
論文 / 著書情報
Article / Book Information

題目(和文)

Title(English) Tree-Based Mesh-Refined GPU Accelerated Tsunami Simulator for
Real Time Operation

著者(和文) ｱﾙｾｱｸﾆﾔ ﾏﾙﾛﾝ

Author(English) MARLON RODOLFO ARCE ACUNA

出典(和文) 学位:博士(工学),
 学位授与機関:東京工業大学,
 報告番号:甲第11017号,
 授与年月日:2018年12月31日,
 学位の種別:課程博士,
 審査員:青木 尊之,肖 鋒,木倉 宏成,筒井 広明,加藤 之貴

Citation(English) Degree:Doctor (Engineering),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第11017号,
 Conferred date:2018/12/31,
 Degree Type:Course doctor,
 Examiner:,,,,

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Science Tokyo Research Repository)

http://t2r2.star.titech.ac.jp/

TOKYO INSTITUTE OF TECHNOLOGY

DOCTORAL THESIS

Tree-Based Mesh-Refined GPU Accelerated Tsunami Simulator

for Real Time Operation

Author: Supervisor:

 Marlon R. Arce Acuña Prof. Takayuki Aoki

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Engineering

in the

Graduate School of Science and Technology

Department of Nuclear Engineering

September 2017

i

i

Abstract

The turn of the 21st century showed us vividly like never before the vast devastation and

human loss that tsunamis can cause with the events in Indonesia in 2004 and Japan 2011.

This increased the need to develop better simulation tools.

Tsunami simulations traditionally have been develop for CPU computation. With the

introduction of General Purpose GPU computing (GPGPU) the possibility to exploit the un-

parallel speed-up provided by GPU computation was opened. CUDA made GPUs

programmable for scientific applications. Taking advantage of this technology we present a

program that, while providing high accuracy and reliability, does not sacrifices speed or

require excessive simplification. The Shallow Water Equations (SWE) in Cartesian and

Spherical coordinates are used to simulate completely on GPU the generation, propagation

and inundation of tsunamis on the Indian Ocean. The method of characteristic with a cubic-

interpolation is implemented to compute the wave propagation.

Moreover a tree-based refinement is customized to generate a block mesh domain, blocks

with higher resolution are obtained near the coastline while coarser resolution remain the

open ocean. In order to use resources more efficiently a second refinement, by focal area is

introduced. By permitting higher refinement levels only inside designated areas the total

number of blocks is drastically reduced while the accuracy on those areas remain high. 7

Levels are generated, the highest resolution is 50m. 4 focal areas are used located in

Mozambique, Sri Lanka, Seychelles and Comoros.

The resulting model, named TRITON-G is GPU optimized and extended to multi-GPU,

where Hilbert’s space filling curve was utilized to partition the domain and maintain load

balance. A 10-hour simulation of the Indonesian 2004 tsunami was finished in 40 minutes

using 3 Tesla K40 cards. Hindcast of this event’s gauges show agreement with the wave

arrival times recorded and the main event’s peaks. Inundation maps are generated for the

focal areas; comparison with existing surveys show correct prediction of the run-up heights.

ii

iii

Acknowledgements

First and foremost I want to thank Prof Aoki for sharing his extraordinary knowledge and

professional experience with me in order to complete this work. A deep thank you for all

help given during my path as his student. His invaluable advice, patience, motivation, and

support have had great significance in my growing as a professional.

It has been an honor in my life to have the opportunity to develop my research with a World

leading figure in CFD like him. Words are not enough so let every page of this thesis be a

thank you to him.

Also I'd like to thank the research group at RIMES Thailand, for their fine collaboration, for their kind

hospitality during my visits to their headquarter, and especially for their invaluable feedback during the

development and completion of this project.

A deep thank you to my family, my mother (Damaris) and sister (Angie), for their prayers and for always

supporting me in all ways possible and always believing in me.

Finally I'd like to thank the Ministry of Education, Culture, Sports, Science and Technology MEXT for

the scholarship to support my initial studies in Japan and once again to Prof. Aoki for selflessly giving me

the means to complete my degree.

v

Contents

List of Figures .. ix

List of Tables ... xv

Acronyms xvii

Symbols i

Chapter 1. Introduction .. 1

1.1 General Introduction ... 1

1.2 Tsunami‐genesis and History .. 5

1.3 Operational Tsunami Simulators Survey ... 11

1.4 Motivation, Innovation and Objectives ... 14

1.5 Work Outline ... 15

Chapter 2. Governing Equations .. 17

2.1 Conservation Principles ... 17

2.2 Free Surface ... 18

2.3 Cartesian Coordinates ... 20

2.4 Spherical Coordinates ... 25

Chapter 3. Numerical Methods and Boundary Conditions ... 29

3.1 Semi‐Lagrangian Method .. 30

3.2 Propagation ... 32

3.2.1 Hyperbolic system ... 32

3.2.2 Method of characteristics ... 34

3.3 Source terms ... 39

3.4 Non‐linear SSWE validation ... 40

3.5 Inundation ... 44

3.5.1 SWE Benchmark: Dambreak .. 46

3.6 Tsunami Source Model .. 48

3.7 Boundary Conditions ... 49

vi

Chapter 4. Tree-based Refinement and Bathymetry ... 51

4.1 Mesh Generation .. 51

4.1.1 Computational Domain ... 51

4.1.2 Tree‐based refinement .. 52

4.1.3 Refinement by distance ... 56

4.1.4 Refinement by Focal Area ... 64

4.1.5 Dry area removal ... 67

4.2 Block Halo Update ... 70

4.3 Topography and Bathymetry .. 72

Chapter 5. GPU Computing ... 75

5.1 Introduction... 75

5.2 CUDA ... 75

5.2.1 Memory Model and Hierarchy .. 76

5.2.2 Programming Model ... 78

5.2.3 Data Handling .. 79

5.2.4 Compilation for GPU Computing ... 80

5.3 SSWE GPU Kernels ... 81

5.4 GPU Halo swap .. 83

5.5 Kernel Types .. 84

5.6 Multi‐GPU .. 87

5.6.1 Domain Partition: Space Filling Curve ... 87

5.6.2 Communication and Buffers.. 91

5.7 TRITON‐G Output .. 95

5.7.1 Type of Output .. 95

5.7.2 Optimizations .. 97

5.7.3 Post‐processing ... 100

5.8 TRITON‐G Performance and Optimizations .. 101

5.8.1 Kernel Optimizations ... 103

5.8.2 Sub‐cycling ... 106

5.8.3 Performance Measurements .. 109

vii

Chapter 6. Numerical Simulations: Application ... 113

6.1 Application: Hindcast Indonesia Tsunami December 2004 .. 113

6.1.1 Tide gauge comparison ... 121

6.1.2 Inundation Run‐up: Focal Areas, Phuket ... 128

6.2 Concluding remarks ... 136

Chapter 7. Conclusions and Future Work .. 137

7.1 Conclusions.. 137

7.2 Future Work .. 139

Appendix A: Previous Work ... 143

Appendix B. GPU Boost ... 147

Appendix C Additional TRITON-G Tests ... 151

Bibliography .. 161

viii

ix

List of Figures

Fig. 1.1 Tohoku Tsunami 2011, Japan. Left: Before and after at the Fukushima Daiichi NPP;

Right: Nuclear disaster summarized (Credit left: Earth Imaging Journal; Credit right: AFP)

 .. 2

Fig. 1.2 Elevations and locations of structures and components at the Fukushima Dainichi

NPP [2] ... 4

Fig. 1.3 Elevations and locations of structures and components at the Fukushima Dainichi

NPP [2] ... 4

Fig. 1.4 Floating-Point operations per second for CPU and GPU [3] 5

Fig. 1.5 Tsunami Generation by marine earthquake (©NOAA) .. 6

Fig. 1.6 Classical representation of the 1896 Sanriku Tsunami, Japan 8

Fig. 1.7 Before (a) and after (b) satellite images of the effects of the Dec 26th 2004 Tsunami

Banda Aceh Shore, Indonesia. (Credit: DigitalGlobe) .. 10

Fig. 1.8 Tohoku Tsunami wave overflows barrier in Miyako, Iwate Prefecture, Japan 2011

(Credit: Reuters) ... 11

Fig. 2.1 Free Surface model. h: water depth; z: bathymetry; H: constant level 19

Fig. 2.2 Spherical Coordinates,  latitude,  longitude .. 25

Fig. 3.1 Time-space Grid for the one-dimensional Advection Equation (2.1). The slope is a

characteristic curve along which u(x,t)=u(0,0) and the blue point shows the interpolated

result for the semi-Lagrangian scheme. The green region shows the domain of dependence

of P .. 31

Fig. 3.2 Space-time diagram showing the characteristics C  . Black dots represent the grid

points while the dotted points represent the values to be interpolated  , u  used to find

1n , 1nu  (Diagram based on [66]) .. 36

Fig. 3.3 Stencil used to create cubic polynomial interpolation .. 37

Fig. 3.4 Far-field propagation benchmark: Idealized Gaussian source on northern

hemisphere. Each slide represents 1000 seconds. .. 42

x

Fig. 3.5 Gaussian Initial condition benchmark at 5000s. Left image shows the original result

from [69], imagine on the right shows the result for TRITON-G. .. 43

Fig. 3.6 Sketch of the Inundation and run-up heights on a shore slope 44

Fig. 3.7 Reconstructed water depth ݄ܮ, ܴ for inundation [73] .. 45

Fig. 3.8 Parabolic bowl problem. Left: water depth error for different values of thin-film ϵ;

 .. 46

Fig. 3.9 Dam break computation at 0.1s Case A .. 47

Fig. 3.10 Dam break computation at 0.1s Case B .. 47

Fig. 3.11 Tsunami Fault Source: Manila Trench, zoomed at right 48

Fig. 3.12 Tsunami Fault Source: Java Trench, zoomed at right .. 49

Fig. 3.13 Wall Boundary stencil with reflection at point i. Orange dots represent land and

blue dots water ... 50

Fig. 4.1 Study case. Indian Ocean domain ... 52

Fig. 4.2 Block-base refinement. Left: Block with neighbors. Right: Parent-children

refinement ... 53

Fig. 4.3 Quadtree structure construction for a domain with a mooned-shape focus 54

Fig. 4.4 Indian Ocean Domain ... 56

Fig. 4.5 Samples to generate distance function on objects with irregular shapes. (Credits:

Batman logo is a trademark of Warner Bros. Tsubame emblem is a trademark of Tokyo

Institute of Technology) .. 57

Fig. 4.6 Signed Distance Function. Positive values represent distances on land, negative

values distance on water .. 58

Fig. 4.7 Refinement stripe representation for L2, L3 and L4. .. 59

Fig. 4.8 Distance Refining Process Indian Ocean Domain using refinement stripe. Total 7

levels, highest resolution 50 m. .. 63

Fig. 4.9 SAT. (A): Two non intersecting convex polygons; (b) Projection of the non

intersecting polygons [86]. ... 65

Fig. 4.10 Focal refinement proof of concept. (a): 5 level refinement with no FA; (b): 5 level

refinement with FA represented by a circular shape. .. 66

xi

Fig. 4.11 Focal areas used in this work. a) Mozambique; b) Sri Lanka; c) Comoros; d)

Seychelles ... 67

Fig. 4.12 Inland dry block removal cases allowed and not allowed 68

Fig. 4.13 Mesh Refinement for Indian Ocean Domain with 4 Focal Areas: Mozambique,

Comoros, Seychelles and Sri Lanka. .. 69

Fig. 4.14 Cell coarsening, averaging down ... 70

Fig. 4.15 Halo update for neighboring blocks; blue block at level l, orange block at level 1+1.

 .. 70

Fig. 4.16 Halo interpolation stencil for the four edges: north, east (a) and west, south (b) 71

Fig. 4.17 GEBCO bathymetry and topography for the Indian Ocean domain 73

Fig. 4.18 Additional bathymetry databases for replacement with higher accuracy by RIMES.

Light-gray shaded areas represent 150m resolution, dark shaded areas represent 50m

resolution. (a) Mozambique, (b) Comoros, (c) Seychelles, (d) Sri Lanka 73

Fig. 4.19 Single-point peak bathymetry example ... 74

Fig. 5.1 nVIDIA Tesla K40C GPU used in this research, 2880 CUDA cores 76

Fig. 5.2 CUDA Memory Model .. 77

Fig. 5.3 Programming Model. Grid, Blocks, Threads hierarchy representation 78

Fig. 5.4 CUDA blocks and threads diagram for the SSWE Kernel. Top: threads configuration

per block; Bottom left: X and Y block configuration; Bottom right: Z block configuration 82

Fig. 5.5 Mesh blocks colored by kernel type. Red: Wet; Green: Wall; Blue: Inundation. Top:

zoom over Sri Lanka FA ... 85

Fig. 5.6 Number of blocks per type .. 86

Fig. 5.7 Application of the Hilbert orientation tables to obtain the SFC after refinement .. 88

Fig. 5.8 Hilbert Space Filling Curve tests on domains with different geometry, refined levels

and large number of blocks. It can be seen that the SFC (line in blue) traces all blocks exactly

once. .. 89

Fig. 5.9 Hilbert Space Filling Curve for Indian Ocean Domain ... 90

Fig. 5.10 Indian Ocean Domain Load Balance on 3 GPUs, each GPU represented by a

different color ... 91

xii

Fig. 5.11 Buffer packaging based on UDP structure ... 93

Fig. 5.12 GPU buffer. Data collected and packed for a single communication 94

Fig. 5.13 TRITON-G computational flow ... 96

Fig. 5.14 Optimization by grouping the output blocks (L7) together 97

Fig. 5.15 Output overlap and optimization using Pipes ... 98

Fig. 5.16 Concept of the Pipe Asynchronous processing by using shared memory 99

Fig. 5.17 TRITON-G Framework ... 100

Fig. 5.18 FA Images generation process .. 100

Fig. 5.19 TRITON-G Optimization, a total of 59.6% speed up was achieved 104

Fig. 5.20 Illustration of the sub-cycling process .. 107

Fig. 5.21 Load Balance example due to the effect of sub-cycling 108

Fig. 5.22 Number of blocks per level before with (orange) an without (blue) sub-cycling 109

Fig. 5.23 Computing breakdown shown in percentage .. 110

Fig. 5.24 A 10-hour Simulation Runtimes .. 111

Fig. 5.25 Computing time required to obtain the first results during simulation 111

Fig. 5.26 A 10 hour simulation runtime comparison with 3 different GPUs 112

Fig. 6.1 Hourly snapshots of the Indonesian 2004 tsunami propagation after the earthquake

simulated by TRITON-G. .. 121

Fig. 6.2 Gauge locations in the Indian Ocean: Male, Gale, Diego Garcia, Colombo and Point

Le Rue. .. 122

Fig. 6.3 Comparison of arrival times Diego Garcia tide gauge vs TRITON-G 123

Fig. 6.4 Comparison of arrival times Male tide gauge vs TRITON-G 124

Fig. 6.5 Comparison of arrival times Gan tide gauge vs TRITON-G 125

Fig. 6.6 Comparison of arrival times Colombo for tide gauge, TRITON-G, RIMES 125

Fig. 6.7 Comparison of arrival times Point La Rue tide gauge vs TRITON-G 126

Fig. 6.8 Hambantota Inundation Map, Sri Lanka FA .. 129

Fig. 6.9 Inundation comparison Hambantota, Sri Lanka; RIMES (left) vs TRITON-G (right)

 .. 130

xiii

Fig. 6.10 Hambantota, Sri Lanka; left: maximum wave height; right: maximum wave velocity

 .. 131

Fig. 6.11 Seychelles FA, left: maximum arrivale wave; right: inundation map 132

Fig. 6.12 Comoros FA, left: maximum arrivale wave; right: inundation map 133

Fig. 6.13 Phuket Inundation: left bathymetry databases used; right: zoom on Kamala and

Patong ... 134

Fig. 6.14 Kamala and Patong maximum inundation map TRITON-G 134

Fig. 6.15 Kamala inundation map comparison. Left: Suppasri et.al. [101]; right: TRITON-

G ... 135

Fig. A.1 Tsunami Simulation running on Terrain II. Increments of aprox.1min shown 144

Fig. A.2 Japan Tohoku Region study case, SRTM and ETOPO merged Bathymetry [103]

 .. 145

xv

List of Tables

Table 5.1 Ordering and orientation tables for the Hilbert SFC in two dimensions 88

Table 5.2 Left: Number of lines and length sent by boundary type. Right: Amount of data

exchanged between processors in the Indian Ocean case (in kB). 93

Table 5.3 RIMES machine for TRITON-G .. 101

Table 5.4 Tesla K40C Main Specifications .. 103

Table 5.5 Maximum dt per level and the resulting sub-cycling number 107

Table A.1 Asynchronous Scalability for 2, 4 and 8 GPUs; Tsubame 1.5 Tesla S1070 145

xvi

xvii

Acronyms

AMR Adaptive Mesh Refinement

BE Boussinesq Equations

BOSZ Boussinesq Model For Ocean And Surf

Zones

CUDA The Compute Unified Device Architecture

DART Deep-Ocean Assessment And Reporting Of

Tsunamis

FA Focal Area

FDM

FLOPS

Finite Difference Methods

Floating-point operations per second

GEBCO General Bathymetric Chart Of The Oceans

GPGPU Graphic Cards For General Purpose

MOC Method Of Characteristics

MOST Method Of Splitting Tsunami

NOAA National Oceanic And Atmospheric

Administration

NPP Nuclear Power Plant

NRA Nuclear Regulatory Agency

NS Navier-Stokes Equations

RIFT Real-Time Inundation Forecasting Of

Tsunamis

RIMES Regional Integrated Multi-Hazard Early

Warning System For Africa And Asia

SAT Separating Axis Theorem

SELFE Semi-Implicit Eulerian-Lagrangian Finite

Elements

xix

SFC Space Filling Curve

SGM Surface Gradient Method

SM Streaming Multiprocessors

SSWE Spherical Shallow Water Equations

SWE

TRITON-G

Shallow Water Equations

Tsunami Refinement and Inundation Real

Time Operational Numerical Model for

GPU

TUNAMI Tohoku University’s Numerical Analysis

Model For Investigation

UDP User Datagram Protocol

xx

Symbols

 mass

 viscous stress tensor

 longitude

 latitude

 rotation of the Earth

 thin film of water

 bed shear stress/friction

a Earth’s radius

f Coriolis

g gravity

p pressure

patm atmospheric pressure

To my mother, whose teachings and support have always been the
most wonderful gifts I have ever gotten, to the memory of my father
and to my sister for her unconditional support.

Nemo vir est qui mundum non reddat meliorem

Introduction

1

Chapter 1. Introduction

七転び八起き

Japanese Proverb

1.1 General Introduction

Natural forces in the Earth make it a place in constant change. The face of the Earth is

continuously being shaped by the natural elements it experiences. These forces however, can

represent a potential threat to living due to the extraordinary phenomena they represent.

These natural disasters such as landslides, hurricanes, volcanic eruptions, earthquakes and

tsunamis are factors inherit to Earth and appropriate study and research must be done in order

to understand them, prepare and when possible, forecast.

Earthquakes represent one of the most common natural disasters that countries

experience. Particularly, countries that lie along the Earth’s tectonic plates interfaces and

faults, experience constant earthquakes due to their natural movement. The earthquakes

produced by these faults vary in magnitude, from non-noticeable to large scale and powerful

ones. The Pacific Rim along the Pacific Ocean, where Japan lies, is one of the most active

and destructive tectonic plates in the World. The Java trench, in the Indian Ocean represent

another very active and highly dangerous fault.

When the epicenter of the earthquakes are submarine there is a potential threat of

generating a tsunami. The sudden displacement of large amounts of water due to the fault

Introduction

2

fracture or subduction can trigger a wave carrying this energy along the ocean. When this

wave reaches the coast its amplitude increases and produces an inundation in land. The long-

wave nature of tsunami waves make them particularly difficult to track; tsunami can be

wavelengths in excess of hundreds of kilometers. Such long-wave makes the amplitude of

the tsunami barely noticeable at sight when traveling in the open ocean. The magnitude a

tsunami hit a coast with depends on various factors, the type and magnitude of the earthquake

and fault characteristics. Also the coastal shapes may amplify or diminish the effect of the

arrival wave.

In December 2004, in the coastal city of Aceh Indonesia a powerful earthquake of

magnitude 9.0 stroke the country with great destruction and was followed by a destructive

tsunami that produced damaged not only locally in Indonesia but affected neighbors countries

as well as countries as far as Seychelles.

Fig. 1.1 Tohoku Tsunami 2011, Japan. Left: Before and after at the Fukushima Daiichi NPP; Right: Nuclear
disaster summarized (Credit left: Earth Imaging Journal; Credit right: AFP)

Then, in 2011 Japan itself experienced the effects of a devastating earthquake followed

by a no less powerful tsunami. In March 2011, 400 km off the Tohoku coast in Japan, a large

earthquake magnitude 8.9 caused devastation in the region. Infrastructure was damaged or

destroyed, tens of thousands of human lives were lost within minutes. However, this tragedy

Introduction

3

was followed a powerful tsunami generated by the fault rupture. A nearly 400km-long piece

of the fault broke and triggered a tsunami that spread along the Pacific Ocean. Due to the

closeness of Japan to the epicenter the first waves took less than an hour to hit the coasts.

Wave height of above 30 meters were reported to hit coasts along the Tohoku region.

Particularly around half an hour after the earthquake main event, the tsunami wave reached

the coasts of Fukushima. Along the destruction on port areas, the wave hit nuclear power

plants (NPP) located there. Fukushima Daiichi NPP run by Tokyo Electric Company,

TEPCO was hit with waves of over 30 meter high. This tsunami inundated the coast and

flooded the NPP producing a temporary loss of electric power which disabled the reactor’s

coolant (see Fig. 1.1). The effect of this was an overheating of the nuclear fuel, which produce

partial and total meltdown in the reactor’s cores. The nuclear accident that followed produced

the evacuation of thousands of people living in a radius of 40-km around the NPP. Even

today, more than half a decade later the consequences of this accident are still present and

affecting the lives of people.

The silver lighting behind this tragedy is the understanding and extreme care that should

be taken when designing a NPP. Safety must be the first concern and preparation to natural

disasters such as tsunamis is the first priority. In 2013 the Japanese Nuclear Regulatory

Agency (NRA) introduced new stricter regulation on the design of NPP, specifically they

announced their objective to [1]:

“(ii) Significantly enhance design basis and strengthen protective measures against

natural phenomena which may lead to common cause failure.

Strict evaluation of earthquakes, tsunamis, volcanic eruptions, tornadoes and forest fires:

countermeasures against tsunami inundation and due consideration to ensure diversity and

independence.”

Therefore, today more than never the existence of an accurate and reliable way to forecast

and simulate the effects of tsunamis has become of extremely importance. As it can be seen

Introduction

4

in Fig. 1.2 the design of the Fukushima NPP included potential inundation that under-

estimated the real threat of a major tsunami inundation.

Fig. 1.2 Elevations and locations of structures and components at the Fukushima Dainichi NPP [2]

Hence the importance of developing a tsunami forecasting tool that can serve as a

forecasting inundation warning tool and also potentially used to help design better NPP

infrastructure by simulating extreme tsunami scenarios.

However this kind of complex modeling is very computational demanding and take long

time to produce results using traditional programming. Until recently the creation of this kind

of tool required to implement simplifications in model to allow for a faster computation. Or,

on the other hand, utilize more complex models at the expense of large computing times.

Using traditional CPU programming represented a limit in the possibilities for forecasting.

However this changed when in the 2000s nVIDIA introduced their CUDA, language

extension, to program their graphic cards for scientific purposes. This disruptive technology

of GPGPU computing has taken off in the last years and proven to be a game changer not

just in the field of CFD but also in finance, artificial intelligence, data mining, deep learning

and more. Due to the nature of parallel computing for graphics, GPUs evolved with hundreds

and thousands of cores more than CPUs. These dedicated cores to exclusively compute, is

what put GPGPU in a different level, providing outstanding performance and speed. Fig. 1.4

shows an enlightening chart where the advantages of using GPU are appreciated by the much

higher floating-point performance than that of traditional CPUs. Currently nVIDIA’s Tesla

P100 card represents the latest and most powerful of this technology: Pascal; it achieves a

staggering peak performance of 9.3 TeraFLOPS, contains 3584 cores and 16 GB of memory.

