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ABSTRACT
Depression is a common, but serious mental disorder that affects
people all over the world. Besides providing an easier way of di-
agnosing the disorder, a computer-aided automatic depression as-
sessment system is demanded in order to reduce subjective bias in
the diagnosis. We propose a multimodal fusion of speech and lin-
guistic representation for depression detection. We train our model
to infer the Patient Health Questionnaire (PHQ) score of subjects
from AVEC 2019 DDS Challenge database, the E-DAIC corpus. For
the speech modality, we use deep spectrum features extracted from
a pretrained VGG-16 network and employ a Gated Convolutional
Neural Network (GCNN) followed by a LSTM layer. For the textual
embeddings, we extract BERT textual features and employ a Con-
volutional Neural Network (CNN) followed by a LSTM layer. We
achieved a CCC score equivalent to 0.497 and 0.608 on the E-DAIC
corpus development set using the unimodal speech and linguistic
models respectively. We further combine the two modalities using
a feature fusion approach in which we apply the last representation
of each single modality model to a fully-connected layer in order
to estimate the PHQ score. With this multimodal approach, it was
possible to achieve the CCC score of 0.696 on the development set
and 0.403 on the testing set of the E-DAIC corpus, which shows an
absolute improvement of 0.283 points from the challenge baseline.

CCS CONCEPTS
• Computing methodologies→Machine learning; • Applied
computing → Health care information systems.
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1 INTRODUCTION
Depression is one of the most common mental disorders in the
United States (US). In fact, according to the data collected from
the 2017 National Survey on Drug Use and Health (NSDUH) [1],
an estimate of 7.1% of all adults in the US had at least one major
depressive episode. Although considered quite common all over the
world and among a wide range of ages [27], this disorder cannot
be neglected since it can cause severe and negative impacts. The
abilities of a person in performing daily activities can be degraded
and depression can result in undesirable effects in their thoughts,
feelings and actions [5]. Furthermore, depression can also be a sign
that someone is suffering from a neurocognitive disorder, such as
dementia [4]. Therefore, the development of newmethods and tools
to support a fast and precise depression diagnosis is undoubtedly
necessary.

In this regard, several studies [2, 14, 19–21, 41] proposed
computer-aided solutions for seeking an automatic and objective
depression detection method. This is important to reduce subjective
biases, to popularize the diagnosis of this condition and to aid the
diagnosis in complex situations, such as the ones presented by some
elderly people [12].

Even though the automatic depression detection has been widely
investigated from different perspectives, it is still considered a chal-
lenge. In fact, the 2019 edition of the Audio/Visual Emotion Chal-
lenge and Workshop (AVEC 2019) [13] proposes the Detecting
Depression with AI Sub-Challenge (DDS). This sub-challenge aims
the automatic depression severity assessment of US Army veter-
ans from audiovisual recordings of their interaction, in a clinical
interview setting, with a virtual agent, which can be controlled by
a human as a Wizard-of-Oz or an artificial intelligence (AI). Thus,
besides the automatic depression severity evaluation, the DDS also
seeks the comprehension of how the absence of a human controlling
the virtual agent impacts on this automatic evaluation.

In this paper, we present a multimodal approach for automatic
depression detection that combines highly representative speech
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and textual features acquired with gated convolutional and con-
volutional neural network based models. Moreover, the proposed
architectures used for the extraction of these features employ a
Long Short-Term Memory (LSTM) layer in order to characterize
the data’s temporal behaviour. Our proposed multimodal model
achieves the best result of 0.403 evaluated with the Concordance
Correlation Coefficient (CCC) in the DDS test partition.

The remainder of this paper is organized as follows. In Section 2,
we summarize relevant related works. In Sections 3 and 4, we respec-
tively introduce the dataset used for the AVEC 2019 DDS and the
evaluation metric employed in this challenge. Sections 5 and 6 are
respectively dedicated to the description of the proposed method-
ology and to the presentation of the conducted experiments and
the corresponding results. Finally, Section 7 concludes this paper
and discusses future improvements to the methodology presented
in Section 5.

2 RELATEDWORKS
This section presents a summary of the current state-of-the-art
with respect to topics related to the method of automatic depression
detection conducted in this work.

