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Abstract

Extracting the designated information from the vast amounts of web pages on the Internet

becomes a prerequisite for web data analysis. Partial information extraction techniques based

on XPath enable users to consistently extract information of interest from web pages that do

not provide a structured interface. However, XPath-based extraction is likely to fail when

encountering page variants caused by inconsistent template or internal structure changing over

time, resulting in a high cost of repair. Countermeasures based on pattern matching or model

learning often require a time-costly preprocessing, which is not suitable for cases where the

target data is frequently re-designated. In this dissertation, we present two new extraction

methods for the stable scraping of arbitrary designated data from web pages. The first method,

namely neighbor zone based method, determines the required information in the changed page

based on the unchanged elements and layout relationship in their HTML trees. The second

method, namely path similarity based method, searches the information of interest by ranking

the similarity of the characteristic of page elements based on their XPath information. We

also combine these two methods together to get a higher stable hybrid method. Experiments

on a large set of real-world web pages show that our methods have better stability for web

scraping, compared with the XPath-based extraction. With the hybrid method, in the two

datasets, the F1-score increased by a maximum of 0.119 and 0.891 respectively. Our methods

only need HTML source files and require no preprocessing like manual pattern designing or

model learning, which allows users to flexibly extract information of interest from large-scale

web pages.
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Chapter 1

Introduction

1.1 Background

In the late 1980s, the World Wide Web (aka."WWW", "the web") implemented the "largest

library" of the world through interlinked hypertext documents. Since then, people can acquire

information and generate personalized knowledge via the internet quickly. With the popularity

of data-richweb applications in recent years, such as social networking, online shopping, mobile

browsing, etc., the internet provides access to extraordinary large amount of information through

web pages. These web pages naturally consist of heterogeneous information, for instance,

textual contents, hyperlinks, visual images or other multimedia data[1], which are continuously

produced and consumed online by various platforms. As illustrated in Figure 1.1, people

expect an intelligent agent that can help to automatically extract the information of interest

from web pages for further usage. Accordingly, partially scraping the required information

from web pages plays a key role of precondition on the web data analysis and web application

hybrid (mashup) technologies[2].

Partial information extraction (PIE) is also known as web scraping, web data extraction,

web harvesting or wrapper, which is a process of automatically extracting the required data

from publicly available web pages. A typical process of the PIE application can be generally

addressed as the following four steps.
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Websites with HTML Pages
• huge amount
• semi-structured
• diverse content
• no universal interface

Partial Information Extraction
Technology

Structured Data 
&

Mashup Application

Figure 1.1: Partial Information Extraction on the Web

(1). Users select a web page and designate a target data in the page.

(2). Users locate the target data through a locator, e.g., XPath, regular expression and etc.

(3). Users extract the designated target node using the client-side locator.

(4). Optionally, users can integrate the extracted data with other parts to realize original

content or service, e.g., a Mashup application.

Many organizations and individuals have paid great efforts to collect data in web pages at a

very large scale for obtaining scientific insights. For instance, researchers trace digital contents

generated by users of social network website Facebook for analyzing human behavior[3]; the

statistician accurately predicted the results of presidential elections based on analyzing data that

scraped from the internet[4]; comparison shopping sites like manmanbuy.com extract products’

prices, description and rating from different retailers for intelligent recommendation.

Consistently extracting such information is not a trivial task because most of them are

presented in a semi-structured manner, typically in HTML format with no structured interface.
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The common solution is to parse the page into a tree representation and evaluate an XPath

(XML path language) [5, 6, 7, 8] on it, which specifies how to traverse the trees. The black

solid line in Figure 1.2 shows an HTML tree of a camera detail page simplified from an online

shopping site. To extract the price value carried by the text node with label 6 , we can use the

following XPath expressions,

• P1 = /html/body/div[2]/div[2]/table/tr[1]/td[2]/text()

• P2 = //div[@id=’price’]/*/tr[1]/td[2]/text()

where P1 is an absolute XPath that fully describes the path starting from the root node html

to the leaf node text containing the desired information (¥8,699); P2 is a relative XPath using

a double slash which can start from any intermediate node of the tree depending on user’s

specification.

Because modern websites often use server-side scripts to generate such pages, e.g., other

categories of electronic products, may well share the same or similar template, reusing XPaths

becomes a powerful method to extract information of interest for a broad range of applications.

1.2 Motivation

Consider a scenario in which a owner of a personal e-commerce site, who searches and

recommends exquisite cross-border products for his/her local circles of friends. Every day

the owner monitors and scraps latest products’ detail information such as price, reviews from

various shopping sites, analyzes the cost-effective and then updates the desired information into

the site. The whole process largely depends on the result of the web scraping, in case which

fails it becomes very laborious and costs significant. However, the scraping process based on

XPath suffers from the stability problem which makes the path break and the extraction fail

frequently[9]. On the one hand, websites use similar but inconsistent templates to construct

even pages of the same category. Our previous work[10] showed that the top page of Yahoo!
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Canon IXY160 キャノン

Price: ¥8,699 free shipping Resolution 20 megapixels Screen Size 2.7Inch

Product Information

inserted

Figure 1.2: Sample HTML Trees of a Web Page and a Page Variant
A web page and its page variant are mixed in Figure 1.2. The page variant just inserts red

dotted branch marked as inserted in the page and other nodes are unchanged.

News and BBC Country Profiles used three similar templates for the same page at one time. On

the other hand, during a period of time, the inner structure of a web page may change at any

time without notification because the layout is updated. According to the literature[11], 6.5%

of a sample of 55,000 HTML pages changed every minute, while 41.6% changed every hour. I

refer to such a web page as a page variant where the initial XPath fails to repeatedly extract the

designated information, which is caused by inconsistent template or internal structure changing

over time.

As illustrated in Figure 1.3, the stability problem caused by a page variant can be defined

as follows. Let T1, T2 denote HTML trees of a web page w1 and its page variant w2; X′ the

leaf node of T2 namely Goal which corresponds to Target X in T1 that carries the desired data

specified by users; P(X), P(X′) the XPath of X , X′ respectively.
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• We apply P(X) in T2, which does not return X′.

From another point of view, let P(X),P(X′) be absolute XPaths, then if P(X) , P(X′), the

extraction fails. For example, as shown by the red dashed line in Figure 1.2, when a new td

element carrying a thumbnail image node with label inserted is inserted into the left of the price

value 6 , the extraction for the price using XPath P1 or P2 fails, which returns nothing in this

case.

Target X

T1 T2

Goal X'

P(X) P(X')

If P (X)   P (X ), the extraction fails.

(let P (X) and P (X ) be absolute XPaths)

Figure 1.3: Problem Statement

1.3 Existing Approaches and Challenges

To address this problem, i.e., reducing manually repairing, many research efforts have been

presented.

• Main HTML tree based methods can be classified into two groups: pattern matching and

model learning based approaches.

– The pattern matching based approaches[12, 13, 14, 15, 16] usually learn or design

a pattern for the target data, e.g., a subtree or an XPath, and then locate the target

data in the page variant by matching the pre-generated pattern.
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– The model learning based approaches[9, 17, 18] construct stable extractor by learn-

ing change models from historical versions of the page.

• Vision based methods, including the ones combined with the tree based methods e.g.,[19,

20, 21, 22], use visual features, (e.g., type, font color, screen coordinates) to locate web

page elements. This kind of approach more focuses on extracting specific target contents

with a larger visual area, such as data record, web news article, page segmentation and

so on. When the target data is a single leaf element, the extractor is fragile to changes of

the web page layout.

In order to locate theGoal automatically, these countermeasures either require a beforehand

pattern design, or need to manually label features on a number of sample pages for training

model and tuning parameters in advance. However, the complex pre-process is not efficient in

case the target data is changed frequently. Moreover, sometimes it requires manual re-labeling

if the extraction failed and is also unfriendly to normal data users with limited programming

skills. Besides requiring carefully designed preprocessing, another challenging issue is that

it is difficult to locate the Goal in a page variant directly through only the HTML source file,

which offers limited layout features, with no help from subsidiary files like cascading style

sheets(CSS).

There are also some techniques that focus on generating robust extraction locator directly,

e.g., XPath, regular expression, subtree, while some of them[23, 24, 10, 25] cannot deal well

with the future page changes[9]; some of them need supervised learning[26, 27]; and some of

them have different scope from ours[21, 28, 29].

However, few of them are suitable for the above application scenario: a customizable

web data scraper. The target data may frequently be re-designated by users. For example,

different data from multiple web pages are obtained by an end-user mashup tool [30] to be

immediately presented to users. Therefore, I aim to make the scraper without pre-processing

steps and as stable as possible. The specific challenge I address is that with no help from:
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(1) a pre-processing like model learning or pattern designing, or (2) visual subsidiary files

like Cascading Style Sheets (CSS), searching the arbitrary specified data in page variants

automatically is difficult. In our work, we focus on the HTML tree based methods because

it is well adopted in practice[29]. Our goal is to develop extraction methods surpassing the

XPath in terms of stability, which also can be flexibly used for different application scenarios.

We discuss the above challenging issues in Section 7.7 and analyze the related techniques in

Chapter 2.

1.4 Our Approaches and Contributions

As addressed in Section 1.3, for instance, besides requiring carefully designed preprocess-

ing, it is difficult directly to locate the Goal in a page variant through only the HTML source

file which offers limited layout features. Accordingly, we wonder why human can accurately

locate the required information without any preparation when confronting such a problem. By

intuitively observing the layout and HTML tree structure of web pages, we find that the high

similarity of following features of the Target in T1 and Goal in T2 helps people to identify it

correctly.

• Layout relationship (e.g., a distance between locations, neighbor information)

• Element characteristic (e.g., HTML element type, semantic information)

Following with the shopping site’s example in Figure 1.2, although an image node is inserted

(red branch), we easily found the price value because it is very similar to the page before

inserting the picture where it is a numeric value just following the text node “price” and its

position is in the middle area of the horizontally arranged leaf nodes.

Inspired by these observation, i.e., similarity of layout relationship and element characteris-

tic, we present two new approaches in this thesis. The first method uses the layout relationship

to determine the area of the desired information, namely neighbor zone, which consists of a
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2.Path Similarity Method
(Chap.5)

1.Neighbor Zone Method
(Chap.4)

Start

Input:
w1,w2, 
Target,

2 params
(Sect.6.3)

Calculate 
unchanged node 
pair set U from

 T1 and T2 
(Sect.4.3.1)

Acquire neighbor 
zone by the 
center node 
(Sect.4.3.3)

Filter (Sect.5.1)

Rank similarity score
(Sect.5.5)

End
Output:
Goal(s)

Generate center node 
candidate(s) (Sect.4.3.2)

Compute node 
distance between U 

(in T1) and Target

List up nodes having 
same node distance 
with U (in T2) to get 

center node 
candidate(s)

Parse to HTML tree  
with order & label

(Sect.6.3)

Labeled 
ordered

T1, T2

Tag

Compute similarity score

Affiliation 
(Sect.5.5)

Attribute
Path

(Sect.5.3)

List
Order*

(Sect.5.4)

Tag 
Path

(Sect.5.2)

Property*

w1: webpage
w2: variant of w1 
T1: HTML tree of w1 
T2: HTML tree of w2
* : optional param

3.Hybrid Method
(Chap.6)

Figure 1.4: Workflow of the Extraction Approaches

fragment of leaf nodes where the central one ,namely center node, is deemed as the Goal. The

second method searches the most likely node as the Goal by ranking the path similarity based

upon the characteristics derived from their XPath information.

Furthermore, based on the observation of the experiment results, we combine these two

methods to get a higher stable hybrid solution, by letting the output of the first method based

on the neighbor zone as the input of the second method based on the path similarity. We use

the Figure 1.4 to depict the main components and workflow of the hybrid method, as a matter

of course, which covers the two proposed methods.

The main contribution of our work is that we designed and implemented two highly stable

extraction methods and a hybrid method of them that support arbitrary target data selection

in a web page. They only use HTML source files and need no pre-processing, which makes
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them be compatible with existing XPath-based methods and flexible for customised large-scale

extraction. The experiments on two complementary datasets, containing more than 30,000

target data selected from 102 real-world popular websites, show that our approaches’ advantage

over the XPath in terms of extraction stability. To be specific, the originality of our work are

the following aspects:

• It develops a distance measurement between a node and a leaf node in the HTML tree.

• It proposes an algorithm to locate the possible location of the target node in the HTML

tree of a page variant.

• It presents a method to evaluate XPath similarity from edit, semantic and structure

aspects.

1.5 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 discusses related work of this field.

The preliminary knowledeges are given in Chapter 3. The method based on the neighbor zone

is addressed in Chapter 4. The method based on the similarity of page elements is presented

in Chapter 5. The hybrid mechanism and implementation environment of above two methods

are presented in Chapter 6. In Chapter 7 we conduct experiments and evaluation to show the

effectiveness of our proposals. Chapter 8 concludes the thesis and present possible future work.
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Chapter 2

Related Work

The main objective of partial information extraction is different from the web crawler[31, 32,

33], information retrieval (IR) [34, 35] and machine learning(ML)/natural language process-

ing(NLP) based information extraction (IE) technologies[36, 37, 38]. They focused on either

gathering / querying whole web page documents or extracting logical contents from human

language texts, and thus are out of the scope of this thesis.

Beyond the inchoate manual-based approaches[39, 40, 41], in this thesis, we focus on auto-

matic web scraping technologies, which are also compatible with the existing web environment.

A lot of research efforts have been addressed to automatic web scraping while very few of them

directly address building more stable mechanism. We believe the stability is the backbone

of partial information extraction technology which deeply affects the development of modern

extraction techniques.

In this chapter, we first introduce the state-of-the-art extraction technologies and then,

according to the target choosing manner mentioned in Section 1.3, we classify existing scrap-

ing methods into two categories: fixed-feature-target extraction and arbitrary-specified-target

extraction.
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2.1 State-of-the-art Solutions

Two state-of-the-art solutions have been presented to handle the stability problem from

the ground up[2], both of which focus on letting computer "understand" what contents web

page contains. The first solution is the XML-based web document approach. This approach

divides each HTML document into two XML documents: an user-defined content-oriented

XML format file and a XSLT-like (Extensible Stylesheet Language Transformations) program

file, where the latter file transforms the former file to a form-oriented format e.g., XHTML

(Extensible HyperText Markup Language) format. Accordingly, extracting data from such

kind of web page will be equal to extracting the data from the former file whose format is

well-defined in the latter file, e.g., XSLT, which makes it likely to be stable over time. The

second solution is the semantic web approach. In this situation, HTML documents would have

been attached with meta-information to describe the semantics of their content. The semantics

is described in a a metadata data model, e.g., Resource Description Framework (RDF), which

is linked from the HTML document. The meta-information links an HTML element to an

entity in the RDF document, which describes the content of the HTML elements and then the

computer could understand the RDF document.

However, both of these solutions are still not likely to be universally adopted for partial

information extraction due to some technical and social issues. Firstly, there are a huge amount

of existing web pages that need to be re-designed and updated, while even if we achieved that,

such kind of pages may still face tons of compatibility problems with existing well-formed

systems. The semantic web technology also is challenged by uncertainty and inconsistency

problems. As for social issues, many web content authors do not want to offer the information

in a structured format that can be directly understood by computers. For instance, Google

Ads wants people to access web pages to earn profit, therefore, they could develop obfuscation

modules to prevent automatic data extraction.
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2.2 Fixed-feature-target Extraction

Fixed-feature-target extraction automatically detects and extracts target information which

usually has a fixed format or topic. The extraction rules are either predefined or induced by a

set of samples. For example, for scraping deep web data, researchers proposed techniques to

recognize the input query element such as the <form> and then extract the responsemessages[42,

43]. Similarly, in [44, 45], researchers focused on extracting data from the tabular environment

within a page. We introduce these techniques in the following subsections respectively.

2.2.1 Form/Table Extraction

The HTML form in a web page enables users to input query text, e.g., hotel reservation,

stock prices, in the input element which usually displayed as a input box in the front end.

Then the function in the back end of the form is going to query information from the remote

databases. Such kind of data is called deep web [46] which is very important for search engines.

The approaches proposed by Furche et al.[47, 48], firstly search for a <field> element enclosing

the input label, if fails, then search for labels in the enclosing <form> element. Finally if it still

fails, they fall back to find a text field, that layout wise is in the proximity of the form element.

