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A Low Area Overhead Design Method for High-Performance
General-Synchronous Circuits with Speculative Execution

Shimpei SATO†a), Member, Eijiro SASSA†b), Nonmember, Yuta UKON†c), Member,
and Atsushi TAKAHASHI†d), Fellow

SUMMARY In order to obtain high-performance circuits in advanced
technology nodes, design methodology has to take the existence of large
delay variations into account. Clock scheduling and speculative execution
have overheads to realize them, but have potential to improve the perfor-
mance by averaging the imbalance of maximum delay among paths and
by utilizing valid data available earlier than worst-case scenarios, respec-
tively. In this paper, we propose a high-performance digital circuit design
method with speculative executions with less overhead by utilizing clock
scheduling with delay insertions effectively. The necessity of speculations
that cause overheads is effectively reduced by clock scheduling with delay
insertion. Experiments show that a generated circuit achieves 26% perfor-
mance improvement with 1.3% area overhead compared to a circuit without
clock scheduling and without speculative execution.
key words: circuit design, variable-latency circuit, speculative execution,
general-synchronous circuit, timing-error detection

1. Introduction

In advanced technology node, the impact of various kinds of
delay variations on circuit performance becomes very large.
Therefore, various kinds of approaches to ease the influ-
ence of delay variability have been proposed. In the syn-
chronous circuit, reducing waiting time during circuit oper-
ation caused by these delay variations leads to performance
improvement. In this paper, we adopt an approach using
a speculative execution based variable-latency circuit [1] to
reduce the waiting time aggressively.

There are various types of delay variations. The differ-
ence of delays among flip-flop paths exists even though the
maximum delay between flip-flops is tried to be reduced as
much as possible in conventional design methodology. In
addition, the delay between flip-flops varies depending on
manufacturing, environments, aging, and etc. as well as in-
put vectors because of false paths. In this paper, we focus
on the following two types of delay differences in a circuit
that cause waiting time during operation. One is the de-
lay difference of maximum delay among paths of different
flip-flops and the other is the delay difference on a primitive
computation that varies depending on inputs. The waiting
time caused by the former one is the time elapsed beyond
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the worst-case delay before valid data is used in subsequent
primitive computations. The waiting time caused by the lat-
ter one is the time elapsed until the worst-case delay even if
valid data is obtained earlier.

In this paper, we propose a low area overhead design
method of general-synchronous circuit with the specula-
tive execution. Our method generates a high-performance
variable-latency circuit from a netlist of a fixed-latency cir-
cuit synthesized by general synthesis tools. The generated
circuit outputs the correct result faster than the inputted cir-
cuit. However, the timing to output the result becomes
variable since speculative execution has some delay penalty
when the speculation missed. Our design method introduces
the speculative execution only to reduce the waiting time of
the latter one which cannot be reduced by the optimization
methods of general-synchronous circuit, and achieve perfor-
mance improvement of a circuit by an effective combination
of the methods. Note that, this paper is based on our previ-
ous works [2], [3].

The waiting time of the former one is typically re-
duced during performance optimization in which maxi-
mum delay is reduced as much as possible in a typical
clock synchronous circuit assuming zero-clock skew (here-
inafter, we refer this as complete-synchronous circuit or C-
circuit) [4], [5]. However, it is difficult to equalize the max-
imum delay of all paths in a circuit, and the delay difference
remains in optimized circuits. Clock period minimization
methods [6]–[9] on general-synchronous circuit completely
reduce the waiting time of the former one and achieve
higher performance than C-circuits. General-synchronous
circuit (hereinafter, we simply call this as “circuit”) is a syn-
chronous circuit in which the clock signals have the same
period but the timing they ticks is different. The clock
scheduling [6], [7] finds a feasible clock scheduling to as-
sign an appropriate delay to each path. The delay inser-
tion [8], [9] expands the feasibility of the clock scheduling
by increasing the minimum delay of paths and achieves the
minimum clock period of a circuit assuming fixed-latency.