2.1 Audio Representation
Audio data can be described by features of diverse nature, such as
spectrograms, power, mel-frequency cepstral coefficients (MFCCs)
and deep spectrum representations. A robust speech representation
can be used to solve various paralinguistic tasks, which are related
to events beyond linguistic [37]. Handcrafted representations of
speech [34–36, 38] have been widely used to solve paralinguis-
tic problems such as emotion, health state and personality traits
recognition.

Recently, deep neural networks have been employed to extract
discriminative features from speech [3, 6]. Compared to statisti-
cal functions designed from handcrafted feature sets, deep neural
networks are able to learn a more robust data representation due
to their data generalization ability. Although many advances in
deep learning have occurred, spectrogram images are widely cho-
sen as the input to audio representation models as opposed to raw
speech input, because learning from raw data is still considered a
challenging problem.

In order to learn a task-specific representation from the two-
dimensional speech description (i.e. spectrogram images), deep
neural networks, such as convolutional neural networks (CNNs),
have been often employed [18]. Due to their sparse weight con-
nections, one of the main advantages of CNNs is the temporal
information understanding without compromising the generaliz-
ability. Moreover, CNNs with a gating mechanism [8] show better
results for the dementia detection task [42] due to their ability to
overcome the vanishing gradient problem.

2.2 Natural Language Processing
Natural language processing (NLP) is the field of computer science
concerned with the human-computer interaction through natural
language. Recently, the introduction of distributional vectors (or
word embeddings) [26, 31] as textual data representation in the
NLP field made the high-accuracy solution of many challenging

NLP tasks, such as the ones related to question answering [43, 44],
sentiment analysis [33, 39] and natural language inference (NLI)
[29], feasible.

Recent state-of-the-art works in the NLP field have been ex-
ploring techniques, such as model pre-training and bidirectional
language representation, in order to grasp the semantic complexity
of a language. [32], for example, proposes a bidirectional word rep-
resentation from the combination of both forward and backward
language models, thus achieving the state-of-the-art on six NLP
tasks.

However, as opposed to [32], the recently proposed Bidirectional
Encoder Representations from Transformers (BERT)[10] was de-
signed to pre-train deep bidirectional representations from unla-
belled text under a masked language model.

Pre-trained BERT models can be fine-tuned with a single addi-
tional output layer, thus achieving state-of-the-art results without
drastic task-oriented architecture modifications. In fact, these mod-
els can achieve the state-of-the art on eleven natural language
processing tasks. Therefore, due to their powerful language repre-
sentation, pre-trained BERT models were chosen to extract textual
features from interview transcripts in this work.

2.3 Multimodality
Recent works have shown promising results in numerous tasks
due to the adoption of multimodal approaches. [11], for example,
proposes a speaker-independent audio-visual model for speech sep-
aration that outperforms audio-only and audio-visual models on
classic speech separation tasks. Moreover, [28] also considers the
fusion of audio and visual signals to build a multisensory represen-
tation of videos, which can be satisfactorily applied to sound source
localization, audio-visual action recognition and on/off screen au-
dio source separation. The underlying hypothesis held by [11, 28]
and other multimodal approaches is that information of different
nature acquired from the same source can be extremely valuable to
understand the problem’s context and, thus, find its best solution.

2.4 Depression Detection
It is worth mentioning other attempts and studies conducted to
develop automatic depression detection systems. [21], for instance,
studies the contribution of upper body movement to the depression
detection, while [19] analyses the influence of the whole body
movement relatively to its parts on the same task. Both [21] and
[19] represent the body movement in a bag-of-words approach
and they both apply Space-Time Interest Points (STIP) to assist the
feature extraction. The results of these works show that both the
relative body and the upper body (head and shoulders) movements
are significant for the depression detection and they also show the
importance of the fusion of multiple features.

Similar to [19, 21], [2] analyses the influence of the head pose in
the depression detection. According to the results shown in [2], the
head pose holds effective cues in this disorder diagnosis, since their
proposed model achieves an average accuracy of 71.2% on this task.
[2] extracted head pose and movement features from videos using a
3D model projected on a 2D Active Appearance Model (AAM) and
created a Gaussian Mixture Model (GMM) for each subject, which,



combined with the SVM classifier, composes the hybrid classifier
used for the depression detection.

