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Abstract 

 

The turn of the 21st century showed us vividly like never before the vast devastation and 

human loss that tsunamis can cause with the events in Indonesia in 2004 and Japan 2011. 

This increased the need to develop better simulation tools. 

Tsunami simulations traditionally have been develop for CPU computation. With the 

introduction of General Purpose GPU computing (GPGPU) the possibility to exploit the un-

parallel speed-up provided by GPU computation was opened. CUDA made GPUs 

programmable for scientific applications. Taking advantage of this technology we present a 

program that, while providing high accuracy and reliability, does not sacrifices speed or 

require excessive simplification. The Shallow Water Equations (SWE) in Cartesian and 

Spherical coordinates are used to simulate completely on GPU the generation, propagation 

and inundation of tsunamis on the Indian Ocean. The method of characteristic with a cubic-

interpolation is implemented to compute the wave propagation. 

Moreover a tree-based refinement is customized to generate a block mesh domain, blocks 

with higher resolution are obtained near the coastline while coarser resolution remain the 

open ocean. In order to use resources more efficiently a second refinement, by focal area is 

introduced. By permitting higher refinement levels only inside designated areas the total 

number of blocks is drastically reduced while the accuracy on those areas remain high. 7 

Levels are generated, the highest resolution is 50m. 4 focal areas are used located in 

Mozambique, Sri Lanka, Seychelles and Comoros. 

The resulting model, named TRITON-G is GPU optimized and extended to multi-GPU, 

where Hilbert’s space filling curve was utilized to partition the domain and maintain load 

balance. A 10-hour simulation of the Indonesian 2004 tsunami was finished in 40 minutes 

using 3 Tesla K40 cards. Hindcast of this event’s gauges show agreement with the wave 

arrival times recorded and the main event’s peaks. Inundation maps are generated for the 

focal areas; comparison with existing surveys show correct prediction of the run-up heights.  
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Chapter 1. Introduction 

 

 

 

七転び八起き 

Japanese Proverb 

 

 

1.1 General Introduction 

 

Natural forces in the Earth make it a place in constant change. The face of the Earth is 

continuously being shaped by the natural elements it experiences. These forces however, can 

represent a potential threat to living due to the extraordinary phenomena they represent. 

These natural disasters such as landslides, hurricanes, volcanic eruptions, earthquakes and 

tsunamis are factors inherit to Earth and appropriate study and research must be done in order 

to understand them, prepare and when possible, forecast. 

Earthquakes represent one of the most common natural disasters that countries 

experience. Particularly, countries that lie along the Earth’s tectonic plates interfaces and 

faults, experience constant earthquakes due to their natural movement. The earthquakes 

produced by these faults vary in magnitude, from non-noticeable to large scale and powerful 

ones. The Pacific Rim along the Pacific Ocean, where Japan lies, is one of the most active 

and destructive tectonic plates in the World. The Java trench, in the Indian Ocean represent 

another very active and highly dangerous fault. 

When the epicenter of the earthquakes are submarine there is a potential threat of 

generating a tsunami. The sudden displacement of large amounts of water due to the fault 
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fracture or subduction can trigger a wave carrying this energy along the ocean. When this 

wave reaches the coast its amplitude increases and produces an inundation in land. The long-

wave nature of tsunami waves make them particularly difficult to track; tsunami can be 

wavelengths in excess of hundreds of kilometers. Such long-wave makes the amplitude of 

the tsunami barely noticeable at sight when traveling in the open ocean. The magnitude a 

tsunami hit a coast with depends on various factors, the type and magnitude of the earthquake 

and fault characteristics. Also the coastal shapes may amplify or diminish the effect of the 

arrival wave. 

In December 2004, in the coastal city of Aceh Indonesia a powerful earthquake of 

magnitude 9.0 stroke the country with great destruction and was followed by a destructive 

tsunami that produced damaged not only locally in Indonesia but affected neighbors countries 

as well as countries as far as Seychelles. 

 

 

Fig. 1.1 Tohoku Tsunami 2011, Japan. Left: Before and after at the Fukushima Daiichi NPP; Right: Nuclear 
disaster summarized (Credit left: Earth Imaging Journal; Credit right: AFP) 

 

Then, in 2011 Japan itself experienced the effects of a devastating earthquake followed 

by a no less powerful tsunami. In March 2011, 400 km off the Tohoku coast in Japan, a large 

earthquake magnitude 8.9 caused devastation in the region. Infrastructure was damaged or 

destroyed, tens of thousands of human lives were lost within minutes. However, this tragedy 
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was followed a powerful tsunami generated by the fault rupture. A nearly 400km-long piece 

of the fault broke and triggered a tsunami that spread along the Pacific Ocean. Due to the 

closeness of Japan to the epicenter the first waves took less than an hour to hit the coasts. 

Wave height of above 30 meters were reported to hit coasts along the Tohoku region. 

Particularly around half an hour after the earthquake main event, the tsunami wave reached 

the coasts of Fukushima. Along the destruction on port areas, the wave hit nuclear power 

plants (NPP) located there. Fukushima Daiichi NPP run by Tokyo Electric Company, 

TEPCO was hit with waves of over 30 meter high. This tsunami inundated the coast and 

flooded the NPP producing a temporary loss of electric power which disabled the reactor’s 

coolant (see Fig. 1.1). The effect of this was an overheating of the nuclear fuel, which produce 

partial and total meltdown in the reactor’s cores. The nuclear accident that followed produced 

the evacuation of thousands of people living in a radius of 40-km around the NPP. Even 

today, more than half a decade later the consequences of this accident are still present and 

affecting the lives of people. 

The silver lighting behind this tragedy is the understanding and extreme care that should 

be taken when designing a NPP. Safety must be the first concern and preparation to natural 

disasters such as tsunamis is the first priority. In 2013 the Japanese Nuclear Regulatory 

Agency (NRA) introduced new stricter regulation on the design of NPP, specifically they 

announced their objective to [1]: 

“(ii) Significantly enhance design basis and strengthen protective measures against 

natural phenomena which may lead to common cause failure.  

Strict evaluation of earthquakes, tsunamis, volcanic eruptions, tornadoes and forest fires: 

countermeasures against tsunami inundation and due consideration to ensure diversity and 

independence.” 

 

Therefore, today more than never the existence of an accurate and reliable way to forecast 

and simulate the effects of tsunamis has become of extremely importance. As it can be seen 
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in Fig.  1.2 the design of the Fukushima NPP included potential inundation that under-

estimated the real threat of a major tsunami inundation. 

 

 

Fig. 1.2 Elevations and locations of structures and components at the Fukushima Dainichi NPP [2] 

 

Hence the importance of developing a tsunami forecasting tool that can serve as a 

forecasting inundation warning tool and also potentially used to help design better NPP 

infrastructure by simulating extreme tsunami scenarios. 

 

However this kind of complex modeling is very computational demanding and take long 

time to produce results using traditional programming. Until recently the creation of this kind 

of tool required to implement simplifications in model to allow for a faster computation. Or, 

on the other hand, utilize more complex models at the expense of large computing times. 

Using traditional CPU programming represented a limit in the possibilities for forecasting. 

However this changed when in the 2000s nVIDIA introduced their CUDA, language 

extension, to program their graphic cards for scientific purposes. This disruptive technology 

of GPGPU computing has taken off in the last years and proven to be a game changer not 

just in the field of CFD but also in finance, artificial intelligence, data mining, deep learning 

and more. Due to the nature of parallel computing for graphics, GPUs evolved with hundreds 

and thousands of cores more than CPUs. These dedicated cores to exclusively compute, is 

what put GPGPU in a different level, providing outstanding performance and speed. Fig. 1.4 

shows an enlightening chart where the advantages of using GPU are appreciated by the much 

higher floating-point performance than that of traditional CPUs. Currently nVIDIA’s Tesla 

P100 card represents the latest and most powerful of this technology: Pascal; it achieves a 

staggering peak performance of 9.3 TeraFLOPS, contains 3584 cores and 16 GB of memory. 

This single card can turn a simple machine into a small supercomputer. 

Fig. 1.3 Elevations and locations of structures and components at the Fukushima Dainichi NPP [2] 
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Fig. 1.4 Floating-Point operations per second for CPU and GPU [3] 

 

By applying this GPGPU technology to the tsunami simulation model, a forecasting can 

be produced that, not only provides high accuracy by solving non-linear models but also 

delivers high speed. Just like the Japanese proverb that opens this work reads, Fall seven 

times, stand up eight, the tragedies generated by the destructive tsunamis should not offer 

discourage and despair but instead should offer an opportunity to stand up again, learn the 

lessons and improve every time with the latest knowledge and technology available. 

 

1.2 Tsunami-genesis and History 

 

Tsunamis can be generated by landslide, meteorites or earthquakes. The latter case 

being the most common one. As in seen in Fig. 1.5 when an earthquake occurs on the marine 

platform a water displacement can be cause in the ocean surface that travels as a long wave 

spreading in all directions until reaches a coast or the energy dissipates. 
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Fig. 1.5 Tsunami Generation by marine earthquake (©NOAA) 

 

Since the energy from the earthquake is transmitted in the tsunami as this moving wave, 

it actually can travel far distances without much dissipation. A strong earthquake could have 

the effect of producing trans-oceanic tsunamis. The speed at which the tsunami travels is 

proportional to the water depth, the deeper is faster it moves; the average traveling speed is 

about 800 km/h, which is comparable to that of a commercial jet airplane. 

In order to understand the existence of tsunami damage in human civilization and the 

effects they have, a brief survey of historical tsunamis is presented with some details about 

them; the event are ordered chronologically and represent another proof of the importance of 

understanding and prediction such events. 

   

 

Tsunami from the Storegga landslide 

Tsunami deposits found in Scotland, Iceland and Norway have been inferred to be from an 

event called the Storegga slide ( [4], [5]). Considered the largest submarine landslide to be 

mapped, and found in the Norweigian Sea, it has been observed to have taken place three 

times: at 30-50 ka, and 6-8 ka twice, at a total volume of 5.6 x 103 km3 [6]. 
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Hokkaido tsunami (17th century) 

Prehistoric sand sheets on the Pacific coast of Hokkaido extending to as much as 3km inland 

show that the tsunamis produced in the Southern Kuril trench were larger than those recorded 

in the last few centuries. Best explained by earthquakes rupturing at multiple segments of the 

Kuril subduction zone, these tsunamis had large inundation area and long recurrence interval 

averaging about 500 years; the most recent one occurring in the 17th century. Some of the 

recent tsunamis recorded there, like the ones from the 1952-2003 Tokachi-oki or the 1894-

1973 Nemuro-oki earthquakes (Mw~8) only penetrated less than 1km from the coast [7]. 

 

Cascadia tsunami (1700) 

Along the Cascadia subduction zone, geological and historical studies have unearthed 

evidence of a prehistoric earthquake [8]. The size and date of this earthquake can be inferred 

to be Mw = 8.7-9.2 and January 26, 1700, based on historical records in Japan that show a 

tsunami that struck the Pacific coasts with heights of 1-5m, as well as tsunami deposits found 

around the Pacific Northwest and geological and tree-ring evidence that show that a 

coseismic subsidence occurred some 300 years ago and generated a strong tsunami ( [9], 

[10]).  

 

1883 Krakatoa tsunami 

The largest volcanic eruption recorded in human history was the 1883 eruption in Krakatoa, 

Indonesia. The northern part of the island was replaced by a 270m deep caldera; the sounds 

waves from the eruption were heard more than 4000km across the Indian Ocean. The 

tsunamis generated took over 34,000 lives and decimated coastal villages ( [11], [12]). Along 

the Sunda Straight, the maximum tsunami height was measured at about 15m, and tide gauges 

were disturbed as far as India, New Zealand, and San Francisco; the farther locations 

interpreted as a combination of sea waves and air waves from the eruption ( [13], [14]).  
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1896 Sanriku tsunami 

 

 

Fig. 1.6 Classical representation of the 1896 Sanriku Tsunami, Japan 

 

The tsunami in 1896 (Fig. 1.6) that devastated the Sanriku coast of Japan and was unusual in 

the way it was generated. In what is known as a "tsunami earthquake", the Sanriku earthquake 

was not great in size (Ms = 7.2) and was weak, only 2-3 in the Japanese intensity scale (IV-V 

on modified Mercalli scale), but resulted in 22,000 casualties, the worst tsunami hazard in 

Japan in the last few centuries. The run up height was >10m for 200km of Sanriku coast 

( [15], [16]). 

 

1946 Aleutian tsunami 

On the morning of April 1, 1946, an earthquake with a surface wave magnitude Ms of 7.4 

generated massive tsunamis that hit the Aleutians and traveled south through the pacific 

ocean to the Hawaiian Islands [15]. It took 159 lives and demolished the Scotch Cap 

lighthouse, which was situated on a 10m cliff in Unimak Island, 100 km from the epicenter. 

A Pacific tsunami warning system was introduced shortly thereafter [17]. 
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1958 Lituya Bay tsunami 

A strike-slip earthquake (Mw=7.9) on July 10 1958 in Lituya Bay, Alaska, triggered a rock 

slide (700-900m wide, 1000m long, 90m thick, or the total volume of 3x107m3) [17] that 

generated water waves that surged up the opposite slope and stripped trees as high up as 

520m in altitude [18]. This event is the largest water run-up recorded, and is not considered 

a typical tsunami because the waves were contained within the bay. 

 

1960 Chilean tsunami 

On May 22, 1960, the largest (Mw=9.5) earthquake of the 20th century occurred off the 

southern shore of Chile [19], the resulting tsunami destroying the Chilean coast and killing 

more than 1000 people before propagating across the Pacific. In 15 hours, it hit the Hawaiian 

Islands, taking 61 lives, and reached Japan after about 23 hours, causing 142 more deaths. 

The bathymetry in the Pacific Ocean and the sphericity of the Earth had a focusing and 

resonance effect, where the energy was focused towards Japan, producing a large tsunami 

(~5m). This led to the forming of an international tsunami warning system in the Pacific [20]. 

 

 

1993 Hokkaido tsunami 

The Southwest Hokkaido earthquake on July 12 1993 (Mw=7.8) caused a tsunami to hit 

Okushima Island in the Japan Sea. Around the island, the tsunami reached heights of 5-10m, 

resulting in more than 200 casualties, while near the valley; the maximum run-up was more 

than 30m. To reproduce the measured heights of the tsunami, recorded waveforms on tide 

gauges, and seismic and geodetic data, numerical computations of the tsunamis were made 

( [21], [22]). 
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1998 Papua New Guinea tsunami 

Tsunami heights from an earthquake (Mw=7.1)  along the coast of New Guinea Island on July 

17, 1998 were as high as 15m around Sissano Lagoon, near the epicenter, causing a reported 

death toll of more than 2000. Marine surveys conducted after the tsunami showed bathymetry 

features that focused the tsunami's energy towards the lagoon and possible sources of 

submarine landslide. A local effect of the this tsunami is supported by the fact that the large 

tsunami was limited to a small region (~40km) and tide gauges around Japan reported 

amplitudes of < 10cm [23]. To reproduce the heights from this tsunami, numerical 

simulations reveal that another source, possibly from submarine landslides, is needed in 

addition to the earthquake fault motion ( [24], [25]). 

 

2000s Tsunamis 

The turn of the 21st century showed us the reality of the terrible and devastating damage 

and death that Tsunamis can cause as never before. In 2004 a massive earthquake of 

magnitude 9.0 on the Richter scale [26], off Sumatra Island triggered a tsunami with deadly 

consequences (Fig. 1.7). 

 

    (a)  Image collected June 23, 2004                 (b) Image collected December 28, 2004 

Fig. 1.7 Before (a) and after (b) satellite images of the effects of the Dec 26th 2004 Tsunami Banda 
Aceh Shore, Indonesia. (Credit: DigitalGlobe) 
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According to the World Health Organization the death toll for these events exceeds 

200,000 people [27] and includes several countries spread along the Indian Ocean. 

Not much later in 2011 a tsunami triggered by a M9.0 earthquake [28] on the east coast 

of Japan produced in the Tohoku region yet another disaster (Fig. 1.8). This time over 15,000 

people died from these events and the destruction generated was massive in port and city 

infrastructure, housing, tele-communications [29] and the subsequent nuclear crisis due to 

the tsunami-induced damage of several reactors in a power plant [30]. 

 

        

Fig. 1.8 Tohoku Tsunami wave overflows barrier in Miyako, Iwate Prefecture, Japan 2011 (Credit: Reuters) 

 

 

1.3 Operational Tsunami Simulators Survey  

 

In order to understand the efforts made to produce tsunami models and their current state, 

a survey is presented with the most relevant operational programs. 

For several decades efforts have been made to develop such models for tsunami 

generation and propagation using different governing equations, numerical methods, mesh 

grids as well as wet-dry algorithms to estimate the run-up. In general these efforts can be 

grouped in depth-average, hydrostatic or non-hydrostatic long wave equations. 
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Models for the shallow water equations (SWE) started by solving their linear form based 

on finite difference methods (FDM) taking after the work of Hansen [31] and Fischer [32] in 

the 1950s. A more recent review of these methods can be found in the publication by Kowalik 

[33] and Imamura [34]. From these first steps came the tsunami propagation model known 

as TUNAMI (Tohoku University’s Numerical Analysis Model for Investigation) [35] which 

solved the shallow water equations in a non-linear form instead, formulated in a flux-

conservative way for mass conservation and also introduced a discharge computation [34] 

for the elevation near the shoreline. In a very similar manner the ALASKA-tectonic and 

Landslide models (GI’-T) (GI’-L) were introduced, these also solved the non-linear shallow 

water and used leapfrog FDM as TUNAMI [36]. Continuing the approach of solving the non-

linear SWE came MOST (Method of Splitting Tsunami) [37], an extensively used model for 

tsunami simulation, it tried to incorporate the effect of dispersion on the simulation [38], also 

it was original by introducing a function to add points in the shoreline to keep better track. A 

more recent tsunami model in the group of non-linear SWE is GeoClaw, it implemented a 

unique approach to deal with the issue of transferring fluid kinematic throughout nested grids 

by refining specified cells during the simulation thus solving better in those areas [39]. More 

recent models incorporate a real-time application such as RIFT (Real-Time Inundation 

Forecasting of Tsunamis) [40]. Like several of the previous models a Leap-Frog scheme is 

also used for these real-time models, also a linear SWE is implemented to save computing 

time. Another recent real-time model is EasyWave [41] which also employs linear 

approximations for speed up and leap-frog scheme as its numerical scheme. Additionally the 

latest version of EasyWave introduced GPU acceleration for solving parts of the existing 

CPU code and on single precision. 

These mentioned models can be classified as hydrostatic, however assuming a hydrostatic 

pressure implies also nondispersive models which can limit the outcome and modeling in 

certain cases such as tsunamis generated from an underwater landslide or small faults, which 

generate smaller wave lengths. In order to include this effect since the 1990s some models 

took the direction of solving the depth-integrated Boussinesq equations (BE) instead of the 

SWE for tsunami propagation. The initial efforts considered a weak nonlinear model [42] 
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however, models for the nonlinear equations were also developed not long after, for instance 

Nwogu et. al. [43], Lynett et. al. [44]. Solving the Boussinesq equation is, in general, more 

computationally demanding than solving the SWE hence in order to reduce the computational 

time some techniques have been used such using parallel clusters or introducing nested-grids. 