This single card can turn a simple machine into a small supercomputer.

Fig. 1.3 Elevations and locations of structures and components at the Fukushima Dainichi NPP [2]

Introduction

5

Fig. 1.4 Floating-Point operations per second for CPU and GPU [3]

By applying this GPGPU technology to the tsunami simulation model, a forecasting can

be produced that, not only provides high accuracy by solving non-linear models but also

delivers high speed. Just like the Japanese proverb that opens this work reads, Fall seven

times, stand up eight, the tragedies generated by the destructive tsunamis should not offer

discourage and despair but instead should offer an opportunity to stand up again, learn the

lessons and improve every time with the latest knowledge and technology available.

1.2 Tsunami-genesis and History

Tsunamis can be generated by landslide, meteorites or earthquakes. The latter case

being the most common one. As in seen in Fig. 1.5 when an earthquake occurs on the marine

platform a water displacement can be cause in the ocean surface that travels as a long wave

spreading in all directions until reaches a coast or the energy dissipates.

Introduction

6

Fig. 1.5 Tsunami Generation by marine earthquake (©NOAA)

Since the energy from the earthquake is transmitted in the tsunami as this moving wave,

it actually can travel far distances without much dissipation. A strong earthquake could have

the effect of producing trans-oceanic tsunamis. The speed at which the tsunami travels is

proportional to the water depth, the deeper is faster it moves; the average traveling speed is

about 800 km/h, which is comparable to that of a commercial jet airplane.

In order to understand the existence of tsunami damage in human civilization and the

effects they have, a brief survey of historical tsunamis is presented with some details about

them; the event are ordered chronologically and represent another proof of the importance of

understanding and prediction such events.

Tsunami from the Storegga landslide

Tsunami deposits found in Scotland, Iceland and Norway have been inferred to be from an

event called the Storegga slide ([4], [5]). Considered the largest submarine landslide to be

mapped, and found in the Norweigian Sea, it has been observed to have taken place three

times: at 30-50 ka, and 6-8 ka twice, at a total volume of 5.6 x 103 km3 [6].

Introduction

7

Hokkaido tsunami (17th century)

Prehistoric sand sheets on the Pacific coast of Hokkaido extending to as much as 3km inland

show that the tsunamis produced in the Southern Kuril trench were larger than those recorded

in the last few centuries. Best explained by earthquakes rupturing at multiple segments of the

Kuril subduction zone, these tsunamis had large inundation area and long recurrence interval

averaging about 500 years; the most recent one occurring in the 17th century. Some of the

recent tsunamis recorded there, like the ones from the 1952-2003 Tokachi-oki or the 1894-

1973 Nemuro-oki earthquakes (Mw~8) only penetrated less than 1km from the coast [7].

Cascadia tsunami (1700)

Along the Cascadia subduction zone, geological and historical studies have unearthed

evidence of a prehistoric earthquake [8]. The size and date of this earthquake can be inferred

to be Mw = 8.7-9.2 and January 26, 1700, based on historical records in Japan that show a

tsunami that struck the Pacific coasts with heights of 1-5m, as well as tsunami deposits found

around the Pacific Northwest and geological and tree-ring evidence that show that a

coseismic subsidence occurred some 300 years ago and generated a strong tsunami ([9],

[10]).

1883 Krakatoa tsunami

The largest volcanic eruption recorded in human history was the 1883 eruption in Krakatoa,

Indonesia. The northern part of the island was replaced by a 270m deep caldera; the sounds

waves from the eruption were heard more than 4000km across the Indian Ocean. The

tsunamis generated took over 34,000 lives and decimated coastal villages ([11], [12]). Along

the Sunda Straight, the maximum tsunami height was measured at about 15m, and tide gauges

were disturbed as far as India, New Zealand, and San Francisco; the farther locations

interpreted as a combination of sea waves and air waves from the eruption ([13], [14]).

Introduction

8

1896 Sanriku tsunami

Fig. 1.6 Classical representation of the 1896 Sanriku Tsunami, Japan

The tsunami in 1896 (Fig. 1.6) that devastated the Sanriku coast of Japan and was unusual in

the way it was generated. In what is known as a "tsunami earthquake", the Sanriku earthquake

was not great in size (Ms = 7.2) and was weak, only 2-3 in the Japanese intensity scale (IV-V

on modified Mercalli scale), but resulted in 22,000 casualties, the worst tsunami hazard in

Japan in the last few centuries. The run up height was >10m for 200km of Sanriku coast

([15], [16]).

1946 Aleutian tsunami

On the morning of April 1, 1946, an earthquake with a surface wave magnitude Ms of 7.4

generated massive tsunamis that hit the Aleutians and traveled south through the pacific

ocean to the Hawaiian Islands [15]. It took 159 lives and demolished the Scotch Cap

lighthouse, which was situated on a 10m cliff in Unimak Island, 100 km from the epicenter.

A Pacific tsunami warning system was introduced shortly thereafter [17].

Introduction

9

1958 Lituya Bay tsunami

A strike-slip earthquake (Mw=7.9) on July 10 1958 in Lituya Bay, Alaska, triggered a rock

slide (700-900m wide, 1000m long, 90m thick, or the total volume of 3x107m3) [17] that

generated water waves that surged up the opposite slope and stripped trees as high up as

520m in altitude [18]. This event is the largest water run-up recorded, and is not considered

a typical tsunami because the waves were contained within the bay.

1960 Chilean tsunami

On May 22, 1960, the largest (Mw=9.5) earthquake of the 20th century occurred off the

southern shore of Chile [19], the resulting tsunami destroying the Chilean coast and killing

more than 1000 people before propagating across the Pacific. In 15 hours, it hit the Hawaiian

Islands, taking 61 lives, and reached Japan after about 23 hours, causing 142 more deaths.

The bathymetry in the Pacific Ocean and the sphericity of the Earth had a focusing and

resonance effect, where the energy was focused towards Japan, producing a large tsunami

(~5m). This led to the forming of an international tsunami warning system in the Pacific [20].

1993 Hokkaido tsunami

The Southwest Hokkaido earthquake on July 12 1993 (Mw=7.8) caused a tsunami to hit

Okushima Island in the Japan Sea. Around the island, the tsunami reached heights of 5-10m,

resulting in more than 200 casualties, while near the valley; the maximum run-up was more

than 30m. To reproduce the measured heights of the tsunami, recorded waveforms on tide

gauges, and seismic and geodetic data, numerical computations of the tsunamis were made

([21], [22]).

Introduction

10

1998 Papua New Guinea tsunami

Tsunami heights from an earthquake (Mw=7.1) along the coast of New Guinea Island on July

17, 1998 were as high as 15m around Sissano Lagoon, near the epicenter, causing a reported

death toll of more than 2000. Marine surveys conducted after the tsunami showed bathymetry

features that focused the tsunami's energy towards the lagoon and possible sources of

submarine landslide. A local effect of the this tsunami is supported by the fact that the large

tsunami was limited to a small region (~40km) and tide gauges around Japan reported

amplitudes of < 10cm [23]. To reproduce the heights from this tsunami, numerical

simulations reveal that another source, possibly from submarine landslides, is needed in

addition to the earthquake fault motion ([24], [25]).

2000s Tsunamis

The turn of the 21st century showed us the reality of the terrible and devastating damage

and death that Tsunamis can cause as never before. In 2004 a massive earthquake of

magnitude 9.0 on the Richter scale [26], off Sumatra Island triggered a tsunami with deadly

consequences (Fig. 1.7).

 (a) Image collected June 23, 2004 (b) Image collected December 28, 2004

Fig. 1.7 Before (a) and after (b) satellite images of the effects of the Dec 26th 2004 Tsunami Banda
Aceh Shore, Indonesia. (Credit: DigitalGlobe)

Introduction

11

According to the World Health Organization the death toll for these events exceeds

200,000 people [27] and includes several countries spread along the Indian Ocean.

Not much later in 2011 a tsunami triggered by a M9.0 earthquake [28] on the east coast

of Japan produced in the Tohoku region yet another disaster (Fig. 1.8). This time over 15,000

people died from these events and the destruction generated was massive in port and city

infrastructure, housing, tele-communications [29] and the subsequent nuclear crisis due to

the tsunami-induced damage of several reactors in a power plant [30].

Fig. 1.8 Tohoku Tsunami wave overflows barrier in Miyako, Iwate Prefecture, Japan 2011 (Credit: Reuters)

1.3 Operational Tsunami Simulators Survey

In order to understand the efforts made to produce tsunami models and their current state,

a survey is presented with the most relevant operational programs.

For several decades efforts have been made to develop such models for tsunami

generation and propagation using different governing equations, numerical methods, mesh

grids as well as wet-dry algorithms to estimate the run-up. In general these efforts can be

grouped in depth-average, hydrostatic or non-hydrostatic long wave equations.

Introduction

12

Models for the shallow water equations (SWE) started by solving their linear form based

on finite difference methods (FDM) taking after the work of Hansen [31] and Fischer [32] in

the 1950s. A more recent review of these methods can be found in the publication by Kowalik

[33] and Imamura [34]. From these first steps came the tsunami propagation model known

as TUNAMI (Tohoku University’s Numerical Analysis Model for Investigation) [35] which

solved the shallow water equations in a non-linear form instead, formulated in a flux-

conservative way for mass conservation and also introduced a discharge computation [34]

for the elevation near the shoreline. In a very similar manner the ALASKA-tectonic and

Landslide models (GI’-T) (GI’-L) were introduced, these also solved the non-linear shallow

water and used leapfrog FDM as TUNAMI [36]. Continuing the approach of solving the non-

linear SWE came MOST (Method of Splitting Tsunami) [37], an extensively used model for

tsunami simulation, it tried to incorporate the effect of dispersion on the simulation [38], also

it was original by introducing a function to add points in the shoreline to keep better track. A

more recent tsunami model in the group of non-linear SWE is GeoClaw, it implemented a

unique approach to deal with the issue of transferring fluid kinematic throughout nested grids

by refining specified cells during the simulation thus solving better in those areas [39]. More

recent models incorporate a real-time application such as RIFT (Real-Time Inundation

Forecasting of Tsunamis) [40]. Like several of the previous models a Leap-Frog scheme is

also used for these real-time models, also a linear SWE is implemented to save computing

time. Another recent real-time model is EasyWave [41] which also employs linear

approximations for speed up and leap-frog scheme as its numerical scheme. Additionally the

latest version of EasyWave introduced GPU acceleration for solving parts of the existing

CPU code and on single precision.

These mentioned models can be classified as hydrostatic, however assuming a hydrostatic

pressure implies also nondispersive models which can limit the outcome and modeling in

certain cases such as tsunamis generated from an underwater landslide or small faults, which

generate smaller wave lengths. In order to include this effect since the 1990s some models

took the direction of solving the depth-integrated Boussinesq equations (BE) instead of the

SWE for tsunami propagation. The initial efforts considered a weak nonlinear model [42]

Introduction

13

however, models for the nonlinear equations were also developed not long after, for instance

Nwogu et. al. [43], Lynett et. al. [44]. Solving the Boussinesq equation is, in general, more

computationally demanding than solving the SWE hence in order to reduce the computational

time some techniques have been used such using parallel clusters or introducing nested-grids.

An example of this implementation is FUNWAVE-TVD [45] which is an extended version

of FUNWAVE, a run-up and propagation model based on fully nonlinear and dispersive

Boussinesq equations [46]. FUNWAVE also introduced a nested grid method for solving the

equations and its later version has been fully parallelized using MPI-FORTRAN. Another

example of BE models is BOSZ (Boussinesq Model for Ocean and Surf Zones [47]), this

model combines the dispersive effect from the BE with the shock capturing ability of the

nonlinear SWE; BOSZ is mainly used for near-shore simulation since is based on Cartesian

coordinates and thus not suited for large areas, also it does not implement nested grids.

A variant on how to approach the tsunami models has been to solve the problem in three

dimensions. Along these lines SELFE (Semi-Implicit Eulerian-Lagrangian Finite Elements)

[48] is a well-known model which solves the 3D Navier-Stokes equations (NS) using an

unstructured grid, however when used for tsunami simulation it is usually configured as a 2D

solver for faster computation. Other full 3D models can be found in Abadie et. al. [49] and

Horrillo et. al. [50]. Although these models tend to capture difficult coastlines very well and

can include multiple fluids or even materials, the computation cost is still so great that make

it possible only to apply them effectively in small areas, as opposed to transoceanic

propagations. An approach to deal with the high computational cost has been to implement

a hybrid system, incorporating a 3D NV model with hydrostatic or non-hydrostatic models,

an example of this hybrid modeling is THETIS [51] which uses the 3D NV to solve the

complex source area or landslide and then interpolates the propagation into a 2D non-linear

SWE or BE model for better efficiency.

Introduction

14

1.4 Motivation, Innovation and Objectives

The past tsunami events and specially the recent ones in Japan and Indonesia are the main

motivation to find a fresh and new approach for tsunami modeling, that, while it retains a

high degree of the complexities of the physics involved, it still delivers a fast and accurate

simulation for early warning forecasting. Also, the existence of GPU cards to drastically

speed-up simulations motivates us to develop this model as a full-GPU program to take full

advantage of the outstanding performance of GPGPU.

Furthermore, the Indian 2004 tsunami disaster created not only worldwide awareness

about this natural threat but also helped to develop and improve disaster prevention efforts.

A great example of this is the Regional Integrated Multi-Hazard Early Warning System for

Africa and Asia RIMES [52], established in 2009 and formed by several country members in

that region and based in Thailand. Following their aim to “provide regional early warning

services and build capacity […] in the end-to-end early warning of tsunami […] hazards”,

RIMES has a constant interest in improving their tsunami forecasting tools. Moreover, we

are motivated by the opportunity to collaborate with RIMES in their latest project to develop

this work for their specific needs and resources, and produce an operational tool suitable to

replace their previous tsunami forecasting program.

The main innovation of this work is to push the envelope of speed by implementing a full

operational tsunami model on multi-GPU for fast computation, with high accuracy in a large

domain. Also, the customization of tree-based refinement to this specific work to generate a

mesh that can identify and track complex coast shapes, generate high resolution, and still use

computational resources efficiently.

Hence, our main objective is to produce a robust program that delivers accurate results

and computational speed and that can be used as operational model. The major purpose is to

apply this simulator to tsunamis for wide area and long distance propagation from the focal

spot. In this kind of long distance simulations, like the tsunami event of Tohoku 2011 or

Introduction

15

Indonesia 2004, the effect of the accuracy of the initial fault become weak; due to the

collaboration with RIMES we chose the latter as a study case for this work.

Furthermore, in order to achieve high performance and short computational time, this

program is developed for full GPU implementation and expanded to Multi-GPU for further

acceleration.

A second objective is to implement the Method of Characteristics and a 3rd Order Semi-

Lagrangian numerical scheme to solve the non-linear shallow water equations, allowing high

accuracy. With this also unwanted effects of numerical dispersion and diffusion are

minimized. A corollary to this objective is the smooth and correct integration of Cartesian

and Spherical versions of the shallow water equations.

Another important objective is to generate a domain mesh that utilizes memory and

computational resources efficiently. A customized refinement is needed that can track

complex coast shapes and focuses on specific areas of interest. Also the customization of the

refinement is necessary to fine-tune the generated mesh to the specific needs and

computational resources of RIMES.

Finally there is the goal to develop a program that while robust is also flexible for

different settings and parameters. More importantly that this flexibility also provides

reliability for operation use. For reference herein after this program is named TRITON-G,

acronym for Tsunami Refinement and Inundation Operational Numerical Model for GPU.

1.5 Work Outline

The thesis is organized as follows: a review of the governing equations is given in chapter

2. A deduction of the shallow water equations is outlined and then the extension to spherical

coordinates is presented.

Introduction

16

The numerical method and boundaries are explained in section 3. The method of

characteristics is used to solve hyperbolic systems, first it is demonstrated that the shallow

water equations are hyperbolic and then the method of characteristics applied to solve them

is explained. The cubic interpolation used in the characteristics is also presented.

In section 4 a description of the domain mesh refinement is presented. The tree-based

refinement briefly explain and then its customizations for our specific program are explained.

Details about the domain topography and bathymetry used are also described.

GPU and parallel computing is covered in section 5. The way to implement the numerical

simulation is explained. The type of kernels used are also detailed. Multi-GPU and its load

balance is outlined and the chapter finishes by presenting results of performance.

In chapter 6 several results are presented including model validation with existing

tsunami propagation data and run-up measurements. Hindcast for the Indonesia 2004

Tsunami is studied.

The thesis finishes with Chapter 7 which summarizes the research done and presents
its conclusions.

Governing Equations

17

Chapter 2. Governing Equations

In order to model the tsunami propagation and run-up the Non-Linear Shallow Water

Equations are used. Since the inundation areas of interest are considered small scale

consisting of a few kilometers, the SWE in Cartesian coordinates are chosen. On the contrary,

for the rest of the domain the SWE in Spherical Coordinates (SSWE) are used instead to take

into account the spherical shape of the Earth and to include effects such as Coriolis forces.

Here we present the derivation of the SWE starting from the conservation principles and then

extend to the SSWE.

2.1 Conservation Principles

For a compressive material the conservation laws in a differential conservation law form

for mass and momentum are:

 () 0t V   (2.1)

 () []V V V pl g
t
  

     


 (2.2)

where the mass is in  and the momentum V . The independent variables are: time t and

x,y,z for the space. The dependant variables are  for density, velocity (, ,)V u v w , pressure

p, g is the gravity and the tensors:

Governing Equations

18

2

2

2

v uv vw

V V vu v vw

wv wv w

 
    

 

 (2.3)

xx xy xz

yx yy yz

zx zy zz

  
  
  

 
 

   
 
 

 (2.4)

the  stands for the viscous stress tensor. The conservation equations are written in their

components as follows:

1

2

3

() 0

1

1

1

t x y z x y z

t x y z x

t x y z y

t x y z z

u v w u v w

u uu vu wu p g

v uv vv wv p g

w uw vw ww p g

    







      

    

    

    

 (2.5)

2.2 Free Surface

A surface in a three-dimensional domain is assumed to be under the effect of gravity. The x-

y coordinates defines the horizontal plane and z the vertical direction or the associated

elevation of the free surface. A sketch of this description can be seen in Fig. 2.1

Governing Equations

19

Fig. 2.1 Free Surface model. h: water depth; z: bathymetry; H: constant level

There are some boundaries to consider. First a function b(x,y) is defined as the bottom

boundary, referred also as bed, as follows:

 (,)z b x y (2.6)

Then, the free surface is defined by:

 (, ,) (,) (, ,)z s x y t b x y h x y t   (2.7)

where h(x,y,t) is the water height, defined as the distance between the water surface and the

bed.

If a constant density is assumed and the gravity g is taken as g = (0,0,-g) with a constant

value of g=9.8m/s2 , then the conservation equations (2.5) can be simplified to:

 0x y zu v w   (2.8)

1

t x y z xu uu vu wu p


     (2.9)

1

t x y z yv uv vv wv p


     (2.10)

1

t x y z zw uw vw ww p g


      (2.11)

Governing Equations

20

With given initial and boundary conditions this set of equations can be solved for the four

unknowns: p, u, v, w. However, solve it directly this way is considerable computationally

demanding. A way to determine the boundary condition to find the solution is to assume the

depth of the water to be small with respect to the wave length. This give the advantage to

lead to nonlinear initial value problems analogous to those associated with wave propagation

in compressible materials [53].

To obtain the shallow water equations first the boundary conditions for the general

problem are studied. For the surface assume that the condition is given by:

 (, , ,) 0x y z t  (2.12)

For the free surface then:

 (, , ,) (, ,) 0x y z t z s x y t    (2.13)

and for the bottom boundary:

 (, , ,) (,) 0x y z t z b x y    (2.14)

Finally a kinematic and dynamical condition are assumed on the surface, respectively:

 (, ,) 0
D

x y t
Dt

  (2.15)

 (,)(, , ,) 0z s x y atmp x y z t p   (2.16)

where patm is the atmospheric pressure, taken for convenience as zero.

2.3 Cartesian Coordinates

The SWE can be derived from the previous assumptions; this derivations follows the

detailed explanation also found in Toro E. [54]. The SWE in Cartesian coordinates can be

obtained following these steps. First, the vertical component of the acceleration is assumed

Governing Equations

21

negligible, which is a reasonable assumption considering that waves moves along the surface

mainly horizontal for our purposes. Inserting this condition, dw/dt=0 , in equation (2.11)

gives:

 zp g (2.17)

 f (2.18)

By using the dynamical condition (2.16) we obtain:

 ()p g s z  (2.19)

Taking the derivate of this expression with respect to x and y gives:

 , x x y yp gs p gs   (2.20)

since both are independent of z then the x and y components of the acceleration of the water

particles du/dt and dv/dt are also independent of z. Next, these two expressions are replaced

in (2.9) and (2.10) to obtain:

 t x y z xu uu vu wu gs    (2.21)

 t x y z yv uv vv wv gs    (2.22)

The next step requires integrating the continuity equation (2.8) along z, from the bottom to

the free surface, as follows:

 () 0
s

x y z

b

u v w dz   (2.23)

 0
s s

z s z b x y

b b

w w u dz v dz      (2.24)

In order to find the first two terms of this last equations the boundary conditions assumed in

the previous section are used. By applying condition (2.15) to (2.13) and (2.14) w can be

determined, thus:

Governing Equations

22

 () 0 ()t x y z s z s t x y z ss us vs w w s us vs          (2.25)

 () 0 ()x y z b z b x y z bub vb w w ub vb        (2.26)

In turn, these values for w can be inserted back in (2.24) which gives:

 () () 0
s s

t x y z s x y z b x y

b b

s us vs ub vb u dz v dz         (2.27)

To solve the last two terms of this equations, the Leibniz’s formula:

() ()

() ()

() ()
(,) (, ()) (, ())

b x b x

a x a x

d f db x da x
f x y dy dy f x b x f x a x

dx x dx dx


  

  (2.28)

is applied to obtain:

s s

x z s x z b x

b b

u dz udz u s u b
x  


    
  (2.29)

s s

y z s y z b y

b b

v dz vdz v s u b
y  


    
  (2.30)

These two equations are now used in (2.27) and after simplifications the following expression

is found:

 0
s s

t

b b

s udz vdz
x y

 
  
   (2.31)

According to the definitions given in the previous we know that u and v do not depend of

z; also we know that s=b+h and bt=0. By using this in equation (2.31) can be finally written

as:

    () () 0
h

u s b v s b
t x y

  
    

  
 (2.32)

 () () 0t x yh hu hv    (2.33)

Governing Equations

23

This equation is the law of conservation of mass in its differential conservation law form.

To obtain similar equations for the momentum the next procedure is followed. First, equation

(2.33) is multiplied by u and (2.21) by h, then added, and after simplification we get:

 2() () 2t y x x x xhu huv u h uhu ghh ghz      (2.34)

Finally, assuming h is differentiable such that 21

2

h
h h

x x

        
 then the last equation

simplifies to:

 2 21
() () ()

2t x y xhu hu gh huv ghz     (2.35)

Similarly for the momentum in y:

 2 21
() () ()

2t y x yhv hv gh huv ghz     (2.36)

These last two equations together with (2.33) are known as the non-linear SWE.

Furthermore, these equations can be written in conservative form as:

 () () ()t x yU F U G U S U   (2.37)

with:

 2 2

2 2

0

1
U () () ()

2
1

2

x

y

hu
h hv

z
hu F U hu gh G U hvu S U gh

x
hv huv zhv gh

gh
y





 
                                                 

where U represents the vector of conserved variables, h is the water depth, hu and hv represent

the momentum, u and v are the fluid velocities in the x and y direction respectively, F and G

represent fluxes and S represents a source vector that can include terms like the effect of bed

slope (bathymetry z), bed shear stress (friction).

