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Abstract

This thesis consists of four essays on implementation theory. We investigate implemen-

tation problems under incomplete information; for the allocation of a social endowment

of infinitely divisible resources; under the existence of partially honest agents; and under

the existence of semi-socially-responsible agents.

First of all, in Chapter 1, we propose a brief history of implementation theory, and

we shortly introduce four studies in this thesis.

In Chapter 2, we consider the implementation problem under incomplete information

and private values. We investigate double implementability of social choice functions

in dominant strategy equilibria and ex post equilibria. We show that the notion of ex

post equilibrium is weaker than the notion of dominant strategy equilibrium. Then, this

notion of double implementability is not trivial even under private values. We define a

new strategic axiom that is stronger than “strategy-proofness,” but weaker than “secure

strategy-proofness.” We call it “weak secure-strategy-proofness.” We show that a social

choice function is doubly implementable in dominant strategy equilibria and ex post

equilibria if and only if it is weakly securely-strategy-proof.

In Chapter 3, we consider the allocation problem of infinitely divisible resources with

at least three agents. For this problem, Thomson (2005) and Doğan (2016) propose simple

but not procedurally fair mechanisms which implement the no-envy correspondence in

Nash equilibria. By contrast, Galbiati (2008) constructs a procedurally fair but not

simple mechanism which implements the no-envy correspondence in Nash equilibria. In

this chapter, we design a both simple and procedurally fair mechanism which implements

the no-envy correspondence in Nash equilibria.
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In Chapter 4, we consider the implementation problem with at least three agents. We

study double implementability of social choice correspondences in Nash equilibria and un-

dominated Nash equilibria. We prove that “DZ-invariance,” “weak no-veto-power,” and

“unanimity” together are sufficient for double implementability in Nash equilibria and

undominated Nash equilibria. If there is at least one partially honest agent in the sense

of Dutta and Sen (2012), then weak no-veto-power and unanimity together are sufficient

for double implementability in Nash equilibria and undominated Nash equilibria. If there

are at least two partially honest agents, then unanimity is sufficient for double imple-

mentability in Nash equilibria and undominated Nash equilibria. In addition, we show

that if there is at least one partially honest agent and unanimity is satisfied, then “LY-

condition” is necessary and sufficient for double implementability in Nash equilibria and

undominated Nash equilibria. From these results, we obtain several positive corollaries

such as in a bargaining problem (Nash, 1950).

In Chapter 5, we assume that each agent is “semi-socially-responsible” and we focus

on social choice functions for double implementation in Nash equilibria and undominated

Nash equilibria. We show that if there are at least three agents and each agent is semi-

socially-responsible with respect to a unanimous social choice function, then a simple

and procedurally fair mechanism doubly implements this social choice function in Nash

equilibria and undominated Nash equilibria.

Finally, in Chapter 6, we conclude this thesis by summarizing its contributions and

discussing three remaining issues in this thesis.
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Chapter 1

Introduction

Consider a situation in which a social planner wants to choose an outcome to be socially

desirable.1 Examples of social desirability include the notions of Pareto-efficiency, no-

envy (Foley, 1967), and others. For the planner to detect which outcome is socially

desirable, she needs to know the agents’ true preferences. However, she dose not have

the information. If the planner simply asks each agent to reveal his preference and she

selects an outcome to be socially desirable following the information revealed by the

agents, some agent might strategically misrepresent it to realize an outcome which he

prefers. The following example illustrates this problem.

Example 1.1. We consider the following voting problem. Suppose that there are three

agents, there are three candidates, and each agent has two preferences. Let N = {1, 2, 3}

be the set of agents and A = {a, b, c} be the set of candidates. For each i ∈ N , let

Ri = {Ri, R
′
i} be the set of preferences admissible for agent i. Let R = ×i∈NRi be such

that a P1 b I1 c, b P2 c P2 a, c P3 a P3 b, and for each i ∈ N , a P ′
i b P

′
i c.2

As an objective of a social planner, we consider the “Borda solution.” To define this

solution, we first propose a scoring rule. For each i ∈ N , each Ri ∈ Ri, and each d ∈ A,

if candidate d is the k-th most preferred outcome at Ri where k ∈ {1, 2, 3}, then let

B(Ri, d) ≡ k.

1What we mean by an “outcome” will naturally depend on the context. As an example, for a govern-
ment charged with delivering public goods, an outcome will consist of the provided quantities of public
goods (e.g., national defense and security) together with the quantities of private goods (e.g., money).

2For each i ∈ N , a Ri b Ri c means that by agent i, candidate a is at least preferred to candidate b
and candidate b is at least preferred to candidate c.
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Borda solution, fB : R → A: For each R ∈ R and each d ∈ A, Σi∈NB(Ri, f
B(R)) ≤

Σi∈NB(Ri, d). If there is e ∈ A such that e ̸= fB(R) and Σi∈NB(Ri, f
B(R)) = Σi∈NB(Ri, e),

then fB(R) is selected in alphabetical order.3

Suppose that (R1, R2, R3) ∈ R is the true preference profile. In this case, if the

planner asks each agent to reveal his preference, each agent i ∈ N simply reveals Ri, and

the planner selects the candidate chosen by fB for (R1, R2, R3) i.e., c, then agent 1 can

improve his preference by reporting R′
1 i.e., fB(R′

1, R2, R3) = a P1 c = fB(R1, R2, R3).■

“Implementation theory” investigates the possibility of designing mechanisms by which

a social planner implements her objective even when agents take strategic actions.4,5

Formally, the objective of the planner is embodied by a “social choice correspondence

(SCC).” An SCC is a set-valued mapping which, for each preference profile, selects a

non-empty set of outcomes. Especially, if such a mapping is single-valued, then it is

called a social choice function (SCF). Since the planner does not know the agents’ true

preferences, she must rely on the agents’ strategic actions to indirectly cause the socially

desirable outcome(s) to come about. Then, she specifies a message space for each agent

and a single-value mapping which, for each possible message profile, chooses an outcome.

The pair consisting of the list of the message spaces and the mapping is a “mechanism.”

As a special kind of mechanisms, in the direct mechanism associated with an SCF, the

message space for each agent is the set of his possible preferences and the mapping is the

SCF. A mechanism and the agents’ preferences induce a “game.” To capture the strategic

actions of agents, the planner considers the equilibrium notion(s). She aims to design

3The Borda solution fB is a single-valued “sub-solution” of the “Borda correspondence.” The Borda
correspondence FB is defined as for each R ∈ R, FB(R) = {d ∈ A : for each e ∈ A, Σi∈NB(Ri, d) ≤
Σi∈NB(Ri, e)}. A single-valued sub-solution φFB : R → A of the Borda correspondence is a single-valued
mapping such that for each R ∈ R, φFB (R) ∈ FB(R).

4In 1930s and 1940s, the problem of social decision making when information is decentralized is
crystallized (von Mises, 1920; von Hayek, 1935, 1945; Lange, 1936, 1937; Lerner, 1936). This lengthy
discussion is called “Hayek-Mises-Lange-Lerner debates” by Moore (1992). For surveys on these debates,
see Brus (1990) and Kowalik (1990). After the contributions of Hurwicz (1960, 1972), mathematical
analyses became possible.

5For surveys on implementation theory, see Moore (1992), Jackson (2001, 2014), Maskin and Sjöström
(2002), Palfrey (2002), Serrano (2004), and Corchón (2015), For brief commentaries on implementation
theory, see Maskin (2008, 2011).
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a mechanism in which the set of outcomes chosen by an SCC coincides with the set of

equilibrium outcomes of the game. Then, we say that the mechanism implements the

SCC in the equilibrium notion(s). If there exists such a mechanism, then we say that the

SCC is implementable.

Whether an SCC is implementable or not may depend on which game theoretic solu-

tion concept is invoked. The most demanding concept is “dominant strategy equilibrium.”

By definition, a dominant strategy of an agent is a best reply to any actions of the others.

Thus, if there exists a dominant strategy equilibrium of a game, agents need not form

any conjecture about the behavior of others in order to know what to do.

For an SCF to be dominant strategy implementable, the SCF must satisfy the property

that in the direct mechanism associated with the SCF, truth-telling is a dominant strategy

for each agent (Gibbard, 1973).6 This property is known as strategy-proofness, and a

number of papers propose strategy-proof SCFs in several environments (e.g., Vickrey,

1961; Moulin, 1980; Dubins and Freedman, 1981; Roth, 1982). To study whether strategy-

proof SCFs work well in practice, a bunch of papers conducted laboratory experiments.