An example of this implementation is FUNWAVE-TVD [45] which is an extended version 

of FUNWAVE, a run-up and propagation model based on fully nonlinear and dispersive 

Boussinesq equations [46]. FUNWAVE also introduced a nested grid method for solving the 

equations and its later version has been fully parallelized using MPI-FORTRAN. Another 

example of BE models is BOSZ (Boussinesq Model for Ocean and Surf Zones [47]), this 

model combines the dispersive effect from the BE with the shock capturing ability of the 

nonlinear SWE; BOSZ is mainly used for near-shore simulation since is based on Cartesian 

coordinates and thus not suited for large areas, also it does not implement nested grids. 

A variant on how to approach the tsunami models has been to solve the problem in three 

dimensions. Along these lines SELFE (Semi-Implicit Eulerian-Lagrangian Finite Elements) 

[48] is a well-known model which solves the 3D Navier-Stokes equations (NS) using an 

unstructured grid, however when used for tsunami simulation it is usually configured as a 2D 

solver for faster computation. Other full 3D models can be found in Abadie et. al. [49] and 

Horrillo et. al. [50]. Although these models tend to capture difficult coastlines very well and 

can include multiple fluids or even materials, the computation cost is still so great that make 

it possible only to apply them effectively in small areas, as opposed to transoceanic 

propagations. An approach to deal with the high computational cost has been to implement 

a hybrid system, incorporating a 3D NV model with hydrostatic or non-hydrostatic models, 

an example of this hybrid modeling is THETIS [51] which uses the 3D NV to solve the 

complex source area or landslide and then interpolates the propagation into a 2D non-linear 

SWE or BE model for better efficiency. 
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1.4 Motivation, Innovation and Objectives 
 

The past tsunami events and specially the recent ones in Japan and Indonesia are the main 

motivation to find a fresh and new approach for tsunami modeling, that, while it retains a 

high degree of the complexities of the physics involved, it still delivers a fast and accurate 

simulation for early warning forecasting. Also, the existence of GPU cards to drastically 

speed-up simulations motivates us to develop this model as a full-GPU program to take full 

advantage of the outstanding performance of GPGPU. 

Furthermore, the Indian 2004 tsunami disaster created not only worldwide awareness 

about this natural threat but also helped to develop and improve disaster prevention efforts. 

A great example of this is the Regional Integrated Multi-Hazard Early Warning System for 

Africa and Asia RIMES [52], established in 2009 and formed by several country members in 

that region and based in Thailand. Following their aim to “provide regional early warning 

services and build capacity […] in the end-to-end early warning of tsunami […] hazards”, 

RIMES has a constant interest in improving their tsunami forecasting tools. Moreover, we 

are motivated by the opportunity to collaborate with RIMES in their latest project to develop 

this work for their specific needs and resources, and produce an operational tool suitable to 

replace their previous tsunami forecasting program. 

The main innovation of this work is to push the envelope of speed by implementing a full 

operational tsunami model on multi-GPU for fast computation, with high accuracy in a large 

domain. Also, the customization of tree-based refinement to this specific work to generate a 

mesh that can identify and track complex coast shapes, generate high resolution, and still use 

computational resources efficiently. 

Hence, our main objective is to produce a robust program that delivers accurate results 

and computational speed and that can be used as operational model. The major purpose is to 

apply this simulator to tsunamis for wide area and long distance propagation from the focal 

spot. In this kind of long distance simulations, like the tsunami event of Tohoku 2011 or 
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Indonesia 2004, the effect of the accuracy of the initial fault become weak; due to the 

collaboration with RIMES we chose the latter as a study case for this work. 

Furthermore, in order to achieve high performance and short computational time, this 

program is developed for full GPU implementation and expanded to Multi-GPU for further 

acceleration.  

A second objective is to implement the Method of Characteristics and a 3rd Order Semi-

Lagrangian numerical scheme to solve the non-linear shallow water equations, allowing high 

accuracy. With this also unwanted effects of numerical dispersion and diffusion are 

minimized.  A corollary to this objective is the smooth and correct integration of Cartesian 

and Spherical versions of the shallow water equations. 

Another important objective is to generate a domain mesh that utilizes memory and 

computational resources efficiently. A customized refinement is needed that can track 

complex coast shapes and focuses on specific areas of interest. Also the customization of the 

refinement is necessary to fine-tune the generated mesh to the specific needs and 

computational resources of RIMES. 

Finally there is the goal to develop a program that while robust is also flexible for 

different settings and parameters. More importantly that this flexibility also provides 

reliability for operation use. For reference herein after this program is named TRITON-G, 

acronym for Tsunami Refinement and Inundation Operational Numerical Model for GPU.  

 

1.5 Work Outline 
 

The thesis is organized as follows: a review of the governing equations is given in chapter 

2. A deduction of the shallow water equations is outlined and then the extension to spherical 

coordinates is presented. 
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The numerical method and boundaries are explained in section 3. The method of 

characteristics is used to solve hyperbolic systems, first it is demonstrated that the shallow 

water equations are hyperbolic and then the method of characteristics applied to solve them 

is explained. The cubic interpolation used in the characteristics is also presented. 

In section 4 a description of the domain mesh refinement is presented. The tree-based 

refinement briefly explain and then its customizations for our specific program are explained. 

Details about the domain topography and bathymetry used are also described. 

GPU and parallel computing is covered in section 5. The way to implement the numerical 

simulation is explained. The type of kernels used are also detailed. Multi-GPU and its load 

balance is outlined and the chapter finishes by presenting results of performance. 

In chapter 6 several results are presented including model validation with existing 

tsunami propagation data and run-up measurements. Hindcast for the Indonesia 2004 

Tsunami is studied.  

The thesis finishes with Chapter 7 which summarizes the research done and presents 
its conclusions. 
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Chapter 2. Governing Equations 

 

 

 

 

In order to model the tsunami propagation and run-up the Non-Linear Shallow Water 

Equations are used. Since the inundation areas of interest are considered small scale 

consisting of a few kilometers, the SWE in Cartesian coordinates are chosen. On the contrary, 

for the rest of the domain the SWE in Spherical Coordinates (SSWE) are used instead to take 

into account the spherical shape of the Earth and to include effects such as Coriolis forces. 

Here we present the derivation of the SWE starting from the conservation principles and then 

extend to the SSWE. 

 

2.1 Conservation Principles 

 

For a compressive material the conservation laws in a differential conservation law form 

for mass and momentum are: 

 ( ) 0t V     (2.1) 

 ( ) [ ]V V V pl g
t
  

     


  (2.2) 

where the mass is in  and the momentum V . The independent variables are: time t and 

x,y,z for the space. The dependant variables are  for density, velocity ( , , )V u v w , pressure 

p, g is the gravity and the tensors: 
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2

2

2

v uv vw

V V vu v vw

wv wv w

 
    

 

  (2.3) 

 

xx xy xz

yx yy yz

zx zy zz

  
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  

 
 

   
 
 

  (2.4) 

the   stands for the viscous stress tensor. The conservation equations are written in their 

components as follows: 

 

 

1

2

3

( ) 0

1

1

1

t x y z x y z

t x y z x

t x y z y

t x y z z

u v w u v w

u uu vu wu p g

v uv vv wv p g

w uw vw ww p g

    







      

    

    

    

  (2.5) 

 

2.2 Free Surface 
 

A surface in a three-dimensional domain is assumed to be under the effect of gravity. The x-

y coordinates defines the horizontal plane and z the vertical direction or the associated 

elevation of the free surface. A sketch of this description can be seen in Fig. 2.1 

 



 
Governing Equations 

19 
 

 

Fig. 2.1 Free Surface model. h: water depth; z: bathymetry; H: constant level 

 

There are some boundaries to consider. First a function b(x,y) is defined as the bottom 

boundary, referred also as bed, as follows: 

 ( , )z b x y   (2.6) 

Then, the free surface is defined by: 

 ( , , ) ( , ) ( , , )z s x y t b x y h x y t     (2.7) 

where h(x,y,t) is the water height, defined as the distance between the water surface and the 

bed. 

If a constant density is assumed and the gravity g is taken as g = (0,0,-g) with a constant 

value of g=9.8m/s2 , then the conservation equations (2.5) can be simplified to: 

 0x y zu v w     (2.8) 

 
1

t x y z xu uu vu wu p


       (2.9) 

 
1

t x y z yv uv vv wv p


       (2.10) 

  
1

t x y z zw uw vw ww p g


        (2.11) 
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With given initial and boundary conditions this set of equations can be solved for the four 

unknowns: p, u, v, w. However, solve it directly this way is considerable computationally 

demanding. A way to determine the boundary condition to find the solution is to assume the 

depth of the water to be small with respect to the wave length. This give the advantage to 

lead to nonlinear initial value problems analogous to those associated with wave propagation 

in compressible materials [53]. 

To obtain the shallow water equations first the boundary conditions for the general 

problem are studied. For the surface assume that the condition is given by: 

 ( , , , ) 0x y z t    (2.12) 

For the free surface then: 

 ( , , , ) ( , , ) 0x y z t z s x y t      (2.13) 

and for the bottom boundary: 

 ( , , , ) ( , ) 0x y z t z b x y      (2.14) 

Finally a kinematic and dynamical condition are assumed on the surface, respectively: 

 ( , , ) 0
D

x y t
Dt

    (2.15) 

 ( , )( , , , ) 0z s x y atmp x y z t p     (2.16) 

where patm is the atmospheric pressure, taken for convenience as zero. 

 

2.3 Cartesian Coordinates 
 

The SWE can be derived from the previous assumptions; this derivations follows the 

detailed explanation also found in Toro E. [54]. The SWE in Cartesian coordinates can be 

obtained following these steps. First, the vertical component of the acceleration is assumed 
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negligible, which is a reasonable assumption considering that waves moves along the surface 

mainly horizontal for our purposes. Inserting this condition,  dw/dt=0 , in equation (2.11) 

gives: 

 zp g   (2.17) 

 f   (2.18) 

By using the dynamical condition (2.16) we obtain: 

 ( )p g s z    (2.19) 

Taking the derivate of this expression with respect to x and y gives: 

 ,         x x y yp gs p gs     (2.20) 

since both are independent of z then the x and y components of the acceleration of the water 

particles du/dt and dv/dt are also independent of z. Next, these two expressions are replaced 

in (2.9) and (2.10)  to obtain: 

 t x y z xu uu vu wu gs      (2.21) 

 t x y z yv uv vv wv gs      (2.22) 

The next step requires integrating the continuity equation (2.8) along z, from the bottom to 

the free surface, as follows: 

 ( ) 0
s

x y z

b

u v w dz     (2.23) 

 0
s s

z s z b x y

b b

w w u dz v dz        (2.24) 

In order to find the first two terms of this last equations the boundary conditions assumed in 

the previous section are used. By applying condition (2.15) to (2.13) and (2.14) w can be 

determined, thus: 
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 ( ) 0      ( )t x y z s z s t x y z ss us vs w w s us vs            (2.25) 

 ( ) 0      ( )x y z b z b x y z bub vb w w ub vb          (2.26) 

In turn, these values for w can be inserted back in (2.24) which gives:  

 ( ) ( ) 0
s s

t x y z s x y z b x y

b b

s us vs ub vb u dz v dz           (2.27) 

To solve the last two terms of this equations, the Leibniz’s formula: 

 
( ) ( )

( ) ( )

( ) ( )
( , ) ( , ( )) ( , ( ))

b x b x

a x a x

d f db x da x
f x y dy dy f x b x f x a x

dx x dx dx


  

    (2.28) 

is applied to obtain: 

 
s s

x z s x z b x

b b

u dz udz u s u b
x  


    
    (2.29) 

 
s s

y z s y z b y

b b

v dz vdz v s u b
y  


    
    (2.30) 

These two equations are now used in (2.27) and after simplifications the following expression 

is found: 

 0
s s

t

b b

s udz vdz
x y

 
  
     (2.31) 

According to the definitions given in the previous we know that u and v do not depend of 

z; also we know that s=b+h and bt=0. By using this in equation (2.31) can be finally written 

as: 

    ( ) ( ) 0
h

u s b v s b
t x y

  
    

  
  (2.32) 

 ( ) ( ) 0t x yh hu hv      (2.33) 



 
Governing Equations 

23 
 

This equation is the law of conservation of mass in its differential conservation law form. 

To obtain similar equations for the momentum the next procedure is followed. First, equation 

(2.33) is multiplied by u and (2.21) by h, then added, and after simplification we get: 

 2( ) ( ) 2t y x x x xhu huv u h uhu ghh ghz        (2.34) 

Finally, assuming h is differentiable such that 21

2

h
h h

x x

        
 then the last equation 

simplifies to: 

 2 21
( ) ( ) ( )

2t x y xhu hu gh huv ghz       (2.35) 

Similarly for the momentum in y: 

 2 21
( ) ( ) ( )

2t y x yhv hv gh huv ghz       (2.36) 

These last two equations together with (2.33) are known as the non-linear SWE. 

Furthermore, these equations can be written in conservative form as: 

 ( ) ( ) ( )t x yU F U G U S U     (2.37) 

with: 

 2 2

2 2

0

1
U     ( )     ( )    ( )

2
1

2

x

y

hu
h hv

z
hu F U hu gh G U hvu S U gh

x
hv huv zhv gh

gh
y





 
                                                 

   

where U represents the vector of conserved variables, h is the water depth, hu and hv represent 

the momentum, u and v are the fluid velocities in the x and y direction respectively, F and G 

represent fluxes and S represents a source vector that can include terms like the effect of bed 

slope (bathymetry z), bed shear stress (friction). 
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A numerical scheme is regarded as well-balanced or satisfying the C-property [55] if it 

preserves steady states at rest, for instance, the undisturbed surface of lake. When the fluid 

is at rest u(x,t)=0 then H(x,t)=h(x,t)+z(x) represents a steady state that should hold in time 

and not produce spurious oscillations [56]. When source terms that depend on geometry are 

introduced in the equations, the gradient in the conserved variables incorporates a geometry 

term that does not vanish under steady-state conditions. In order to guarantee a well-balanced 

scheme an additional change in equations (2.37) is introduced by expressing them in terms 

of a constant water level H; this way it is possible to compute accurately steady state. The 

result of substituting H for the one dimensional x-direction case of h and hu is: 

 

0
h hu

t x

H Hu zu

t x x

 
 

 

  
 

  

  (2.38) 

and 

 

2 2

2 2

1

2

1

2

hu z
hu gh gh

t x x

Hu zu
Hu gH u

t x x

          

         

  (2.39) 

 

respectively. The equivalent symmetrical result for y-direction can be readily found in the 

same fashion.  
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2.4 Spherical Coordinates 

 

In order to approximate the Earth’s surface the non-linear shallow water equations are 

solved on the sphere, referred to as Spherical Shallow Water Equations (SSWE). Fig. 2.2 

shows the definition of longitude  and latitude  on the sphere. By using this coordinate 

system not only the effect of the Earth’s curvature on the propagation is included but also 

forces generated by its rotation i.e. Coriolis. Also the non-linear equations are more adequate 

to describe the flow motion in coastal areas where the wave length of the incident tsunami 

becomes shorter and the amplitude becomes larger as the leading wave of the tsunami 

propagates into shallow waters. 

 

Fig. 2.2 Spherical Coordinates,  latitude,  longitude 

 

If the earth’s radius is a, then the linear dimension of a region of the sphere are given by:   

 cos               x a x a           (2.40) 

 Hence the non-linear SWE ( [57], [58] ) on the sphere can be written as the following set of 

equations: 
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cos
0

cos

tan 0
cos

tan 0

h h u v
V h

t a

u u g z
V u f v

t a a

v u g z
V v f u

t a a


  


 




           
          
          

  (2.41) 

 

Moreover, the set of equations (2.41) can be re-written for the vector of conserved 

variables U in (2.37) as: 

  

 

2 2

2
2 2

1 1
( ) ( ) tan 0,

cos

1 1
tan

cos 2

( tan ) 0,
cos

1 1
tan

cos 2

( tan ) 0

h hv
hu hv

t a a a

hu g huv huv
hu h

t a a a

u gh z
f hv

a a

hv hvu g hv
hv h

t a a a

u gh z
f hu

a a






  


  

 
 


  

 


  
   

  

          


    


            


    


  (2.42) 

 

where f stands for the Coriolis force, defined as: 

 2 sinf     (2.43) 

and   is the rotation of the Earth. The parameters used in this work are: 
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6 

-5 -1

-1

a=6.37122x10 [ ]

Ω=7.292x10  [s ]

g=9.80616 [ms ]

m

  (2.44) 

It is worth noting that besides the additional new terms due to the spherical setting that 

correspond to the source term in equations (2.42), there is still a high similarity with the 

Cartesian SWE multiplied by a factor either 1/acos  or 1/a. Also this quasi symmetry 

between latitude and longitude equations will prove useful in the kernel optimizations. 
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Chapter 3. Numerical Methods and Boundary Conditions 

 

 

Computational Fluid Dynamics or CFD is a branch of science that by using the aid of 

computers, studies the behavior of fluid-flow problems based on the physical governing 

equations. The solution is usually focus on variables such as heights, velocity or pressure in 

particular parts of the domain, or in some cases in the overall behavior.  

Due to the complexity of the equations involved in these kind of problems it is not often 

that an analytic solution can be found, perhaps only for the simplified cases. Hence numerical 

methods have made great progress over the past decades to help find solutions to these 

complex problems. For example, finite difference, finite element, finite volume, spectral 

methods just to mention the most familiar ones. 

When numerical methods are used an accurate solution is sought with minimum error   

possible. Because of sources or error during the simulation and in the method, it is important 

to benchmark results and study stability and accuracy. These errors may come from 

discretization, since the domain is not really the real one but a representation of it in spaced 

points; input data errors, due to the fact that it is nearly impossible to work with real 

geometries and some simplifications must be made; initial and boundary condition errors, 

similar to the previous one because it is difficult to model the real conditions. 

CFD provide many advantages for simulation development. It can be produced quickly 

and inexpensively due to the decrease of the prices in computing. The results produced are 

detailed and comprehensive, readily accessible, something difficult to do when dealing with 

real life experiments. Also changing of parameters depending on the user specifications can 

be done relatively easy, therefore different cases can be studied with the same framework or 

code. 

CFD has also the ability to simulate real conditions very accurately. More importantly, it 

permits to study unnatural or hazardous events, such as natural disasters (Tsunami, 
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Hurricanes), conflagrations, explosions or nuclear plant failures, without having to risk 

human lives or investing huge budgets to set an experiment. 