Governing Equations

24

A numerical scheme is regarded as well-balanced or satisfying the C-property [55] if it

preserves steady states at rest, for instance, the undisturbed surface of lake. When the fluid

is at rest u(x,t)=0 then H(x,t)=h(x,t)+z(x) represents a steady state that should hold in time

and not produce spurious oscillations [56]. When source terms that depend on geometry are

introduced in the equations, the gradient in the conserved variables incorporates a geometry

term that does not vanish under steady-state conditions. In order to guarantee a well-balanced

scheme an additional change in equations (2.37) is introduced by expressing them in terms

of a constant water level H; this way it is possible to compute accurately steady state. The

result of substituting H for the one dimensional x-direction case of h and hu is:

0
h hu

t x

H Hu zu

t x x

 
 

 

  
 

  

 (2.38)

and

2 2

2 2

1

2

1

2

hu z
hu gh gh

t x x

Hu zu
Hu gH u

t x x

          

         

 (2.39)

respectively. The equivalent symmetrical result for y-direction can be readily found in the

same fashion.

Governing Equations

25

2.4 Spherical Coordinates

In order to approximate the Earth’s surface the non-linear shallow water equations are

solved on the sphere, referred to as Spherical Shallow Water Equations (SSWE). Fig. 2.2

shows the definition of longitude  and latitude on the sphere. By using this coordinate

system not only the effect of the Earth’s curvature on the propagation is included but also

forces generated by its rotation i.e. Coriolis. Also the non-linear equations are more adequate

to describe the flow motion in coastal areas where the wave length of the incident tsunami

becomes shorter and the amplitude becomes larger as the leading wave of the tsunami

propagates into shallow waters.

Fig. 2.2 Spherical Coordinates,  latitude,  longitude

If the earth’s radius is a, then the linear dimension of a region of the sphere are given by:

 cos x a x a         (2.40)

 Hence the non-linear SWE ([57], [58]) on the sphere can be written as the following set of

equations:

Governing Equations

26

cos
0

cos

tan 0
cos

tan 0

h h u v
V h

t a

u u g z
V u f v

t a a

v u g z
V v f u

t a a


  


 




           
          
          

 (2.41)

Moreover, the set of equations (2.41) can be re-written for the vector of conserved

variables U in (2.37) as:

2 2

2
2 2

1 1
() () tan 0,

cos

1 1
tan

cos 2

(tan) 0,
cos

1 1
tan

cos 2

(tan) 0

h hv
hu hv

t a a a

hu g huv huv
hu h

t a a a

u gh z
f hv

a a

hv hvu g hv
hv h

t a a a

u gh z
f hu

a a






  


  

 
 


  

 


  
   

  

          


    


            


    


 (2.42)

where f stands for the Coriolis force, defined as:

 2 sinf   (2.43)

and  is the rotation of the Earth. The parameters used in this work are:

Governing Equations

27

6

-5 -1

-1

a=6.37122x10 []

Ω=7.292x10 [s]

g=9.80616 [ms]

m

 (2.44)

It is worth noting that besides the additional new terms due to the spherical setting that

correspond to the source term in equations (2.42), there is still a high similarity with the

Cartesian SWE multiplied by a factor either 1/acos or 1/a. Also this quasi symmetry

between latitude and longitude equations will prove useful in the kernel optimizations.

Numerical Methods and Boundary Conditions

29

Chapter 3. Numerical Methods and Boundary Conditions

Computational Fluid Dynamics or CFD is a branch of science that by using the aid of

computers, studies the behavior of fluid-flow problems based on the physical governing

equations. The solution is usually focus on variables such as heights, velocity or pressure in

particular parts of the domain, or in some cases in the overall behavior.

Due to the complexity of the equations involved in these kind of problems it is not often

that an analytic solution can be found, perhaps only for the simplified cases. Hence numerical

methods have made great progress over the past decades to help find solutions to these

complex problems. For example, finite difference, finite element, finite volume, spectral

methods just to mention the most familiar ones.

When numerical methods are used an accurate solution is sought with minimum error

possible. Because of sources or error during the simulation and in the method, it is important

to benchmark results and study stability and accuracy. These errors may come from

discretization, since the domain is not really the real one but a representation of it in spaced

points; input data errors, due to the fact that it is nearly impossible to work with real

geometries and some simplifications must be made; initial and boundary condition errors,

similar to the previous one because it is difficult to model the real conditions.

CFD provide many advantages for simulation development. It can be produced quickly

and inexpensively due to the decrease of the prices in computing. The results produced are

detailed and comprehensive, readily accessible, something difficult to do when dealing with

real life experiments. Also changing of parameters depending on the user specifications can

be done relatively easy, therefore different cases can be studied with the same framework or

code.

CFD has also the ability to simulate real conditions very accurately. More importantly, it

permits to study unnatural or hazardous events, such as natural disasters (Tsunami,

Numerical Methods and Boundary Conditions

30

Hurricanes), conflagrations, explosions or nuclear plant failures, without having to risk

human lives or investing huge budgets to set an experiment.

3.1 Semi-Lagrangian Method

Although it is possible to carry out, in theory, a prediction in a Lagrangian framework by

following a set of marked parcels, in practice this is not a reasonable alternative because

shear and stretching deformations has the effect to concentrate these parcels in a few regions

therefore it is difficult to keep an uniform resolution along the domain. It is possible to take

advantage of the conservative properties of Lagrangian schemes, while maintaining uniform

resolution by using a semi-Lagrangian method [59]. This form allows relatively long time

steps while retaining numerical stability and high accuracy. In a very simple and introductory

approach this procedure can be illustrated with the one dimensional advection equation. A

more robust and complete method will be applied to the Shallow Water Equations in a next

chapter. Let`s assume we have the one-dimensional advection equation:

 0
f f

u
t x

 
 

 
 (3.1)

According to this equation 2.1 the field f is conserved following the x direction at

speed u. Hence for any grid point we have ix i x  and time st s t  :

 (,) (,)s
i s i sf x t t f x t   (3.2)

where s
ix is the location at time st for the point located at the point ix at the time st t  .

However this point’s position generally speaking does not lie on a grid point exactly, because

of this reason to evaluate the right side of (2.2) requires interpolation from the grid point

values at a time t. When u>0 the position s
ix would be located between the points i px  and

Numerical Methods and Boundary Conditions

31

1i px   where p is the integer part of the measure of the number of grid points traversed in a

timestep: /u t x  . For the sake of this first survey simplicity let’s assume linear

interpolation is used, then:

 1(,) (,) (1) (,)s
i s i p s i p sf x t f x t f x t      (3.3)

with () /s
i p ix x x    . Thus as shown in Figure 2.1 p=1 and to predict u at a point P then

the interpolation must happen between i=1 and i=2, the result is marked in blue.

Fig. 3.1 Time-space Grid for the one-dimensional Advection Equation (2.1). The slope is a characteristic curve

along which u(x,t)=u(0,0) and the blue point shows the interpolated result for the semi-Lagrangian scheme.

The green region shows the domain of dependence of P

In a more realistic model the velocity field is also calculated rather than give as we assumed

here. Thus, for a two-dimensional field:

 (, ,) (, ,)f x y t t f x u t y v t t       (3.4)

Numerical Methods and Boundary Conditions

32

where the velocity components at time t can be used to estimate the fields at t t . If these

are found then they can used to provide a more accurate approximation to (2.4). The right

side of (2.4) is again solved by interpolation, in this case in a two dimensional interpolation.

 It can be appreciated in the grid Fig. 3.1 that the semi-Lagrangian scheme guarantees

that the domain of influence in the numerical solution corresponds to that of the physical

problem. Hence this scheme is computationally stable for time steps much larger than

possible with an explicit Eulerian scheme. Finally the semi-Lagrangian scheme also

preserves the values of conservative properties quite accurately, a very desirable

characteristic since we will be working a conservative scheme.

3.2 Propagation

3.2.1 Hyperbolic system

Let’s express the SWE in the state of conservation laws as:

0,

,
t x x x x

t x x y x

t x y y y

h uh hu vh hv

u uu gh vu gb

v uv gh vy gb

    
    

    

 (3.5)

These equations can be written in a quasi-linear form such as:

 () ()t x yW A W W B W W S   (3.6)

with:

Numerical Methods and Boundary Conditions

33

0

 , () 0

0 0

0 0

() 0 0 ,

0
x

y

h u h

W u A W g u

v u

v h

B W v S gb

g v gb

   
       
      

  
      
      

A system of m conversation laws with Jacobian matrices A(U) and B(U) is said to be

hyperbolic if the matrix C formed by the linear combination of the Jacobian matrices A(U)

and B(U):

 1 2C A B   (3.7)

has m real eigenvalues for any vector U of conserved variables and any vector 1 2[,]   ,

such that 0  . To find these eigenvalues first we construct the C matrix using equation

(3.7):

1 2

2 2
1 2 1 2 2
2 2

1 2 1 1 2

0

() 2

() 2

w w

C a u w uvw uw vw uw

uvw a v w vw uw vw

 
     
     

 (3.8)

where a gh . Then from solving det()C I , where I is the three-dimensional identity

matrix, we find the eigenvalues i of C to be:

1 1 2

2 1 2

3 1 2

uw vw a w

uw vw

uw vw a w





  

 

  

 (3.9)

Since 1 and 2 are defined as real parameters such that:

 2 2
1 2 0w w w   (3.10)

Numerical Methods and Boundary Conditions

34

then it is proven that the eigenvalues (3.9) are all real and hence the system is hyperbolic.

3.2.2 Method of characteristics

In order to compute the propagation of the tsunami, the SSWE (6) are solved using the

Method of Characteristics (MOC). This is a commonly used method in gas dynamics ([60],

[61]) developed in the 1960s, explained in detail by Rusanov [62]. MOC can be applied to

reduce hyperbolic partial differential equations, such as the SSWE, to a family of ordinary

differential equations which in turn can be integrated from a chosen initial value. In general,

it uses the Riemann invariants of a system to find the solution of the set of equations. A

typical approach when using MOC is to introduce a dimensional splitting in the multi-

dimensional equations, in the case of the Cartesian SWE equations (2.38) and (2.39)

represent the directional splitting for the x-direction [63]. To apply the Method of

Characteristics to the SSWE (2.42) first let’s express them in vector form as:

 0
U U U

A B S
t  

  
   

  
 (3.11)

with

2 2

2 2

2

0 1 0
1

2 0 ,
cos

0 0 1
1

 ,

0 2

tan

 (tan) tan
cos

(tan) tan

A u u
a

uv v u

B uv v u
a

v v

hv

a
u huv gh z

S f hv
a a a

u hv gh z
f hu

a a a





 
 

 


 
    
  
 
   
   

 
 
 

      
 

     

Numerical Methods and Boundary Conditions

35

where gh  . As mentioned before, following the directional splitting technique,

equation (3.11) can be expressed as:

 0,
U

S
t


 


 (3.12)

 0,
U U

A
t 

 
 

 
 (3.13)

 0
U U

B
t 

 
 

 
 (3.14)

From these three equations it can be seen that equation (3.12) simply represents the source

term and more importantly that equations (3.13) and (3.14) are in advection form. To find

the solution of these two equations an additional step of diagonalizing the matrix is necessary

in order to find the invariants and characteristics of the equation, a detailed description of

this procedure can be found in Ogata et.al. [64], Stoker [65]. Thus the equations for the

Riemann invariants and their eigenvalues () for are:

 3

1 1
(),

cos cos
u u

a a
 

       (3.15)

 0
2

D u

Dt

     
 

 (3.16)

Similarly for :

 3

1 1
(), v v

a a
 
      (3.17)

 0
2

D v

Dt

     
 

 (3.18)

The following description shows the results for however the solution for can be found

analogously. Equation (3.16) means that the solution at a given grid point i, is determined

Numerical Methods and Boundary Conditions

36

from two characteristics along C  and C  (Fig. 3.2). Thus the result at a time n+1 can be

found from:

 1 1 1
()

2 2
n

i u u            
 

 (3.19)

  1 1
2()

2
n

iu u u          (3.20)

where  and u  are the variables value at a time n, however they might not necessarily lie

on a grid point.

Fig. 3.2 Space-time diagram showing the characteristics C 
. Black dots represent the grid points while the

dotted points represent the values to be interpolated
 , u 

 used to find
1n ,

1nu 
(Diagram based on [66])

Hence we must implement an interpolation in order to find their value and solve (3.19),

(3.20). Following a similar procedure as T. Yabe et.al ([66], [67], [68]) we utilize a cubic-

polynomial approximation F() on the grid profile to find the interpolated values and to

allow for a large time step t . The stencil used to create the polynomial is depicted in Fig.

3.3. Let define F() as:

Numerical Methods and Boundary Conditions

37

Fig. 3.3 Stencil used to create cubic polynomial interpolation

 3 2()F a b c d       (3.21)

thus, four conditions are required to determine the polynomial. It should be noted the use of

the special character a to avoid confusion with the radius of the Earth a. Then, the chosen

conditions are:

1

1

2

()

(0)

()

(2)

i

i

i

i

f F

f F

f F

f F












 



 

  

 (3.22)

Using these conditions a system of four equation with four unknowns can be created and

the solution for the coefficients determined. This system can be readily solved by using

math software like Maple® to obtain for / 0u t 
   :

1 1 2
3

1 1
2

1 1 2

3 3

6
2

2

2 3 6

6

i i i i

i i i

i i i i

i

f f f f
a

f f f
b

f f f f
c

d f







  

 

  

  



 



  








 (3.23)

with 1
()

cos
u u

a 
    for longitude;

1
()u v

a
    and  instead of  for latitude.

Numerical Methods and Boundary Conditions

38

 Similarly for / 0u t 
   :

2 1 1
3

1 1
2

2 1 1

3 3

6
2

2
6 3 2

6

i i i i

i i i

i i i i

i

f f f f
a

f f f
b

f f f f
c

d f







  

 

  

  



 




   







 (3.24)

with 1
()

cos
u u

a 
   for longitude and

1
()u v

a
    ,  for latitude.

 By looking at the similarities between expressions (3.23) and (3.24) it becomes clear

that is possible to create a set of coefficients that include both cases in one. In order to achieve

this, first let’s define the following expressions:

/() 1

2
1

SIGN u t
sp

sm sp

 
  



 
 (3.25)

where SIGN is defined as the sign of the respective term /u t 
  , 1 for positive and -1 for

negative. Using these expressions let’s also define the following variables:

P2 P2

P1 P1

C0 C0

M1 M1

M2 M2

A = 0 sp + 1 sm C = 0 sp - 1 sm,

A = 1 sp - 3 sm C = 2 sp + 6 sm,

A = - 3 sp + 3 sm C = 3 sp - 3 sm,

A = 3 sp - 1 sm C = - 6 sp - 2 sm,

A = - 1 sp + 0 sm C = 1 sp + 0 sm

   
   
   
   
   

 (3.26)

Therefore, finally single expressions for the coefficients a , b and c can be written as:

Numerical Methods and Boundary Conditions

39

2 2 1 2 0 1 1 2 2
3

1 1
2

2 2 1 0 1 1 2 2

6
2

2

6

P i P i C i M i M i

i i i

P i P i C i M i M i

A f A f A f A f A f
a

f f f
b

C f C f C f C f C f
c







   

 

  

   



 



   






 (3.27)

 Although not clear at first sight, the objective of creating single expressions for a , b

and c lies in the programing implementation. Using expressions (3.23) and (3.24) create the

need of divergent computing branches on two separate paths, whereas expression (3.27)

creates a single path. Branch divergence is a condition that can penalize performance in GPU

computing hence the importance of creating expressions that avoid this situation when

possible.

3.3 Source terms

 For the source term, the bottom friction is discretized and computed as in (3.37).

Central finite differences are used to solve the bed slope:

 1 1

cos cos 2
i i i

i

gh z zgh z

a a   
 


 

 (3.28)

The terms involving trigonometrical expressions such as cosine, tangent can be solved

analytically at each grid point since the variables are known, i.e.:

()tan
tan

()
tan tan

i
i

i
i i

hvhv

a a
hvhuv

u
a a

 

 




 (3.29)

Same approach goes for the terms including the Coriolis expression f:

Numerical Methods and Boundary Conditions

40

 (tan) (2 cos tan)()i
i i i

uu
f hv hv

a a
      (3.30)

Finally, the use of real bathymetry introduces the challenge of handling unusually large

and sharp gradients during computation. In order to avoid divergence or spurious oscillations

an artificial viscosity is introduced in the equations. This is represented by the diffusion

equation, discretized as:

 1
1 1(2)n n

i i if f f f f
     (3.31)

with the coefficient
2

t






on an uniform mesh. Moreover a normalization is applied to this

equation in order to guarantee that the effect of this term is equal on grids with different

resolution, such as in the case mesh refinement. For this purpose let’s define a new coefficient

̂ defined as:

 ̂    (3.32)

By doing this a new coefficient  is obtain that is now independent of the grid solution,

thus:

̂





 (3.33)

The appropriate value of ̂ is chosen to be small enough not to affect the wave propagation

yet of significant where large gradients are present to improve stability.

3.4 Non-linear SSWE validation

The first step necessary to confirm the correct implementation of the numerical method

to solve the SSWE is to benchmark the results with an appropriate test. While there are many

analytical and laboratory test cases for near-field tsunamis, it is surprising the lack of these

tests for long range propagation and even less in spherical coordinates. From the scare options

Numerical Methods and Boundary Conditions

41

to benchmark we present a test case from Kirby et.al. [69] to model equations and sensitivity

to dispersion and Coriolis effects. This test can be used to confirm the correct propagation of

the waves in spherical coordinates for far-field simulations.

This benchmark case utilize an idealized source and ocean, and assumes a flat

bathymetry over the entire ocean. The water depth is constant over the whole domain

h=3000m. The grid resolution is 0.75 arc-min. The domain is in the northern hemisphere and

covers a region from 15º to 40 º latitudinal and from -10 º to 15 º longitudinal. An initial

idealized Gaussian elevation:

     2 2

2

1
(,) exp C CH A

W
            

 (3.34)

centered at  , (0 ,30)C C     is used as source. The source width W is 0.25º and the

amplitude A is 1 m.

Fig. 3.4 show our results of the wave propagation for this test case. Whereas the initial

source is a circular Gaussian-shape wave, it is noticeable the deformation the wave

experiences due to the curvature of the sphere as it evolves and spread over the domain.

Moreover, a direct comparison is presented in Fig. 3.5, the image on the left is taken

from the original benchmark report. It represents a portion of the wave at 5000 seconds; since

the wave is symmetrical and the bottom is flat, there is no loss of generality reporting just

this portion of the domain. The image on the right represent the result obtained by TRITON-

G.

Numerical Methods and Boundary Conditions

42

Fig. 3.4 Far-field propagation benchmark: Idealized Gaussian source on northern hemisphere. Each slide

represents 1000 seconds.

Numerical Methods and Boundary Conditions

43

Fig. 3.5 Gaussian Initial condition benchmark at 5000s. Left image shows the original result from [69],

imagine on the right shows the result for TRITON-G.

Overlapping of the results proved excellent agreement between waves; using this as a

guide it can be concluded that the numerical methods reproduce the propagation wave

correctly thus validating them.

In conclusion, it was shown that the spherical implementation was correctly used; it

should be mentioned that for this work the domain’s latitudes are relatively close to the

equator (20), hence the effect of Coriolis is barely noticeable during the propagation;

moreover earlier investigations has found that this effect is of minimal importance for

tsunami wave fronts ([70], [71]).

Numerical Methods and Boundary Conditions

44

3.5 Inundation

As mentioned before in section 2, since the inundation areas of interest correspond to

cases with lengths of just a few kilometers, the SWE in Cartesian coordinates (2.37) are

suitable to determine the tsunami run-up. For this purpose we use the implementation

developed by Sugiyama et.al ([72], [73]) which is briefly explained here. Fig. 3.6 depicts a

sketch of the definition of inundation height and run-up height.

Fig. 3.6 Sketch of the Inundation and run-up heights on a shore slope

This implementation employs the Surface Gradient method (SGM) [74] to solve the SWE.

It uses the data at cell center to determine the fluxes F and G. In general depth gradient

methods cannot determine the water depth value at cell interface accurately when including

effects of the bed slope as well as variations in the free surface since they cannot be

determined there accurately. These inaccuracies are spread during the computation resulting

in an incorrect simulation of the inundation. In order to overcome this, the SGM uses a

constant water level H instead of the variable h (see section 2.1). Fig. 3.7 depicts the stencil

for the water depth reconstruction, it shows that by using H instead, the water depth at the

cell interface (i+0.5) can be accurately determined. Thus to reconstruct the water depth we

have:

 , 0.5 , 0.5 0.5max(,0)L R i L R i ih H z    (3.35)

Numerical Methods and Boundary Conditions

45

where z is:

 0.5 1() / 2i i iz z z   (3.36)

A MUSCL scheme is used to find the flux value while Local-Lax-Friedrichs [75] is used to

solve the bed slope source term. For the time integration a 3rd Order TVD Runge-Kutta

scheme was used. Lastly, the bottom friction is computed using Manning’s formula:

2
2 2

7/3

2
2 2

7/3

() ()

() ()

x i i i
i

y i i i
i

gn
hu hu hv

h

gn
hv hu hv

h





 

 
 (3.37)

where n is the Manning’s roughness coefficient obtained from a look-up table or parameter

file, a default value of 0.025 is used on all the domain except where a database with specific

values for a region is provided.

Fig. 3.7 Reconstructed water depth ݄௅,ோ for inundation [73]

The particularity of this run-up implementation lies on the assumption of a thin film

of water on the land. This parameter, which is set to be small compared to the wave height,

allows to compute the wave propagation over land keeping it stable. On the run-up, if after

computing the water level following the description in the previous paragraphs its value is

found to be less than that of  (i.e. h ) then the water level is set equal to while the

Numerical Methods and Boundary Conditions

46

momentum set at rest (hu=hv=0) on a grid point. This implementation has proven to be

robust and stable to compute tsunami run-up under different benchmarks and simulations.

Fig. 3.8 Parabolic bowl problem. Left: water depth error for different values of thin-film ϵ;

Right: Cross section at t ൌ
த

ଶ
 and ϵ ൌ 10ିସ	ሾ73ሿ.

As an example, Fig. 3.8 shows one of the results for the Parabolic Bowl problem [76], as it

can be seen, this technique is able to track almost identically the analytical solution of the

parabolic bowl on different grid sizes as it evolves in time with minimum error.

3.5.1 SWE Benchmark: Dambreak

In order to test the accuracy of the implementation to solve the SWE the dam break

benchmark is used [77]. This one dimensional problem is important for verification since

analytical solution is available. A horizontal and frictionless channel of length 1 m is

considered, and it is broken instantaneously at time t=0. The initial state of the water depth

is given by:

Numerical Methods and Boundary Conditions

47

 0

0

1.00 (x< 0.5)

 (0.5)

0
low

h
h x

u


  


 (3.38)

where two cases are considered: Case A with 0.10lowh  and Case B with 0.01lowh  . The

CFL number is 0.1 and two grid sizes nx are used, nx = 100 and nx =800.

Fig. 3.9 Dam break computation at 0.1s Case A

Fig. 3.10 Dam break computation at 0.1s Case B

Numerical Methods and Boundary Conditions

48

Results at time 0.1 are shown in Fig. 3.9 and Fig. 3.10 for the two depth ratios. The results

show excellent agreement with the analytical solution. Both shock wave and rarefaction wave

are predicted without any numerical oscillation.

3.6 Tsunami Source Model

TRITON follows the usual three-step simulation style: Generation-Propagation-

Inundation. The models used for propagation and inundation were explained in sections 3.1

and 3.2 respectively. In the case of Generation, it depends on knowing the exact parameters

of the source to create an initial condition. This has proven to be essential in order to obtain

an accurate simulation, however due to the complex nature of the source dynamics during an

earthquake and the difficulty to track it in real time, currently is beyond our grasp to obtain

these parameter precisely and instantly. Therefore since the goals of this work do not fall on

the study of sources, instead of implementing a dynamic source generation we opted for a

coseismic deformation. This deformation is calculated from the theory of displacement fields

proposed by Mansinha et. al. [78].

Fig. 3.11 Tsunami Fault Source: Manila Trench, zoomed at right

Numerical Methods and Boundary Conditions

49

Fig. 3.12 Tsunami Fault Source: Java Trench, zoomed at right

Their objective was to provide a closed analytical expression that “facilitates the

interpretation of near-fault measurements”. The expressions provided, valid at depth and

surface, consist solely on algebraic and trigonometric functions that can be readily evaluated

numerically based on a few source parameters like: dip, strike, slip and length. These

parameters are provided to TRITON-G through a parameter file at the start of the simulation.