Speculative execution enables to improve the circuit
performance [1], [2], [10]–[12] by utilizing the waiting time
of the latter one. In the speculative execution, some primi-
tive computations are executed without waiting for the com-
pletion of the prior computations of the worst-case delay.
For example, when a self-loop in a circuit has different de-
lay depending on its input, it is required to assign a clock
period of its worst-case delay to guarantee the correct com-
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putation in a circuit without speculative execution. Even if
the circuit has some room for performance improvement in
other parts, the worst-case delay of such self-loop limits the
performance improvement. Speculative execution enables
to run the subsequent primitive computations earlier than the
worst-case delay and achieves performance improvement.

Speculative execution is a technique to reduce the wait-
ing time both on the delay difference among paths and the
delay difference on a primitive computation. In our pro-
posed method, since the waiting time on the delay difference
among paths is reduced by the existing methods, the specu-
lative execution can be introduced only to reduce the wait-
ing time on the delay difference on a primitive computation.
Therefore, the introduction of the speculative execution will
be kept as small as possible and realizing low area overhead
and high-performance circuit is expected.

In the experiments, we confirm that a circuit designed
by our method achieves the performance improvement com-
pared to a circuit without speculation and a C-circuit from
gate-level simulations. And, we confirm that the perfor-
mance improvement realizes with reasonable circuit size.

Main contributions of this paper are the following:

• Proposal of a design method that realizes better per-
formance of a circuit with speculative execution while
keeping the circuit size as small as possible. Clock
scheduling and speculative execution have overheads
to realize them, but have potential to improve the per-
formance by averaging the imbalance of maximum de-
lay among paths and by utilizing valid data available
earlier than worst-case scenarios, respectively. We
combine them effectively to achieve performance im-
provement while keeping the increase of circuit size in
small.

• Performance improvement of digital circuits by intro-
ducing variable-latency realized with speculative exe-
cution.

2. Preliminaries

Here, the elemental techniques used in the proposed method
is explained using an example circuit. Figure 1 and Fig. 2
are an example of input and output of the proposed method,
respectively.

We consider a circuit consisting of flip-flops and some
combinational circuits between them. Gray rectangles from
r0 to r3 are flip-flops. A pair of values in a square be-
tween flip-flops represents the delay of the primitive com-
putation where the upper number is the maximum delay and
the lower number is the minimum delay. The maximum de-
lay and the minimum delay include the setup time and the
hold time of the flip-flop, respectively. A value in a circle
on the clock signal denotes the clock signal delay.

The clock scheduling [6], [7], the delay insertion [8],
[9] and the introduction of speculative execution [1] are
adopted to the input circuit G and the output circuit is gener-
ated. The generated circuit works correctly when it is oper-

Fig. 1 An example of input circuit G of the proposed method.

Fig. 2 An example of output circuit Gsp of the proposed method gener-
ated from the circuit G.

Fig. 3 An example of a clock scheduling of the circuit G.

ated with the clock period 6. To guarantee the correct output,
the input circuit is modified in the following points: the min-
imum delay between r0 and r1 is increased from 6 to 12 by
the delay insertion, the flip-flop r1 is replaced to the specu-
lative FF, and the clock signals to each flip-flop is scheduled
as in the Fig. 2.

In the following subsections, the elemental techniques
to guarantee the correct operation of generated circuits by
the proposed method are explained in detail.

2.1 Clock Scheduling

Here, the mechanism of the clock scheduling method re-
duces the waiting time that remains in a C-circuit is ex-
plained. For an easy understanding, we consider the cir-
cuit under the following conditions: enable clock schedul-
ing, disable delay insertion, and fixed-latency.

A circuit works correctly if hold constraints and setup
constraints are satisfied for signal propagation between ev-
ery flip-flop pair [4]. Constraint graph [6], [13] H(G) =

(V, E) for the circuit G is given in Fig. 4. Where vertex set V
corresponds to flip-flops in G and directed edge set E corre-
sponds to hold constraints and setup constraints [6], [13]. In
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Fig. 4 The constraint graph H(G) of the circuit G.

constraint graph, a flip-flop pair is connected by two edges.
One is an edge corresponds to a hold constraint (dashed ar-
rows in the graph) and the other is an edge corresponds to a
setup constraint (solid arrows in the graph). The valuable T
is a clock period.