Moreover, [20] proposes the fusion of bags of audio and visual
features for the depression diagnosis. These bags of features are
then applied to a Support Vector Machine (SVM) classifier. The
audio features include the fundamental frequency f 0, loudness,
intensity and mel-frequency cepstral coefficients (MFCC), while
the visual features are related to the intra-facial muscle movements
and the movements of the patient’s upper body.

Although [20] considers audio features for the depression assess-
ment, the work presented in this paper significantly differs from
the one proposed in [20], since we consider the semantic content of
the patient speech by extracting deep bidirectional textual features
with a pre-trained BERT model. In addition, in the presented work,
the audio features are not represented in a bag-of-audio approach,
but as a set of deep spectrum features extracted with a VGG-16 [40]
architecture [13].

3 E-DAIC CORPUS
The dataset adopted in the AVEC 2019 DDS is the Extended Distress
Analysis Interview Corpus (E-DAIC) [9], an extension of the DAIC-
WOZ corpus, which in turn is part of a larger corpus, the Distress
Analysis Interview Corpus (DAIC) [16].

The DAIC corpus contains audiovisual recordings of patients
interacting with an agent conducting a clinical interview designed
to aid the diagnosis of psychological distress conditions such as
anxiety, depression, and post-traumatic stress disorder. In the E-
DAIC corpus, this virtual agent can be aWizard-of-Oz controlled by
a human in another room or it can be fully automated, controlled
by an artificial intelligence. The E-DAIC includes the transcript
of the interactions automatically transcribed with Google Cloud’s
speech recognition service, the participants audio files, their facial
features and each patient PTSD Checklist Civilian Version (PCL-
C) [7] and Patient Health Questionnaire [23] depression module
(PHQ-8) scores.

The PHQ-8 and the PCL-C attempt to assess, respectively, the
depression and the Post-Traumatic Stress Disorder (PTSD) severi-
ties. The PCL-C score ranges from 0 to 85, while the PHQ-8 score
ranges from 0 to 24. The PHQ-8 score’s cutpoints are defined at
5, 10, 15 and 20 for mild, moderate, moderately severe, and severe
depression levels, respectively.

In the E-DAIC dataset, there are 275 subjects, who are US Army
veterans. For the DDS, this dataset was divided into train, develop-
ment and test partitions with 163, 56 and 56 subjects respectively.
In the train and development sets, the interviewer can be either a
human in a Wizard-of-Oz setting or an AI, while, in the test set,
there are only interviews conducted by the AI.

4 EVALUATION METRIC
The performance metric adopted in the AVEC 2019 DDS is the
Concordance Correlation Coefficient (CCC) [24], defined as

ρc =
2ρσxσy

σ 2
x + σ

2
y + (µx − µy )2

, (1)

in which ρ is the Pearson correlation coefficient between the vari-
ables x and y, σx and σy represent the standard deviations of x and
y and µx and µy , their respective means.

The CCC is computed to measure the correlation between the
prediction and the gold standard and it varies from -1 to 1, in which
1, −1 and 0 respectively indicate that the two variables are identical,
exactly opposite and uncorrelated.

5 PROPOSED METHODOLOGY
This section presents the designed models for the AVEC 2019 De-
pression Detection Subchallenge (DDS). Sections 5.1 to 5.3 explore
single modalities representations for feature extraction and for the
depression detection task itself. Section 5.4 presents a model for
feature level fusion of these single modalities for the depression
severity assessment task. Finally, Section 5.5 briefly introduces the
baseline model proposed by [13], to which our approach is com-
pared in Section 6.

5.1 Audio Model
We use a deep spectrum representation extracted from a pretrained
VGG-16 network using spectrogram images as input. For the audio
of each subject, it results in the deep spectrum features Xi ∈ R

T×F ,
in whichT represents the time dimension, which varies according to
the duration of the speech data, and F denotes the feature dimension.
We add zero paddings to the input features so that all input samples
have the same length as the longest speech data duration.