Moreover these source parameters can be supplied from an online database to reflect the

latest information available. The original code, kindly provided by RIMES was written in C

language, therefore this source generation code was ported to GPU using CUDA. Due to the

pure algebraic nature of the equations and the lack of access to neighbor point’s information

the speed up obtained is over 100 times. Two examples of fault sources generated are

depicted in Fig. 3.11 and Fig. 3.12 for the Manila and Java trench respectively.

3.7 Boundary Conditions

The domain used can contain two kinds of boundaries: open, which let the wave out or

wall, which reflects the wave in. A wall boundary condition creates a total reflection when a

wave hits a dry point. Fig. 3.13 depicts the stencil used for this case, the orange dots represent

dry points (0iz ) while the blue ones represent wet points (0iz ). For instance, when a

wave traveling left-right reaches the dry point at if , it is reflected in the opposite direction by

substituting the values for water depth and momentum on the mirrored dry points as:

Numerical Methods and Boundary Conditions

50

 2 2

1 1

 i i

i i

h h
h

h h
 

 


 

 2 2

1 1

 i i

i i

hu hu
hu

hu hu
 

 

 
  

 (3.39)

Furthermore, an open boundary condition could be set in the case of a domain edge with

all stencil points as wet points. Leaving the sign of the momentum unchanged on (21) while

computing the Riemann invariant just in one direction, creates the effect of an open boundary,

effectively letting the running wave vanish outward through that edge.

Fig. 3.13 Wall Boundary stencil with reflection at point i. Orange dots represent land and blue dots water

As it can be noted in equations (2.42), the term cos in their denominators produces a

discontinuity at the poles of the spherical coordinate system. Hence when working on a

complete sphere, special techniques and treatment have to be used to compute over the poles

without divergence. However in our case the domain chosen represents a portion of the Earth

centered in the Indian Ocean and doesn’t extend near the poles in any circumstance, which

allows us not to be affected by the poles discontinuity. Taking all this into account, for our

domain (Fig. 4.4) the boundaries used are: open boundary condition at the South and East

edges, and wall boundary condition at the North and West edges. Also, all shorelines have

wall boundary condition except for the special cases where particular areas set as inundation

are defined; in those cases the proper run-up on the shore is computed using the methods

described in previous sections.

Tree‐based Refinement and Bathymetry

51

Chapter 4. Tree-based Refinement and Bathymetry

Adaptive Mesh Refinement was initially introduced by Berger et.al. ([79], [80]) in the

1980s as a method to solve PDEs on an automatically changing hierarchal grid, thus solving

for a set accuracy on certain areas of the interest instead of unnecessarily overly refining on

the whole domain. Here we present the implementation of the tree-based refinement and

customizations for this work’s specific objectives: obtain a mesh with 7 Levels that track the

coastline shape; this mesh should provide high resolution (50m) in particular areas of interest

while using memory and computational resources efficiently.

4.1 Mesh Generation

The objective of refining the domain lies in producing a mesh that can provide high

accuracy just in areas of interest. Refining the whole domain up to a high resolution would

produce an unmanageable large mesh. By focusing on the requirements of RIMES operation,

special customization can be introduced to fine-tune the refinement. Hence all the advantages

of the adaptive refinement are conserve while a novel implementation is developed to fit our

specific resources needs and focus only on regions of interest.

4.1.1 Computational Domain

Since RIMES was established as a warning-system organization in the Indian Ocean, it

is reasonable that the domain chosen to perform this work is a large portion of this ocean.

This domain is shown in Fig. 4.1; the base level uniform mesh has a size of 3584 by 1920, the

geophysical extension is: Latitude: [-35°, 30°], Longitude: [20°, 140°].

Tree‐based Refinement and Bathymetry

52

Fig. 4.1 Study case. Indian Ocean domain

This domain is initially divided into blocks which will serve as the base for the refinement

intended. This process is described in the following sections.

4.1.2 Tree-based refinement

The basic principle of tree-based refinement is to start with a uniform mesh covering

the computational domain, and in regions that require higher resolution, a finer subgrid is

added. If more resolution is need, an even finer mesh is added. This process can be repeated

recursively. This process has significant effect on reducing the mesh size only if the areas of

interest are relatively small compared to the domain.

Tree‐based Refinement and Bathymetry

53

There are several ways in which the mesh can be organized to generate the subgrids.

Patch-based, cell-based and block-based are three of the most common ways to arrange the

mesh. Patch-based requires introducing rules and algorithms to determine ways to cluster

points, this can prove to be not so efficient and programmatically complex. The cell-based

arrangement offers the advantage of a very detailed way to refine since points are treated

individually, however the mesh generated can be considerably large and the additional task

of keeping track of all cells connectivity is a large computational overhead.

For these reason we implement block-based for refinement. Since all points are

arranged in blocks of equal dimensions there is no need of complicated rules for clustering.

And by treating the points as a region subgrid can be created where needed without producing

an un-manageable large number.

Fig. 4.2 Block-base refinement. Left: Block with neighbors. Right: Parent-children refinement

 A block is composed of cells organized two dimensionally in symmetrical rows and

columns. A representation of this block is shown in the left in Fig. 4.2. The edges of a block

will be referred to as North, South, West and East. Each block has neighbor on its edges with

whom they share an overlapping point at the edges. All blocks are interconnected by a logical

tree that keeps the pedigree of every member in a branch. Thus it is possible to find readily

which block is the immediate neighbor or parent by simple looking at the tree branch.

Tree‐based Refinement and Bathymetry

54

When a block requires refinement it produces four children that splits the parent

branch into four new branches as shown in the right of Fig. 4.2, this is known as a quadtree.

Each of these children has the same number of cell points as the father however the physical

length is half hence doubling the parent’s resolution. This process can be repeated recursively

for as many times as the application needs it. As more levels are requested, each time a block

gets refined its parent branch is split in four more, creating deeper trees, as shown in Level 4

of Fig. 4.3. the advantage of preserving this connectivity is that is easy to trace up several

generations the original block or neighbors; also this tree structure permits to determine the

surrounding neighbors by looking at the brothers in a branch.

Fig. 4.3 Quadtree structure construction for a domain with a mooned-shape focus

Then, in order to generate the refined mesh, we start with a coarse uniform domain

divided into blocks. A block can be flagged for refinement recursively until it reaches a set

threshold, effectively creating several hierarchal levels. A quadtree data structure is used to

keep track of the blocks connectivity. Fig. 4.3 show this quadtree structure in a graphical

representation; the connectivity between blocks store information about the block and its

Tree‐based Refinement and Bathymetry

55

neighbors in a simple way. This structure is vital in order to update neighboring values at the

blocks’s edges.

If we denote a level by l, the difference on spatial resolution between two adjacent levels

is the refinement ratio r, and should be a positive integer as:

 1l

l

x
r

x





 (4.1)

The value of this ratio is a free parameter that is problem dependent. However using large

integers introduce issues in the computation, the existence of an abrupt change from one level

to the next requires special treatment, especially when complex bathymetry or topography is

involved. In order to avoid this and to create a smooth transition between levels a refinement

ratio of two is chosen for this study.

Although we follow the refinement procedure used in tree-based refinement, a couple of

customizations are introduced to tailor-adapt it to our specific interests. Also, since the

domain represent bathymetry and does not change in time, the mesh can be generated at the

beginning a single time. This permits keeping the advantages of tree-based refining while

removing the further overhead intrinsically associated with re-meshing during the simulation.

Moreover, in general, tree-based refinement employs an error estimate as a rule to

determine if a block should be flagged for refinement, however in our implementation the

refinement rule depends not on an error threshold but on a target resolution combined with

two factors:

a) The block’s distance from the coastline

b) The presence of a focal area.

Tree‐based Refinement and Bathymetry

56

Fig. 4.4 Indian Ocean Domain

4.1.3 Refinement by distance

The refinement rule’s first factor depends on the distance of the block to the shoreline,

the objective is to recursively refine blocks close to the coast until reach the target high-

resolution threshold, while blocks far in the ocean can remain with a coarser resolution. This

process involves two steps:

a) Determining the block’s distance from the coast

b) Checking if its distance is within refinement.

To accurately estimate the geo-distance between two points can be a complex task since

the surface of the Earth is not a perfect sphere. However, for the purpose of refining this

mesh, is enough to use a rough estimate of the distance between the shoreline and the blocks.

This is achieved by creating a signed distance function based on the Level-set method [81].

Based on this theory, in order to generate the distance function  the following equation has

to be solved:

 ()(1) 0sig
t

  
   


 (4.2)

Tree‐based Refinement and Bathymetry

57

The initial condition for this function is generated by defining positive values in the outside

area of a surface and negative values in the inside, while setting as 0 the interface between

them, this is known as the zero level of the function. This initialization is shown in Fig. 4.5

(a), where the black points represent the inside of the surface. Having this initial condition

then equation (4.2) is numerically integrated to obtain the correct distance.

(a) (c)

 (b) (d)

Fig. 4.5 Samples to generate distance function on objects with irregular shapes. (Credits: Batman logo is a

trademark of Warner Bros. Tsubame emblem is a trademark of Tokyo Institute of Technology)

Tree‐based Refinement and Bathymetry

58

In general, by setting the initial values as the grid resolution  it takes two iterations

to obtain the correct distance value next to the zero level subsequent iterations correct the

second point from the zero level and thus on. In this work an Euler’s integration is used for

the time derivative and WENO scheme [82] is applied to solve the spatial derivative.

Initial tests performed on surfaces with irregular shapes are shown in Fig. 4.5, the resulting

distances are shown below each surface. As it can be seen from this, this method proves to

track different shapes and generate distances for every point in the domain.

With these promising tests as a guide the same method was applied to the Indian Ocean

domain. Here the distance function definition came rather natural: positive values for points

in land and negative values for points in the ocean (bathymetry). The zero level of the

function is represented by the points along the shoreline (z=0). A depiction of the result is

shown in Fig. 4.6, distances from the coastline are obtained for the domain. In this case,

positive distances represent cells on land while negative distances represent cells on the ocean.

Fig. 4.6 Signed Distance Function. Positive values represent distances on land, negative values distance on

water

Tree‐based Refinement and Bathymetry

59

Once the distance of all cells in a block is determined, each block is tested for refinement.

Blocks with one cell or more within a certain distance from the coast (refinement stripe) are

flagged for refinement until they reach the fine-target resolution. The width of the refinement

stripe is problem dependent and is input by the user based on their needs. A different

refinement stripe value can be chosen for every level, an illustration of this concept is shown

in Fig. 4.7 for four levels.

Fig. 4.7 Refinement stripe representation for L2, L3 and L4.

The result of applying this refinement procedure to the Indian Domain is shown in Fig.

4.8. The refinement stripe distance is 100 km and halves on every subsequent level. The

initial resolution at ground Level 1 is 2 arc-min; the fine-target resolution is 0.03125 arc-min

(~56 m) for a total of 7 levels created.

Tree‐based Refinement and Bathymetry

60

Fig. 4.8 (a) Level 1

Fig. 4.8 (b) Level 2

Tree‐based Refinement and Bathymetry

61

Fig. 4.8 (c) Level 3

Fig. 4.8 (d) Level 4

Tree‐based Refinement and Bathymetry

62

Fig. 4.8 (e) Level 5

Fig. 4.8 (f) Level 6

Tree‐based Refinement and Bathymetry

63

Fig. 4.8 Distance Refining Process Indian Ocean Domain using refinement stripe. Total 7 levels, highest

resolution 50 m.

The mesh produced following can properly refine the complex coast shapes and cover

the desired refinement stripe. An important observation is that independently of the distance,

blocks that lie on the tsunami source fault also get flagged for refinement in order to obtain

a more accurate initial condition and preserve the wave front better.

One downside of this refinement process is that the number of blocks generated can be

considerably large, more than 230,000 in this case. Also the memory needed to store this

mesh is above 120GB. Motivated by the objective of using resources efficiently and the need

of high resolution just in certain specific areas a second refinement factor was introduced.

Tree‐based Refinement and Bathymetry

64

4.1.4 Refinement by Focal Area

The second factor of refinement is a constraint added to the first. This constraint consists

in locating on the domain a convex polygonal area which serves as a refinement delimiter.

This area is referred to as focal area (FA) and is possible to locate more than one. An example

of a focal area is shown in Fig. 4.10 (b) as a circle covering the domain.

Since this is an additional constraint to the first refinement step, only blocks flagged for

refinement at the first step need to be tested again. On this second test, the block’s four vertex

coordinates are compared against the focal area vertices to determine if it is inside or outside

the area. If a block is completely outside the focal area, then it is un-flagged for refinement.

Only blocks partially or totally inside the focal area remained flagged for refinement.

The process of determining if a block lies inside or outside a focal area is based on

collision detection theory. There are several methods available for this like the Grid-based

approach, Bounding Box method, Discrete Collision Detection or the Separating Axis

Theorem (SAT) ([83], [84]). We chose the latter because it is a well-known theorem applied

to physical simulations [85] and consists of a relatively light algorithm for 2D, which allows

to test large number of blocks rapidly.

The SAT states that: if two convex objects are not penetrating, there exists an axis for

which the projection of the objects will not overlap (Fig. 4.9).

Tree‐based Refinement and Bathymetry

65

 (a) (b)

Fig. 4.9 SAT. (A): Two non intersecting convex polygons; (b) Projection of the non intersecting polygons [86].

Hence by using this theorem and the basic concepts of normal and projections, the

algorithm to determine the intersection can be summarized as follows: the axis used can be

the normal of edges, then first compute the normal of each edge of the polygon, second each

normal has to be tested to the projection of the other polygon by using the dot product to

determine if the lie or intersect. If, for all axes, the shape’s projection overlap, then we can

conclude that the shapes are intersecting.

A proof of concept of refinement by focal area using the SAT to determine if blocks are

inside or out is shown in Fig. 4.10. Here the focal area is represent by a circle shaded in orange.

As comparison, Fig. 4.10 (a) shows the distance refinement as explained in the previous; Fig.

4.10 (b) show the result of including the FA, it is clear that only blocks inside the region

continued refinement by the rest outside were left untouched.

It is important to note that since the focal area is an additional constraint, it can be toggled

active after any chosen level. Hence, a specific number of levels can be refined without this

constraint while the following are affected and delimited by the focal area. In the previous

proof of concept blocks outside the FA were limited to level 3 while blocks inside had a

target of 5 levels.

Furthermore, a focal area also indicates that blocks within, with the highest resolution,

are to be treated as inundation areas if they include dry points.

Tree‐based Refinement and Bathymetry

66

 (a) (b)

Fig. 4.10 Focal refinement proof of concept. (a): 5 level refinement with no FA; (b): 5 level refinement with

FA represented by a circular shape.

As mentioned above, the focal areas are defined by the interest of the user and more than

one can be included at the same time. For this work four FA are submitted by RIMES since

they represent their research interest, named: Mozambique, Comoros, Seychelles and Sri

Lanka. The extension and shape of each FA is different and was chosen to coincide with

higher resolution bathymetry databases owned by RIMES and also because they represent

areas of inundation that they need to be monitoring. These FA and their specific location and

shape are shown in Fig. 4.11 shaded in green.

Tree‐based Refinement and Bathymetry

67

 (a) (b)

 (c) (d)

Fig. 4.11 Focal areas used in this work. a) Mozambique; b) Sri Lanka; c) Comoros; d) Seychelles

4.1.5 Dry area removal

The final step in the mesh generation process consist in the removal of dry blocks.

Considering that tsunami inundations, with few exceptions, generally extend tens to hundreds

of meters inland, then it becomes clear that blocks located deep inland are an unnecessary

load in the computation. By using this insight all blocks whose cells’ distances are larger than

a land-distance threshold are considered dry blocks, and thus flagged for removal and deleted

from the domain.

Tree‐based Refinement and Bathymetry

68

Fig. 4.12 Inland dry block removal cases allowed and not allowed

 Fig. 4.12 show a graphical explanation of removing a block and the cares that must

be taken. Cases (A) and (B) represent situations where a block can be removed, this happens

when the complete edge of a block has a neighbor. On the other hand cases (C) and (D) show

examples where a removal is not allowed even if the block was originally flagged for it. The

reason this operation is not allow is that edges of a block are not completed covered by a

neighbor block.

Finally, the complete result of implementing all these procedures, distance refinement,

focal area refinement and dry-block removal, to generate the mesh in the Indian Ocean

domain is shown in Fig. 4.13. The four focal areas used are: Mozambique, Comoros,

Seychelles and Sri Lanka. The focal area constraint start after Level 3. The reason to choose

this particular level has to do with its grid resolution and the bathymetry database. The initial

uniform block at level 1 has a resolution of 2 arc-min, hence level 3 has a 30 arc-sec

resolution which is also the highest resolution available for GEBCO bathymetry database

(described in section 4.3). Hence by refining all coastlines up to level 3 it can be guarantee

that the most realistic available values are used directly in the coastlines without any need of

interpolation.

Tree‐based Refinement and Bathymetry

69

Comparing with Fig. 4.8 it can be seen that this time the refinement at higher levels is

limited to within the focal areas (pointed by the arrows). Also, all dry blocks exceeding the

land-distance threshold of 10km were removed from the mesh.

Fig. 4.13 Mesh Refinement for Indian Ocean Domain with 4 Focal Areas: Mozambique, Comoros, Seychelles
and Sri Lanka.

In conclusion, the block-based refinement produced a mesh that can trace the complex

coast shape in the domain, the effect of using focal areas served to focus high resolution just

in areas of interest and by doing this also the number of blocks generated drastically

decreased to 7847 while the memory needed to store them became less than 20GB. In total

there are over 30,000,000 points in the domain. The resulting mesh represents the best

balance between using resources efficiently and producing accurate results where needed. It

is also important to notice that TRITON-G stores this mesh as a database thus no needing to

generate it every time a simulation on this exact same domain is required.

Tree‐based Refinement and Bathymetry

70

4.2 Block Halo Update

Blocks have neighbors on their four edges, in order to compute on all the domain

correctly, each block must communicate its results with its surrounding neighbors. After each

time step, blocks must exchange results with their neighbors before the next iteration. For

this purpose they share a boundary layer in their adjoining sides. This layer or halo extends

over the neighbor’s grid as depicted in Fig. 4.15 and can represents one of three kinds of

swapping: copying, coarsening or interpolating.

Fig. 4.14 Cell coarsening, averaging down

If two neighbor blocks are at the same level then the halo is readily updated by

exchanging values directly without any further computation necessary, this represents a

copying swap.

In the case of two neighbors at different levels (l and l+1) then additional computation is

required before the halo swap.

Fig. 4.15 Halo update for neighboring blocks; blue block at level l, orange block at level 1+1.

Left: Interpolation case; Right: Coarsening case

Tree‐based Refinement and Bathymetry

71

If the block’s neighbor is one level up (see right diagram on Fig. 4.15) then values for the

halo are averaged down from the block with higher accuracy before swapping. Moreover,

this coarsening has the effect of passing down better accuracy to blocks with lower resolution

like in a cascade effect.

The last case, interpolating, occurs when the block’s neighbor is one level down (see left

diagram on Fig. 4.15). The values for the halo are interpolated from the neighbor block. In

order to keep high accuracy and a smooth transit of the wave through these different levels a

third-order polynomial interpolation is used, similarly as in equation (3.21). As an example,

Fig 10 depicts the stencil used to interpolate in one dimension, only the portion where the

blocks overlay is showed.

(a) West, South cases (b) East, North cases

Fig. 4.16 Halo interpolation stencil for the four edges: north, east (a) and west, south (b)

Hence, the interpolated values for the halo can be found from:

,
1 1 2

,
2 1 2

1
(4)

4
1

(6)
4

N E
P j j j

N E
P j j j

f f f f

f f f f

 

 

  

   
 (4.3)

for the north (N) and east (E) edges, which are analogous. And:

,
1 1/2 1

,
2 1 2

1
(4)

4
1

(6)
4

S W
P j j j

S W
P j j j

f f f f

f f f f

 

 

   

   
 (4.4)

Tree‐based Refinement and Bathymetry

72

for the south (S) and west (W) edges. In order to avoid spurious waves generated from

interpolating the water height h, constant water level H is used instead. The original variable

is recovered by using the relation h=H-z.

4.3 Topography and Bathymetry

The data used for bathymetry and topography comes from different sources. Initially, The

General Bathymetric Chart of the Oceans (GEBCO) [87] database is used for the domain.

GEBCO is available on 30 arc-seconds spatial resolution. When coarser resolution is needed,

the values are averaged from this database. On the contrary, if finer resolution is needed, a

third order interpolation (Eq. (3.21)) is implemented to generate the new values.

Where available, databases with more precise measurements are used to replace the

original GEBCO values. In particular the focal areas should include better resolution than

that provided by GEBCO. For this purpose in-situ measurements with higher precision are

desirable. As mentioned earlier in the chapter four focus areas are used for this work, they

represent the interest of study for RIMES: Mozambique, Comoros, Seychelles and Sri Lanka.

 Databases generated by RIMES were provide to estimate the inundation more

accurately in this regions. Additionally a fifth set of databases was provided to test on Phuket

region.

The bathymetry resulting is shown in Fig. 4.17. Also a representation of the finer

databases for the focal areas is shown in Fig. 4.18; light shaded areas represent a 150m

resolution and dark areas 50m resolution.

Tree‐based Refinement and Bathymetry

73

Fig. 4.17 GEBCO bathymetry and topography for the Indian Ocean domain

 (a) (b)

 (c) (d)

Fig. 4.18 Additional bathymetry databases for replacement with higher accuracy by RIMES. Light-gray

shaded areas represent 150m resolution, dark shaded areas represent 50m resolution. (a) Mozambique, (b)

Comoros, (c) Seychelles, (d) Sri Lanka

Tree‐based Refinement and Bathymetry

74

 After the mesh generation all points in the blocks are updated with their respective

bathymetry, the database chosen to supply the value is always the one with the highest

accuracy available at that specific location.

Fig. 4.19 Single-point peak bathymetry example

The bathymetry used in this work represent the real values as the best available databases

provide. In order to get the most accurate and realistic result possible in the simulation great

care is taken to guarantee that the original values remain untouched. There is a specific case

however that needs special attention: the existence of solitary single-point coast values that

create peaks with an unreasonable large gradient. Fig. 4.19 shows an example of this kind of

points in the right side of the domain. When these points are identified a cell of points around

this value is updated with land values to avoid potential divergence when simulating. Since

this cases are rare this simple technique proved to be non-invasive to the total model.

GPU Computing

75

Chapter 5. GPU Computing

5.1 Introduction

The introduction of C-language extension CUDA [88] by nVIDIA® was a disruption in

the traditional way simulations were performed. By providing a way to program their graphic

cards for general purpose (known as GPGPU), researchers no longer had to rely solely on

CPU processors to perform calculations. Due to the intrinsic parallelism of graphics, GPUs

naturally evolved to deliver in a card hundreds, and later, thousands of processors more than

CPUs. Ivy Bridge CPU-architecture chips are designed for up to 15 cores and a peak

performance of 300 GFLOPS for double precision. In comparison, a GPU Tesla K40 card

contains 2880 cores and a peak performance of 1.43 Tera FLOPS. The main reason behind

the exceptional performance of GPUs lies in the specialized design for compute-intensive,

highly parallel computation, with transistors dedicated exclusively to processing as opposed

to flow control and data caching.

 On GPU, cores are clustered to form an array of Streaming Multiprocessors (SMs). The

programing model is based on a multithreaded problem partitioned in blocks of threads, each

executed independently on the SMs.

5.2 CUDA

In this new architecture design to provide a GPU as a General Purpose Device we find

CUDA. The Compute Unified Device Architecture was developed by nVIDIA, one of the

GPU Computing

76

leading GPU manufactures in the world. This new language extension and hardware

technology was introduced firstly in the GeForce 8 Series, Tesla and Quadro, being now a

standard in almost all of the high performance nVIDIA cards. Tesla K40C cards are used in

this research, three of them installed in a machine working in parallel are chosen as the

configuration for operation.

