 0.6

85.65 0.6 81.35 0.6 87.75 0.7 74.05 0.5 78.7 0.6 88.75 0.7 84.05 0.6 85.35 0.6 88.45 0.7 87.95 0.7 87.45 0.6 83.1 0.6

86.75 0.6 79.25 0.6 86.85 0.6 76.4 0.6 83.15 0.6 87.75 0.7 84.95 0.6 84.2 0.6 86.5 0.6 91.2 0.7 85.45 0.6 84.6 0.6

86.9 0.6 81.15 0.6 83.45 0.6 87.7 0.6 87.1 0.6 93.85 0.7 85.75 0.6 84.65 0.6 83.75 0.6 92.8 0.7 87.45 0.6 83.45 0.6

88.7 0.7 78.7 0.6 88.75 0.7 84.05 0.6 88.3 0.7 92.65 0.7 89.25 0.7 84 0.6 81.8 0.6 92.65 0.7 86 0.6 84.4 0.6

76.6 0.6 83.15 0.6 87.75 0.7 84.95 0.6 76 0.6 78.6 0.6 73.9 0.5 70.6 0.5 71.5 0.5 83 0.6 81.2 0.6 80.3 0.6

77.55 0.6 87.1 0.6 93.85 0.7 85.75 0.6 76.55 0.6 78.25 0.6 84.2 0.6 80.15 0.6 82.35 0.6 80.1 0.6 82.05 0.6 75.6 0.6

91.4 0.7 88.3 0.7 92.65 0.7 89.25 0.7 86.8 0.6 94.1 0.7 86.5 0.6 82.75 0.6 91.7 0.7 95 0.7 88.9 0.7 86.75 0.6

88.35 0.7 76 0.6 78.6 0.6 73.9 0.5 86.75 0.6 89.2 0.7 81.3 0.6 81.05 0.6 93.05 0.7 92.9 0.7 87.85 0.7 86.85 0.6

80.45 0.6 76.55 0.6 78.25 0.6 84.2 0.6 84.45 0.6 89.25 0.7 77 0.6 81.15 0.6 84.15 0.6 91.45 0.7 87.9 0.7 83.05 0.6

81.4 0.6 86.8 0.6 94.1 0.7 86.5 0.6 88.05 0.7 89.1 0.7 84.4 0.6 84.75 0.6 81.75 0.6 87.5 0.6 96.3 0.7 84.55 0.6

87.55 0.6 86.75 0.6 89.2 0.7 81.3 0.6 82.25 0.6 88.75 0.7 89.25 0.7 81.5 0.6 77.6 0.6 89.8 0.7 88.45 0.7 79.8 0.6

80.35 0.6 84.45 0.6 89.25 0.7 77 0.6 80.55 0.6 87.1 0.6 88.65 0.7 83.5 0.6 82.3 0.6 87.55 0.6 85.05 0.6 77.85 0.6

83.85 0.6 88.05 0.7 89.1 0.7 84.4 0.6 86.25 0.6 86.95 0.6 86.3 0.6 82.7 0.6 89.35 0.7 86.55 0.6 86.6 0.6 80.85 0.6

81.7 0.6 82.25 0.6 88.75 0.7 89.25 0.7 87.4 0.6 82.6 0.6 84.75 0.6 81.35 0.6 90.5 0.7 87.75 0.7 94.4 0.7 81.6 0.6

71 0.5 80.55 0.6 87.1 0.6 88.65 0.7 77.4 0.6 68 0.5 76.6 0.6 84.3 0.6 87.7 0.6 82 0.6 76.4 0.6 81.8 0.6

75.15 0.6 86.25 0.6 86.95 0.6 86.3 0.6 79.85 0.6 67.8 0.5 83 0.6 79.2 0.6 81.75 0.6 85.05 0.6 81.8 0.6 80.1 0.6

Figure 1 to 13. CFL values and speed values 
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speed (km/h) C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value

85.4 0.6 85.5 0.6 84.65 0.6 76.85 0.6 87.4 0.6 86.9 0.6 78.6 0.6 85.15 0.6 83 0.6 73.2 0.5 73.1 0.5 87.2 0.6

79.15 0.6 72.9 0.5 87.75 0.7 88.35 0.7 83.5 0.6 86.9 0.6 76.75 0.6 79.8 0.6 82.5 0.6 80.2 0.6 78.4 0.6 75.7 0.6

90.15 0.7 76.4 0.6 84.1 0.6 85.05 0.6 91.35 0.7 87.1 0.6 75.75 0.6 78.35 0.6 80.3 0.6 82 0.6 67.85 0.5 74.2 0.5

89.65 0.7 91.85 0.7 87.05 0.6 84.3 0.6 94.7 0.7 85.85 0.6 77.9 0.6 81.05 0.6 80.1 0.6 81.2 0.6 75.25 0.6 79.55 0.6

98.2 0.7 86.6 0.6 65.45 0.5 81.5 0.6 84.4 0.6 81.65 0.6 78.4 0.6 81.2 0.6 75.65 0.6 75.25 0.6 80.2 0.6 83.2 0.6

90.25 0.7 89.1 0.7 64.15 0.5 66.45 0.5 90 0.7 73.9 0.5 81.4 0.6 82.6 0.6 71.95 0.5 80.8 0.6 83.95 0.6 80 0.6

95 0.7 83.35 0.6 62.6 0.5 72.65 0.5 87.6 0.6 75.85 0.6 77.5 0.6 83.7 0.6 77.35 0.6 79.35 0.6 85.85 0.6 83.2 0.6

91.45 0.7 79.95 0.6 78.95 0.6 76.25 0.6 84.55 0.6 86.65 0.6 79.9 0.6 74.2 0.5 87.6 0.6 81.1 0.6 84 0.6 78.65 0.6

89 0.7 82.4 0.6 85.8 0.6 79.1 0.6 84.95 0.6 86.1 0.6 80.5 0.6 77.45 0.6 83.9 0.6 82.85 0.6 84.55 0.6 78.4 0.6

89.9 0.7 83.7 0.6 91.25 0.7 86.2 0.6 90.15 0.7 86.8 0.6 82 0.6 77.65 0.6 80.65 0.6 77.2 0.6 85.1 0.6 72.05 0.5

77.5 0.6 84.45 0.6 92.4 0.7 87.95 0.7 94.85 0.7 79.8 0.6 80.05 0.6 78.85 0.6 79.45 0.6 80.75 0.6 72.9 0.5 73.9 0.5

76.8 0.6 67.3 0.5 88.35 0.7 93.2 0.7 95.4 0.7 78.9 0.6 77.6 0.6 83.2 0.6 80.85 0.6 79.1 0.6 77.55 0.6 70.5 0.5

94.25 0.7 66.4 0.5 77.6 0.6 91.9 0.7 98.7 0.7 78.4 0.6 73.7 0.5 79.2 0.6 75.75 0.6 80.4 0.6 81.05 0.6 74.4 0.6

90.85 0.7 88.4 0.7 77.1 0.6 73.6 0.5 88.75 0.7 92.3 0.7 72 0.5 82.65 0.6 75.35 0.6 79.9 0.6 83.7 0.6 83.15 0.6

87.9 0.7 85.85 0.6 65.9 0.5 81.5 0.6 74 0.5 89 0.7 84.6 0.6 86.05 0.6 70.45 0.5 80.25 0.6 88.6 0.7 84.7 0.6

90.75 0.7 83.65 0.6 59 0.4 78.2 0.6 79.1 0.6 78.8 0.6 82 0.6 88.4 0.7 82.4 0.6 84.75 0.6 86 0.6 80.15 0.6

87.15 0.6 80.9 0.6 89.45 0.7 87.75 0.7 92.95 0.7 78.25 0.6 71.8 0.5 85.85 0.6 84.6 0.6 91.85 0.7 83.2 0.6 76.05 0.6

84.85 0.6 83.35 0.6 90.45 0.7 88.05 0.7 91 0.7 79.95 0.6 78.85 0.6 73.9 0.5 88.3 0.7 91 0.7 79.4 0.6 69.65 0.5

84 0.6 71.65 0.5 83.5 0.6 89.5 0.7 94 0.7 79.85 0.6 83.45 0.6 76.7 0.6 78 0.6 83.15 0.6 82.65 0.6 71.5 0.5

85.4 0.6 71.05 0.5 85.85 0.6 87.8 0.7 82.5 0.6 74.2 0.5 83.6 0.6 80.35 0.6 79.75 0.6 70.5 0.5 84.4 0.6 72.1 0.5

80.6 0.6 69.65 0.5 85.9 0.6 92.05 0.7 77.6 0.6 82 0.6 76.5 0.6 81.2 0.6 78.4 0.6 76.05 0.6 78.6 0.6 76.9 0.6

85.35 0.6 67.2 0.5 83.7 0.6 89.05 0.7 75.3 0.6 82.75 0.6 76.8 0.6 80.9 0.6 83.6 0.6 83.65 0.6 76.15 0.6 68.4 0.5

86.25 0.6 73.25 0.5 80.2 0.6 86.9 0.6 82.85 0.6 82.9 0.6 79.2 0.6 82.5 0.6 82.2 0.6 89.1 0.7 83.5 0.6 75.6 0.6

85.85 0.6 81.45 0.6 78.65 0.6 72.6 0.5 91.2 0.7 84.35 0.6 77.15 0.6 78.85 0.6 84.25 0.6 94.85 0.7 85.55 0.6 79.6 0.6

86.3 0.6 88 0.7 81.45 0.6 75.85 0.6 87.7 0.6 81.9 0.6 85.7 0.6 82.4 0.6 92.7 0.7 82.35 0.6 80.1 0.6 77.9 0.6

85.25 0.6 81.15 0.6 86.95 0.6 86.25 0.6 82.6 0.6 78.6 0.6 93.1 0.7 83.1 0.6 83.8 0.6 79 0.6 77.75 0.6 73.35 0.5

82.05 0.6 69.75 0.5 84.15 0.6 91.6 0.7 82.3 0.6 78.35 0.6 82.1 0.6 83.9 0.6 94.15 0.7 76.25 0.6 78.5 0.6 71.5 0.5

85.35 0.6 62.3 0.5 83 0.6 86.5 0.6 83.3 0.6 77 0.6 78.6 0.6 70.6 0.5 87.5 0.6 79.6 0.6 82.5 0.6 67.65 0.5

86.2 0.6 65.15 0.5 88.85 0.7 85.2 0.6 79.1 0.6 80.7 0.6 79.55 0.6 75.35 0.6 77.2 0.6 81.3 0.6 85.9 0.6 70.3 0.5

94.35 0.7 66.25 0.5 81.3 0.6 82.95 0.6 79.5 0.6 80.7 0.6 80.05 0.6 83 0.6 80.4 0.6 75.6 0.6 86.55 0.6 74.55 0.6

80.4 0.6 72.4 0.5 80.15 0.6 85.4 0.6 79.35 0.6 77.6 0.6 80.35 0.6 82.5 0.6 90.2 0.7 79.4 0.6 79.9 0.6 78.85 0.6

82.45 0.6 71.7 0.5 83.45 0.6 87.3 0.6 88.75 0.7 77.55 0.6 81.85 0.6 81.55 0.6 89.7 0.7 78 0.6 79.85 0.6 73.5 0.5

81.8 0.6 81.6 0.6 77.8 0.6 85.5 0.6 90.15 0.7 76.35 0.6 76.6 0.6 80.05 0.6 89.15 0.7 76.6 0.6 73.35 0.5 76.2 0.6

83.2 0.6 70.1 0.5 78.4 0.6 70.9 0.5 88.75 0.7 80.8 0.6 84.6 0.6 80.35 0.6 92.05 0.7 74.15 0.5 77.5 0.6 71.6 0.5

85.95 0.6 68.65 0.5 87.15 0.6 77.6 0.6 77.6 0.6 81.3 0.6 82.05 0.6 75.7 0.6 85.3 0.6 74.4 0.6 79.75 0.6 71 0.5

93.65 0.7 66.95 0.5 85.5 0.6 88.5 0.7 74.1 0.5 71.9 0.5 84.1 0.6 77.55 0.6 79.1 0.6 71.9 0.5 83.6 0.6 71.45 0.5

94.55 0.7 70.25 0.5 79.9 0.6 81.7 0.6 88.35 0.7 74.05 0.5 75.7 0.6 77.95 0.6 82.95 0.6 79.15 0.6 79 0.6 67.85 0.5

89.6 0.7 66.5 0.5 73.9 0.5 85.75 0.6 83.85 0.6 78 0.6 79 0.6 76.8 0.6 88.85 0.7 84.6 0.6 83.6 0.6 66.45 0.5

88.7 0.7 75.4 0.6 69.05 0.5 84.45 0.6 85.1 0.6 76.15 0.6 85.35 0.6 78.6 0.6 71.8 0.5 89.4 0.7 87.45 0.6 73.6 0.5

speed (km/h) C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value

80.55 0.6 81.4 0.6 74.2 0.5 86.4 0.6 80.8 0.6 83.7 0.6 92.15 0.7 78.2 0.6 75.2 0.6 88.65 0.7 92.8 0.7 85.25 0.6