Similarly, in [44, 49, 45] authors focused on extracting the table information within a page. The

table extraction task is challenged by the fact that instead of carrying information, the <table>

element is more used for well arranging the layout of the web page other than exhibiting tabular

information.

2.2.2 Data Record Extraction

Some studies[19, 20, 50, 22, 51, 52] aimed to automatically extract all structured data

records from that region. Most of these methods are based on the HTML tree alignment or

vision layout tree matching approaches. Their main objective is to recognize and segment

the data record region from web pages. These approaches mainly consist of three steps, (1)
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detecting the main area of data record in the web page; (2) identifying the boundary of each

individual record and then segmenting them; and (3) aligning and extracting data items from

the identified data records.

2.2.3 Specific Content Extraction

Extracting specific contents, e.g., main contents of news articles or comments of products

from various web sources, is also a field with active developments[26, 53, 54, 55, 56, 57].

Reis et.al [26], proposed a domain-oriented method to automatically extract news from normal

websites with no human intervention. The approach firstly classifies web pages into news

pages and not news pages, then searches news part of each news page and extracts their main

components. The AkwanClipping1 is a commercial Web news extracting system that fetches

daily news frommainBrazilian newspapers. Han et.al [53] presented a relevance-based analysis

method to extract the news article contents from the general news pages without the analysis

of news page layouts before extraction. The main advantage of this method is that it has high

performance at parsing and analyzing page’s structure and does not need a time-consuming

learning procedure. In [58], an open source scraper was developed to extract the structured

data from web forums and represent them as semantic structures. [59] proposed a method that

extracts communities of users having similar opinions for a given topic in the Twitter platform.

It used the stream API of Twitter to collect all the tweets that contain specific keywords.

2.2.4 Pros and Cons

In summary, the pros and cons of the fixed-feature-target extraction are summarized as

follows.

• Advantage

– They accurately, efficiently extract specific data for large scale web extraction.

1http://www.akwan.com
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– The user does not need to designate target every time.

• Disadvantage

– It is expensive to change the extraction rules or switch domain.

– The desired/target information is fixed (cannot choose).

2.3 Arbitrary-specified-target Extraction

Arbitrary specified target extraction approaches are more applied to vertical wrappers.

Users first specify the target data within a web page and look forward to repeatedly extracting

them. Our approaches belong to this manner. We divide related researches of this manner into

two groups: path-based approaches and pattern-matching / model-learning based approaches.

2.3.1 Path-based Extraction

Taking advantage of the fact that a great amount of and still increasing web pages are

rendered by template system, many approaches have been proposed to analyze the structure of

web pages with the purpose of manual or semi-automatic example-based data extraction.

ANDES[6] is a XML-based methodology to use the manually created XSLT processors to

realize the data extraction from web pages. Similarly, Marmite[60], implemented as a Firefox

plugin using JavaScript and XUL, uses a basic screen-scraping operator to extract the content

from web pages and integrate them with other data sources. The operator uses a simple XPath

pattern matcher and the data is processed in a manner similar to Unix pipes. PSO[61] is an

approach to extract partial parts of web pages. It keeps the view information of the extracted

parts by using the designated paths of tree structures of HTML documents. Crunch[62] is

a HTML tag filter that retrieves content from DOM trees of web pages after analyzing their

HTML documents. These extraction tools face the stability problem as we mentioned above.

When websites update the pages by modifying templates irregularly, the extraction process
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would fail because paths are no longer available or wrong results are extracted. The extraction

mechanism employed by these methods makes them difficult or even impossible to re-generate

suitable paths automatically.

Dapper[63] is a screen scraping tool that allows users to extract partial information from

web pages. It has a powerful graphical user interface (GUI) that allows users to scrape data

from the page without programming or locators like regular expression and XPath. However, it

is not very intelligent to recognize a long list. For a list, users may have to select each individual

item. Moreover, users have to provide sample web pages for analysis and execute selection

separation many times for enhancing precision, which still could not keep extraction procedure

steady after websites update pages’ layout.

WIKE[64] and Web clipper[65] are web authoring environments that enable end-user to

dynamically extract information from various web resources. The system provide users an

environment to extract content and construct a personalized web page while which makes it

weak than now popular UI-component based mashup applicaitons. An advantage of them is

that they enforce a robust mechanism based on multiple extraction patterns defined in advance.

The tunning process carried out manually would be tedious if users want to get a ideal extraction

result. For each component fromweb page, theWeb clipper need to do at least once the training

process even for the pages that generated by very similar templates. As the number of extraction

patterns increasing, the training process will become laborious.

Several approaches attempt to evaluate robust extraction locator directly, e.g., XPath, regular

expression, subtree, while some of them[23, 24, 10, 25, 66] cannot deal well with the future

page changes[9]; some of them need supervised learning[15, 27]; and some of them have

different scope from ours[26, 21, 28]. The Robular/Robular+ [67, 29] proposed algorithms

that generates robust XPath expression for automated web application testing. They rank the

robustness of element attributes based on some heuristic rules during the generation of the

XPath. The robular method depends on the exact matching of HTML attributes in the path,

e.g., the value of the class attribute. Our experimental results show that these two methods are
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more suitable for web application testing that focuses on the UI components oriented extraction

such as the input button in a form field, however, for extracting tasks that focus on content-

oriented data in the page, their effectivenesses are not better than XPath. The OXPath[28]

extended the XPath with more semantic actions (e.g., click, form filling) and markers. Benefit

from more machine-readable it improved the robustness and in the meantime it also lost some

compatibility and requires higher learning costs.

2.3.1.1 Pros and Cons

In summary, the pros and cons of the path-based extraction approaches are presented as

follows.

• Advantage

– Flexibly changing target

– Quickly response for transferring result

– Light-weight and easy implementation

• Disadvantage

– They cannot deal well with the future page changes.

– The specialized scraping language, e.g.,OXPath, is powerful but has problems

of compatibility and learning cost because the extraction expression needs to be

inputted by the user.

2.3.2 Pattern Matching / Model Learning based Extraction

The regular expression technology provides a concise mean for matching strings of text,

such as particular characters or patterns of characters. A regular expression is written in a

formal language that can be interpreted by a regular expression processor. Then the resulting
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pattern can be used to create a matcher object which can match arbitrary character sequences

corresponding to the regular expression. Regular expression runs more flexibly with various

logical, intersection, and union operators. However, generating a set of regular expressions [68]

costs more time than XPath. And if websites update the layout of web pages, the regular

expression also faces the stability problem where the re-generation requires a very careful

manual repair process handled by human experts.

The string matching and tree matching algorithms are employed to match the HTML trees.

The string matching methods treat web page as a linear string architecture. The HTML tree

matching methods parse the web page into a tree structure. Despite the inherent limitations of

the algorithm which will be introducted in Section 3.3, this kind of approach is widely adopted

for tyhe web data extraction systems[69, 70, 71, 72, 73].

Machine Learning techniques[74, 75, 76, 77, 78, 79, 80, 81, 82] are suit well to extract

specific domain information from web pages. They require a training phase in which domain

experts provide some manually labeled sample pages. It is important that they need preparing

sample pages from the same domain but in different structures. The reason is that even in the

same domain, different page templates are used to generate dynamic contents, and thus, the

extraction system should have the ability to learn how to extract information in these similariy

templates. In the following we shortly describe some Web Data Extraction approaches relying

on Machine Learning algorithms

In [13], researchers proposed an algorithm derived from the tree edit algorithm, which

uses a special weight function for target pattern matching. In [9, 17], authors presented an

algorithm that trains change models to generate a list of XPaths by probabilistic ranking. The

[15] proposed a supervised algorithm that first extracts contextual tree structure from training

samples and then performs a recursive tree matching search to extract the target data from

page variants. In [27], researchers construct extractors that automatically adjust their precision

dynamically to handle page changes and do not sacrifice precision on the training set.
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2.3.2.1 Pros and Cons

Pre-processing

Labelling 
samples

Model 
learning

Pattern 
generating

Pattern 
matching

Extraction

Figure 2.1: Workflowof the PatternMatching /Model Learning basedExtractionMethods

The advantage of pattern matching / model learning based extraction are presented as

follows.

• Advantage

– The stability performance is higher than other approaches.

– The desired/target information can be choosed flexibly.

• Disadvantage

– As illustrated in Figure 2.1, a preprocessing phase like pattern design, model

learning is needed to be conducted by human experts. Accordingly, it causes a high

manual involvement (e.g. sample labeling, pattern designing) and thus cannot offer

the extracting result to users in time. Therefore they are not suitable for the scenario

where flexibility for the target choosing are required.
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In addition to the above methods that focus on scraping data from HTML documents,

in recent years, some researchers aim to mining information from image and video files for

web page categorization/classification [83, 84]. These methods also need a training process

conducted by human experts. In [85], researchers developed an interface that enables the user

to acquire immersive information by instantly switching between the 2D hypertext interface

and an 3D environment that incorporates 2D HTML elements.
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Chapter 3

Preliminaries

In this chapter, we present some preliminary knowledges related to the stable partial information

extraction technique.

3.1 Web Page

A web page is a computer document that is transmitted on the web. Most of web pages are

created by a standard markup language: Hypertext Markup Language (HTML). Web pages are

usually displayed by the web browser on a desktop monitor or mobile devices. Web browsers

coordinate various web resource elements for the written web page, such as style sheets, e.g.,

Cascading Style Sheets(CSS), scripts, e.g., JavaScript, to present contents of a web page.

Furtherly, web pages provide hyperlinks, often referred to as links, to "jump" to other pages.

As shown in Figure 3.1, the web standards model consists of HTML, CSS and JavaScript.

TheHTMLcontrols the page elements and contents of aweb page, such as headings, paragraphs,

tables, bulleted lists etc. All text, links, including links to the images displayed on a web page,

are in the HTML.

CSS controls over the formatting and layout of the web page such as the background colors,

font sizes, borders, etc. CSS works on a system of descriptors, which can select and set values

for different properties of the page elements. In early phase, the style specifications are also
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Content
  Headings
  Paragraphs
  Lists
  Images

  Links

HTML
  <html> 

  <head> 
  <body> 
  <h1> 
  <h2> 
  <p> ...<p> 

  <ol> <li> <li> 

CSS
  <style> 
  Body {
      Color;...
  ul#mylist  {
      font - family

  </style> 

Presentation
  Colors
  Fonts
  Positioning

JavaScript
  <script type = 
"text/javascript" 

  

Behavior
  AJAX manipulation
  Error checking 
  Po-up calendars

  special effects

Figure 3.1: Web Standards Model: HTML CSS and JavaScript

part of HTML, which makes HTML very difficult to be read, and thus they are separated. An

example CSS rule is shonw as the following code. The content enclosed in <p> </p> tags will

be colored blue and have the double line height.

1 p {

l i n e −h e i g h t : 2 ;

3 c o l o r : b l u e ;

}

JavaScript is the scripting language used to control behaviors of a web page. For example,

it can be used to validate the input password of your email like checking if it contains illegal

character or not. Anything from animating page elements such as menus, input functionality

and so on is handled by Javascript. Even the functionality is very different, just like CSS, most

mordern JavaScript enforces the function on a target HTML element.

On the Internet, a web browser receives HTML documents from remote web server and

render them into multimedia web pages. Figure 3.2 shows such kind of Web Request-Response

protocol in the client-server computing model. Within this environment, an user submits an

Hypertext Transfer Protocol (HTTP) request message to the server. The server, which stores

web resources like HTML documents, will return a response message to the user. The response

message contains the status information about the request and the requested contents. As
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mentioned, the process of putting all pieces (e.g., CSS, JavaScript) of a web page together for

presentation is called rendering, which will involve multiple HTTP requests.

Figure 3.2: Web Request-Response Architecture

3.1.1 Two Types of Data Rich Web Page

For futher presenting our methods, we introduce the real pages that contain the target data

that are wanted to be extracted. As shown in Figure 4.3, mainly there are two types of data

rich web pages we concern. The data in these pages are usually retrieved from the back-end

database and displayed on the web pages by some fixed templates.

Detail Page Detail pages focus on presenting a single object. Figure 3.3(a) shows a detail web

page that contains all details of the camera product(e.g., product name, price, customer

rating, images, purchasing information).

List Page list pages contains continuous objects. The layout is segmented by data records

which are formatted using the same or quite similar template. Figure 3.3(b) is a list page

that contains similar sequential objects.

For list pages, usually it can be developed some heuristics to identify and segment the data

region, while for detail pages, it is not easy. As best we know, there are no unified approach
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(a) An Example of a Detail Page Segment

(b) An Example of a List Page Segment

Figure 3.3: Examples of Two Types of Data Rich Web Page of Amazon.com

tries to deal with the detail page and list page together. We note that when we mention a page

is a detail page or list page, it does not mean that the page contains no other information. We

just emphasize the main environment of target data belongs to within the page. For example,

in Figure 3.3(b), there are some related product’s information in each data record.
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Figure 3.4: The Document Object Model (DOM) Example

3.1.2 HTML Tree

When aweb page is loaded from the server side to the client side, the web browser constructs

a HTMLDocument ObjectModel (HTMLDOM) for the page, which defines a standard way for

accessing andmanipulatingHTMLdocuments. TheDOMis anAPI (Application Programming

Interface) standard developed by World Wide Web Consortium (W3C) for handling "how to

get, change, add, or delete HTML elements"[86]. It parses the HTML document as a node

tree with elements, attributes, and text. As shown in Figure 3.4, in the node tree structure, the

document object is the root node of the HTML document and the "owner" of all other nodes:

document node, element nodes, text nodes, attribute nodes, and comment nodes.

Figure 3.5 shows a simple HTML document which is a student&teacher information table

block in a web page. HTML uses markup tags (<body>, <table> in the example), which can be

nested within each other, to describe web pages and interpret the content of the page. The tags

are not displayed on the screen by the browser. Each tag describes an element of the web page.

For example, headings, paragraphs, tables, bulleted lists etc., these page elements are used to
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denote various types of content in HTML documents, which specifies each piece of content is

supposed to be rendered as in the web browser.

Figure 3.5: A Sample of Hypertext Markup Language

As shown in Figure 3.6, an HTML element usually is defined by a triple: a pair of "start" and

"end" tags; attributes (some optional and some mandatory) in the start tag; and the content

between start and end tags which can be empty or a combination of text strings or HTML

elements. Intuitive, the HTML element is everything from the start tag to the end tag such
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as <tagname attributes>contents</tagname> For some tags such as br, hr, the end tag can be

omitted. The attributes describe additional information of page elements, such as an id for

identifying the element, or a location for a hyperlink to jump to.

<div id=“header”>...</div>

Start tag End tag

Attribute

Figure 3.6: Example of an HTML Element

The HTML trees of web pages are rooted labeled trees. A rooted tree is a tree with a

countable number of nodes and in which the root node is a particular node distinguished from

the others. A labeled tree is a finite rooted tree in which each node has attached to it a non-

uniqueness label. These labels may be any symbol or other object that one can think of, but

usually consist of one letter or symbol from a finite alphabet set, e.g., the set of HTML tags.

The node which does not has a parent node is the root node. A node which does not has a child

node is a leaf node. Children nodes of the same node are called siblings.

An edge in a tree is presented as (child, parent). We denote p(child) = parent. A node b

is an ancestor of node a if and only if b = p(a) or b is an ancestor of p(a). Accordingly a is a

descendant of b if and only if b is an ancestor of x. A path in tree T is a subtree of T in which

each node has at most one child. A subtree ST of T is a tree that consists of: (a) a subset of all

nodes ofT : N(ST ) ⊆ N(T) (b) all edges inT that connect these nodes : E(ST ) ⊆ E(T). A forest

is a disjoint union of trees. A subforest SF of a tree T is a graph with nodes N(SF) ⊆ N(T) and

edges E(SF) = {(a, b) | (a, b) ∈ E(T), a ∈ N(ST ), b ∈ N(ST )}.

All trees and forests we mentioned are ordered if no special statement is presented. Without

the order, when we want to process a tree, it is unclear what the sequence should be, e.g., top
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to bottom, or left to right. An ordered tree means a tree in which the sibling order is given,

e.g., preorder or postorder (contrarily an unordered tree is a tree with no order among siblings).