The algorithm in the paper [7] finds the lower bound of
a clock period and a feasible clock scheduling under that
clock period on a circuit. Also, it finds a feasible clock
scheduling under a given target clock period. The lower
bound of the clock period T is the smallest T that satisfies
the sums of weights of each cycle in a constraint graph be
not less than zero. In the case of the circuit G and the con-
straint graph H(G), the lower bound of the clock period T is
9. The cycle (r0, r2, r1, r0) is the cycle that gives the lower
bound of the clock period of this circuit. The sum of weights
of this cycle is 6 + (T − 12) + (T − 12) = 2T − 18, and the
sum of weights be equal to 0 when T is 9, For other cycles
in the H(G), the sums of weights are larger than 0 when T is
9. Thus, a feasible clock scheduling exists when T is 9.

The clock timing of r0, r1, r2, and r3 are set as 0, 3, 6,
and 7, respectively as in Fig. 3. Seeing the path (r0, r1), the
scheduling S (r1)−S (r0) has to be smaller than the minimum
delay of the path, which is 7, and S (r1) − S (r0) + T has to
be larger than the maximum delay of the path, which is 12.
When S (r0) be 0 and T be 9, the range of S (r1) is from 3 to
7. A feasible clock scheduling is a clock timing of each flip-
flop that satisfies all of the constraints between flip-flops.

Seeing the circuit G as a C-circuit, the lowest clock
period is the same as the largest maximum delay and it is
14. Thus, a circuit which consisted of the same flip-flops
and primitive computations to a C-circuit works correctly
with a smaller clock period than the C-circuit.

In cases of variable-latency circuits, the clock schedul-
ing works right since a constraint graph is given even if the
speculative execution is introduced to a circuit.

2.2 Delay Insertion

Here, the mechanism of the delay insertion that expands the
feasibility of the clock scheduling and achieves the mini-
mum clock period is explained. The minimum clock pe-
riod is the smallest clock period of a circuit assuming fixed-
latency. For an easy understanding, we consider a circuit
under the following conditions: enable clock scheduling,
enable delay insertion, and, fixed-latency.

Reducing the difference between the maximum delay

Fig. 5 An example of a circuit Gins. The minimum delay between r0 and
r2 is increased from 6 to 12.

Fig. 6 The constraint graph H(Gins) of the circuit Gins.

and the minimum delay of a primitive computation between
the appropriate pair of flip-flops relaxes to find a feasible
clock scheduling and leads to the clock period minimiza-
tion [9]. The minimum delay is able to increase by some
techniques such as inserting buffers or replacing logic cells
to smaller ones.

Figure 5 shows a circuit Gins in which, compared to the
circuit G, the minimum delay between r0 and r2 is increased
from 6 to 12. Figure 6 shows the constraint graph of the
circuit Gins.

In Fig. 4, the cycle (r0, r2, r1, r0), which gives the lower
bound of the clock cycle includes a hold constraint edge
(r0, r2). The delay insertion to the minimum delay of this
path increases the weight of this edge and the limitation of
the clock period is relaxed. When the minimum delay of the
path (r0, r2) is 12 and T is larger than 6, the sum of weights
of this cycle 2T − 12 be larger than 0 and the constraints of
this cycle are satisfied. In this case, this cycle does not give
the lower bound of the clock period of this circuit.

In the case of Fig. 6, the lower bound of the clock pe-
riod T of the circuit Gins is 8. The clock timing of r0, r1, r2,
and r3 are set as 0, 4, 8, and 6, respectively. The circuit Gins
works correctly with a smaller clock period than the circuit
G. In this case, the lower bound of the clock period T is
determined by the self-loop of r1. The maximum delay of
self-loop limits the minimization of a clock period by the
delay insertion and the clock scheduling.