Although strategy-proof SCFs are desirable from the theoretical viewpoint, laboratory

experiments regarding such SCFs reported that in several games, some subjects did not

select dominant strategies (e.g., Kagel, Harstad, and Levin, 1987; Attiyeh, Franciosi, and

Isaac, 2000).7

These observations raise a concern for implementation theory. Although in exper-

iments for the pivotal mechanism which is strategy-proof, some subjects did not adopt

dominant strategies, they frequently selected a Nash equilibrium (e.g., Cason, Saijo,

Sjöström, and Yamato, 2006). This observation led Saijo, Sjöström, and Yamato (2007)

to formulate and investigate “secure implementation,” namely double implementation in

dominant strategy equilibria and Nash equilibria. If there is no dominant strategy for

an agent, then any best reply of this agent depends on the choices of the other agents so

6This result is the so-called “revelation principle for dominant strategy implementability.”
7For a summary of laboratory experiments regarding strategy-proof SCFs, see, e.g., Cason, Saijo,

Sjöström, and Yamato (2006).
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that it may be hard for this agent to predict the choices. For strategic uncertainty not to

be important, Saijo, Sjöström, and Yamato (2007) study not only good Nash equilibria

that induce socially desirable outcomes, but also good dominant strategy equilibria.

In the laboratory experiment in Cason, Saijo, Sjöström, and Yamato (2006), each sub-

ject knew only his own preference, so that incomplete information games were considered.

Usually, to define the notion of Nash equilibrium, we investigate complete information

games in which each agent knows the true preference profile.

In an attempt to explain the laboratory experiments in Cason, Saijo, Sjöström, and

Yamato (2006), in Chapter 2, we study double implementability in dominant strategy

equilibria and “ex post equilibria.” By definition, an ex post equilibrium is a strategy

profile in which, for each possible preference profile, the message profile for the preference

profile is a Nash equilibrium. Every ex post equilibrium has the no regret property that

no agent would have an incentive to change his message even if he were to be informed

of the true preferences of the others. We would like to exclude bad Nash equilibria under

incomplete information games.

As mentioned above, there exist strategy-proof SCFs in several environments such as

under the set of single-peaked preference profiles. However, interesting SCFs satisfying

strategy-proofness do not necessarily exist in other environments such as under the set of

all preference profiles. (e.g., Hurwicz, 1972; Gibbard, 1973; Ledyard and Roberts, 1974;

Satterthwaite, 1975).

If we drop the requirement of strategy-proofness and then we consider the notion

of Nash equilibrium, the situation is much better. Nash implementation using mecha-

nisms with general message spaces is studied by Maskin (1977, 1999).8,9 He shows that

“Maskin-invariance” is necessary for an SCC to be Nash implementable.10 With at least

three agents, Maskin-invariance together with “no-veto-power” is sufficient for Nash im-

8Maskin (1977) was later published as Maskin (1999).
9See also Groves and Ledyard (1977) for a class of economic environments and see Hurwicz and

Schmeidler (1978) for the case of social choice from a finite set of alternatives. These two kinds of
environments are included in the model of Maskin (1999).

10Maskin-invariance is also called “Maskin-monotonicity.” For the terminology in this thesis, we follow
Thomson (2018).
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plementability by constructing the following mechanism (hereafter, the Maskin mecha-

nism).11 Each agent’s strategy has three components, namely a preference profile, an

outcome, and an integer. If each agent reports the same preference profile and the same

outcome that is an element of the set of outcomes chosen by the SCC for the reported

preference profile, then the reported outcome is chosen. If there exists only one agent re-

ports a different preference profile or a different outcome, say a, from the above messages

of the other agents, then the outcome proposed by the odd-man-out is chosen, provided

that a is at least preferred to this outcome at his preference which is a component of the

preference profile reported by the other agents; otherwise, a is chosen. In all other cases,

the outcome is the one proposed by the agent with the highest index among those whose

proposed integer is maximal.12

Regarding the result on sufficiency of Maskin (1999), it has been argued that there

are the following two issues: (1) the Maskin mechanism is complex and it may not be

procedurally fair i.e., some agent is not treated fairly (see, e.g., Thomson, 2005; Korpela,

2018); (2) if each agent does not select weakly dominated strategies, then the Maskin

mechanism may not implement an SCC which is Nash implementable (see, e.g., Yamato,

1999).

In Chapter 3, we resolve the first issue for the allocation problem of infinitely divisible

resources with at least three agents. For this problem, Thomson (2005) and Doğan (2016)

propose simple but not procedurally fair mechanisms which implement the “no-envy”

correspondence in Nash equilibria. By contrast, Galbiati (2008) constructs a procedurally

fair but not simple mechanism which implements the no-envy correspondence in Nash

equilibria. In this chapter, we design a both simple and procedurally fair mechanism

which implements the no-envy correspondence in Nash equilibria.

In Chapter 4, we resolve the second issue. We study double implementability of SCCs

in Nash equilibria and undominated Nash equilibria. We propose sufficient conditions

11The Maskin mechanism is also called a “canonical mechanism for Nash implementation.”
12By means of a similar mechanism, Moore and Repullo (1990) propose a characterization of Nash

implementability.
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under each of three assumptions that the number of “partially honest” agent is 0, at

least 1, or at least 2. In addition, we provide a necessary and sufficient condition under

a minor qualification for double implementability in Nash equilibria and undominated

Nash equilibria.

In Chapter 5, we resolve the both first and second issues for SCFs. We show that if

there are at least three agents and each agent is “semi-socially-responsible” with respect

to a unanimous SCF, then a simple and procedurally fair mechanism doubly implements

this SCF in Nash equilibria and undominated Nash equilibria.

In Chapter 6, we conclude this thesis by summarizing its contributions and discussing

the following three remaining issues in the thesis: (1) irrational choices; (2) repeated

implementation; and (3) laboratory experiments.
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Chapter 2

Double Implementation in Dominant Strat-
egy Equilibria and Ex Post Equilibria
with Private Values

2.1 Introduction

We investigate the implementation problem under incomplete information and private

values. The objective of a social planner is embodied by a “social choice function (SCF).”

Mathematically, an SCF is a single-valued mapping which, for each possible preference

profile, specifies an outcome. The planner does not know the agents’ preferences. Then,

she specifies a message space for each agent and a single-value mapping which, for each

possible message profile, chooses an outcome. The pair consisting of the list of agents’

message spaces and a mapping is a “mechanism.” In the direct mechanism associated with

an SCF, the message space for each agent is the set of his possible preferences and the

mapping is the function.

“Strategy-proofness” requires that in the direct mechanism associated with the SCF,

truth-telling should be a dominant strategy for each agent. For each preference profile,

the outcome chosen by the SCF is achieved at this dominant strategy equilibrium. An

important point concerning a dominant strategy equilibrium is that each agent needs only

information about his own preference. He need not care about the other agents’ pref-

erences nor strategies. However, laboratory experiments regarding strategy-proof SCFs
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reported that in several games, some subjects did not select dominant strategies.1

These observations raise a concern for implementation theory. Although in pivotal-

mechanism experiments in which truth-telling is a dominant strategy for each agent,

some subjects did not adopt dominant strategies, they frequently selected a Nash equi-

librium (Cason, Saijo, Sjöström, and Yamato, 2006). There is an explanation for this

observation. Suppose that there are only two subjects. If one of them, subject 1, finds a

dominant strategy but the other, subject 2, does not, then as long as subject 2 chooses

a best response to subject 1’s strategy, a Nash equilibrium outcome is achieved. It

should be easier to find a best response to subject 1’s strategy than a dominant strategy.

This observation led Saijo, Sjöström, and Yamato (2007) to formulate and investigate

“secure implementation,” namely double implementation in dominant strategy equilibria

and Nash equilibria.2 If there is no dominant strategy for an agent, then any best re-

sponse of this agent depends on the choices of the other agents so that it may be hard for

this agent to predict the choices. For strategic uncertainty not to be important, Saijo,

Sjöström, and Yamato (2007) study not only good Nash equilibria that induce socially

desirable outcomes, but also good dominant strategy equilibria.

In the laboratory experiments in Cason, Saijo, Sjöström, and Yamato (2006), each

subject knew only his own preference, so that incomplete information games were con-

sidered.3 Usually, to define the notion of Nash equilibrium, we investigate complete

information games in which each agent knows the true preference profile.4 Table 2.1

1For a summary of laboratory experiments regarding strategy-proof SCFs, see, e.g., Cason, Saijo,
Sjöström, and Yamato (2006).

2Another study focuses on extensive form games. In an ascending auction and a second-price auction,
subjects were substantially more likely to play truth-telling under the former than under the latter (Kagel,
Harstad, and Levin, 1987). Inspired from this observation, “obvious” strategy-proofness is defined and
characterized as a cognitively limited agent can recognize that truth-telling is a dominant strategy (Li,
2017).

3For other laboratory experiments under the incomplete information setting, see Attiyeh, Franciosi,
and Isaac (2000) and Kawagoe and Mori (2001) for pivotal-mechanism experiments, and Kagel and Levin
(1993) and Harstad (2000) for second-price-auction experiments.