5.1.1 CNN-based Model. Our first speech model is composed by
stacked convolution blocks followed by fully-connected (dense)
layers. Each convolution block is composed by a 1D convolution
layer followed by batch normalization, the ReLU activation func-
tion and a max-pooling layer to halve the input size. We use nine
convolution blocks, each with a different number N of convolution
filters for their convolution layers. Thus, the number of filters of
each of the nine convolution layers of our model is, from the input
to the output, equal to N = [128, 64, 64, 64, 64, 32, 32, 32, 32]. The
output from the convolution blocks are then flattened and input
to a fully-connected layer with 256 hidden neurons. Finally, the
output of this fully-connected layer is applied to a batch normal-
ization, the ReLU activation function, a dropout layer and another
fully-connected layer composed by one neuron, which outputs the
PHQ-8 score as a single value. This model was trained with the
mean-squared error loss function and the Adam optimizer. The full
CNN model is depicted in Figure 1.

5.1.2 GCNN-LSTM-based model. Besides having the CNN-based
model, we also trained a GCNN-based model composed by stacked
gated convolution blocks followed by a LSTM layer and a fully-
connected layer. This GCNN-LSTM model differs greatly from the
CNN model, because a LSTM layer is added to the GCNN-LSTM
model and the convolution blocks are replaced by gated blocks,
which consist of two convolution layers followed by a gating mech-
anism and a max-pooling layer. For each gated block, the input to
the max-pooling layer is defined as

Y = conv (X ,W ) ⊙ sigm (conv (X ,Z )) , (2)



Figure 1: Our CNN model for speech-based depression as-
sessment with nine convolution blocks.

in which conv represents the convolution operation, siдm is the
sigmoid activation function, ⊙ is the Hadamard product between
two tensors, X is the gated block’s input andW and Z are the
trainable parameters of the respective convolution layers.

For each gated block of the GCNN model, the convolution
filters are, from the input to the output, defined as N =

[512, 256, 256, 128, 128, 64, 64, 32, 32, 16]. These ten gated blocks are
followed by a 32-dimensional LSTM layer and a fully-connected
layer with 512 hidden neurons. The GCNN-LSTM model is also
trained with the mean-squared error loss function and the Adam op-
timizer [22]. A complete representation of our GCNN-LSTM model
is shown in Figure 2.

Figure 2: Our best GCNN-LSTM model for speech-based de-
pression assessmentwith nine gated convolution blocks and
a LSTM layer.

5.2 Textual Model
In this work, it was hypothesized that linguistic features would pro-
vide valuable information regarded to the subject’s mental health
condition, since the semantic content of speech can reveal a per-
son’s habits, their likes and dislikes, their opinions, their emotions
and the quality of their personal relationships, which are elements
that should be considered in a depression diagnosis.

Thus, in order to represent the semantic content of the E-DAIC
corpus interviews by incorporating context information from both
left and right directions (i.e. past and future within the interview),
textual features were extracted from the automatically transcribed
transcripts [9], which are part of the E-DAIC corpus, briefly intro-
duced in Section 3. This textual feature extraction was performed
by the pretrained BERT-large model [10], which has 24 layers (i.e.
Transformer blocks), hidden size equal to 1024 and 16 self-attention
heads, thus totalizing 340 million parameters.

The features were extracted from the last BERT layer and they
were composed by a single feature array for each word token. Thus,
for each subject, BERT-large features can be represented as a matrix
of size K × 1024, in which K is the number of word tokens in the
subject’s transcript. In order to guarantee that all the input samples
to the textual models (i.e. textual features extracted with BERT)
would have the same size, a zero padding was conducted over the
K × 1024 feature matrices so that K would be always equal to the
number of word tokens found in the longest transcript.

Although the BERT model represents textual data by analysing
embeddings in a bidirectional manner, in this work, we hypothesize
that there are remaining temporal correspondences at the last BERT
layer since a feature array of size 1024 is generated for each word
token.

5.2.1 LSTM-based Model. In order to discern the features as a time
series, a simple model composed of a 64 and a 32-dimensional Long
Short-Term Memory (LSTM) layers both with a dropout rate equal
to 0.1 was initially designed for the DDS. A diagram depicting this
model structure is shown in Figure 3.