 

 

3.1 Semi-Lagrangian Method 
 

Although it is possible to carry out, in theory, a prediction in a Lagrangian framework by 

following a set of marked parcels, in practice this is not a reasonable alternative because 

shear and stretching deformations has the effect to concentrate these parcels in a few regions 

therefore it is difficult to keep an uniform resolution along the domain. It is possible to take 

advantage of the conservative properties of Lagrangian schemes, while maintaining uniform 

resolution by using a semi-Lagrangian method [59]. This form allows relatively long time 

steps while retaining numerical stability and high accuracy. In a very simple and introductory 

approach this procedure can be illustrated with the one dimensional advection equation. A 

more robust and complete method will be applied to the Shallow Water Equations in a next 

chapter. Let`s assume we have the one-dimensional advection equation: 

 0
f f

u
t x

 
 

 
  (3.1) 

 

According to this equation 2.1 the field f is conserved following the x direction at 

speed u. Hence for any grid point we have ix i x  and time st s t  : 

 ( , ) ( , )s
i s i sf x t t f x t     (3.2) 

where s
ix is the location at time st for the point located at the point ix at the time st t  . 

However this point’s position generally speaking does not lie on a grid point exactly, because 

of this reason to evaluate the right side of (2.2) requires interpolation from the grid point 

values at a time t. When u>0 the position s
ix would be located between the points i px  and 
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1i px    where p is the integer part of the measure of the number of grid points traversed in a 

timestep: /u t x  . For the sake of this first survey simplicity let’s assume linear 

interpolation is used, then: 

 

 1( , ) ( , ) (1 ) ( , )s
i s i p s i p sf x t f x t f x t        (3.3) 

 

with ( ) /s
i p ix x x    . Thus as shown in Figure 2.1 p=1 and to predict u at a point P then 

the interpolation must happen between i=1 and i=2, the result is marked in blue. 

 

 

Fig. 3.1 Time-space Grid for the one-dimensional Advection Equation (2.1). The slope is a characteristic curve 

along which u(x,t)=u(0,0) and the blue point shows the interpolated result for the semi-Lagrangian scheme. 

The green region shows the domain of dependence of P 

 

In a more realistic model the velocity field is also calculated rather than give as we assumed 

here. Thus, for a two-dimensional field: 

 ( , , ) ( , , )f x y t t f x u t y v t t         (3.4) 
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where the velocity components at time t can be used to estimate the fields at t t . If these 

are found then they can used to provide a more accurate approximation to (2.4). The right 

side of (2.4) is again solved by interpolation, in this case in a two dimensional interpolation. 

 It can be appreciated in the grid Fig. 3.1 that the semi-Lagrangian scheme guarantees 

that the domain of influence in the numerical solution corresponds to that of the physical 

problem. Hence this scheme is computationally stable for time steps much larger than 

possible with an explicit Eulerian scheme. Finally the semi-Lagrangian scheme also 

preserves the values of conservative properties quite accurately, a very desirable 

characteristic since we will be working a conservative scheme. 

 

3.2 Propagation 
 

3.2.1 Hyperbolic system 
 

Let’s express the SWE in the state of conservation laws as: 

 

0,

,
t x x x x

t x x y x

t x y y y

h uh hu vh hv

u uu gh vu gb

v uv gh vy gb

    
    

    

  (3.5) 

 

These equations can be written in a quasi-linear form such as: 

 ( ) ( )t x yW A W W B W W S     (3.6) 

with: 
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0

     ,                     ( ) 0

0 0

0 0

( ) 0 0 ,                

0
x

y

h u h

W u A W g u

v u

v h

B W v S gb

g v gb

   
       
      

  
      
      

  

A system of m conversation laws with Jacobian matrices A(U) and B(U) is said to be 

hyperbolic if the matrix C formed by the linear combination of the Jacobian matrices A(U) 

and B(U): 

 1 2C A B     (3.7) 

has m real eigenvalues for any vector U of conserved variables and any vector 1 2[ , ]   , 

such that 0  . To find these eigenvalues first we construct the C matrix using equation 

(3.7): 

 
1 2

2 2
1 2 1 2 2
2 2

1 2 1 1 2

0

( ) 2

( ) 2

w w

C a u w uvw uw vw uw

uvw a v w vw uw vw

 
     
     

  (3.8) 

where a gh . Then from solving det( )C I , where I is the three-dimensional identity 

matrix, we find the eigenvalues i of C to be: 

 
1 1 2

2 1 2

3 1 2

uw vw a w

uw vw

uw vw a w





  

 

  

  (3.9) 

Since 1 and 2 are defined as real parameters such that: 

 2 2
1 2 0w w w     (3.10) 
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then it is proven that the eigenvalues (3.9) are all real and hence the system is hyperbolic. 

 

3.2.2 Method of characteristics 
 

In order to compute the propagation of the tsunami, the SSWE (6) are solved using the 

Method of Characteristics (MOC). This is a commonly used method in gas dynamics ( [60], 

[61]) developed in the 1960s, explained in detail by Rusanov [62]. MOC can be applied to 

reduce hyperbolic partial differential equations, such as the SSWE, to a family of ordinary 

differential equations which in turn can be integrated from a chosen initial value. In general, 

it uses the Riemann invariants of a system to find the solution of the set of equations. A 

typical approach when using MOC is to introduce a dimensional splitting in the multi-

dimensional equations, in the case of the Cartesian SWE equations (2.38) and (2.39) 

represent the directional splitting for the x-direction [63]. To apply the Method of 

Characteristics to the SSWE (2.42) first let’s express them in vector form as: 

 0
U U U

A B S
t  

  
   

  
  (3.11) 

with 
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        ,
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v v
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u huv gh z

S f hv
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u hv gh z
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a a a
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

 
 

 


 
    
  
 
   
   

 
 
 

      
 

     
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where gh  . As mentioned before, following the directional splitting technique, 

equation (3.11) can be expressed as: 

 0,
U

S
t


 


  (3.12) 

 0,
U U

A
t 

 
 

 
  (3.13) 

 0
U U

B
t 

 
 

 
  (3.14) 

From these three equations it can be seen that equation (3.12) simply represents the source 

term and more importantly that equations (3.13) and (3.14) are in advection form. To find 

the solution of these two equations an additional step of diagonalizing the matrix is necessary 

in order to find the invariants and characteristics of the equation, a detailed description of 

this procedure can be found in Ogata et.al. [64], Stoker [65]. Thus the equations for the 

Riemann invariants and their eigenvalues ( ) for are: 

 3

1 1
( ),      

cos cos
u u

a a
 

         (3.15) 

 0
2

D u

Dt

     
 

  (3.16) 

Similarly for : 

 3

1 1
( ),      v v

a a
 
        (3.17) 

 0
2

D v

Dt

     
 

  (3.18) 

The following description shows the results for however the solution for  can be found 

analogously. Equation (3.16) means that the solution at a given grid point i, is determined 
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from two characteristics along C  and C  (Fig. 3.2). Thus the result at a time n+1 can be 

found from: 

 1 1 1
( )

2 2
n

i u u            
 

  (3.19) 

  1 1
2( )

2
n

iu u u            (3.20) 

where  and u   are the variables value at a time n, however they might not necessarily lie 

on a grid point. 

 

Fig. 3.2 Space-time diagram showing the characteristics C 
. Black dots represent the grid points while the 

dotted points represent the values to be interpolated 
 , u 

 used to find 
1n , 

1nu 
(Diagram based on [66]) 

 

Hence we must implement an interpolation in order to find their value and solve (3.19), 

(3.20). Following a similar procedure as T. Yabe et.al ( [66], [67], [68]) we utilize a cubic-

polynomial approximation F( ) on the grid profile to find the interpolated values and to 

allow for a large time step t . The stencil used to create the polynomial is depicted in Fig. 

3.3. Let define F( ) as: 
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Fig. 3.3 Stencil used to create cubic polynomial interpolation 

 

 3 2( )F a b c d         (3.21) 

thus, four conditions are required to determine the polynomial. It should be noted the use of 

the special character a to avoid confusion with the radius of the Earth a. Then, the chosen 

conditions are: 

 

1

1

2

( )

(0)

( )

( 2 )
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f F

f F
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f F












 



 
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  (3.22) 

Using these conditions a system of four equation with four unknowns can be created and 

the solution for the coefficients determined. This system can be readily solved by using 

math software like Maple® to obtain for / 0u t 
   : 
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  (3.23) 

with 1
( )

cos
u u

a 
     for longitude;

1
( )u v

a
     and  instead of   for latitude.  
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 Similarly for / 0u t 
   : 

 

2 1 1
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1 1
2

2 1 1
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  (3.24) 

with 1
( )

cos
u u

a 
    for longitude and 

1
( )u v

a
    ,  for latitude. 

 By looking at the similarities between expressions (3.23) and (3.24) it becomes clear 

that is possible to create a set of coefficients that include both cases in one. In order to achieve 

this, first let’s define the following expressions: 

 
/( ) 1

2
1

SIGN u t
sp

sm sp

 
  



 
  (3.25) 

where SIGN is defined as the sign of the respective term /u t 
  , 1 for positive and -1 for 

negative. Using these expressions let’s also define the following variables: 

 

 

P2 P2

P1 P1

C0 C0

M1 M1

M2 M2

A  =   0 sp + 1 sm C  =   0 sp - 1 sm,

A  =   1 sp - 3 sm C  =   2 sp + 6 sm,

A  = - 3 sp + 3 sm C  =   3 sp - 3 sm,

A  =   3 sp - 1 sm C  = - 6 sp - 2 sm,

A  = - 1 sp + 0 sm C  =   1 sp + 0 sm

   
   
   
   
   

  (3.26) 

 

Therefore, finally single expressions for the coefficients a , b and c can be written as: 
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
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  (3.27) 

 Although not clear at first sight, the objective of creating single expressions for a , b 

and c lies in the programing implementation. Using expressions (3.23) and (3.24) create the 

need of divergent computing branches on two separate paths, whereas expression (3.27) 

creates a single path. Branch divergence is a condition that can penalize performance in GPU 

computing hence the importance of creating expressions that avoid this situation when 

possible. 

 

3.3 Source terms 

 

 For the source term, the bottom friction is discretized and computed as in (3.37). 

Central finite differences are used to solve the bed slope: 

 1 1

cos cos 2
i i i

i

gh z zgh z

a a   
 


 

  (3.28) 

The terms involving trigonometrical expressions such as cosine, tangent can be solved 

analytically at each grid point since the variables are known, i.e.: 
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i
i i
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


  (3.29) 

Same approach goes for the terms including the Coriolis expression f: 
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uu
f hv hv

a a
        (3.30) 

Finally, the use of real bathymetry introduces the challenge of handling unusually large 

and sharp gradients during computation. In order to avoid divergence or spurious oscillations 

an artificial viscosity is introduced in the equations. This is represented by the diffusion 

equation, discretized as: 

 1
1 1( 2 )n n

i i if f f f f
       (3.31) 

with the coefficient
2

t






on an uniform mesh. Moreover a normalization is applied to this 

equation in order to guarantee that the effect of this term is equal on grids with different 

resolution, such as in the case mesh refinement. For this purpose let’s define a new coefficient 

̂  defined as: 

 ̂      (3.32) 

By doing this a new coefficient    is obtain that is now independent of the grid solution, 

thus: 

 
̂





  (3.33) 

The appropriate value of ̂  is chosen to be small enough not to affect the wave propagation 

yet of significant where large gradients are present to improve stability. 

 

3.4 Non-linear SSWE validation 
 

The first step necessary to confirm the correct implementation of the numerical method 

to solve the SSWE is to benchmark the results with an appropriate test. While there are many 

analytical and laboratory test cases for near-field tsunamis, it is surprising the lack of these 

tests for long range propagation and even less in spherical coordinates. From the scare options 
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to benchmark we present a test case from Kirby et.al. [69]  to model equations and sensitivity 

to dispersion and Coriolis effects. This test can be used to confirm the correct propagation of 

the waves in spherical coordinates for far-field simulations.  

This benchmark case utilize an idealized source and ocean, and assumes a flat 

bathymetry over the entire ocean. The water depth is constant over the whole domain 

h=3000m. The grid resolution is 0.75 arc-min. The domain is in the northern hemisphere and 

covers a region from 15º to 40 º latitudinal and from -10 º to 15 º longitudinal. An initial 

idealized Gaussian elevation:  

     2 2

2

1
( , ) exp C CH A

W
            

  (3.34) 

centered at  , (0 ,30 )C C      is used as source. The source width W is 0.25º and the 

amplitude A is 1 m. 

Fig. 3.4 show our results of the wave propagation for this test case. Whereas the initial 

source is a circular Gaussian-shape wave, it is noticeable the deformation the wave 

experiences due to the curvature of the sphere as it evolves and spread over the domain.  

Moreover, a direct comparison is presented in Fig. 3.5, the image on the left is taken 

from the original benchmark report. It represents a portion of the wave at 5000 seconds; since 

the wave is symmetrical and the bottom is flat, there is no loss of generality reporting just 

this portion of the domain. The image on the right represent the result obtained by TRITON-

G.  
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Fig. 3.4 Far-field propagation benchmark: Idealized Gaussian source on northern hemisphere. Each slide 

represents 1000 seconds. 
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Fig. 3.5 Gaussian Initial condition benchmark at 5000s. Left image shows the original result from [69], 

imagine on the right shows the result for TRITON-G. 

 

Overlapping of the results proved excellent agreement between waves; using this as a 

guide it can be concluded that the numerical methods reproduce the propagation wave 

correctly thus validating them. 

In conclusion, it was shown that the spherical implementation was correctly used; it 

should be mentioned that for this work the domain’s latitudes are relatively close to the 

equator ( 20 ), hence the effect of Coriolis is barely noticeable during the propagation; 

moreover earlier investigations has found that this effect is of minimal importance for 

tsunami wave fronts ( [70], [71]). 

 

 

 



 
Numerical Methods and Boundary Conditions 

44 
 

3.5 Inundation 

 

As mentioned before in section 2, since the inundation areas of interest correspond to 

cases with lengths of just a few kilometers, the SWE in Cartesian coordinates (2.37) are 

suitable to determine the tsunami run-up. For this purpose we use the implementation 

developed by Sugiyama et.al ( [72], [73]) which is briefly explained here. Fig. 3.6 depicts a 

sketch of the definition of inundation height and run-up height. 

 

 

Fig. 3.6 Sketch of the Inundation and run-up heights on a shore slope 

 

This implementation employs the Surface Gradient method (SGM) [74] to solve the SWE. 

It uses the data at cell center to determine the fluxes F and G. In general depth gradient 

methods cannot determine the water depth value at cell interface accurately when including 

effects of the bed slope as well as variations in the free surface since they cannot be 

determined there accurately. These inaccuracies are spread during the computation resulting 

in an incorrect simulation of the inundation. In order to overcome this, the SGM uses a 

constant water level H instead of the variable h (see section 2.1). Fig. 3.7 depicts the stencil 

for the water depth reconstruction, it shows that by using H instead, the water depth at the 

cell interface (i+0.5) can be accurately determined. Thus to reconstruct the water depth we 

have: 

 ,  0.5 ,  0.5 0.5max( ,0)L R i L R i ih H z      (3.35) 
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where z is: 

 0.5 1( ) / 2i i iz z z     (3.36) 

A MUSCL scheme is used to find the flux value while Local-Lax-Friedrichs [75] is used to 

solve the bed slope source term. For the time integration a 3rd Order TVD Runge-Kutta 

scheme was used. Lastly, the bottom friction is computed using Manning’s formula: 
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  (3.37) 

where n is the Manning’s roughness coefficient obtained from a look-up table or parameter 

file, a default value of 0.025 is used on all the domain except where a database with specific 

values for a region is provided. 

 

Fig. 3.7  Reconstructed water depth ݄௅,ோ for inundation [73] 

 

The particularity of this run-up implementation lies on the assumption of a thin film 

of water on the land. This parameter, which is set to be small compared to the wave height, 

allows to compute the wave propagation over land keeping it stable. On the run-up, if after 

computing the water level following the description in the previous paragraphs its value is 

found to be less than that of   (i.e. h  ) then the water level is set equal to while the 
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momentum set at rest (hu=hv=0) on a grid point. This implementation has proven to be 

robust and stable to compute tsunami run-up under different benchmarks and simulations.  

        

 

Fig. 3.8 Parabolic bowl problem. Left: water depth error for different values of thin-film ϵ;  

Right: Cross section at t ൌ
த

ଶ
 and ϵ ൌ 10ିସ	ሾ73ሿ. 

 

As an example, Fig. 3.8 shows one of the results for the Parabolic Bowl problem [76], as it 

can be seen, this technique is able to track almost identically the analytical solution of the 

parabolic bowl on different grid sizes as it evolves in time with minimum error. 

 

3.5.1 SWE Benchmark: Dambreak 
 

In order to test the accuracy of the implementation to solve the SWE the dam break 

benchmark is used [77]. This one dimensional problem is important for verification since 

analytical solution is available. A horizontal and frictionless channel of length 1 m is 

considered, and it is broken instantaneously at time t=0. The initial state of the water depth 

is given by: 
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
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  (3.38) 

where two cases are considered: Case A with 0.10lowh    and Case B with 0.01lowh  . The 

CFL number is 0.1 and two grid sizes nx are used, nx = 100 and nx =800. 

 

Fig. 3.9 Dam break computation at 0.1s Case A 

 

 

Fig. 3.10 Dam break computation at 0.1s Case B 
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Results at time 0.1 are shown in Fig. 3.9 and Fig. 3.10 for the two depth ratios. The results 

show excellent agreement with the analytical solution. Both shock wave and rarefaction wave 

are predicted without any numerical oscillation.  

 

3.6 Tsunami Source Model 
 

TRITON follows the usual three-step simulation style: Generation-Propagation-

Inundation. The models used for propagation and inundation were explained in sections 3.1 

and 3.2 respectively. In the case of Generation, it depends on knowing the exact parameters 

of the source to create an initial condition. This has proven to be essential in order to obtain 

an accurate simulation, however due to the complex nature of the source dynamics during an 

earthquake and the difficulty to track it in real time, currently is beyond our grasp to obtain 

these parameter precisely and instantly. Therefore since the goals of this work do not fall on 

the study of sources, instead of implementing a dynamic source generation we opted for a 

coseismic deformation. This deformation is calculated from the theory of displacement fields 

proposed by Mansinha et. al. [78].  

 

      

Fig. 3.11 Tsunami Fault Source: Manila Trench, zoomed at right 
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Fig. 3.12 Tsunami Fault Source: Java Trench, zoomed at right 

 

Their objective was to provide a closed analytical expression that “facilitates the 

interpretation of near-fault measurements”. The expressions provided, valid at depth and 

surface, consist solely on algebraic and trigonometric functions that can be readily evaluated 

numerically based on a few source parameters like: dip, strike, slip and length. These 

parameters are provided to TRITON-G through a parameter file at the start of the simulation. 

Moreover these source parameters can be supplied from an online database to reflect the 

latest information available. The original code, kindly provided by RIMES was written in C 

language, therefore this source generation code was ported to GPU using CUDA. Due to the 

pure algebraic nature of the equations and the lack of access to neighbor point’s information 

the speed up obtained is over 100 times. Two examples of fault sources generated are 

depicted in Fig. 3.11 and Fig. 3.12 for the Manila and Java trench respectively. 