4One justification of secure implementation as a theoretical prediction for the laboratory experiments
in Cason, Saijo, Sjöström, and Yamato (2006) is that a Nash equilibrium can be interpreted as a rest point
of the dynamic learning process (Cason, Saijo, Sjöström, and Yamato, 2006). However, secure implemen-
tation is a theoretical prediction in a one-shot game. Other justifications of secure implementation are
characterizations by robust implementation notions (Adachi, 2014; Saijo, Sjöström, and Yamato, 2007).
Even though these implementation notions are under the incomplete information setting, we might not
explicitly study the observation of the experiments unlike secure implementation.
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Table 2.1: The difference between Cason et al. (2006) and Saijo et al. (2007).

Cason et al. (2006) Saijo et al. (2007)

(Laboratory experiments) (A theoretical prediction)

Information Incomplete Complete

structure information information

Result Subjects frequently selected Characterizations for

a Nash equilibrium secure implementability

illustrates this discussion.

In an attempt to explain the laboratory experiments in Cason, Saijo, Sjöström, and

Yamato (2006), we study double implementability in dominant strategy equilibria and

“ex post equilibria.” By definition, an ex post equilibrium is a strategy profile in which,

for each possible preference profile, the message profile for the preference profile is a Nash

equilibrium. We would like to exclude bad Nash equilibria under incomplete information

games. Every ex post equilibrium has the no regret property that no agent would have an

incentive to change his message even if he were to be informed of the true preferences of

the others. We would like to exclude bad Nash equilibria under incomplete information

games.

Another possible way to explain the laboratory experiments in Cason, Saijo, Sjöström,

and Yamato (2006) is to consider the notion of Bayesian Nash equilibrium, instead of the

notion of ex post equilibrium. Wilson (1987) states that we should not rely on strong

informational assumptions, such as the common prior assumption: there is common

knowledge of a common prior on a set of preferences. In this sense, mechanisms for

Bayesian Nash implementability are not practical, and it is difficult to impose the common

prior assumption in the laboratory experiment in Cason, Saijo, Sjöström, and Yamato

(2006). On the other hand, neither the notion of dominant strategy equilibrium nor the

notion of ex post equilibrium refer to prior nor posterior probability distributions of the

preferences. Then, these two notions are “belief free.”5 Especially, the notion of ex post

5If solution concepts do not depend on the beliefs and higher order beliefs of the agent, then we refer
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equilibrium requires that for all beliefs and higher order beliefs, the strategies of the

agents remain an “interim” equilibrium (Bergemann and Morris, 2007; Proposition 2).6,7

Bergemann and Morris (2008) claim that “in an environment with private values, the

notion of ex post equilibrium is equivalent to the notion of dominant strategy equilibrium”

(pp. 532). Our first result is that in general, the former is weaker than the latter (Fact 2.1,

Example 2.1). Then, double implementability is not trivial even under private values.

For double implementability, we need to consider dominant strategy implementability.

By the revelation principle for dominant strategy implementability, strategy-proofness is

necessary (Gibbard, 1973). Based on this result, secure implementability is characterized

by a stronger axiom, “secure strategy-proofness” (Saijo, Sjöström, and Yamato, 2007).8

Secure strategy-proofness requires that the SCF should be strategy-proof and for each

preference profile and each Nash equilibrium in the complete information game induced

by the direct mechanism and the preference profile, the outcome at the equilibrium should

be equal to the outcome chosen by the SCF for the preference profile.

We define a new strategic axiom, “weak secure-strategy-proofness.” This axiom re-

quires that the SCF should be strategy-proof and if a strategy profile is an ex post

equilibrium in the incomplete information game induced by the direct mechanism and

the set of preference profiles, then for each preference profile, the outcome at the equilib-

rium should be equal to the outcome chosen by the SCF for the preference profile. This

axiom is weaker than secure strategy-proofness (Proposition 2.3, Example 2.2).

For the direct mechanism associated with an SCF, we show that dominant strategy

implementability is weaker than ex post implementability (Lemma 2.1, Example 2.3).9 In

to them as belief free solution concepts.
6For the definition of interim equilibrium, see Bergemann and Morris (2007).
7Under the model of Bergemann and Morris (2005), in the special case where the game is induced by

a direct mechanism associated with an SCF and a social planner is trying to truthfully implement this
function, the relationship between the notion of ex post equilibrium and the notion of interim equilibrium
is provided (Bergemann and Morris, 2005; Propositions 1 and 3).

8In Saijo, Sjöström, and Yamato (2007), secure implementability is characterized by strategy-proofness
and “rectangle property.” For the definition of rectangle property, see Saijo, Sjöström, and Yamato (2007).
It is easy to show that an SCF satisfies strategy-proofness and rectangle property if and only if it is securely
strategy-proof.

9By this result, for the direct mechanism associated with an SCF, ex post “full” implementability is
weaker than dominant strategy “full” implementability. Note that under private values, ex post “truthful”
implementability is equivalent to dominant strategy “truthful” implementability by definition (see, e.g.,
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addition, we show that an SCF is doubly implementable in dominant strategy equilibria

and ex post equilibria if and only if it is weakly securely-strategy-proof (Theorem 2.1).

The proof involves showing that any doubly implementable SCF in dominant strategy

equilibria and ex post equilibria is implemented by its associated direct mechanism (Corol-

lary 2.1). Hence, for double implementability, it suffices to focus on direct mechanisms.10

For secure implementation, negative results have been established for a number of

interesting SCFs (e.g., Fujinaka and Wakayama, 2011). Even if an SCF is not securely

implementable, it may be doubly implementable in dominant strategy equilibria and ex

post equilibria (Corollary 2.2).11 Are there such interesting SCFs? We provide one neg-

ative answer and one positive answer. In a school choice problem (Abdulkadiroğlu and

Sönmez, 2003) under incomplete information, the tentative acceptance rule is not doubly

implementable in dominant strategy equilibria and ex post equilibria (Example 2.4).12

On the other hand, if the set of preference profiles is “large,” then the rule may be dou-

bly implemented in dominant strategy equilibria and ex post equilibria (Example 2.5).

Identifying general conditions concerning the set of preference profiles for double imple-

mentability of the tentative acceptance rule in dominant strategy equilibria and ex post

equilibria is an open question.

This chapter is organized as follows. Section 2.2 provides the notions of dominant

strategy equilibrium and ex post equilibrium, and investigates the relationships. Section

2.3 provides the definitions of strategy-proofness and related properties, and establishes

the relationships. Section 2.4 proposes the notions of dominant strategy implementability

and ex post implementability, and reports our main results. Section 2.5 discusses several

Bergemann and Morris, 2005). In other words, under private values, “ex post incentive compatibility” is
equivalent to strategy-proofness.

10Saijo, Sjöström, and Yamato (2007) and Saran (2016) also provide, for other notions of imple-
mentability, revelation principles in which we can limit our attention to direct mechanisms.

11Note that this comparison is controversial and may not be precise, because secure implementability
is under complete information, but double implementability in dominant strategy equilibria and ex
post equilibria is under incomplete information. By this comparison, we just suggest that if an SCF
is securely implementable under complete information, then this function is doubly implementable in
dominant strategy equilibria and ex post equilibria if the complete information setting is changed into
the incomplete information setting.

12The tentative acceptance rule is also called the deferred acceptance algorithm or the Gale-Shapley
student optimal stable mechanism (Gale and Shapley, 1962).
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applications.

2.2 Equilibrium Notions

Let N = {1, · · · , n} be the set of agents and A be the finite or infinite set of outcomes.

For each i ∈ N , let Ri ∈ Ri be a preference for agent i, where Ri is the set of possible

preferences for agent i over A. The asymmetric and symmetric components of Ri ∈ Ri are

denoted by Pi and Ii, respectively. A preference profile is a list R ≡ (R1, · · · , Rn) ∈ R,

where R ≡ ×i∈NRi. For each i ∈ N and each Ri ∈ Ri, let ui : A → R be a utility

representation for Ri such that for each pair a, b ∈ A, (1) ui(a) > ui(b) if and only if

a Pi b and (2) ui(a) = ui(b) if and only if a Ii b. Each agent’s preferences do not depend

on the other agents’ preferences, so that we study private-values problems.13

A social choice function (SCF) f : R → A is a single-valued mapping which, for

each preference profile R ∈ R, specifies an outcome f(R) ∈ A.

A mechanism Γ is a pair (M, g) such that M = ×i∈NMi, where for each i ∈ N , Mi

is the message space for agent i, and g : M → A is the outcome mapping which, for each

message profile m ∈ M , specifies an outcome g(m) ∈ A. Let Γf = (R, f) be the direct

mechanism associated with SCF f .

Let (Γ,R) be the (incomplete information) game induced by Γ and R. A (pure)

strategy si : Ri → Mi of (Γ,R) for agent i ∈ N is a single-valued mapping which, for

each preference Ri ∈ Ri, specifies a message si(Ri) ∈ Mi. Let s = (s1, . . . , sn) ∈ S be a

strategy profile, where S is a set of strategy profiles.