Figure 3: LSTM-basedmodel for depression assessment with
textual features.

The input features depicted in the diagram of Figure 3 are the
features extracted from the BERT-large model for a single patient.



In Figure 3, the final dense layer (i.e. fully connected layer) is
responsible for converting the representation acquired with the
LSTM layers from the feature space to a single prediction, which
corresponds to the PHQ score of the patient. Besides being used to
predict the PHQ score directly, this model was also employed to
extract highly representative textual features, which served as input
to the fusion model proposed in this work. However, although this
model, when trained to predict the PHQ score, could achieve a CCC
value equal to 0.360 over the validation partition, its performance
over the test set, 0.048 points evaluated with the same metric, was
not satisfactory. Moreover, it is known that, although Recurrent
Neural Network (RNN) models can represent temporal patterns,
they require longer training time when compared to other models
[30].

In order to address this issue, we trained another model for de-
pression assessment using only text features extracted from BERT-
large as the input. This model is presented in the following section.

5.2.2 CNN-LSTM-based Model. We opted for a model that com-
bines CNN layers with one LSTM layer. This choice was founded
on the observation that the usage of only a pair of LSTM layers, as
in the previous model depicted in Figure 3, would not drastically
reduce the features matrices’ dimensionality, making the prediction
task challenging for that model’s dense layer. Moreover, since the
BERT features are structured data in which it is possible to observe
hierarchical patterns, it is natural to choose CNN layers to interpret
the features extracted with BERT [25]. In fact, CNN-based models
have been giving notable results in numerous tasks over the past
few years [15].

Thus, similar to the CNN-based model for audio features pre-
sented in Section 5.1.1, we define seven convolution blocks with
different number of filters N for each convolution layer. These con-
volution blocks have the same structure as the blocks in the CNN-
based model of Section 5.1.1 and their convolution filters size are,
from the input to the output,N = [128, 64, 64, 64, 64, 32, 32]. The out-
put of the last convolution block is then input to a 32-dimensional
LSTM layer followed by a 256-dimensional fully-connected layer.
The output of this fully-connected layer is then applied to a batch
normalization, a ReLU activation function, a dropout layer with a
dropout rate equal to 0.1 and a single dimensional fully connected
layer, which outputs the prediction for the PHQ-8 score. A complete
diagram of this model is shown in Figure 4.

In both models used to assess depression with only textual fea-
tures, we consistently applied a batch size equal to 10, a learning
rate equal to 10−3 and a loss function based on the CCC metric.
However, the optimizer chosen for the LSTM-based model rep-
resented in Figure 3 is the stochastic gradient descent, while, in
the CNN-LSTM model, depicted in Figure 4, is Adam [22] with
parameters β1 equal to 0.9 and β2, to 0.999.

5.3 Visual Model
For the visual model, we utilize a deep visual representation ex-
tracted from a ResNet-50 model [17] as input. We choose the time
dimension T = 6000 for the visual features and apply them to
a GCNN model similar to the GCNN-LSTM model presented in
Section 5.1 except the fact that, in the visual model, there are not re-
current layers. Thus, the visual model can be depicted as in Figure 5,

Figure 4: CNN and LSTM-based model for depression assess-
ment with textual features.

in which, from the input to the output, the convolution filters of the
gated blocks have size N = [512, 256, 256, 128, 128, 64, 64, 32, 32, 16].

Figure 5: GCNN-based model for depression assessment
with visual features.

Similarly to the models presented in Section 5.1, we also use
mean-squared error as the loss function and Adam as optimizer to
train our network.

5.4 Fusion Model
In this work, we use the embeddings obtained from the first dense
layer of each modality. The modality-specific representations are
concatenated as one input vector and this resulting array is then
input to the multimodal network. The fused feature array is trained



on a fully-connected layer with 512 hidden neurons. The multi-
modal network is trained to minimize the mean-squared error loss
between the ground-truth PHQ score and the network prediction.
Adam optimizer [22] is employed during the training. A diagram
representing the fusion model is depicted in Figure 6.