Clock period minimization by the delay insertion is ef-
fective if the lower bound of the clock period is determined
by the constraints including the hold constraints. If not, the
lower bound of the clock period is determined only by the
setup constraints. That is, the maximum delay of a self-loop
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Fig. 7 Examples of a cycle consisting of setup constraint edges.

or the sum of maximum delays of a directed cycle across
multiple flip-flops determine the lower bound of the clock
period. Figure 7 shows examples of these cases. In these
examples, the clock period T should be larger than 8 to sat-
isfy the sum of weights of these cycles be not less than zero.
In these cases, the clock scheduling with the delay inser-
tion has no effect on the clock period minimization and the
speculation is one of the solutions for further clock period
reduction.

The delay insertion has the effect of expanding the fea-
sibility of the clock scheduling also in variable-latency cir-
cuits with speculative execution. When speculative execu-
tion is introduced, the lower bound of the clock period will
be determined by the other parts in the circuit. By applying
the delay insertion to that part, the limitation will be relaxed
and the circuit can be operated with a smaller clock cycle.

2.3 Variable-Latency Circuit by Speculative Execution

Here, we consider a circuit under the following condi-
tions: enable clock scheduling, enable delay insertion, and
variable-latency.

The variable-latency circuit by speculative execution
is realized by a dynamic timing-error detection/correction
(EDC) mechanism [1]. A circuit Gsp shown in Fig. 8 is a
circuit with speculative execution. The circuit Gsp is imple-
mented by introducing the EDC mechanism to the circuit
Gins shown in Fig. 5. In this implementation, a conventional
deterministic flip-flop† (r1 in the circuit Gins) is replaced to
the Speculative FF which consists of two flip-flops called
the spFF and the cfFF.

In this circuit, timing-errors at the spFF is allowed,
while no timing-error is allowed at the cfFF. The value
stored in the spFF is used for an output signal of Specula-
tive FF, and the following primitive computations start ear-
lier. On the other hand, the value stored in cfFF is error-less
since the clock signal to the cfFF is scheduled appropriately
to satisfy the constraints for storing the correct output.

The error detection is done by comparing the output
values of spFF and cfFF. When an error is detected, clock
signals to all flip-flops except spFF are stopped by gating
and the value in cfFF is copied to the spFF to correct the
value in spFF at that cycle. Thus, the EDC mechanism re-
quires one clock cycle for the recovery process.

There is no computation between cfFF and spFF, and
the delays to be considered are only the wire delay, the setup
time, and the hold time. Without loss of generality, we as-

†A conventional deterministic flip-flop means a typical flip-
flop used in fixed-latency circuit

Fig. 8 An example of a circuit Gsp with the speculative execution. The
flip-flop r1 is replaced to the Speculative FF. This figure is the same as
Fig. 2.

Fig. 9 The constraint graph H(Gsp) of the circuit Gsp.

sume that cfFF and spFF are placed enough close to set the
wire delay as 0 and that the maximum delay and the min-
imum delay between cfFF and spFF are 0. The setup time
and the hold time will be enough smaller than the clock tim-
ing difference between cfFF and spFF.

Figure 9 shows the constraint graph of the circuit Gsp.
The spFF is required only satisfying the constraints between
following flip-flops, and the cfFF is required only satisfy-
ing the constraints between previous flip-flops. In this case,
the cfFF is also required to satisfy the constraints between
sfFF because the original flip-flop r1 has a self-loop. By
introducing the Speculative FF as the alternative of the flip-
flop r1 in Gins, the constraints are relaxed to be able to set a
smaller clock period than the minimum clock period of the
circuit Gins. For example, the clock period 6 satisfies the
constraints in the circuit Gsp, because the sums of weights
of each cycle in Gsp is not less than 0. Thus, when T is
6, the circuit works correctly and it is smaller clock period
than the lower bound of the clock period of the circuit Gins.
However, the performance improvement of this circuit relies
on the error rate of the speculative FF. The clock timing of
r0, rsp, rcf, r2, and r3 are set as 0, 2, 6, 8 and 4, respectively.

Figure 10 shows the detailed implementation of the
EDC mechanism. A timing-error at spFF is allowed, while
no timing-error is allowed at cfFF. Thus, the value stored
in spFF is erroneous but is available earlier, and the value
stored in cfFF is error-less but is available later. The value
stored in spFF is used for an output signal of Speculative FF,
and the following primitive computations start earlier.