CUDA provides a set of APIs designed to program the card in a readily easy way

compared with before its introduction. This come to solve the problem of the steep learning

curve since CUDA also is presented as a C language extension, a very common and known

programming language. Therefore any C language programmer has the opportunity to easily

understand the syntax and use of CUDA. The software part of CUDA provides libraries,

runtime and drivers including its own compiler named nvcc which behaves generally

speaking, like the also known GNU Compiler Collection gcc. CUDA provides address to the

DRAM memory in a general way allowing now a flexible programming tool in scatter and

gather memory operations. Now the memory can be written or read in and from any location

just like in a CPU.

Fig. 5.1 nVIDIA Tesla K40C GPU used in this research, 2880 CUDA cores

5.2.1 Memory Model and Hierarchy

CUDA provides multiple memory access for every threat during execution. Each of

these is designed for a particular purpose and with certain hierarchy. The programmer has

the freedom to use these memories in the best suitable form for his particular problem. Each

GPU Computing

77

memory has its own specific characteristics such as size and access speed that influence the

application running performance.

The architecture is composed of a Constant, Global and Texture Memory at its first

hierarchy and a Shared Memory, Local Memory and Registers in the next hierarchy.

Due to the present architecture of motherboards and GPU, when CUDA is used the

data in the CPU, also referred as Host, cannot be directly read by the GPU, referred in CUDA

as device, and a transfer must be performed before using it in any calculation inside the GPU.

The hierarchy to access the memories is different between types of memory, as illustrated in

Fig. 5.2 the Constant, Global and Texture memories have direct communication to the CPU

to send back and forth data, while the Shared and Local as well as the register are only to be

accessed by a thread. Moreover a thread can also read from the Global/Constant/Texture

memories however it cannot read directly to and from the CPU. To the scope of this research

mainly the Global memory is used. Therefore these will be explained next in more detail.

Fig. 5.2 CUDA Memory Model

The Global memory is the memory shared by the streaming processors and as

mentioned it communicates directly with the CPU; when a program is run, the memory for

GPU Computing

78

the variables must be initialized and the data uploaded from the CPU to the GPU. This

memory delivers the highest memory bandwidth only when the global memory accesses can

be coalesced within a half-warp so the hardware can then fetch the date in the fewest number

of transactions. If the memory transaction cannot be coalesced, then a separate memory

transaction will be issued for each thread in the half-warp, which is undesirable. Because of

coalesced memory the threads should be arranged in a way to avoid bank conflicts when

accessing the memory address, a non-coalesced global memory access pattern will reduce

the performance by reducing the bandwidth and thus the speed of the calculation.

5.2.2 Programming Model

CUDA is an extension language that provides its own specific APIs. These API are

readily usable with a familiar syntax and appearance. However the structure inside the GPU

for the memory requires some attention since it is not usual to work in parallel schemes even

using a single device. The nVIDIA’s GPU provides a certain number of threads to be used

in the calculation depending on its particular characteristics. These threads are organized in

blocks and blocks are sorted in grids as shown in Fig. 5.3.

Fig. 5.3 Programming Model. Grid, Blocks, Threads hierarchy representation

GPU Computing

79

Each thread is dedicated to compute the program submitted to the GPU and as stated

in the previous section it has certain restrictions to access the memories. The part of the

program that is designed to run in the GPU is called a kernel, and it has some specific

characteristics that are discussed next. The qualifier __global__ is used to declare a kernel

and it tells the compiler that this part is to be run in the GPU, also a kernel with this qualifier

can be called form the host only and executed in the device exclusively. For instance a pseudo

code in C language for a kernel would look like:

__global__ void my_kernel(void)

{

//Procedures

}

Additionally in order to launch a kernel in the GPU it should include sizes for the Grid,

Blocks and Threads as well as in which stream (if using the asynchronous model) to be

launched with the following syntax:

my_kernel <<< Grid, Blocks, Threads, Streams >>> (A,B,C,D,…)

where A,B,C,D are any sample parameters to pass to my_kernel.

The dimensions that the grids, blocks and thread can have depends on the particular

card however they can be arrange in one, two or three dimensional arrays. For this end CUDA

provides the gridDim built in variable to define the dimensions.

5.2.3 Data Handling

Since the GPU and CPU cannot read directly from their memory, data used in the

calculation must be moved to and from the CPU to the GPU during the calculation. CUDA

GPU Computing

80

includes in its APIs particular functions to perform this task in the most efficient way possible.

Thanks to the continuous development in hardware the data transfer bandwidth between CPU

and GPU has been widen up. The function to handle these transfers is called cudaMemcpy

and its syntax is:

cudaMemcpy(void* dst, const void* src, size_t count, enum cudaMemcpyKind kind);

where dst is the pointer where the data will be copied, src is the pointer where the data is

located, count is the size in bytes of the memory and kind is one of the kinds of transfers

available: Host to Device, Device to Device or Device to Host.

One useful element to improve the performance in a program is the asynchronous copy

model. The previous copy function blocks the system until the transfer has been completed.

However the asynchronous analogue return the control immediately and allow to keep

running the program.

5.2.4 Compilation for GPU Computing

CUDA provides its own compilation tool called NVCC. This compiler basically

separates the host from the device code, generates a C object output to be compiled with

another tool. Nvcc supports C language syntax and can be easily used with the gcc compiler

to produce an executable file. Nvcc also provides its own specific set of flags for optimization

during compilation, in some circumstances they can prove a useful way to increase

performance. We utilize version 7.5 of nvcc in this work.

GPU Computing

81

5.3 SSWE GPU Kernels

As mentioned before a kernel is the style CUDA provides to define C functions that get

executed on GPU in parallel. The number of copies a kernel is executed depends on the block

and thread partition defined in the call parameters. Furthermore, the clear analogy between

CUDA blocks and mesh blocks provided a guide when deciding on how to organize the grid

program for GPU execution in this study.

The SSWE are computed exclusively on GPU by processing the mesh blocks created

during the domain refinement process. The two-dimensional mesh blocks have a size of

(length, height) = (65+4, 65+4), where the 4 corresponds to the total size of the halo. On the

other hand, CUDA threads can be organized in any three-dimensional block configuration as

needed by the problem. Since the GPU process in warps of 32 threads, using multiples of this

number is desirable to avoid performance penalties. When possible, kernel configurations

follow this guideline and any overflown areas are treated as separate special cases.

Thusly, in order to process a single mesh block, first (Fig. 5.4 Top) CUDA threads are

organized in two dimensional blocks of size: (64, 4). Since the 64 threads in the x dimension

cover the length of a mesh block, only one CUDA block is needed. For the y dimension, 16

blocks are requested for a total of 16x4=64 threads, thus covering the height of the mesh

block (Fig. 5.4 Bottom left). Finally, in order to process all the mesh blocks, this two-

dimensional CUDA block configuration is extended along the z-direction as many times as

mesh blocks exist. The bottom right diagram in Fig. 5.4 shows this setting by simplifying the

CUDA blocks as a single structure.

GPU Computing

82

Fig. 5.4 CUDA blocks and threads diagram for the SSWE Kernel. Top: threads configuration per block;
Bottom left: X and Y block configuration; Bottom right: Z block configuration

As mentioned above, any overflown cells are computed as a special case. Mesh blocks

are squares of 65 cell-rows and 65 cell-columns while the CUDA block configuration covers

a total area of 64x64, hence a line is missed in each dimension during computation. In order

to process these two lines a second kernel is launched with two blocks of 65 threads each.

By fixing the indexes appropriately inside the kernel, one block completes the 65th row while

the other completes the 65th column simultaneously. Although not ideal, this operation does

not represent any noticeable performance penalty due to the small amount of data processing.

In the case of SWE kernel the implementation is based on the work by [72]. The grid

chosen for this kernel is different than that of the kernel for SSWE; a grid is chosen with

blocks of 16x16 threads covering the domain, the excess of threads at the edges is skipped

by introducing a conditional if and computing threads with indices less than the grid number

of the block.

GPU Computing

83

5.4 GPU Halo swap

After each time-step the halo region of each mesh block is updated with the latest values

from neighbor blocks. As explained in section 4.2 this represents three different kinds of

swap: copying, coarsening or interpolating. A mesh block has four edges and each one can

have a different type of halo. For this reason, initially three different lists are created which

group by halo type the edges of all blocks. With this information three different kernels are

configured to perform the updates:

A) Copying: the thread configuration is straightforward since the only operation

involved is copying data between two blocks with the same resolution. Hence CUDA

blocks contain two lines of 64 threads each. The total number of CUDA blocks is

equal to the number of edges in the copying list. Similarly as explained in the previous

section, one cell is missed during the computation. However in this case, as opposed

to launching a second kernel, the last thread of each line computes its own value and

the missed cell. A second kernel would result in an unnecessary overhead since the

copying kernel is considerably much lighter than the SSWE one.

B) Coarsening: in this case again the number of CUDA blocks is equal to the number of

coarsening edges in its list. As opposed to copying, this halo swap includes a series

of operations to obtain the average on each cell before updating. However giving

different instructions to a group of threads create divergent executions and may cause

performance degradation. A conditional if inside a kernel creates a divergence in

execution since threads cannot be processed in a single warp. In order to avoid this,

instead of mapping one thread to one mesh cell and including several if conditionals,

each CUDA block consist of a single 32-thread line, half the size of a mesh block.

GPU Computing

84

With this setting each thread computes four different operations, reducing the

conditional to a minimum while computing the average and update efficiently.

C) Interpolating: as with the other two cases, the number of blocks is the same as the

number of edges stored in its list. The process to interpolate requires several

computations that differ on cells thus creating divergent paths. Similarly as with

coarsening, the thread number in a CUDA block is half of that of a mesh block, 32,

lied in a single line. Using the same reasoning than with coarsening, each thread

carries more operations instead of declaring many threads and divert them with if

conditionals.

5.5 Kernel Types

By analyzing the domain’s bathymetry it is easy to notice that some mesh blocks contain

only wet points while others are a combination of dry and wet points. This idea is used to

create two kernels for solving the SSWE. One kernel, named Wet, is used to compute the

wave free propagation on wet-only blocks. The other one, named Dry, is used to compute the

wave propagation and coastline reflections in wet-dry mixed blocks. Hence the main

difference between them is the additional treatment of wall boundaries at coastlines in the

Dry kernel. Also, as previously mentioned, blocks with dry points inside focal areas represent

a special case and are processed as inundation by using the run-up computation described in

section 3.5.

GPU Computing

85

Fig. 5.5 Mesh blocks colored by kernel type. Red: Wet; Green: Wall; Blue: Inundation. Top: zoom over Sri
Lanka FA

Therefore, TRITON-G is composed of three main kernels: Wet, Wall and Inundation. At

mesh generation each block gets assigned a kernel type based on its bathymetry. This is

illustrated in Fig. 5.5 where blocks flagged as Wet are shaded in red, Dry blocks in green and

Inundation blocks in blue. As expected Dry kernel blocks tend to extend over coastlines while

GPU Computing

86

Wet kernel blocks are spread out in the open ocean. When inside a focal area dry-type blocks

at level 7 are re-flagged as Inundation type. This can be seen in the right image in Fig. 5.5

for the Sri Lanka FA with inundation blocks in blue. The total number of block per type is

shown in Fig. 5.6.

Fig. 5.6 Number of blocks per type

Whereas a single kernel would be too complicated and inefficient to compute the whole

domain, splitting down the computation in three main kernels allows for better block

handling and performance. Using specialized kernels for each case not only provide a simpler

way to process the blocks through lists but also the ability to fine tune independently for

higher performance.

3870

3855

122

BLOCKS

Number of Total Blocks per Type

Wet Wall Inund

GPU Computing

87

5.6 Multi-GPU

With the GPU kernels at hand the next step was to implement the computation for Multi-

GPU. As explained at the beginning of the chapte GPU memory cannot be directly accessed

between different cards, hence a bridge to communicate is created through the CPU. Thus

for this purpose CUDA and the message passing library Open MPI, are used to parallelize

the code into multi-GPU. Each card processes a portion of the domain and in turn pass down

to the CPU host any necessary halo information to exchange with other cards. A challenge

that arises when using parallel computation is to guarantee that all processes are performing

the same amount of work. This load balance concern is also true for multi-GPU computing

and the way to determine that all GPUs receive the same amount of work is by applying a

balance domain partition. This partition is rather straightforward for uniform mesh however

for refined mesh a special technique has to be used. This technique is the use of a space filling

curve (SFC). This method is explained in the following section and how it was implemented

to our study case.

5.6.1 Domain Partition: Space Filling Curve

A correct domain partition is vital to obtain a balanced work load. In order to find this

procedure a space filling curve (SFC) is used. SFC provides a continuous mapping from one-

dimensional to two dimensions. Thus it is possible to linearize this space and use this

information as a guide to partition the domain. SFC are constructed in a way that the curve

visits each point exactly once. When refinement happens the SFC is modified to visit each

of the points of the children instead of the parent. Thus locality is preserved; points closer in

the SFC are typically close on the domain too. This characteristic of the SFC is of high

interest for parallel computing since the locality means no need for extensive

communications between processes.

GPU Computing

88

There are several space filling curves available, for this work the Hilbert SFC is used [89].

It uses the rotations and inversions to keep points closer to their neighbors. Although block

connectivity is kept using a quadtree structure, this does not provide information for domain

partition. In order to track the order of the blocks the SFC is used.

Table 5.1 Ordering and orientation tables for the Hilbert SFC in two dimensions

The template for the Hilbert ordering is shown on the left of Fig. 5.7, green values represent

the orientation and numbers in black the ordering of the block. Each block has an assigned

initial rotation, for instance block 0 has an orientation 1; by using Table 5.1 the orientation of

children can be determined like this: using the value of the orientation as index i to look in

the table, the resulting children will have orientations: {0,1,1,3}.

Fig. 5.7 Application of the Hilbert orientation tables to obtain the SFC after refinement

Orientation

1 0 0 2

0 1 1 3

3 2 2 0

2 3 3 1

Ordering

0 1 3 2

0 2 3 1

3 1 0 2

3 2 0 1

i

0

1

2

3

GPU Computing

89

 Similarly for block 1 with orientation 0 it is possible to determine the child orientation

following the same method: using the orientation value as the index i to find the resulting

orientation. Hence for orientation 0 the resulting children ordering is: {1,0,0,2}.As it can be

seen, the original four blocks were refined and the Hilbert SFC covers all the children in a

continuous line that preserves locality.

Fig. 5.8 Hilbert Space Filling Curve tests on domains with different geometry, refined levels and large

number of blocks. It can be seen that the SFC (line in blue) traces all blocks exactly once.

GPU Computing

90

By using this information it is possible to create a list that stores the order of the blocks

in the domain. This one dimensional list has the advantage that show neighboring blocks

close, hence there are no abrupt cuts when a partition is introduced.

Additionally the process of creating this curve is not computationally demanding and

requires minimum memory resources. Thus, SFC proves to be the perfect solution to find the

domain partition by simple splitting the one-dimensional list in equal parts.

Several tests were performed at the beginning of this research to test the best

implementation of this method and to confirm that blocks are stored with locality. Fig. 5.8

shows two of these tests with different geometries and several refinement levels.

Once the method of the SFC was correctly implement and showed excellent results in

tests, it was applied to the Indian Ocean domain (Fig. 5.9).

Fig. 5.9 Hilbert Space Filling Curve for Indian Ocean Domain

With the SFC as a guide, the domain is partitioned in portions that represent similar load

for each GPU. Fig. 5.10 shows the result for three GPUs, each portion is shaded in a different

color.

GPU Computing

91

Fig. 5.10 Indian Ocean Domain Load Balance on 3 GPUs, each GPU represented by a different color

In general the total number of blocks get divided the number of GPU available and the

resulting partition is never more than one block different.

5.6.2 Communication and Buffers

 As mentioned above, a GPU cannot access a different card’s memory directly. Hence

in order to exchange data to update the halo a buffer is used. This process consists of the

following steps:

a) Prepare the buffer on the source GPU

b) Transfer it from device (GPU) to host (CPU)

c) Exchange them using MPI

d) Upload to destiny GPU

e) Read it to update the halo.

GPU Computing

92

The preparation of the buffer represents a considerable challenge since the domain is not

a uniform mesh. Not only the domain is composed of a large number of block, each with its

own halo region but also the possibility that each edge transfers data to different GPUs make

it a difficult task. The two main goals are:

1) Create a way to handle the data communication structure

2) Produce buffers that do not represent a large communication overhead

The traditional way to handle the first goal in tree-based refinement is with a look-up

table that contains the list of adjacent edges, the type of halo and information needed to

update it. Also it includes information about the source of the data and destiny. It is easy to

imagine that maintaining this tables require additional memory and a careful track of the

block connectivity. On top of this, there is the challenge of exchange all the required edges

to the appropriate process. Sending multiple small messages down the network is known to

be an inefficient way to communicate. Considering that large numbers of blocks might

require to exchange data, the communication could become a large overhead.

In order to handle these two issues a different approach was taken. We inspired the

solution based on cellular data communication. By implementing a similar design as the user

datagram protocol (UDP) it is possible to eliminate the need for the existence of any look-

up tables while at the same time making the buffer exchange smooth and simplified. UDP

([90], [91]) is a current standard way for query-and-response transaction in cellular

networks; it has the ability to exchange different kinds of messages in a single and simple

buffer. As depicted in Fig. 5.11 a message or in our case a buffer can be composed of a series

of messages separated by an identifying header in front of each. With a small 3-byte header

the halo data can be transferred correctly it its destiny. The header includes values for: destiny,

which represent the block it should go to; the edge, which represent which of the four edges

in that block is the information for; size, which represent the total data size sent for that halo

edge. By embedding this simple information in a header the necessity of a look-up table is

remove completely. Also it gives an additional freedom of writing the data in any order as

GPU Computing

93

long as the correct header proceeds it. Moreover in order to make it ever more compact, all

the information needed to update the three variables h, hu and hv is stored in a single buffer

continuously as opposed to having three different buffers.

Fig. 5.11 Buffer packaging based on UDP structure

The second goal is partially covered by the inclusion of all the header and data in a single

buffer. An improvement to this consist of collecting and packing all the edges that are

required to be transferred in a single buffer. This concept is illustrated in Fig. 5.12 , the

different edges (represented in different shades of blue) get all collected and stored in one

single buffer following the UDP format.

The total number of lines sent by each edge depends on the type of boundary it is, Table

5.2 show the values for each type; length represent the one dimensional grid size of a block.

Table 5.2 also show the total amount of data exchanged between processors (noted as R for

Halo
Type Length Number Lines

Refine 1/2 3

Copy 1 2

Coarse 1 5

 Destiny

Source R0 R1 R2

R0 - 146 5

R1 105 - 102

R2 5 110 -

Table 5.2 Left: Number of lines and length sent by boundary type. Right: Amount of data

exchanged between processors in the Indian Ocean case (in kB).

GPU Computing

94

rank), as it can be seen the total amount is considerable small. This is part possible due to the

efficient domain partition that allowed to preserved locality as much as possible.

In this way we manage to drastically reduce the communications by firstly removing any

need to create and store look-up tables and more importantly by creating single buffers to

exchange between processors smooth and efficiently. Instead of requiring hundreds of small

communications exchanging each block edge, only a single transfer between processors is

needed without any noticeable additional memory used.

Fig. 5.12 GPU buffer. Data collected and packed for a single communication

The step of downloading and uploading the buffer from GPU to CPU and vice-versa is

done through the CUDA API for memory copy. Also, this process can be implemented as an

asynchronous operation. Hence while the computation continues, the transfer occurs

simultaneously providing a smaller communication overhead.

The buffers created on GPU are transferred to host memory and exchanged with the

appropriate processor using MPI in a traditional way. Since a single server is used in this

study the communication speed does not depend on an external network but only on the

machine PCI performance.

GPU Computing

95

Once a buffer is uploaded into the destiny GPU memory it is read to compute the halo on

the blocks that require it. The unpacking of the buffer becomes also a simple and smooth task

by using UDP. The kernel simply read the header and readily process the information to

update the halo just as it would with local memory. This gives the advantage of not having

an additional overhead unpacking the buffer for each block but instead use it directly to

update.

5.7 TRITON-G Output

TRITON-G handles three different kind of output: variables, gauges and images. In the

case of variables these are stored just for FA inundation blocks. For images, two sets are

generated, one for the whole domain and another for individual images of each FA; the

frequency of this output is a parameter set by the user but as default the whole domain image

is generated every 4 minutes and FA images every 5 seconds. Clearly generating output with

such frequency is a large overhead; in order to overcome this issue special optimizations

were introduced that will be explained in the following section.

The third type represent virtual gauges that the user can set in any location in the point

and its purpose is to store the wave height in that point during the simulation; the frequency

to do this is set by the user.

5.7.1 Type of Output

The variables are stored on GPU memory and represent values of interest for the user.

Specifically the following values are store on each time step:

GPU Computing

96

i. Maximum inundation

ii. Maximum wave height

iii. Maximum wave velocity

iv. Maximum Flux

v. Arrival time

Again, this storage happens on GPU memory and the function to check the maximum

value is computed on GPU. Since these values are computed just in inundation blocks, the

computational time on GPU is almost neglectable, after a breakdown of the computation it

was found that it represents less than 1% of the total running time.

The output variables are flushed down from GPU to CPU when needed and written as

a simple ASCII files that user can process easily in any way they see fit. Fig. 5.13 show the

flow of the computation and the part that output takes during simulation.

Fig. 5.13 TRITON-G computational flow

In the case of images, TRITON-G uses vISIT to generate the rendering. This is possible

by writing SILO format [92] files with the mesh information. SILO is a open source utility

that sits on HDF5 format; this provides high efficiency to store large problems and

particularly multi-level blocks. It naturally handles the connectivity between blocks to

GPU Computing

97

generate a full composed image. In this way the user can visually follow the results produced

by the simulation.

5.7.2 Optimizations

In order to obtain a smooth animation of the wave propagation in the focal areas output

frequency must be considerable high, around every 5 seconds. Clearly, even for small data

this frequent output represents an unnecessary overhead. The optimization to this issue came

from postponing the image generation for the focal areas. Since users can track the wave

propagation in the main domain it was slightly redundant to generate at the same time images

for the FA. Hence to remove the overhead of the FA image output all values are stored on

GPU memory and collected on the available free memory. Tesla K40C cards have 12GB of

memory. TRITON-G requires around 2-3GB per GPU to keep the block information and

maintain the code; thus there is considerable space available for storage. In case that the

memory got full, the complete values are flushed down to CPU where are kept on RAM

memory until the simulation finishes while GPU is reused. By using this idea, the total

overhead of the FA image output was removed.

Fig. 5.14 Optimization by grouping the output blocks (L7) together

 An additional idea used to speed up the transfers was to allocate all the blocks that

require output together in memory, by reallocating them at the front of the memory array;

GPU Computing

98

this is shown in Fig. 5.14. By doing this, it is possible to perform one single copy instead of

doing several small ones which introduce a latency overhead.

 The last optimization was a great improvement for the overall runtime. Even though

the image generation for the full domain is not very frequent, the process of generating a

SILO file for such a big mesh represented a considerable overhead. This process represented

around 15-20% of the total runtime. In order to improve this, an ingenious solution was

implemented. In general, the usual approach to remove output overhead consist of using

asynchronous computation. Fig. 5.15 shows in this idea in the diagram in the middle. This

approach generate good results if the computing time is larger than the output time. However

if the opposite happens we go back to the original issue of output overhead. In the case of

TRITON-G the image output and generation took much longer time than the simulating

kernels hence this approach would have proven not very efficient.

Fig. 5.15 Output overlap and optimization using Pipes

In order to minimize the effect of this image output we took advantage of Pipes. Pipe

is a system call that creates a communication between two processes that run independently.

GPU Computing

99

Thus, a parent program can call a child program and both perform completely different tasks.

By using this concept, an utility to process to create SILO files for the full domain was created

a stand-alone application. Hence now TRITON-G can call a subprogram that independently

computes the output. However, this method has a limit, a memory array cannot be pass

between parent-child processes. If the child cannot read the values of the parent it would be

impossible to generate the output, nonetheless a clever solution was implemented to solve

this issue as well: CPU shared memory. By using the available shared memory to store the

arrays needed to generate the output it was possible for the child process to read the

information and process the output. This process is illustrated in Fig. 5.16.