85.2 0.6 88.65 0.7 75.4 0.6 84.15 0.6 81.25 0.6 85.15 0.6 87.8 0.7 83 0.6 75.55 0.6 80.3 0.6 83.95 0.6 84.7 0.6

79.8 0.6 89.05 0.7 87.05 0.6 82.85 0.6 77 0.6 83.5 0.6 89.65 0.7 86.25 0.6 74.35 0.6 82.3 0.6 81.5 0.6 82.7 0.6

80.55 0.6 80 0.6 84.3 0.6 87.35 0.6 79.3 0.6 81.75 0.6 88.75 0.7 85.55 0.6 73.6 0.5 84.4 0.6 83.95 0.6 75.5 0.6

70.65 0.5 80.75 0.6 71.5 0.5 85 0.6 78.8 0.6 83.75 0.6 87.5 0.6 85.35 0.6 78.1 0.6 86.7 0.6 87 0.6 83.95 0.6

71.2 0.5 79 0.6 78.55 0.6 74.7 0.6 78.6 0.6 83.95 0.6 88.35 0.7 86.05 0.6 83.65 0.6 84.15 0.6 85.05 0.6 77.95 0.6

73.05 0.5 79.7 0.6 78.5 0.6 76.35 0.6 76.5 0.6 83.3 0.6 87.7 0.6 91.45 0.7 83.5 0.6 89 0.7 92.5 0.7 82.05 0.6

75.1 0.6 82.55 0.6 81.9 0.6 92.25 0.7 85.1 0.6 73.9 0.5 90.35 0.7 85.25 0.6 80.5 0.6 90.85 0.7 87.35 0.6 80.5 0.6

77.1 0.6 84 0.6 79.2 0.6 83.85 0.6 79.85 0.6 79.65 0.6 75.7 0.6 83.4 0.6 80.25 0.6 89.25 0.7 90.3 0.7 82.7 0.6

81.35 0.6 85.95 0.6 79.55 0.6 76.65 0.6 78 0.6 84.4 0.6 79.6 0.6 71 0.5 85.55 0.6 91.9 0.7 91.95 0.7 84.7 0.6

87.6 0.6 82.85 0.6 80.65 0.6 78.05 0.6 79.85 0.6 82.2 0.6 86.85 0.6 82.45 0.6 72.9 0.5 90.35 0.7 97.8 0.7 88.95 0.7

83.5 0.6 88 0.7 85.5 0.6 80.3 0.6 81.55 0.6 82.5 0.6 89.2 0.7 85.2 0.6 82.95 0.6 83 0.6 91.4 0.7 88.55 0.7

68.6 0.5 88.35 0.7 85.55 0.6 78.55 0.6 74.45 0.6 82.15 0.6 89.15 0.7 86.55 0.6 86.05 0.6 84.8 0.6 84.4 0.6 91.3 0.7

69.9 0.5 81.7 0.6 85.85 0.6 84.55 0.6 80.1 0.6 79.05 0.6 86.45 0.6 84.9 0.6 84.9 0.6 87.4 0.6 85.5 0.6 77.5 0.6

73.3 0.5 78.1 0.6 75.4 0.6 87.75 0.7 88.95 0.7 81.35 0.6 88.65 0.7 82.95 0.6 86.05 0.6 89.4 0.7 88.85 0.7 88.25 0.7

77.55 0.6 91.55 0.7 77.2 0.6 76.2 0.6 86.55 0.6 86.85 0.6 87.45 0.6 76.1 0.6 75.35 0.6 89.85 0.7 85.45 0.6 84.75 0.6

81.05 0.6 90.2 0.7 82.1 0.6 82.85 0.6 77 0.6 93.1 0.7 85.4 0.6 79.35 0.6 74.9 0.6 89.25 0.7 84.05 0.6 83.85 0.6

80.1 0.6 89.15 0.7 83.45 0.6 79.2 0.6 77.35 0.6 74.7 0.6 83 0.6 85.1 0.6 70 0.5 88.8 0.7 87.85 0.7 93.25 0.7

73.35 0.5 87.95 0.7 82.1 0.6 83.65 0.6 81.6 0.6 88.3 0.7 78.2 0.6 91.45 0.7 86.8 0.6 89.85 0.7 86.05 0.6 87.55 0.6

71.05 0.5 80.5 0.6 87.7 0.6 85.35 0.6 81.25 0.6 82.45 0.6 73.8 0.5 83 0.6 90.95 0.7 90.25 0.7 88.25 0.7 88.9 0.7

78.9 0.6 81.6 0.6 79.4 0.6 78.05 0.6 82.05 0.6 81.5 0.6 89.5 0.7 78.4 0.6 80 0.6 96.05 0.7 87.4 0.6 89.2 0.7

77.4 0.6 80.65 0.6 80.25 0.6 82.6 0.6 81.05 0.6 87.65 0.6 84.85 0.6 75.55 0.6 77.7 0.6 77.2 0.6 89.15 0.7 92.7 0.7

76 0.6 80.35 0.6 80.75 0.6 83.25 0.6 82.9 0.6 85.15 0.6 81 0.6 79.3 0.6 78.8 0.6 87.3 0.6 79.6 0.6 88.7 0.7

74.9 0.6 76.8 0.6 84.9 0.6 84.7 0.6 85.95 0.6 88.35 0.7 86.3 0.6 82.5 0.6 79.8 0.6 91.7 0.7 79.55 0.6 77.6 0.6

84.2 0.6 74.75 0.6 79.4 0.6 82 0.6 85 0.6 93.5 0.7 80.35 0.6 80.1 0.6 80 0.6 92.9 0.7 95.45 0.7 83.2 0.6

80.45 0.6 89.55 0.7 83.85 0.6 72.5 0.5 87.8 0.7 98 0.7 78.4 0.6 88.45 0.7 79.9 0.6 86.45 0.6 92.45 0.7 90.8 0.7

76.95 0.6 86.65 0.6 86.7 0.6 72.3 0.5 77.9 0.6 92.4 0.7 80.8 0.6 83.9 0.6 82.75 0.6 90.9 0.7 86.3 0.6 86.8 0.6

76.75 0.6 87.55 0.6 86.85 0.6 83.55 0.6 78.9 0.6 81.3 0.6 85.25 0.6 79.85 0.6 90.35 0.7 90.15 0.7 84.1 0.6 83.9 0.6

71.65 0.5 78.85 0.6 81.8 0.6 84.45 0.6 85.35 0.6 88.1 0.7 73.2 0.5 82.6 0.6 91.25 0.7 91.15 0.7 78.65 0.6 88.9 0.7

72.65 0.5 74.3 0.6 77.7 0.6 86.3 0.6 85.6 0.6 89.35 0.7 69.6 0.5 76.5 0.6 89.75 0.7 100.45 0.7 80.5 0.6 88.35 0.7

78.9 0.6 66.55 0.5 89.3 0.7 80.15 0.6 80.95 0.6 95.55 0.7 85 0.6 78.65 0.6 81.2 0.6 96.65 0.7 90.65 0.7 93.3 0.7

80.65 0.6 75.1 0.6 85.5 0.6 79.6 0.6 81.95 0.6 95.45 0.7 83.9 0.6 86.7 0.6 82.45 0.6 79.3 0.6 87.75 0.7 95.4 0.7

79.8 0.6 79.55 0.6 97.2 0.7 77.65 0.6 80.85 0.6 92 0.7 81.7 0.6 85.5 0.6 86.6 0.6 83.2 0.6 72 0.5 105.4 0.8

79.95 0.6 79.3 0.6 93.45 0.7 83 0.6 75.35 0.6 94.75 0.7 81.85 0.6 80.05 0.6 85.4 0.6 89.45 0.7 76.6 0.6 80 0.6

88.05 0.7 77.3 0.6 86.3 0.6 87.55 0.6 89.1 0.7 86.8 0.6 84.45 0.6 75.3 0.6 84.5 0.6 86.3 0.6 80.4 0.6 77.65 0.6

85.95 0.6 79.55 0.6 82.15 0.6 70.9 0.5 88.95 0.7 93.6 0.7 83.2 0.6 77.3 0.6 84.45 0.6 90.95 0.7 79.25 0.6 92.1 0.7

76.2 0.6 79.85 0.6 86.6 0.6 73.3 0.5 80.9 0.6 88.3 0.7 86.1 0.6 79.4 0.6 87.7 0.6 90.9 0.7 82.45 0.6 88.4 0.7

77.15 0.6 76.4 0.6 89.85 0.7 83.2 0.6 81.05 0.6 78.6 0.6 91.05 0.7 81.25 0.6 88.25 0.7 92.15 0.7 81.2 0.6 92.55 0.7

76.9 0.6 72.8 0.5 85.45 0.6 84.45 0.6 80.75 0.6 82.25 0.6 86 0.6 87.8 0.7 90.15 0.7 88.95 0.7 81.05 0.6 98.7 0.7
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speed (km/h) C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value

89.85 0.7 76 0.6 86.4 0.6 87.15 0.6 83.25 0.6 78.7 0.6 79.3 0.6 78.35 0.6 82.85 0.6 79.2 0.6 86.6 0.6 75.55 0.6

75.95 0.6 76.75 0.6 88.4 0.7 84.3 0.6 82.55 0.6 76.6 0.6 76.1 0.6 69.7 0.5 81.45 0.6 84.1 0.6 83.6 0.6 79.95 0.6

87.65 0.6 80.4 0.6 92.3 0.7 78.1 0.6 81.65 0.6 83.3 0.6 79.15 0.6 76.25 0.6 73.8 0.5 80 0.6 90.35 0.7 82.85 0.6

80.65 0.6 80.55 0.6 83.7 0.6 77.75 0.6 84.3 0.6 82.9 0.6 81.5 0.6 82.15 0.6 75.95 0.6 73.2 0.5 86.8 0.6 89.55 0.7

72.3 0.5 81.4 0.6 86.45 0.6 76.5 0.6 85.05 0.6 76.95 0.6 82.35 0.6 80.95 0.6 77.3 0.6 75.1 0.6 75 0.6 80.65 0.6

79.2 0.6 78.4 0.6 89.3 0.7 74.05 0.5 86.15 0.6 75.65 0.6 86.5 0.6 80.7 0.6 80.05 0.6 81.35 0.6 77.4 0.6 74.7 0.6

83.25 0.6 83.85 0.6 79.2 0.6 82.7 0.6 84.5 0.6 78.05 0.6 80.55 0.6 78 0.6 79.2 0.6 89.35 0.7 84.25 0.6 80.45 0.6

82.05 0.6 75.85 0.6 72.85 0.5 72.5 0.5 83.3 0.6 83.25 0.6 80.85 0.6 77.3 0.6 78.25 0.6 82.15 0.6 86.95 0.6 76.55 0.6

81.9 0.6 78.7 0.6 95.9 0.7 81 0.6 73.2 0.5 85.25 0.6 82.7 0.6 76.3 0.6 77.25 0.6 75.8 0.6 84.8 0.6 79.95 0.6

81.7 0.6 79.1 0.6 98.85 0.7 82.2 0.6 74.95 0.6 79.6 0.6 82.45 0.6 85.45 0.6 82.85 0.6 63.65 0.5 78.1 0.6 81.75 0.6

77.9 0.6 73.35 0.5 82.7 0.6 83.6 0.6 88.05 0.7 79.35 0.6 72.3 0.5 83.85 0.6 85.2 0.6 72.6 0.5 81.7 0.6 83.6 0.6

85.15 0.6 75.7 0.6 79.45 0.6 77.6 0.6 88.3 0.7 75.9 0.6 77.3 0.6 75.2 0.6 82.85 0.6 77.9 0.6 82.35 0.6 80.1 0.6

88.9 0.7 76.75 0.6 79.05 0.6 76.45 0.6 88.3 0.7 74.25 0.6 84.35 0.6 82.2 0.6 79 0.6 80.9 0.6 86.5 0.6 79.1 0.6

86 0.6 85.4 0.6 85.1 0.6 73.3 0.5 85.05 0.6 77.4 0.6 83.9 0.6 77 0.6 73.9 0.5 73.1 0.5 83.2 0.6 80.6 0.6

78.6 0.6 87.8 0.7 87.35 0.6 73 0.5 82.15 0.6 81.25 0.6 82.15 0.6 77.5 0.6 79.25 0.6 74.8 0.6 80.6 0.6 87.85 0.7

75.1 0.6 81.5 0.6 87.8 0.7 81.8 0.6 81.6 0.6 84.75 0.6 78.05 0.6 76.6 0.6 81.35 0.6 78.1 0.6 74.75 0.6 79.3 0.6

74.1 0.5 80.05 0.6 73.5 0.5 90.1 0.7 79.1 0.6 84.15 0.6 79.5 0.6 79.7 0.6 80.95 0.6 76.65 0.6 78.1 0.6 79.85 0.6