In game (Γ,R), let us define the following two equilibrium notions which are central

to our study.

Definition 2.1. A strategy profile s ∈ S is a dominant strategy equilibrium of

13If each agent’s preferences may depend on the other agents’ preferences, then problems are under
interdependent values. We can easily extend our results to interdependent-values problems. However,
for double implementability, “dominant strategy incentive compatibility” (Bergemann and Morris, 2005)
is necessary by the revelation principle for dominant strategy implementability. This axiom is stronger
than ex post incentive compatibility and it is difficult to find interesting social choice functions satisfying
this axiom under interdependent values.
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(Γ,R) if for each i ∈ N , each Ri ∈ Ri, each mi ∈ Mi, and each m−i ∈ M−i,

g(si(Ri),m−i) Ri g(mi,m−i).

Let DS(Γ,R) ⊆ S be the set of dominant strategy equilibria of (Γ,R).

Definition 2.2. A strategy profile s ∈ S is an ex post equilibrium of (Γ,R) if for

each R ∈ R, each i ∈ N , and each mi ∈ Mi,

g(si(Ri), s−i(R−i)) Ri g(mi, s−i(R−i)).

Let EP (Γ,R) ⊆ S be the set of ex post equilibria of (Γ,R).

Bergemann and Morris (2008) claim that “in an environment with private values, the

notion of ex post equilibrium is equivalent to the notion of dominant strategy equilibrium”

(pp. 532). Our first result is that in general, the notion of ex post equilibrium is weaker

than the notion of dominant strategy equilibrium (Fact 2.1, Example 2.1).

Fact 2.1. For each game (Γ,R), DS(Γ,R) ⊆ EP (Γ,R).

Proof. Let s ∈ DS(Γ,R). Suppose that s /∈ EP (Γ,R). Then, there are R ∈ R, i ∈ N ,

and mi ∈ Mi such that g(mi, s−i(R−i)) Pi g(si(Ri), s−i(R−i)). Therefore, there are i ∈ N ,

Ri ∈ Ri, mi ∈ Mi, and m−i ≡ s−i(R−i) ∈ M−i such that g(mi,m−i) Pi g(si(Ri),m−i),

which contradicts s ∈ DS(Γ,R).

The following example states that the converse of Fact 2.1 does not hold by showing

that there is a game in which a strategy profile is an ex post equilibrium, but not a

dominant strategy equilibrium.

Example 2.1: There is a game (Γ,R) such that DS(Γ,R) ⊊ EP (Γ,R).

Let N = {1, 2}, A = {a1, a2, a3, a4}, R1 = {R1, R
′
1}, R2 = {R2, R

′
2}, and R =
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×i∈NRi. Preferences are defined as follows:

R1 R′
1

a1, a2 a2, a3, a4

a3, a4 a1

R2 R′
2

a1, a2, a3 a2, a4

a4 a1, a3

Let (u1, u2) be a pair of utility representations for each preference profile such that for

each agent, the utility of the most preferred outcome is 2 and the utility of the least

preferred outcome is 1.

Let f be defined as follows:14

f R2 R′
2

R1 a1 a2

R′
1 a3 a4

The game induced by Γf and R has the following utilities:

true preference R2 R′
2

true preference message R2 R′
2 R2 R′

2

R1 R1 2, 2 2, 2 2, 1 2, 2

R′
1 1, 2 1, 1 1, 1 1, 2

R′
1 R1 1, 2 2, 2 1, 1 2, 2

R′
1 2, 2 2, 1 2, 1 2, 2

Let (s1, s2) ≡ ((s1(R1), s1(R
′
1)), (s2(R2), s2(R

′
2)).15 Then, DS(Γf ,R) = {((R1, R

′
1), (R2, R

′
2))},

and EP (Γf ,R) = {((R1, R
′
1), (R2, R

′
2)) , ((R1, R1), (R

′
2, R

′
2))}. Hence, the strategy pro-

file ((R1, R1), (R
′
2, R

′
2)) is an ex post equilibrium of (Γf ,R), but not a dominant strategy

equilibrium of (Γf ,R). Then, DS(Γf ,R) ⊊ EP (Γf ,R).■

14The SCF in Example 2.1 seems artificial. However, in a specific model, we can find an interesting
SCF f such that DS(Γf ,R) ⊊ EP (Γf ,R). See Example 2.4 in Section 2.5.

15Formally, let s1 be the mapping such that for R1 ∈ R1, agent 1 selects s1(R1) and for R′
1 ∈ R1,

agent 1 selects s1(R
′
1), and let s2 be the mapping such that for R2 ∈ R2, agent 2 selects s2(R2) and for

R′
2 ∈ R2, agent 2 selects s2(R

′
2).
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2.3 Strategy-Proofness and Related Properties

The following axiom requires that in the direct mechanism associated with SCF f , truth-

telling should be a dominant strategy for each agent.

Definition 2.3. An SCF f is strategy-proof if for each R ∈ R, each i ∈ N , and each

R′
i ∈ Ri,

f(
truth
Ri , R−i)

truth
Ri f(

lie
R′

i, R−i).

The following results are the revelation principles for dominant strategy implementabil-

ity and ex post implementability.

Proposition 2.1. (1) (Gibbard, 1973) If an SCF is dominant strategy implementable, it

is strategy-proof.

(2) (Bergemann and Morris, 2008) If an SCF is ex post implementable, it is strategy-

proof.

The following axiom is a necessary and sufficient condition for secure implementation,

namely double implementation in dominant strategy equilibria and Nash equilibria.

Definition 2.4. An SCF f is securely strategy-proof if (1) f is strategy-proof, and

(2) for each pair R, R̃ ∈ R, if for each i ∈ N and each R′
i ∈ Ri, f(R̃i, R̃−i) Ri f(R

′
i, R̃−i),

then f(R̃) = f(R).

To interpret this axiom, let us define the following notions. For each R ∈ R, let (Γ, R)

be the complete information game induced by Γ and R. A message profile m ∈ M is

a dominant strategy equilibrium of (Γ, R) if for each i ∈ N , each m′
i ∈ Mi, and each

m′
−i ∈ M−i, g(mi,m

′
−i) Ri g(m

′
i,m

′
−i). Let DS(Γ, R) be the set of dominant strategy

equilibria of (Γ, R). A message profile m ∈ M is a Nash equilibrium of (Γ, R) if for

each i ∈ N and each m′
i ∈ Mi, g(mi,m−i) Ri g(m

′
i,m−i). Let NE(Γ, R) be the set of

Nash equilibria of (Γ, R).

An SCF f is securely implementable if there is a mechanism Γ = (M, g) such that

for each R ∈ R, {f(R)} = g(DS(Γ, R)) = g(NE(Γ, R)).
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Secure strategy-proofness requires that the SCF f should be strategy-proof, and for

each preference profile R ∈ R and each Nash equilibrium of (Γf , R), the outcome at

the Nash equilibrium should be equal to the outcome chosen by f for R. Secure imple-

mentability is characterized by this axiom.

Proposition 2.2. (Saijo, Sjöström, and Yamato, 2007). An SCF is securely imple-

mentable if and only if it is securely strategy-proof.

The following axiom is weaker than secure strategy-proofness as discussed in Saijo,

Sjöström, and Yamato (2007).

Definition 2.5. An SCF f is non-bossy (in welfare\outcome) if for each R ∈ R,

each i ∈ N , and each R′
i ∈ Ri, if f(Ri, R−i) Ii f(R

′
i, R−i), then f(Ri, R−i) = f(R′

i, R−i).

The following axiom of SCF f requires that f should be strategy-proof, and if a strategy

profile is an ex post equilibrium in (Γf ,R), then for each preference profile, the outcome

at the ex post equilibrium should be equal to the outcome chosen by f for the preference

profile.

First, we define a notion. For each i ∈ N , a deception di : Ri → Ri for agent

i is a single-valued mapping which, for each preference Ri ∈ Ri, specifies a preference

di(Ri) ∈ Ri. We can interpret it as a strategy for agent i in the game induced by a

mechanism in which for each agent i ∈ N , Mi = Ri and the set of preference profiles. Let

d = (di)i∈N ∈ D be a deception profile, where D is the set of deception profiles.

Definition 2.6. An SCF f is weakly securely-strategy-proof if (1) f is strategy-

proof, and (2) for each d ∈ D, if for each R ∈ R, each i ∈ N , and each R′
i ∈ Ri,

f(di(Ri), d−i(R−i)) Ri f(R
′
i, d−i(R−i)), then f ◦ d = f .