 

3.7 Boundary Conditions 
 

The domain used can contain two kinds of boundaries: open, which let the wave out or 

wall, which reflects the wave in. A wall boundary condition creates a total reflection when a 

wave hits a dry point. Fig. 3.13 depicts the stencil used for this case, the orange dots represent 

dry points ( 0iz  ) while the blue ones represent wet points ( 0iz  ). For instance, when a 

wave traveling left-right reaches the dry point at if , it is reflected in the opposite direction by 

substituting the values for water depth and momentum on the mirrored dry points as: 
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  (3.39) 

Furthermore, an open boundary condition could be set in the case of a domain edge with 

all stencil points as wet points. Leaving the sign of the momentum unchanged on (21) while 

computing the Riemann invariant just in one direction, creates the effect of an open boundary, 

effectively letting the running wave vanish outward through that edge. 

 

Fig. 3.13 Wall Boundary stencil with reflection at point i. Orange dots represent land and blue dots water 

 

As it can be noted in equations (2.42), the term cos in their denominators produces a 

discontinuity at the poles of the spherical coordinate system. Hence when working on a 

complete sphere, special techniques and treatment have to be used to compute over the poles 

without divergence. However in our case the domain chosen represents a portion of the Earth 

centered in the Indian Ocean and doesn’t extend near the poles in any circumstance, which 

allows us not to be affected by the poles discontinuity. Taking all this into account, for our 

domain (Fig. 4.4) the boundaries used are: open boundary condition at the South and East 

edges, and wall boundary condition at the North and West edges. Also, all shorelines have 

wall boundary condition except for the special cases where particular areas set as inundation 

are defined; in those cases the proper run-up on the shore is computed using the methods 

described in previous sections. 
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Chapter 4. Tree-based Refinement and Bathymetry 

 

 

 

Adaptive Mesh Refinement was initially introduced by Berger et.al. ( [79], [80]) in the 

1980s as a method to solve PDEs on an automatically changing hierarchal grid, thus solving 

for a set accuracy on certain areas of the interest instead of unnecessarily overly refining on 

the whole domain.  Here we present the implementation of the tree-based refinement and 

customizations for this work’s specific objectives: obtain a mesh with 7 Levels that track the 

coastline shape; this mesh should provide high resolution (50m) in particular areas of interest 

while using memory and computational resources efficiently. 

  

4.1 Mesh Generation 
 

The objective of refining the domain lies in producing a mesh that can provide high 

accuracy just in areas of interest. Refining the whole domain up to a high resolution would 

produce an unmanageable large mesh. By focusing on the requirements of RIMES operation, 

special customization can be introduced to fine-tune the refinement. Hence all the advantages 

of the adaptive refinement are conserve while a novel implementation is developed to fit our 

specific resources needs and focus only on regions of interest.  

 

4.1.1 Computational Domain 
 

Since RIMES was established as a warning-system organization in the Indian Ocean, it 

is reasonable that the domain chosen to perform this work is a large portion of this ocean. 

This domain is shown in Fig. 4.1; the base level uniform mesh has a size of 3584 by 1920, the 

geophysical extension is: Latitude: [-35°, 30°], Longitude: [20°, 140°]. 
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Fig. 4.1 Study case. Indian Ocean domain 

 

This domain is initially divided into blocks which will serve as the base for the refinement 

intended. This process is described in the following sections.  

 

4.1.2 Tree-based refinement 
 

 

The basic principle of tree-based refinement is to start with a uniform mesh covering 

the computational domain, and in regions that require higher resolution, a finer subgrid is 

added. If more resolution is need, an even finer mesh is added. This process can be repeated 

recursively. This process has significant effect on reducing the mesh size only if the areas of 

interest are relatively small compared to the domain.  
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There are several ways in which the mesh can be organized to generate the subgrids. 

Patch-based, cell-based and block-based are three of the most common ways to arrange the 

mesh. Patch-based requires introducing rules and algorithms to determine ways to cluster 

points, this can prove to be not so efficient and programmatically complex. The cell-based 

arrangement offers the advantage of a very detailed way to refine since points are treated 

individually, however the mesh generated can be considerably large and the additional task 

of keeping track of all cells connectivity is a large computational overhead. 

For these reason we implement block-based for refinement. Since all points are 

arranged in blocks of equal dimensions there is no need of complicated rules for clustering. 

And by treating the points as a region subgrid can be created where needed without producing 

an un-manageable large number.  

 

           

Fig. 4.2 Block-base refinement. Left: Block with neighbors. Right: Parent-children refinement 

 

 A block is composed of cells organized two dimensionally in symmetrical rows and 

columns. A representation of this block is shown in the left in Fig. 4.2. The edges of a block 

will be referred to as North, South, West and East. Each block has neighbor on its edges with 

whom they share an overlapping point at the edges. All blocks are interconnected by a logical 

tree that keeps the pedigree of every member in a branch. Thus it is possible to find readily 

which block is the immediate neighbor or parent by simple looking at the tree branch. 
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When a block requires refinement it produces four children that splits the parent 

branch into four new branches as shown in the right of Fig. 4.2, this is known as a quadtree. 

Each of these children has the same number of cell points as the father however the physical 

length is half hence doubling the parent’s resolution. This process can be repeated recursively 

for as many times as the application needs it. As more levels are requested, each time a block 

gets refined its parent branch is split in four more, creating deeper trees, as shown in Level 4 

of Fig. 4.3. the advantage of preserving this connectivity is that is easy to trace up several 

generations the original block or neighbors; also this tree structure permits to determine the 

surrounding neighbors by looking at the brothers in a branch.  

 

 

Fig. 4.3 Quadtree structure construction for a domain with a mooned-shape focus 

 

Then, in order to generate the refined mesh, we start with a coarse uniform domain 

divided into blocks. A block can be flagged for refinement recursively until it reaches a set 

threshold, effectively creating several hierarchal levels. A quadtree data structure is used to 

keep track of the blocks connectivity. Fig. 4.3 show this quadtree structure in a graphical 

representation; the connectivity between blocks store information about the block and its 



 
Tree‐based Refinement and Bathymetry 

55 
 

neighbors in a simple way. This structure is vital in order to update neighboring values at the 

blocks’s edges. 

If we denote a level by l, the difference on spatial resolution between two adjacent levels 

is the refinement ratio r, and should be a positive integer as: 

 1l

l

x
r

x





  (4.1) 

The value of this ratio is a free parameter that is problem dependent. However using large 

integers introduce issues in the computation, the existence of an abrupt change from one level 

to the next requires special treatment, especially when complex bathymetry or topography is 

involved. In order to avoid this and to create a smooth transition between levels a refinement 

ratio of two is chosen for this study. 

Although we follow the refinement procedure used in tree-based refinement, a couple of 

customizations are introduced to tailor-adapt it to our specific interests. Also, since the 

domain represent bathymetry and does not change in time, the mesh can be generated at the 

beginning a single time. This permits keeping the advantages of tree-based refining while 

removing the further overhead intrinsically associated with re-meshing during the simulation.  

Moreover, in general, tree-based refinement employs an error estimate as a rule to 

determine if a block should be flagged for refinement, however in our implementation the 

refinement rule depends not on an error threshold but on a target resolution combined with 

two factors:  

a) The block’s distance from the coastline  

b) The presence of a focal area. 
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Fig. 4.4 Indian Ocean Domain 

4.1.3 Refinement by distance 
 

The refinement rule’s first factor depends on the distance of the block to the shoreline, 

the objective is to recursively refine blocks close to the coast until reach the target high-

resolution threshold, while blocks far in the ocean can remain with a coarser resolution. This 

process involves two steps:  

a) Determining the block’s distance from the coast  

b) Checking if its distance is within refinement. 

 

To accurately estimate the geo-distance between two points can be a complex task since 

the surface of the Earth is not a perfect sphere. However, for the purpose of refining this 

mesh, is enough to use a rough estimate of the distance between the shoreline and the blocks. 

This is achieved by creating a signed distance function based on the Level-set method [81]. 

Based on this theory, in order to generate the distance function   the following equation has 

to be solved: 

 ( )( 1) 0sig
t

  
   


  (4.2) 
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The initial condition for this function is generated by defining positive values in the outside 

area of a surface and negative values in the inside, while setting as 0 the interface between 

them, this is known as the zero level of the function. This initialization is shown in Fig. 4.5 

(a), where the black points represent the inside of the surface. Having this initial condition 

then equation (4.2) is numerically integrated to obtain the correct distance.  

 

              

(a)                         (c) 

 

 (b)           (d) 

Fig. 4.5 Samples to generate distance function on objects with irregular shapes. (Credits: Batman logo is a 

trademark of Warner Bros. Tsubame emblem is a trademark of Tokyo Institute of Technology) 
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In general, by setting the initial values as the grid resolution   it takes two iterations 

to obtain the correct distance value next to the zero level subsequent iterations correct the 

second point from the zero level and thus on. In this work an Euler’s integration is used for 

the time derivative and WENO scheme [82] is applied to solve the spatial derivative. 

Initial tests performed on surfaces with irregular shapes are shown in Fig. 4.5, the resulting 

distances are shown below each surface. As it can be seen from this, this method proves to 

track different shapes and generate distances for every point in the domain. 

With these promising tests as a guide the same method was applied to the Indian Ocean 

domain. Here the distance function definition came rather natural: positive values for points 

in land and negative values for points in the ocean (bathymetry). The zero level of the 

function is represented by the points along the shoreline (z=0). A depiction of the result is 

shown in Fig. 4.6, distances from the coastline are obtained for the domain. In this case, 

positive distances represent cells on land while negative distances represent cells on the ocean. 

 

 

Fig. 4.6 Signed Distance Function. Positive values represent distances on land, negative values distance on 

water 
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Once the distance of all cells in a block is determined, each block is tested for refinement. 

Blocks with one cell or more within a certain distance from the coast (refinement stripe) are 

flagged for refinement until they reach the fine-target resolution. The width of the refinement 

stripe is problem dependent and is input by the user based on their needs. A different 

refinement stripe value can be chosen for every level, an illustration of this concept is shown 

in Fig. 4.7 for four levels.  

 

 

Fig. 4.7 Refinement stripe representation for L2, L3 and L4. 

 

The result of applying this refinement procedure to the Indian Domain is shown in Fig. 

4.8. The refinement stripe distance is 100 km and halves on every subsequent level. The 

initial resolution at ground Level 1 is 2 arc-min; the fine-target resolution is 0.03125 arc-min 

(~56 m) for a total of 7 levels created. 
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Fig. 4.8 (a) Level 1 

 

 

 

Fig. 4.8 (b) Level 2 
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Fig. 4.8 (c) Level 3 

 

 

 

Fig. 4.8 (d) Level 4 
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Fig. 4.8 (e) Level 5 

 

 

 

Fig. 4.8 (f) Level 6 
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Fig. 4.8 Distance Refining Process Indian Ocean Domain using refinement stripe. Total 7 levels, highest 

resolution 50 m. 

 

The mesh produced following can properly refine the complex coast shapes and cover 

the desired refinement stripe. An important observation is that independently of the distance, 

blocks that lie on the tsunami source fault also get flagged for refinement in order to obtain 

a more accurate initial condition and preserve the wave front better.  

One downside of this refinement process is that the number of blocks generated can be 

considerably large, more than 230,000 in this case. Also the memory needed to store this 

mesh is above 120GB. Motivated by the objective of using resources efficiently and the need 

of high resolution just in certain specific areas a second refinement factor was introduced. 

 



 
Tree‐based Refinement and Bathymetry 

64 
 

4.1.4 Refinement by Focal Area 
 

The second factor of refinement is a constraint added to the first. This constraint consists 

in locating on the domain a convex polygonal area which serves as a refinement delimiter. 

This area is referred to as focal area (FA) and is possible to locate more than one. An example 

of a focal area is shown in Fig. 4.10 (b) as a circle covering the domain. 

Since this is an additional constraint to the first refinement step, only blocks flagged for 

refinement at the first step need to be tested again. On this second test, the block’s four vertex 

coordinates are compared against the focal area vertices to determine if it is inside or outside 

the area. If a block is completely outside the focal area, then it is un-flagged for refinement. 

Only blocks partially or totally inside the focal area remained flagged for refinement.  

The process of determining if a block lies inside or outside a focal area is based on 

collision detection theory. There are several methods available for this like the Grid-based 

approach, Bounding Box method, Discrete Collision Detection or the Separating Axis 

Theorem (SAT) ( [83], [84]). We chose the latter because it is a well-known theorem applied 

to physical simulations [85] and consists of a relatively light algorithm for 2D, which allows 

to test large number of blocks rapidly. 

The SAT states that: if two convex objects are not penetrating, there exists an axis for 

which the projection of the objects will not overlap (Fig. 4.9). 
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    (a)                                      (b) 

Fig. 4.9 SAT. (A): Two non intersecting convex polygons; (b) Projection of the non intersecting polygons [86]. 

 

Hence by using this theorem and the basic concepts of normal and projections, the 

algorithm to determine the intersection can be summarized as follows: the axis used can be 

the normal of edges, then first compute the normal of each edge of the polygon, second each 

normal has to be tested to the projection of the other polygon by using the dot product to 

determine if the lie or intersect. If, for all axes, the shape’s projection overlap, then we can 

conclude that the shapes are intersecting. 

A proof of concept of refinement by focal area using the SAT to determine if blocks are 

inside or out is shown in Fig. 4.10. Here the focal area is represent by a circle shaded in orange. 

As comparison, Fig. 4.10 (a) shows the distance refinement as explained in the previous; Fig. 

4.10 (b) show the result of including the FA, it is clear that only blocks inside the region 

continued refinement by the rest outside were left untouched.  

It is important to note that since the focal area is an additional constraint, it can be toggled 

active after any chosen level. Hence, a specific number of levels can be refined without this 

constraint while the following are affected and delimited by the focal area. In the previous 

proof of concept blocks outside the FA were limited to level 3 while blocks inside had a 

target of 5 levels.  

Furthermore, a focal area also indicates that blocks within, with the highest resolution, 

are to be treated as inundation areas if they include dry points. 
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    (a)                                      (b) 

Fig. 4.10 Focal refinement proof of concept. (a): 5 level refinement with no FA; (b): 5 level refinement with 

FA represented by a circular shape. 

 

As mentioned above, the focal areas are defined by the interest of the user and more than 

one can be included at the same time. For this work four FA are submitted by RIMES since 

they represent their research interest, named: Mozambique, Comoros, Seychelles and Sri 

Lanka. The extension and shape of each FA is different and was chosen to coincide with 

higher resolution bathymetry databases owned by RIMES and also because they represent 

areas of inundation that they need to be monitoring. These FA and their specific location and 

shape are shown in Fig. 4.11 shaded in green. 
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   (a)                                                      (b) 

           

   (c)                                                      (d) 

Fig. 4.11 Focal areas used in this work. a) Mozambique; b) Sri Lanka; c) Comoros; d) Seychelles 

 

4.1.5 Dry area removal 
 

The final step in the mesh generation process consist in the removal of dry blocks. 

Considering that tsunami inundations, with few exceptions, generally extend tens to hundreds 

of meters inland, then it becomes clear that blocks located deep inland are an unnecessary 

load in the computation. By using this insight all blocks whose cells’ distances are larger than 

a land-distance threshold are considered dry blocks, and thus flagged for removal and deleted 

from the domain. 
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Fig. 4.12 Inland dry block removal cases allowed and not allowed 

 

 Fig. 4.12 show a graphical explanation of removing a block and the cares that must 

be taken. Cases (A) and (B) represent situations where a block can be removed, this happens 

when the complete edge of a block has a neighbor. On the other hand cases (C) and (D) show 

examples where a removal is not allowed even if the block was originally flagged for it. The 

reason this operation is not allow is that edges of a block are not completed covered by a 

neighbor block. 

 

Finally, the complete result of implementing all these procedures, distance refinement, 

focal area refinement and dry-block removal, to generate the mesh in the Indian Ocean 

domain is shown in Fig. 4.13. The four focal areas used are: Mozambique, Comoros, 

Seychelles and Sri Lanka. The focal area constraint start after Level 3. The reason to choose 

this particular level has to do with its grid resolution and the bathymetry database. The initial 

uniform block at level 1 has a resolution of 2 arc-min, hence level 3 has a 30 arc-sec 

resolution which is also the highest resolution available for GEBCO bathymetry database 

(described in section 4.3). Hence by refining all coastlines up to level 3 it can be guarantee 

that the most realistic available values are used directly in the coastlines without any need of 

interpolation. 
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Comparing with Fig. 4.8 it can be seen that this time the refinement at higher levels is 

limited to within the focal areas (pointed by the arrows). Also, all dry blocks exceeding the 

land-distance threshold of 10km were removed from the mesh. 

 

 

Fig. 4.13 Mesh Refinement for Indian Ocean Domain with 4 Focal Areas: Mozambique, Comoros, Seychelles 
and Sri Lanka. 

 

In conclusion, the block-based refinement produced a mesh that can trace the complex 

coast shape in the domain, the effect of using focal areas served to focus high resolution just 

in areas of interest and by doing this also the number of blocks generated drastically 

decreased to 7847 while the memory needed to store them became less than 20GB. In total 

there are over 30,000,000 points in the domain. The resulting mesh represents the best 

balance between using resources efficiently and producing accurate results where needed. It 

is also important to notice that TRITON-G stores this mesh as a database thus no needing to 

generate it every time a simulation on this exact same domain is required. 
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4.2 Block Halo Update 
 

Blocks have neighbors on their four edges, in order to compute on all the domain 

correctly, each block must communicate its results with its surrounding neighbors. After each 

time step, blocks must exchange results with their neighbors before the next iteration. For 

this purpose they share a boundary layer in their adjoining sides. This layer or halo extends 

over the neighbor’s grid as depicted in Fig. 4.15 and can represents one of three kinds of 

swapping: copying, coarsening or interpolating. 

 

Fig. 4.14 Cell coarsening, averaging down 

If two neighbor blocks are at the same level then the halo is readily updated by 

exchanging values directly without any further computation necessary, this represents a 

copying swap.  

In the case of two neighbors at different levels (l and l+1) then additional computation is 

required before the halo swap. 

        

 

 

 

 

 

 

Fig. 4.15 Halo update for neighboring blocks; blue block at level l, orange block at level 1+1.  

Left: Interpolation case; Right: Coarsening case 
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If the block’s neighbor is one level up (see right diagram on Fig. 4.15) then values for the 

halo are averaged down from the block with higher accuracy before swapping. Moreover, 

this coarsening has the effect of passing down better accuracy to blocks with lower resolution 

like in a cascade effect. 

The last case, interpolating, occurs when the block’s neighbor is one level down (see left 

diagram on Fig. 4.15). The values for the halo are interpolated from the neighbor block. In 

order to keep high accuracy and a smooth transit of the wave through these different levels a 

third-order polynomial interpolation is used, similarly as in equation (3.21). As an example, 

Fig 10 depicts the stencil used to interpolate in one dimension, only the portion where the 

blocks overlay is showed. 

 

 

(a) West, South cases     (b) East, North cases 

Fig. 4.16 Halo interpolation stencil for the four edges: north, east (a) and west, south (b) 

 

Hence, the interpolated values for the halo can be found from: 
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for the south (S) and west (W) edges. In order to avoid spurious waves generated from 

interpolating the water height h, constant water level H is used instead. The original variable 

is recovered by using the relation h=H-z. 