Fig. 5.16 Concept of the Pipe Asynchronous processing by using shared memory

FIG shows the advantage of implementing Pipe asynchronous output, unlike

traditional asynchronous output that relays on a large computational time, the Pipe method

provides the ability to hide the output processing behind several computing time-steps. The

result of this is an almost total elimination of the overhead. Measurements before and after

this optimization showed that the output process represented just 1-2% of the total time,

practically removing totally this overhead.

GPU Computing

100

5.7.3 Post-processing

During development TRITON-G developed not just into a single tsunami modeling

program but in a full operational framework. Fig. 5.17show all the utilities that are part of

TRITON-G, specific utilizes for rendering processing were developed along with the

simulation model; also a tailored excel utility programmed in VBA was designed to process

the gauges values and create automatic charts.

Fig. 5.17 TRITON-G Framework

 As explained in the previous section, data to make the images for the FA is stored on

GPU until the simulation completes. Once it has finished this data is copied to CPU and

written as binary files. In a post-processing step, the Silo Sub-Domain utility converts these

binary files into SILO files than in turn as used to generate the images using vISIT (Fig. 5.18).

Fig. 5.18 FA Images generation process

GPU Computing

101

5.8 TRITON-G Performance and Optimizations

For this study and under the collaboration project with RIMES a specific machine was

assembled to use as the server to implement TRITON-G as their operational tsunami

forecasting tool. Initially a machine with a single GPU Titan Blank was used for development

to test the feasibility of the operational concept. Once promising results were obtained, a

second machine intended for permanent installation was designed taken into account several

considerations such as: budget, size, GPU performance, storage and power back up. The

specification for this machine are detailed in Table 5.3.

RIMES Machine Specifications

CPU Intel Xeon E5‐2620V3 2.4GHz

RAM Memory DDR4‐2133, 64 GB

GPU nVIDIA TESLA K40C x 3 cards

HD Seagate 3.5" 2TB SATA 6Gb/s 7.2KRPM

 SSD Intel DC S3500 480Gb SATA 6Gb/s

UPS UPS APC 220VA

OS CentOS 6.6

CUDA Version 7.5

Database PostgreSQL 9.1

Web Server Tomcat 6.1

MPI Version Open MPI 1.8.6

Table 5.3 RIMES machine for TRITON-G

The best balance between all those requirements was met with those specifications.

Nonetheless the aim to deliver a powerful system within a reasonable budget was never

oversighted and this server proved it.

 RIMES server is designed to be used as a web interface by the end user hence the

mention to the webserver utilized. Through this interface users can adjust TRITON-G to their

GPU Computing

102

specific needs. TRITON-G being an operational tool is far from a static single program but

instead provide the options to be modified as requested. Such options include define focal

areas, submit new bathymetry or manning databases, introduce the latest tsunami fault

sources; as well as basic options like output frequency, total runtime and gauges location.

In the specifications apart from the three Tesla K40C GPU cards another

characteristic stands out, the existence of two hard disks. The reasons behind installing two

hard disks in the machine can be understood by looking at the type of disks they are. One

disk is a traditional SATA HDD, this kind of disks have proven to be reliable, affordable and

have grown in capacity, however their top writing speed is between 60-160MB/s. On the

other hand Solid State disks (SSD) can deliver up to 600MB/s writing speed. The downside

of SSD being the price and smaller capacity (240GB). In order to take advantage of these

two devices they are configured to be used for different purposes. The SSD is assigned as the

primary disk for output during computation. This allows for a fast I/O during simulation. The

HDD is kept mainly for storage; once a simulation is finished, in a post-processing stage the

results are transferred from SSD to HDD. In this way the SSD is kept mostly free and ready

for real-time computation while the HDD with its largest capacity serves as a case storage

device.

 Hence our implementation and objectives are focus on the available three Tesla K40

cards [93].

GPU Computing

103

Table 5.4 Tesla K40C Main Specifications

5.8.1 Kernel Optimizations

Once TRITON-G reached a point where it showed stability and good agreement with

benchmarks, several optimization were implemented in the SSWE kernels to obtain the best

performance possible out of the available machine. These results are shown in Fig. 5.19.

TESLA K40C

 CUDA Capability Major/Minor version number 3.5

 Total amount of global memory 11471 MBytes (12028608512 bytes)

 (15) Multiprocessors, (192) CUDA Cores/MP 2880 CUDA Cores

 GPU Max Clock rate 745 MHz (0.75 GHz)

 Memory Clock rate 3004 Mhz

 Memory Bus Width 384‐bit

 L2 Cache Size 1572864 bytes

 Total amount of constant memory 65536 bytes

 Total amount of shared memory per block 49152 bytes

 Total number of registers available per block 65536

 Warp size 32

 Maximum number of threads per multiprocessor 2048

 Maximum number of threads per block 1024

 Max dimension size of a thread block (x,y,z) (1024, 1024, 64)

 Max dimension size of a grid size (x,y,z) (2147483647, 65535, 65535)

 Concurrent copy and kernel execution Yes with 2 copy engine(s)

 Run time limit on kernels No

 Support host page‐locked memory mapping Yes

 Device has ECC support Enabled

GPU Computing

104

Fig. 5.19 TRITON-G Optimization, a total of 59.6% speed up was achieved

The first optimization utilized was the update of the CUDA toolkit and compiler

version. TRITON-G was originally developed using version 6.5 of CUDA and to avoid

changes on the machine OS configuration it did not get updated even though newer versions

were release. Then, when the project reached the optimization part CUDA was updated to

the, then latest version 7.5. By doing this an 8.26% speed up was achieved; this is due mainly

to internal improvements to the compiler.

The second optimization is branch divergence. For GPU this event can represent a

major performance penalty due to the way threads are computed. When a kernel includes a

conditional that creates divergence the warp process all threads twice, deactivating the un-

unused threads and putting the result back together at the end. Clearly the amount of work

doubles which introduces a considerable overhead. Hence it is highly desirable to avoid any

condition that creates threads to take different paths. Sometimes to achieve this the

algorithms have to be rewritten, an example of this is the set of equations (3.27); re-written

GPU Computing

105

the equations in this way creates a single path on the GPU which allows for higher efficiency.

Another way used to decrease the divergence was to replace if conditionals for binary

expressions that cancels the unnecessary part, e.g. the condition:

if a=1 then e=C

else e=D

Can be replaced by the expression:

 e C D  

where  and  are expression that take the values 0 and 1 mutually exclusive and cancels

out half of the values thus making the conditional unnecessary.

By introducing this optimization a 30.94% improvement was achieved, this was a big

improvement and showed the damaging effect of branch divergence.

The next optimization was the elimination of unnecessary computing by storing

results in a memory array. For example the trigonometrical expressions that appear in the

model depend on the value of  on each point, however this values does not change over

time making it redundant to be computing the same values. Instead we compute the

trigonometrical expressional once at the beginning, store them on GPU memory and simple

reuse them each time step. Doing this reported a 4.25% improvement; the reason that

performance increased in this case is due to the register count. As explained earlier the fastest

memory available on the GPU are the registers, however they are scarse. Computing the

trigonometrical expressions required loading values on registers but removing this

computation registers were freed up and used for other tasks thus improving the performance.

The next optimization was the replacement of complicated exponential with built-in

functions provided by CUDA. Especially the terms on the friction force (3.37) include

exponentials of 7/3, by using the built-in functions an improvement of 1.39% was found.

Lastly, another optimization that provided good results was the use of the Boost

option (Appendix B). The Tesla K40C runs normally at a frequency of 745Hz, however this

GPU Computing

106

clock can be changed to higher values to produce a boost on the speed. By setting the card to

the highest available frequency of 845Hz we obtained a 14.78% improvement.

Overall we obtained a nearly 60% improvement by using all these optimization,

effective cutting down the total running by around half of the time.

5.8.2 Sub-cycling

Encouraged by optimizing the code as much as possible, a sub-cycling technique was

introduce in the simulation. Sub-cycling consists of using a large dt and making blocks cycle

in smaller steps to reach the same dt. The number of cycles taken is called n. The advantage

of this technique is that the global dt can be enlarged thus producing faster simulation, the

potential disadvantage is that if the blocks sub-cycling are too many the whole computation

is slow down. An illustration of how the sub-cycling works is shown in Fig. 5.20. As it can be

seen there, blocks with the same number of sub-cycles can be group in a single list. In theory

after a large dt is taken, appropriate boundary conditions should be computed by interpolation

in time. This process usually introduce an overhead; since the objective of our simulation is

to provide the fastest modeling tool for evacuation warning, it was decided to skip the

boundary generation and use the values at time n. As it will be shown later, this decision

proved to be correct judging by the excellent agreement of the simulation result with

benchmark and real tsunami data comparison.

GPU Computing

107

Fig. 5.20 Illustration of the sub-cycling process

The maximum dt values per level are shown in

Table 5.5, using CFL=0.8; the selection of 1.6 as global dt came from a balance between

a larger dt and a small number of sub-cycles.

Table 5.5 Maximum dt per level and the resulting sub-cycling number

h Max dt Max dt SC n

L1 7816 1.07E+01 1.60E+00 1

L2 8524.75 5.13E+00 1.60E+00 1

L3 10006.75 2.37E+00 1.60E+00 1

L4 5143 1.65E+00 1.60E+00 1

L5 3902 9.47E-01 8.00E-01 2

L6 2944.51 5.45E-01 4.00E-01 4

L7 1297.51 2.57E-01 2.00E-01 8

GPU Computing

108

Also as Fig. 5.22 shows the largest number of block are located in level 3, this is not

surprising considering that all coasts get refined up to level 3. It was our intention to avoid

sub-cycling level 3 since it would produce a large overhead.

Fig. 5.21 Load Balance example due to the effect of sub-cycling

 Finally, the introduction of sub-cycling produced an issue in the load balanced. As it

can be seen in Fig. 5.21 if a block needs sub-cycling that means that is equivalent to having

several more blocks than those allocated in memory. In order to guarantee that the balance

was still preserved a variation was introduced to the SFC. Instead of simply using the list

originally created, a second weighted list is also created. This list gives more weight to blocks

that need refinement hence when the partition is done the work load remains well balanced.

This effect on the increase of the number of blocks per level can be seen in Fig. 5.22,

for example for level 7 the 100 original blocked represent 800 due to the n=8.

GPU Computing

109

Fig. 5.22 Number of blocks per level before with (orange) an without (blue) sub-cycling

5.8.3 Performance Measurements

With a fully optimized code, output, kernel and load balance, measurements were made to

estimate the performance of TRITON-G. Fig. 5.23 shows the breakdown of the main part of

the computing. Wall stands for the wall kernel, Wet for the Wet kernel and X and Y for the

dimension of the computation. The process of updating the halo, presented in the graph as

Bnd for Interpolation, Coarsening and Copy represent only 9% of the total running time. It is

also interesting to note that the Wet and Wall kernel have similar performance despite the

fact that the wall include additional treatment for the coast boundaries. Since this treatment

consists of many conditional and they were replaced on during optimization it is

understandable that the performance is similar.

It is also interesting to notice that the inundation kernel represents around 21% of the total

runtime even though it process only around 2% of the total number of blocks. Inside others

GPU Computing

110

several values are included, most importantly the communications, it represents around 1-

2% of the total running time. This confirms that the care taken to create efficient

communications with packing buffers like in UDP format was the right decision and provide

high performance.

Fig. 5.23 Computing breakdown shown in percentage

Finally, results for the total runtime are presented. The simulation computes 10 hours

on the Indian Ocean domain. Fig. 5.23 shows the total machine time consumed by TRITON-

G to obtain this simulation. The first column represent the time before optimization were

done, it was well above an hour. The next two columns show the results with the optimization

and the boost option on and off, it can be seen that the total runtime with all optimization

active is 40.40 minutes. This time includes all the image generation, gauges, variables’

storage as well. It is an excellent result to produce such complicated scenario of 10 hours in

just around 40 minutes machine time.

WallX
16%

WallY
17%

WetX
15%WetY

15%

Inund
21%

Bnd Copy
5%

Bnd Coar
1%

Bnd Interp
3%

Others
7%

COMPUTING BREADOWN IN PERCENTAGE

GPU Computing

111

Fig. 5.24 A 10-hour Simulation Runtimes

Fig. 5.25 Computing time required to obtain the first results during simulation

GPU Computing

112

Fig. 5.26 A 10 hour simulation runtime comparison with 3 different GPUs

Furthermore, Fig. 5.25 shows the machine time needed to compute the results of the

first arrival wave in each focal area. For instance for Sri Lanka it takes just 9 minutes machine

time to generate the results of the inundation in that area. Considering that the wave took

around 2 hours from the source to Sri Lanka, obtaining results in 9 minute would give plenty

of time to authorities to make a decision regarding evacuation.

A final result is presented to show how the program behaves under different GPU cards,

Fig. 5.26 show the results for Tesla cards model K40, K80 and P100. It is interesting to notice

that despite the K80 card having double the number of register than K40 and a better

automatic boost system we were able to achieve a very similar performance. In the case of

P100 which contains more than 3000 cores and the latest technology results were obtained

in just under 15 minutes for the same 10-hour simulation.

Numerical Simulations: Application

113

Chapter 6. Numerical Simulations: Application

Previous experience with GPU computing had inspired us to continuously exploring new

and better ways to perform simulation, results for our previous work can be consulted in

Appendix A. By taking GPGPU into more complex and large problems like the research that

we present here TRITON-G was produced. It is the product of many years of constant

development, looking always for better and more efficient ways to exploit GPU technology.

Results of hindcasting the Indonesia 2004 tsunami are presented to show the comparison of

propagation and inundation between TRITON-G and existing actual records of the event.

The chapter finishes by presenting two inundation cases, one in Sri Lanka and the other in

Phuket.

6.1 Application: Hindcast Indonesia Tsunami December 2004

Validation must be performed on different ways, not only on idealized situations but

also on real cases with measured data. After obtaining promising results with the Gaussian

idealized benchmark in the previous section, here a hindcast of the Indonesian 2004 Tsunami

is presented. The ability of TRITON-G to model this event is demonstrated in this section by

comparing its results with recorded tide gauges as well as with inundation maps.

There exist considerable information available about the Indonesian December 26th,

2004 massive earthquake and destructive tsunami [94]. Gauges recorded at the moment of

this event are obtained from NOAA’s tsunami events database. This event occurred at 7:58

am with a magnitude of 9.0 Mw generated by the subduction of the Indian Plate by the Burma

plate; nearly 1600 km of fault was affected around 160km off the coast of Sumatra. This

Numerical Simulations: Application

114

massive earthquake generated a large tsunami that spread over the Indian Ocean in the

following hours.

Firstly, the tsunami wave propagation computed by TRITON-G is depicted in Fig. 6.1;

each snapshot represent an hour after the earthquake’s main event. The parameters for the

source were provided by RIMES and the result is shown in snapshot (a) of Fig. 6.1. The initial

displacement represent height of 10 m and troughs of -5 m. In order to show the wave

covering the totality of the Indian Ocean a slightly longer simulation was produced as

opposed to the 10-hour test reported in the performance section. The results shown in the

images represent 12 hours on real time and it took TRITON-G 51 minutes to complete the

full simulation.

The images provide a visual record of the evolution of the tsunami wave train. Due to

the initial location, several countries were rapidly affected by the arriving tsunami; Indonesia,

Thailand and Malaysia received the first train of waves within minutes of the earthquake’s

main event. Also the positioning of the initial source made possible a direct hit towards Sri

Lanka, India and later on the Maldives Islands. At around 5 hours, waves has spread reaching

Australia and at around 6 hours after the earthquake the waves start to arrive in the north-east

of Africa and then continue to spread covering all the domain. At 12 hours, it is still possible

to see small oscillations all over the Indian Ocean still remaining from the original tsunami.

These synoptic maps also serve to show the magnitude of this event and the destructive

characteristic of tsunamis waves with their ability to travel extremely large distances with

enough energy to case damage.

Numerical Simulations: Application

115

Fig. 6.1 (a) Time = 0 hours. Initial Source in Sumatra.

Fig. 6.1 (b) Time = 1 Hour

Numerical Simulations: Application

116

Fig. 6.1 (c) Time = 2 Hours

Fig. 6.1 (d) Time = 3 Hours

Numerical Simulations: Application

117

Fig. 6.1 (e) Time = 4 Hours

Fig. 6.1 (f) Time = 5 Hours

Numerical Simulations: Application

118

Fig. 6.1 (g) Time = 6 Hours

Fig. 6.1 (h) Time = 7 Hours

Numerical Simulations: Application

119

Fig. 6.1 (i) Time = 8 Hours

Fig. 6.1 (j) Time = 9 Hours

Numerical Simulations: Application

120

Fig. 6.1 (k) Time = 10 Hours

Fig. 6.1 (l) Time = 11 Hours

Numerical Simulations: Application

121

(m) Time = 12 Hours

Fig. 6.1 Hourly snapshots of the Indonesian 2004 tsunami propagation after the earthquake simulated by
TRITON-G.

In conclusion, the animation generated by TRITON-G and shown in snapshots here

above, was compared with existing simulations from different researches available at the

tsunami events database [94]. From this qualitative comparison it was observed a correct

wave propagation along the Indian Ocean; this served as a first confirmation that the results

were accurate.

6.1.1 Tide gauge comparison

In order to properly estimate if the propagation was correct, several gauges were

located in the domain during the simulation and then compared to the real values recorded

by buoys. These buoys measure the ocean sea level at regular intervals and serve as a critical

factor to determine tsunamis arrival times and heights. The recording frequency varies from

system to system but in general is of 5 minutes. Although several sources are available,

DART® (Deep-ocean Assessment and Reporting of Tsunamis) [95] buoy system is one of

Numerical Simulations: Application

122

the most well-known and accessible. In some charts presented in the results the initial ocean

sea level is not zero even when the tsunami waves have not arrived yet, this is easy explained

by the fact that the buoy stations report tide values which naturally rise and low ocean sea

level. The location of the gauges used in this work is shown in Fig. 6.2, all these stations due

to their position received tsunami waves directly from the source.

Fig. 6.2 Gauge locations in the Indian Ocean: Male, Gale, Diego Garcia, Colombo and Point Le Rue.

The first gauge compared is Diego Garcia, an atoll in the Chagos Archipelago,

located at 7º30’N; 72º 38’ E and approximately 2700 km from the west side of the fault. This

station records every 6 minutes. The first wave arrived at 3 hours 46 minutes after the

earthquake, Fig. 6.3 shows the result of TRITON-G for this gauge. It is clear the arrival time

agreement, TRITON-G predicted time is just a few minutes ahead from the actual event. Also

the arrival height is in great accordance with the recorded gauge. One of the objective of this

work is to produce a model that its results can be used for evacuation warnings, hence slightly

overshooting do not affect this purpose.

Numerical Simulations: Application

123

Fig. 6.3 Comparison of arrival times Diego Garcia tide gauge vs TRITON-G

This station served a second goal due to its location. The natural topography in the

area between the source and this station show no obstacles hence allowing for an obstacle-

free propagation of the wave. Thus, the results of this gauge serve also as an indirect

benchmark to far-field propagation with real bathymetry. Just as shown in the first section,

the implementation of the numerical model of TRITON-G appears to be correctly estimating

the wave propagation in spherical coordinates and with complex bathymetry.

The second gauge compared is Male, near the Maldives Islands, located at 4º18’N;

73º 52’ E and approximately 2000 km from the west side of the fault. This station is sampled

every 4 minutes. Results for this gauge comparison are shown in Fig. 6.4, the arrival wave

occurs 3 hours 17 min after the earthquake; again TRITON-G shows good agreement with

this arrival time. Also, the main tsunami event peak is reproduced by our model, moreover it

can be seen the excellent agreement as the tsunami continues to arrive; the two main receding

wave are correctly estimated as well as the second and third tsunami wave train, with heights

predicted within just a small difference of those measured by the gauge. All this despite the

‐0.8

‐0.6

‐0.4

‐0.2

0

0.2

0.4

0.6

0.8

0 100 200 300 400 500 600 700

H
e
ig
h
t
[m

]

Time [min]

Diego Garcia

Gauge

TRITON

Numerical Simulations: Application

124

considerable distance already traveled by the tsunami which confirm a good modeling of the

far-field simulation.

Fig. 6.4 Comparison of arrival times Male tide gauge vs TRITON-G

The third gauge presented is Gan, near the Maldives Islands, located at 0º68’N; 73º

17’ E and approximately 2300 km from the west side of the fault. This station is sampled

every 4 minutes. The comparison with our model is presented in Fig. 6.5. The arrival wave

occurs at 3 hours 17 minutes after the earthquake; the model show good agreement with this

arrival time within an acceptable small difference; also although there is overshooting present

the peak of the first arrival wave and main event at this station is also reproduced consistent

with the observed that the gauge location. The complexity of the bathymetry around this

locate might affect the proper estimation of the arrival height while the shallow regions might

be amplifying these values.

‐1.5

‐1

‐0.5

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600 700

H
e
ig
h
t
[m

]

Time [min]

Male

Gauge

Triton

Numerical Simulations: Application

125

Fig. 6.5 Comparison of arrival times Gan tide gauge vs TRITON-G

The fourth gauge is Colombo, in Sri Lanka, located at 64º93’N; 79º83’ E and

approximately 1400 km from the west side of the fault. This station is sampled every 2

minutes however due to the intensity of the arrival tsunami the gauge was damaged after the

first wave, yet the recorded values until stop functioning prove valuable for comparison.

Fig. 6.6 Comparison of arrival times Colombo for tide gauge, TRITON-G, RIMES

‐2.5

‐2

‐1.5

‐1

‐0.5

0

0.5

1

1.5

2

0 100 200 300 400 500 600 700

H
ei
gh
t
[m

]

Time [min]

Gan

Gauge

Triton

‐1.5

‐1

‐0.5

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600 700

H
e
ig
h
t
[m

]

Time [min]

Colombo

Gauge
TritonNew
Rimes

Numerical Simulations: Application

126

In this station the arrival wave happens 2 hours 50 minutes after the earthquake; due

to lack of data after the gauge’s damage, we rely on eyewitnesses accounts who reported that

the first wave was not the biggest but the following ones.

The comparison of Colombo’s tide gauge with TRITON-G is shown in Fig. 6.6; the

arrival time of the modeled wave is similar to that of the recorded gauge, the ahead time

difference of the model is partly explained by the gauge location in the simulation; as

explained in chapter 3, coastlines not marked for inundation have a wall boundary condition,

hence gauges too close to the shoreline might not represent accurate results, in order to avoid

this effect the gauge location in the simulation is located slight west of the actual buoy, this

accounts for an earlier predicted arrival time. Besides the tide gauge and TRITON-G results

Fig. 6.6 also show the results from RIMES original model for comparison. This serve to

illustrate how TRITON-G improved the height estimation compared to that of the previous

model. Also looking at the wave train predicted by our model it can be seen that the largest

peak does not occur with the first wave but instead at a later time a couple of hours later than

the first event; this coincides with eyewitnesses accounts who reported larger waves later

than the arrival one.

Fig. 6.7 Comparison of arrival times Point La Rue tide gauge vs TRITON-G

‐2

‐1.5

‐1

‐0.5

0

0.5

1

1.5

0 100 200 300 400 500 600 700

H
e
ig
h
t
[m

]

Time [min]

Point La Rue

Gauge

TritonNew

Numerical Simulations: Application

127

The last station is Point La Rue, near Seychelles, located at 4º68’S; 55º53’ E and

approximately 4300 km from the south-west side of the fault. This station is sampled every

4 minutes. The arrival wave is reported at 7 hours and 4 minutes after the earthquake. The

comparison of this gauge with our model is shown in Fig. 6.7. As it can be seen, the arrival

time coincides with good agreement with that of the recorded values; similarly with the

previous case the slight time difference is partly explained by the same reason, the location

of the simulation gauge slight east of the actual buoy since this is very near the shoreline.

This comparison represent very valuable information for the model validation; first, the

location of this gauge accounts for a considerable far-field simulation, more than 4000 km

are covered by the tsunami wave and yet the arrival time and wave height is within good

agreement of the recorded values. Secondly, due to the location of the gauge, the traveling

reaching it had gone through the Maldives islands, where complex bathymetry generate

dispersion on the waves and coasts reflection affects as well; yet the model preserves the

traveling wave well, there is no noticeable diffusion of dissipation of the wave that might

reduce the arrival heights.