76.4 0.6 75.75 0.6 84.4 0.6 78.9 0.6 89.5 0.7 86.85 0.6 74.7 0.6 80.95 0.6 80.6 0.6 77.7 0.6 79.35 0.6 77.9 0.6

77.45 0.6 79 0.6 81.55 0.6 84.95 0.6 78.2 0.6 85.8 0.6 77.1 0.6 84.75 0.6 81.9 0.6 75.65 0.6 77.05 0.6 79.35 0.6

81.75 0.6 81.15 0.6 80.6 0.6 74.25 0.6 87.45 0.6 77.9 0.6 85.2 0.6 91.35 0.7 85 0.6 79.85 0.6 83.5 0.6 80.45 0.6

83.5 0.6 84.55 0.6 83.85 0.6 73.75 0.5 80.15 0.6 78.3 0.6 83 0.6 86.25 0.6 85.9 0.6 80.65 0.6 84.3 0.6 81.4 0.6

83.25 0.6 87.7 0.6 77.35 0.6 75.95 0.6 79.75 0.6 79.95 0.6 85.1 0.6 72.6 0.5 89 0.7 79.6 0.6 85.65 0.6 83.7 0.6

78 0.6 83.45 0.6 79.65 0.6 79.2 0.6 82.5 0.6 83.7 0.6 77.6 0.6 74.05 0.5 73.9 0.5 81.05 0.6 85.35 0.6 88.9 0.7

78.7 0.6 91.25 0.7 76.6 0.6 78.8 0.6 82.75 0.6 85.8 0.6 78.7 0.6 83.15 0.6 82.15 0.6 74.7 0.6 84.1 0.6 89.4 0.7

68.5 0.5 87.75 0.7 100.05 0.7 86.55 0.6 90.2 0.7 73.55 0.5 77.6 0.6 86.6 0.6 77.5 0.6 76.05 0.6 76.3 0.6 90.9 0.7

72.15 0.5 77 0.6 92.25 0.7 93.5 0.7 92.8 0.7 78.75 0.6 79 0.6 83.55 0.6 77.55 0.6 79.75 0.6 73.75 0.5 74.7 0.6

86.25 0.6 82.2 0.6 73.9 0.5 85.45 0.6 102.7 0.8 79.95 0.6 80.5 0.6 83 0.6 79.25 0.6 78.15 0.6 83.25 0.6 82.55 0.6

81.3 0.6 89.75 0.7 76.05 0.6 72.3 0.5 96.65 0.7 87.85 0.7 87.5 0.6 80.45 0.6 86.3 0.6 80.8 0.6 85.65 0.6 80.9 0.6

77.9 0.6 89.65 0.7 77.3 0.6 75.15 0.6 83 0.6 82 0.6 91.85 0.7 81.9 0.6 83.55 0.6 77.45 0.6 85.55 0.6 85.2 0.6

77.1 0.6 86.5 0.6 79.45 0.6 79.15 0.6 78.45 0.6 72.3 0.5 90.2 0.7 78.4 0.6 82.7 0.6 81.55 0.6 85.35 0.6 85.75 0.6

73.95 0.5 85.7 0.6 78.3 0.6 91.6 0.7 89.25 0.7 84.7 0.6 78.4 0.6 80.85 0.6 87.35 0.6 80.85 0.6 79.25 0.6 85.2 0.6

68.75 0.5 86.35 0.6 90.65 0.7 93.2 0.7 91.35 0.7 80.05 0.6 74.6 0.6 74.3 0.6 91.9 0.7 86.8 0.6 79.4 0.6 86.9 0.6

81.05 0.6 85.3 0.6 93.7 0.7 87.45 0.6 94.85 0.7 81.05 0.6 79.55 0.6 75.15 0.6 79.2 0.6 85.95 0.6 78.55 0.6 86.35 0.6

84 0.6 88 0.7 85.45 0.6 81.4 0.6 94.3 0.7 76.5 0.6 84.5 0.6 80.55 0.6 76.6 0.6 80.2 0.6 85.6 0.6 89 0.7

76.2 0.6 92.35 0.7 82.75 0.6 82.8 0.6 88.1 0.7 78.2 0.6 86.55 0.6 80.75 0.6 82.95 0.6 81.65 0.6 76.8 0.6 87.2 0.6

72.9 0.5 86.3 0.6 81.45 0.6 84.2 0.6 84.7 0.6 79.95 0.6 87.6 0.6 77.55 0.6 81 0.6 77.85 0.6 76.5 0.6 76 0.6

77.25 0.6 76.95 0.6 74.3 0.6 85.65 0.6 83.7 0.6 85.85 0.6 77.15 0.6 77.25 0.6 85.05 0.6 82.3 0.6 82.45 0.6 75.35 0.6

71.6 0.5 78.95 0.6 74.2 0.5 74.7 0.6 82.4 0.6 89.2 0.7 83.4 0.6 76.8 0.6 85.9 0.6 83.7 0.6 84.45 0.6 87.5 0.6

73.25 0.5 82.25 0.6 82.05 0.6 71.5 0.5 73.6 0.5 90.4 0.7 80.45 0.6 74.95 0.6 84.9 0.6 88.15 0.7 77.2 0.6 80.45 0.6

speed (km/h) C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value

84.5 0.6 75.7 0.6 88.35 0.7 75.2 0.6 71 0.5 95.5 0.7 41.4 0.3 22 0.2 61.05 0.5 57.6 0.4 35.05 0.3 73.95 0.5

84.75 0.6 77.65 0.6 88.45 0.7 85.95 0.6 76.9 0.6 80.4 0.6 44.8 0.3 70.1 0.5 61.7 0.5 35.95 0.3 56.85 0.4 74.7 0.6

82.45 0.6 76.75 0.6 85.65 0.6 92.15 0.7 76.15 0.6 48.2 0.4 42.75 0.3 47.4 0.4 44.2 0.3 69.5 0.5 87.55 0.6 76.35 0.6

81.1 0.6 74.7 0.6 81.45 0.6 90.55 0.7 77.9 0.6 79.25 0.6 56.8 0.4 51.05 0.4 43.05 0.3 75.15 0.6 79.7 0.6 78.9 0.6

80.25 0.6 77.75 0.6 86.7 0.6 86.2 0.6 72 0.5 81.15 0.6 39.3 0.3 45.9 0.3 45.45 0.3 50.75 0.4 88.65 0.7 74.7 0.6

79.7 0.6 79.3 0.6 92.05 0.7 78.45 0.6 69.7 0.5 90.75 0.7 16.25 0.1 39.05 0.3 54.4 0.4 47.25 0.4 50.65 0.4 75.25 0.6

73.7 0.5 78.5 0.6 93.35 0.7 79.85 0.6 63.8 0.5 89.75 0.7 28.9 0.2 51.95 0.4 64.45 0.5 30.55 0.2 42.55 0.3 47.2 0.3

76.35 0.6 70.1 0.5 94.05 0.7 81.3 0.6 58.35 0.4 45.5 0.3 58.7 0.4 49.75 0.4 50.15 0.4 60.4 0.4 36.95 0.3 37.8 0.3

82.75 0.6 73.55 0.5 78.6 0.6 78.85 0.6 76.2 0.6 41.35 0.3 40.5 0.3 62.6 0.5 38.25 0.3 51.3 0.4 63.4 0.5 63.4 0.5

84.25 0.6 75.95 0.6 75.9 0.6 71.9 0.5 79.5 0.6 57.55 0.4 45.8 0.3 45.75 0.3 40.65 0.3 51.75 0.4 57.55 0.4 69.5 0.5

79.3 0.6 77.45 0.6 79.8 0.6 66.85 0.5 71 0.5 45 0.3 51.3 0.4 22.2 0.2 50.55 0.4 61.15 0.5 45.75 0.3 69.3 0.5

73.45 0.5 76.05 0.6 81.55 0.6 82.45 0.6 76.75 0.6 56 0.4 35.3 0.3 20.7 0.2 58.7 0.4 39.5 0.3 81.2 0.6 74.3 0.6

70.6 0.5 75.45 0.6 82.25 0.6 78.95 0.6 72.15 0.5 35.35 0.3 36.7 0.3 45.45 0.3 50.1 0.4 64.4 0.5 80.4 0.6 82.1 0.6

73.95 0.5 76.1 0.6 90.15 0.7 76.95 0.6 76.55 0.6 48.9 0.4 62.05 0.5 48.9 0.4 37.95 0.3 72.2 0.5 71.8 0.5 83.35 0.6

82.75 0.6 73.4 0.5 85.85 0.6 72.55 0.5 74.45 0.6 50.85 0.4 43.85 0.3 55.3 0.4 34.3 0.3 50.05 0.4 76.1 0.6 77.2 0.6

84.85 0.6 79.85 0.6 85.15 0.6 71.9 0.5 70.55 0.5 45.5 0.3 43.7 0.3 40.65 0.3 60.05 0.4 52.05 0.4 49.15 0.4 69.55 0.5

76.5 0.6 82.2 0.6 87.7 0.6 72.6 0.5 59.15 0.4 50.6 0.4 19.3 0.1 37.6 0.3 64.6 0.5 50.7 0.4 49.9 0.4 49.75 0.4

73.6 0.5 74.3 0.6 85.55 0.6 60.05 0.4 69.05 0.5 52 0.4 25.8 0.2 63.95 0.5 49.9 0.4 39 0.3 51.5 0.4 36.35 0.3

75 0.6 78.65 0.6 72.3 0.5 77.7 0.6 82.8 0.6 51.6 0.4 45.4 0.3 60.2 0.4 46.3 0.3 47.8 0.4 58.15 0.4 62.7 0.5

71.75 0.5 73.5 0.5 82.05 0.6 69.6 0.5 83.05 0.6 37.75 0.3 63.6 0.5 50.65 0.4 51.1 0.4 45.85 0.3 68.6 0.5 76.05 0.6

70.8 0.5 76.6 0.6 90.05 0.7 71.55 0.5 71.4 0.5 64.5 0.5 78.75 0.6 58.4 0.4 38.85 0.3 64.35 0.5 75.5 0.6 71.65 0.5

77.5 0.6 78.65 0.6 86.9 0.6 78.25 0.6 73.55 0.5 50.55 0.4 38 0.3 28.6 0.2 50.3 0.4 43.5 0.3 82.15 0.6 82.1 0.6

81.5 0.6 75.3 0.6 82 0.6 74.95 0.6 74.45 0.6 41.3 0.3 27.8 0.2 37.1 0.3 67.5 0.5 73.9 0.5 81.9 0.6 85.25 0.6

81.9 0.6 74.35 0.6 80.45 0.6 73.2 0.5 72.5 0.5 38.45 0.3 53.35 0.4 51.15 0.4 35.8 0.3 80.4 0.6 77.4 0.6 81.15 0.6

79.3 0.6 78.7 0.6 82.95 0.6 74.1 0.5 67.7 0.5 49.35 0.4 55.3 0.4 56.95 0.4 33.6 0.2 40.75 0.3 75.95 0.6 63.1 0.5

79.9 0.6 87.2 0.6 79.35 0.6 69.8 0.5 69.7 0.5 53.95 0.4 53 0.4 55.85 0.4 47.2 0.3 44.25 0.3 50 0.4 56.9 0.4

68.5 0.5 89.9 0.7 88.05 0.7 66.45 0.5 64.7 0.5 59.1 0.4 42.05 0.3 33.5 0.2 64.8 0.5 57.25 0.4 48.45 0.4 53.2 0.4

80 0.6 75.7 0.6 86.25 0.6 55.35 0.4 76 0.6 39.4 0.3 37 0.3 45.2 0.3 54.4 0.4 48.65 0.4 62.05 0.5 43.1 0.3

70.75 0.5 70.5 0.5 78.9 0.6 79.9 0.6 81.15 0.6 53.1 0.4 18.65 0.1 57.1 0.4 48 0.4 40.55 0.3 64.2 0.5 65.85 0.5

77 0.6 78.7 0.6 87.5 0.6 73.1 0.5 81.2 0.6 47.35 0.4 53.9 0.4 62.65 0.5 50.65 0.4 37.95 0.3 76.7 0.6 77.55 0.6

78.6 0.6 81.4 0.6 80.2 0.6 72.05 0.5 71.6 0.5 51.65 0.4 72.5 0.5 64.5 0.5 50.05 0.4 64.6 0.5 81 0.6 75.35 0.6

76.35 0.6 80.15 0.6 84.2 0.6 72.55 0.5 70.95 0.5 51.65 0.4 43.5 0.3 43.45 0.3 40.7 0.3 59.6 0.4 80.95 0.6 76.65 0.6

70.05 0.5 86.9 0.6 87.5 0.6 75.1 0.6 71.65 0.5 45.7 0.3 42.25 0.3 45.85 0.3 77.6 0.6 75.1 0.6 82.05 0.6 73.3 0.5

68.1 0.5 86.95 0.6 91.15 0.7 76.55 0.6 73.05 0.5 23.3 0.2 33.3 0.2 27.35 0.2 43.95 0.3 79.2 0.6 73.5 0.5 68.35 0.5