 

4.3 Topography and Bathymetry 
 

The data used for bathymetry and topography comes from different sources. Initially, The 

General Bathymetric Chart of the Oceans (GEBCO) [87] database is used for the domain. 

GEBCO is available on 30 arc-seconds spatial resolution. When coarser resolution is needed, 

the values are averaged from this database. On the contrary, if finer resolution is needed, a 

third order interpolation (Eq. (3.21)) is implemented to generate the new values. 

Where available, databases with more precise measurements are used to replace the 

original GEBCO values. In particular the focal areas should include better resolution than 

that provided by GEBCO. For this purpose in-situ measurements with higher precision are 

desirable. As mentioned earlier in the chapter four focus areas are used for this work, they 

represent the interest of study for RIMES: Mozambique, Comoros, Seychelles and Sri Lanka.

 Databases generated by RIMES were provide to estimate the inundation more 

accurately in this regions. Additionally a fifth set of databases was provided to test on Phuket 

region. 

The bathymetry resulting is shown in Fig.  4.17.  Also a representation of the finer 

databases for the focal areas is shown in Fig.  4.18; light shaded areas represent a 150m 

resolution and dark areas 50m resolution. 
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Fig. 4.17 GEBCO bathymetry and topography for the Indian Ocean domain 

 

                  

   (a)       (b) 

              

   (c)       (d) 

Fig. 4.18 Additional bathymetry databases for replacement with higher accuracy by RIMES. Light-gray 

shaded areas represent 150m resolution, dark shaded areas represent 50m resolution. (a) Mozambique, (b) 

Comoros, (c) Seychelles, (d) Sri Lanka  
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 After the mesh generation all points in the blocks are updated with their respective 

bathymetry, the database chosen to supply the value is always the one with the highest 

accuracy available at that specific location. 

 

 

Fig. 4.19 Single-point peak bathymetry example 

 

The bathymetry used in this work represent the real values as the best available databases 

provide. In order to get the most accurate and realistic result possible in the simulation great 

care is taken to guarantee that the original values remain untouched. There is a specific case 

however that needs special attention: the existence of solitary single-point coast values that 

create peaks with an unreasonable large gradient. Fig. 4.19 shows an example of this kind of 

points in the right side of the domain. When these points are identified a cell of points around 

this value is updated with land values to avoid potential divergence when simulating. Since 

this cases are rare this simple technique proved to be non-invasive to the total model. 
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Chapter 5. GPU Computing 

 

 

 

 

5.1 Introduction 

 

The introduction of C-language extension CUDA [88] by nVIDIA® was a disruption in 

the traditional way simulations were performed. By providing a way to program their graphic 

cards for general purpose (known as GPGPU), researchers no longer had to rely solely on 

CPU processors to perform calculations. Due to the intrinsic parallelism of graphics, GPUs 

naturally evolved to deliver in a card hundreds, and later, thousands of processors more than 

CPUs. Ivy Bridge CPU-architecture chips are designed for up to 15 cores and a peak 

performance of 300 GFLOPS for double precision. In comparison, a GPU Tesla K40 card 

contains 2880 cores and a peak performance of 1.43 Tera FLOPS. The main reason behind 

the exceptional performance of GPUs lies in the specialized design for compute-intensive, 

highly parallel computation, with transistors dedicated exclusively to processing as opposed 

to flow control and data caching. 

 On GPU, cores are clustered to form an array of Streaming Multiprocessors (SMs). The 

programing model is based on a multithreaded problem partitioned in blocks of threads, each 

executed independently on the SMs.  

 

5.2 CUDA 

 

In this new architecture design to provide a GPU as a General Purpose Device we find 

CUDA. The Compute Unified Device Architecture was developed by nVIDIA, one of the 
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leading GPU manufactures in the world. This new language extension and hardware 

technology was introduced firstly in the GeForce 8 Series, Tesla and Quadro, being now a 

standard in almost all of the high performance nVIDIA cards. Tesla K40C cards are used in 

this research, three of them installed in a machine working in parallel are chosen as the 

configuration for operation. 

CUDA provides a set of APIs designed to program the card in a readily easy way 

compared with before its introduction. This come to solve the problem of the steep learning 

curve since CUDA also is presented as a C language extension, a very common and known 

programming language. Therefore any C language programmer has the opportunity to easily 

understand the syntax and use of CUDA. The software part of CUDA provides libraries, 

runtime and drivers including its own compiler named nvcc which behaves generally 

speaking, like the also known GNU Compiler Collection gcc. CUDA provides address to the 

DRAM memory in a general way allowing now a flexible programming tool in scatter and 

gather memory operations. Now the memory can be written or read in and from any location 

just like in a CPU. 

 

Fig. 5.1 nVIDIA Tesla K40C GPU used in this research, 2880 CUDA cores 

 

5.2.1 Memory Model and Hierarchy 

 

CUDA provides multiple memory access for every threat during execution. Each of 

these is designed for a particular purpose and with certain hierarchy. The programmer has 

the freedom to use these memories in the best suitable form for his particular problem. Each 
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memory has its own specific characteristics such as size and access speed that influence the 

application running performance. 

The architecture is composed of a Constant, Global and Texture Memory at its first 

hierarchy and a Shared Memory, Local Memory and Registers in the next hierarchy. 

Due to the present architecture of motherboards and GPU, when CUDA is used the 

data in the CPU, also referred as Host, cannot be directly read by the GPU, referred in CUDA 

as device, and a transfer must be performed before using it in any calculation inside the GPU. 

The hierarchy to access the memories is different between types of memory, as illustrated in 

Fig. 5.2 the Constant, Global and Texture memories have direct communication to the CPU 

to send back and forth data, while the Shared and Local as well as the register are only to be 

accessed by a thread. Moreover a thread can also read from the Global/Constant/Texture 

memories however it cannot read directly to and from the CPU. To the scope of this research 

mainly the Global memory is used. Therefore these will be explained next in more detail. 

 

 

Fig. 5.2 CUDA Memory Model 

 

The Global memory is the memory shared by the streaming processors and as 

mentioned it communicates directly with the CPU; when a program is run, the memory for 
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the variables must be initialized and the data uploaded from the CPU to the GPU. This 

memory delivers the highest memory bandwidth only when the global memory accesses can 

be coalesced within a half-warp so the hardware can then fetch the date in the fewest number 

of transactions. If the memory transaction cannot be coalesced, then a separate memory 

transaction will be issued for each thread in the half-warp, which is undesirable. Because of 

coalesced memory the threads should be arranged in a way to avoid bank conflicts when 

accessing the memory address, a non-coalesced global memory access pattern will reduce 

the performance by reducing the bandwidth and thus the speed of the calculation. 

 

5.2.2 Programming Model 

 

CUDA is an extension language that provides its own specific APIs. These API are 

readily usable with a familiar syntax and appearance. However the structure inside the GPU 

for the memory requires some attention since it is not usual to work in parallel schemes even 

using a single device. The nVIDIA’s GPU provides a certain number of threads to be used 

in the calculation depending on its particular characteristics. These threads are organized in 

blocks and blocks are sorted in grids as shown in Fig. 5.3. 

 

Fig. 5.3 Programming Model. Grid, Blocks, Threads hierarchy representation 
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Each thread is dedicated to compute the program submitted to the GPU and as stated 

in the previous section it has certain restrictions to access the memories. The part of the 

program that is designed to run in the GPU is called a kernel, and it has some specific 

characteristics that are discussed next. The qualifier __global__ is used to declare a kernel 

and it tells the compiler that this part is to be run in the GPU, also a kernel with this qualifier 

can be called form the host only and executed in the device exclusively. For instance a pseudo 

code in C language for a kernel would look like: 

__global__ void my_kernel(void) 

{  

//Procedures 

} 

Additionally in order to launch a kernel in the GPU it should include sizes for the Grid, 

Blocks and Threads as well as in which stream (if using the asynchronous model) to be 

launched with the following syntax: 

my_kernel <<< Grid, Blocks, Threads, Streams >>> ( A,B,C,D,… ) 

where A,B,C,D are any sample parameters to pass to my_kernel. 

The dimensions that the grids, blocks and thread can have depends on the particular 

card however they can be arrange in one, two or three dimensional arrays. For this end CUDA 

provides the gridDim built in variable to define the dimensions. 

 

5.2.3 Data Handling 

 

Since the GPU and CPU cannot read directly from their memory, data used in the 

calculation must be moved to and from the CPU to the GPU during the calculation. CUDA 
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includes in its APIs particular functions to perform this task in the most efficient way possible. 

Thanks to the continuous development in hardware the data transfer bandwidth between CPU 

and GPU has been widen up. The function to handle these transfers is called cudaMemcpy 

and its syntax is: 

cudaMemcpy(void* dst, const void* src, size_t count, enum cudaMemcpyKind kind); 

 

where dst is the pointer where the data will be copied, src is the pointer where the data is 

located, count is the size in bytes of the memory and kind is one of the kinds of transfers 

available: Host to Device, Device to Device or Device to Host. 

One useful element to improve the performance in a program is the asynchronous copy 

model. The previous copy function blocks the system until the transfer has been completed. 

However the asynchronous analogue return the control immediately and allow to keep 

running the program.  

 

5.2.4 Compilation for GPU Computing 

 

CUDA provides its own compilation tool called NVCC. This compiler basically 

separates the host from the device code, generates a C object output to be compiled with 

another tool. Nvcc supports C language syntax and can be easily used with the gcc compiler 

to produce an executable file. Nvcc also provides its own specific set of flags for optimization 

during compilation, in some circumstances they can prove a useful way to increase 

performance.  We utilize version 7.5 of nvcc in this work.  
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5.3 SSWE GPU Kernels 
 

As mentioned before a kernel is the style CUDA provides to define C functions that get 

executed on GPU in parallel. The number of copies a kernel is executed depends on the block 

and thread partition defined in the call parameters. Furthermore, the clear analogy between 

CUDA blocks and mesh blocks provided a guide when deciding on how to organize the grid 

program for GPU execution in this study. 

The SSWE are computed exclusively on GPU by processing the mesh blocks created 

during the domain refinement process. The two-dimensional mesh blocks have a size of 

(length, height) = (65+4, 65+4), where the 4 corresponds to the total size of the halo. On the 

other hand, CUDA threads can be organized in any three-dimensional block configuration as 

needed by the problem. Since the GPU process in warps of 32 threads, using multiples of this 

number is desirable to avoid performance penalties. When possible, kernel configurations 

follow this guideline and any overflown areas are treated as separate special cases. 

Thusly, in order to process a single mesh block, first (Fig. 5.4 Top) CUDA threads are 

organized in two dimensional blocks of size: (64, 4). Since the 64 threads in the x dimension 

cover the length of a mesh block, only one CUDA block is needed. For the y dimension, 16 

blocks are requested for a total of 16x4=64 threads, thus covering the height of the mesh 

block (Fig. 5.4 Bottom left). Finally, in order to process all the mesh blocks, this two-

dimensional CUDA block configuration is extended along the z-direction as many times as 

mesh blocks exist. The bottom right diagram in Fig. 5.4 shows this setting by simplifying the 

CUDA blocks as a single structure. 

 



 
GPU Computing 

82 
 

 

Fig. 5.4 CUDA blocks and threads diagram for the SSWE Kernel. Top: threads configuration per block; 
Bottom left: X and Y block configuration; Bottom right: Z block configuration 

 

As mentioned above, any overflown cells are computed as a special case. Mesh blocks 

are squares of 65 cell-rows and 65 cell-columns while the CUDA block configuration covers 

a total area of 64x64, hence a line is missed in each dimension during computation. In order 

to process these two lines a second kernel is launched with two blocks of 65 threads each. 

By fixing the indexes appropriately inside the kernel, one block completes the 65th row while 

the other completes the 65th column simultaneously. Although not ideal, this operation does 

not represent any noticeable performance penalty due to the small amount of data processing. 

 

In the case of SWE kernel the implementation is based on the work by [72]. The grid 

chosen for this kernel is different than that of the kernel for SSWE; a grid is chosen with 

blocks of 16x16 threads covering the domain, the excess of threads at the edges is skipped 

by introducing a conditional if and computing threads with indices less than the grid number 

of the block.  



 
GPU Computing 

83 
 

 

5.4 GPU Halo swap 
 

After each time-step the halo region of each mesh block is updated with the latest values 

from neighbor blocks. As explained in section 4.2 this represents three different kinds of 

swap: copying, coarsening or interpolating. A mesh block has four edges and each one can 

have a different type of halo. For this reason, initially three different lists are created which 

group by halo type the edges of all blocks. With this information three different kernels are 

configured to perform the updates: 

 

A) Copying: the thread configuration is straightforward since the only operation 

involved is copying data between two blocks with the same resolution. Hence CUDA 

blocks contain two lines of 64 threads each. The total number of CUDA blocks is 

equal to the number of edges in the copying list. Similarly as explained in the previous 

section, one cell is missed during the computation. However in this case, as opposed 

to launching a second kernel, the last thread of each line computes its own value and 

the missed cell. A second kernel would result in an unnecessary overhead since the 

copying kernel is considerably much lighter than the SSWE one.  

 

B) Coarsening: in this case again the number of CUDA blocks is equal to the number of 

coarsening edges in its list. As opposed to copying, this halo swap includes a series 

of operations to obtain the average on each cell before updating. However giving 

different instructions to a group of threads create divergent executions and may cause 

performance degradation. A conditional if inside a kernel creates a divergence in 

execution since threads cannot be processed in a single warp. In order to avoid this, 

instead of mapping one thread to one mesh cell and including several if conditionals, 

each CUDA block consist of a single 32-thread line, half the size of a mesh block. 
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With this setting each thread computes four different operations, reducing the 

conditional to a minimum while computing the average and update efficiently. 

 

C) Interpolating: as with the other two cases, the number of blocks is the same as the 

number of edges stored in its list. The process to interpolate requires several 

computations that differ on cells thus creating divergent paths. Similarly as with 

coarsening, the thread number in a CUDA block is half of that of a mesh block, 32, 

lied in a single line. Using the same reasoning than with coarsening, each thread 

carries more operations instead of declaring many threads and divert them with if 

conditionals.  

 

5.5 Kernel Types 
 

By analyzing the domain’s bathymetry it is easy to notice that some mesh blocks contain 

only wet points while others are a combination of dry and wet points. This idea is used to 

create two kernels for solving the SSWE. One kernel, named Wet, is used to compute the 

wave free propagation on wet-only blocks. The other one, named Dry, is used to compute the 

wave propagation and coastline reflections in wet-dry mixed blocks. Hence the main 

difference between them is the additional treatment of wall boundaries at coastlines in the 

Dry kernel. Also, as previously mentioned, blocks with dry points inside focal areas represent 

a special case and are processed as inundation by using the run-up computation described in 

section 3.5. 
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Fig. 5.5 Mesh blocks colored by kernel type. Red: Wet; Green: Wall; Blue: Inundation. Top: zoom over Sri 
Lanka FA 

 

Therefore, TRITON-G is composed of three main kernels: Wet, Wall and Inundation. At 

mesh generation each block gets assigned a kernel type based on its bathymetry. This is 

illustrated in Fig. 5.5 where blocks flagged as Wet are shaded in red, Dry blocks in green and 

Inundation blocks in blue. As expected Dry kernel blocks tend to extend over coastlines while 
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Wet kernel blocks are spread out in the open ocean. When inside a focal area dry-type blocks 

at level 7 are re-flagged as Inundation type. This can be seen in the right image in Fig. 5.5 

for the Sri Lanka FA with inundation blocks in blue. The total number of block per type is 

shown in Fig. 5.6. 

 

 

Fig. 5.6 Number of blocks per type 

 

Whereas a single kernel would be too complicated and inefficient to compute the whole 

domain, splitting down the computation in three main kernels allows for better block 

handling and performance. Using specialized kernels for each case not only provide a simpler 

way to process the blocks through lists but also the ability to fine tune independently for 

higher performance. 
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5.6 Multi-GPU 
 

With the GPU kernels at hand the next step was to implement the computation for Multi-

GPU. As explained at the beginning of the chapte GPU memory cannot be directly accessed 

between different cards, hence a bridge to communicate is created through the CPU. Thus 

for this purpose CUDA and the message passing library Open MPI, are used to parallelize 

the code into multi-GPU. Each card processes a portion of the domain and in turn pass down 

to the CPU host any necessary halo information to exchange with other cards. A challenge 

that arises when using parallel computation is to guarantee that all processes are performing 

the same amount of work. This load balance concern is also true for multi-GPU computing 

and the way to determine that all GPUs receive the same amount of work is by applying a 

balance domain partition. This partition is rather straightforward for uniform mesh however 

for refined mesh a special technique has to be used. This technique is the use of a space filling 

curve (SFC). This method is explained in the following section and how it was implemented 

to our study case. 

 

5.6.1 Domain Partition: Space Filling Curve 
 

A correct domain partition is vital to obtain a balanced work load. In order to find this 

procedure a space filling curve (SFC) is used. SFC provides a continuous mapping from one-

dimensional to two dimensions. Thus it is possible to linearize this space and use this 

information as a guide to partition the domain. SFC are constructed in a way that the curve 

visits each point exactly once. When refinement happens the SFC is modified to visit each 

of the points of the children instead of the parent. Thus locality is preserved; points closer in 

the SFC are typically close on the domain too. This characteristic of the SFC is of high 

interest for parallel computing since the locality means no need for extensive 

communications between processes.  
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There are several space filling curves available, for this work the Hilbert SFC is used [89]. 

It uses the rotations and inversions to keep points closer to their neighbors. Although block 

connectivity is kept using a quadtree structure, this does not provide information for domain 

partition. In order to track the order of the blocks the SFC is used. 

 

 

 

 

 

Table 5.1 Ordering and orientation tables for the Hilbert SFC in two dimensions 

 

The template for the Hilbert ordering is shown on the left of Fig. 5.7, green values represent 

the orientation and numbers in black the ordering of the block. Each block has an assigned 

initial rotation, for instance block 0 has an orientation 1; by using Table 5.1 the orientation of 

children can be determined like this: using the value of the orientation as index i to look in 

the table, the resulting children will have orientations: {0,1,1,3}.  

 

 

Fig. 5.7 Application of the Hilbert orientation tables to obtain the SFC after refinement 

Orientation 

1 0 0 2 

0 1 1 3 

3 2 2 0 

2 3 3 1 

Ordering 

0 1 3 2 

0 2 3 1 

3 1 0 2 

3 2 0 1 

i 

0 

1 

2 

3 
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 Similarly for block 1 with orientation 0 it is possible to determine the child orientation 

following the same method: using the orientation value as the index i to find the resulting 

orientation. Hence for orientation 0 the resulting children ordering is: {1,0,0,2}.As it can be 

seen, the original four blocks were refined and the Hilbert SFC covers all the children in a 

continuous line that preserves locality.  

 

 

 

 

Fig. 5.8 Hilbert Space Filling Curve tests on domains with different geometry, refined levels and large 

number of blocks. It can be seen that the SFC (line in blue) traces all blocks exactly once. 
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By using this information it is possible to create a list that stores the order of the blocks 

in the domain. This one dimensional list has the advantage that show neighboring blocks 

close, hence there are no abrupt cuts when a partition is introduced. 