Many algorithms that make use of trees often traverse the tree in some order, which defines the

systematic way they trace each node of a tree. The postorder traversal of an ordered tree is to

recursively traverse subtrees rooted in children of the current node from left to right starting

from the root node. The postorder traversal of T can be defined by a two-step recursion:

• traverse subtrees rooted in children of the current node (from left to right) in postorder

• visit current node

As shown in Figure 3.7, the nodes of the treeT are N(T) = {n1, n2, n3, n4, n5, n6}, the edges

are E(T) = {(n6, n2), (n6, n5), (n2, n1), (n5, n3), (n5, n4)}, the label of the node is the alphabet

in the figure. The root of T is r(t) = n1, |T | = 6. The postorder traversal visits the nodes of T

in the order as index number of each node. Let pid(T[i]) be the postorder id value of the node

T[i] and pid(T[i]) = i. We note that the nodes of a postorder tree are ordered as following.

• The pid(a) > pid(b) for any edge (a, b) ∈ E(T)

• For siblings nodes c, d, if pid(c) < pid(d), then c’ < d for all descendants c’ of c, and c

< d’ for all descendants d’ of d.

Then we can define a node a is to the left (right) of a node b if and only if pid(a) < pid(b)

(pid(a) > pid(b)) and the node a is not a descendant (ancestor) of node b.

3.2 XML Path Language (XPath)

The XPath (XML Path Language) is initially defined by the W3C as a query language for

selecting nodes or node-sets in an XML document. It is based on a tree representation of the

XML document, and provides the ability to navigate around the tree, select nodes by a variety

of criteria and compute values (e.g., strings, numbers, or Boolean values). Commonly, an



Chapter 3 Preliminaries 30

Figure 3.7: An Example of a Labeled Rooted Postorder Tree

"XPath expression" is often referred to simply as an "XPath" which intuitively looks very like

the path expressions used in the traditional computer file systems.

Since the HTML web page model can be described with a XML-like tree structure, the

extraction based on XPath has been widely used. Users can locate and access arbitrary nodes

in the HTML tree using XPath. The basis of locating node in the tree by XPath is the location

path. Depending on whether the root of the tree is the starting point, the location path can be

divided into two categories: absolute location path and relative location path.

As the following example, the location path is expressed by connecting basic units called

location steps with "/".

• Location path = / location step / location step /....

The location step consists of three parts: an axis, a node test (nodetest), and a predicate

(predicate). The axis specifies the direction to follow from the starting point, i.e., root node.

The XPath has 13 axes such as child, descendant, parent, ancestor. The node test specifies what
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kind of node is selected in the direction determined by the axis, and writes a specific element

name and keyword. The predicate can narrow down the node set specified by the node test by

expressing it with brackets after the node test.

For example, in Figure 3.5, in case we want to locate and extract all names of students, we

can use the XPath as follows:

• /html/child :: body/child :: table[2]/child :: tr/child :: td[1]

In XPath, since the keyword representing axes child :: can be omitted, it can be specified like:

• /html/body/table[2]/tr/td[1]

For the relative location path, we can use the following XPath:

• //*[@id="student_list"]/tr/td[1]

The first XPath fully describes path information of target nodes from top node <html> and the

second XPath uses node having id attribute as a relative referred node. They can run well in this

example page and have their own merits in extraction when the page is changed. For example,

if a new table is added over the table Tutor List, the first XPath would lose the effectivity of

extraction but the second XPath could still extract successfully. However, if value of attribute

id is changed or removed and no new table is added over table Student List, the second XPath

could not target the node but the first XPath could keep the right extraction. Therefore XPath

based extraction is not sufficient in complex node searching and extraction during long period

of time, especially for frequently updated websites.

3.3 Tree Edit Distance

The tree edit distance (TED) between two ordered labeled trees is theminimal-cost sequence

of node edit operations that transforms one tree into another[87]. Classically, the set of node

edit operations on a tree consists of the following three operations.
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deletion delete a node and connect its children to its parent maintaining the order.

insertion insert a node between an existing node and a subsequence of consecutive children

of this node.

change change the label of a node.

An example of the operations is shown in Figure 3.8.

changeinsertiondeletion

Figure 3.8: An Example of Elementary Edit Operations

There are many different sequences that can transform one tree into another. We assign a

cost to each edit operation. Then, the cost of an edit sequence is the sum of the costs of its edit

operations. Tree edit distance is the sequence with the minimal cost.

Tai et.al [87] proposed the first algorithm to compute the tree edit distance. However,

it is complicated and impractical to be implemented. Zhang and Shasha improved it with

a dynamic programming approach that reduces the memory space and time complexity by

discarding byproduct subproblems[88]. This algorithm is deemed as the most suitable one for

HTML trees because its running time depends on the height of the trees rather than the total
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number of nodes[12], which usually is much lower compared to the number of all nodes of the

HTML. Here we describe Zhang and Shasha’s algorithm briefly.

A tree T is a Directed Acyclic Connected (DAC) graph where each node has at most one

incoming edge. A f orest F is a graph which is composed of one or more trees. Let D(T1,T2)

be the tree edit distance, γ a cost function of edit operations on nodes and a default blank

character Λ. The γ(i,Λ) denote delete i from F1; γ(Λ, j) insert j into F2; γ(i, j) change the

label of i to the label of j; � the empty forest. Let F1 and F2 be rooted ordered labeled forests

obtained by removing the root of T1 and T2; u ∈ F1, v ∈ F2 the rightmost node of F1, F2 (by

postorder) respectively; F1 − u and F2 − v the forests obtained by deleting u and v from F1 and

F2 respectively. The Fu
1 and Fv

1 denote the subforest rooted in node u of F1 and the subforest

rooted in node v of F2 respectively, � the empty forest. Since T1, T2 are rooted trees and their

root nodes are always the same, the TED D(T1,T2) is equal with D(F1, F2) which is computed

as following dynamic recursion formulas.

D(�,�) = 0

D(F1,�) = D(F1 − u,�) + γ(u,Λ)

D(�, F2) = D(�, F2 − v) + γ(Λ, v)

D(F1, F2) = min



D(F1 − u, F2) + γ(u,Λ)

D(F1, F2 − v) + γ(Λ, v)

if(F1 and F2 are trees)

D(F1 − u, F2 − v) + γ(u, v) (∗)

else

D(Fu
1 , F

v
2 ) + D(F1 − Fu

1 , F2 − Fv
2 )

(3.1)

Zhang and Shasha found that the recursion occurs on either the rightmost node of one of

the forests that is removed or all but the rightmost tree. Accordingly, the idea of the algorithm

is that it always compares the right-most root nodes of the forests. Therefore, if the solution

of the subproblems of two trees are already known, we would have a | F1 | | F2 | dynamic
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programming table. So we canmaintain a permanent table of size | T1 | | T2 | for all subproblems

that consist of two trees. Then we only solve each subproblem from the permanent table which

is the least costly Tai mapping. The TED algorityhm has the inherent limitations which are

that it can not can not match permutation of nodes and it can not map nodes crossing different

hierarchical level.
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Chapter 4

Neighbor Zone based Extraction Method

In this chapter, we present the stable extraction approach based on the neighbor zone. An

instinctive observation is that, in page variants, there are some page elements are not or slightly

changed, which also have a fix relationship with the desired information. Accordingly the

main idea of this method is that instead of directly locating the goal part, we firstly recognize

the unchanged parts and then locate the goal part based on the relationship such as the layout

relationship (e.g., up or down), element characteristic (e.g., data type, path), etc. For example,

in Figure 4.1 both the target and goal part are the first image below the unchanged part.

Page variant

unchanged 
part

Target

Web page

unchanged 
part

Goal

Relationship:
below;
1st image;
etc.

Figure 4.1: Intuitional Example of the Unchanged Part and Relationship
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The rest of this chapter is organized as follows. An overview of the approach is given

in Section 4.1. The concepts of data type and node distance, which depict the element

characteristic and layout relationship, are introduced in Section 4.2. The method for acquiring

the neighbor zone is addressed in Section 4.3.

4.1 Overview of Neighbor Zone based Extraction Method

In this section, we give the overview of the extraction approachwhosemain components and

workflow are depicted in Figure 1.4. We use the Figure 4.2 to generally illustrate the concepts

and notations of this method. Let T1 and T2 denote rooted ordered labeled trees parsed from the

web page w1 and a page variant w2 respectively. Suppose we have a continuous ordering for

each tree T , and then T[i] means the ith node of the tree T in the given ordering. If the context

is clear, we use the ordering i as an abbreviated notation to denote the node T[i] in tree T . The

label of each node in T is its HTML node name. When we mention a comparison of two nodes,

we mean to compare their labels. For the later examples of Figure 1.2 used in this paper, let

the node 6 (Target) is unchanged in T2. In order to clearly show the correspondence between

the nodes in T1 and the nodes in T2 without relabeling the node order in T2, for example, we

write them as 6 (Target) and 6’ (Goal) respectively.

Because directly locating Goal in T2 is difficult, we start from the observations. For the

layout relationship mentioned in Section 1.4, we use the distances, which measure the layout

position between the unchanged nodes and the Target, to acquire the Goal candidates, which

should have similar distance values with the unchanged nodes (Acquire Neighbor Zone in

Figure 1.4). We define the data type to represent part of the element characteristic mentioned

in Section 1.4,

More specifically, the layout relationship concerns following two aspects.

• There are some unchanged elements appearing in both web page w1 and page variant w2.

We refer to the corresponding nodes of the unchanged elements as the unchanged node
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Target X

T1 T2

Center Node C

C2

U<i , j>

Neighbor Zone NZ
Radius r

Unchanged Node Pair

(1)

(2)
(3)

(4)
Goal X'

C1

Node 
Distance = 3

Node 
Distance = 3

u1'

u3'

u5'

u4'

u2'

u1 u2

u3
u4

u5

Figure 4.2: Overview of Acquiring the Neighbor Zone

pair set U which is a set of node pairs between T1 and T2 satisfying U = {<i, j> | node

T1[i] and node T2[ j] are matched (defined in Section 4.3.1).}.

• There are some page elements in a web page, and the relative positions between two of

them remain unchanged or slightly changed in page variants. We refer to measurements

of the position between two nodes in the HTML tree as node distance which is a set that

consists of distances’ values from different dimensions.

As shown in Figure 4.2, let <i, j> be an unchanged node pair in U. We expressly write the

unchanged node pair <i, j> as U<i, j> by adding a prefix U, in order to make it clear that <i, j>

is an unchanged node pair. Similarly, we use U<i> and U<j> (half part of U<i, j>) to denote

T1<i> and T2<j> respectively.

(1). We first compute the unchanged node pair set U from T1 and T2.

(2). For each U<i, j> in U, we calculate the node distance between U<i> and Target in T1.

Let the calculated result be d, i.e. node-distance (U<i>, Target) = d.

(3). Then we list up the leaf nodes from T2 which have the same distance from U<j> and let

the listed nodes be Ck (k=1,2,...), i.e. node-distance(U<j>, Ck) = d.
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(4). At last, we select the optimal Ck as the center node C which is supposed to be the Goal

or near the Goal. Leaf nodes on both sides of the center node (within a certain radius r)

are the neighbor zone.

For instance, as shown in Figure 4.2, suppose that we have an unchanged node pair U<u3,

u′3>. Let node distance between Target X and u3 be 3, so we look for the leaf nodes of T2 whose

node distance from u′3 is the same. As a result, we have C1 and can consider that the Goal node

exists in the neighbor zone of C1. The radius r is for the range of the neighbor zone.

In Sections 4.2, 4.3 we give details of each component.

4.2 Data Type and Node Distance of Page Elements

4.2.1 Data Type

Web pages display information through a variety of media such as text string, images,

videos and etc. Such visible content lies in essence in the leaf nodes of the HTML tree, where

a leaf node is a node with no children in the tree.

We define the data type for a leaf node to represent "what characteristic of information it

carries". For example, almost all viewable textual content in a web page (except text in form

elements or custom embedded objects) is in text nodes. Therefore, a text node can be a child

node of different page elements such as a paragraph element <p>, a table element<table> or

a link element <a>. Without such characteristics, it would be even difficult for people to find

the required information in page variants quickly. The data type describes the characteristic by

three kinds of information: property, affiliation and structure.

• Property is text, image, video, audio and others.

– Text is the character string in web pages such as an article.

– Image, video, audio are instances of the image, video, audio multimedia file respec-

tively.
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– Others are properties that are not text, image, video, or audio.

The property of text, image and others is distinguished by the leaf node name; video,

audio is by the leaf node name or the link’s value from the leaf’s ancestor node <a>,

<embed> corresponding to HTML4 and HTML5 standard.

• Affiliation is the HTML element type of a leaf node which is determined by ancestor

nodes the leaf node affiliated to. It denotes that there exists specific ancestor node(s) of

a leaf node, such as <a>,<header>, <li>, <td>, <h1>, etc., which probably may not be

changed in its page variants. For example, if a textual information within a hyperlink (has

the ancestor node <a>) is selected as Target, then the corresponding Goal is probably

still in a link environment in a page variant.

• Structure is single occurrence or sequential occurrence.

– Single occurrence denotes a leaf node and its ancestor nodes do not have similar

sibling nodes.

– Sequential occurrence denotes a leaf node and its ancestor nodes have a list of

similar sibling nodes.

For example, for the product name of the same product marked in Figure 4.3, the structure

is different in the detail page and the list page. Figure 4.3(a) is a detail page corresponding

to the HTML tree in Figure 1.2 which focuses on presenting a single object. Figure 4.3(b)

is a list page which contains similar objects in a sequential way.

4.2.2 Node Distance

The node distance depicts the layout relationship between a leaf node (e.g.,Target) and

other nodes in an HTML tree. As illustrated in Figure 4.4, the layout of a web page is usually

displayed in the left-to-right, top-to-bottom order. Correspondingly, the inner structure of the
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Canon IXY160

Price:￥ 8,699 free shipping

Product Information

Resolution 20 megapixels

Screen Size 2.7Inch 

Single

(a) A Detail Page

Canon digital camera IXY 160 
Silver International Version
by Canon

$153.50 
FREE Shipping on eligible orders

More Buying Choices
$115.56 new (13 offers) 
$110.58 used (6 offers) 

See newer model of this item 

Canon digital camera IXY 160 
Red International Version
by Canon

$193.80 
FREE Shipping on eligible orders

More Buying Choices
$193.86 new (10 offers) 
$130.79 used (4 offers) 

See newer model of this item 

Sequential

(b) A List Page

Figure 4.3: Same Data (product name) in Different Structures of Sample Pages
(a) Single Occurrence Structure. (b)Sequential Occurrence Structure.

page is a rooted ordered labeled HTML tree whose node order is significant, where leaf nodes

carry visible contents of the page and intermediate nodes are used to control the internal logical

structure or the display form of the content.

As illustrated in Figure 4.3(a) and Figure 1.2 (a web page and its HTML tree structure),

the path layer of a page element starting from the root node indicates the “height” level of the
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Leaf Sequence

Figure 4.4: Layout Relationship : Leaf Sequence and Path Layer

information carried by the corresponding node in the tree. The highest layers of each path

are visible contents of the page, which can be seen as horizontal linear arranged nodes from

left-to-right, e.g., leaf nodes from 1 to 12 of HTML tree in Figure 1.2. We find the following

features between two nodes from horizontal and vertical views.

• The leaf sequence between two nodes of an HTML tree controls the layout distance of

the corresponding visible contents of a web page.

• The path layer of two nodes in the HTML tree controls the inner height distance of the

nodes.

For example, the leaf sequence between node 5 and 9 is 5,6,7,8,9 and the path layers of both

these two nodes are 8.

Based on these two features, we develop the node distance for nodes in HTML tree to

represent their layout relationship. We define the concept of node distance in various levels:

leaf level (absolute/relative leaf distances) and path level (path distance). Because the desired
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information can always be selected by a leaf node, we focus on the distance between a leaf

node l and another node n in tree T . The idea of measuring the leaf distance between l and n

is to map n to a leaf node ln (leaf boundary) within a leaf array that linearly consists of all leaf

nodes of T . Then we use the difference value between the index values of the l and ln in the

leaf array to represent the leaf distance between them. The formal definitions of leaf and path

distances are given as follows.