79.1 0.6 81.75 0.6 87.7 0.6 71.4 0.5 73.45 0.5 41.3 0.3 58.95 0.4 58.15 0.4 26.4 0.2 47.35 0.4 77.3 0.6 62.7 0.5

85.45 0.6 84.4 0.6 88.45 0.7 63.7 0.5 67.95 0.5 54.65 0.4 51.9 0.4 55.4 0.4 45.3 0.3 34.15 0.3 47 0.3 72.35 0.5

74.7 0.6 83 0.6 90.95 0.7 58.8 0.4 67.15 0.5 60.95 0.5 44.25 0.3 35.4 0.3 66 0.5 51 0.4 45.3 0.3 63.55 0.5

72.35 0.5 77.8 0.6 88 0.7 64.2 0.5 90.35 0.7 42.9 0.3 59.3 0.4 42.15 0.3 52.3 0.4 58.15 0.4 55 0.4 70.3 0.5

72.1 0.5 84.85 0.6 70.9 0.5 75.8 0.6 110 0.8 28.6 0.2 28.1 0.2 47.4 0.4 49.9 0.4 50.55 0.4 77.9 0.6 73.85 0.5
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speed (km/h) C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value

72.8 0.5 88.1 0.7 89.95 0.7 80.85 0.6 80.2 0.6 81.1 0.6 78.75 0.6 86.1 0.6 82.15 0.6 76 0.6 74.3 0.6 86 0.6

70.95 0.5 86.15 0.6 85.7 0.6 83.4 0.6 79.85 0.6 80.5 0.6 75.5 0.6 89.75 0.7 80.65 0.6 81.25 0.6 74.7 0.6 81.45 0.6

69.25 0.5 85.15 0.6 84 0.6 79.8 0.6 81.9 0.6 85.7 0.6 72.65 0.5 77.6 0.6 77.75 0.6 85.75 0.6 79.55 0.6 78.8 0.6

64.4 0.5 84.55 0.6 82.45 0.6 80.7 0.6 83.45 0.6 82.4 0.6 82.05 0.6 80.15 0.6 65.4 0.5 91.6 0.7 92 0.7 80.85 0.6

73.65 0.5 85.7 0.6 82.4 0.6 78.65 0.6 81.85 0.6 79.35 0.6 76.6 0.6 77.95 0.6 73.3 0.5 81.8 0.6 87.95 0.7 86.05 0.6

73 0.5 85 0.6 85.5 0.6 82.7 0.6 81.5 0.6 81.25 0.6 73.65 0.5 80.8 0.6 92.5 0.7 83.8 0.6 82.2 0.6 92.95 0.7

77.05 0.6 72.1 0.5 84 0.6 85.45 0.6 84.05 0.6 80.05 0.6 75.8 0.6 77.35 0.6 88.8 0.7 80.7 0.6 83.6 0.6 86.9 0.6

71.6 0.5 79.95 0.6 77.2 0.6 91.5 0.7 87.85 0.7 78.6 0.6 77.05 0.6 77.4 0.6 81.15 0.6 78.75 0.6 72.7 0.5 85.55 0.6

72.2 0.5 83.5 0.6 80.05 0.6 81.6 0.6 84.7 0.6 90.95 0.7 78.2 0.6 82.1 0.6 76 0.6 78.5 0.6 79.5 0.6 82.85 0.6

72.25 0.5 84.55 0.6 87.9 0.7 83.2 0.6 70.4 0.5 92.15 0.7 77.35 0.6 90.6 0.7 76.65 0.6 83.25 0.6 83.75 0.6 80 0.6

72.6 0.5 83.6 0.6 85.1 0.6 78.9 0.6 75 0.6 77.6 0.6 77.85 0.6 88.75 0.7 73.85 0.5 91.5 0.7 84.5 0.6 83.3 0.6

64.45 0.5 84.8 0.6 80.6 0.6 79 0.6 79.45 0.6 86.3 0.6 72.6 0.5 85.45 0.6 78.05 0.6 90.5 0.7 85.7 0.6 90.3 0.7

63.8 0.5 81.7 0.6 77.4 0.6 83.15 0.6 78.7 0.6 79.8 0.6 78.9 0.6 75.6 0.6 87.85 0.7 95.45 0.7 85.4 0.6 93.5 0.7

68.45 0.5 84.25 0.6 79.7 0.6 91.2 0.7 83.2 0.6 80.2 0.6 71.5 0.5 75.5 0.6 74.7 0.6 96.2 0.7 86.15 0.6 90.95 0.7

86.55 0.6 86.45 0.6 84.35 0.6 92.75 0.7 81.4 0.6 80.4 0.6 74.1 0.5 82.45 0.6 77.4 0.6 76.2 0.6 87.85 0.7 92.65 0.7

82.1 0.6 87.7 0.6 86.75 0.6 95.3 0.7 80.4 0.6 83.75 0.6 76.55 0.6 87.25 0.6 72.2 0.5 74.6 0.6 75.6 0.6 89.25 0.7

81.45 0.6 75.1 0.6 89.95 0.7 94.85 0.7 80.45 0.6 91.8 0.7 78.95 0.6 80.65 0.6 69.7 0.5 83.85 0.6 83.15 0.6 80.4 0.6

71.8 0.5 79.05 0.6 79.3 0.6 90.45 0.7 82.15 0.6 99.25 0.7 74.45 0.6 80.9 0.6 74.2 0.5 87.85 0.7 82.6 0.6 79.55 0.6

72.95 0.5 83.5 0.6 76.35 0.6 76.9 0.6 84.35 0.6 101.15 0.7 75.25 0.6 83.1 0.6 79 0.6 93.25 0.7 83.4 0.6 99.45 0.7

72.95 0.5 84.45 0.6 76.6 0.6 82.1 0.6 72.1 0.5 99.15 0.7 83 0.6 80.95 0.6 79.05 0.6 89.1 0.7 88 0.7 91.5 0.7

72.55 0.5 81.6 0.6 79 0.6 88.4 0.7 81.5 0.6 79.8 0.6 82.85 0.6 86.05 0.6 79.45 0.6 87.3 0.6 87.95 0.7 90.35 0.7

77.15 0.6 84.4 0.6 76.6 0.6 88.85 0.7 87.1 0.6 89.35 0.7 79.6 0.6 80.6 0.6 77.5 0.6 84.1 0.6 83.9 0.6 86.35 0.6

82.35 0.6 90.7 0.7 83.35 0.6 95.35 0.7 86.55 0.6 86 0.6 78.3 0.6 78.9 0.6 81.15 0.6 85.9 0.6 83.25 0.6 83.3 0.6

91.05 0.7 93.95 0.7 82.8 0.6 90.3 0.7 80.05 0.6 95.65 0.7 75.4 0.6 81.4 0.6 77 0.6 83.65 0.6 86.35 0.6 88.85 0.7

94.45 0.7 93.2 0.7 87.45 0.6 87.75 0.7 85.95 0.6 93.05 0.7 79.35 0.6 79.05 0.6 83.6 0.6 70 0.5 85.15 0.6 86.8 0.6

83 0.6 91.8 0.7 89.15 0.7 87.1 0.6 82.75 0.6 87 0.6 75.85 0.6 80.25 0.6 72.95 0.5 70.55 0.5 75 0.6 84.9 0.6

79.65 0.6 81.7 0.6 83 0.6 88.6 0.7 83.6 0.6 84.75 0.6 77.4 0.6 82.1 0.6 75.4 0.6 83.3 0.6 77.5 0.6 77.2 0.6

78.45 0.6 78.85 0.6 77.8 0.6 89.2 0.7 83.9 0.6 87.05 0.6 83.35 0.6 86.5 0.6 77.75 0.6 82.15 0.6 82.8 0.6 79.85 0.6

78.4 0.6 87.95 0.7 73.3 0.5 79.4 0.6 89.35 0.7 88.45 0.7 82.85 0.6 83.9 0.6 73.25 0.5 83.15 0.6 81.6 0.6 80.4 0.6

83.25 0.6 86 0.6 85.05 0.6 76.9 0.6 80.4 0.6 82.05 0.6 84.9 0.6 83.8 0.6 66.45 0.5 83.45 0.6 78.15 0.6 85.55 0.6

87.7 0.6 86.85 0.6 86.6 0.6 82.75 0.6 76.05 0.6 72.9 0.5 80.05 0.6 90.45 0.7 77.5 0.6 81.85 0.6 78.05 0.6 84.4 0.6

91.85 0.7 89.45 0.7 81.45 0.6 85.45 0.6 85.1 0.6 72.2 0.5 71.7 0.5 91.65 0.7 82.9 0.6 79.9 0.6 79.55 0.6 82.65 0.6

94.2 0.7 94.3 0.7 77.85 0.6 82.25 0.6 84.2 0.6 89.9 0.7 75.35 0.6 76.6 0.6 81.95 0.6 75.25 0.6 84.15 0.6 73.7 0.5

91.7 0.7 88.7 0.7 79 0.6 84.55 0.6 83.7 0.6 90.85 0.7 80.15 0.6 70.85 0.5 73.6 0.5 78.45 0.6 86.6 0.6 76.75 0.6

87.45 0.6 93 0.7 82.3 0.6 81.65 0.6 84.9 0.6 86.55 0.6 80.45 0.6 86.4 0.6 74.75 0.6 72.7 0.5 84.4 0.6 80.6 0.6

76 0.6 89.45 0.7 84.05 0.6 82.3 0.6 84.7 0.6 82.95 0.6 79.7 0.6 89.95 0.7 77.25 0.6 84.05 0.6 81.3 0.6 86.75 0.6

80.2 0.6 78.6 0.6 83.65 0.6 85.65 0.6 80.6 0.6 77.2 0.6 76.4 0.6 88.75 0.7 77.8 0.6 81.95 0.6 82.7 0.6 73.9 0.5

87.35 0.6 79.1 0.6 77.2 0.6 85.55 0.6 80.4 0.6 76.7 0.6 75 0.6 88.95 0.7 78.35 0.6 79.15 0.6 75.6 0.6 77.45 0.6

90.6 0.7 91 0.7 78.05 0.6 73.6 0.5 82.2 0.6 77.6 0.6 79.35 0.6 85.95 0.6 73.6 0.5 78.5 0.6 81.9 0.6 72.4 0.5

speed (km/h) C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value

77.1 0.6 79.15 0.6 79.05 0.6 84.5 0.6 78.9 0.6 89.15 0.7 72.85 0.5 88.9 0.7 72.25 0.5 82.85 0.6 81.05 0.6 76.55 0.6

77.15 0.6 81.85 0.6 76.1 0.6 89.9 0.7 76.2 0.6 85.7 0.6 79 0.6 91.15 0.7 74.6 0.6 80.85 0.6 82.1 0.6 88.35 0.7

77.85 0.6 78.8 0.6 80.1 0.6 82 0.6 77.1 0.6 77.2 0.6 91.65 0.7 91.65 0.7 80.1 0.6 84.8 0.6 80.8 0.6 84.55 0.6

83.1 0.6 80.25 0.6 80.05 0.6 83.55 0.6 68.3 0.5 78.1 0.6 83 0.6 84.9 0.6 86.25 0.6 80.1 0.6 84 0.6 83 0.6

85.25 0.6 79.75 0.6 83.85 0.6 88.25 0.7 73.95 0.5 72.95 0.5 84.75 0.6 71.8 0.5 87.05 0.6 76.65 0.6 80.65 0.6 80.4 0.6

82.5 0.6 84.4 0.6 92.1 0.7 95.45 0.7 74.85 0.6 77.8 0.6 77.9 0.6 80.2 0.6 77.9 0.6 73.7 0.5 82.9 0.6 79.65 0.6

82.8 0.6 90.75 0.7 93.25 0.7 87.95 0.7 74.8 0.6 82.9 0.6 81 0.6 87.15 0.6 78.8 0.6 72.3 0.5 87.65 0.6 71.8 0.5

77 0.6 88.25 0.7 88.45 0.7 89.9 0.7 72.5 0.5 87.35 0.6 77.45 0.6 91.9 0.7 71.05 0.5 79.65 0.6 77.2 0.6 79.5 0.6

73.65 0.5 70.8 0.5 85.3 0.6 91.85 0.7 71.7 0.5 86.85 0.6 72.75 0.5 94.85 0.7 73.45 0.5 84.6 0.6 77.1 0.6 81.75 0.6

69.7 0.5 77.65 0.6 73.6 0.5 81.35 0.6 85.3 0.6 92.45 0.7 75.9 0.6 87 0.6 75.55 0.6 92.1 0.7 85.15 0.6 87.5 0.6

77.65 0.6 83.3 0.6 80.35 0.6 67.4 0.5 88.15 0.7 86.6 0.6 79.1 0.6 82.6 0.6 82.9 0.6 83.75 0.6 85.65 0.6 85 0.6