In conclusion, with the comparison of our model’s results with real gauges it is

possible to determine the good accuracy presented by TRITON-G. Arrival times for the

traveling wave were all within good agreement with the recorded values, small differences

can be partly explained by the simulation gauge location. Also it was shown that the main

events could be reproduced; although a tendency to overshoot was noticed, this did not affect

the ability of the model to transport the wave along far distances and in no case a wave sign

was reported incorrected, all crests coincides with observed and measured values. There are

three possible reasons to the different wave oscillation after the main event as well as the

peak height discrepancies:

 Bathymetry and Topography

 Initial Condition

 Dispersion

Numerical Simulations: Application

128

Although databases for bathymetry and topography with good accuracy are available,

these are still far from representing in details the real shape of the Ocean’s bottom and

orography. This difference makes it challenging to reproduce the wave reflections on coasts

and effects of traveling through the Ocean bed completely realistic. Hence it is expectable

that some difference is found in the wave oscillations.

Also, every tsunami model is dependent on a good and accurate initial condition to

obtain good simulations, source theory however is still a developing and challenging field

and obtaining a realistic fault source is not always possible. The use of an inaccurate initial

fault source can produce differences in the arrival wave heights, also in the direction and

speed of the traveling wave.

Waves traveling through the Ocean bed experience physical dispersion due to the

effect of the bathymetry. In general this dispersion is compensated by numerical dispersion

introduced by the truncation error; however as it was explained in the methods section, for

TRITON-G using the cubic interpolation upwind scheme has the advantage of minimizing

dispersion and diffusion. The result is a homogeneous traveling wave with minimum

dispersion effect thus reducing the possibility of seeing the high oscillatory behavior of the

arrival tsunami wave in the gauges.

Finally, this kind of discrepancies between recorded gauges and modeling programs

is not exclusive to us but instead rather common; the same challenges experienced in this

work are reported in other operational models as well however our discrepancies tend to be

less than those in other researches ([96], [97]).

6.1.2 Inundation Run-up: Focal Areas, Phuket

In order to continue the validation of our tsunami model this section present the results

obtained for the inundation calculation of the original 4 focal areas: Mozambique, Comoros,

Seychelles and Sri Lanka, plus an additional focal area in Phuket.

Numerical Simulations: Application

129

Although exact measured inundation maps of these areas does not exist, the results are

based on RIMES existing simulated repository and reports [98], and on post-tsunami

damage surveys; with collecting information concerning the damage produced by the

inundation, it is possible to estimate the maximum heights and run-up on several locations.

 The first case presented is the result for Sri Lanka focal area. Specifically this area

covers the coastal region known as Hambantota. Eye witness accounts report the arrival time

of the first tsunami wave around 9 am the morning of the 26th, some two hours after the initial

earthquake in Sumatra. This arrival time coincides with results obtained with our model. It

is important to mention that the result for this focal area were computed by TRITON-G in

just 9 minutes, this show the speed advantage provided by our model; obtaining fast

predictions allow authorities to make an evacuation decision quickly and save lives.

Fig. 6.8 Hambantota Inundation Map, Sri Lanka FA

The inundation map for Hambantota generated by TRITON-G is shown in Fig. 6.8.

According to measurements done post-tsunami, it was determine that the arrival waves had

heights of over 8 meters and produced run-ups inland in certain areas of up to 2 km. As it can

be seen in Fig. 6.8, TRITON-G results reproduce this account, the inundation map show areas

Numerical Simulations: Application

130

up the coastal bay where inundation produced hundreds of meters deep run-ups in land. Also,

the image on the left of Fig. 6.10 show the maximum wave heights computed, the results show

values of over 8 meters just as reported by witnesses, in fact wave heights of almost 10m

were obtained during simulation.

These qualitative comparisons show good agreement with the observations made on

field. In order to compare more accurately the result of our maps, a comparison between

RIMES Hambantota inundation report and TRITON-G’s simulation is presented in Fig. 6.9;

the image on the right represents TRITON-G’s result with the area for Hambantota trimmed

to fit that of the report.

Fig. 6.9 Inundation comparison Hambantota, Sri Lanka; RIMES (left) vs TRITON-G (right)

Although the presence of topography, irregular bottom friction and complex

interaction with the land makes difficult to compare directly between results, it is clear that

in general both simulations have excellent agreement. Both simulations show agreement on

the areas that were inundation and the areas that experienced no run-up. The decisive factor

that made some areas more propense to inundation than others was the topography. The

arrival tsunami wave hit the coast with heights of around 8-10 meters, coastal areas that faced

the ocean with higher topographic heights were spared from being inundated. On the

Numerical Simulations: Application

131

contrary, coast shores that were practically flat were overtaken by the incoming wave as

shown in the results.

Fig. 6.10 Hambantota, Sri Lanka; left: maximum wave height; right: maximum wave velocity

Next, the results obtained for the rest of the focal areas are presented. It is important

to mention the case of Mozambique for who maps were not generated. The reason of this is

not oversight but a programming condition. As explained in the GPU chapters, output data

for the focal areas start to get stored if the wave entering the focal area exceeds a certain

target value, in this case 0.1 meters. The results for the Indonesian tsunami showed that the

arriving waves at Mozambique were less than 0.1 m hence no output was recorded.

Nonetheless, to guarantee that the four focal areas were able to compute inundation and

estimate possible damage, a separated analysis was performed for the African region around

Mozambique, based on the work of Aderito et.al. [99]. Results for this study case can be

consulted in Appendix B (Source Fault Simulations section) of this work. Scenario 10, which

correspond to a fault near Mozambique was chosen as the case to compare our result.

TRITON-G proved to be stable and generate a propagation also in this region of the domain;

since this is a theoretical case no actual gauges measurement exists, however from a

qualitative comparison with the results in [99] we could determine that the heights and arrival

times were within good agreement.

Numerical Simulations: Application

132

The inundation map for Seychelles is shown on the right of Fig. 6.11. Although no

detailed simulation is available to compare the inundation, again we use the eye witness

accounts and post-tsunami surveys. The report [100] found run-up in the east coast of the

island, a region called Anse Royale, where infrastructure damage on this beach was found.

The inundation map coincides with this studies as shown in this figure. Inundation with

heights of 2-3 meters were obtained by TRITON-G and as shown in the map, the run-up went

in land in the beach.

Fig. 6.11 Seychelles FA, left: maximum arrivale wave; right: inundation map

Also according to [100] arrival wave heights of around 1.9 and 2.8m in Anse Royale

were observed; this is in good agreement with the results obtained with TRITON-G, the

image on the left of Fig. 6.11 shows the maximum wave heights with values up to 3.5m.

Finally the results for Comoros is shown in Fig. 6.12, the arrival times estimated by

our model of around 6 hours coincides with the accounts recorded. The map on the left show

Numerical Simulations: Application

133

the results for the maximum wave height and the image on the right show inundation. Due

to the small arrival wave, the inundation did not produce a noticeable run-up for this case.

Fig. 6.12 Comoros FA, left: maximum arrivale wave; right: inundation map

 An additional test was tested during TRITON-G development: Phuket. This case

served the purpose not only to re-validate even more the good accuracy of TRITON-G but to

test the flexibility of including a new focal area. Successfully, the new databases for this

region were submitted to TRITON-G and a new mesh was generated around this focal area.

With this new mesh the Indonesian tsunami was computed again to obtain results for the

inundation.

 The bathymetry databases kindly submitted by RIMES are shown in Fig. 6.13, just

like the other FA two sets were used, one with 150m resolution and the other with 50m

resolution, matching level 7. The Phuket focal area is highlighted in red and show an

interesting case that did not appear before: the mix of bathymetry source inside on single

focal area. In the cases of the other four focal areas, the highest resolution was always covered

by a single dataset but in this case part of the focal area bathymetry, Kamala, is replaced

directly from a fine 50m dataset while the other part, Patong, is interpolated from a coarser

resolution. The effect of doing this will show the importance of accurate databases.

Numerical Simulations: Application

134

Fig. 6.13 Phuket Inundation: left bathymetry databases used; right: zoom on Kamala and Patong

The inundation map for the Phuket focal area, which includes the region of Kamala and

Patong is shown in Fig. 6.14. The work by Suppasri [101] is to compare these results.

Fig. 6.14 Kamala and Patong maximum inundation map TRITON-G

The wave arrival time for this region is of around 181 minutes, which agrees with the

values obtained by our model. The results to do this comparison are shown in Fig. 6.15, where

Numerical Simulations: Application

135

the focal area Phuket was trimmed to match the area reported in [101]. The image on the left

present the inundation simulation obtained in the report while the image on the right depicts

the results of our model. It can be readily see that in general, the results around the Kamala

region coincide well between models. Both systems report maximum inundation heights of

around 5-6 meters and the run-up distances follow the same pattern. This is another good

validation for TRITON-G as a propagation and inundation modeling tool.

Fig. 6.15 Kamala inundation map comparison. Left: Suppasri et.al. [101]; right: TRITON-G

 There is however certain discrepancy in the inundation run-up in the Patong region.

As mentioned before the bathymetric dataset obtained for this part of focal area was

originally of 150m, hence to obtain a 50m resolution interpolation was needed. Therefore

while uniform and un-interpolated bathymetry and topography was used in [101], our model

used a mix of interpolated and high accurate values. This effect explains this discrepancy and

serves as a warning on the importance of having realistic and high accurate bathymetry and

topography in order to obtain high resolution.

136

 In conclusion, except for Mozambique, the focal areas reproduced correctly the

inundation. Arrival times and maximum wave heights and inundation were correctly

predicted by our model. More precise comparison on the Hambantota region and Kamala

served as proof to support the effectiveness of our model. Moreover, the test on Phuket

showed the importance of using real and accurate topography and bathymetry and the effect

that using smoothen values can produce.

6.2 Concluding remarks

As seen in earlier chapters, TRITON-G delivers fast computation for complex and large

simulations using GPU acceleration. And now by using benchmarks and real data

comparisons it is shown that the model used by TRITON-G also provides accurate results.

Hindcasting the Indonesian 2004 tsunami serves as a test to determine the behavior of the

model under real circumstances. Comparison with several tide gauges across the Indian

Ocean showed very good agreement with the wave arrival times and confirmed correct

reproduction of the arrival wave peak event. Discrepancies in the arrival height can be

explained by the effect of the initial conditional and bathymetric effects, while the

discrepancies on the oscillatory wave behavior after the main event can be understood as a

dispersion effect. The gauges also served to test the model stability and ability to preserve

the traveling wave across long distances. Moreover by comparing results with existing post-

tsunami damage surveys and other simulations it was possible to determine the correct

prediction of inundation, in particular for Hambantota and Phuket regions. This last test also

demonstrated the flexibility of TRITON-G to generate new FA and also was an excellent

example of the influence in the results of using high accurate bathymetry as opposed to

interpolated values.

Conclusions and Future Work

137

Chapter 7. Conclusions and Future Work

7.1 Conclusions

In this work a novel, fast and accurate tsunami modeling was introduced. The

combination of highly accurate numerical methods provided an excellent solution to the

governing equations. Moreover the development of a customized refinement served to create

a mesh optimized for the resources available and the interests of RIMES. A full-GPU

implementation was proven successful, several optimizations introduced in the kernels and

load balance as well as using multi-GPU allowed to obtain high performance from the Tesla

K40 cards used. A large simulation of 10 hours in real time can be computed in 40 minutes

machine time, including considerable-sized output. Hindcast of the Indonesian 2004 tsunami

helped to compare results and find good agreement with propagation and inundation. Also

the good agreements with benchmarks serves as a back up to the validity of this work.

The main conclusions are:

 A tsunami model was successfully developed that proved to be accurate, robust

and outstandingly fast.

 A full-GPU operational model was properly implemented; multi-GPU delivered

high speed simulation and performance.

 By using the proposed numerical methods, the governing equations correctly

modeled the tsunami propagation and inundation accurately with smooth

integration between different coordinate systems.

 A customized refinement based on tree-based refinement was developed to

produce a mesh that provide accuracy, and efficient use of resources.

 By exhaustive testing, benchmark comparing, and hindcasting, the program

developed proved to be reliable under a wide range of circumstances.

Conclusions and Future Work

138

 The use of an easy interface to interact with the program through simple

parameters files proved to give the degree of flexibility desired to the end user.

The work done in this research produced TRITON-G, a tsunami operation real-time

model that has proved robust and accurate. It was tailored-made to fulfill the requirement of

RIMES and to replace their previous program. At this time TRITON-G has been already

deployed and has been under operation at RIMES headquarters with success. The continuous

testing in the developing stage and now at operation stage has confirmed the robustness of

the program. Moreover TRITON-G ended up being a full framework, providing additional

utilities for data and parameters pre-processing, like database distance generation, and output

post-processing, like inundation images, variables output, and gauges.

The innovative approach to implement the model as a full-GPU application proved to

be an excellent decision. The large domain computing is accelerated by the used of multi-

GPU. Even though only three Tesla K40 cards were available, it was possible to obtain great

acceleration for simulation with great complexity. Being able to obtain results within minutes

on areas close to the tsunami source is essential to warning systems. TRITON-G can fulfil

this requirement single-handedly. The optimization implemented in the kernel provided the

necessary boost to obtain the best performance out of the cards. Also working with the Pipe

asynchronous work flow for output provide the advantage of delivering results as frequent as

requested. In this way, results can be checked progressively as the simulation advances.

The two refinement factors custom developed for TRITON-G proved to be accurate

and efficient. By handling different block levels, high resolutions of 50m in coastlines can

be obtained while coarser resolutions of 2 arc-min remain in the open ocean. Moreover,

despite the fractal structure of coastlines, the refinement was also able to track the complex

coast shapes accurately. The introduction of the concept of focal areas worked perfectly to

diminish the memory usage while not losing accuracy in the coastlines of interest.

Conclusions and Future Work

139

When compared TRITON-G with existing data from the actual tsunami of Indonesia

2004, it proved yet again to be accurate; it reproduced arrival times in high accordance with

the gauges. Also the arriving wave heights reproduced the peaks of the main events, always

matching or improving simulations from the previous RIMES program. Although a small

tendency to overshoot the heights was noticed, this can be manageable for warning systems

since their aim is to look for worst-case scenarios to make evacuation decisions.

Finally, the idea behind collaborating in this project with RIMES not only aimed at

producing a model that was accurate but also flexible. It is not so hard to create a specialized

simulation for a single case with small variations however TRITON-G has the ability to be a

flexible operational tool. The input information is easily handled by parameter files that make

a smooth interface for the user. The block mesh can be custom made, any focal areas of

interest can be set, the distance to refine can be changed or the number of levels, all these

options available to the user. Furthermore the output variables and images can be easily

controlled by the user with a simple parameter file.

It is our deepest hope that with this humble contribution to forecasting we help to move

forward tsunami models into the next step, and by doing so, the lives of people at risk of

being affected by a tsunami are better protected.

7.2 Future Work

A fresh and novel tsunami operational model has been presented in this work,

TRITON-G. It has proven to be a fast program and generate accurate results. Moreover, it

successfully fulfilled the requirements for the collaborating with RIMES. Since TRITON-G

was developed under specific requirements it is understandable that certain limitations had

to be taken. Nonetheless, outside of the collaborating project, it would be possible to take

Conclusions and Future Work

140

TRITON-G to a new level of performance. Budget constrains made available only 3 GPU

cards for this work, however TRITON-G is already developed with a multi-node, multi-GPU

framework in mind. Hence with a few adjustments it could be deployed in larger servers,

with more GPUs available or even in a Super Computer, like Tsubame 3.0 at Tokyo Institute

of Technology. This new super computer is composed of a large cluster of GPUs, nVIDIA

Tesla P100 cards. As it was shown in the GPU chapter, TRITON-G has been already tested

on this P100 cards, achieving high performance. Also additional kernel tuning can be

developed for newer cards. Another improvement would be the available memory, with more

memory it would be possible to process larger domains i.e. more blocks, for example

computing the whole Earth instead of a portion in the Indian Ocean. Furthermore, it would

be also possible to implement TRITON-G as a tool for structural design, following the new

NRA regulations this work can be modified to assess tsunami risks on areas where NPP

buildings exist or are planned to be constructed. The flexibility and reliability of TRITON-G

permits to test many inundation scenarios for different tsunami heights as well as do it swiftly

by its GPU acceleration.

Secondly, a trend that is growing in the simulation community is the use of mixed

precision. GPU cards start to include variables to handle this case. Hence, it is possible to

apply single precision to areas where water depth is not relatively shallow (around -1000 m)

and use double precision for deeper regions. This would be an improvement in speed because

of the introduction of single precision computing but it also represent a challenge to connect

areas with different precision smoothly as well as keeping a correct load balance on the cards.

Also, additional complexity could be included in the model to include effects that were

neglected in this work for performance tradeoff. For instance wave dispersion or sea tides

could be incorporated if more resources were available.

TRITON-G proved to be a robust model, however certain care had to be taken due to

the presence of very large bathymetry gradients, peaks and plateaus. The appropriate election

of a t together with an added small artificial viscosity served to overcome those

problematic areas. However, where those approaches proved too general, a more specific and

Conclusions and Future Work

141

dedicated approach could be taken by the use of morphometrics [102]. By determining the

specific shapes that cause numerical instabilities they could be automatically identified using

morphometrics thus making it easier to treat locally those points and drastically reducing the

need of general solutions.

Finally, in recent years the influence of deep learning has grown exponentially due to

the computing power of GPUs. Training a model on CPU could be a task of weeks and

months, however with GPUs neural networks can be fed and trained in days or hours. A long

term goal would be to implement deep learning for code auto-tuning and forecasting.

“The reasonable man adapts himself to the world; the unreasonable one persists in trying to adapt

the world to himself. Therefore all progress depends on the unreasonable man”

George Bernard Shaw, 1856-1950

143

Appendix A: Previous Work

Our interest in GPGPU computing as a tool for accelerating simulations is not recent,

starting in 2007 great success was achieved accelerating real-time tsunami simulations [103].

Even though the technology was still in the first stages of development, we could produce a

simulation that outperformed CPU computing by up to 62 times on single GPU. This allowed

us to create an interactive real-time visualization as well which was very innovative by then.

Moreover multi-GPU was also explored and again great success was obtained in the

simulation acceleration. GPU cards in that time had small memory which made no possible

large simulation however even in those conditions our tests for big grids showed excellent

scalability. Supercomputer Tsubame 1.2 was composed of a cluster of GPU, state-of-the-art

in that moment, and this allowed us to test multi-node scalability as well.

(a) (b)

144

(c) (d)

 (e) (f)

Fig. A.1 Tsunami Simulation running on Terrain II. Increments of aprox.1min shown

The most outstanding result from that study was to achieve the same performance of

1000 CPUs (AMD Dual Opteron) with just 8 GPUs (Tesla S1070).

145

Fig. A.2 Japan Tohoku Region study case, SRTM and ETOPO merged Bathymetry [103]

Fig. A.1 shows the first successful real-time simulation obtained. Although the domain

did not represent any specific area and had a relatively small size of 512x512, the promising

results guided us to try real bathymetry as shown in Fig. A.2; the Tohoku region of Japan was

used as the study case for the GPU acceleration tests. Results of the excellent scalability and

outstanding speed up are shown in Table A.1.

GPU Grid Size Time SpeedUp Efficiency(%)
2GPU

512 9.349 1.330 66

1024 24.86 1.931 97

2048 96.34 1.941 97

4096 381.3 1.934 97

4GPU

512 17.459 0.712 18

1024 18.898 2.540 63

2048 49.276 3.795 95

4096 194.057 3.801 95

8GPU

512 139.14 0.089 1

1024 147.341 0.326 4

2048 141.815 1.319 16

4096 112.68 6.546 82

Table A.1 Asynchronous Scalability for 2, 4 and 8 GPUs; Tsubame 1.5 Tesla S1070

146

147

Appendix B. GPU Boost

As explained in the Tesla K40 Application Note [104]:

In the Tesla K40 there is something called the “Base Clock” and “Boost Clock(s)”:

Base Clock: Selected based on worst-case reference workload. All Tesla K40 boards ship at

the graphics core clock set at “base clock.” By default all Tesla K40 boards will run at this

clock setting.

Boost Clock(s): These clocks are selected based on less power aggressive workloads. There

may be more than one boost clock to provide deterministic performance for workloads that

consume less than 235 W. In the case of the Tesla K40 there are two boost clocks. An end

user can select one of the boost clocks using NVML or nvidiasmi. As long as the board power

remains within 235 W the board will maintain the selected boost clock for the entire

execution period.

In order to boost K40, the following command is used to change the card’s running clock:

sudo nvidia-smi -ac 3004,875 -i {CardID}

It is interesting to note that the K80 card also possess the Boost option, however in this case

the option and configuration is automatically handled internally by the card. This self-

adjusting behavior can be seen in the following measurements done during our work; the

oscillation points on power and temperature for K80 charts show how the card changed clock

configuration during TRITON-G execution while the K40 remained stable.

148

Boost Behavior Comparison K80 vs K40

Fig. B.1 Power measurement for K80 Autoboost

Fig. B.2 Temperature measurement for K80 Autoboost

0
20
40
60
80

100
120
140
160

0 50 100 150 200 250 300 350

P
o
w
er
 [
W
at
t]

Time [s]

Power TRITON‐G K80

 Power

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350

Te
m
p
 [
C
]

Time [s]

Temperature TRITON‐G K80

149

Fig. B.3 Clock measurement for K40 at 745Mhz

Fig. B.4 Temperature measurement for K40 at 745Mhz

0

200

400

600

800

1000

0 100 200 300 400 500 600

C
lo
ck
 [
M
h
z]

Time [s]

Clock TRITON‐G K40 @745MHz

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600

Te
m
p
 [
C
]

Time [s]

Temperature TRITON‐G K40 @745MHZ

150

Fig B.5 Clock measurement for K40 at 875Mhz

Fig B.4 Power measurement for K40 at 875Mhz

0

200

400

600

800

1000

0 100 200 300 400 500

C
lo
ck
 [
M
h
z]

Time [s]

Clock TRITON‐G K40 @875MHz

0

20

40

60

80

0 100 200 300 400 500

Te
m
p
 [
C
]

Time [s]

Temperature TRITON‐G K40 @875MHz

151

Appendix C Additional TRITON-G Tests

To further test TRITON-G stability under different circumstances and wavelengths, wave

heights and initial locations, exhaustive testing was done, some of tests results are presented

here divided into two groups: Gaussian Initial Conditions and Fault Sources.

1) Gaussian Waves Initial Condition

(a) (b)

(c)

Fig. C.1 Gaussian 1

152

(a) (b)

(c)

Fig. C.2 Gaussian 2

153

(a) (c)

(b) (d)

Fig. C.3 Gaussian 3

154

(a) (c)

(b) (d)

Fig. C.4 Gaussian 4

155

2) Fault sources

(a) (c)

(b) (d)

Fig. C.5 JAVA Full Rupture Mw9.0

156

(a) (c)

(b) (d)

Fig. C.6 MAKRAN Full Rupture Mw 9.2

157

(a) (c)

(b) (d)

Fig. C.7 NORTH ANDAMAN Leftover 2004 Mw8.9

158

(a) (c)

(b) (d)

Fig. C.8 NORTH ANDAMAN Mw8.7

159

(a) (c)

(b) (d)

Fig. C.9 SOUTH SUMATRA Mw9.3

160

(a) (c)

(b) (d)

Fig. C.10 Mozambique Scenario 10 (As explained in [99])

161

Bibliography

[1] Nuclear Regulatory Agency Japan, "Enforcement of the New Regulatory
Requirements," Tokyo, 2013.

[2] Tokyo Electric Power Company, "Building diagrams for 1F ground level and cross
section," Offical Communication, 2014.

[3] nVIDIA, "CUDA Programming Guide," 2017. [Online]. Available:
http://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html#axzz4rP4v1E69.

[4] D. Smith, S. Shi and R. Cullinford, "The Holocene Storegga slide tsunami in the
United Kingdom," Quaternary Science Review, vol. 23, pp. 2291-2321, 2004.