Weak secure-strategy-proofness is implied by secure strategy-proofness (Proposition

2.3), but the converse of this relationship does not hold (Example 2.2). Note that an ex

post equilibrium s ∈ S is a strategy profile in which, for each preference profile R ∈ R,

the message profile s(R) ∈ M is a Nash equilibrium.
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Proposition 2.3. If an SCF is securely strategy-proof, then it is weakly securely-

strategy-proof.

Proof. Let f be a securely strategy-proof SCF. It suffices to show that it satisfies (2) of

weak secure-strategy-proofness.

Let d ∈ D. The proof is by contradiction. For each R ∈ R, each i ∈ N , and each

R′
i ∈ Ri, suppose that f(di(Ri), d−i(R−i)) Ri f(R

′
i, d−i(R−i)). Suppose also that there

is R′′ ∈ R such that f(d(R′′)) ̸= f(R′′). Let R̃ = d(R′′). We have that for each i ∈ N

and each R′
i ∈ Ri, f(R̃i, R̃−i) R

′′
i f(R′

i, R̃−i), but f(R̃) ̸= f(R′′), which contradicts (2) of

secure strategy-proofness.

The following example shows that the converse of Proposition 2.3 does not hold.

Example 2.2. An SCF is weakly securely-strategy-proof, but not securely strategy-proof.

Let N = {1, 2}, A = {a1, a2, a3, a4}, R1 = {R1, R
′
1}, R2 = {R2, R

′
2}, and R =

×i∈NRi. Preferences are defined as follows:

R1 R′
1

a1, a2 a3, a4

a3, a4 a1, a2

R2 R′
2

a1, a2, a3 a2, a4

a4 a1, a3

Let (u1, u2) be a pair of utility representations for each preference profile such that for

each agent, the utility of the most preferred outcome is 2 and the utility of the least

preferred outcome is 1.

Let f be defined as follows:16

f R2 R′
2

R1 a1 a2

R′
1 a3 a4

16The SCF in Example 2.2 seems artificial. However, in a specific model, we can find an interesting
SCF f that is weakly securely-strategy-proof, but not securely strategy-proof. See Example 2.5 in Section
2.5.
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The game induced by Γf and R has the following utilities:

true preference R2 R′
2

true preference message R2 R′
2 R2 R′

2

R1 R1 2, 2 2, 2 2, 1 2, 2

R′
1 1, 2 1, 1 1, 1 1, 2

R′
1 R1 1, 2 1, 2 1, 1 1, 2

R′
1 2, 2 2, 1 2, 1 2, 2

Let (d1, d2) ≡ ((d1(R1), d1(R
′
1)), (d2(R2), d2(R

′
2))) = ((R1, R

′
1), (R2, R

′
2)). Then, DS(Γf ,R) =

EP (Γf ,R) = {(d1, d2)} and NE(Γf , (R1, R2)) = {(d1(R1), d2(R2)), (R1, R
′
2)}. The SCF

f is strategy-proof and f ◦ d = f . Therefore, it is weakly securely-strategy-proof. On the

other hand, for (R1, R2) ∈ R, (R1, R
′
2) ∈ NE(Γf , (R1, R2)), but f(R1, R

′
2) ̸= f(R1, R2).

Hence, it is not securely strategy-proof. The SCF f does not satisfy non-bossiness either.

For (R1, R2), agent 2, and R′
2 ∈ R2, f(R1, R2) = a1 I2 a

2 = f(R1, R
′
2), but a1 ̸= a2.■

2.4 Implementability Notions and Main Results

For SCF f , let us define the following two implementability notions which are central to

our study.

Definition 2.7. An SCF f is dominant strategy implementable if there is a mech-

anism Γ = (M, g) such that for each s ∈ DS(Γ,R) ≠ ∅, g ◦ s = f .17

Definition 2.8. An SCF f is ex post implementable if there is a mechanism Γ =

(M, g) such that for each s ∈ EP (Γ,R) ̸= ∅, g ◦ s = f .

For the direct mechanism associated with an SCF, dominant strategy implementabil-

ity is weaker than ex post implementability (Lemma 2.1, Example 2.3).

17Given a mechanism Γ = (M, g), a strategy profile s ∈ S of (Γ,R), and an SCF f , g ◦ s = f means
that for each R ∈ R, g(s(R)) = f(R).
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Lemma 2.1. If an SCF f is implemented by Γf in ex post equilibria, then it is imple-

mented by Γf in dominant strategy equilibria.

Proof. Let f be an SCF that is implemented by Γf in ex post equilibria. Then, for

each s ∈ EP (Γf ,R) ̸= ∅, f ◦ s = f . Since by Proposition 2.1 (2), f is strategy-proof,

DS(Γf ,R) ≠ ∅. Since f is implemented by Γf in ex post equilibria, by Fact 2.1, for each

s ∈ DS(Γf ,R) ⊆ EP (Γf ,R), f ◦ s = f . Therefore, f is implemented by Γf in dominant

strategy equilibria.

The next example states that the converse of Lemma 2.1 does not hold by showing

that the SCF in Example 2.1 is not ex post implementable. To prove this, we show that

it does not satisfy the following axiom.

Definition 2.9. An SCF f is ex post invariant18 if for each d ∈ D with f ◦ d ̸= f ,

there are R ∈ R, i ∈ N , and a ∈ A such that a Pi f(d(R)), and for each R′
i ∈ Ri,

f(R′
i, d−i(R−i)) R

′
i a.

The following result is applied in the next example.

Proposition 2.4. (Bergemann and Morris, 2008). If an SCF is not ex post invariant,

then it is not ex post implementable.

In the following example, we consider the same setting as in Example 2.1.

Example 2.3. The SCF in Example 2.1 is not implementable in ex post equilibria.

Let d ∈ D be such that for each R̃1 ∈ R1, d(R̃1) = R1 and for each R̃2 ∈ R2,

d(R̃2) = R′
2. Then, f ◦ d ̸= f :

f ◦ d R2 R′
2

R1 a2 a2

R′
1 a2 a2

Then, for each R ∈ R, f(d(R)) = a2 and for each i ∈ N , each Ri ∈ Ri, and each a ∈ A,

a2 Ri a. That is, for each R ∈ R, each i ∈ N , and each a ∈ A, f(d(R)) Ri a. Therefore,
18Ex post invariance is called “ex post monotonicity” by Bergemann and Morris (2008).
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f is not ex post invariant. By Proposition 2.4, f is not ex post implementable, although

f is implemented by Γf in dominant strategy equilibria by the logic of Example 2.1.■

As discussed in Section 2.1, we would like to investigate double implementability in

dominant strategy equilibria and ex post equilibria.

Definition 2.10. An SCF f is doubly implementable if there is a mechanism Γ =

(M, g) such that:

(1) for each s ∈ DS(Γ,R) ̸= ∅,

g ◦ s = f ,

(2) for each s ∈ EP (Γ,R),

g ◦ s = f .

Our main result is provided as follows:

Theorem 2.1. An SCF is doubly implementable in dominant strategy equilibria and ex

post equilibria if and only if it is weakly securely-strategy-proof.

Proof. First, we consider the if part. Let f be a weakly securely-strategy-proof SCF.

We show that Γf = (R, f) doubly implements f in dominant strategy equilibria and ex

post equilibria. By (1) of weak secure-strategy-proofness and Fact 2.1, ∅ ̸= DS(Γf ,R) ⊆

EP (Γf ,R). By Lemma 2.1, it suffices to show that for each s ∈ EP (Γf ,R), f ◦ s = f .

Note that in (Γf ,R), for each i ∈ N , si : Ri → Ri so that s ∈ D. By the definition of ex

post equilibrium, for each R ∈ R, each i ∈ N , and each R′
i ∈ Ri, f(si(Ri), s−i(R−i)) Ri

f(R′
i, s−i(R−i)). By (2) of weak secure-strategy-proofness, f ◦ s = f .

Next, we prove the only if part. Let f be a doubly implementable SCF in dominant

strategy equilibria and ex post equilibria. Then, let Γ = (M, g) be a mechanism which

doubly implements f in dominant strategy equilibria and ex post equilibria. By Proposi-

tion 2.1 (1), f is strategy-proof. Therefore, it suffices to show that f satisfies (2) of weak

secure-strategy-proofness.



CH. 2: DOUBLE IMPLEMENTATION IN DSE AND EPE 21

Let d ∈ D. Let the hypothesis of (2) be satisfied: for each R ∈ R, each i ∈ N , and

each R′
i ∈ Ri, f(di(Ri), d−i(R−i)) Ri f(R

′
i, d−i(R−i)). We show that f ◦ d = f .

Since Γ doubly implements f in dominant strategy equilibria and ex post equilib-

ria, DS(Γ,R) ̸= ∅. Let s ∈ DS(Γ,R). Since Γ implements f in dominant strategy

equilibria, i.e., g ◦ s = f , we have g ◦ s ◦ d = f ◦ d. That is, for each R ∈ R,

g(s(d(R))) = f(d(R)). Similarly, since Γ implements f in dominant strategy equilibria,

for each i ∈ N , each R′
i ∈ Ri, and each R−i ∈ R−i, g(si(R′

i), s−i(d(R−i))) = f(R′
i, d(R−i)).