Figure 6: Fusion model. The input features are the concate-
nation of features acquired from the unimodal models pre-
sented in Sections 5.1 to 5.3.

5.5 Baseline Model
The results acquired during this work were compared to the ones
obtained with the baseline model proposed by [13], which is briefly
presented in this section.

The baseline model consists of a 64-dimensional Gated Recur-
rent Unit (GRU) layer with a dropout rate of 0.2 followed by a
64-dimensional fully-connected layer that outputs a single value as
the PHQ score. The loss function used during the train is a CCC-
based loss function and a batch size of 15 is used consistently. All
the available audio and visual features were input to this baseline
model and the fusion of the various audiovisual representations
was obtained by averaging their scores.

6 EXPERIMENTS AND RESULTS
In this section, the main results acquired with the models described
in Section 5 will be presented and discussed. Moreover, experiments
conducted in order to evaluate the number of CNN and GCNN
blocks used in these models as well as the application of different
visual features to themodel presented in Section 5.3 are also exposed
in this section.

6.1 Number of CNN/GCNN blocks 1

In this section, the models presented in Sections 5.1.2 and 5.2.2
were trained with different amounts of GCNN and CNN blocks
respectively in order to identify the ideal model configuration for
the depression assessment evaluated with the CCC metric. Apart
from the number of blocks, the other model hyperparameters were

1The experiments presented in this Section were conducted after the AVEC 2019
DDS submission. Thus, the models presented here were not evaluated in the test
partition, but only in the validation set.

defined as presented in Sections 5.1.2 and 5.2.2. Each model con-
figuration was trained five times and the average CCC and the
maximum CCC on the development partition were acquired.

For the GCNN-LSTM audio model presented in Section 5.1.2,
models with 1 to 10 gated blocks were evaluated with the CCC
metric. For eachmodel configuration, 5models were trained and the
maximum CCC as well as the average CCC for each configuration
are reported in Figure 7.

Figure 7: Maximum and mean CCC acquired with different
number of gated blocks applied to the CGNN-LSTM audio
model presented in Section 5.1.2. The maximum CCC value
shown in the graph is equal to 0.497 and it was achieved with
the GCNN-LSTM text model with 10 GCNN blocks.

From the graph depicted in Figure 7, it is possible to conclude that
the mean CCC is relatively robust to the audio model configuration.
However, the maximum CCC seems to have its higher values for
models with 6 and 10 gated blocks. Although we have tested models
with only 1 to 10 gated blocks, models with a larger amount of gated
blocks should be further investigated since the graph in Figure 7
seems to show a trend for an increase in the CCC value.

The convolution filters’ configuration for each tested model
was defined in an ablation manner. Thus, the configura-
tion defined in Section 5.1.2 for 10 gated blocks, N =

[512, 256, 256, 128, 128, 64, 64, 32, 32, 16], had its smaller filter re-
moved one by one. Therefore, a 9 gated blocks configuration was
defined as N = [512, 256, 256, 128, 128, 64, 64, 32, 32] and a 4 gated
blocks, as N = [512, 256, 256, 128], for example.

For the text model presented in Section 5.2.2, models with 1 to
12 CNN blocks were trained and evaluated on the development
partition. A graph with the average and the maximum CCC for
each model configuration is depicted in Figure 8.

As it can be concluded from Figure 8, the model configuration
with 8 blocks achieve the best maximum and average CCC values
on the development partition. Moreover, the addition of blocks
seems to improve the performance evaluated with the CCC metric
from the model with 3 CNN blocks until the model with 8 blocks.
However, the addition of extra CNN blocks to the 8 CNN blocks-
LSTMmodel does not contribute to improve the model performance
on the development partition.



Figure 8: Maximum and mean CCC acquired with different
number of CNNblocks applied to the CNN-LSTM textmodel
presented in Section 5.2.2. The maximum CCC value shown
in the graph is equal to 0.685 and it was achieved with the
CNN-LSTM text model with 8 CNN blocks.