Figure 11 shows the timing chart of a timing-error de-
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Fig. 10 Implementation of the dynamic timing-error detection/correction
mechanism.

Fig. 11 A timing chart in the case of timing-error.

tection and value correction of the mechanism. A timing-
error is detected by comparing the values stored in spFF and
cfFF by the error detection circuit. The result of comparison
is stored to ehFF and it controls the error correction process.
When ehFF outputs an error signal, all conventional deter-
ministic flip-flops stop updating their state by clock signal
gating for one clock cycle. In Speculative FFs, the value in
the spFF is replaced to the value in the cfFF while stopping
deterministic flip-flops. Then, the circuit returns to execute
its primitive computations from the next clock cycle.

Timing constraints
Two new constraints for the EDC mechanism are required in
addition to the setup constraint and the hold constraint. They
are Error signal constraint and Clock gating constraint. Er-
ror signal constraint is the constraint required to set the re-
sult of comparison between spFFs and cfFFs into a flip-flop
(we call this as ehFF). Clock gating constraint is the con-
straint required to handle the clock supply to guarantee the
correctness of computations.

A circuit with speculative execution works correctly
with a clock period T if the following constraints are satis-
fied for every signal propagation between pairs of flip-flops.
Let Fnr be the set of deterministic flip-flops, Fsp be the set
of spFFs, and Fcf is the set of cfFF. Dmax(u, v) is the maxi-
mum delay which includes the setup time and Dmin(u, v) is
the minimum delay which includes the hold time of adjacent
flip-flops u and v. S (.) is the clock scheduling of a flip-flop.

Normal constraints
Pnormal = {(u, v)|u ∈ Fnr ∪ Fsp, v ∈ Fnr ∪ Fc f }

∀(u, v) ∈ Pnormal,

S (u) − S (v) ≤ T − Dmax(u, v)
S (v) − S (u) ≤ Dmin(u, v)

Error signal constraints

∀w ∈ Fsp ∪ Fc f ,

S (w) − S (ehFF) ≤ −Dmax(w, ehFF)
S (ehFF) − S (w) ≤ T + Dmin(w, ehFF)

Clock gating constraint

∀x ∈ Fnr ∪ Fc f ,

S (x) ≤ S (ehFF) ≤ T + S (x)

Normal constraints are a setup constraint and a hold
constraint when spFF and cfFF are introduced. In order to
work the circuit with speculative execution correctly, spFF
and cfFF have to satisfy these constraints with following
flip-flops and previous flip-flops, respectively.

Error signal constraints are a setup constraint and a
hold constraint between ehFF, and spFF and cfFF. In order
to detect a timing-error within one clock cycle, the result of
comparison between spFF and cfFF has to be transferred to
the following ehFF during that clock cycle.

Clock gating constraint is a constraint to realize clock
gating for one clock cycle of the error correction. For the
error correction after a timing-error, a signal from ehFF has
to stop the clock ticks to keep values in Fnr and Fcf for one
clock cycle.

3. Design Method of General-Synchronous Circuit
with Speculative Execution

We propose a low area overhead design method of a
variable-latency circuit using speculative execution. The
generated circuit by the proposed method achieves perfor-
mance improvement by reducing the waiting time caused
by the delay difference of maximum delay among paths of
different flip-flops and the delay difference on a primitive
computation that varies depending on inputs. The clock
scheduling and the delay insertion reduce the waiting time
caused by the former delay difference, and the speculative
execution reduces the waiting time caused by the latter de-
lay difference. The effective combination of these technique
achieves a low area overhead design of a circuit.

Figure 12 is the proposed design flow. A variable-
latency circuit is designed for a given target clock period.
The inputs of the flow are a netlist of a fixed-latency circuit
and a target clock period. The outputs of the flow are an op-
timized netlist of the inputted circuit and a clock scheduling
for it. The flow processes some steps mainly including the
clock scheduling, the delay insertion, and introducing the
speculative execution.

As the first step of the design flow, an inputted netlist
is synthesized to obtain its delay information by a standard
synthesis tool. The delay information is outputted in a stan-
dard delay format (SDF).
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Fig. 12 Design flow of circuits with speculative execution.