Since f(di(Ri), d−i(R−i)) Ri f(R′
i, d−i(R−i)) by the hypothesis of (2) in weak secure-

strategy-proofness, g(s(d(R))) = f(d(R)), and g(si(R
′
i), s−i(d−i(R−i))) = f(R′

i, d−i(R−i)),

we have g(si(di(Ri)), s−i(d−i(R−i))) Ri g(si(R
′
i), s−i(d−i(R−i))). When R′

i = Ri, since

s ∈ DS(Γ,R), for each mi ∈ Mi, g(si(Ri), s−i(d−i(R−i))) Ri g(mi, s−i(d−i(R−i))). There-

fore, for each R ∈ R, each i ∈ N , and each mi ∈ Mi, g(si(di(Ri)), s−i(d−i(R−i))) Ri

g(mi, s−i(d−i(R−i))). Thus, s ◦ d is an ex post equilibrium. Since Γ implements f in ex

post equilibria, g ◦ (s ◦ d) = f . Since f ◦ d = g ◦ s ◦ d and g ◦ s ◦ d = f , we have

f ◦ d = f . Therefore, f is weakly securely-strategy-proof.

It involves showing that any doubly implementable SCF in dominant strategy equi-

libria and ex post equilibria is also doubly implemented in dominant strategy equilibria

and ex post equilibria by the direct mechanism associated with it. Hence, for double im-

plementability in dominant strategy equilibria and ex post equilibria, it suffices to focus

on direct mechanisms.

Corollary 2.1. An SCF f is doubly implementable in dominant strategy equilibria and

ex post equilibria if and only if it is doubly implemented in dominant strategy equilibria

and ex post equilibria by the direct mechanism associated with f .19

By Proposition 2.3 and Theorem 2.1, secure strategy-proofness is sufficient for double

implementation.

19The proof of Theorem 2.1 also involves showing that any ex post implementable SCF is also imple-
mented in ex post equilibria by the direct mechanism associated with it.
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Corollary 2.2. If an SCF is securely strategy-proof, then it is doubly implementable in

dominant strategy equilibria and ex post equilibria.

2.5 Discussion

In the provision of a public good under a restricted domain, the Groves-Clarke rules

are securely implementable (Saijo, Sjöström, and Yamato, 2003, 2007).20 Also, in direct

mechanisms, whether the Groves-Clarke rules work well in laboratory experiments has

been investigated and one of the rules worked better than an SCF that is dominant

strategy implementable, but not securely implementable (Cason, Saijo, Sjöström, and

Yamato, 2006). By Corollary 2.2, the SCFs are also doubly implementable in dominant

strategy equilibria and ex post equilibria.

For secure implementability, negative results have been established for a number of

interesting SCFs (e.g., Fujinaka and Wakayama, 2011). Even if an SCF is not securely

implementable, it may be doubly implementable in dominant strategy equilibria and ex

post equilibria (Corollary 2.2). Are there such interesting SCFs? We provide one negative

answer and one positive answer.

We consider the school choice problem (Abdulkadiroğlu and Sönmez, 2003) under

incomplete information. Let N be a set of students, X be a set of schools, and ϕ means

that for each student, he does not have any school and for each school, it gets an empty

seat. Let Ri be the set of strict preferences over X ∪ {ϕ} and R ≡ ×i∈NRi. Let

c ≡ (cx)x∈X be a capacity profile such that for each x ∈ X, cx ∈ N, where N is the set

of positive integers.21 A capacity for a school is the maximum number of students whom

the school can accept. Let ≿≡ (≿x)x∈X be a priority profile such that for each x ∈ X, ≿x

is a strict ordering over N ∪ {ϕ}. Let (N,X,R, c,≿) be a school choice problem under

incomplete information.

Let (a1, · · · , an) ∈ A ≡ (X ∪ {ϕ})N be an outcome such that for each x ∈ X,

20For the definition of the Groves-Clarke rules, see, e.g., Saijo, Sjöström, and Yamato (2003).
21A capacity for a school is also called its “quota.”
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|{i ∈ N : ai = x}| ≤ cx. Note that for each i ∈ N , each Ri ∈ Ri, and each pair a, b ∈ A

such that a = (a1, · · · , an) and b = (b1, · · · , bn), (1) ai Pi bi if and only if a Pi b and (2)

ai Ii bi if and only if a Ii b. Then, each agent’s preferences over X ∪ {ϕ} are extended to

over A.

The following example is one negative result on double implementability.

Example 2.4. The tentative acceptance rule is not doubly implementable in dominant

strategy equilibria and ex post equilibria.22

Let (N,X,R, c,≿) be such that N = {1, 2}, X = {a, b}, for each i ∈ N , Ri =

{Ri, R
′
i}, and R = ×i∈NRi. Preferences and (c,≿) are defined as follows: for each i ∈ N ,

Ri R′
i

a b

b a

ϕ ϕ

ca = 1 cb = 1

≿a ≿b

2 1

1 2

ϕ ϕ

Let (u1, u2) be a pair of utility representations for each preference profile such that for

each agent, the utility of the most preferred school is 2, the utility of the second preferred

school is 1, and the utility of the third preferred school is 0.

By computing the tentative acceptance rule, TA, for each preference profile, the

outcome is chosen as follows:
TA R2 R′

2

R1 (b, a) (a, b)

R′
1 (b, a) (b, a)

22For the definition of the tentative acceptance rule, see, e.g., Abdulkadiroğlu and Sönmez (2003).
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The game induced by ΓTA and R has the following utilities:

true preference R2 R′
2

true preference message R2 R′
2 R2 R′

2

R1 R1 1, 2 2, 1 1, 1 2, 2

R′
1 1, 2 1, 2 1, 1 1, 1

R′
1 R1 2, 2 1, 1 2, 1 1, 2

R′
1 2, 2 2, 2 2, 1 2, 1

Let (d1, d2) ≡ ((R1, R
′
1), (R2, R

′
2)). Then, DS(ΓTA,R) = {(d1, d2)}, and EP (ΓTA,R) =

{(d1, d2), ((R′
1, R

′
1),(R2, R2))}. Hence, for the preference profile (R1, R

′
2) ∈ R, the ex post

equilibrium ((R′
1, R

′
1), (R2, R2)) does not induce the outcome chosen by TA for (R1, R

′
2),

although for each preference profile, the outcome at the dominant strategy equilibrium

(s1, s2) is equal to the outcome chosen by TA for the preference profile. Therefore,

the tentative acceptance rule does not satisfy (2) of weak secure-strategy-proofness, so

that the rule cannot be doubly implemented in dominant strategy equilibria and ex post

equilibria by the direct mechanism associated with TA. By Corollary 2.1, the tentative

acceptance rule is not doubly implementable in dominant strategy equilibria and ex post

equilibria.23■

For the other models with restricted domains of preference profiles, some interesting

rules are not doubly implementable in dominant strategy equilibria and ex post equilib-

ria: (1) For the allocation problems of an indivisible good with money under quasi-linear

preferences, the second-price auction is not doubly implementable in dominant strategy

equilibria and ex post equilibria.24 (2) In the location problem with single-peaked prefer-

ences, the median rule is not doubly implementable in dominant strategy equilibria and

ex post equilibria.25 (3) In the house reallocation problem, the top-trading-cycle rule is

23In the same example as Example 2.4, the top-trading-cycle rule is not doubly implementable in
dominant strategy equilibria and ex post equilibria. For the definition of the top-trading-cycle rule, see,
e.g., Abdulkadiroğlu and Sönmez (2003).

24For the definition of the second-price auction, see Vickrey (1961).
25For the definition of the median rule, see Moulin (1980).
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not doubly implementable in dominant strategy equilibria and ex post equilibria.26

In contrast to Example 2.4, if the set of preferences for agent 1 includes a preference

at which the ordering of school a is first, the ordering of ϕ is second, and the ordering of

school b is third, then the tentative acceptance rule is doubly implementable in dominant

strategy equilibria and ex post equilibria. Therefore, if the set of preference profiles is

“large”, then the rule may be doubly implemented in dominant strategy equilibria and ex

post equilibria. Identifying general conditions on the set of preference profiles for double

implementability of the tentative acceptance rule in dominant strategy equilibria and ex

post equilibria is an open question.27

Example 2.5. The tentative acceptance rule is doubly implementable in dominant

strategy equilibria and ex post equilibria under some condition on the set of preference

profiles.

Let (N,X,R, c,≿) be the same setting as in Example 2.4 except for that R1 =

{R1, R
′
1, R

′′
1}. Preferences for agent 1 are defined as follows:

R1 R′
1 R′′

1

a b a

b a ϕ

ϕ ϕ b

Let (u1, u2) be a pair of utility representations for each preference profile such that for

each agent, the utility of the most preferred school is 3, the utility of the second preferred

school is 2, and the utility of the third preferred school is 1.