Let lml(n) and rml(n) be the leftmost and rightmost leaf nodes of the subtree rooted at node

n, which are called boundary nodes of node n. If n is a leaf node, both boundary nodes are n

itself.

Definition 4.1 (Leaf Array /Relative Leaf Array) Let m be the total number of leaf nodes in

T . The leaf array is a linear array [l1, l2, ..., lm] which consists of all leaf nodes of T ordering

by left-to-right, where k ∈ [1,m] denotes the index value of the leaf node lk in the leaf array.

The relative leaf array is a sub-array of the leaf array whose elements have the same property

as that of Target.

Obviously each node n of T can map its boundary nodes into the leaf array. For instance, for

the root node root, l1 = lml(root) and lm = rml(root).

Definition 4.2 (Leaf Distance / Relative Leaf Distance) Let idx(l) and idxrelative(l) be index val-

ues of leaf node l in the leaf array and relative leaf array respectively. A leaf distance leaf (la, lb)

between leaf la and leaf lb is the number of leaf nodes between la(exclusive) and lb(inclusive).

It can be calculated by the following formula.

leaf(la, lb) = idx(lb) − idx(la) (4.1)

Correspondingly, a relative leaf distance leaf relative(la, lb) is the number of leaf nodes, which

have the same property with the Target, between la(exclusive) and lb(inclusive).

leafrelative(la, lb) = idxrelative(lb) − idxrelative(la) (4.2)
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For a node lk whose property is different from the Target’s, toward the direction of the Target,

e.g., rightwards, we search the first node lk+i (k + i ≤ m) that has the same property as the

Target’s. Then we specify the index of lk+i in the relative leaf array as the relative index of

the node lk , i.e., idxrelative(lk) = idxrelative(lk+i). For example, a relative leaf array is illustrated

in Figure 4.5, i.e., [l2, l3, l5, l6, l7], that have the same property as the Target’s, i.e., text. The

property of node l1 is img which is not the same as the text. Along the red arrow toward to

Target in the figure, we will get node l2 firstly whose property is the same as the Target’s.

Therefore, idxrelative(l1) = idxrelative(l2) = 1.

Definition 4.3 (Leaf Boundary) For a leaf node l and a node n in tree T , the leaf boundary of

the node n, denoted by LB(l, n), is the leaf node in the set of boundary nodes of n, i.e.,{lml(n),

rml(n)}, which has the smaller absolute value of leaf distance between it and the leaf node l.

LB(l, n) =


lml(n) |leaf(l, lml(n))| ≤ |leaf(l, rml(n))|

rml(n) |leaf(l, lml(n))| > |leaf(l, rml(n))|
(4.3)

Based on the above concepts and definitions, we define the leaf and path level distances as

follows.

Definition 4.4 (Absolute Leaf Distance -ALD) The absolute leaf distanceALD(l, n) in T is

the leaf distance between l and n’s leaf boundary LB(l, n).

ALD(l, n) = leaf(l, LB(l, n)) (4.4)

Definition 4.5 (Relative Leaf Distance -RLD) The relative leaf distance RLD(l, n) in T is the

relative distance between l and n’s leaf boundary LB(l, n), where the leaf nodes between l and

LB(l, n) must have the same property of data type with l.

RLD(l, n) = leafrelative(l, LB(l, n)) (4.5)
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Figure 4.5: An Example of Calculating Node Distance
Node distances between a grey-colored leaf node l and a blue-colored intermediate node n in

the subtree of Figure 1.2.

Definition 4.6 (Path Distance -PD) Letdca(l, n)be the deepest common ancestor node, edge(l, n)

the number of edges between l and n. The path distance PD(l, n) between l and n in T is the

number of edges on the path from l to n via the node dca(l, n).

PD(l, n) = edge(l, dca(l, n)) + edge(n, dca(l, n)) (4.6)
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For example, as shown in Figure 4.5, the leaf array and relative leaf array are illustrated at

the bottom, i.e., leaf array[l1, l2, l3, l4, l5, l6, l7] and relative leaf array[l2, l3, l5, l6, l7] respectively.

The boundary nodes of l and n are lml(l) = rml(l) = 6, i.e.,{ 6 } and lml(n) = 2, rml(n) =

4, i.e.,{ 2 , 4 } respectively. Then for l, the leaf boundary of n, denoted by LB(l, n), is

the leaf node rml(n), i.e., 4 , because |leaf (l, rml(n))| = |4 − 6| = 2 which is smaller than

|leaf (l, lml(n))| = |2 − 6| = 4. Therefore, we get ALD(l, n) = leaf (l, LB(l, n)) = idx(LB(l, n)) −

idx(l)= idx( 4 )−idx( 6 )= 4−6 = −2. We getRLD(l, n) =leaf relative(l, LB(l, n)) =leaf relative ( 6 ,

4 )= 3−4 = −1. ForPD(l, n), we first get node dca(l, n)= dca( 6 , 4 ), i.e., the div pointed by the

dca(l, n) in the figure. Thenwe get edge(l, dca(l, n)) = 5 and edge(n, dca(l, n)) = 1 by counting

the number of edges. Finally, we getPD(l, n) = edge(l, dca(l, n))+edge(n, dca(l, n)) = 5+1 = 6.

4.3 Neighbor Zone of Designated Information

The neighbor zone represents a probable location of the node Goal in T2 at the leaf node

level. The definition of the neighbor zone is given as follows.

Definition 4.7 (Neighbor Zone) A neighbor zone is an ordered list of leaf nodes that are

symmetrically distributed on both sides of a leaf node C namely center node (index c) within

a radius r , i.e.,

N Z(c,r) = leaf array[lc−r, ...lc, ...lc+r]. (4.7)

We use the following pseudo-code with Figure 4.6 together to depict the general process of

neighbor zone acquisition algorithm. We note that the node-distance means a triple of values

of absolute leaf distance, relative leaf distance and path distance, i.e., node-distance(l,n) =

<ALD(l, n), RLD(l, n), PD(l, n)>, which are shortly denoted as <ALD, RLD, PD> if the context

is clear. The input are the HTML trees T1, T2 and the target node Target in T1. The output is

the neighbor zone NZ that we defined in Eq 4.7.

Step 1 In line 2, We first compute the unchanged node pair set U by matching tree T1 with T2.
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Algorithm 1: General Process of Neighbor Zone Acquisition
input : T1; T2; Target in T1

output : Neighbor zone NZ in T2

1 begin
2 U ← D(T1,T2);

3 Ck ← null (1 ≤ k ≤ m2) ;

4 for U<i, j> ∈ U do
5 d← node-distance(U<i>, Target);

6 if node-distance(U<j>, Cj k) == d then
7 add all Cj k to Ck

8 C← select most probable one from Ck ;

9 return NZ(c,r)← leaf array[lc−r ,...lc,...lc+r]

Then we initialise a set of center node candidates Ck (1 ≤ k ≤ m2) in line 3, where m2 is

the total number of leaf nodes in T2.

Step 2 Line(4-5) calculate the node-distance d between Target and each unchanged nodeU<i>

in T1, i.e., d = node-distance (U<i>, Target).

Step 3 For each unchanged node U<j> in T2, line(6-7) calculate a set of leaf nodes {Cj k |( j k =

1, 2, ...m2)} having the same distance d from U<j>, i.e., node-distance(U<j>,Cj k)=d.

Step 4 Line 8 selects the most probable one (defined in Section 4.3.3) from Ck (k=1,...,m2) as

the center node C. Then, in line 9, let the nodes on two sides of C within the radius r be

the neighbor zone NZ. Here, if c − r < 0, then let c − r be 0; if c + r > m2, then let c + r

be m2.

For the illustration shown in Figure 4.6, suppose that we have an unchanged node pair

U<u3, u′3>. Let node-distance between Target X and u3 be <2,2,8>. Then we look for the leaf
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Figure 4.6: Illustration of Acquiring Neighbur Zone

nodes of T2 whose node distance from u′3 is the same. As a result, we have C1 and can consider

that the Goal node exists in the neighbor zone of C1.

We present the definition and calculation of unchanged node pair in Section 4.3.1 explaining

Step 1; the computation of center node candidates in Section 4.3.2 covering Step 2 and Step

3; the selection of the final center node to generate neighbor zone in Section 4.3.3 addressing

Step 4.

4.3.1 Unchanged Node Pairs

We compute the unchanged node pairs using the tree edit distance (TED) algorithm, which

is also expressed in terms of tree mapping and widely used to measure the similarity between

two trees. The TED is expressed as the minimum cost of transferring tree T1 into T2 through an

edit script consists of a sequence of elementary operations: deletion, insertion and change[88].

Such edit script will generate a minimum cost tree mapping which is defined as follows.

Definition 4.8 (Mapping) Let V(T1), V(T2) be the set of all nodes in T1 and T2, i1, i2 and j1,



Chapter 4 Neighbor Zone based Extraction Method 48

j2 arbitrary nodes of T1 and T2 respectively, M a set of node pairs from V(T1) × V(T2) which

is a tree edit distance mapping between T1 and T2. When the set of node pairs satisfies the

following three conditions (⇔ denotes if and only if), we call it a mapping.

• i1 = i2⇔ j1 = j2.

• i1 is to the left of i2⇔ j1 is to the left of j2.

• i1 is an ancestor of i2⇔ j1 is an ancestor of j2.

As an intuitive explanation, a tree mapping is a set of node pairs which are one-to-one

mapped from tree T1 and T2 two sides. It preserves the sibling order, e.g., elements in the

left sibling branches of T1 can only be mapped with elements in the left sibling branches

of T2. Similarly, the mapping also preserves the ancestor order in the HTML tree, e.g.,

"above", "below" hierarchy of the path layer. For instance, as trees T1, T2 in Figure 1.2,

the mapping prevents correspondence with multiple different nodes such as two node pairs

{< 1 , 1’>, < 1 , 2’>}, etc. The two node pairs {< 6 , 6’>} and {< 7 , 7’>} satisfy the mapping

definition, because 6 is the left sibling of 7 in T1, and the 6’ is also the left sibling of 7’ in

T2. In other words, we cannot get two node pairs < 6 , 7’> and < 7 , 6’> in the mapping. The

mapping between two trees can be generated by the tree edit distance algorithm as follows.

Definition 4.9 (Tree Edit Distance) Let T1, T2 be the rooted ordered labeled trees and E =

o1, o2, ..., on the shortest length edit script that transforms T1 into T2. Let the number of

operations of E be nd (deletion), ni (insertion) and nc (change) respectively. Let γ be a cost

function on operations that γ(deletion) = c1, γ(insertion) = c2, γ(change) = c3. The tree

edit distance D(T1, T2) is the minimum cost of edit operations needed to transform T1 to T2

calculated as follows.

D(T1,T2) = c1 · nd + c2 · ni + c3 · nc (4.8)

The γ is set to be a simple unit cost function where c1 = c2 = c3 = 1. Therefore, the tree edit

distance can be seen as the minimum number of edit operations needed to transform T1 to T2.
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Then we obtain the unchanged node pair set, i.e., matched nodes of two trees, by the

following procedures. We use the TED algorithm to compute the edit script. During the

TED computation, it stores the left and above nodes for each node, which will generate a

mapping between two trees. In other words, the mapping is generated simultaneously with the

calculation of the edit script. The detailed procedure is presented as follows.

Step 1 We use TED algorithm to generate the minimum edit scripts (multiple) that transform

T1 to T2. We select one script as E that generates mapping M .

Step 2 We find the node set I{i1, i2,..., in} in T1 which was not edited by the E .

Step 3 For each ik (1≤k≤n), we find node set J{ jk1,..., jkm} in T2 that satisfies T1[ik] = T2[ jku]

(1≤u≤m). From node set J, we select one node jku where <ik , jku> is in M .

Here we note that TED stores the nodes satisfying the conditions on the mapping during

computing step 2. Therefore, we can use this mapping information to get the unchanged node

pairs defined as follows without executing step 3.

Definition 4.10 (Unchanged Node Pair) The unchanged node pair U is a subset of tree map-

ping M between T1 and T2 satisfying U = {<i, j> | T1[i] = T2[ j]}.

We implemented the dynamic programming computing process of tracing the unchanged

node pairs of the zhang-shasha TED algorithm[88]. More information on the TED algorithm

can be found in the original paper[88].

4.3.2 Center Node Generation

As the observation mentioned in Section 4.1, there are some page elements in a page that

the relative position (leaf sequence and path layer) between two of them are unchanged or

changed slightly in its page variants. Therefore, we use the node-distance (Section 4.2.2) and

unchanged node pair (Section 4.3.1) to search possible locations of Goal on the tree structure.

Such locations are represented by the center node candidate whose definition is given as follows.
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Definition 4.11 (Center Node Candidate) Let <ui, u j> be an unchanged node pair between

T1 and T2. For Target X of T1, a center node candidate is a node Ck (k=1,2,...) of T2, which

satisfies {Ck | Ck is a leaf node and node-distance(u j , Ck) = node-distance(ui, X)}.

4.3.2.1 An Example of Computing Center Node

We still use T1 and T2 in Figure 1.2 as an example. For simplicity, as shown in Table 4.1, we

select nodes < 4 , 4’>, < 6 , 6’>, < 8 , 8’> and <div_price, div_price’> (abbreviation of node <div

id = ’price’>) to be the unchanged node pair set, which are illustrated in U<i>, U<j> columns

respectively. For Target 6 , we first compute the node-distance, i.e., <ALD, RLD, PD> for each

U<i> in T1. Then for the corresponding unchanged node U<j> in T2, we search the nodes in

T2 that have the same node-distance which are listed in the fourth column nodes having the same

distance. For example, from node 4’ , there is only one node, i.e., 5’ that having the same ALD

distance, i.e., -2. Likewise, the node with the same RLD distance is 6’ . Therefore, for node 4’ ,

there exists none node in T2 having the same node-distance triple. As a result, we get center

node candidates C1 = 5’ , C2 = 6’ .

4.3.2.2 Center Node Generation Algorithm

We present the neighbor zone center acquisition algorithm by the following pseudocode.

Generally speaking, we apply node distance relationship, getting from Target and unchanged

nodes in T1, to unchanged nodes in T2 to obtain center node candidates. which are pointed by

the stable nodes.

The input are the unchanged node pairs U and the specified target node X . The output is a

set of nodes which are center node candidates C. We will get the center node 6 (the Target)

in this example.

We first initialize the set of center nodes in line 2. Line (3-17) is the core process of the

algorithm in which we traverse each unchanged node pair U[i, j]. Line(4-5) show if U[i] is on

the path from root of T1 to X , e.g.,div_price, which means the target node X is a descendant
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Table 4.1: An Example of Center Node Generation (Target = 6O)

U<i> node-distance U<j>
nodes having

the same distance
Ck

4

ALD = -2

4’

5’

noneRLD = -1 6’

PD = 9
inserted, 5’ , 6’ , 7’ ,

9’ , 10’ , 11’ , 12’

6

ALD = 0

6’

6’

6’RLD = 0 6’

PD = 0 6’

8

ALD = 2

8’

6’

6’RLD = 2 6’

PD = 8 inserted, 5’ , 6’ , 7’

div_price

ALD = -1

div_price’

5’

5’RLD = -1 5’

PD = 4 inserted, 5’ , 6’ , 7’ , 8’

node of U[i], then we choose the deepest ancestor node to replace the unchanged node pair

U[i, j], i.e., 6 , because whose node distance to X is the smallest.

In line (6-8) we first compute node distance tuple {ALD, RLD, PD} for the node U[i] in

T1. For example, for Target 6 , the distance tuple of nodes 4 , 6 , 8 are {-2,-1,9}, {0,0,0},

{2,2,8} respectively. Then we apply the distance to the corresponding unchanged node U[ j]

in T2 where LB′(U[ j]) denotes the direction is the same with the situation of U[i] and X in T1.

For example, if the leaf boundary LB(X, div_price) = LB( 6 , div_price) = lml(div_price) = 5

in T1, then LB′(U[ j]) = lml(U[ j]) = lml(div_price) = inserted in T2 (not the rml(U[ j]) = 7 ).