Next, the clock scheduling step is processed and then
the feasible clock scheduling is checked whether the target
clock period is achieved. Clock scheduling is processed by
using the method in the paper [7] for all flip-flops. If a clock
scheduling which satisfies the constraints exists, the design
flow outputs the netlist of the circuit and the result of the
clock scheduling and finishes.

The tool for the clock scheduling step provides some
candidate ranges for a clock scheduling. In this paper, we
select a schedule that the number of clock signal phases is
minimum.

If a feasible clock scheduling is not found, the flow tries
to relax the limitation of a clock period by the delay inser-
tion. The delay insertion is processed by the method in the
paper [9]. The clock scheduling and the delay insertion steps
are iteratively executed and delay elements are implemented
to the circuit as much as possible to realize the target clock
period.

If the target clock period is not achieved by delay in-
sertion, the speculative execution is introduced to the cir-
cuit. A target flip-flop to replace to a Speculative FF is ap-
propriately selected from flip-flops of a series of primitive
computations which determines the minimum clock period.
If the clock period is limited by a self-loop in the circuit,
the flip-flop is replaced to a Speculative FF. Otherwise, a
flip-flop which comes after a path having the largest differ-
ence between the maximum delay and the minimum delay
is chosen to replace, because a large amount of the delay
difference leads less speculative misses when assuming the
distribution of the delay as the uniform. After replacing a
flip-flop, the flow returns to the clock scheduling step.

The additional circuit element for the speculative exe-
cution is larger than that of the optimization methods of a
circuit because it requires additional flip-flops for the EDC
mechanism. On the other hand, the delay insertion method
is realized by inserting buffers or replacing gate cells to
small ones and the additional circuit element for it is con-
sidered less than that for the speculative execution. Based
on the above considerations, our design flow applies the de-
lay insertion method as much as possible before introducing

the speculative execution, and achieves to generate a low
area overhead high-performance circuit.

4. Experimental Results

4.1 Environment

Here, we show a performance comparison between fixed-
latency circuit and variable-latency circuit. In a variable-
latency circuit, clock cycles required to finish some task is
variable and execution time-based comparison is required
for such comparison. Additionally, a certain scale of a cir-
cuit will be appropriate for these experiments. For the above
reasons, we design a MIPS processor and measure the exe-
cution time of applications on it as experiments.

For the evaluations, we implement a 5-stage pipelined
processor of MIPS I instruction set [14]. The performance
of the circuit is measured by gate-level simulation of exe-
cuting some applications on the processor. For the gate-level
simulation, we use Synopsys VCS version I-2014.03-SP1-5.
Note that the wire delay is not considered in this simulation.

The processor is implemented in Verilog HDL and
is synthesized by Synopsys Design Compiler version I-
2013.12-SP5 using ROHM 0.18 µm standard cell library.
As the circuit area, we refer to the synthesis report of De-
sign Compiler. The synthesis result of the base circuit of the
processor is that the clock period as that C-circuit is 6.28 ns
and the estimated area is 0.228 mm2. The proposed method
generates variable-latency circuits using the netlist of this
circuit and a target clock period as inputs.

The clock schedule for the circuit is obtained from our
in-house tool. The algorithms for the clock scheduling and
the delay insertion are from the paper [7] and the paper [9],
respectively. As a delay element, multiple pairs of NOT
gates are used. The speculative execution is realized by the
method in the paper [1]. Delay insertion and introducing the
speculative execution are manually implemented to a netlist
of the circuit. Also, we do not introduce the speculative ex-
ecution to the memory access part of the processor to keep
the consistency of memory access.

The applications executed on the processor are “Bubble
Sort”, “Quick Sort”, “Eight Queens”, “Towers of Hanoi”,
“Puzzle”, and “Permutations” from Stanford Integer Bench-
mark [15]. The compiler used for the application is GCC
4.3.3 with optimization option O2.

The performance of circuits which is represented as Ef-
fective clock period is calculated by the following equation.

Effective clock period = Top ×Cop/Cnormal (1)

Where Top is an operate clock period, Cop is clock cycles
to finish an application execution including the penalty of
speculation misses. and Cnormal is clock cycles to finish the
application without speculation miss.