Table 1: Size N of convolution filters, from the input to the
output, of each CNN-LSTM text model configuration

CNN blocks Convolution Filters’ Configuration

8 [128, 64, 64, 64, 64, 32, 32, 32]
9 [128, 64, 64, 64, 64, 32, 32, 32, 16]
10 [128, 64, 64, 64, 64, 32, 32, 32, 16, 16]
11 [128, 64, 64, 64, 64, 32, 32, 32, 16, 16, 8]
12 [128, 64, 64, 64, 64, 32, 32, 32, 16, 16, 8, 4]

The convolution filters’ configuration for each CNN-LSTM text
model was also performed in the same ablation manner as in the
GCNN-LSTM audio model starting from the 7 blocks configuration
exposed in Section 5.2.2. For models with more than 7 convolution
blocks, the filter configuration is summarized in Table 1.

6.2 Different visual features 1

The model presented in Section 5.3 was tested with all the visual
features that are available in the database used for the AVEC 2019
DDS. Therefore, features extracted with VGG-16 and ResNet-50
architectures as well as Bag-of-Visual-Words (BoVW) and Facial
Action Units (FAUs) were utilized. As in Section 6.1, models with
1 to 10 gated blocks were evaluated and the best CCC for each
combination of input features and model configuration is presented
in Table 2.

As it can be observed from Table 2, the best model has 7 gated
blocks and it uses VGG-extracted features as input. Moreover, it can
be concluded that, for most of the models’ configurations, a model
that uses features extracted with deep models (VGG and ResNet)
will have better results when compared to the same model using
BoVW or FAUs approaches. This observation can be explained
from the deep models’ ability of extracting highly representative
features and from the challenge of defining significant features in a
handcrafted approach.

Table 2: Best CCC for different combinations of visual fea-
tures and number of gated blocks applied to the visual
model presented in Section 5.3. Cells filled with ‘-’ indicate
that it was not possible to acquire the corresponding results
due to model limitations.

Gated Blocks CCC

FAUs BoVW VGG ResNet

1 0.110 0.142 0.354 0.222
2 0.109 -0.012 0.365 0.200
3 0.111 0.195 0.365 0.123
4 0.107 0.041 0.283 0.174
5 0.113 0.238 0.152 0.104
6 0.105 0.070 0.257 0.325
7 0.100 -0.035 0.373 0.121
8 0.096 0.154 0.246 0.273
9 - -0.034 0.218 0.311
10 - 0.185 0.277 0.372

6.3 Results
The results are summarized in Table 3. The Concordance Corre-
lation Coefficient (CCC) and the Root Mean Square Error (RMSE)
metrics were calculated for unimodal and multimodal models on
both the development and the test partitions. The test set results
are reported in Table 3 according to the information provided by
the AVEC challenge organizers on four of our models. The CCC and
RMSE results in Table 3 for the baseline model correspond to the
higher values reported in [13] regardless of the model that provided
these results. Thus, the value of 0.336 for the CCC score on the
development set and 5.03 and 6.37 for the RMSE on the respective
development and test partitions were obtained with the baseline
fusion model. Moreover, the result reported as 0.120 for the CCC
metric on the test partition was acquired with an unimodal model
that takes visual features extracted with a ResNet-50 network as
input.

In Table 3, the GCNN-LSTM audio model uses 10 gated blocks
and, although this model configuration achieves the best results
on the development set evaluated with the CCC metric compared
to audio models with less gated blocks, as discussed in Section 6.1,
models with more than 10 gated blocks should be further investi-
gated, since they might give better results.

From Table 3, it can be seen that the best model in both devel-
opment and test sets and in both CCC and RMSE metrics is the
model that fuses audio features extracted from the GCNN-LSTM
model, presented in Section 5.1.2 and text features acquired from
the CNN-LSTM architecture, introduced in Section 5.2.2. Moreover,
it is possible to conclude that, in every situation, the fusion of fea-
tures performed by multimodal models gives better results when
compared to the unimodal models that generated these features.
Thus, these results confirm the premise that multiple modalities
provide a richer characterization of reality when compared to single
modalities representations for the task of depression assessment.