Additionally the process of creating this curve is not computationally demanding and 

requires minimum memory resources. Thus, SFC proves to be the perfect solution to find the 

domain partition by simple splitting the one-dimensional list in equal parts.  

Several tests were performed at the beginning of this research to test the best 

implementation of this method and to confirm that blocks are stored with locality. Fig. 5.8 

shows two of these tests with different geometries and several refinement levels. 

Once the method of the SFC was correctly implement and showed excellent results in 

tests, it was applied to the Indian Ocean domain (Fig. 5.9).  

 

Fig. 5.9 Hilbert Space Filling Curve for Indian Ocean Domain 

 

With the SFC as a guide, the domain is partitioned in portions that represent similar load 

for each GPU. Fig. 5.10 shows the result for three GPUs, each portion is shaded in a different 

color.  
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Fig. 5.10 Indian Ocean Domain Load Balance on 3 GPUs, each GPU represented by a different color 

 

In general the total number of blocks get divided the number of GPU available and the 

resulting partition is never more than one block different.  

 

5.6.2 Communication and Buffers 
 

 As mentioned above, a GPU cannot access a different card’s memory directly. Hence 

in order to exchange data to update the halo a buffer is used. This process consists of the 

following steps:  

a) Prepare the buffer on the source GPU 

b) Transfer it from device (GPU) to host (CPU) 

c) Exchange them using MPI  

d) Upload to destiny GPU  

e) Read it to update the halo. 
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The preparation of the buffer represents a considerable challenge since the domain is not 

a uniform mesh. Not only the domain is composed of a large number of block, each with its 

own halo region but also the possibility that each edge transfers data to different GPUs make 

it a difficult task. The two main goals are: 

1) Create a way to handle the data communication structure 

2) Produce buffers that do not represent a large communication overhead 

 

The traditional way to handle the first goal in tree-based refinement is with a look-up 

table that contains the list of adjacent edges, the type of halo and information needed to 

update it. Also it includes information about the source of the data and destiny. It is easy to 

imagine that maintaining this tables require additional memory and a careful track of the 

block connectivity. On top of this, there is the challenge of exchange all the required edges 

to the appropriate process. Sending multiple small messages down the network is known to 

be an inefficient way to communicate. Considering that large numbers of blocks might 

require to exchange data, the communication could become a large overhead. 

In order to handle these two issues a different approach was taken. We inspired the 

solution based on cellular data communication. By implementing a similar design as the user 

datagram protocol (UDP) it is possible to eliminate the need for the existence of any look-

up tables while at the same time making the buffer exchange smooth and simplified. UDP 

( [90], [91]) is a current standard way for query-and-response transaction in cellular 

networks; it has the ability to exchange different kinds of messages in a single and simple 

buffer. As depicted in Fig. 5.11 a message or in our case a buffer can be composed of a series 

of messages separated by an identifying header in front of each. With a small 3-byte header 

the halo data can be transferred correctly it its destiny. The header includes values for: destiny, 

which represent the block it should go to; the edge, which represent which of the four edges 

in that block is the information for; size, which represent the total data size sent for that halo 

edge. By embedding this simple information in a header the necessity of a look-up table is 

remove completely. Also it gives an additional freedom of writing the data in any order as 
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long as the correct header proceeds it. Moreover in order to make it ever more compact, all 

the information needed to update the three variables h, hu and hv is stored in a single buffer 

continuously as opposed to having three different buffers. 

 

 

Fig. 5.11 Buffer packaging based on UDP structure 

 

The second goal is partially covered by the inclusion of all the header and data in a single 

buffer. An improvement to this consist of collecting and packing all the edges that are 

required to be transferred in a single buffer. This concept is illustrated in Fig. 5.12 , the 

different edges (represented in different shades of blue) get all collected and stored in one 

single buffer following the UDP format. 

 

 

 

 

 

 

 

The total number of lines sent by each edge depends on the type of boundary it is, Table 

5.2 show the values for each type; length represent the one dimensional grid size of a block. 

Table 5.2 also show the total amount of data exchanged between processors (noted as R for 

Halo 
Type Length Number Lines 

Refine  1/2 3 

Copy 1 2 

Coarse 1 5 

  Destiny 

Source R0 R1 R2 

R0 - 146 5 

R1 105 - 102 

R2 5 110 - 

Table 5.2 Left: Number of lines and length sent by boundary type. Right: Amount of data 

exchanged between processors in the Indian Ocean case (in kB). 
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rank), as it can be seen the total amount is considerable small. This is part possible due to the 

efficient domain partition that allowed to preserved locality as much as possible.  

In this way we manage to drastically reduce the communications by firstly removing any 

need to create and store look-up tables and more importantly by creating single buffers to 

exchange between processors smooth and efficiently. Instead of requiring hundreds of small 

communications exchanging each block edge, only a single transfer between processors is 

needed without any noticeable additional memory used. 

 

 

Fig. 5.12 GPU buffer. Data collected and packed for a single communication 

 

The step of downloading and uploading the buffer from GPU to CPU and vice-versa is 

done through the CUDA API for memory copy. Also, this process can be implemented as an 

asynchronous operation. Hence while the computation continues, the transfer occurs 

simultaneously providing a smaller communication overhead. 

The buffers created on GPU are transferred to host memory and exchanged with the 

appropriate processor using MPI in a traditional way. Since a single server is used in this 

study the communication speed does not depend on an external network but only on the 

machine PCI performance. 
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Once a buffer is uploaded into the destiny GPU memory it is read to compute the halo on 

the blocks that require it. The unpacking of the buffer becomes also a simple and smooth task 

by using UDP. The kernel simply read the header and readily process the information to 

update the halo just as it would with local memory. This gives the advantage of not having 

an additional overhead unpacking the buffer for each block but instead use it directly to 

update.  

 

 

5.7 TRITON-G Output 
 

TRITON-G handles three different kind of output: variables, gauges and images. In the 

case of variables these are stored just for FA inundation blocks. For images, two sets are 

generated, one for the whole domain and another for individual images of each FA; the 

frequency of this output is a parameter set by the user but as default the whole domain image 

is generated every 4 minutes and FA images every 5 seconds. Clearly generating output with 

such frequency is a large overhead; in order to overcome this issue special optimizations 

were introduced that will be explained in the following section. 

The third type represent virtual gauges that the user can set in any location in the point 

and its purpose is to store the wave height in that point during the simulation; the frequency 

to do this is set by the user.  

 

5.7.1 Type of Output 

 

The variables are stored on GPU memory and represent values of interest for the user. 

Specifically the following values are store on each time step: 
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i. Maximum inundation 

ii. Maximum wave height 

iii. Maximum wave velocity 

iv. Maximum Flux 

v. Arrival time 

 

Again, this storage happens on GPU memory and the function to check the maximum 

value is computed on GPU. Since these values are computed just in inundation blocks, the 

computational time on GPU is almost neglectable, after a breakdown of the computation it 

was found that it represents less than 1% of the total running time. 

The output variables are flushed down from GPU to CPU when needed and written as 

a simple ASCII files that user can process easily in any way they see fit. Fig. 5.13 show the 

flow of the computation and the part that output takes during simulation. 

 

 

Fig. 5.13 TRITON-G computational flow 

 

In the case of images, TRITON-G uses vISIT to generate the rendering. This is possible 

by writing SILO format [92] files with the mesh information. SILO is a open source utility 

that sits on HDF5 format; this provides high efficiency to store large problems and 

particularly multi-level blocks. It naturally handles the connectivity between blocks to 
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generate a full composed image. In this way the user can visually follow the results produced 

by the simulation. 

 

5.7.2 Optimizations 
 

In order to obtain a smooth animation of the wave propagation in the focal areas output 

frequency must be considerable high, around every 5 seconds. Clearly, even for small data 

this frequent output represents an unnecessary overhead. The optimization to this issue came 

from postponing the image generation for the focal areas. Since users can track the wave 

propagation in the main domain it was slightly redundant to generate at the same time images 

for the FA. Hence to remove the overhead of the FA image output all values are stored on 

GPU memory and collected on the available free memory. Tesla K40C cards have 12GB of 

memory. TRITON-G requires around 2-3GB per GPU to keep the block information and 

maintain the code; thus there is considerable space available for storage. In case that the 

memory got full, the complete values are flushed down to CPU where are kept on RAM 

memory until the simulation finishes while GPU is reused. By using this idea, the total 

overhead of the FA image output was removed.  

 

 

Fig. 5.14 Optimization by grouping the output blocks (L7) together 

 

 An additional idea used to speed up the transfers was to allocate all the blocks that 

require output together in memory, by reallocating them at the front of the memory array; 
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this is shown in Fig. 5.14. By doing this, it is possible to perform one single copy instead of 

doing several small ones which introduce a latency overhead. 

 The last optimization was a great improvement for the overall runtime. Even though 

the image generation for the full domain is not very frequent, the process of generating a 

SILO file for such a big mesh represented a considerable overhead. This process represented 

around 15-20% of the total runtime. In order to improve this, an ingenious solution was 

implemented. In general, the usual approach to remove output overhead consist of using 

asynchronous computation. Fig. 5.15 shows in this idea in the diagram in the middle. This 

approach generate good results if the computing time is larger than the output time. However 

if the opposite happens we go back to the original issue of output overhead. In the case of 

TRITON-G the image output and generation took much longer time than the simulating 

kernels hence this approach would have proven not very efficient.  

  

 

Fig. 5.15 Output overlap and optimization using Pipes 

 

In order to minimize the effect of this image output we took advantage of Pipes. Pipe 

is a system call that creates a communication between two processes that run independently. 
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Thus, a parent program can call a child program and both perform completely different tasks. 

By using this concept, an utility to process to create SILO files for the full domain was created 

a stand-alone application. Hence now TRITON-G can call a subprogram that independently 

computes the output. However, this method has a limit, a memory array cannot be pass 

between parent-child processes. If the child cannot read the values of the parent it would be 

impossible to generate the output, nonetheless a clever solution was implemented to solve 

this issue as well: CPU shared memory. By using the available shared memory to store the 

arrays needed to generate the output it was possible for the child process to read the 

information and process the output. This process is illustrated in Fig. 5.16. 

 

 

Fig. 5.16 Concept of the Pipe Asynchronous processing by using shared memory 

 

FIG shows the advantage of implementing Pipe asynchronous output, unlike 

traditional asynchronous output that relays on a large computational time, the Pipe method 

provides the ability to hide the output processing behind several computing time-steps. The 

result of this is an almost total elimination of the overhead. Measurements before and after 

this optimization showed that the output process represented just 1-2% of the total time, 

practically removing totally this overhead. 
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5.7.3 Post-processing 
 

During development TRITON-G developed not just into a single tsunami modeling 

program but in a full operational framework. Fig. 5.17show all the utilities that are part of 

TRITON-G, specific utilizes for rendering processing were developed along with the 

simulation model; also a tailored excel utility programmed in VBA was designed to process 

the gauges values and create automatic charts. 

 

Fig. 5.17 TRITON-G Framework 

 

 As explained in the previous section, data to make the images for the FA is stored on 

GPU until the simulation completes. Once it has finished this data is copied to CPU and 

written as binary files. In a post-processing step, the Silo Sub-Domain utility converts these 

binary files into SILO files than in turn as used to generate the images using vISIT (Fig. 5.18). 

 

Fig. 5.18 FA Images generation process 
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5.8 TRITON-G Performance and Optimizations 
 

For this study and under the collaboration project with RIMES a specific machine was 

assembled to use as the server to implement TRITON-G as their operational tsunami 

forecasting tool. Initially a machine with a single GPU Titan Blank was used for development 

to test the feasibility of the operational concept. Once promising results were obtained, a 

second machine intended for permanent installation was designed taken into account several 

considerations such as: budget, size, GPU performance, storage and power back up. The 

specification for this machine are detailed in Table 5.3. 

 

RIMES Machine  Specifications 

CPU  Intel Xeon E5‐2620V3 2.4GHz 

RAM Memory  DDR4‐2133, 64 GB 

GPU  nVIDIA TESLA K40C x 3 cards

HD  Seagate 3.5" 2TB SATA 6Gb/s 7.2KRPM 

  SSD Intel DC S3500 480Gb SATA 6Gb/s 

UPS  UPS APC 220VA 

OS  CentOS 6.6 

CUDA Version  7.5 

Database  PostgreSQL 9.1 

Web Server  Tomcat 6.1 

MPI Version  Open MPI 1.8.6

 

Table 5.3 RIMES machine for TRITON-G 

 

The best balance between all those requirements was met with those specifications. 

Nonetheless the aim to deliver a powerful system within a reasonable budget was never 

oversighted and this server proved it.  

 RIMES server is designed to be used as a web interface by the end user hence the 

mention to the webserver utilized. Through this interface users can adjust TRITON-G to their 
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specific needs. TRITON-G being an operational tool is far from a static single program but 

instead provide the options to be modified as requested. Such options include define focal 

areas, submit new bathymetry or manning databases, introduce the latest tsunami fault 

sources; as well as basic options like output frequency, total runtime and gauges location. 

In the specifications apart from the three Tesla K40C GPU cards another 

characteristic stands out, the existence of two hard disks. The reasons behind installing two 

hard disks in the machine can be understood by looking at the type of disks they are. One 

disk is a traditional SATA HDD, this kind of disks have proven to be reliable, affordable and 

have grown in capacity, however their top writing speed is between 60-160MB/s. On the 

other hand Solid State disks (SSD) can deliver up to 600MB/s writing speed. The downside 

of SSD being the price and smaller capacity (240GB). In order to take advantage of these 

two devices they are configured to be used for different purposes. The SSD is assigned as the 

primary disk for output during computation. This allows for a fast I/O during simulation. The 

HDD is kept mainly for storage; once a simulation is finished, in a post-processing stage the 

results are transferred from SSD to HDD. In this way the SSD is kept mostly free and ready 

for real-time computation while the HDD with its largest capacity serves as a case storage 

device. 

 Hence our implementation and objectives are focus on the available three Tesla K40 

cards [93].   
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Table 5.4 Tesla K40C Main Specifications 

 

5.8.1 Kernel Optimizations 
 

Once TRITON-G reached a point where it showed stability and good agreement with 

benchmarks, several optimization were implemented in the SSWE kernels to obtain the best 

performance possible out of the available machine. These results are shown in Fig. 5.19. 

 

TESLA K40C 

  CUDA Capability Major/Minor version number 3.5 

  Total amount of global memory  11471 MBytes (12028608512 bytes) 

  (15) Multiprocessors, (192) CUDA Cores/MP     2880 CUDA Cores 

  GPU Max Clock rate                             745 MHz (0.75 GHz) 

  Memory Clock rate                              3004 Mhz 

  Memory Bus Width                               384‐bit 

  L2 Cache Size                                  1572864 bytes 

  Total amount of constant memory  65536 bytes 

  Total amount of shared memory per block  49152 bytes 

  Total number of registers available per block 65536 

  Warp size  32 

  Maximum number of threads per multiprocessor 2048 

  Maximum number of threads per block 1024 

  Max dimension size of a thread block (x,y,z) (1024, 1024, 64) 

  Max dimension size of a grid size    (x,y,z) (2147483647, 65535, 65535) 

  Concurrent copy and kernel execution          Yes with 2 copy engine(s) 

  Run time limit on kernels                       No 

  Support host page‐locked memory mapping        Yes 

  Device has ECC support                         Enabled 
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Fig. 5.19 TRITON-G Optimization, a total of 59.6% speed up was achieved 

 

The first optimization utilized was the update of the CUDA toolkit and compiler 

version. TRITON-G was originally developed using version 6.5 of CUDA and to avoid 

changes on the machine OS configuration it did not get updated even though newer versions 

were release. Then, when the project reached the optimization part CUDA was updated to 

the, then latest version 7.5. By doing this an 8.26% speed up was achieved; this is due mainly 

to internal improvements to the compiler. 

The second optimization is branch divergence. For GPU this event can represent a 

major performance penalty due to the way threads are computed. When a kernel includes a 

conditional that creates divergence the warp process all threads twice, deactivating the un-

unused threads and putting the result back together at the end. Clearly the amount of work 

doubles which introduces a considerable overhead. Hence it is highly desirable to avoid any 

condition that creates threads to take different paths. Sometimes to achieve this the 

algorithms have to be rewritten, an example of this is the set of equations (3.27); re-written 
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the equations in this way creates a single path on the GPU which allows for higher efficiency. 

Another way used to decrease the divergence was to replace if conditionals for binary 

expressions that cancels the unnecessary part, e.g. the condition: 

 
if a=1 then e=C

else e=D
  

Can be replaced by the expression:  

 e C D     

where   and   are expression that take the values 0 and 1 mutually exclusive and cancels 

out half of the values thus making the conditional unnecessary.  

By introducing this optimization a 30.94% improvement was achieved, this was a big 

improvement and showed the damaging effect of branch divergence. 

The next optimization was the elimination of unnecessary computing by storing 

results in a memory array. For example the trigonometrical expressions that appear in the 

model depend on the value of   on each point, however this values does not change over 

time making it redundant to be computing the same values. Instead we compute the 

trigonometrical expressional once at the beginning, store them on GPU memory and simple 

reuse them each time step. Doing this reported a 4.25% improvement; the reason that 

performance increased in this case is due to the register count. As explained earlier the fastest 

memory available on the GPU are the registers, however they are scarse. Computing the 

trigonometrical expressions required loading values on registers but removing this 

computation registers were freed up and used for other tasks thus improving the performance. 

The next optimization was the replacement of complicated exponential with built-in 

functions provided by CUDA. Especially the terms on the friction force (3.37) include 

exponentials of 7/3, by using the built-in functions an improvement of 1.39% was found. 

Lastly, another optimization that provided good results was the use of the Boost 

option (Appendix B). The Tesla K40C runs normally at a frequency of 745Hz, however this 
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clock can be changed to higher values to produce a boost on the speed. By setting the card to 

the highest available frequency of 845Hz we obtained a 14.78% improvement. 

Overall we obtained a nearly 60% improvement by using all these optimization, 

effective cutting down the total running by around half of the time. 

 

5.8.2 Sub-cycling 
 

Encouraged by optimizing the code as much as possible, a sub-cycling technique was 

introduce in the simulation. Sub-cycling consists of using a large dt and making blocks cycle 

in smaller steps to reach the same dt. The number of cycles taken is called n. The advantage 

of this technique is that the global dt can be enlarged thus producing faster simulation, the 

potential disadvantage is that if the blocks sub-cycling are too many the whole computation 

is slow down. An illustration of how the sub-cycling works is shown in Fig. 5.20. As it can be 

seen there, blocks with the same number of sub-cycles can be group in a single list. In theory 

after a large dt is taken, appropriate boundary conditions should be computed by interpolation 

in time. This process usually introduce an overhead; since the objective of our simulation is 

to provide the fastest modeling tool for evacuation warning, it was decided to skip the 

boundary generation and use the values at time n. As it will be shown later, this decision 

proved to be correct judging by the excellent agreement of the simulation result with 

benchmark and real tsunami data comparison. 
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Fig. 5.20 Illustration of the sub-cycling process 

 

The maximum dt values per level are shown in  

 

 

Table 5.5, using CFL=0.8; the selection of 1.6 as global dt came from a balance between 

a larger dt and a small number of sub-cycles. 