4.2 Performance and Timing-Error Rate

We designed 14 circuits while giving different target clock
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Fig. 13 Performance and timing-error rate.

Fig. 14 Relative performance and area.

periods using our proposed method. Figure 13 shows the
performance and timing-error rate of each circuit. The x-
axis is the target clock period given for each circuit, and
each circuit is operated with that clock period. The left y-
axis is the effective clock period, and the right y-axis is the
timing-error rate. The effective clock period is the average
for all applications.

We can see that the effective clock period becomes
faster for the circuits given faster target clock period even if
the timing-error rate increases. However, the effective clock
period saturates near 5.00 ns. The circuit given the target
clock period 4.88 ns shows the best performance among 14
circuits, and the effective clock period is 5.01 ns.

4.3 Area

Figure 14 shows area of each circuit. The x-axis is the tar-
get clock period given for each circuit, and also the num-
ber of inserted buffer elements and the number of replaced
flip-flops for speculative execution are shown in the table.
The y-axis is the estimated area, and it is represented from
0.226 mm2.

We can see that the area increases for the circuits given
faster target clock period. However, the amount seems rea-
sonable for the performance gain. The number of replaced
flip-flops for speculative execution is the same in some cir-
cuits and it is confirmed that our method effectively uses the
delay insertion to realize a faster circuit. The estimated area
of the best performance circuit is 0.231 mm2.

Fig. 15 Comparison of area and effective performance.

4.4 Comparison with Other Designs

4.4.1 Area and Effective Performance

Area and effective performance comparison with other de-
signs is shown in Fig. 15. In this experiment, 6 designs are
compared. All designs are obtained by modification of the
design “C-circuit (base)”. The total number of flip-flops
used in each design is denoted with each label.

The design “C-circuit (Base)” is a circuit synthesized
with target clock period 6 ns. From the static timing analysis
using the typical value of gates, the operating clock period
of it is 6.28 ns. Its total number of flip-flops is 1,375 and the
estimated area is about 0.228 mm2.

The design “G-circuit (Sch.)” is a circuit that only the
clock scheduling is applied to the base design. This design
works correctly with the operating clock period 5.46 ns. The
circuit element of this design is the same as the base design
and the number of flip-flops and the area is the same.

The design “G-circuit (Delay + Sch.)” is a circuit that
the delay insertion and the clock scheduling is applied to
the base design. The delay insertion relaxes constraints for
the clock scheduling and achieves clock period reduction.
This design works correctly with the operating clock period
5.34 ns. In this design, the number of flip-flops is the same
as the base design. However, some buffers are introduced
by the delay insertion. Thus, the estimated area is about
0.228 mm2, but slightly large compared to the base design.

The design “Our work” is the performance of the cir-
cuit with the speculative execution generated by our method
which shows the best performance in the experiments of
Sect. 4.2 and Sect. 4.3. This design is a variable-latency cir-
cuit, and its effective clock period is 5.01 ns when it operated
with the clock period 4.88 ns. In this design, the number of
flip-flops is 1,381, because 6 flip-flops are introduced by the
speculative execution. 5 flip-flops are for the speculative FF
and 1 flip-flop is for the error-correction mechanism. The
estimated area is about 0.231 mm2.

The design “C-circuit (Optimized)” is a circuit synthe-
sized with target clock period 5 ns. From the static timing
analysis using the typical value of gates, the operating clock
period of it is 5.22 ns. In this design, the number of flip-
flops is the same as the base design. However, the estimated
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area is about 0.232 mm2, which is larger than the base de-
sign, because large logic gates are used in some part of this
design to realize a small clock period.

The design “C-circuit (Spec.)” is a circuit that only the
speculative execution is applied to the base design. We ap-
plied the speculative execution as much as possible to this
circuit, and further application is impossible due to the hold
constraints on cfFF. It is impossible to apply more specu-
lative execution to this design. This design is a variable-
latency circuit, and its effective clock period is 6.05 ns when
it operated with the clock period 5.99 ns. The number of
flip-flops of this design is 1,410, because 35 flip-flops are
introduced by the speculative execution. 34 flip-flops are for
the speculative FF and 1 flip-flop is for the error-correction
mechanism. The estimated area is about 0.234 mm2.