However, the combination of audio, text and visual features
gives worse results when compared to the fusion of audio and text
features only. This discrepancy might be explained from the fact



Table 3: Results evaluated with CCC and RMSE metrics for the development (i.e. validation) and test sets for audio, text,
visual and feature-level fusion models. The audio models denominated by CNN and GCNN-LSTM (with 10 gated blocks) are
respectively introduced in Sections 5.1.1 and 5.1.2 and they use features extracted with a VGG-16 architecture as their input.
The textmodels indicated by LSTMandCNN-LSTM (7CNNblocks-LSTMand 8CNNblocks-LSTM) are respectively described in
Sections 5.2.1 and 5.2.2 and their input is extracted with a BERT-large architecture. The visualmodel is presented in Section 5.3
andwe report the results acquired with features extracted with a ResNet-50 architecture as discussed in Section 6.2. The fusion
models presented in this table combine highly representative features extracted from the unimodal models in a feature-level
fusion manner, as explained in Section 5.4.

Modality Model CCC RMSE

Development Test Development Test

- Challenge baseline [13] 0.336 0.120 5.03 6.37

Audio CNN 0.338 0.199 5.97 7.02
GCNN-LSTM 0.497 - 5.70 -

Text
LSTM 0.360 0.048 4.97 6.88
7 CNN blocks-LSTM 0.608 - 4.51 -
8 CNN blocks-LSTM 0.685 - 4.22 -

Visual GCNN 0.372 - 5.74 -

Fusion
CNN (audio) and LSTM (text) 0.452 0.213 5.08 6.42
GCNN-LSTM (audio) and 7 CNN blocks-LSTM (text) 0.696 0.403 3.86 6.11
GCNN-LSTM (audio), 7 CNN blocks-LSTM (text) and GCNN (visual) 0.624 - 4.86 -

that we used only a portion of the visual features extracted with
the ResNet-50 architecture since applying all features to the models
would be computationally costly. Therefore, from the experiments
conducted with visual features as the input, it was not possible to
validate the significance of this type of features for the depression
severity assessment.

Another conclusion that can be taken from the results presented
in Table 3 is that, for all the models evaluated on the test partition,
the CCC and the RMSE metrics were better when the model was
evaluated on the development set compared to the test set. This fact
indicates that the absence of a human conducting the interviewer
as a virtual agent has a negative impact on the performance of the
automatic depression diagnosis.

Finally, it can be observed that all the models presented in this
paper outperforms the challenge baseline [13] when evaluated over
the development partition with the CCC metric. Moreover, except
for the unimodal text model based on LSTM layers, there is an
improvement in all the reported CCC values for the test partition
when compared to the same baseline. The best model presented
in this paper, the multimodal fusion of audio features extracted
from the GCNN-LSTM model and text features acquired from the
CNN-LSTM architecture, outperforms the baseline in both CCC
and RMSE metrics and over the development and the test partitions.

7 CONCLUSION
In this work, a multimodal approach for automatic depression detec-
tion was presented. First, models that individually consider text, au-
dio and visual features were developed and tested. These unimodal
models were then used as highly representative feature extractors
and the resulting features were thus combined in a feature level fu-
sion manner. The best results presented in this paper, CCC = 0.696

for the development set and CCC = 0.403 for the test set, were
achieved with a multimodal model that combines text and audio fea-
tures. This result indicates that the utilization of multiple modalities
gives a richer representation of reality, from which an automatic
depression severity assessment system could benefit.

Moreover, the lower CCC and higher RMSE values for the test
partition in comparison with the development set for all presented
models reveal that the absence of a human conducting the virtual
agent has a negative impact on the automatic depression assessment
model accuracy.

Future research on more sophisticated fusion methods might im-
prove the overall performance and the robustness of the multimodal
model presented in this work. The possibility of improvement in the
textual feature representation due to a more accurate speech tran-
script should be also further investigated. In addition, although our
visual model gave suboptimal results compared to other unimodal
models in this work, a better way of learning from visual features is
another interesting and promising future direction to be explored
and it could improve our model’s accuracy since previous works
have shown that visual information provides important cues for
depression assessment. Finally, audio models with a larger amount
of gated blocks will also be considered as a future work.

The results presented in this work were submitted to the Au-
dio/Visual Emotion Challenge and Workshop (AVEC) 2019 in order
to compete on the Detecting Depression with AI Sub-Challenge
(DDS).
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