The YAld(i, j), YRld(i, j) and YPd(i, j) are the resulting leaf nodes of applying ALD RLD and

PD on U[ j] respectively, where YAld and YRld are two nodes uniquely determined and YPd is
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Algorithm 2: Neighbor Zone Center Acquisition
input : unchanged node pairs U← D(T1,T2), target node X;

output : center node candidates with meta data C;

1 begin
2 C← null ;

3 for U[i, j] ∈ U do
4 if U[i] in Path(root, X) then
5 U[i, j] ← getDeepestUnchangedNode(X,U,T1)

6 YAld(i, j) ← ALD(X,U[i]) + LB′(U[ j]);

7 YRld(i, j) ← RLD(X,U[i]) + LB′(U[ j]);

8 YPd(i, j) ← PD(U[i], X) + LB′(U[ j]);

9 if YAld ∈ YPd then
10 if YAld = YRld then
11 YI J ← YAld(i, j);

12 SNstrong[i, j] ← U[i, j];

13 add (YI J, count++, SNstrong[i, j]) to CARP;

14 else if YRld ∈ YPd then
15 YI J ← YRld(i, j);

16 SNweak[i, j] ← U[i, j];

17 add (YI J, count++, SNweak[i, j]) to CRP;

18 if AARP not empty then return C← CARP ;

19 else if ARP not empty then return C← CRP ;

20 else return C← YAld ;

a set of leaf nodes because we may get multiple nodes that have the same path distance from

different anchor nodes in the XPath of node U[ j]. For example, the resulting nodes tuple of

applying node distance tuple on each U[ j] of 4 , 6 , 8 are { 5 , 6 , {inserted, 5 , 6 , 7 , 9 ,
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10 , 11 , 12}}, { 6 , 6 , 6 }, { 6 , 6 , {inserted, 5 , 6 , 7 }} respectively.

Line(9-13) tell because all distances on U[i] in T1 point to node X , then if all distances on

U[ j] in T2 also point to the same node YI J , the U[i, j] is called as a strong stable node denoted

by SNstrong[i, j], e.g. 6 , 8 in T1, T2 respectively, and the node YI J is a center node candidate,

i.e., 6 in T2. The count denotes how many stable nodes point to YI J , e.g., count = 2 where

YI J = 6 that is pointed twice by nodes 6 and 8 .

Line(14-17) present weak stable nodes pointing to center node YI J which is a backup in

case we can not get strong stable nodes when page change dramatically.

Line (18-20) mean if the strong stable nodes set is not empty then we return the center node

candidate set YI J with the count value and so on.

4.3.3 Neighbor Zone Acquisition

From the above process, we have known that multiple center node candidates can be

generated because:

• each unchanged node pair can generate a unique center node candidate;

• the same center node candidate can be generated by multiple unchanged node pairs.

Therefore, the question is how to select the most probable one as the center node C. Intuitively

speaking, we choose the that is closest to the desired node or is generated the most times. For

instance, as shown in Table 4.1, U<div_price, div_price’> and U< 6 , 6’> generated C1 = 5’ , C2

= 6’ respectively. Here the C2 are generated by U< 6 , 6’> and U< 8 , 8’> twice. For such

case that a center node candidate generated by multiple unchanged node pairs, we consider the

average distance. Let count_k be the number of how many times of a center node candidate Ck

(k = 1,2,...) generated by unchanged node pairs <u1, u1’>,...,<ui, ui’> ( i ∈ [1, count_k]), then

we select the center node C by the following two conditions.

• Near the Target. We first select the one that has the minimum value of the average ALD
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between the Target X and the corresponding U<i> in T1, denoted as follows.

C = {Ck |Ckhas minimum
∑count_k

i=1 |ALD(X, ui)|

count
}

• Majority Voting. If still existmultipleCk that have the sameminimumvalue of the average

ALD, we select the one that has the max value of the count_k, denoted as follows.

C = {Ck |Ckhas maximum count_k}

For the example shown in Table 4.1, we get C1 = 5’ whose count1 = 1 and C2 = 6’ whose count2
= 2. The average ALD of C1 and C2 are the same, i.e., | −1|/count_1 = 1, |0+2|/count_2 = 1.

Then because count2 is larger than count1, we choose the C2, i.e., 6’ as the center node C.
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Chapter 5

Path Similarity based Extraction Method

In this chapter, we present the stable extraction approach based on the path similarity. The

method was inspired by an observation as follows.

• The element characteristic of the Goal is more similar to the Target than other nodes of

page variants.

In other words, as shown in Figure 1.3, the X′ of T1 is more similar to the X than other nodes

of T2. Therefore, we can search the Goal in the leaf nodes of the page vairant by ranking the

characteristic similarity.

The rest of this chapter is organized as follows. An overview of the approach is given

in Section 5.1. The detailed similarity measurements of page elements are addressed in

Section 5.2, 5.3, 5.4, 5.5.

5.1 Overview of Path Similarity based Extraction Method

As shown in Figure 5.1, we focus on searching theGoal from the leaf nodes of page variants.

Wemeasure the similarity between the Target and specified leaf nodes of the page variant based

on the characteristic information that derived from their XPath (Compute Path Similarity in

Figure 1.4).
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Firstly, we filter out nodes of the leaf nodes whose property of data type is different from the

Target’s. Then we compute the similarity scores of the remaining nodes, which are measured

from three aspects: tag path, attribute path, affiliation. In addition, we use the list order if the

structure of the desired information is sequential. Finally, we normalise these scores and select

the node having the highest score as the Goal. If more than one candidate corresponds to the

highest score, we select them together.

Filter

Calc Similarity

Rank

• Order *
• Specific *

• Data type 
Property • Tag Path

• Attribute
• Attribution

• policy

X

Leaf nodes in T2Target in T1

X’ ?

Figure 5.1: Overview of the Path Similarity Method

Weuse the following format to describe anXPath information: N1[O1][@A1−0 = ”V1−0”][...]

[@A1−m1 = ”V1−m1”]/.../Nn[On][@An−0 = ”Vn−0”][...][@An−mn = ”Vn−mn”]/Nn+1..., where

Nn is the HTML node name of the nth node; [On] is the order of the nth node among its

siblings having Nn as names; An−mn is the name of the mth attribute of the nth node; Vn−mn is

the corresponding value of attribute An−mn ; and Nn is the parent node of Nn+1. Because On
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and An−mn are neglected if there are no siblings or attributes or they are not fixed in the node

searching, we divide this XPath into the tag path and the attribute path for further processing

in the following subsections. For emphasizing the differentiation between paths, we omit the

head part which every absolute XPath contains, i.e., html and body tags and their attributes.

5.2 Tag Path Similarity

Following our XPath definition, the tag path is defined as N1[O1]/.../Nn[On]/... which

uniquely describes the position of a node in an HTML tree. For instance, the tag path of leaf

node 6 in Figure 1.2 can be denoted as (omit html, body and the same below):

• Pa = /div[2]/div[2]/table/tr[1]/td[2]/text()

We observe that page variants often were caused only by the sibling order of the desired

information had been changed. Therefore, if two paths have the same sequence of tags

(ignoring the difference of orders among siblings), we can use this feature to distinguish them

with other paths that do not have the same tag sequence. We define such tag path without

sibling order, namely tag path cut (cut the order number), as N1/.../Nn/... to distinguish the

tag sequence. For example, as shown in Figure 1.2, leaf nodes 5 ˜ 7 and 9 ˜ 12 share the same

tag path cut P_cut shown below.

• Pa_cut = /div/div/table/tr/td/text()

5.2.1 Tag Path Edit Distance Score (TPED)

The string edit distance (SED) is the way of quantifying how dissimilar two strings are to

one another by counting the minimum number of basic operations (deletion, insertion, change)

required to transform one string into the other. Given two strings sa and sb on an alphabet Σ

(e.g. the set of ASCII characters), the string edit distance δ(sa, sb) is the minimum number

of basic edit operations that transforms sa into sb. In the SED algorighm, the unit used to
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be compared between two strings is one single character in the string on the alphabet. For

example, in string s = "abcd", the units in the string for SED computing are ’a’, ’b’, ’c’, ’d’ four

characters. Since it can be seen as a special case of the TED algorithm which was introduced

in Section 3.3, here we directly refer to the function of the SED algorithm on account of paper

space, while the detailed algorithm can be found in paper [89].

We treat the content of each layer within the tag path as a character in the string to get the

tag path edit distance score TPED(Pa, Pb) between tag paths Pa and Pb. The content of each

layer of the path is on the HTML tag name set (e.g. div, img, a, etc.). The tag path edit distance

δ(Pa, Pb) is the minimum number of basic edit operations (deletion, insertion, change) that

transforms Pa into Pb. The detail of HTML tag name set can be found in the HTML Element

Reference of W3C https://www.w3schools.com/tags/. Here, the unit of TPED is the tag name and

the sibling order number (if exist) in one path layer in the tag path sequence. For example, the

units of Pa is div2,div2, table, tr1, td1, text(). Then the TPED(Pa, Pb) is computed as follows.

TPED(Pa, Pb) = 1 −
δ(Pa, Pb)

Max(|Pa |, |Pb |)
(5.1)

TPED score reaches its best value at 1 (identical paths) and worst at 0.

where |Pa |, |Pb | denote the length (i.e.number of path layer) of Pa, Pb respectively.

For example, in Figure 1.2, let the XPath of node 6 be Pa and node 5 be Pb whose tag

path and tag path cut are shown as follows.

• Pa = /div[2]/div[2]/table/tr[1]/td[2]/text()

• Pb = /div[2]/div[2]/table/tr[1]/td[1]/text()

• Pa_cut = /div/div/table/tr/td/text()

• Pb_cut = /div/div/table/tr/td/text()

The tag path edit distance δ(Pa, Pb) = 1 (replace td[1] to td[2]) and δ(Pa_cut, Pb_cut) = 0. All

lengths of Pa, Pb and the corresponding tag path cut are 6. Therefore, we get TPED(Pa, Pb) =

1 − 1
6 = 0.833, TPED(Pa_cut, Pb_cut) = 1 − 0

6 = 1.

https://www.w3schools.com/tags/
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5.2.2 Common Tag Path Distance Score (CTPD)

Intuitively, the TPED focuses on measuring how similar between two tag sequences. The

common tag path distance (CTPD) calculates the ratio of how much the continuous common

part between two paths from the beginning of paths. In addition, the CTPD also concerns the

tag difference in the higher path layer (close to the leaf node) will have a greater impact (more

distinctive and exclusive) on the score than the difference happened in the lower path layer.

As illustrated in Figure 5.2, the common path CP between two tag paths Pa, Pb is the

identical tag sequence that start from the head of paths continuously. We denote them as

follows.

• Pa = CP(Pa,Pb) ∪ Diff a

• Pb = CP(Pa,Pb) ∪ Diff b

Then the common tag path distance score (CTPD) of tag path Pa and Pb is defined as

follows.

CTPD(Pa, Pb) =
|CP(Pa, Pb)|

|CP(Pa, Pb)| + |Diffa | + |Diffb |
(5.2)

The CTPD is a normalization value that reaches its best value at 1 and worst at 0 (no

common tag path) and is straight to be understanded. By the derivative equation, we can see

that the CTPD satisfy the "the higher layer node has more impact on the score" requirement. We

still use node 6 (Pa) and node 5 (Pb) in Figure 1.2 as an example, whose tag path and tag path

cut are listed in Section 5.2.1. Then CP(Pa, Pb) = /div[2]/div[2]/table/tr[1], the corresponding

Diff a = /td[2]/text(),Diff b = /td[1]/text(). TheCP(Pa_cut, Pb_cut) = /div/div/table/tr/td/text()whose

correspondingDiff a andDiff b are empty (length = 0). Therefore,CTPD(Pa, Pb) =
4

4+2+2 = 0.5,

CTPD(Pa_cut, Pb_cut) = 1.

In summary, we compute the final tag path similarity score, denoted by TAG(Pa, Pb), of

two tag paths as following formula. For brevity, let TPED represent TPED(Pa, Pb), TPED_cut
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CP

Pa

Diff a
Diff b

Pb

Figure 5.2: Common Tag Path Distance
The CP(Pa, Pb) is the common path sequence between Pa and Pb. The Diff a, Diff b are the

remaining subpath that Pa, Pb remove CP respectively.

represent TPED(Pa_cut, Pb_cut), as well as CTPD and CTPD_cut. Let e1, e2, e3, e4 be weight

coefficients of these four tag path scores respectively.

• If the structure is single

TAG(Pa, Pb) =
e1 · TPED + e2 · TPED_cut + e3 · CTPD + e4 · CTPD_cut∑4

i=1 ei
(5.3)

• If the structure is sequential

TAG(Pa, Pb) =
e2 · TPED_cut + e4 · CTPD_cut∑2

i=1 ei
(5.4)

As we mentioned abovce, the TPED and CTPD measure the similarity between two paths

from two separate dimensions. Here, we think that the TPED (including cut and non-cut) and

CTPD (including cut and non-cut), i.e., the two dimensions, are equally important, therefore,
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for the sake of generality, the weights are set to 1 equally. However, the weight parameters are

added here for future extension studies. We will record and analyse the influence of different

weight parameters on the results in large-scale extraction tasks. Following the example of 5

(Pa) and 6 (Pb) in Figure 1.2 (the structure is single), the TAG(Pa, Pb) = 0.833+1+0.5+1
4 = 0.833.

5.3 Attribute Path Similarity

Each element of an XPath can have attributes which are used to define some characteristics

of an HTML page element. An attribute is added into the start tag of an element, which

usually appears as a name-value pair separated by “=”. Following the definition of XPath,

the attribute path is addressed as [@A1−0 = ”V1−0”][...][@A1−m1 = ”V1−m1”]/.../[@An−0 =

”Vn−0”][...][@An−mn =”Vn−mn”]/[@A(n+1)−0=”V(n+1)−0”]...

The similarity between two attribute paths is based on the ratio of matching the attributes

of a base attribute path with another’s. For example, the attribute path of node 6 in Figure 1.2

is as follows, where the "__" denotes the attribute is empty.

• APa = /id="container"/id="price"/id="main" class="product"/

__/class="price"/text="¥8080"

Then the path layer of the first attribute element (id="container") is 1 and the layer of the last

one (text = "¥8080) is 6. We observe that the attribute of lower layer contains very general

information and shared by many descendants, while the higher the path layer is, the more

distinctive and exclusive the attribute is. Therefore, as shown in Figure 5.3, we provide larger

weight factors for the attributes of higher path layers, i.e., closer to leaf nodes.

Accordingly, we develop the function ATTR(APa, APb) in Eq 5.5 to evaluate similarity

between two attribute paths APa and APb, whose output is a score which gets its best value

at 1 and worst at 0. The function focuses on measuring how many unit attributes of the base
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1 2 3 4 5 6

/div[2] /div[2] /table /tr[1] /td[2] /text()

<id="container">

<id="price">

 <id="main" 
class="product">

<class= "price">

<text = "￥8,699">

1

2

3

4

5

6

Weight

Layer

Attribute 
Path

Figure 5.3: Layer and Weight in Attribute Path

attribute path can be matched with that of other attribute paths.

ATTR(APa,APb) =

∑n
i=1

∑mi

j=1
Wi

mi
unitAttrScore(APa, i, j,APb)∑n

i=1 Wi
(5.5)

Let APa be the base attribute path to be compared with. Then for APa, let n be the number

of its attribute layers, mi the number of unit attribute of the ith layer of APa, Wi the weight of

the ith layer of APa. If we specify a number i in the attribute path of a node, then attributes

of the ith layer are determined. For example, if specifying i = 3 in APa of Figure 5.4, we will

get two attributes of the 3rd layer, i.e., id="main" and class="product". We call such attribute of a

single name-value pair as an unit attribute. Because there are multiple attribute values within

one path layer, we specify the unit attribute of one layer by a number j. Let attr(AP, i, j) be

the jth unit attribute of path layer i of the attribute path AP. For example, attr(APa, 3, 2) =

class="product". The unit attribute in the same path layer will share the weight of the layer.

Based on our observation, we set the weight of each path layer to be its layer index, i.e., Wi =
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i. For example, both unit attributes id="main" and class="product" in layer 3 (W3 = 3) are 3
2 . If

the attr(APa,i, j) (base) finds anyone matching within all unit attributes of APb, we set the unit

attribute score unitAttrScore(APa, i, j, APb), be 1, otherwise, be 0.