The circuit “Our work” achieves 26% performance im-
provement with 1.3% area overhead compared to the based
“C-circuit (Base)”. Also, it achieves 6.6% performance im-
provement with 1.2% area overhead compared to the “G-
circuit (Delay + Sch.)” which is a circuit without the specu-
lative execution. Compared to the “C-circuit (Optimized)”,
“Our work” shows better performance with less area over-
head. Even if the “C-circuit (Optimized)” is further opti-
mized to be the same performance as “Our work”, its area
will be larger. Compared to the “C-circuit (Spec.)”, “Our
work” shows better performance with less introduction of
the speculative execution.

4.4.2 Power and Effective Performance

Power and effective performance comparison with other de-
signs is shown in Fig. 16. The power is estimated by Power
Compiler included in Design Compiler using SAIF file ob-
tained from gate-level simulation using each benchmark ap-
plication. Its value is the average of 6 applications.

We can see that the power increases almost linearly
with the effective clock period improves. From this result,
it is confirmed that the power of “Our work” is reasonable
compared to the other designs.

4.5 Discussion on the Proposed Design Flow

In the design “Our work”, 5 flip-flops out of 1,375 flip-flops
are replaced to the speculative FF. That is the introduction

Fig. 16 Comparison of power and effective performance.

of speculative execution in the flow is applied for 5 times. In
the design “C-circuit (Base)”, there are 2,399 paths whose
maximum delay is larger than 4.88 ns and the number of
endpoint flip-flops is 257 for these paths. The delay in-
sertion and the clock scheduling reduces the candidate flip-
flops to be replaced significantly.

In the design “C-circuit (Spec.), which is a design only
speculative execution is introduced, 34 flip-flops are re-
placed to the speculative FF. Many flip-flops compared to
the design “Our work” have to be replaced even though the
target clock period is 5.99 ns. Therefore, applying the delay
insertion as much as possible before introducing the specu-
lative execution is effective.

Furthermore, in the design “C-circuit (Spec.)”, we can-
not introduce the speculative execution because we cannot
use a smaller clock period for it due to the hold constraint on
cfFF. Delay insertion relaxes the hold constraint that limits
the clock period reduction. Thus, applying the delay inser-
tion after introducing the speculative execution is also effec-
tive for further performance improvement.

5. Related Works

Telescopic units [16], [17] is a variable-latency circuit.
Based on static analysis of inputs, they assign different clock
cycles to a primitive computation. For example, a primitive
computation outputs a result in 1 clock cycle for some in-
puts and outputs a result in 2 clock cycles for other inputs.
This work reduces the waiting time caused by both of the de-
lay difference of maximum delay among paths of different
flip-flops and the other is the delay difference on a primitive
computation that varies dynamically depending on inputs by
the variable-latency technique. Our work uses the variable-
latency technique only to reduce the waiting time caused by
the delay difference on a primitive computation that varies
dynamically depending on inputs. Additionally, the point
to introduce the variable-latency is selectable in our work
while Telescopic units have to introduce it to the longest
path.

6. Conclusion

In order to obtain high-performance circuits in advanced
technology nodes, design methodology has to take the ex-
istence of large delay variations into account. This paper fo-
cuses on utilizing the delay difference among paths and the
delay difference on a primitive computation that varies de-
pending on inputs. We propose a high-performance digital
circuit design method with speculative executions with less
overhead by utilizing clock scheduling with delay insertions
effectively. The necessity of speculations that cause over-
heads is effectively reduced by clock scheduling with delay
insertion. From the evaluation using a 5-stage pipelined pro-
cessor, we confirmed that the variable-latency circuit gen-
erated by our design method achieved 26% performance
improvement with about 1.3% area overhead compared to
a C-circuit without speculative execution which is a fixed-
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latency circuit. It also achieved about 6.6% performance
improvement with while less than 1.2% area overhead com-
pared to a general-synchronous circuit without speculative
execution which is a fixed-latency circuit.
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