T2R2東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

Title	Development of Decomposition Device for Medical/Industrial Waste Gases using Dielectric Barrier Discharge
Authors	Kazuki Nakai, Shohei Moriya, Yuma Suenaga, Yuriko Matsumura, Atsuo Iwasawa, Akitoshi Okino
Citation	The 4th International Symposium on Biomedical Engineering, , ,
Pub. date	2019, 11

1. Decomposition of atmospheric low temperature plasma

VOC gases Sevoflurane, Isoflurane, Toluene, Xylene etc...

Used anesthetic gas/industry exhaust VOCs are low concentration and large volume.

Decomposition method of VOCs

Medical

Industry

Decomposition by atmospheric low temperature plasma

e

• 🔿

High energy electron/reactive species in low temperature plasma

Low energy consumption

Large volume and high concentration

High power consumption

Adsorption

Reusable

Difficult for large volume

High efficiency decomposition device for low concentration/large volume VOCs is required. **VOC** gases

 CH_3

Electron/Radicals

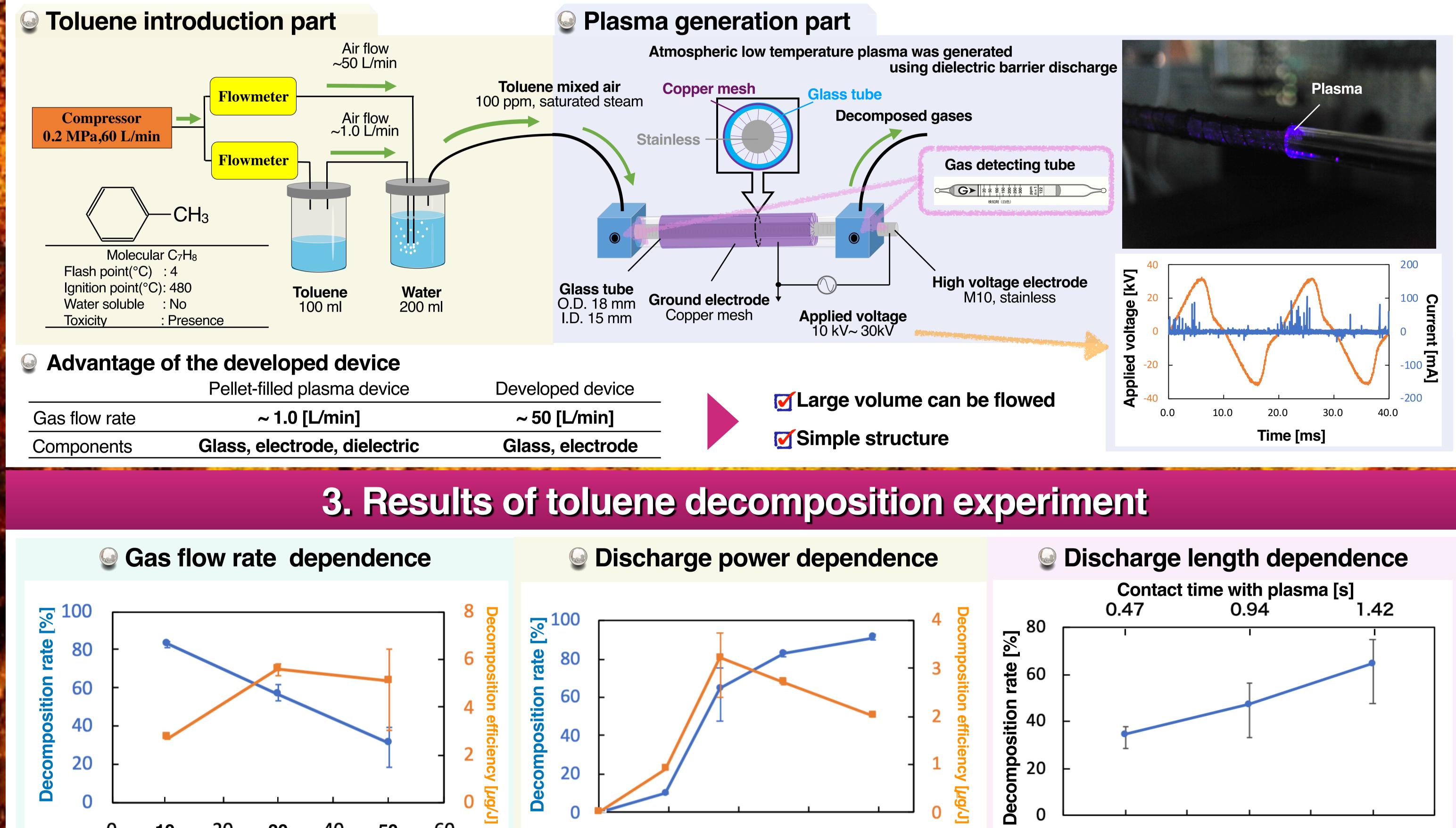
· OH

O₃

Final products

 CO_2

 H_2O


Development of decomposition device for 10,000 L/min waste gases

In this study,

In the plasma

- Decomposition system using dielectric barrier discharge(DBD) was developed.
- The effects of toluene decomposition rate on discharge power and gas flow rate were investigated.

2. High flow rate VOC decomposition device using atmospheric plasma

0 10 20 30 40 50 60	0 10 20 30 40	10 20 30 40 50 60 70		
Gas flow rate [L/min]	Discharge power [W]	Discharge length [cm]		
Discharge power : 26 [W] Discharge length : 60 [cm]	 Gas flow rate : 10 [L/min] Discharge length : 60 [cm] 	・Gas flow rate: 10 [L/min] ・Discharge power: 17 [W]		
Decomposition rate decreased with gas flow rate.	Decomposition rate increased with discharge power.	Decomposition rate increased with discharge length.		
To decompose large volume of toluene, it is necessary to increase the contact time with plasma and discharge power.				
A Summary and Eutura plane				

4. Summary and ruture plans

Summary

Future plans

V Plasma decomposition device was developed.

The decomposition rate of toluene improved with increasing discharge power and contact time with plasma. The decomposition rate will be improved. (increasing discharge length etc...)

The products after decomposition will be identified. (NOx, CO₂ etc...)