26For the definition of the top-trading-cycle rule for house reallocation problems, see Shapley and Scarf
(1974).

27For laboratory experiments concerning the tentative acceptance rule, see, e.g., Chen and Sönmez
(2006) and Chen, Liang, and Sönmez (2016). Although Chen, Liang, and Sönmez (2016) consider the
complete information setting, Chen and Sönmez (2006) study the incomplete information setting. The
two papers use relatively large sessions: there are 36 students and 36 school slots across seven schools.
Then, in order to find whether in the two laboratory experiments, the tentative acceptance rule is doubly
implementable in dominant strategy equilibria and ex post equilibria or not, we should investigate general
conditions on the set of preference profiles for double implementability in dominant strategy equilibria
and ex post equilibria of the rule.
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By computing TA, for each preference profile, the outcome is chosen as follows:

TA R2 R′
2

R1 (b, a) (a, b)

R′
1 (b, a) (b, a)

R′′
1 (ϕ, a) (a, b)

The game induced by ΓTA and R has the following utilities:

true preference R2 R′
2

true preference message R2 R′
2 R2 R′

2

R1 R1 2, 3 3, 2 2, 2 3, 3

R′
1 2, 3 2, 2 2, 2 2, 2

R′′
1 1, 3 3, 2 1, 2 3, 3

R′
1 R1 3, 3 2, 2 3, 2 2, 3

R′
1 3, 3 3, 2 3, 2 3, 2

R′′
1 1, 3 2, 2 1, 2 2, 3

R′′
1 R1 1, 3 3, 2 1, 2 3, 3

R′
1 1, 3 1, 2 1, 2 1, 2

R′′
1 2, 3 3, 2 2, 2 3, 3

Let (d1, d2) ≡ ((R1, R
′
1, R

′′
1), (R2, R

′
2)). Then, DS(ΓTA,R) = EP (ΓTA,R) = {(d1, d2)}.

Hence, for each preference profile, the outcome at both the dominant strategy equilibrium

and the ex post equilibrium is equal to the outcome chosen by the rule for the preference

profile. Therefore, the rule is doubly implemented in dominant strategy equilibria and

ex post equilibria by the direct mechanism associated with TA.■
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Chapter 3

A Simple and Procedurally Fair Mech-
anism for Nash Implementation of the
No-Envy Correspondence

3.1 Introduction

We consider the allocation problem of infinitely divisible resources with at least three

agents. The objective of a social planner is embodied by a “social choice correspondence.”

Mathematically, a social choice correspondence is a set-valued mapping which, for each

possible preference profile, specifies a non-empty set of outcomes. We assume that each

agent knows the other agents’ preferences, but the planner does not. Then, the planner

specifies a message space for each agent and a mapping which, for each possible message

profile, chooses an outcome. The pair consisting of the list of agents’ message spaces and

a mapping is a “mechanism.”

In the allocation problem of infinitely divisible resources, the planner selects an alloca-

tion in which the summation of assignments for all agents is equal to a social endowment,

i.e., the balance for the social endowment is satisfied, and she assigns a bundle of the

allocation to each agent. We want this allocation to be “envy-free:” no agent prefers the

bundle of a different agent over his own bundle (Foley, 1967). The “no-envy” correspon-

dence selects the set of envy-free allocations for each preference profile.1

1One may ask the question that why does the planner want to implement the no-envy correspondence
only. A social planner may want any envy-free allocation to be Pareto-efficient. Saijo, Tatamitani, and
Yamato (1996) and Thomson (2005) suggest that for Nash implementability of the Pareto-efficiency solu-



CH. 3: A SIMPLE AND PROCEDURALLY FAIR MECHANISM 28

We construct a mechanism for Nash implementation of the no-envy correspondence.2

We call it “Choose-Two-Bundles-and-Transpose.” In this mechanism, each agent an-

nounces two bundles each of which is a possible consumption bundle for the social en-

dowment as well as the names of two agents. The two bundles are interpreted as the first

bundle is for his own assignment and the second bundle is for his neighbor’s assignment.3

The outcome mapping is as follows: If the second bundle reported by each agent is the

same as the first bundle reported by his neighbor and the list of bundles based on the

announcements of agents is balanced for the social endowment, then each agent gets one

bundle of the transposed allocation. If there is only one agent that reports a different

bundle from the message reported by his neighbor and the list of bundles based on an-

nouncements of the other agents is balanced for the social endowment, then each agent

gets one bundle of the transposed allocation. Therefore, a message regarding bundles

reported by the odd-man-out will be ignored. Otherwise, each agent gets one bundle of

the equal-division allocation. Note that this mechanism depends on the existence of the

equal-division allocation.4 By contrast, for the mechanisms of Thomson (2005) and Gal-

biati (2008), it is important that there exists a least preferred bundle by the assumption

of strict monotonicity on preferences.

We show that in the allocation problem of infinitely divisible resources, if there are

tion, each of at least two agents reports a price vector, because the planner wants to obtain the common
marginal rate of substitution at a Pareto-efficient allocation. Reporting a price vector may not be easy
for the agents, so that this mechanism is not simple. We have already known that the no-envy solution
is Nash implementable in the same model as ours (Doğan, 2016). However, for Nash implementability
of the no-envy solution, no simple and procedurally fair mechanism has been constructed. Therefore, it
is interesting to propose the possibility of Nash implementation of the no-envy solution by means of a
simple and procedurally fair mechanism.

2We investigate “full implementation” of the no-envy correspondence, not partial implementation.
Reasons for studying it are discussed in Thomson (1996).

3This interpretation is related to Saijo (1988) and Saijo, Tatamitani, and Yamato (1996). In the
mechanism of Saijo (1988), each agent reports his own preference and his neighbor’s. The idea of
ordering the agents in a circular fashion and letting each of them report a message for the next agent in
the circle is the same as in our mechanism. However, the message spaces to which this idea is applied
in the mechanism of Saijo Saijo (1988) are different from those in our mechanism, and our mechanism
is simpler than that of Saijo (1988). In the mechanism of Saijo, Tatamitani, and Yamato (1996), each
agent reports only two bundles each of which is a possible consumption bundle for the social endowment.
Although they apply the above same idea as in Saijo (1988) and this study, our mechanism is simpler
than that of Saijo, Tatamitani, and Yamato (1996).

4Since Choose-Two-Bundles-and-Transpose depends on the existence of the equal-division allocation,
this mechanism is not applicable to a model in which there is an indivisible good.
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at least three agents, Choose-Two-Bundles-and-Transpose implements the no-envy cor-

respondence in Nash equilibria (Theorem 3.1). Our result is applicable in, e.g., the cake

division problem (Thomson, 2007) and the allocation problem of infinitely divisible re-

sources with single-peaked preferences (Adachi, 2010; Morimoto, Serizawa, and Ching,

2013).5

This chapter is organized as follows. Section 3.2 provides the model for allocation of

a social endowment of infinitely divisible resources and a mechanism for Nash implemen-

tation of the no-envy correspondence in the problem as well as our main result. Section

3.3 reports related literature. Section 3.4 proposes concluding remarks.

3.2 Allocation Problems of Infinitely Divisible Resources

Let N = {1, ..., n} be a set of agents among whom a social endowment Ω ∈ Rℓ
++

of ℓ infinitely divisible resources has to be allocated. We assume that the resources

cannot be disposed of. An allocation for Ω ∈ Rℓ
++ is a list a = (a1, · · · , an) ∈ Rℓn

+

such that Σi∈Nai = Ω. Let AΩ = {a ∈ Rℓn
+ : Σi∈Nai = Ω} be the set of allocations

for Ω ∈ Rℓ
++. Let XΩ = {x ∈ Rℓ

+ : x ≤ Ω} be the set of possible consumption

bundles for Ω ∈ Rℓ
++.6 Let ã ≡ Ω

|N | ∈ AΩ be the equal-division allocation for

Ω ∈ Rℓ
++. Let Ri ∈ Ri be a preference for agent i ∈ N over XΩ, where Ri is the set

of preferences admissible for agent i. Let R = (R1, ..., Rn) ∈ R be a preference profile,

where R = ×i∈NRi. Note that for each i ∈ N , each Ri ∈ Ri, and each pair a, b ∈ AΩ

such that a = (a1, · · · , an) and b = (b1, · · · , bn), (1) ai Pi bi if and only if a Pi b and

(2) ai Ii bi if and only if a Ii b. Then, each agent’s preferences over XΩ are extended to

over AΩ. Note that in this chapter as well as in Doğan (2016), there is no monotonicity

5In the allocation problem of an infinitely divisible resource with single-peaked preferences (Sprumont,
1991), Thomson (2010) addresses Nash implementability of several social choice correspondences which
do not satisfy “no-veto-power” in this model, in particular the no-envy correspondence. Since no-veto-
power is one of sufficient conditions for Nash implementability of social choice correspondences (Saijo,
1988), the mechanism of Saijo (1988) is not applicable in this model. Then, Thomson (2010) shows that
the no-envy correspondence is Nash implementable by the result of Yamato (1992). However, he does
not propose any simple mechanism.