 

 

 

 

 

 

Table 5.5 Maximum dt per level and the resulting sub-cycling number 

h Max dt Max dt SC n 

L1 7816 1.07E+01 1.60E+00 1 

L2 8524.75 5.13E+00 1.60E+00 1 

L3 10006.75 2.37E+00 1.60E+00 1 

L4 5143 1.65E+00 1.60E+00 1 

L5 3902 9.47E-01 8.00E-01 2 

L6 2944.51 5.45E-01 4.00E-01 4 

L7 1297.51 2.57E-01 2.00E-01 8 
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Also as Fig. 5.22 shows the largest number of block are located in level 3, this is not 

surprising considering that all coasts get refined up to level 3. It was our intention to avoid 

sub-cycling level 3 since it would produce a large overhead. 

 

 

Fig. 5.21 Load Balance example due to the effect of sub-cycling 

 

 Finally, the introduction of sub-cycling produced an issue in the load balanced. As it 

can be seen in Fig. 5.21 if a block needs sub-cycling that means that is equivalent to having 

several more blocks than those allocated in memory. In order to guarantee that the balance 

was still preserved a variation was introduced to the SFC. Instead of simply using the list 

originally created, a second weighted list is also created. This list gives more weight to blocks 

that need refinement hence when the partition is done the work load remains well balanced. 

This effect on the increase of the number of blocks per level can be seen in Fig. 5.22, 

for example for level 7 the 100 original blocked represent 800 due to the n=8. 
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Fig. 5.22 Number of blocks per level before with (orange) an without (blue) sub-cycling 

 

5.8.3 Performance Measurements 
 

With a fully optimized code, output, kernel and load balance, measurements were made to 

estimate the performance of TRITON-G. Fig. 5.23 shows the breakdown of the main part of 

the computing. Wall stands for the wall kernel, Wet for the Wet kernel and X and Y for the 

dimension of the computation. The process of updating the halo, presented in the graph as 

Bnd for Interpolation, Coarsening and Copy represent only 9% of the total running time. It is 

also interesting to note that the Wet and Wall kernel have similar performance despite the 

fact that the wall include additional treatment for the coast boundaries. Since this treatment 

consists of many conditional and they were replaced on during optimization it is 

understandable that the performance is similar.  

It is also interesting to notice that the inundation kernel represents around 21% of the total 

runtime even though it process only around 2% of the total number of blocks. Inside others 
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several values are included, most importantly the communications, it represents around 1-

2% of the total running time. This confirms that the care taken to create efficient 

communications with packing buffers like in UDP format was the right decision and provide 

high performance. 

 

 

Fig. 5.23 Computing breakdown shown in percentage 

 

Finally, results for the total runtime are presented. The simulation computes 10 hours 

on the Indian Ocean domain. Fig. 5.23 shows the total machine time consumed by TRITON-

G to obtain this simulation. The first column represent the time before optimization were 

done, it was well above an hour. The next two columns show the results with the optimization 

and the boost option on and off, it can be seen that the total runtime with all optimization 

active is 40.40 minutes. This time includes all the image generation, gauges, variables’ 

storage as well. It is an excellent result to produce such complicated scenario of 10 hours in 

just around 40 minutes machine time.  
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Fig. 5.24 A 10-hour Simulation Runtimes 

 

 

 
Fig. 5.25 Computing time required to obtain the first results during simulation 
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Fig. 5.26 A 10 hour simulation runtime comparison with 3 different GPUs 

   

 

Furthermore, Fig. 5.25 shows the machine time needed to compute the results of the 

first arrival wave in each focal area. For instance for Sri Lanka it takes just 9 minutes machine 

time to generate the results of the inundation in that area. Considering that the wave took 

around 2 hours from the source to Sri Lanka, obtaining results in 9 minute would give plenty 

of time to authorities to make a decision regarding evacuation. 

A final result is presented to show how the program behaves under different GPU cards, 

Fig. 5.26  show the results for Tesla cards model K40, K80 and P100. It is interesting to notice 

that despite the K80 card having double the number of register than K40 and a better 

automatic boost system we were able to achieve a very similar performance. In the case of 

P100 which contains more than 3000 cores and the latest technology results were obtained 

in just under 15 minutes for the same 10-hour simulation. 
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Chapter 6. Numerical Simulations: Application 

 

 

 

Previous experience with GPU computing had inspired us to continuously exploring new 

and better ways to perform simulation, results for our previous work can be consulted in 

Appendix A.  By taking GPGPU into more complex and large problems like the research that 

we present here TRITON-G was produced. It is the product of many years of constant 

development, looking always for better and more efficient ways to exploit GPU technology. 

Results of hindcasting the Indonesia 2004 tsunami are presented to show the comparison of 

propagation and inundation between TRITON-G and existing actual records of the event. 

The chapter finishes by presenting two inundation cases, one in Sri Lanka and the other in 

Phuket. 

 

6.1 Application: Hindcast Indonesia Tsunami December 2004 
 

Validation must be performed on different ways, not only on idealized situations but 

also on real cases with measured data. After obtaining promising results with the Gaussian 

idealized benchmark in the previous section, here a hindcast of the Indonesian 2004 Tsunami 

is presented. The ability of TRITON-G to model this event is demonstrated in this section by 

comparing its results with recorded tide gauges as well as with inundation maps. 

There exist considerable information available about the Indonesian December 26th, 

2004 massive earthquake and destructive tsunami [94]. Gauges recorded at the moment of 

this event are obtained from NOAA’s tsunami events database. This event occurred at 7:58 

am with a magnitude of 9.0 Mw generated by the subduction of the Indian Plate by the Burma 

plate; nearly 1600 km of fault was affected around 160km off the coast of Sumatra. This 
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massive earthquake generated a large tsunami that spread over the Indian Ocean in the 

following hours. 

Firstly, the tsunami wave propagation computed by TRITON-G is depicted in Fig. 6.1; 

each snapshot represent an hour after the earthquake’s main event. The parameters for the 

source were provided by RIMES and the result is shown in snapshot (a) of Fig. 6.1. The initial 

displacement represent height of 10 m and troughs of -5 m. In order to show the wave 

covering the totality of the Indian Ocean a slightly longer simulation was produced as 

opposed to the 10-hour test reported in the performance section. The results shown in the 

images represent 12 hours on real time and it took TRITON-G 51 minutes to complete the 

full simulation. 

The images provide a visual record of the evolution of the tsunami wave train. Due to 

the initial location, several countries were rapidly affected by the arriving tsunami; Indonesia, 

Thailand and Malaysia received the first train of waves within minutes of the earthquake’s 

main event. Also the positioning of the initial source made possible a direct hit towards Sri 

Lanka, India and later on the Maldives Islands. At around 5 hours, waves has spread reaching 

Australia and at around 6 hours after the earthquake the waves start to arrive in the north-east 

of Africa and then continue to spread covering all the domain. At 12 hours, it is still possible 

to see small oscillations all over the Indian Ocean still remaining from the original tsunami. 

These synoptic maps also serve to show the magnitude of this event and the destructive 

characteristic of tsunamis waves with their ability to travel extremely large distances with 

enough energy to case damage.  
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Fig. 6.1 (a) Time = 0 hours. Initial Source in Sumatra. 

 

 

Fig. 6.1  (b) Time = 1 Hour 
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Fig. 6.1 (c) Time = 2 Hours 

 

 

Fig. 6.1 (d) Time = 3 Hours 
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Fig. 6.1 (e) Time = 4 Hours 

 

 

Fig. 6.1 (f) Time = 5 Hours 
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Fig. 6.1 (g) Time = 6 Hours 

 

 

Fig. 6.1 (h) Time = 7 Hours 
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Fig. 6.1 (i) Time = 8 Hours 

 

 

Fig. 6.1 (j) Time = 9 Hours 
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Fig. 6.1 (k) Time = 10 Hours 

 

 

Fig. 6.1 (l) Time = 11 Hours 
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(m) Time = 12 Hours 

Fig. 6.1 Hourly snapshots of the Indonesian 2004 tsunami propagation after the earthquake simulated by 
TRITON-G. 

 

In conclusion, the animation generated by TRITON-G and shown in snapshots here 

above, was compared with existing simulations from different researches available at the 

tsunami events database [94]. From this qualitative comparison it was observed a correct 

wave propagation along the Indian Ocean; this served as a first confirmation that the results 

were accurate. 

 

6.1.1 Tide gauge comparison 
 

In order to properly estimate if the propagation was correct, several gauges were 

located in the domain during the simulation and then compared to the real values recorded 

by buoys. These buoys measure the ocean sea level at regular intervals and serve as a critical 

factor to determine tsunamis arrival times and heights. The recording frequency varies from 

system to system but in general is of 5 minutes. Although several sources are available, 

DART® (Deep-ocean Assessment and Reporting of Tsunamis) [95] buoy system is one of 
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the most well-known and accessible. In some charts presented in the results the initial ocean 

sea level is not zero even when the tsunami waves have not arrived yet, this is easy explained 

by the fact that the buoy stations report tide values which naturally rise and low ocean sea 

level. The location of the gauges used in this work is shown in Fig. 6.2, all these stations due 

to their position received tsunami waves directly from the source.  

 

 

Fig. 6.2 Gauge locations in the Indian Ocean: Male, Gale, Diego Garcia, Colombo and Point Le Rue. 

 

The first gauge compared is Diego Garcia, an atoll in the Chagos Archipelago, 

located at 7º30’N; 72º 38’ E and approximately 2700 km from the west side of the fault. This 

station records every 6 minutes. The first wave arrived at 3 hours 46 minutes after the 

earthquake, Fig. 6.3 shows the result of TRITON-G for this gauge. It is clear the arrival time 

agreement, TRITON-G predicted time is just a few minutes ahead from the actual event. Also 

the arrival height is in great accordance with the recorded gauge. One of the objective of this 

work is to produce a model that its results can be used for evacuation warnings, hence slightly 

overshooting do not affect this purpose. 
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Fig. 6.3 Comparison of arrival times Diego Garcia tide gauge vs TRITON-G 

 

This station served a second goal due to its location. The natural topography in the 

area between the source and this station show no obstacles hence allowing for an obstacle-

free propagation of the wave. Thus, the results of this gauge serve also as an indirect 

benchmark to far-field propagation with real bathymetry. Just as shown in the first section, 

the implementation of the numerical model of TRITON-G appears to be correctly estimating 

the wave propagation in spherical coordinates and with complex bathymetry. 

 

The second gauge compared is Male, near the Maldives Islands, located at 4º18’N; 

73º 52’ E and approximately 2000 km from the west side of the fault. This station is sampled 

every 4 minutes. Results for this gauge comparison are shown in Fig. 6.4, the arrival wave 

occurs 3 hours 17 min after the earthquake; again TRITON-G shows good agreement with 

this arrival time. Also, the main tsunami event peak is reproduced by our model, moreover it 

can be seen the excellent agreement as the tsunami continues to arrive; the two main receding 

wave are correctly estimated as well as the second and third tsunami wave train, with heights 

predicted within just a small difference of those measured by the gauge. All this despite the 
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considerable distance already traveled by the tsunami which confirm a good modeling of the 

far-field simulation. 

 

Fig. 6.4 Comparison of arrival times Male tide gauge vs TRITON-G 

 

The third gauge presented is Gan, near the Maldives Islands, located at 0º68’N; 73º 

17’ E and approximately 2300 km from the west side of the fault. This station is sampled 

every 4 minutes. The comparison with our model is presented in Fig. 6.5. The arrival wave 

occurs at 3 hours 17 minutes after the earthquake; the model show good agreement with this 

arrival time within an acceptable small difference; also although there is overshooting present 

the peak of the first arrival wave and main event at this station is also reproduced consistent 

with the observed that the gauge location. The complexity of the bathymetry around this 

locate might affect the proper estimation of the arrival height while the shallow regions might 

be amplifying these values. 
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Fig. 6.5 Comparison of arrival times Gan tide gauge vs TRITON-G 

 

The fourth gauge is Colombo, in Sri Lanka, located at 64º93’N; 79º83’ E and 

approximately 1400 km from the west side of the fault. This station is sampled every 2 

minutes however due to the intensity of the arrival tsunami the gauge was damaged after the 

first wave, yet the recorded values until stop functioning prove valuable for comparison. 

 

 

Fig. 6.6 Comparison of arrival times Colombo for tide gauge, TRITON-G, RIMES 
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In this station the arrival wave happens 2 hours 50 minutes after the earthquake; due 

to lack of data after the gauge’s damage, we rely on eyewitnesses accounts who reported that 

the first wave was not the biggest but the following ones. 

The comparison of Colombo’s tide gauge with TRITON-G is shown in Fig. 6.6; the 

arrival time of the modeled wave is similar to that of the recorded gauge, the ahead time 

difference of the model is partly explained by the gauge location in the simulation; as 

explained in chapter 3, coastlines not marked for inundation have a wall boundary condition, 

hence gauges too close to the shoreline might not represent accurate results, in order to avoid 

this effect the gauge location in the simulation is located slight west of the actual buoy, this 

accounts for an earlier predicted arrival time. Besides the tide gauge and TRITON-G results 

Fig. 6.6 also show the results from RIMES original model for comparison. This serve to 

illustrate how TRITON-G improved the height estimation compared to that of the previous 

model. Also looking at the wave train predicted by our model it can be seen that the largest 

peak does not occur with the first wave but instead at a later time a couple of hours later than 

the first event; this coincides with eyewitnesses accounts who reported larger waves later 

than the arrival one. 

 

 

Fig. 6.7 Comparison of arrival times Point La Rue tide gauge vs TRITON-G 
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The last station is Point La Rue, near Seychelles, located at 4º68’S; 55º53’ E and 

approximately 4300 km from the south-west side of the fault. This station is sampled every 

4 minutes. The arrival wave is reported at 7 hours and 4 minutes after the earthquake. The 

comparison of this gauge with our model is shown in Fig. 6.7. As it can be seen, the arrival 

time coincides with good agreement with that of the recorded values; similarly with the 

previous case the slight time difference is partly explained by the same reason, the location 

of the simulation gauge slight east of the actual buoy since this is very near the shoreline. 

This comparison represent very valuable information for the model validation; first, the 

location of this gauge accounts for a considerable far-field simulation, more than 4000 km 

are covered by the tsunami wave and yet the arrival time and wave height is within good 

agreement of the recorded values. Secondly, due to the location of the gauge, the traveling 

reaching it had gone through the Maldives islands, where complex bathymetry generate 

dispersion on the waves and coasts reflection affects as well; yet the model preserves the 

traveling wave well, there is no noticeable diffusion of dissipation of the wave that might 

reduce the arrival heights. 

In conclusion, with the comparison of our model’s results with real gauges it is 

possible to determine the good accuracy presented by TRITON-G. Arrival times for the 

traveling wave were all within good agreement with the recorded values, small differences 

can be partly explained by the simulation gauge location. Also it was shown that the main 

events could be reproduced; although a tendency to overshoot was noticed, this did not affect 

the ability of the model to transport the wave along far distances and in no case a wave sign 

was reported incorrected, all crests coincides with observed and measured values. There are 

three possible reasons to the different wave oscillation after the main event as well as the 

peak height discrepancies: 

 Bathymetry and Topography  

 Initial Condition 

 Dispersion 
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Although databases for bathymetry and topography with good accuracy are available, 

these are still far from representing in details the real shape of the Ocean’s bottom and 

orography. This difference makes it challenging to reproduce the wave reflections on coasts 

and effects of traveling through the Ocean bed completely realistic. Hence it is expectable 

that some difference is found in the wave oscillations. 

Also, every tsunami model is dependent on a good and accurate initial condition to 

obtain good simulations, source theory however is still a developing and challenging field 

and obtaining a realistic fault source is not always possible. The use of an inaccurate initial 

fault source can produce differences in the arrival wave heights, also in the direction and 

speed of the traveling wave.  

Waves traveling through the Ocean bed experience physical dispersion due to the 

effect of the bathymetry. In general this dispersion is compensated by numerical dispersion 

introduced by the truncation error; however as it was explained in the methods section, for 

TRITON-G using the cubic interpolation upwind scheme has the advantage of minimizing 

dispersion and diffusion. The result is a homogeneous traveling wave with minimum 

dispersion effect thus reducing the possibility of seeing the high oscillatory behavior of the 

arrival tsunami wave in the gauges.  

Finally, this kind of discrepancies between recorded gauges and modeling programs 

is not exclusive to us but instead rather common; the same challenges experienced in this 

work are reported in other operational models as well however our discrepancies tend to be 

less than those in other researches ( [96], [97]). 

 

6.1.2 Inundation Run-up: Focal Areas, Phuket 
 

In order to continue the validation of our tsunami model this section present the results 

obtained for the inundation calculation of the original 4 focal areas: Mozambique, Comoros, 

Seychelles and Sri Lanka, plus an additional focal area in Phuket. 
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Although exact measured inundation maps of these areas does not exist, the results are 

based on RIMES existing simulated repository and reports [98], and on post-tsunami 

damage surveys; with collecting information concerning the damage produced by the 

inundation, it is possible to estimate the maximum heights and run-up on several locations. 

 The first case presented is the result for Sri Lanka focal area. Specifically this area 

covers the coastal region known as Hambantota. Eye witness accounts report the arrival time 

of the first tsunami wave around 9 am the morning of the 26th, some two hours after the initial 

earthquake in Sumatra. This arrival time coincides with results obtained with our model. It 

is important to mention that the result for this focal area were computed by TRITON-G in 

just 9 minutes, this show the speed advantage provided by our model; obtaining fast 

predictions allow authorities to make an evacuation decision quickly and save lives.  

 

 

Fig. 6.8 Hambantota Inundation Map, Sri Lanka FA 

 

The inundation map for Hambantota generated by TRITON-G is shown in Fig. 6.8. 

According to measurements done post-tsunami, it was determine that the arrival waves had 

heights of over 8 meters and produced run-ups inland in certain areas of up to 2 km. As it can 

be seen in Fig. 6.8, TRITON-G results reproduce this account, the inundation map show areas 



 
Numerical Simulations: Application 

130 
 

up the coastal bay where inundation produced hundreds of meters deep run-ups in land. Also, 

the image on the left of Fig. 6.10 show the maximum wave heights computed, the results show 

values of over 8 meters just as reported by witnesses, in fact wave heights of almost 10m 

were obtained during simulation. 

These qualitative comparisons show good agreement with the observations made on 

field. In order to compare more accurately the result of our maps, a comparison between 

RIMES Hambantota inundation report and TRITON-G’s simulation is presented in Fig. 6.9; 

the image on the right represents TRITON-G’s result with the area for Hambantota trimmed 

to fit that of the report. 

 

 

Fig. 6.9 Inundation comparison Hambantota, Sri Lanka; RIMES (left) vs TRITON-G (right) 

 

Although the presence of topography, irregular bottom friction and complex 

interaction with the land makes difficult to compare directly between results, it is clear that 

in general both simulations have excellent agreement. Both simulations show agreement on 

the areas that were inundation and the areas that experienced no run-up. The decisive factor 

that made some areas more propense to inundation than others was the topography. The 

arrival tsunami wave hit the coast with heights of around 8-10 meters, coastal areas that faced 

the ocean with higher topographic heights were spared from being inundated. On the 
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contrary, coast shores that were practically flat were overtaken by the incoming wave as 

shown in the results. 