75.95 0.6 83.55 0.6 86.95 0.6 73.9 0.5 78.1 0.6 83.75 0.6 84.8 0.6 82.3 0.6 82.85 0.6 72.95 0.5 83.7 0.6 85.7 0.6

80.4 0.6 85.4 0.6 86.85 0.6 88.3 0.7 75.85 0.6 77.8 0.6 85.85 0.6 85.8 0.6 79.65 0.6 71.15 0.5 81.55 0.6 83.9 0.6

82.15 0.6 81.5 0.6 90.45 0.7 86.4 0.6 71.3 0.5 81.45 0.6 82.3 0.6 87.9 0.7 89.8 0.7 76.15 0.6 81.1 0.6 76.95 0.6

81.65 0.6 78.8 0.6 81.3 0.6 83.55 0.6 75.75 0.6 90.35 0.7 84.2 0.6 77.2 0.6 93.1 0.7 76.25 0.6 82 0.6 74.45 0.6

81.45 0.6 77 0.6 80.85 0.6 81.45 0.6 76.95 0.6 88.05 0.7 76.85 0.6 82.7 0.6 89.8 0.7 82.2 0.6 88.1 0.7 84.75 0.6

79.4 0.6 80.8 0.6 84.5 0.6 77.95 0.6 80.1 0.6 85.5 0.6 78.05 0.6 85.05 0.6 91.3 0.7 78.4 0.6 87.8 0.7 89.75 0.7

72.1 0.5 81 0.6 87.85 0.7 75.4 0.6 79.5 0.6 80.95 0.6 81.15 0.6 85.45 0.6 76.9 0.6 78.55 0.6 75.2 0.6 85.35 0.6

77 0.6 76.7 0.6 91.1 0.7 77.65 0.6 79.7 0.6 80.05 0.6 78.9 0.6 86.75 0.6 82.4 0.6 73.8 0.5 76.35 0.6 86.25 0.6

72.05 0.5 76.6 0.6 77.2 0.6 78.25 0.6 83.15 0.6 77 0.6 69.7 0.5 82.05 0.6 89.05 0.7 76.35 0.6 83.85 0.6 87.1 0.6

75.7 0.6 83.7 0.6 79.85 0.6 73.6 0.5 79.75 0.6 87 0.6 86.35 0.6 84.2 0.6 84.4 0.6 71.45 0.5 84.05 0.6 79 0.6

78.05 0.6 78.7 0.6 78.3 0.6 76.65 0.6 73 0.5 88.15 0.7 100.3 0.7 89.7 0.7 88.65 0.7 75.75 0.6 80.55 0.6 73.6 0.5

74.8 0.6 74.45 0.6 79.7 0.6 80.9 0.6 77.05 0.6 76.4 0.6 93.9 0.7 85.5 0.6 104 0.8 73.3 0.5 89.45 0.7 83.9 0.6

70.45 0.5 75.25 0.6 80.4 0.6 81.9 0.6 78.4 0.6 78.6 0.6 85.9 0.6 85.85 0.6 100.95 0.7 75.85 0.6 88.65 0.7 88.65 0.7

74.85 0.6 73.25 0.5 84.3 0.6 78.55 0.6 78.7 0.6 78.25 0.6 84.7 0.6 76.1 0.6 100 0.7 87.35 0.6 90.95 0.7 84.4 0.6

86.9 0.6 83.5 0.6 85.05 0.6 74 0.5 80.4 0.6 73.4 0.5 82.1 0.6 74.7 0.6 80.2 0.6 88 0.7 95.1 0.7 83.35 0.6

91 0.7 89.7 0.7 83.25 0.6 77.35 0.6 78.15 0.6 78.05 0.6 85.4 0.6 76.9 0.6 82.6 0.6 80.7 0.6 94.7 0.7 87.55 0.6

83 0.6 82.4 0.6 84.2 0.6 75.85 0.6 72.25 0.5 87 0.6 92.45 0.7 82.05 0.6 91 0.7 78.85 0.6 83 0.6 76.55 0.6

75.6 0.6 75 0.6 91.8 0.7 79.75 0.6 77.55 0.6 78.85 0.6 88.55 0.7 82.05 0.6 93.5 0.7 70.1 0.5 82.85 0.6 81.6 0.6

78.75 0.6 77.85 0.6 78.6 0.6 79.05 0.6 78.7 0.6 84.55 0.6 91.45 0.7 82.65 0.6 102.3 0.8 75.6 0.6 80.65 0.6 82.35 0.6

79.35 0.6 66.45 0.5 86.15 0.6 72.5 0.5 83.45 0.6 76.2 0.6 88.15 0.7 76.3 0.6 102.3 0.8 79.15 0.6 86.9 0.6 89.85 0.7

76.55 0.6 67.45 0.5 83.65 0.6 70.85 0.5 80.3 0.6 82.8 0.6 93.85 0.7 78.25 0.6 89.75 0.7 82.05 0.6 91.25 0.7 81.35 0.6

71.3 0.5 73.25 0.5 84.1 0.6 67.5 0.5 80.5 0.6 79.8 0.6 90.45 0.7 85.85 0.6 81.95 0.6 80.45 0.6 86.7 0.6 79.95 0.6

81.95 0.6 82.45 0.6 81 0.6 74.05 0.5 78.05 0.6 76.6 0.6 85.6 0.6 83.3 0.6 84.2 0.6 86.5 0.6 92.85 0.7 83.55 0.6

85.4 0.6 76.55 0.6 89.1 0.7 76.25 0.6 81.75 0.6 89.1 0.7 83.85 0.6 75.9 0.6 89.4 0.7 83.85 0.6 91.2 0.7 75.85 0.6

88.15 0.7 77.55 0.6 84.25 0.6 74.3 0.6 77.7 0.6 89.15 0.7 89.9 0.7 77.55 0.6 76.2 0.6 83.7 0.6 80.9 0.6 75.8 0.6

83.55 0.6 80.3 0.6 92.9 0.7 71.95 0.5 79.35 0.6 83.45 0.6 90.7 0.7 77.5 0.6 73.6 0.5 75.4 0.6 79.45 0.6 78.7 0.6

74.3 0.6 94.3 0.7 100.8 0.7 72 0.5 80.95 0.6 78.4 0.6 89 0.7 81.5 0.6 89.65 0.7 78.9 0.6 79.2 0.6 86 0.6

77.5 0.6 83 0.6 103.8 0.8 79.3 0.6 84.3 0.6 72.8 0.5 92.3 0.7 80.8 0.6 84.45 0.6 77.25 0.6 76.1 0.6 82.1 0.6
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speed (km/h) C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value

84.75 0.6 85.3 0.6 92.2 0.7 90.5 0.7 81.1 0.6 81.05 0.6 89.5 0.7 84.4 0.6 86 0.6 83.95 0.6 92.9 0.7 82.6 0.6

89.3 0.7 85.85 0.6 86.6 0.6 86.65 0.6 81.85 0.6 79.5 0.6 85.45 0.6 89.1 0.7 81.9 0.6 70.25 0.5 83.5 0.6 86.2 0.6

79.9 0.6 88.2 0.7 86.55 0.6 91 0.7 84.2 0.6 79.8 0.6 96.65 0.7 85.05 0.6 82.7 0.6 81 0.6 84.8 0.6 88.1 0.7

75.25 0.6 86.1 0.6 86.65 0.6 93.75 0.7 90.1 0.7 77.4 0.6 91 0.7 69.2 0.5 86.45 0.6 80.6 0.6 86.15 0.6 92.7 0.7

81.2 0.6 87.8 0.7 101 0.7 80.1 0.6 84.1 0.6 77.8 0.6 92.25 0.7 90.2 0.7 85.5 0.6 84.55 0.6 80.1 0.6 83.7 0.6

97.35 0.7 81.95 0.6 94.5 0.7 83.45 0.6 87.6 0.6 78.1 0.6 92.05 0.7 99.85 0.7 74.8 0.6 78.85 0.6 86.1 0.6 87.8 0.7

90.65 0.7 85.45 0.6 94.1 0.7 90.15 0.7 85.85 0.6 84.85 0.6 76.6 0.6 94.15 0.7 79.2 0.6 76.15 0.6 87 0.6 88.3 0.7

97.75 0.7 86.3 0.6 89.75 0.7 95.1 0.7 68.85 0.5 87.1 0.6 88.05 0.7 91 0.7 81.55 0.6 79.05 0.6 92.65 0.7 80.1 0.6

93.35 0.7 89.5 0.7 78.7 0.6 91.5 0.7 89.95 0.7 87.75 0.7 90.35 0.7 89.55 0.7 86.85 0.6 79.2 0.6 85.15 0.6 83.65 0.6

84.9 0.6 90.75 0.7 91.15 0.7 90 0.7 87.65 0.6 95.85 0.7 88.45 0.7 77.4 0.6 86.15 0.6 76.25 0.6 85.6 0.6 91.35 0.7

93.95 0.7 85.5 0.6 88.9 0.7 94.25 0.7 87.75 0.7 81.15 0.6 83.05 0.6 92.6 0.7 82.25 0.6 74.45 0.6 85.3 0.6 90.65 0.7

91.65 0.7 89.35 0.7 86.85 0.6 83.2 0.6 85 0.6 79.65 0.6 84.45 0.6 81.65 0.6 85.55 0.6 76.25 0.6 78.8 0.6 86.3 0.6

95.75 0.7 83.3 0.6 86.6 0.6 86.7 0.6 84 0.6 96.95 0.7 84.5 0.6 91.75 0.7 84.3 0.6 82.1 0.6 78.1 0.6 86.4 0.6

86.15 0.6 83.65 0.6 89 0.7 96.9 0.7 81.65 0.6 89.85 0.7 79.55 0.6 86.3 0.6 86.5 0.6 83.2 0.6 86.3 0.6 86 0.6

88.15 0.7 83.85 0.6 88 0.7 88.05 0.7 71.35 0.5 89.9 0.7 83 0.6 85.65 0.6 83.45 0.6 87 0.6 92.5 0.7 74.9 0.6

88 0.7 87.15 0.6 84.7 0.6 91.75 0.7 82.05 0.6 86.5 0.6 83.1 0.6 81.8 0.6 90.35 0.7 80.2 0.6 87.95 0.7 85.45 0.6

76.8 0.6 88.6 0.7 82.15 0.6 82.4 0.6 82 0.6 83.05 0.6 84.5 0.6 75.7 0.6 89.45 0.7 79.6 0.6 86.75 0.6 82.25 0.6

83.7 0.6 88.35 0.7 83.45 0.6 86.55 0.6 83.3 0.6 79.25 0.6 84.8 0.6 78.4 0.6 89.75 0.7 80.4 0.6 87.55 0.6 86.55 0.6

86.8 0.6 86.55 0.6 87.85 0.7 78.5 0.6 81.6 0.6 84.35 0.6 88.1 0.7 78.25 0.6 97.15 0.7 91.4 0.7 80.95 0.6 79.55 0.6

93.25 0.7 79.4 0.6 79.95 0.6 84.55 0.6 81.1 0.6 81.3 0.6 89 0.7 86.05 0.6 89.8 0.7 86.8 0.6 81.35 0.6 79.95 0.6

87.35 0.6 83.25 0.6 77.45 0.6 86.55 0.6 78.35 0.6 87.05 0.6 82.65 0.6 81.75 0.6 70.75 0.5 89.15 0.7 85.5 0.6 81.65 0.6

83.8 0.6 86.65 0.6 84.05 0.6 90.05 0.7 86.9 0.6 86.15 0.6 86.6 0.6 82.15 0.6 79.6 0.6 88.95 0.7 90.2 0.7 79.8 0.6

79.4 0.6 88.9 0.7 75.7 0.6 89.45 0.7 74.15 0.5 82.65 0.6 88.75 0.7 86.4 0.6 94.65 0.7 85.35 0.6 85.5 0.6 75.9 0.6

66.65 0.5 83.4 0.6 71.15 0.5 94.9 0.7 82.8 0.6 91.95 0.7 96.2 0.7 84.55 0.6 96 0.7 85.9 0.6 86.7 0.6 77.25 0.6

81.9 0.6 85.4 0.6 72.15 0.5 87.7 0.6 84.7 0.6 83.65 0.6 89.2 0.7 70.25 0.5 104.6 0.8 87.25 0.6 85.15 0.6 84.8 0.6

76.75 0.6 87.4 0.6 80.95 0.6 84.75 0.6 81.95 0.6 85.2 0.6 82.45 0.6 82.5 0.6 95.45 0.7 93.05 0.7 78.85 0.6 79.1 0.6

79.95 0.6 70.7 0.5 85.65 0.6 89.6 0.7 83.95 0.6 86.2 0.6 82.05 0.6 90.05 0.7 92 0.7 88 0.7 85.25 0.6 86.25 0.6

77.5 0.6 79.1 0.6 86.5 0.6 95.15 0.7 88.7 0.7 87.8 0.7 73.85 0.5 82.7 0.6 82.2 0.6 94.6 0.7 84.85 0.6 87.65 0.6