Path Layer
1 2 3 4 5 6

APa =  /id="container"/id="price"/id="main" class="product"/__/class="price"/text="¥8080"

APb =  /id="container"/id="price"/id="main" class="product"/__/class="label"/text="price"

Figure 5.4: An Example of Attribute Path with Path Layers

In real-world web pages, judging whether two unit attributes are matched is not a trivial

task. For example, unit attributes id="bestPriceSept" and id = "best_price_09" do not have the

same string representation but may have the same meaning. We use semantic techniques like

word segmentation, Jaccard coefficient (intersection over union), SED score, etc., to make the

approximate match.

5.3.1 Attribute Path Similarity Algorithm

We present attribute path similarity algorithm in the following pseudocode.

The input are two attribute paths AP1 and AP2 where AP1 is treated as a base path that is to

be compared with another path, e.g., the attribute path of the Target. The output is the attribute

similarity score which gets its best value at 1 and worst at 0. Line (2-3) parse attributes of

two paths into unit attribute list with weight information with a function in Line (14-26). For

example, an attribute path of node 6 in Figure 1.2 is illustrated in Figure 5.3. The path has 6

layers denoted by layerNum. The weight of each layer is equal with its layer value. Therefore,

the weightSum of this path is 1 + 2 + ... + 6 = 21. The subAttr means all attributes in a layer

can be splitted into unit attributes. For instance, the layer 3 in Figure 5.3, the subAttr is <id =

"main" class = "product">whose two unit attributes are id = "main" and class = "product", which
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Algorithm 3: attribute path score
input : Attribute path AP1, AP2

output : APscore

1 begin
2 List unitAttrs1← getUnitAttributeListWithWeight(AP1);

3 List unitAttrs2← getUnitAttributeListWithWeight(AP2);

4 APscore← 0;

5 for u1 ∈ unitAttrs1 do
6 subScore← = u1.getUnitWeight();

7 for u2 ∈ unitAttrs2 do
8 unitScore← calcUnitAttributeSim(u1, u2);

9 isMatch← attrMatchPolicy((u1, u2, unitScore);

10 if isMatch is true then
11 APscore += subScore;

12 break;

13 return APscore;

14 Function getUnitAttributeListWithWeight(AP):
15 layerNum← Layer(AP);

16 weightSum←
∑layerNum

i←1 i;

17 for i ← 1 to layerNum do
18 subAttr← AP[i];

19 currentLayer← i;

20 unitAttrsOfCurrentLayer← splitAttr(subAttr);

21 siblingAttrNum← unitAttrsOfCurrentLayer.size();

22 for j ← 1to siblingAttrNum do
23 unitAttr← unitAttrsOfCurrentLayer(j);

24 unitWeight = currentLayer
weightSum ∗

1
siblingAttrNum ;

25 unitAttrsList.push(unitAttr, unitWeight)

26 return unitAttrsList;

27 //compute the unit attribute similarity score;

28 Function calcUnitAttributeSim (u1, u2);

29 //judge whether two unit attribute is similar based on the score;

30 Function attrMatchPolicy (u1, u2, score);
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share the weight of the layer. Therefore, the weight of unitAttr id = "main" is computed by the

formula in Line 24, i.e., unitWeight = 3
21 ∗

1
2 = 0.071.

Line 4 initialize the attribute score ATTRscore. Line(5-8) use a function,denoted by calcU-

nitAttributeSim, to calculate similarity score namely unitScore between each unit attribute of

the base attribute path AP1 (Target) and AP2. Line(9-12) use a function, denoted by attrMatch-

Policy to judge whether two unit attribute is similar based on their unitScore. And if they are

matched, then the unitWeight of current unit attribute of AP1 ,shown in Line 6, is added to the

attribute score. Line 13 returns final result of attribute score.

An important component of this algorithm is the unit attribute similarity score function

(calcUnitAttributeSim) whose general process is briefly introduced as follows.

• If attribute names A of two unit attributes are different, the unit attribute score is set to 0.

• If attribute name is id or class, first we segment the attribute values and then compute

the Jaccard coefficient (intersection over union) as the unit attribute similarity score.

• If attribute name is href or src, we clean the url string first and then compute the SED

value as the unit attribute similarity score.

• For other attribute names, we compute the SED value as the unit attribute similarity

score.

• At last, if the similarity score passes a pre-defined threshold, we treat two unit attributes

as a match and set the unit attribute score, i.e., unitAttrScore, to be 1, otherwise 0.

Depending on the structure of the data type of the target node, i.e.,single or sequential, there

are some differences in the parse, clean and match policy processes. For example, if the

structure is sequential, the last anchor value in the attribute path will be deleted; only the

first appeared domain value is picked as for the href and src attribute; different thresholds are

chosen for judging whether two unit attributes are similarity and etc. Furthermore, for some
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content oriented site, such as web news page, the semantic similarity between attributes are

also concerned.

5.3.2 An Example of Attribute Path Similarity

Figure 5.4 shows an example of calculating attribute path similarity. We use the attribute

paths of node 6 (base APa) and node 5 (APb) as an example. The base attribute path APa has

6 layers, i.e., n = 6. The weight of each layer is equal with its layer value. Therefore, the sum

of the weights of path layers is
∑6

i=1 Wi=1+2+...+6=21. Obviously, except the 5th and 6th of

APa whose attribute values are written in red, all unit attributes of APa can get a matched one

in APb. Therefore, the final attribute similarity score of the two paths is calculated as follows.
1
1∗1+

2
1∗1+

3
2∗1+

3
2∗1+

4
1∗1+0+0

21 = 10
21 = 0.476.

5.4 List Order Similarity

When the target node is located in the sequential structure, e.g., the product name of the

first item in Figure 4.3(b), sometimes it will be difficult to distinguish it with other siblings

through the similarity of tag and attribute path because they are almost the samewith each other.

Therefore, we need to identify the desired node by the order it is positioned in the sequential

structure. An example is illustrated in Figure 5.5 where the li[i] (i = 1, 2, ..., 9) denotes the ith

anchor of HTML list structure li; the similar siblings (big grey nodes) have almost the same

tag path and attribute scores with the designated node (big black node). Let the node labeled

Designated Node be Target which is in the subtree rooted at the third branch of the list, i.e., li[3],

thenGoal in a page variant should also be near the third branch in the corresponding sequential

structure.

We use the list order score to measure the similarity of the order of two nodes in the

sequential structure by their tag paths. Suppose we have a node with tag path Pa in T1 and

another node with Pb in T2. Intuitively, for comparing the position of two nodes in their
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Fertile 
Node

Designated 
Node

li[1] li[3] li[9]        

Similar 
sibling 1

Similar 
sibling 9

Figure 5.5: List Order of a Designated Node in the Sequential Structure

sequential structures, the key is to respectively find the node (namely fertile node) in their tag

paths that started the sequential structure, and then to acquire the list order of each node within

the structure. We define the list order of a node as SIB
NUM where the SIB is the ordering number of

the node in its siblings and theNUM is the number of siblings in the list structure. In Figure 5.5,

the fertile node starts a sequential structure which has 9 siblings (NUM=9) and the designated

node is on the third sibling branch (SIB=3), then we get the list order of the designated node is
3
9 .

After obtaining the list order of two nodes, we compute the list order similarity score

ORDER(Pa, Pb) by Eq 5.6 which reaches its best value at 1 and worst at 0. Let the list order

of two nodes be SIBa

NUMa
, SIBb

NUMb
respectively, max(NUMa, NUMb) the largest value of NUMa and
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NUMb.

ORDER(Pa,Pb) = (1−
|SIBa − SIBb |

max(NUMa,NUMb)
) · (1−

|NUMa − NUMb |

max(NUMa,NUMb)
) (5.6)

For example, let the tag path of the designated node in Figure 5.5 be Pa, then the list order

is SIBa

NUMa
= 3

9 . Suppose we have a page variant where only one new branch was inserted into

Figure 5.5. We select the 3rd sibling of page variant as Pb, whose list order is 3
10 . Then the list

order similarity score ORDER(Pa,Pb) is (1 − |3−3|
max(9,10) ) · (1 −

|9−10|
max(9,10) ) = 1 · 0.9 = 0.9.

As illustrated in Figure 5.5, the main process of calculating the list order similarity is as

follows.

Step1 Fetch all ancestor nodes of the specified node(e.g., the Target).

Step2 Find the fertile nodes whose amount of child nodes is larger than a threshold th (e.g.,th

= 5).

Step3 Fetch all descendant leaf nodes whose tag path passes through a fertile node.

Step4 Calculate the tag and attribute similarity between these descendants and specified node,

and then rank them by similarity scores.

Step5 The nodes with the highest score are the brother nodes, which have very similar tag and

attribute path structure with the specified node.

Step6 Get the list order of the specified node by nodeSibling/nodeMaxSibling.

For the specified node in Figure 5.5, we get nodeSibling = 3, nodeMaxSibling = 9 and therefore

the list order is 3/9.

5.5 Affiliation Similarity and Final Score

At last, we compute the affiliation score, denoted by AFFI(Pa,Pb). As we presented in the

Section 4.2, the affiliation of the data type is defined as the HTML element type of a leaf node
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which is determined by ancestor nodes the leaf node affiliated to. It denotes that there exists

specified ancestor node of a leaf node, such as <a>, <header>, <li>, <td>, <h1>, etc., which

probably may not be changed in its page variants. For example, if a textual information within

a hyperlink (has an ancestor node <a>) is selected as the Target, then the correspondingGoal is

probably still in a link environment in a page variant. Because such change usually is unlikely

to happen, at first, we thought that once such change occurs, it should be given the greatest

"punishment", for example, be directly filtered. However, in real extraction tasks, we found

that when the structure of the page changes greatly (such as long time intervals), this kind of

change still may exist. For example, the <table> used to control layout was changed to the

<div>. Correspondingly, we should not directly filter out the path just because their affiliation is

different. Therefore, we let the greatest punishment be the score 0, otherwise, the award score

be 1. Accordingly, the AFFI(Pa,Pb) is calculated simply by judging whether tag paths Pa, Pb

of two nodes contain the same affiliation value. If it contains, the score is set to 1, otherwise

the score is set to 0.

Let XPa, XPb be the XPath of node a and b with the form defined in the head part of

Chapter 5. The PATHS(XPa, XPb) denote the path similarity score of XPath XPa and XPb,

which reaches its best value at 1 and worst at 0. We obtain the tag path Pa, Pb and attribute

path APa, APb from XPa, XPb respectively. For brevity, let TAG be TAG(Pa, Pb), ATTR be

ATTR(APa, APb), AFFI be AFFI(Pa, Pb), ORDER be ORDER(Pa, Pb). Let the Avg be a mean

function, the final path similarity score is computed with the following formula.

PATHS(XPa,XPb) = Avg(TAG + ATTR + AFFI + ORDER) (5.7)

We select the node(s) with the highest path similarity score as a result, i.e., the Goal node(s).
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Chapter 6

Hybrid Extraction Mechanism and
Implementation

In the previous Chapter 4 and Chapter 5, we presented two stable extraction methods. We will

show their respective effectiveness in the next experimental chapter. While in the course of

these experiments, we also observe that when dealing with page variants with large change,

for example, the temperal change illustrated in Figure 6.1 (arrow marked with 2) where web

pages changed with long time intervals, the SSN and SSP methods are not as effectively as they

performed in the template changed page variants (arrow marked with 1). At the same time,

we found that, for the largely changed (e.g.,arrow marked with 2 and 3) page variants, despite

the effectiveness of directly locating the Goal node with the center node of the neighbor zone

based method has been challenged, however, theGoal is still very probable in its neighbor zone.

Therefore, we develop a hybrid extraction mechanism that combines the path similarity based

method with the neighbor zone based method. In this situation, the neighbor zone denotes

an approximate area of the Goal in page variants, which consists of a fragment of leaf nodes.

And then we search the precise location of the Goal by the ranking the path similarity score of

nodes within the neighbor zone.

In this chapter, we first present the change model of the page variant in Section 6.1, then we

give an explanation of the hybrid extraction mechanism in Section 6.2, and at last we introduce
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implementation details of a prototype of the hybrid method in Section 6.3.

6.1 Change Model of the Page Variant

As shown in Figure 6.1, there are three change directions, i.e.,arrow marked with 1, 2 and 3,

that generate page variants which may lead to the stability problem. Suppose that the website

has i templates for a page. For the template 1 at time t1, it was specified a set of target data

u11,u12,...,u1n. The first change direction, i.e., template change, is that at time t1, the user select

and extract the target data (e.g.,. u11,...,u1n) in template 1 and use the same XPaths to extract

them (u21,...,u2n) in template 2 which is similar but different with template 1. The second

change direction, i.e., temporal change, denotes that at time t1, the user select and extract the

target data in template 1. And then at time t2, the user directly reuse the same XPath to extract

the desired data in the changed page denoted as template 1’ consists of u1′1,u1′2,...,u1′n. In the

real extraction tasks, the more common change direction is "mixed" type, that is, a combination

of the above two changing directions (grey arrow marked with 3). The page variants that result

from this change direction, i.e., the future changed version of the template variant of the initial

page, are even more challenging for the extraction.

6.2 Hybrid Extraction Mechanism

Corresponding to the change model shown in Figure 6.1, there are three kind of extraction

tasks (scenario 1, 2 and 3). The three extraction tasks have different requirement on extraction

methods. For the first kind of task 1, i.e., template page variants, even the website holds a huge

number of pages, the amount of templates corresponding to the same topic are still limited

and which usually have a very alike structure. Therefore the extraction mechanism should run

quickly and have the ability to mitigate minor and medium structural variations of the page.

For the second and the third kind of tasks 2, 3, i.e., temporal and mix changed page variants, the

page’s layout may change visibly in a future time point, accordingly a more stable mechanism
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Figure 6.1: Change Model of the Page Variant

is needed to deal with such large structure changes.

Based on the explanation in the head of this chapter, a hybrid method is proposed as follows.

As presented in the end of Section 4.3.3, we will get the center node C in the page variant.

Therefore, as shown in Figure 4.2, we set a radius r to acquire all leaf nodes in the neighbor

zone. The r can be determined by considering the TED value or the total number of nodes of

two trees, while based on the experiment tuning, we set it with an empirical value 10. We note

that because we filter some nodes with their descendants in the HTML tree, the zone range

may have some nodes that are not really leaf nodes. Therefore the real radius usually can be

smaller than our empirical value. The architecture of the hybrid extraction method are shown

in Figure 6.2.
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Figure 6.2: Architecture of the Hybrid Extraction Mechanism

6.3 Implementation

We implemented a prototype for the our methods. The inputs of the prototype are crawled

HTML source fileswith designated target information, and two parameters : a property switcher

and optionally a structure switcher. The property switcher is a Boolean value that controls

whether to execute the property filter. The structure switcher is a Boolean value that indicates

the target is in a single or a sequential structure.

We use an HTML parser Jsoup[90](ver.1.7.2) The HTML Doc processor is used to parse

and traverse each HTML page into a post-ordered labeled tree. Each node of the tree is recorded

by a data structure named Defined Node and stored into a MySql database. As an example

shown in Figure 6.3, the defined node record the following information of each node: pid,
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tag, is_leaf, text, attributes, XPath_abs, path_attr, sibling_amount, src, lml_id, lml_tag, rml_id,

rml_tag. The pid is the post-order number of the node in the ordered HTML tree. The tag is

the tag name of the node. The is_leaf means whether the node is a leaf node. The XPath_abs

records the absolute XPath of the node which can be used as a unique locator of it. The text

records textual contents of the node. The attributes records textual contents of the node. The

path_attr is the attribute path of the node. The sibling_amount is the number of sibling nodes.

The src is the url value of the web page. The lml_id/rml_id and lml_tag/rml_tag are the pid and

the tag of the left-most-leaf node/right-most-leaf node of the current node..

The node querier is an interface used to query nodes from the database. The neighbor zone

and path similarity components (orange and yellow colored) are implemented as a pipeline

style where each component works independently. The dotted arrow is the pipe that connects

the neighbor zone component and path similarity component.

Figure 6.3: An Example of Defined Node Structure (Fragment)
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Chapter 7

Experiment and Evaluation

In this chapter, we set up experiments on real-world web data extraction tasks to verify the

following research questions shown in Section 7.1. The XPath based extraction[5, 6, 7, 8] is the

baseline method which is compared with our approaches. Our goal is to design and implement

extraction methods surpassing the XPath in terms of stability, which also can be flexibly used

under different application scenarios.