[5] S. Bondevik, L. F and M. J, "The Storegga Slide tsunami- comparing field
observations with numerical simulations," Marine and Pretrolum Geology, vol. 22,
pp. 195-208, 2005.

[6] T. Bugget and B. R. K. N, "The Storegga slide," Philosophical Transactions of the
Royal Society of London, vol. Series A 325, pp. 357-388.

[7] F. Nanayama, S. K and F. R, "Unusually large earthquakes inferred from tsunami
deposits along the Kuril trench," Nature, vol. 424, pp. 660-663, 2003.

[8] M. Atwarer, T. Satake, K. Ueda and D. Yamaguchi, "The Orpgane Tsunami of
1700," USGS Professional Paper, vol. 1707, p. 133.

[9] K. Satake, K. Shimazaki, Y. Tsuj and K. Ueda, "Time and site of a giant earthquake
in Cascandian inferred from Japanese tsunami records of January 1970," Nature,
vol. 379, pp. 246-249, 1996.

[10] K. Satake and Y. Tanioka, "New Guinea earthquake: Mechanism and quantificatio
of unusual tsunami generation," Pure and Applied Geophysics, vol. 160, pp. 2087-
2118, 2003.

[11] S. T and R. Fiske, "Krakatau, 1883- the volcanic eruption and its efefcts,"
Smithsonian Institution Press, 1983.

162

[12] N. Nomanhoy and K. Satake, "Generation mechanism of tsunamis from the 1883
Krakatau euption," Geophysical Reseach Letters, vol. 22, pp. 509-512, 1995.

[13] F. Press and D. Harkrider, "Air-sea waves from the explosion of Krakatoa," Science,
vol. 154, pp. 1325-1327, 1966.

[14] E. Pelinskey, C. B, A. Stromkov and H. Kim, "Analysis of tide-gauge records of the
1883 Krakatau tsunami," Springer, 2005.

[15] H. Kanamori, "Mechanism of tsunami earthquakes," Physics of the Earth and
Planetary Interiors, vol. 6, pp. 246-259, 1972.

[16] T. Y and S. K, "Fault parameters for the 1896 Sanriku tsunami earthquake estimated
from tsunami numerical modeling," Geophysical Research Letters, vol. 23, pp.
1549-1552, 1996.

[17] J. Lander and P. Lockridge, "United States Tsunamis," National Geophysical Data
Center, Boulder, CO, 1989.

[18] D. Miller, "giant waves in Lituya Bay, Alaska," USGS Professional paper, Vols.
354-C, pp. 51-86, 1960.

[19] N. Shuto, "Numerical simulation of tsunamis- Its present and near future," Natural
Hazards, vol. 4, pp. 171-191, 1991.

[20] K. Abe, "Predominance of long periods in large Pacific tsunamis," Science of
Tsunami Hazards, vol. 18, pp. 15-34, 2000.

[21] N. Shuto and H. Matsutomi, "Field survey of the 1993 Hokkarido-Nansei-Oki
earthquke tsunami," Pire and Applied Geophysics, vol. 144, pp. 649-663, 1993.

[22] T. Takahashi, N. Shuto and F. Imamura, "Source models for the 1993 Hokkaido-
Nansei-Oka earthquake tsunami," Pure and Applied Geophysics, vol. 144, pp. 747-
767, 1995.

[23] Y. Kawata, B. benson and J. Borrero, "Tsunami in Papua New Guinea was as
intense as first thought," Eos transactions American Geeophysical union, vol. 80,
pp. 101-105, 1999.

[24] M. Matsuyama, W. J and H. Yeh, "The effect of bathymetry on tsunami
characteristics at Sisano Lagoo, Papua New Guinea," Geophysical Research letters,
vol. 26, pp. 3513-3516, 1999.

163

[25] E. Geist, "Origin of the 17 July 1998 Papua New Guinea tsunami; earthquake or
landslide?," Seismological Research, vol. 71, pp. 344-351, 2000.

[26] Y. Lay, H. Kanamori and C. Ammon, "The great Sumatra-Andaman earthquake of
26 December 2004," Science, vol. 308, pp. 1127-1133, 2005.

[27] "WHO: World Health Organization," 2013. [Online]. Available:
http://www.who.int/hac/crises/idn/sitreps/en/.

[28] N. Mori, Takahashi and T. Y. ,. Yasuda, "Survey of 2011 Tohoku earthquake
tsunami inundation and run-up," Geophys. Res. Lett.,, vol. 38, 2011.

[29] K. Motoki and N. Toshihiro, "Damage statistics (Summary of the 2011 off the
Pacific Coast of Tohoku Earthquake damage)," J Soils and Foundations, vol. 52, no.
5, pp. 780-792, 2012.

[30] International Atomic Energy Agency, "The Fukushima Daiichi Accident," IAEA,
Austria, 2015.

[31] W. Hansen, "Theorie zur errechnung des wasserstands und derstromungen in
randemeeren," J Pured and Applied Geophysics, vol. 8, pp. 287-300, 1956.

[32] G. Fischer, "Ein numerisches verfahren zur errechnung von windstau und gezeiten
in randmeeren," J of Geophysics, vol. 11, pp. 60-76, 1959.

[33] Z. Kowalik and T. S. Murty, Numerical Modeling of Ocean Dynamics. World
Scientific, 1993, p. 481.

[34] F. Imamura, Review of tsunami simulation, Word Scientific Publishing Co, pp. 25-
42.

[35] F. Imamura, C. Goto, Y. Ogawa and N. Shuto, "Numerical Method of Tsunami
Simulation with the Leap-Frog Scheme," IUGG/IOC Time Project Manuals, 1995.

[36] D. Nicolsky, E. Sileimani and R. Hansen, "Validation and verification of a
numerical model for tsunami propagation and runup," J Pure and Applied
Geophysics, vol. 168, no. 6, pp. 1199-1222, 2011.

[37] V. Titov and C. Synolakis, "Evolution and runup of the breaking and nonbreaking
waves using VTSC2," vol. 126, no. 6, pp. 308-316, 1995.

[38] D. Burwell, E. Tolkova and A. Chawla, "Diffusion and dispersion characterization
of a numerical tsunami model," Ocean Modelling, vol. 19, no. 1-2, pp. 10-30, 2007.

164

[39] M. Berger and R. LeVeque, "Adaptive mesh refinement using wave-propagation
algorithms for hyperbolic systems," SIAM J. Numer. Anal., vol. 35, pp. 2298-2316,
1998.

[40] D. Wang, N. C. Becker, D. Walsh, G. J. Fryer, S. A. Weinstein, C. S. McCreery, V.
Sardina, V. Hsu, B. F. Hirshorn, G. P. Hayes, Z. Duputel, L. Rivera, H. Kanamori,
K. Koyangai and B. Shiro, "Real-time forecasting of the April 11, 2012, Sumatra
Tsunami," Geophys. Res. Lett., vol. 39, no. 19, p. L19601, 2012.

[41] A. Babeyko, "Fast Tsunami Simulation Tool for Early Warning," [Online].
Available: https://docs.gempa.de/toast/current/apps/easywave.html. [Accessed
2017].

[42] D. Peregrine, "Long waves on a beach," Journal of Fluid Mechanics, vol. 27, no. 4,
1967.

[43] O. Nwogu, "An alternative form of the Boussinesq equations for nearshore wave
propagation," Coastal, and Ocean Engineering, vol. 119, pp. 618-638, 1993.

[44] P. Lynett, T. Wu and P. Lui, "Modeling wave runup with depth-integrated
equations," Coastal Engineering, vol. 46, no. 2, pp. 89-107, 2002.

[45] F. Shi, J. T. Kirby, J. D. Geiman and S. Grilli, "A high-order adaptive time-stepping
TVD solver for," Ocean Modeling, vol. 43, pp. 36-51, 2012.

[46] G. Wei, J. Kirby, S. T. Grilli and R. Subramanya, "Fully nonlinear Boussinesq
model for free surface waves. Part 1: Highly nonlinear unsteady waves," J Fluid
Mech, vol. 294, pp. 71-92, 1995.

[47] V. Roeber and K. F. Cheung, "Boussinesq-type model for energetic breaking waves
in fringing reef enviroments," Coastal Engineering, pp. 1-20, 2012.

[48] Y. Zhang and A. Baptista, "Aun efficient and robust tsunami model on unstructured
grids," Pure and Applied Geophysics, vol. 165, pp. 2229-2248, 2008.

[49] S. D. Abadie, S. Morichon, S. Grilli and S. Glockner, "Numerical simulation of
waves generated by landslides using a multiple-fluid Navier–Stokes model," Coastal
Engineering, vol. 57, no. 9, pp. 779-794.

[50] J. Horrillo, G. Wood, B. Kim and A. Parambath, "A simplified 3-D Navier–Stokes
numerical model for landslide tsunami: Application to the Gulf of Mexico," J
Geophysics Res Oceans, vol. 118, pp. 6934-6950.

165

[51] S. D. Abadie, J. C. Harris, S. Grilli and R. Fabre, "Numerical modeling of tsunami
waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma,
CanaryIslands) : Tsunami source and near field effects," J Geophys. Res., vol. 117,
p. C05030, 2012.

[52] "RIMES: Regional Integrated Multi-hazard Early Warning System," [Online].
Available: http://www.rimes.int/. [Accessed August 2017].

[53] D. S. Drumheller, "Introduction to Wave Propagation in Nonlinear Fluids and
Solids," J. Acoust. Soc. Am., vol. 111, no. 3, pp. 1142-1154, 2002.

[54] F. Toro, Shock-capturing methods for free-surface shallow flows, London: John
Wisley&Sons Ltd, 2010.

[55] A. Bermúdez and M. Vázquez, "Upwind methods for hyperbolic conservation laws,"
Comput Fluids , vol. 8, pp. 1049-1071, 1994.

[56] R. LeVeque, "Balancing source terms and flux gradients in high-resolution Godunov
methods: the quasi-steady wave-propagation algorithm," J. Comput. Phys., pp. 346-
365, 1998.

[57] D. Williamson, J. Drake, J. Hack, R. Jakob and P. Swarztraube, "A standard test set
for numerical approximations to the," J. Comput. Phys, vol. 102, pp. 211-224, 1992.

[58] P. Swarztrauber, D. Williamson and J. Drake, "The cartesian method for solving
partial differential equations in spherical," Dyn. Atmos. Oceans, no. 27, pp. 679-706,
1997.

[59] A. Staniforth and J. Cote, "Semi-Lagrangian integration schemes for atmospheric
models – a review," Mon. Weather Rev. , vol. 119, pp. 2206-2223, 1991.

[60] A. Zhukov, "Application of the method of characteristics to the numerical solution
of one-dimensional problems of gas dynamics," Trudy Mat. Inst. Steklov, vol. 58,
1960.

[61] V. Babu, Fundamentals of Gas Dynamics, Wiley, 2014.

[62] V. Rusanov, "Characteristics of the general equations of gas dynamics," Zhurnal
Vychislistelnoi Mathematiki Mathematicheskoi Fiziki, vol. 3, pp. 508-527, 1963.

[63] T. Nakamura, R. Tanaka, T. Yabe and K. Takizawa, "Exactly conservative semi-
Lagrangian scheme for multi-dimensional hyperbolic equations with directional
splitting technique," J. Comput. Phys, vol. 174, pp. 171-207, 2001.

166

[64] Y. Ogata and T. Yabe, "Multi-Dimensional Semi-Lagrangian Characteristic
Approach to the Shallow Water Equations by the CIP Method," International
Journal of Computational Engineering Science, vol. 05, no. 03, 2004.

[65] J. J. Stoker, Water Waves: The Mathematical Theory with Applications, Wiley-
Interscience, 1992.

[66] T. Yabe and T. Aoki, "A universal solver for hyperbolic equations by Cubic-
Polynomial Interpolation I. One-dimensional solver," Comp. Physic Comm, vol. 66,
pp. 219-232, 1991.

[67] T. Yabe, R. Tanaka, T. Nakamura and F. Xiao, "An Exactly Conservative Semi-
Lagrangian Scheme (CIP–CSL) in One Dimension," Monthly Weather Rev., vol.
129, pp. 332-344, 201.

[68] T. Utsumi, T. Kunugi and T. Aoki, "Stability and accuracy of the cubic interpolated
propagation scheme," J Comp. Phys, vol. 101, no. 9, 1997.

[69] J. T. Kirbya, S. Fengyan, T. Babak, J. C. Harrisb and T. G. Stephan, "Dispersive
tsunami waves in the ocean: Model equations and sensitivity to dispersion and
Coriolis effects," Ocean Modelling, vol. 62, pp. 39-55, 2013.

[70] Z. Kowalik, W. Knight, T. Logan and P. Whitmore, "Numerical Modeling of the
global tsunami: Indonesian tsunami of 2004," Science of Tsunami Hazards, vol. 23,
no. 1, pp. 40-45, 2005.

[71] F. Lovholt, G. Pedersen and G. Gisler, "Oceanic propagation of a potential tsunami
from the La Palma Island," J. Geophysics Res, vol. 114, 2008.

[72] A. Sugiyama, T. Aoki and K. Honda, "A stable and higher-order computation for
tsunami inundation using shallow water model," in 第 20 回計算工学講演会,
Tsukuba, 2015.

[73] A. Sugiyama, T. Aoki and K. Honda, "インド洋に面した地域の津波ハザード・

シミュレーションⅡ -高精度スキームによる遡上シミュレーション-," in 第

28 回数値流体力学シンポジウム, 東京, 2014.

[74] J. G. Zhou, D. M. Causon, C. G. Mingham and I. D. M., "The surface gradient
method for the treatment of source terms in the shallow-water equations," J Comp.
Physics, vol. 168, pp. 1-52, 2001.

167

[75] R. J. LeVeque, Finite volume methods for hyperbolic problems, vol. 31, Cambridge
University Press, 2002.

[76] W. C. Thacker, "Some exact solutions to the nonlinear shallow-water wave
equations," J. Fluid Mechanics, vol. 107, pp. 499-508, 1981.

[77] J. Johnston Stoker, Water waves: The mathematical theory with applications, John
Wiley & Sons, Inc, 2011.

[78] L. Smylie and D. Mansinha, "The Displacement Fields of Inclined Faults," B.
Seismological Soc. Ame., vol. 61, no. 5, pp. 1433-1440, 1971.

[79] M. Berger and J. Oliger, "Adaptive mesh refinement for hyperbolic partial
differential equations," J Comp. Physics, vol. 53, pp. 484-512, 1984.

[80] M. Colella and P. Berger, "Local Adaptive Mesh Refinement for Shock
Hydrodynamics," J. Comp. Physics, vol. 82, pp. 64-84.

[81] S. Fedkiw and R. Osher, Level Set Methods and Dynamic Implicit Surfaces,
Springer-Verlag, 2003.

[82] L. Doron, G. Puppo and G. Russo, "A third order central WENO scheme for 2D
conservation laws," Applied Numerical Mathematics, vol. 33, no. 1-4415-421, 2000.

[83] T. Moller, N. Hoffman and E. Haine, Real-Time Rendering, AK Peters Ltd, 1999.

[84] S. Gottschalk, L. Ming and D. Manocha, "OBBTree: A Hierarchical Structure for
Rapid Interference Detection.," 1996.

[85] G. Szauer, Game Physics Cookbook, Amazon Digital Services , 2017.

[86] dyn4j, "SAT (Separating Axis Theorem)," [Online]. Available:
http://www.dyn4j.org/2010/01/sat/.

[87] The General Bathymetric Chart of the Oceans (GEBCO) , "GEBCO," 2017.
[Online]. Available: http://www.gebco.net/.

[88] "CUDA Zone," [Online]. Available:
http://www.nvidia.com/object/cuda_home_new.html. [Accessed 2017].

[89] H. Sagan, Space-Filling Curves, Universitext, 1994.

[90] D. Reed, "User Datagram Protocol INTERNET STANDARD," RFC 768 , 1980.

168

[91] D. Clark, "The design philosophy of the DARPA internet protocols," in SIGCOMM
'88 Symposium proceedings on Communications architectures and protocols, 1988.

[92] "Silo User's Guide," LLNL, 2017. [Online]. Available:
https://wci.llnl.gov/codes/silo/media/pdf/LLNL-SM-453191.pdf.

[93] "nVIDIA Tesla K40 Manual," [Online]. Available:
http://www.nvidia.co.jp/content/PDF/kepler/Tesla-K40-Active-Board-Spec-BD-
06949-001_v03.pdf. [Accessed 2017].

[94] NOAA, "Tsunami Event - The Indian Ocean Tsunami, December 26, 2004," 2017.
[Online]. Available: http://nctr.pmel.noaa.gov/indo_1204.html.

[95] NOAA Center for Tsunami Research, "Deep-ocean Assessment and Reporting of
Tsunamis," 2017. [Online]. Available: http://nctr.pmel.noaa.gov/Dart/.

[96] M. Dao and P. Tkalich, "Tsunami Propagation modelling - a sensitivity study,"
Natural Hazards and Earth System Sciences, vol. 7, pp. 741-754, 2007.

[97] S. Grilli, M. Ioualalen, J. Asavanant, J. Shi, T. Kirby and P. Watts, "Source
Constrainsts and Model Simulation of the December 26, 2004 Indian Ocean
Tsunamia," Port, OCean and Coastal Engineering, vol. 133, no. 6, pp. 414-428,
2007.

[98] RIMES, "Tsunami Hazard and Risk Assessment and Evacuantion Planning -
Hambantota, Sri Lanka," August 2014.

[99] A. Aramuge and Y. Fujii, "Tsunami hazard assessment in Mozambique coast,"
Bulletin of the International Institute of Seismology and Earthquake Engineering,
vol. 44, pp. 19-24, 2010.

[100] Geological Survey of Canada, "Effects of the 26 december 2004 Indian Ocean
Tsunami in the Republic of Seychelles," UNESCO, 2005.

[101] A. Supparsri, S. Koshimura and F. Imamura, "Developing tsunami fragility curves
based on the satellite remote sensing and the numerical modeling of the 2004 Indian
Ocean tsunami in Thailand," J Natural Hazards and Earth Sc., vol. 11, pp. 173-189,
2011.

[102] C. H. G, "Morphometric analysis in geographic information systems: applications of
free software GRASS and R," Computers & Geosciences, vol. 30, no. 9, pp. 1055-
1067, 2004.

169

[103] M. Arce Acuna and T. Aoki, "Real-Time Tsunami Simulation Accelerated by GPU;
Master Thesis," Tokyo, 2009.

[104] nVIDIA, "Tesla K40 GPU Boost Application Note," 2017. [Online]. Available:
https://www.nvidia.com/content/PDF/kepler/nvidia-gpu-boost-tesla-k40-06767-001-
v02.pdf.

171

List of Publications

Refereed Journals

[1] Marlon Arce Acuña, Takayuki Aoki, "Multi-GPU Computing and Scalability for Real-

Time Tsunami Simulation", 3 reviewers. HPCS 2010, IPSJ Symposium Series Vol 2010.

No 1. ISSN 1344-6040

[2] Marlon Arce Acuña, Takayuki Aoki, “Tree-based Mesh-Refined GPU Accelerated

Tsunami Simulator for Real Time Operation”, Computers & Fluids, 2017 (Pending to

submission)

International Conferences

[1] Marlon Arce Acuña, Takayuki Aoki, "AMR Multi-GPU Accelerated Tsunami

Simulation", The 32th Annual Conference. International Conference on Simulation

Technology, JSST 2013

[2] Marlon Arce Acuña, Takayuki Aoki, "Multi-GPU Tsunami Simulation on TSUBAME

GPU Supercomputer". SIAM Conference on Mathematical & Computational Issues in

the Geosciences, March 21-24, 2011. Long Beach CA, USA

[3] Marlon Arce Acuña, Takayuki Aoki, "Real-time Tsunami Simulation accelerated by

GPU” JOINT CONFERENCE 7th International Conference on Urban Earthquake

Engineering (7CUEE) & 5th International Conference on Earthquake Engineering

(5ICEE), March 3-5, 2010, Tokyo Institute of Technology, Tokyo, Japan

[4] Marlon Arce Acuña, Takayuki Aoki, "Real-Time Tsunami Simulation Solving the

Shallow Water Equations on Multi-Node GPU Cluster", ETHZ - Tokyo Tech

172

Workshop : Computing with GPUs, Cells, and Multicores, May 10-11, 2009. Zurich,

Switzerland

[5] Marlon Arce Acuña, Takayuki Aoki, “Real-Time Tsunami Solving the Shallow Water

Equations on Multi-Node GPU Cluster ”, WCCM/APCOM, July 2010, Sydney Australia

[6] Marlon Arce Acuña, Takayuki Aoki, "Multi-GPU Computing and Scalability for Real-

Time Tsunami Simulation", GSIC International Workshop on GPGPU Applications,

January 26, 2010. Tokyo

[7] Marlon Arce Acuña, Takayuki Aoki, "Real-Time Tsunami Simulation on a Multi-Node

GPU Cluster", Poster Presentation SC09, November 14-20, 2009 Portland Oregon, USA

Domestic Conferences

[1] Marlon Arce Acuña, Takayuki Aoki, "Large-scale Mesh-Refined Multi-GPU

Accelerated Tsunami Simulation on a Real Indian Ocean Scenario"; Student

Presentation Award; 22nd Computational Engineering Conference, Omiya, May 31-

June 2 JSCES 2017

[2] Marlon Arce Acuña, Takayuki Aoki. "Large Scale AMR Multi-GPU Tsunami

Simulation" 13-16 April, Compsafe 2014, Sendai

[3] Marlon Arce Acuña, Takayuki Aoki, Kiyoshi Honda, "Tsunami Hazard Simulation in

Indian Ocean Coasts I - Wide-area Simulation with Fine Mesh Adaptation" The 28th

Computational Fluid Dynamics Symposium, 2014, Tokyo

[4] Marlon Arce Acuna, Takayuki Aoki, "Large-Scale GPU Tsunami Simulation on a

Multi-Level Mesh" IAM Symposium: Analysis on marine renewable energy dynamics

and marine environment dynamics Dec. 16 -17 (Saturday), 2011, Fukuoka

[5] Marlon Arce Acuna, Takayuki Aoki, "Mesh Refinement for Real-Time Tsunami

Simulation" , 第 16 回計算工学講演会, May 25-27, 2011, Chiba

[6] Marlon Arce Acuna, Takayuki Aoki, "Multi-node GPU Real-Time Tsunami

Simulation for Large Scale and Actual Study Case", 第 24 回数値流体力学シンポジ

ウム, December 20-22, 2010. Tokyo

173

[7] Marlon Arce Acuna, Takayuki Aoki, "Parallel GPU Computing for Real-Time

Tsunami Simulation on an Actual Study Case"; 第 15 回 計算工学講演会, May 25-

28, 2010. Fukuoka

[8] Marlon Arce Acuna, Takayuki Aoki, "Multi-GPU Computing and Scalability for Real-

Time Tsunami Simulation", HPCS 2010, IPSJ, January 14-15, 2010. Tokyo

[9] Marlon Arce Acuna, Takayuki Aoki, “Real-time Tsunami Simulation Accelerated by

Parallel GPUs“; JSME Fellow Award for Outstanding Young Engineers; 日本機械学

会 第 22 回計算力学講演会 CMD2009, Kanazawa, Japan.

[10] Marlon Arce Acuna, Takayuki Aoki, "Large-scale Real-Time Tsunami Simulation on

Multi-node GPU Cluster", CFD2009. 第 23 回 数値流体力学シンポジウム ,

December 16-18, 2009 Sendai, Japan

[11] Marlon Arce Acuna, Takayuki Aoki, "Real-Time Tsunami Simulation on Multi-node

GPU Cluster”; Grand Prize Best Poster Award; Next-Generation Supercomputing

Symposium 2009, October 7-8, 2009, Tokyo

Honors and Awards

[1] Student Presentation Award. The 32th Annual Conference. International Conference on

Simulation Technology, JSST 2013

[2] JSME Fellow Award for Outstanding Young Engineers, Japanese Society of Mechanical

Engineering, 2010

[3] Grand Prize Best Poster Award, RIKEN Next-Generation Supercomputing Symposium

2009. Tokyo, Japan

[4] Best Paper Presentation Award, Master Degree Presentation, 2009, Department of

Nuclear Engineering, Tokyo Institute of Technology