74.2 0.5 84.35 0.6 90 0.7 90.9 0.7 80.65 0.6 85.65 0.6 82.15 0.6 82.25 0.6 95.35 0.7 94.5 0.7 84.95 0.6 78.45 0.6

76.95 0.6 83.8 0.6 76.75 0.6 91.7 0.7 80.75 0.6 83.7 0.6 77.55 0.6 87.1 0.6 93.85 0.7 91.85 0.7 83.4 0.6 74.5 0.6

83.15 0.6 79.4 0.6 86.4 0.6 90.05 0.7 78.55 0.6 90.6 0.7 82.5 0.6 78.8 0.6 92.1 0.7 90.15 0.7 80.2 0.6 77.25 0.6

74.7 0.6 80.95 0.6 90.85 0.7 94.8 0.7 88.9 0.7 83.4 0.6 84.6 0.6 82.8 0.6 99.65 0.7 83.85 0.6 86.8 0.6 83.2 0.6

79.95 0.6 84.75 0.6 83.75 0.6 82.95 0.6 88.45 0.7 85 0.6 82.7 0.6 83.7 0.6 85.9 0.6 98.2 0.7 80.45 0.6 85.75 0.6

92.4 0.7 82.8 0.6 86.15 0.6 85.75 0.6 90.95 0.7 87.75 0.7 82.15 0.6 86.9 0.6 80.65 0.6 93.35 0.7 82.35 0.6 90.35 0.7

96.75 0.7 82.75 0.6 83.7 0.6 94.45 0.7 92 0.7 91.2 0.7 76.9 0.6 84.05 0.6 87.05 0.6 93.8 0.7 78.1 0.6 85.95 0.6

87.2 0.6 84.4 0.6 83.65 0.6 95.4 0.7 76.45 0.6 84.9 0.6 71.2 0.5 88.65 0.7 84.95 0.6 96.45 0.7 82.55 0.6 80.5 0.6

87 0.6 90 0.7 78.25 0.6 87.15 0.6 81.65 0.6 88.15 0.7 78.35 0.6 86.85 0.6 85.9 0.6 83.45 0.6 85.65 0.6 89.55 0.7

79.2 0.6 88.95 0.7 80.1 0.6 83.95 0.6 85.35 0.6 91.25 0.7 88.4 0.7 87 0.6 86.6 0.6 94.25 0.7 88.9 0.7 88.05 0.7

86.2 0.6 89.25 0.7 81 0.6 85.5 0.6 86 0.6 85.1 0.6 83.4 0.6 77.95 0.6 85.75 0.6 90.1 0.7 84.55 0.6 93.55 0.7

speed (km/h) C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value

87.95 0.7 77.75 0.6 86.55 0.6 84.15 0.6 85.75 0.6 95.6 0.7 77.55 0.6 81.6 0.6 78.85 0.6 77.75 0.6 73.65 0.5 87.35 0.6

89.6 0.7 79.95 0.6 87.15 0.6 91.55 0.7 82.25 0.6 92.15 0.7 85.3 0.6 85.05 0.6 75.4 0.6 80.65 0.6 75.85 0.6 72.95 0.5

86.4 0.6 82.25 0.6 68.9 0.5 83.3 0.6 78.8 0.6 83.85 0.6 83.9 0.6 81.55 0.6 82.55 0.6 69.4 0.5 77.75 0.6 76.7 0.6

83.4 0.6 84.55 0.6 83 0.6 91.7 0.7 82.25 0.6 85.45 0.6 83.6 0.6 76.05 0.6 77.95 0.6 70.65 0.5 74.3 0.6 85.5 0.6

85.15 0.6 86.25 0.6 86.4 0.6 84.75 0.6 100.6 0.7 75.5 0.6 79.45 0.6 76.4 0.6 80.8 0.6 70.3 0.5 73.85 0.5 87.2 0.6

90.2 0.7 90.2 0.7 83.95 0.6 85.35 0.6 86.9 0.6 93 0.7 81.15 0.6 84.1 0.6 82.3 0.6 80.6 0.6 86.5 0.6 82.65 0.6

95.05 0.7 87.2 0.6 81.25 0.6 82.85 0.6 90.45 0.7 81.45 0.6 82.7 0.6 86.3 0.6 75.65 0.6 74.9 0.6 71.95 0.5 82.35 0.6

91.6 0.7 78 0.6 69.3 0.5 86.25 0.6 96.9 0.7 83 0.6 77.6 0.6 83.1 0.6 59.7 0.4 74.75 0.6 72.9 0.5 78.25 0.6

99.05 0.7 90.65 0.7 73 0.5 83.8 0.6 85.6 0.6 76.2 0.6 76.15 0.6 86.8 0.6 81.25 0.6 73.6 0.5 82.15 0.6 77.45 0.6

101.1 0.7 103.4 0.8 73.55 0.5 83.5 0.6 89.05 0.7 75.4 0.6 78.8 0.6 87.75 0.7 91.6 0.7 71.9 0.5 86.35 0.6 76.5 0.6

86.75 0.6 89.45 0.7 82.25 0.6 85.55 0.6 94.8 0.7 82.2 0.6 85.4 0.6 82.25 0.6 91.15 0.7 71.95 0.5 84 0.6 75.6 0.6

94.8 0.7 88.15 0.7 75.05 0.6 85.2 0.6 88.85 0.7 81.05 0.6 84.4 0.6 81.15 0.6 87.85 0.7 72.15 0.5 84.8 0.6 83.4 0.6

95.05 0.7 91.3 0.7 75.65 0.6 75.7 0.6 88.35 0.7 70.95 0.5 84.8 0.6 84.95 0.6 89.35 0.7 74.7 0.6 78.45 0.6 82.9 0.6

91 0.7 78.85 0.6 77.4 0.6 69.9 0.5 88 0.7 81.45 0.6 84.15 0.6 86.4 0.6 83.5 0.6 73.5 0.5 86.4 0.6 83.75 0.6

89.65 0.7 91.05 0.7 77.6 0.6 72.2 0.5 88.7 0.7 82.15 0.6 82.45 0.6 85.7 0.6 66 0.5 69.35 0.5 80.7 0.6 84.75 0.6

86.25 0.6 85.8 0.6 80.25 0.6 85.65 0.6 74.2 0.5 79.4 0.6 75.6 0.6 81.35 0.6 84.25 0.6 72.2 0.5 89.7 0.7 76.75 0.6

90.8 0.7 88.35 0.7 76.75 0.6 84.85 0.6 86.55 0.6 81.65 0.6 84.45 0.6 79.45 0.6 89.9 0.7 71.3 0.5 83.8 0.6 79.05 0.6

90.55 0.7 86 0.6 74.35 0.6 83.9 0.6 81.35 0.6 84.35 0.6 87.8 0.7 80.25 0.6 83.6 0.6 61.9 0.5 85.55 0.6 76.4 0.6

91.2 0.7 91.65 0.7 73.9 0.5 83.55 0.6 87.35 0.6 81.55 0.6 85 0.6 84.05 0.6 81.25 0.6 70.2 0.5 83.45 0.6 83.25 0.6

87.75 0.7 91.95 0.7 75.6 0.6 80.2 0.6 84.6 0.6 54.6 0.4 88.05 0.7 81.75 0.6 83.4 0.6 77.1 0.6 74.3 0.6 80.65 0.6

87.05 0.6 85.8 0.6 80.6 0.6 85.5 0.6 79.35 0.6 84.1 0.6 86.8 0.6 89.75 0.7 72.95 0.5 77.05 0.6 84.4 0.6 81.4 0.6

84.6 0.6 82.45 0.6 85.35 0.6 85.05 0.6 83.75 0.6 86.45 0.6 84.45 0.6 82.9 0.6 74.3 0.6 79.75 0.6 84.35 0.6 84.5 0.6

87 0.6 87.5 0.6 84.9 0.6 93.2 0.7 87.3 0.6 85.65 0.6 83.95 0.6 82.8 0.6 75.3 0.6 83.3 0.6 88.2 0.7 84.5 0.6

83.4 0.6 99.05 0.7 84.75 0.6 91.45 0.7 78.6 0.6 87.1 0.6 82 0.6 86.4 0.6 82.25 0.6 72.35 0.5 84.65 0.6 76.05 0.6

67.55 0.5 88.05 0.7 73.85 0.5 89.1 0.7 88.05 0.7 81.35 0.6 88.15 0.7 75.6 0.6 81.85 0.6 43.7 0.3 87.8 0.7 79.1 0.6

79.05 0.6 86.15 0.6 78 0.6 88.7 0.7 102.15 0.8 78.1 0.6 82.45 0.6 74.4 0.6 79.75 0.6 75.6 0.6 88.4 0.7 86.7 0.6

80.15 0.6 85.65 0.6 88.8 0.7 83.95 0.6 86.15 0.6 67.4 0.5 82.2 0.6 74.35 0.6 80.05 0.6 87.8 0.7 80.7 0.6 83.4 0.6

87.2 0.6 80.45 0.6 89.95 0.7 82.95 0.6 92.6 0.7 78.1 0.6 83.55 0.6 79.9 0.6 80.15 0.6 85.15 0.6 87.8 0.7 86.4 0.6

84.45 0.6 82.7 0.6 86.35 0.6 85.75 0.6 85.7 0.6 87.9 0.7 78.8 0.6 81.45 0.6 69.25 0.5 79.25 0.6 90.2 0.7 85.3 0.6

78.75 0.6 86.8 0.6 86.65 0.6 90.75 0.7 80.4 0.6 81.6 0.6 79.5 0.6 86 0.6 77.3 0.6 81.7 0.6 87.75 0.7 83.3 0.6

81.95 0.6 92.6 0.7 77.15 0.6 84.15 0.6 85.8 0.6 81.3 0.6 79.75 0.6 84.85 0.6 83.55 0.6 79 0.6 87.05 0.6 80.5 0.6

82.15 0.6 93.85 0.7 79.75 0.6 82.55 0.6 86.3 0.6 91.1 0.7 86.1 0.6 75.55 0.6 85.8 0.6 49.05 0.4 84.55 0.6 78.45 0.6

79.15 0.6 87.95 0.7 81.3 0.6 81.2 0.6 84.6 0.6 82.6 0.6 85.5 0.6 83.85 0.6 85.7 0.6 76.05 0.6 81.45 0.6 84.55 0.6

82.45 0.6 96.85 0.7 91 0.7 76.7 0.6 80.4 0.6 80.9 0.6 77.2 0.6 83.5 0.6 77.55 0.6 86.45 0.6 77.1 0.6 84.95 0.6

86.6 0.6 91.5 0.7 86.65 0.6 82.05 0.6 83.65 0.6 84.05 0.6 88.45 0.7 87.8 0.7 69.3 0.5 78.9 0.6 77.4 0.6 82.45 0.6

78.65 0.6 90.55 0.7 91.55 0.7 78.55 0.6 87.5 0.6 87.15 0.6 81 0.6 84.6 0.6 81.5 0.6 80 0.6 79.85 0.6 82 0.6

81.1 0.6 92.55 0.7 90.6 0.7 82.2 0.6 89.55 0.7 81.1 0.6 82.15 0.6 80.65 0.6 79.1 0.6 80.1 0.6 83.6 0.6 69.4 0.5

83.75 0.6 101.15 0.7 81.3 0.6 81.55 0.6 78.85 0.6 86.3 0.6 85.5 0.6 77 0.6 76.95 0.6 72.4 0.5 84.95 0.6 84.55 0.6

78.9 0.6 90.25 0.7 79.8 0.6 84.5 0.6 83.25 0.6 86.15 0.6 88.35 0.7 76.15 0.6 75.1 0.6 64.35 0.5 82.9 0.6 79.25 0.6
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speed (km/h) C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value

78.85 0.6 88.9 0.7 89.15 0.7 80.4 0.6 84.65 0.6 89.85 0.7 89.45 0.7 91.05 0.7 79.15 0.6 82.5 0.6 78.05 0.6 82.75 0.6

77.4 0.6 78.05 0.6 86.55 0.6 83 0.6 86.55 0.6 87.5 0.6 79.9 0.6 90.15 0.7 71.35 0.5 79.95 0.6 79.75 0.6 84.8 0.6

77.55 0.6 81.1 0.6 92.6 0.7 90.85 0.7 82.25 0.6 84.35 0.6 87.8 0.7 86.55 0.6 84.9 0.6 85.65 0.6 85.75 0.6 79.9 0.6

85 0.6 90.05 0.7 77.6 0.6 84.8 0.6 86.7 0.6 82.2 0.6 82.55 0.6 89.25 0.7 88.7 0.7 81.3 0.6 79.5 0.6 73.75 0.5

74.45 0.6 84.9 0.6 88.9 0.7 83.8 0.6 87.4 0.6 86.85 0.6 85.3 0.6 84.3 0.6 85.45 0.6 83.3 0.6 80.85 0.6 79.1 0.6

81.2 0.6 92.2 0.7 84.4 0.6 82.35 0.6 92.25 0.7 76.25 0.6 85.4 0.6 84.95 0.6 88.8 0.7 82.5 0.6 81.25 0.6 90 0.7