The reason we focus on comparing with the XPath is as follows. The XPath is a powerful

and the most widely used DOM-based HTML element locator. Almost most of other methods

provided by DOM-based tools (e.g., CSS selector of Jsoup,) can be replaced by the XPath

expression. In real-world extraction tasks, in many cases the XPath is the only choice that

always can locates arbitrary web page element. Our methods are not aim to replace the XPath

method, but to complement it and can be used in combination with it.

There is no "robust XPath" officially defined. Usually, a robust XPath expression is carefully

evaluated by human professionals, which requires a lot of experience and efforts. We choose

the XPath that can be automatically generated (e.g., by a plugin of the browser) as rivals. The

relative XPath is considered more robust than the absolute XPath. In addition, we add the

Robular(2014)[67] and Robular+(2016)[29] robust XPath generator as comparisons. As far as

we know, these two methods are currently the most relevant work for automatic generation of



Chapter 7 Experiment and Evaluation 76

robust XPath in our application scenarios.

Many other path based methods are "ad hoc" style. We do not use these specific works

because they are not easy to obtain for testing on the same datasets. To our understanding,

we notice that each approach may have its own advantages which may not be replaced by

others methods. Some comparison highly depends on the design purpose and the application

environment used. Therefore, we classified the existing extraction methods in the related work

(Section 1.3) and analyze the differences and limitations in our application scenario.

7.1 Research Questions

RQ1 Do the neighbor zone and path similarity based method have higher stability than the

XPath method on extracting the desired information in page variants?

RQ1-1 With the center node of the neighbor zone component alone, can we get a more

stable extraction result than the XPath method?

RQ1-2 With the path similarity component alone, can we scrape the desired data more

stably than the XPath method?

RQ1-3 When combining neighbor zone and path similarity components, can we get a

more stable extraction method than using two components alone?

RQ2 If the page variant contains larger structural changes, can the neighbor zone, path simi-

larity and the hybrid methods extract the desired information stably?

In order to measure the stability mentioned in RQ1 and RQ2, we need to observe whether

the extraction methods have the ability to successfully extract the required data from page

variants. We adopt the most commonly used evaluation criteria in this area, the F1-score

(a weighted average of the precision and recall), as performance metrics, where an F1-score

reaches its best value at 1 and worst at 0. If a method has a higher F1-score on the dataset, it is

regarded as more stable.
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7.2 Datasets

We prepared two datasets as a benchmark to compare the stability of our methods with the

XPath based extraction. The first one, denoted byDataset1, is gathered from a large dataset with

ground-truth, publicly available at http://swde.codeplex.com/, published by Qiang Hao et al[21].

Because the source files of the dataset are very large (about to 8GB HTML that will generate

400GBMySQL defined nodes), we use a random sampling function (java.util.Random) to pick

experimental sample pages. As summarized in Table 7.1, we randomly selected 101 pages

(1 web page and 100 page variants) for each website to get totally 8,080 web pages from 80

diverse websites in 8 vertical fields such as autos, books, etc. Figure 7.1 shows an example of

random picked samples from the Autos and Cameras verticals of the Dataset1 that are used in

the experiment.

Table 7.1: The Composition of the Dataset1
Vertical #Sites #Pages Target Data websites

Autos 10 1,010
model, price, engine,

fuel-economy

aol, autobytel, automotive, autoweb, carquotes, cars,

kbb, motortrend, msn, yahoo

Books 10 1,010
title, author, ISBN-13,

publisher, publish-date

abebooks, barnesandnoble, bookdepository,

booksamillion, borders, christianbook,deepdiscount,

waterstones

Cameras 10 1,010 model, price, manufacturer
amazon, beachaudio, buy, compsource, ecost, jr,

newegg, onsale, pcnation, thenerds

Jobs 10 1,010 title, company, location, date
careerbuilder, dice, hotjobs, job, jobcircle, jobtarget,

monster, nettemps, rightitjobs, techcentric

Movies 10 1,010 title, director, genre, rating
allmovie, amctv, boxofficemojo, hollywood,

iheartmovies, imdb, metacritic,rottentomatoes

NBA Players 10 1,010 name, team, height, weigh
espn, fanhouse, foxsports, msnca, nba, si, slam,

usatoday, wiki

Restaurants 10 1,010 name, address, phone, cuisine
fodors, frommers, gayot, opentable, pickarestaurant,

restaurantica, tripadvisor,urbanspoon, usdiners, zagat

Universities 10 1,010 name, phone, website, type

collegeboard, collegenavigator, collegeprowler,

collegetoolkit, ecampustours,embark, matchcollege,

princetonreview, studentaid, usnews

http://swde.codeplex.com/
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(a) Auto-aol (101 of 2000)

(b) Camera-amazon (101 of 1767)

Figure 7.1: An Example of Random Picked Samples from Dataset1

As shown in Table 7.2, the second dataset, denoted by Dataset2, we manually recorded the

failed samples from a large number of extraction experiments. The pages were gathered from

Internet Archive1which constantly store historical snapshots of theweb page. Dataset2 contains

1https://archive.org/

https://archive.org/
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90 web pages (30 web pages and 60 page variants with a time interval of 1˜77 months) from 22

popular websites covering 8 vertical fields such as news, travel agent and so on. Because the

internet archive cannot collect everything from every website, when we collect web page and

its page variants, only if the web page carrying the target information exists in the archive will

be selected and saved. Therefore, the integrity of the page in Dataset2 is guaranteed. We note

that the Dataset2 only consists of pages from which the initial evaluated XPath failed to extract

the target data in page variants. Furthermore, as best we know, there are very few unified

approaches that suit both the detail page and the list page together. Therefore, the stability test

on this data set will be more challenging. TheDataset2 is an additional experiment. The reason

we additionally prepare it is that: an XPath expression used on a site may receive a good score

because the page does not change significantly and frequently. Because all original evaluated

XPath extraction failed, this dataset can also be seen as the "recover rate" of the method.

As we mentioned in Section 1.2, mainly there are two reasons cause page variants: (1)

inconsistent template, (2) internal structure change over time. At the same time or for a short

time interval, most of the page variants are caused by the first reason, i.e., inconsistent template.

Such page variants usually have minor structural changes that are either close to the leaves of

the tree or just edited(insert/delete/replace) a small number of nodes. Dataset1 consists mainly

of such pages. While as the increase of time intervals, the internal structure of some page

variants has changed largely (modifications close to the root of the tree; reorganization of the

page; many nodes edited). Dataset2 contains such temporal type of such pages. We use the

"mixed" type change to describe the combination of the above two changes.

Therefore, the Dataset2 is used to answer the RQ2, because we consider that page variants

produced after a long time interval, e.g. several or tens of months after, include larger changes.
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Table 7.2: The Composition of the Dataset2 and its Result Record

website
Initial Page 1 Page Variant 1-2 Page Variant 2-3 Page Variant 1-3 Variant

Type
Page
TypeDate Target Data Interval TED

Fire/Robular/Robular+

, SSN/SSP/SSNP
Interval TED

Fire/Robular/Robular+

, SSN/SSP/SSNP
Interval TED

Fire/Robular/Robular+

, SSN/SSP/SSNP

CNN Economy 20140101 top story 15m 0.427 ×, × 18m 0.461 × × ×, × 32m 0.494 × × ×, × × temporal detail

BBC Business 20150101 top story 3m 0.449 × × ×, × × 17m 0.074 × × ×, × 20m 0.461 × × ×, × × temporal detail

Yahoo! News 20141020 navigation bar 18m 0.504 × × ×, 3m 0.331 × × ×, × 21m 0.516 × × ×, × temporal detail

booking.com 20151120 room score 4m 0.146 × ×, 4m 0.209 , 8m 0.289 × ×, mix detail

Ctrip Cruise 20150721 first title 10m 0.236 × × ×, × × 2m 0.075 × ×, × 12m 0.231 × × ×, × × mix list

Lvmama Cruise 20151118 product title 6m 0.319 × , 1m 0.384 × × ×, × × 7m 0.377 × × ×, × mix detail

Lvmama Tour 20160603 product title 2m 0.435 × × ×, × × × 10m 0.307 × × ×, × 12m 0.459 × × ×, × × × mix list

Ly Tour 20160229 product title 2m 0.070 ×, × 10m 0.276 × ×, × × × 12m 0.263 × ×, × × × mix detail

Ly Drive 20160602 product title 2m 0.174 × × ×, 6m 0.260 , 8m 0.329 × × ×, × mix detail

Ly Visa
20160225 product title 1m 0.387 × × ×, × × 3m 0.366 ×, × 4m 0.355 × × ×, × × × mix detail

20160225 location 1m 0.387 × × ×, × × 3m 0.366 × × , 4m 0.333 × × ×, × × mix detail

worldbank.org 20141012 GDP value 5m 0.066 ×, 18m 0.408 × × ×, 23m 0.415 × × ×, temporal detail

wikipedia.org
20140614 first reference 9m 0.095 , 17m 0.187 × , 26m 0.244 × × ×, × temporal detail

20140614 first note 9m 0.095 × , × × 17m 0.187 × , × 26m 0.244 × , temporal detail

BBC Country 20040402 country map 20m 0.156 × , 57m 0.310 × , 77m 0.332 × , temporal detail

github.com

20140517 project name 9m 0.048 × × ×, 18m 0.155 × × ×, 27m 0.174 × ×, temporal list

20140517 company name 9m 0.048 , 18m 0.155 × × ×, 27m 0.174 × × ×, temporal list

20140517 commit people 9m 0.048 , 18m 0.155 × , 27m 0.174 × , temporal list

zhihu.com 20151220 first subtopic 5m 0.187 × × , × 4m 0.206 × × ×, × × × 9m 0.317 × × ×, × × × temporal list

amazon.co.jp

20160108 product price 7m 0.211 , × 10m 0.211 , 17m 0.238 , temporal detail

20160108 total price 7m 0.211 ×, 10m 0.211 × × ×, 17m 0.238 × × ×, temporal detail

20160108 detail info. 7m 0.211 × × , 10m 0.211 × , 17m 0.238 × × , temporal detail

ebay.com
20151216 first record 4m 0.113 × × ×, 4m 0.300 × × ×, × 8m 0.308 × × ×, × mix list

20151216 next page 4m 0.113 , 4m 0.300 , 8m 0.308 , mix list

youtube.com
20140617 video title 6m 0.302 , 21m 0.301 , 27m 0.378 , mix detail

20140617 next video link 6m 0.302 × × ×, × 21m 0.301 × × ×, × 27m 0.378 × × ×, × × mix detail

eonline.com 20150108 video title 21m 0.283 , 16m 0.179 , 37m 0.324 , mix detail

csdn.net 20150102 article tag 15m 0.299 × × ×, × 4m 0.238 × ×, × 19m 0.250 × × ×, × mix detail

blog.sina.com 20140602 headline blog 16m 0.117 × × ×, 26m 0.189 × × ×, 42m 0.225 × × ×, temporal detail

twitter.com 20150318 first tweet 11m 0.200 × × ×, × 8m 0.051 × × ×, 19m 0.198 × × ×, × temporal list
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7.3 Experiment Environment

Different experiment environment, such as different HTML cleaning schemes, will convert

page elements into different HTML DOM representation, which may lead to an inconsistent

of XPath for the same target information. In order to make sure the experiments’ result can

be reproduced by other researchers we describe our experiment environment as follows. We

implemented the prototype for our approaches with Java (JDK 1.7) whose main components

are shown in Figure 6.2. All implementations and experiments are run on an Intel Core i5

2.4GHz PC running Windows 10 64bit with 8GB RAM.

Since most of visible contents of a web page are contained in the body element, in-

stead of the <html> we regard the <body> node as the root node of the page. We use the

Jsoup[90](ver.1.7.2) to traverse each HTML page into a post-ordered labeled tree, where each

node of the tree is labeled with its tag name and has a unique order id. During the traversal, the

tree is cleaned by deleting elements that have slight effect on contents recognition including

formatting/style nodes (e.g. <hr>, <br>, <col>, etc.), external files nodes (e.g. ,<script>, etc.),

empty/blank text nodes, image nodes with very small area, and the hidden input nodes. Full fil-

tered nodes are as follows: NULL("Blank", "enter", "tab"), LINE BREAK("br"), LINK("link"),

SCRIPT("script"), NOSCRIPT("noscript"), HR("hr"), STYLE("style"), DFN("dfn"), VAR("var"),

CODE("code"), SAMP("samp"), KBD("kbd"), COL("col"), COLG("colgroup"),META("meta"),

BASEF("basefont").

The XPath of the target node is generated by a plugin of the Firefox browser2 named

Firepath3, which is an absolute or a relative path. The FirePath plugin was no longer supported

by the Firefox version 51.0.1. We use the Firefox(version 30.0b1) and FirePath (version 0.9.7)

to generate absolute XPath (abbreviated as XPath). We use the Firefox(version 49.0b9) and

FirePath (version 0.9.7) for generated more relative paths (abbreviated as FirePath), which

were mainly based on the id attribute. The Robular [67] and the Robular+ [29] robust XPath

2https://www.mozilla.org/en-US/firefox/new/
3https://addons.mozilla.org/en-us/firefox/addon/firepath/
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locator (Robular and Robular+ for short) are publicly available at http://sepl.dibris.unige.it/

ROBULA.php(accessed 15 March 2018). According to the authors, the Robular/Robular+ plugins

were developed based on the FirePath (version 0.9.7) and worked on the Firefox before the

version 31.0. The Robular/Robular+ were no longer supported since the Firefox version 34.

7.4 Experiment Process

The experiment process is shown in Figure 7.2. We first construct correct sets of goal nodes

(ground truth) for two data sets. The ground truth (correct goal) of Dataset1 was pre-defined

and published byQiangHao et al.[21]. The correct goal nodes ofDataset2were screened by our

volunteers, including 2 professional crawler developers and 4 college students having no web

scraping experience. They first selected popular websites (22 websites of 8 categories) from

the web traffic data ranking website: www.alexa.com. Then the crawler developers selected

the Target based on the real extraction task experience in their work. For example, room

score (booking.com), product price(amazon.co.jp), first product record content, next page link

(ebay.com), video name, next video link (youtube.com) and etc. College students selected the

target nodes based on their personal interests. For example, GDP value (worldbank.org), first

reference, note (wikipedia.org).

For each page of Dataset1, there 3˜5 target nodes are specified, and for each target node of

a web page, we can get a goal node in its variant page. Totally, we have extracted 31,400 target

nodes from the Dataset1. For Dataset2, we extracted 90 target nodes from Dataset2 totally.

There are 1˜3 target nodes specified for each page, which the XPath failed to extract.

To compare the stability (precision, recall and F1-score) of main components in our ap-

proachwith the baselineXPath based extraction, we implemented three versions of the proposed

system as follows.

• SSN (stable scraping based on neighbor zone) is the version which directly uses the

center node of the neighbor zone as the goal node. It is only the output of the Chapter 4.

http://sepl.dibris.unige.it/ROBULA.php
http://sepl.dibris.unige.it/ROBULA.php
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Figure 7.2: Experiment Process

• SSP (stable scraping based on path similarity) is the version which uses top ranking

node(s) of all leaf nodes as the goal node. It is only the output of the Chapter 5.

• SSNP (stable scraping based on neighbor zone and path similarity) is the hybrid version

which searches the goal node in nodes around the center node of neighbor zone using the

path similarity. It actually is the SSN plus the SSP, which is the output of the Chapter 6.
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7.5 Performance Metrics

Let a dataset be a finite set of web pages W = {w1, ...wi, ...wn}; X(wi j) the correct Goal

node in the page wi to the jth Target node; Y (wi j) the output node(s) that were extracted by the

method corresponding to target node; ki the number of target nodes we given in the page wi

(i = 1, ..., n). For Dataset1, n = 8000 and 3 ≤ ki ≤ 5 (i = 1, 2, ..., 8000). For Dataset2, n = 60

and 1 ≤ ki ≤ 3 (i = 1, 2, ..., 60). Then the precision, recall and the F1-score are calculated by

the formula as follows.