 

 

Fig. 6.10 Hambantota, Sri Lanka; left: maximum wave height; right: maximum wave velocity 

 

Next, the results obtained for the rest of the focal areas are presented. It is important 

to mention the case of Mozambique for who maps were not generated. The reason of this is 

not oversight but a programming condition. As explained in the GPU chapters, output data 

for the focal areas start to get stored if the wave entering the focal area exceeds a certain 

target value, in this case 0.1 meters. The results for the Indonesian tsunami showed that the 

arriving waves at Mozambique were less than 0.1 m hence no output was recorded. 

Nonetheless, to guarantee that the four focal areas were able to compute inundation and 

estimate possible damage, a separated analysis was performed for the African region around 

Mozambique, based on the work of Aderito et.al. [99]. Results for this study case can be 

consulted in Appendix B (Source Fault Simulations section) of this work. Scenario 10, which 

correspond to a fault near Mozambique was chosen as the case to compare our result. 

TRITON-G proved to be stable and generate a propagation also in this region of the domain; 

since this is a theoretical case no actual gauges measurement exists, however from a 

qualitative comparison with the results in [99] we could determine that the heights and arrival 

times were within good agreement. 
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The inundation map for Seychelles is shown on the right of Fig. 6.11. Although no 

detailed simulation is available to compare the inundation, again we use the eye witness 

accounts and post-tsunami surveys. The report [100] found run-up in the east coast of the 

island, a region called Anse Royale, where infrastructure damage on this beach was found. 

The inundation map coincides with this studies as shown in this figure. Inundation with 

heights of 2-3 meters were obtained by TRITON-G and as shown in the map, the run-up went 

in land in the beach.  

                  

Fig. 6.11 Seychelles FA, left: maximum arrivale wave; right: inundation map 

 

Also according to [100] arrival wave heights of around 1.9 and 2.8m in Anse Royale 

were observed; this is in good agreement with the results obtained with TRITON-G, the 

image on the left of Fig. 6.11 shows the maximum wave heights with values up to 3.5m.  

Finally the results for Comoros is shown in Fig. 6.12, the arrival times estimated by 

our model of around 6 hours coincides with the accounts recorded. The map on the left show 
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the results for the maximum wave height and the image on the right show inundation. Due 

to the small arrival wave, the inundation did not produce a noticeable run-up for this case. 

     

Fig. 6.12 Comoros FA, left: maximum arrivale wave; right: inundation map 

 

 An additional test was tested during TRITON-G development: Phuket. This case 

served the purpose not only to re-validate even more the good accuracy of TRITON-G but to 

test the flexibility of including a new focal area. Successfully, the new databases for this 

region were submitted to TRITON-G and a new mesh was generated around this focal area. 

With this new mesh the Indonesian tsunami was computed again to obtain results for the 

inundation. 

 The bathymetry databases kindly submitted by RIMES are shown in Fig. 6.13, just 

like the other FA two sets were used, one with 150m resolution and the other with 50m 

resolution, matching level 7. The Phuket focal area is highlighted in red and show an 

interesting case that did not appear before: the mix of bathymetry source inside on single 

focal area. In the cases of the other four focal areas, the highest resolution was always covered 

by a single dataset but in this case part of the focal area bathymetry, Kamala, is replaced 

directly from a fine 50m dataset while the other part, Patong, is interpolated from a coarser 

resolution. The effect of doing this will show the importance of accurate databases. 
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Fig. 6.13 Phuket Inundation: left bathymetry databases used; right: zoom on Kamala and Patong 

 

The inundation map for the Phuket focal area, which includes the region of Kamala and 

Patong is shown in Fig. 6.14. The work by Suppasri [101] is to compare these results. 

 

  

Fig. 6.14 Kamala and Patong maximum inundation map TRITON-G 

 

The wave arrival time for this region is of around 181 minutes, which agrees with the 

values obtained by our model.  The results to do this comparison are shown in Fig. 6.15, where 
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the focal area Phuket was trimmed to match the area reported in [101]. The image on the left 

present the inundation simulation obtained in the report while the image on the right depicts 

the results of our model. It can be readily see that in general, the results around the Kamala 

region coincide well between models. Both systems report maximum inundation heights of 

around 5-6 meters and the run-up distances follow the same pattern. This is another good 

validation for TRITON-G as a propagation and inundation modeling tool. 

                    

                

Fig. 6.15  Kamala inundation map comparison. Left: Suppasri et.al. [101]; right: TRITON-G 

 

 There is however certain discrepancy in the inundation run-up in the Patong region. 

As mentioned before the bathymetric dataset obtained for this part of focal area was 

originally of 150m, hence to obtain a 50m resolution interpolation was needed. Therefore 

while uniform and un-interpolated bathymetry and topography was used in [101], our model 

used a mix of interpolated and high accurate values. This effect explains this discrepancy and 

serves as a warning on the importance of having realistic and high accurate bathymetry and 

topography in order to obtain high resolution. 
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 In conclusion, except for Mozambique, the focal areas reproduced correctly the 

inundation. Arrival times and maximum wave heights and inundation were correctly 

predicted by our model. More precise comparison on the Hambantota region and Kamala 

served as proof to support the effectiveness of our model. Moreover, the test on Phuket 

showed the importance of using real and accurate topography and bathymetry and the effect 

that using smoothen values can produce. 

 

6.2 Concluding remarks 
 

As seen in earlier chapters, TRITON-G delivers fast computation for complex and large 

simulations using GPU acceleration. And now by using benchmarks and real data 

comparisons it is shown that the model used by TRITON-G also provides accurate results. 

Hindcasting the Indonesian 2004 tsunami serves as a test to determine the behavior of the 

model under real circumstances. Comparison with several tide gauges across the Indian 

Ocean showed very good agreement with the wave arrival times and confirmed correct 

reproduction of the arrival wave peak event. Discrepancies in the arrival height can be 

explained by the effect of the initial conditional and bathymetric effects, while the 

discrepancies on the oscillatory wave behavior after the main event can be understood as a 

dispersion effect. The gauges also served to test the model stability and ability to preserve 

the traveling wave across long distances. Moreover by comparing results with existing post-

tsunami damage surveys and other simulations it was possible to determine the correct 

prediction of inundation, in particular for Hambantota and Phuket regions. This last test also 

demonstrated the flexibility of TRITON-G to generate new FA and also was an excellent 

example of the influence in the results of using high accurate bathymetry as opposed to 

interpolated values. 
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Chapter 7. Conclusions and Future Work 

 

7.1 Conclusions 

 

In this work a novel, fast and accurate tsunami modeling was introduced. The 

combination of highly accurate numerical methods provided an excellent solution to the 

governing equations. Moreover the development of a customized refinement served to create 

a mesh optimized for the resources available and the interests of RIMES. A full-GPU 

implementation was proven successful, several optimizations introduced in the kernels and 

load balance as well as using multi-GPU allowed to obtain high performance from the Tesla 

K40 cards used. A large simulation of 10 hours in real time can be computed in 40 minutes 

machine time, including considerable-sized output. Hindcast of the Indonesian 2004 tsunami 

helped to compare results and find good agreement with propagation and inundation. Also 

the good agreements with benchmarks serves as a back up to the validity of this work.  

The main conclusions are: 

 A tsunami model was successfully developed that proved to be accurate, robust 

and outstandingly fast. 

 A full-GPU operational model was properly implemented; multi-GPU delivered 

high speed simulation and performance. 

 By using the proposed numerical methods, the governing equations correctly 

modeled the tsunami propagation and inundation accurately with smooth 

integration between different coordinate systems. 

 A customized refinement based on tree-based refinement was developed to 

produce a mesh that provide accuracy, and efficient use of resources. 

 By exhaustive testing, benchmark comparing, and hindcasting, the program 

developed proved to be reliable under a wide range of circumstances. 
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 The use of an easy interface to interact with the program through simple 

parameters files proved to give the degree of flexibility desired to the end user. 

 

The work done in this research produced TRITON-G, a tsunami operation real-time 

model that has proved robust and accurate. It was tailored-made to fulfill the requirement of 

RIMES and to replace their previous program. At this time TRITON-G has been already 

deployed and has been under operation at RIMES headquarters with success. The continuous 

testing in the developing stage and now at operation stage has confirmed the robustness of 

the program. Moreover TRITON-G ended up being a full framework, providing additional 

utilities for data and parameters pre-processing, like database distance generation, and output 

post-processing, like inundation images, variables output, and gauges.  

The innovative approach to implement the model as a full-GPU application proved to 

be an excellent decision. The large domain computing is accelerated by the used of multi-

GPU. Even though only three Tesla K40 cards were available, it was possible to obtain great 

acceleration for simulation with great complexity. Being able to obtain results within minutes 

on areas close to the tsunami source is essential to warning systems. TRITON-G can fulfil 

this requirement single-handedly. The optimization implemented in the kernel provided the 

necessary boost to obtain the best performance out of the cards. Also working with the Pipe 

asynchronous work flow for output provide the advantage of delivering results as frequent as 

requested. In this way, results can be checked progressively as the simulation advances. 

The two refinement factors custom developed for TRITON-G proved to be accurate 

and efficient. By handling different block levels, high resolutions of 50m in coastlines can 

be obtained while coarser resolutions of 2 arc-min remain in the open ocean. Moreover, 

despite the fractal structure of coastlines, the refinement was also able to track the complex 

coast shapes accurately. The introduction of the concept of focal areas worked perfectly to 

diminish the memory usage while not losing accuracy in the coastlines of interest. 
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When compared TRITON-G with existing data from the actual tsunami of Indonesia 

2004, it proved yet again to be accurate; it reproduced arrival times in high accordance with 

the gauges. Also the arriving wave heights reproduced the peaks of the main events, always 

matching or improving simulations from the previous RIMES program. Although a small 

tendency to overshoot the heights was noticed, this can be manageable for warning systems 

since their aim is to look for worst-case scenarios to make evacuation decisions. 

Finally, the idea behind collaborating in this project with RIMES not only aimed at 

producing a model that was accurate but also flexible. It is not so hard to create a specialized 

simulation for a single case with small variations however TRITON-G has the ability to be a 

flexible operational tool. The input information is easily handled by parameter files that make 

a smooth interface for the user. The block mesh can be custom made, any focal areas of 

interest can be set, the distance to refine can be changed or the number of levels, all these 

options available to the user. Furthermore the output variables and images can be easily 

controlled by the user with a simple parameter file. 

It is our deepest hope that with this humble contribution to forecasting we help to move 

forward tsunami models into the next step, and by doing so, the lives of people at risk of 

being affected by a tsunami are better protected. 

 

 

 

7.2 Future Work 
 

A fresh and novel tsunami operational model has been presented in this work, 

TRITON-G. It has proven to be a fast program and generate accurate results. Moreover, it 

successfully fulfilled the requirements for the collaborating with RIMES. Since TRITON-G 

was developed under specific requirements it is understandable that certain limitations had 

to be taken. Nonetheless, outside of the collaborating project, it would be possible to take 
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TRITON-G to a new level of performance. Budget constrains made available only 3 GPU 

cards for this work, however TRITON-G is already developed with a multi-node, multi-GPU 

framework in mind. Hence with a few adjustments it could be deployed in larger servers, 

with more GPUs available or even in a Super Computer, like Tsubame 3.0 at Tokyo Institute 

of Technology. This new super computer is composed of a large cluster of GPUs, nVIDIA 

Tesla P100 cards. As it was shown in the GPU chapter, TRITON-G has been already tested 

on this P100 cards, achieving high performance. Also additional kernel tuning can be 

developed for newer cards. Another improvement would be the available memory, with more 

memory it would be possible to process larger domains i.e. more blocks, for example 

computing the whole Earth instead of a portion in the Indian Ocean. Furthermore, it would 

be also possible to implement TRITON-G as a tool for structural design, following the new 

NRA regulations this work can be modified to assess tsunami risks on areas where NPP 

buildings exist or are planned to be constructed. The flexibility and reliability of TRITON-G 

permits to test many inundation scenarios for different tsunami heights as well as do it swiftly 

by its GPU acceleration. 

Secondly, a trend that is growing in the simulation community is the use of mixed 

precision. GPU cards start to include variables to handle this case. Hence, it is possible to 

apply single precision to areas where water depth is not relatively shallow (around -1000 m) 

and use double precision for deeper regions. This would be an improvement in speed because 

of the introduction of single precision computing but it also represent a challenge to connect 

areas with different precision smoothly as well as keeping a correct load balance on the cards. 

Also, additional complexity could be included in the model to include effects that were 

neglected in this work for performance tradeoff. For instance wave dispersion or sea tides 

could be incorporated if more resources were available. 

TRITON-G proved to be a robust model, however certain care had to be taken due to 

the presence of very large bathymetry gradients, peaks and plateaus. The appropriate election 

of a t  together with an added small artificial viscosity served to overcome those 

problematic areas. However, where those approaches proved too general, a more specific and 
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dedicated approach could be taken by the use of morphometrics [102]. By determining the 

specific shapes that cause numerical instabilities they could be automatically identified using 

morphometrics thus making it easier to treat locally those points and drastically reducing the 

need of general solutions. 

Finally, in recent years the influence of deep learning has grown exponentially due to 

the computing power of GPUs. Training a model on CPU could be a task of weeks and 

months, however with GPUs neural networks can be fed and trained in days or hours. A long 

term goal would be to implement deep learning for code auto-tuning and forecasting. 

 

 

 

 

 

 

 

 

 

 

 

 

“The reasonable man adapts himself to the world; the unreasonable one persists in trying to adapt 

the world to himself. Therefore all progress depends on the unreasonable man” 

George Bernard Shaw, 1856-1950 
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Appendix A: Previous Work  

 

Our interest in GPGPU computing as a tool for accelerating simulations is not recent, 

starting in 2007 great success was achieved accelerating real-time tsunami simulations [103]. 

Even though the technology was still in the first stages of development, we could produce a 

simulation that outperformed CPU computing by up to 62 times on single GPU. This allowed 

us to create an interactive real-time visualization as well which was very innovative by then. 

Moreover multi-GPU was also explored and again great success was obtained in the 

simulation acceleration. GPU cards in that time had small memory which made no possible 

large simulation however even in those conditions our tests for big grids showed excellent 

scalability. Supercomputer Tsubame 1.2 was composed of a cluster of GPU, state-of-the-art 

in that moment, and this allowed us to test multi-node scalability as well. 

 

 

(a)                (b) 
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(c)                (d) 

 

 (e)                (f) 

Fig. A.1 Tsunami Simulation running on Terrain II. Increments of aprox.1min shown 

 

The most outstanding result from that study was to achieve the same performance of 

1000 CPUs (AMD Dual Opteron) with just 8 GPUs (Tesla S1070). 
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Fig. A.2 Japan Tohoku Region study case, SRTM and ETOPO merged Bathymetry [103] 

 

Fig. A.1 shows the first successful real-time simulation obtained. Although the domain 

did not represent any specific area and had a relatively small size of 512x512, the promising 

results guided us to try real bathymetry as shown in Fig. A.2; the Tohoku region of Japan was 

used as the study case for the GPU acceleration tests. Results of the excellent scalability and 

outstanding speed up are shown in Table A.1. 

 

GPU Grid Size Time SpeedUp Efficiency(%)
2GPU

512 9.349 1.330 66

1024 24.86 1.931 97

2048 96.34 1.941 97

4096 381.3 1.934 97

4GPU

512 17.459 0.712 18

1024 18.898 2.540 63

2048 49.276 3.795 95

4096 194.057 3.801 95

8GPU

512 139.14 0.089 1

1024 147.341 0.326 4

2048 141.815 1.319 16

4096 112.68 6.546 82  

Table A.1 Asynchronous Scalability for 2, 4 and 8 GPUs; Tsubame 1.5 Tesla S1070 
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Appendix B. GPU Boost 

 

 

As explained in the Tesla K40 Application Note [104]: 

 

In the Tesla K40 there is something called the “Base Clock” and “Boost Clock(s)”: 

Base Clock: Selected based on worst-case reference workload. All Tesla K40 boards ship at 

the graphics core clock set at “base clock.” By default all Tesla K40 boards will run at this 

clock setting.  

Boost Clock(s): These clocks are selected based on less power aggressive workloads. There 

may be more than one boost clock to provide deterministic performance for workloads that 

consume less than 235 W. In the case of the Tesla K40 there are two boost clocks. An end 

user can select one of the boost clocks using NVML or nvidiasmi. As long as the board power 

remains within 235 W the board will maintain the selected boost clock for the entire 

execution period. 

 

In order to boost K40, the following command is used to change the card’s running clock: 

sudo nvidia-smi -ac 3004,875 -i {CardID} 

 

It is interesting to note that the K80 card also possess the Boost option, however in this case 

the option and configuration is automatically handled internally by the card. This self-

adjusting behavior can be seen in the following measurements done during our work; the 

oscillation points on power and temperature for K80 charts show how the card changed clock 

configuration during TRITON-G execution while the K40 remained stable. 
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Boost Behavior Comparison K80 vs K40 

 

 

Fig. B.1 Power measurement for K80 Autoboost 

 

 

Fig. B.2 Temperature measurement for K80 Autoboost 
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Fig. B.3 Clock measurement for K40 at 745Mhz 

 

 

Fig. B.4 Temperature measurement for K40 at 745Mhz 
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Fig B.5 Clock measurement for K40 at 875Mhz 

 

 

 

Fig B.4 Power measurement for K40 at 875Mhz 
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Appendix C Additional TRITON-G Tests 

 

To further test TRITON-G stability under different circumstances and wavelengths, wave 

heights and initial locations, exhaustive testing was done, some of tests results are presented 

here divided into two groups: Gaussian Initial Conditions and Fault Sources. 

 

1)  Gaussian Waves Initial Condition 

 

(a)                        (b) 

 

(c) 

Fig. C.1 Gaussian 1 
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(a)               (b) 

 

 

(c) 

 

Fig. C.2 Gaussian 2 
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(a)               (c) 

 

 

(b)        (d) 

 

Fig. C.3 Gaussian 3 

 

 



 

154 
 

 

 

 

 

(a)         (c) 

 

 

(b)         (d) 

 

Fig. C.4 Gaussian 4 
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2) Fault sources 

 

 

 

(a)           (c) 

 

 

 

(b)         (d) 

  

Fig. C.5 JAVA Full Rupture Mw9.0 
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(a)         (c) 

 

 

 

(b)         (d) 

 

Fig. C.6 MAKRAN Full Rupture Mw 9.2 
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(a)         (c) 

 

 

(b)         (d) 

 

Fig. C.7 NORTH ANDAMAN Leftover 2004 Mw8.9 
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(a)             (c) 

 

 

(b)         (d) 

 

Fig. C.8 NORTH ANDAMAN Mw8.7 

 

 

 

 



 

159 
 

 

 

 

 

 

(a)        (c) 

 

(b)        (d) 

Fig. C.9 SOUTH SUMATRA Mw9.3 
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(a)         (c) 

 

(b)          (d) 

 

Fig. C.10 Mozambique Scenario 10 (As explained in [99]) 
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