84.1 0.6 86.95 0.6 93.4 0.7 74.75 0.6 93.65 0.7 82.65 0.6 84.1 0.6 86.25 0.6 89.95 0.7 88.75 0.7 73.5 0.5 85.4 0.6

86.8 0.6 82.85 0.6 85.15 0.6 85.3 0.6 88.25 0.7 79.35 0.6 83.6 0.6 86.1 0.6 82.6 0.6 88.1 0.7 77.65 0.6 84.7 0.6

81.85 0.6 82.9 0.6 82.7 0.6 77.35 0.6 89.65 0.7 84.75 0.6 79.7 0.6 79.7 0.6 82.65 0.6 85.65 0.6 86.4 0.6 91.95 0.7

81 0.6 84.45 0.6 81.75 0.6 80.7 0.6 84.45 0.6 81.9 0.6 83.65 0.6 80.2 0.6 85.6 0.6 87.85 0.7 93.15 0.7 84.75 0.6

77.45 0.6 90.3 0.7 72.35 0.5 80.15 0.6 87 0.6 75.5 0.6 82.5 0.6 81.8 0.6 91.35 0.7 71.75 0.5 88.4 0.7 83.05 0.6

69.5 0.5 83.25 0.6 81.75 0.6 83.5 0.6 87.6 0.6 78 0.6 85.45 0.6 80 0.6 84.6 0.6 80.85 0.6 88.35 0.7 86 0.6

77.35 0.6 83.6 0.6 79.05 0.6 83.15 0.6 94.45 0.7 66.2 0.5 78.1 0.6 81.25 0.6 84.75 0.6 83.7 0.6 84.05 0.6 86.8 0.6

80.15 0.6 87.6 0.6 84.6 0.6 74.6 0.6 88.1 0.7 79.45 0.6 76.2 0.6 79 0.6 81.65 0.6 84.05 0.6 77.5 0.6 86.7 0.6

84.45 0.6 81.65 0.6 81.5 0.6 65.7 0.5 86.95 0.6 77.3 0.6 80.9 0.6 91.1 0.7 71.3 0.5 80.9 0.6 83.4 0.6 83.65 0.6

82.05 0.6 82.15 0.6 80.65 0.6 87.25 0.6 86 0.6 79.45 0.6 74.55 0.6 88.3 0.7 83.9 0.6 76.35 0.6 80.05 0.6 80.8 0.6

85.15 0.6 84.85 0.6 79.6 0.6 88.9 0.7 81.45 0.6 74.75 0.6 78.05 0.6 85.6 0.6 80.05 0.6 78.15 0.6 84.75 0.6 69.85 0.5

91.15 0.7 89.4 0.7 82.05 0.6 84.2 0.6 86.5 0.6 79.85 0.6 77.95 0.6 89.3 0.7 85 0.6 78 0.6 78.1 0.6 82.1 0.6

77.6 0.6 84 0.6 77.4 0.6 85.25 0.6 89.8 0.7 85.3 0.6 82.15 0.6 78.5 0.6 82.4 0.6 89.4 0.7 83.2 0.6 78.85 0.6

78.65 0.6 82.55 0.6 82.7 0.6 86.8 0.6 88.55 0.7 83.95 0.6 79.15 0.6 86.85 0.6 85.05 0.6 70.55 0.5 84.85 0.6 83.45 0.6

79.1 0.6 89.75 0.7 89.8 0.7 78.2 0.6 89.25 0.7 77.85 0.6 74.05 0.5 85.5 0.6 83.25 0.6 47.6 0.4 79.05 0.6 79.95 0.6

83.25 0.6 84.3 0.6 84.3 0.6 74.4 0.6 93.4 0.7 79.3 0.6 80.15 0.6 88 0.7 78.95 0.6 80.45 0.6 71.8 0.5 77.9 0.6

80.65 0.6 90.55 0.7 93.25 0.7 84.05 0.6 92.1 0.7 92.1 0.7 76.8 0.6 83.65 0.6 80.65 0.6 83.4 0.6 75.1 0.6 72.6 0.5

80.4 0.6 83.6 0.6 98.55 0.7 84.45 0.6 85.35 0.6 87.75 0.7 74.6 0.6 77.9 0.6 82.3 0.6 80.55 0.6 86.95 0.6 71.05 0.5

82.25 0.6 87.05 0.6 77.05 0.6 85.5 0.6 90 0.7 86.45 0.6 75.95 0.6 80.2 0.6 92.85 0.7 78.45 0.6 85.35 0.6 76.95 0.6

79.15 0.6 96.15 0.7 85.05 0.6 80.75 0.6 88.95 0.7 89.05 0.7 81 0.6 73.65 0.5 84.95 0.6 77.85 0.6 89.55 0.7 79.75 0.6

78.05 0.6 98.4 0.7 89.6 0.7 86.85 0.6 91.25 0.7 80.5 0.6 78.05 0.6 81.05 0.6 82.6 0.6 64.4 0.5 87.1 0.6 82.15 0.6

76.8 0.6 97 0.7 87.95 0.7 81.3 0.6 91.15 0.7 91.2 0.7 82.9 0.6 78.15 0.6 86.3 0.6 41.2 0.3 84.8 0.6 76.95 0.6

85.5 0.6 85.75 0.6 84.6 0.6 86.8 0.6 93.25 0.7 86.75 0.6 86.25 0.6 73.9 0.5 79.85 0.6 54.95 0.4 75.95 0.6 74 0.5

82.6 0.6 95.3 0.7 80.4 0.6 86.7 0.6 86.1 0.6 91.85 0.7 79.85 0.6 74.8 0.6 84.8 0.6 82.9 0.6 81.85 0.6 81.1 0.6

83.5 0.6 89.3 0.7 76.5 0.6 92.4 0.7 86.4 0.6 90.5 0.7 71.55 0.5 78.35 0.6 79.6 0.6 83.75 0.6 83 0.6 77.45 0.6

87.05 0.6 92.85 0.7 75.95 0.6 84.65 0.6 84.9 0.6 85.4 0.6 85.25 0.6 88.1 0.7 86.75 0.6 81.65 0.6 83.55 0.6 72 0.5

72.5 0.5 88.3 0.7 79.7 0.6 89.65 0.7 85.4 0.6 88 0.7 87.75 0.7 84.75 0.6 86.2 0.6 74.95 0.6 82.1 0.6 76.75 0.6

77.45 0.6 86.6 0.6 79.05 0.6 85.6 0.6 98.4 0.7 84.65 0.6 85.65 0.6 71.95 0.5 86.25 0.6 59.5 0.4 82.8 0.6 87.1 0.6

82.2 0.6 87.75 0.7 82.45 0.6 80.55 0.6 87.05 0.6 88.2 0.7 85.95 0.6 67.1 0.5 85.05 0.6 73.25 0.5 71.15 0.5 82.8 0.6

84.55 0.6 79.75 0.6 85.4 0.6 79 0.6 88 0.7 87.4 0.6 81.5 0.6 86.3 0.6 85.35 0.6 80.7 0.6 81.55 0.6 75.8 0.6

86.5 0.6 86.45 0.6 88.55 0.7 84.7 0.6 84.45 0.6 92.65 0.7 86.6 0.6 89.4 0.7 85.4 0.6 78.3 0.6 80.8 0.6 79.25 0.6

84.3 0.6 85.35 0.6 84.4 0.6 84.35 0.6 75.8 0.6 89.3 0.7 86.1 0.6 90.2 0.7 88.05 0.7 82.35 0.6 80.15 0.6 76.95 0.6

85.65 0.6 86.65 0.6 78.55 0.6 84.8 0.6 83.4 0.6 86.65 0.6 81 0.6 99.15 0.7 94.2 0.7 79.3 0.6 79.95 0.6 81.5 0.6

72.55 0.5 84.2 0.6 88.7 0.7 71 0.5 91.85 0.7 58.8 0.4 62.8 0.5 88.6 0.7 70.15 0.5 81.2 0.6 72.4 0.5 76.35 0.6

78.7 0.6 82.25 0.6 84.5 0.6 69.9 0.5 85.8 0.6 72.05 0.5 53.95 0.4 85.2 0.6 79 0.6 78.6 0.6 69.15 0.5 80.6 0.6

78.55 0.6 76.7 0.6 84.9 0.6 77.45 0.6 89.05 0.7 77.05 0.6 55.1 0.4 88.75 0.7 77.7 0.6 75.65 0.6 79.75 0.6 72.55 0.5

86.8 0.6 80.8 0.6 86.15 0.6 78.95 0.6 84.6 0.6 75.55 0.6 55.8 0.4 87.05 0.6 82.5 0.6 63.6 0.5 78.45 0.6 65.3 0.5

88.9 0.7 87.15 0.6 79.8 0.6 78.35 0.6 82.35 0.6 78.45 0.6 51.95 0.4 81.55 0.6 83.15 0.6 76.05 0.6 67.3 0.5 77.95 0.6

82.15 0.6 85.2 0.6 81.75 0.6 80.5 0.6 88.75 0.7 78 0.6 60.1 0.4 83.15 0.6 81.1 0.6 70.2 0.5 66.1 0.5 86.15 0.6

71.35 0.5 77.95 0.6 83.55 0.6 79.35 0.6 87.35 0.6 68.8 0.5 51.9 0.4 85.6 0.6 81.8 0.6 77.3 0.6 74.3 0.6 84.8 0.6

69.75 0.5 78.3 0.6 90.35 0.7 69.8 0.5 87.05 0.6 46.15 0.3 65.1 0.5 85.2 0.6 82.4 0.6 78.65 0.6 60.05 0.4 87.1 0.6

91.6 0.7 79.9 0.6 84.75 0.6 71.1 0.5 84.35 0.6 66.9 0.5 73.15 0.5 80.65 0.6 63.65 0.5 76.05 0.6 76.45 0.6 83.3 0.6

86.9 0.6 79.55 0.6 85.6 0.6 77.35 0.6 87.35 0.6 78.55 0.6 53.35 0.4 80.6 0.6 79.85 0.6 74.95 0.6 77.65 0.6 77.55 0.6

86.05 0.6 78.25 0.6 89.5 0.7 80.4 0.6 85.55 0.6 75.95 0.6 62.6 0.5 83.9 0.6 88.8 0.7 76.75 0.6 71.65 0.5 66.4 0.5

86.85 0.6 91.35 0.7 85.45 0.6 77.25 0.6 83.8 0.6 78.15 0.6 53.1 0.4 81.25 0.6 83 0.6 57.95 0.4 60 0.4 82.35 0.6

63.85 0.5 84 0.6 81.95 0.6 74.75 0.6 83.45 0.6 80.55 0.6 63.55 0.5 78.65 0.6 87.3 0.6 66.5 0.5 64.05 0.5 93.6 0.7

69.85 0.5 85.95 0.6 86.55 0.6 78.45 0.6 93.45 0.7 76.25 0.6 58.8 0.4 77.8 0.6 86.65 0.6 86.7 0.6 72.55 0.5 85.4 0.6

84.85 0.6 86.7 0.6 102.1 0.8 78.8 0.6 94.6 0.7 52.8 0.4 92.15 0.7 86.3 0.6 86.75 0.6 85.9 0.6 55.55 0.4 82 0.6

83.1 0.6 78 0.6 93.85 0.7 71.1 0.5 93.3 0.7 53.4 0.4 81.6 0.6 85.25 0.6 58.8 0.4 81.75 0.6 74.45 0.6 93.65 0.7

79.55 0.6 80.5 0.6 97.2 0.7 75.35 0.6 92.6 0.7 80.9 0.6 47.05 0.3 85.5 0.6 82.25 0.6 84.2 0.6 76.8 0.6 86 0.6

75.75 0.6 87.85 0.7 86.3 0.6 82.25 0.6 72.3 0.5 80.05 0.6 64.7 0.5 88.4 0.7 88 0.7 76.15 0.6 70.9 0.5 85.45 0.6

76.8 0.6 92.3 0.7 81.9 0.6 83.05 0.6 84.85 0.6 81.1 0.6 65.6 0.5 76.3 0.6 86.8 0.6 55.15 0.4 60.15 0.4 87.3 0.6

66.55 0.5 82.9 0.6 86.75 0.6 84.25 0.6 89.5 0.7 83.6 0.6 84.5 0.6 80.45 0.6 88.4 0.7 79.95 0.6 75.15 0.6 88.55 0.7

74.6 0.6 83.4 0.6 86.05 0.6 83.8 0.6 92.15 0.7 76.4 0.6 81.7 0.6 83.1 0.6 88.2 0.7 87.25 0.6 72.2 0.5 84.1 0.6

78 0.6 80.45 0.6 84.55 0.6 85.75 0.6 79.5 0.6 61.15 0.5 85.9 0.6 88.15 0.7 84.25 0.6 84.35 0.6 45.5 0.3 85.05 0.6