Precision =

∑n
i=1

∑|ki |
j=1 |X(wi j) ∩ Y (wi j)|∑n

i=1
∑|ki |

j=1 |Y (wi j)|
(7.1)

Recall =

∑n
i=1

∑|ki |
j=1 |X(wi j) ∩ Y (wi j)|∑n

i=1
∑|ki |

j=1 |X(wi j)|
(7.2)

F1 = 2 ·
Precision · Recall
Precision + Recall

(7.3)

7.6 Experiment Results

In Figure 7.3 and 7.4, we summarize the precision, recall and F1-score of absolute

XPath (XPath), relative XPath (FirePath), robular, robular+, SSN, SSP and SSNP in DataSet1

and Dataset2 respectively. The SSN, SSP method achieved a better overall result than XPath

and robular/robular+, and the SSNP performs consistently better than other methods in the

two datasets, which proves its stable effectiveness. Experiment results of vertical fields on

Dataset1 are shown in Figure 7.5.

Table 7.2 records all extraction results of Dataset2. Each test was started with the "Initial

Page 1" where users selected the desired data named as "Target Data". The "Page Variant

#a–#b" is a page variant "#b" which was changed from the page "#a" and the "Interval" means
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Figure 7.3: The Precision, Recall and F1 Score of Dataset1
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Figure 7.4: The Precision, Recall and F1 Score of Dataset2
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Figure 7.5: The F1 Score of Vertical Field of Dataset1

the time interval (month) from "#a" to "#b". The TED value is to quantify how similar two

pages are to one another. It reaches its best value at 0 (same page) and worst at 1. The "Variant

Type" is the reason for the variation of the page which includes temporal change and the mix of

the template and the temporal change. For example, the future changed version of the template

variant of the original page. The temporal and mixed type page variants usually are more

challenging for the extraction. The "Page Type" means the detail page or list page. The results

of extraction based on each method are recorded as correct and incorrect which are marked as

and × respectively. When multiple results are generated, an underline will be added to the

corresponding result symbol. We notice that all XPaths worked on the page "#a" but failed to

extract the target data in the page variant "#b".
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The detailed values of the above experimental results are shown in Table 7.3 and 7.4.

Table 7.3: Experimental Results of Applying Different Methods to the Two Datasets

Method
Dataset1 Dataset2

Precision Recall F1 Precision Recall F1

XPath 0.840 0.843 0.841 0 0 0

FirePath 0.954 0.915 0.934 1.000 0.333 0.500

Robular 0.953 0.828 0.886 1.000 0.356 0.525

Robular+ 0.956 0.484 0.643 1.000 0.356 0.525

SSN 0.871 0.874 0.872 0.644 0.644 0.644

SSP 0.936 0.966 0.951 0.594 0.700 0.643

SSNP 0.957 0.964 0.960 0.872 0.911 0.891

Table 7.4: Experimental Results of Applying Different Methods to the Dataset1 Verticals

Method

F1 Vertical

auto book camera job moive nbaplayer restaurant university

XPath 0.921 0.852 0.664 0.888 0.745 0.937 0.831 0.895

FirePath 0.943 0.907 0.888 0.942 0.924 0.961 0.937 0.967

Robular 0.952 0.792 0.920 0.905 0.787 0.918 0.900 0.898

Robular+ 0.703 0.688 0.747 0.566 0.439 0.683 0.631 0.641

SSN 0.872 0.789 0.901 0.905 0.878 0.899 0.910 0.825

SSP 0.940 0.914 0.971 0.946 0.949 0.995 0.906 0.979

SSNP 0.963 0.922 0.983 0.953 0.942 0.973 0.962 0.987
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7.7 Discussion

7.7.1 Answer to the Research Questions

From Figure 7.3, we see that in the Dataset1 experiment, the absolute and relative XPath

obtained an F1 score of 0.841 and 0.934 respectively. Correspondingly, the scores of SSN,

SSP, SSNP are 0.872, 0.951 and 0.960. The SSN, SSP and SSNPmethods increase the stability

score of XPath by a maximum of 3.6%, 13.0%, 14.1% respectively. From Figure 7.4, because

the Dataset2 contains only page variants that the absolute XPath method failed to extract, the

F1 score of absolute XPath is 0, relative XPath is 0.5, robular/robular+ both are 0.525, while

SSN is 0.644, SSP is 0.643 and SSNP is 0.891. From these experimental results, we can see

that, the SSN (averagely) and SSP methods have higher stability than absolute/relative XPath

and robular/robular+ methods, and the SSNP method has more stable performance than all

other methods. Therefore, for RQ1-1, there are two cases. When the page changes are small,

such as a template variant, the SSN method extracts better results than absolute XPath, but

is slightly weaker than id-based relative XPath, so the answer is No; when the page changes

largely, such as a temporal or mix type page change, the SSN method performs better than

both absolute and relative XPath, so the answer is Yes. The answers to the question RQ1-2 and

RQ1-3 are Yes.

From Figure 7.4 and Table 7.2, we can see that as the time span increases, the page change

grows largely. In this case, the XPath based extraction becomes fragile, while SSN, SSP reached

the passing level (0.644, 0.643) and SSNP still maintains the F1-score above 0.89. Therefore,

for the question RQ2, our answer is Yes. We note that all precision values of firepath, robular

path and robular+ in the Dataset2 are 1.0. The reason is that, for extracting a target node in

a page variant, these methods either got the one correct result node or got none at all. For

example, suppose that there are 100 extraction tasks (i.e., 100 target nodes), and the a method

only extracted 40 result nodes which are all correct, then the precision = correct results /all

extraction results = 40/40 = 1, the recall = correct results/ground truth = 40/100 = 0.4.
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In conclusion, the proposed SSN, SSP, SSNP approaches have higher stability than the

XPath in terms of extracting target nodes in page variants. In case of long time interval page

variants, which are more difficult for the XPath method, the SSNP method still has a stable

performance.

For other rival methods, the experimental results show that the Robular/Robular+ are more

suitable for web application testing that focuses on the UI components oriented extraction,

however, for extracting tasks that focus on content-oriented data in the page, their effectivenesses

are not better than XPath and our methods. From Figure 7.5, we also found that our methods

have higher stability than [21] in results of all the vertical fields (0.960 vs 0.844 average). We

note the difference of application scenarios is that our methods need to specify a target node

for each site without the help of visual files, while the [21] only needs to specify a target node

for sites of a vertical field but requires visual information support.

In the rest of this section, we discuss the validity of our conclusions, the input requirements

and the execution time of our approaches.

7.7.2 Observations from the Experiment Result

We have the following observations drawn from the experiments.

• Even a slight structural change can lead to an absolute XPath failure, and when the page

structure changed largely the carefully evaluated relative XPath went to fail.

• For most sites, the internal structure of the page changes more as time goes on, which

makes it more difficult for the XPath.

• The temporal and mixed type of page variants, i.e., the future changed version of the

template variant of the initial page, usually is more challenging for extraction.

• As shown in Figure 7.5, from experiment results of vertical fields on Dataset1, we found

that few samples consisted of page variants caused by inconsistent templates inDataset1,
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where SSN, SSP have a better result than SSNP. For example, during the extraction of

the camera price in the jr.com we get 0.92 F1-score by SSN and 0.72 by SSNP.

– The reason of the former is that some pages use a large list structure to display

information such as current price, discount price, historical prices that have the

same path score which leads SSNP to generated multiple results. Although this

has been mitigated by using list order similarity (Section 5.4) to distinguish order

sequences, for identifying the target data, we still need a more semantic level

comparison.

– The latter is because some web pages swap two large list structures. Because of

the inherent limitations of the TED algorithm, the SSN method yields erroneous

results, which affects the SSNP results.

• When page variants change largely, e.g., temporal change or the mixed type of change

in Dataset2, the SSN and SSP components are not as effective as they performed in the

template changed page variants, which indicate the combination approach of SSNP is

necessary.

• What is the cause of the big gap between F1 score of SSN/SSP and SSNP for dataset2 in

Figure 7.4? This actually verifies our observation in Section 1.4, which is a cornerstone

of SSN method, i.e., "there are some page elements in a web page, and the relative

positions between two of them remain unchanged or slightly changed in page variants".

For the Dataset2, the effectiveness of SSN component has been challenged due to it is

difficult to map two nodes exactly between the original page and the page variant which

was largely changed. However, the Goal is still very probable in the neighbor zone. This

means that even the center node of SSN was not theGoal directly, but it was very close to

the Goal (within the radius r). Therefore, we developed the SSNP method that combines

the SSN and SSP methods. In SSNP, the neighbor zone denotes an approximate location

of the Goal in the page variant, which consists of a fragment of leaf nodes. And then we
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search the precise location of the Goal by the ranking the path similarity score of nodes

within the neighbor zone.

7.7.3 External Validity

We first discuss the threats to external validity (generalization) of the experimental conclu-

sions. The following aspects of our sample pages in datasets show the generalization of our

experiment, which means it would hold for other persons in other places and at other times.

• The samples are from 102 popular websites having high hit counts covering 16 vertical

areas, such as amazon.com of camera, booking.com of travel, etc.

• More than 30,000 target nodes have been extracted where multiple target nodes were

selected from different positions in a page, e.g., product title, price, manufacturer, next

page link and etc.

• Page variants of long time interval (1 month ˜ 77 months) and page variants of main type

of data rich pages (detail page and list page) were included.

Therefore, we can consider the datasets we used are sufficiently generalized to keep external

validity.

7.7.4 Input Requirements

All inputs our approach needs are simply consisted of a HTML source file with designated

target nodes, a property switcher and optionally a structure switcher. We note that such inputs

are only required on the first use. The property switcher is a Boolean value that controls

whether to execute the property filter. The structure switcher is a Boolean value that indicates

the target is in a single or a sequential structure. In our experience, such a simple input is a

non-negligible advantage comparing with existing countermeasures that need pre-processing

because the following requirements.
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• Arbitrary target choosing. Extraction tasks often need to be customized according to

the needs of users. However it is almost impossible to induce a set of highly accurate

rules that suit all pages in advance because users may choose any part of any page of any

site with specific application requirement. Even within the same page, different users

may choose different targets.

• Timely response. Normal data users may have limited programming skills and focus

on the application logic more than technique procedures. It is impractical to require

them to quickly design a decent pattern (e.g., HTML subtree) to match the target data in

page variants correctly. For professional users who could recover the pattern and tune

parameters well, due to the large-scale data operation, each repair work still becomes

time costly.

• Only HTML files. The extractor should adapt to mainstream data rich web pages. Using

only HTML files will reduce the bandwidth overhead for the big data collection task and

can reduce the failure rate of the entire extraction process due to unsuccessful acquisition

of other supplementary files like CSS or JavaScript files.

– Missing the supplementary files (CSS, JavaScript) has limited impact on the extrac-

tion of target data. Without the supplementary files, i.e.CSS, JavaScript, some page

layout, e.g., an advertisement block or interactive UI-components, e.g., a drop-down

menu by mouse hover, of the page may be missing. However, we note that, firstly,

our tasks focus on partially extract data from the main contents of web pages (not UI

components oriented). Secondly, the HTML files the crawler/manually collected

are the web pages that have already been rendered by scripts. Therefore, the pages

still preserved many contents which had been dynamically generated by the scripts.

Therefore, according to our observations, if the user could locate and select the

target node (Target) in the original web page, then even if the subtree structure of

the target node was generated by the dynamic scripts, the target node (Goal) would
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still exist in the page variants.

• Compatibility. The extractor should be compatible with existing techniques such as

XPath. It works like the plug and play style which can be easily combined with other

methods.

7.7.5 Execution Time

The running time of the the neighbor zone based method (SSN) is depended on the Zhang

and Shasha TED algorithm[88]. We did not measure the time required by the SSN method

because it largely depends on the implementation optimization. The theoretical computational

complexity of the TED is as follows.

O(|T1 | |T2 | · min(leaves(T1), height(T1)) · min(leaves(T2), height(T2))

We can see that it is acceptable in practical cases, because its running time depends on the

height of the trees which usually is much lower compared to the number of all nodes or leaf

nodes of the HTML tree. Some samples of this is shown in Table 7.5. Let the "#Nodes" column

be the number of nodes in the page, "Height" the largest number of path layer of the HTML

tree, "#Leaf Nodes" the leaf node number of the page.

The path similarity calculation between two paths is almost instantaneously. The execution

time required by the path similarity based method is affected by the number of leaf nodes

(one leaf node needs one calculation) in the HTML tree of page variants. For extracting the

target node from 100 page variants, SSP method has required about 30 seconds on average. It

denotes that, the whole extraction of a target node took only a very short time, i.e., 0.3 second

on average, which can be considered well acceptable from the web scraping perspective of

our experience. We also notice that as introduced in the implementation section Section 6.3,

for the convenience of analysis, our methods have an initialization phase to store each node

of HTML tree into the database. This accordingly will bring a loading phase for fetching the
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Table 7.5: The Number Of Nodes and the Height of the HTML Trees
Website Vertical #Nodes Height #Leaf Nodes Date

amazon.com shopping 3528 25 1319 20170707

bbc.com news 1759 20 573 20160916

booking.com travel 5447 20 2630 20160408

worldbank.org organization 1386 29 520 20160915

wikipedia.org library 8790 22 3983 20160807

twitter.com social networking 3594 25 1233 20160915

youtube.com video 944 24 332 20160902

blog.sina.com blog forum 1292 15 592 20161208

parsed HTML tree from the database which leads to redundant time consuming. Therefore,

the execution time of our methods are acceptable for a real-world web extraction task.
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Chapter 8

Conclusion

The aim of this thesis is to develop stable and flexible solutions for the partial information

extraction on web pages without imposing complex restrictions on the input. The pattern

matching and model learning based approaches need a learning phase or supplementary files.

If the manually labelled sample set for learning is not sufficiently large, the extraction may

be inaccurate. As a extraction agent, if the target data is frequently re-designated, the these

methods will be inefficient.

In the thesis, we presented two partial information extraction methods and a hybrid method

of them that focus on the stability problem caused by page variants. The first method, i.e.,

the neighbor zone based method, defines the concepts of the data type and the node distance,

which describe the characteristics of page elements and the layout relationships between nodes

in HTML trees. It presents the center node algorithm to search the location of the target node.

The second method, i.e., the path similarity based method, presents an original approach to

measure the similarity of page elements based on information carried by their XPaths. The

path similarity between candidate nodes and the target node is evaluated from multiple aspects,

i.e., tag path, attribute path, affiliation and list order, which is used to be rank.

In support of our conclusions, we experiment on two complementary datasets consist of

real-world web pages. The first dataset contains 8,080 web pages from 80 websites of 8
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vertical fields, where each page contains 3˜5 target nodes. Totally, we have extracted 31,400

target nodes from the Dataset1. The second dataset consists of 90 web pages from 22 popular

websites of 8 vertical fields, where each page contains 1˜3 target nodes. It is more challenging

because it only contains long time interval page variants that the XPath method failed to extract.

The experimental results show that our methods have better stability for partical informatino

extraction compared with the XPath method (F1-score increased by a maximum of 0.119 in

Dataset1, 0.891 in Dataset2). By combining the neighbor zone(SSN) and the path similarity

(SSP) methods, the SSNP gets a more stable extraction result (F1-score of SSN, SSP, SSNP:

0.872, 0.951, 0.960 in Dataset1, 0.644, 0.643, 0.891 in Dataset2). The presented approaches

support arbitrary target data selecting in a page and returns the extraction result in time, because

they only needs the HTML source files and do not need the pre-processing like labeling samples

or designing patterns. This is significant because it complements existingXPath-basedmethods

and is flexible for large-scale extraction.

In the future work, we think the following directions are important and interesting. We

would like to further develop the calculation of unchanged node pairs and the semantic similarity

of attributes to further improve the effectiveness of the SSN, SSP and SSNP methods. For

example, we may optimize the mapping for HTML trees by developing a cost function that

specifies a higher cost to the change operation in the TED algorithm. We are going to analyse

the influence of different weight parameters in the tag path similarity functions in the real-world

extraction tasks. We would like to construct a customizable scraping platform, which supports

target choice through a GUI, e.g., a web browser plugin, and offers various extraction methods

as plugins in the backend. In addition, from the perspective of protecting information privacy

and intellectual property of websites, anti-extraction techniques are a crucial extension.
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