85.4 0.6 74.5 0.6 80.15 0.6 68.8 0.5 75.85 0.6 71.6 0.5 79 0.6 87.85 0.7 88.8 0.7 83.3 0.6 73.1 0.5 82.35 0.6

82.5 0.6 86.7 0.6 79.35 0.6 82.45 0.6 74.25 0.6 84.2 0.6 52.7 0.4 80.95 0.6 92.15 0.7 87.55 0.6 77.15 0.6 70.4 0.5

82.15 0.6 80.5 0.6 83.1 0.6 86.95 0.6 67.95 0.5 82.8 0.6 71.05 0.5 76.6 0.6 91.15 0.7 86.9 0.6 79.65 0.6 81.5 0.6

85.5 0.6 80.8 0.6 73.05 0.5 90.7 0.7 77.2 0.6 82.65 0.6 86.6 0.6 78.45 0.6 83.7 0.6 86.15 0.6 81.75 0.6 77.65 0.6

77.55 0.6 81.6 0.6 72.8 0.5 86.65 0.6 74.6 0.6 81.35 0.6 85.35 0.6 77.35 0.6 79.25 0.6 89.95 0.7 83.8 0.6 85.7 0.6

72.65 0.5 75.5 0.6 75.65 0.6 85.6 0.6 75.3 0.6 72.3 0.5 86.25 0.6 79.95 0.6 76.95 0.6 98.9 0.7 75.1 0.6 75.75 0.6

82.85 0.6 78.7 0.6 83.15 0.6 80.15 0.6 72 0.5 45.2 0.3 86 0.6 84.45 0.6 66.6 0.5 91.25 0.7 41.3 0.3 75.45 0.6

86.4 0.6 77.65 0.6 82.1 0.6 87.2 0.6 74.3 0.6 78.75 0.6 72.5 0.5 77.6 0.6 83.95 0.6 82.2 0.6 77.65 0.6 79.9 0.6

84.65 0.6 74.9 0.6 79.5 0.6 85.55 0.6 76.55 0.6 79.95 0.6 54.75 0.4 72.95 0.5 79.45 0.6 79.55 0.6 90.55 0.7 77.65 0.6

83.6 0.6 74.5 0.6 78.9 0.6 86.15 0.6 71.45 0.5 78.15 0.6 86 0.6 81.65 0.6 76.4 0.6 67.35 0.5 85.05 0.6 68.55 0.5

81.1 0.6 86 0.6 74.65 0.6 87.35 0.6 66.95 0.5 80.2 0.6 87.65 0.6 82.1 0.6 71.7 0.5 84.75 0.6 87.85 0.7 79.05 0.6

75.4 0.6 82.65 0.6 74.3 0.6 89.8 0.7 69.45 0.5 87.5 0.6 90.3 0.7 81.35 0.6 74.25 0.6 79.45 0.6 80.95 0.6 85.2 0.6

76.9 0.6 84.65 0.6 77.4 0.6 89.35 0.7 79 0.6 62.75 0.5 82.05 0.6 80.85 0.6 78.45 0.6 78.2 0.6 74.1 0.5 86.15 0.6

81.05 0.6 82.55 0.6 80.45 0.6 84.8 0.6 74.2 0.5 67.5 0.5 83.5 0.6 84.75 0.6 75.85 0.6 73 0.5 55.4 0.4 85.65 0.6

84.65 0.6 79.55 0.6 77.05 0.6 78.45 0.6 67.4 0.5 77.65 0.6 78.15 0.6 83.25 0.6 67.8 0.5 72.3 0.5 82.4 0.6 81.35 0.6

82.9 0.6 82.75 0.6 77.1 0.6 83.85 0.6 77.5 0.6 90.5 0.7 53.65 0.4 75.75 0.6 71.8 0.5 76.25 0.6 86.7 0.6 83.45 0.6

80.05 0.6 78.2 0.6 74.95 0.6 89.15 0.7 75.1 0.6 95.5 0.7 83 0.6 80.15 0.6 78.95 0.6 62.7 0.5 82.55 0.6 81.1 0.6
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speed (km/h) C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value speed (km/h)C-value

83.95 0.6 82.35 0.6 95.55 0.7 74.3 0.6 92.15 0.7 73.85 0.5 87.5 0.6 82.85 0.6 82.4 0.6 93 0.7 75.1 0.6 88.5 0.7

90.25 0.7 75.5 0.6 90.6 0.7 86 0.6 88.65 0.7 71.3 0.5 86.45 0.6 84.7 0.6 78.65 0.6 86.95 0.6 58.75 0.4 86.15 0.6

90.3 0.7 77.25 0.6 83.75 0.6 77.5 0.6 86 0.6 84.1 0.6 79.45 0.6 81.6 0.6 61.95 0.5 87.35 0.6 74.2 0.5 82.35 0.6

86.4 0.6 79.3 0.6 83.6 0.6 80.8 0.6 77.25 0.6 82.1 0.6 81.5 0.6 76.8 0.6 81.6 0.6 87.65 0.6 84.05 0.6 75.55 0.6

92.25 0.7 84.7 0.6 73.05 0.5 76.4 0.6 88.5 0.7 84.3 0.6 77.4 0.6 81.45 0.6 95 0.7 76.55 0.6 81.55 0.6 77.4 0.6

88.2 0.7 83.65 0.6 86.2 0.6 73.5 0.5 84.4 0.6 82.8 0.6 85.7 0.6 81.4 0.6 85.95 0.6 75.85 0.6 83.8 0.6 75.25 0.6

86.7 0.6 85.1 0.6 80.6 0.6 76 0.6 87.45 0.6 78.45 0.6 86.45 0.6 69.4 0.5 83.75 0.6 78.8 0.6 85.8 0.6 88.7 0.7

88.75 0.7 86.15 0.6 82.9 0.6 76.35 0.6 87.3 0.6 67.3 0.5 89.6 0.7 76.15 0.6 82.8 0.6 89 0.7 77.45 0.6 86.55 0.6

95.8 0.7 86.1 0.6 83.3 0.6 66.25 0.5 85.65 0.6 75.15 0.6 87.35 0.6 85.5 0.6 73.3 0.5 86.5 0.6 60 0.4 84.05 0.6

92.05 0.7 80.15 0.6 81.9 0.6 71.35 0.5 88.65 0.7 93.25 0.7 74.95 0.6 85.8 0.6 82 0.6 84.65 0.6 68.9 0.5 86.85 0.6

88.15 0.7 78.3 0.6 87.5 0.6 80.5 0.6 91.1 0.7 89.35 0.7 80.4 0.6 86.95 0.6 77.5 0.6 85.5 0.6 89.25 0.7 76.15 0.6

80.8 0.6 89.9 0.7 81.25 0.6 79.5 0.6 81.1 0.6 92.85 0.7 79.55 0.6 88.45 0.7 79.65 0.6 90.35 0.7 86.05 0.6 75 0.6

70.9 0.5 88.9 0.7 64.95 0.5 83.95 0.6 87 0.6 85.3 0.6 80.75 0.6 82.8 0.6 79.95 0.6 66.6 0.5 87.35 0.6 79.5 0.6

91.2 0.7 86.05 0.6 84.85 0.6 79.45 0.6 94.7 0.7 81.15 0.6 77.3 0.6 69.55 0.5 79 0.6 87.1 0.6 89.9 0.7 86.6 0.6

80.4 0.6 95.6 0.7 87.6 0.6 79.6 0.6 89.9 0.7 62.25 0.5 76.8 0.6 82.2 0.6 81.5 0.6 93.5 0.7 75.65 0.6 79.35 0.6

83.95 0.6 76.95 0.6 86.5 0.6 59.15 0.4 86.05 0.6 82.35 0.6 84.5 0.6 87.15 0.6 84.6 0.6 95.45 0.7 54 0.4 83 0.6

78.3 0.6 80.3 0.6 83.4 0.6 74.2 0.5 80.55 0.6 90.25 0.7 78.6 0.6 83.15 0.6 64.25 0.5 93.5 0.7 80.45 0.6 82.45 0.6

80.1 0.6 89.4 0.7 87.4 0.6 85.5 0.6 72.05 0.5 87.3 0.6 76.15 0.6 81.9 0.6 74.5 0.6 95.45 0.7 86.7 0.6 77.95 0.6

81.95 0.6 90.8 0.7 79.7 0.6 86.25 0.6 84.45 0.6 87.3 0.6 71.5 0.5 82 0.6 86.65 0.6 79.55 0.6 82.45 0.6 80.05 0.6

73.3 0.5 84.15 0.6 68.8 0.5 87.15 0.6 81.55 0.6 85.7 0.6 82.25 0.6 81.3 0.6 91.9 0.7 93.85 0.7 81.15 0.6 76.1 0.6

74.75 0.6 85.25 0.6 85.1 0.6 82.35 0.6 80.15 0.6 73.2 0.5 79 0.6 74.6 0.6 88.95 0.7 91 0.7 81.2 0.6 82.75 0.6

76.15 0.6 80.45 0.6 84.05 0.6 81.1 0.6 77.4 0.6 65.35 0.5 81.15 0.6 75.05 0.6 88.75 0.7 96.55 0.7 67.2 0.5 81.75 0.6

82.6 0.6 70.2 0.5 83.5 0.6 54.15 0.4 75.85 0.6 81.3 0.6 82.5 0.6 82.15 0.6 85.5 0.6 88.35 0.7 65.3 0.5 80.05 0.6

84.8 0.6 81.05 0.6 85.3 0.6 84 0.6 78.3 0.6 84.05 0.6 74.95 0.6 82 0.6 75.6 0.6 81.4 0.6 74.55 0.6 89.55 0.7

80.25 0.6 80.1 0.6 87.2 0.6 90.6 0.7 77.6 0.6 80.9 0.6 69.2 0.5 76.35 0.6 86.9 0.6 75.05 0.6 82.25 0.6 90.25 0.7

82.9 0.6 79.95 0.6 92.55 0.7 86.05 0.6 70.8 0.5 79.75 0.6 80.2 0.6 80.25 0.6 90.85 0.7 70.45 0.5 80.7 0.6 60 0.4

83 0.6 81.65 0.6 73.55 0.5 84.4 0.6 68.75 0.5 77.5 0.6 87.75 0.7 74.1 0.5 89.2 0.7 84 0.6 80.75 0.6 78.1 0.6

63.35 0.5 80.1 0.6 81.7 0.6 88 0.7 81.4 0.6 72.5 0.5 85.15 0.6 70.75 0.5 88.35 0.7 70.3 0.5 80.25 0.6 83.95 0.6

79.65 0.6 81.55 0.6 95.45 0.7 78.35 0.6 78.55 0.6 47.85 0.4 92.05 0.7 71.65 0.5 88.35 0.7 74.7 0.6 80.9 0.6 83.4 0.6

85.2 0.6 79.45 0.6 91.15 0.7 66.3 0.5 75.45 0.6 76.35 0.6 94.9 0.7 83.9 0.6 84.6 0.6 75.65 0.6 54.2 0.4 88.35 0.7

89.3 0.7 77.25 0.6 88.35 0.7 81.65 0.6 76.8 0.6 81.95 0.6 91.4 0.7 78.95 0.6 80.5 0.6 75.5 0.6 74.35 0.6 87.55 0.6

88.4 0.7 80.35 0.6 86.3 0.6 86.25 0.6 72.05 0.5 82.85 0.6 65.35 0.5 80.45 0.6 81.2 0.6 82.4 0.6 91.25 0.7 79.6 0.6

88.8 0.7 85.35 0.6 77.55 0.6 84.55 0.6 58.85 0.4 82.8 0.6 95.7 0.7 83.7 0.6 90 0.7 69.85 0.5 85.9 0.6 76.5 0.6

74.6 0.6 83.05 0.6 91.4 0.7 82.25 0.6 79.35 0.6 88.85 0.7 96.45 0.7 87.15 0.6 90.55 0.7 64.3 0.5 91.65 0.7 75.05 0.6

50 0.4 83.8 0.6 81.9 0.6 82.95 0.6 83.1 0.6 87.8 0.7 90.65 0.7 65.75 0.5 88.15 0.7 64.3 0.5 90.9 0.7 84.7 0.6

77.45 0.6 81.1 0.6 91.45 0.7 86.05 0.6 80.15 0.6 60.25 0.4 88.25 0.7 77.2 0.6 90.15 0.7 87.9 0.7 81.9 0.6 89.45 0.7

86.4 0.6 82.8 0.6 89.3 0.7 76.2 0.6 77.2 0.6 82.55 0.6 83.35 0.6 90.5 0.7 76.75 0.6 83.7 0.6 65.7 0.5 92 0.7

83.05 0.6 74.1 0.5 87.15 0.6 83.7 0.6 82.6 0.6 94.5 0.7 70.55 0.5 87.95 0.7 85.8 0.6 78.6 0.6 93.6 0.7 92.1 0.7

79.9 0.6 87.4 0.6 80.65 0.6 93.85 0.7 78.6 0.6 89.65 0.7 82.6 0.6 82.55 0.6 86.7 0.6 79 0.6 92.65 0.7 84.6 0.6