6Given x, y ∈ Rℓ
+, x ≤ y means that for each j ∈ {1, · · · , ℓ}, xj ≤ yj .
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assumption on preferences, although Thomson (2005) and Galbiati (2008) impose the

assumption of “strict monotonicity” on preferences.7 Let (N,Ω, R) be the allocation

problem of infinitely divisible resources. We fix N and Ω, so that a problem is

represented by R.

An allocation a ∈ AΩ is envy-free for R ∈ R if for each pair i, j ∈ N , ai Ri aj.

The no-envy correspondence F : R ↠ AΩ is a set-valued mapping which, for each

preference profile R ∈ R, F (R) is the set of envy-free allocations for R.

In order to design our mechanism to implement the no-envy correspondence in Nash

equilibria, let us introduce a definition. Give a pair i, j ∈ N , let T i
j : AΩ → AΩ be a

transposition mapping which, for each allocation a ∈ AΩ, selects the allocation by

transposing the bundles of agent i and agent j in a.

“Choose-Two-Bundles-and-Transpose” is a mechanism constructed for Nash imple-

mentation of the no-envy correspondence. In Choose-Two-Bundles-and-Transpose, each

agent, i ∈ N , announces two bundles, xi, yi ∈ XΩ, and the names of two agents, ki, ti ∈ N .

The outcome mapping is as follows: If the second bundle yi reported by an agent, i ∈ N ,

is the same as the first bundle xi+1 reported by his neighbor, i+1, i.e., yi = xi+1 ≡ ai+1,

and the list of bundles based on announcements of agents is balanced for the social en-

dowment, i.e., (a1, · · · , an) ∈ AΩ, then each agent gets one bundle of the transposed

allocation, i.e., T kn

tn ◦ · · · ◦ T k1

t1 (a1, · · · , an). If there is only one agent, j ∈ N , reports

a different bundle from the message reported by his neighbor, j − 1 or j + 1, and the

list of bundles based on announcements of the other agents is balanced for the social en-

dowment, i.e., (a1, · · · , yj−1, xj+1, · · · , an) ∈ AΩ, then each agent gets one bundle of the

transposed allocation, i.e., T kn

tn ◦· · ·◦T k1

t1 (a1, · · · , yj−1, xj+1, · · · , an). Therefore, a message

regarding bundles reported by the odd-man-out will be ignored. Otherwise, each agent

gets one bundle of the equal-division allocation.

Choose-Two-Bundles-and-Transpose, ΓC2T = (M, g): For each i ∈ N , Mi = XΩ ×

7In the same model as Galbiati (2008), Saijo, Tatamitani, and Yamato (1996) also construct mecha-
nisms to implement the no-envy correspondence in Nash equilibria. However, the mechanism of Galbiati
(2008) seems simpler than the mechanisms of Saijo, Tatamitani, and Yamato (1996).
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XΩ × N × N . Given m = (xi, yi, ki, ti)i∈N ∈ ×i∈NMi ≡ M , the outcome mapping

g : M → AΩ is as follows:8

g(m) =



Rule 1: T kn
tn ◦ · · · ◦ T k1

t1 (a1, · · · , an) if


for each i ∈ N, yi = xi+1 ≡ ai+1, and

(a1, · · · , an) ∈ AΩ

Rule 2: T kn
tn ◦ · · · ◦ T k1

t1 (a1, · · · , yj−1, xj+1, · · · , an) if



there is j ∈ N such that for each i ̸= j,

yi = xi+1 ≡ ai+1 and [yj−1 ̸= xj

or yj ̸= xj+1], as well as

(a1, · · · , yj−1, xj+1, · · · , an) ∈ AΩ

Rule 3: ã otherwise

Given R ∈ R, let (ΓC2T , R) be the game induced by ΓC2T and R. A message profile

m ∈ M is a Nash equilibrium of (ΓC2T , R) if for each i ∈ N and each m′
i ∈ Mi,

g(mi,m−i) Ri g(m
′
i,m−i). Let NE(ΓC2T , R) be the set of Nash equilibria of (ΓC2T , R).

The mechanism ΓC2T implements the no-envy correspondence F in Nash equi-

libria if for each R ∈ R, F (R) = g(NE(ΓC2T , R)).

The following is our main result.

Theorem 3.1. Let n ≥ 3. Choose-Two-Bundles-and-Transpose implements the no-envy

correspondence in Nash equilibria.

Proof. Let R ∈ R. We prove it by two steps.

Step 1. F (R) ⊆ g(NE(ΓC2T , R)).

Let a = (a1, · · · , an) ∈ F (R) and m = (ai, ai+1, i, i)i∈N . By Rule 1, g(m) = a.

For each i ∈ N , let m′
i ̸= mi. By Rule 1 or 2, gi(m

′
i,m−i) ∈ {a1, · · · , an}. Since

a ∈ F (R), gi(mi,m−i) = ai Ri gi(m
′
i,m−i). Therefore, for each i ∈ N and each m′

i ∈ Mi,

gi(mi,m−i) Ri gi(m
′
i,m−i). Hence, m ∈ NE(ΓC2T , R).

8Suppose that a1−1 = an and an+1 = a1.
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Step 2. g(NE(ΓC2T , R)) ⊆ F (R).

We show that if g(m) /∈ F (R), then m /∈ NE(ΓC2T , R). Let g(m) = a and m =

(xi, yi, ki, ti)i∈N . Since a /∈ F (R) and ã ∈ F (R), Rule 1 or 2 applies. Since a /∈ F (R),

there is a pair i, j ∈ N such that aj Pi ai. By selecting m′
i = (xi, yi, k′i, t′i) appro-

priately, gi(m
′
i,m−i) = aj. Hence, gi(m

′
i,m−i) = aj Pi ai = gi(mi,m−i). Therefore,

m /∈ NE(ΓC2T , R).

3.3 Related Literature

We first consider the allocation problem of infinitely divisible resources with “strictly

monotonic” preferences. For each i ∈ N , a preference Ri is strictly monotonic if for

each pair x, y ∈ XΩ, x ≥ y and x ̸= y imply x Pi y. For the problem with only two

agents and a resource, a well-known mechanism for Nash implementation of the no-envy

correspondence is “Divide-and-Choose.” One agent divides the resource into two parts,

and the other agent chooses one of them. Although Divide-and-Choose is simple, this

mechanism works well only in the case of two agents.

For the allocation problem with strictly monotonic preferences and at least two

agents, “Divide-and-Permute” implements the no-envy correspondence in Nash equilibria

(Thomson, 2005). This mechanism resembles Divide-and-Choose. Although Divide-and-

Permute is simple and works well with at least two agents, this mechanism is only appli-

cable to models where the first and second agents always prefer any bundle to the bundle

receiving nothing.

For the allocation problem in which such least-preferred bundles do not necessary

exist, if there are at least three agents, “Divide-and-Transpose” implements the no-envy

correspondence in Nash equilibria (Doğan, 2016).9 This mechanism is a modification of

Divide-and-Permute. Although Divide-and-Transpose is simple and applicable to models

without a monotonic condition on preferences, this mechanism does not treat all agents

9Even if there is an indivisible good, Divide-and-Transpose works well. For example, the result
regarding Nash implementation by means of this mechanism is applicable in the allocation problem of
indivisible objects with monetary transfers (e.g., Svensson, 1983).
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equally. Formally, this mechanism is not “ex ante fair” (Korpela, 2018)10: a mechanism

Γ = (S, h), where h : S → AΩ, is ex ante fair if for each message profile s ∈ S and

each one-to-one function π : N → N , there is another message profile s′ ∈ S such that

h(s′) = π(h(s)) and for each i ∈ N , h(Si, s
′
−i) = π(h(Sπ(i), s−π(i))).11

For the allocation problems with strictly monotonic preferences and at least two

agents, “Galbiati’s mechanism” implements the no-envy correspondence in Nash equi-

libria (Galbiati, 2008). This mechanism is another modification of Divide-and-Permute.

In Galbiati’s mechanism, each agent proposes an allocation, a one-to-one function from

N to N , and the names of two agents. Although Galbiati’s mechanism treats all agents

equally so that it is ex ante fair, the message space for each agent is large. For example,

suppose that there are ten agents and three types of resources. Each agent reports at

least twenty-seven real-numbers for the other agents’ assignments in addition to three

real-numbers for his own assignments.

We designed a both simple and ex ante fair mechanism, Choose-Two-Bundles-and-

Transpose, to implement the no-envy correspondence in Nash equilibria.

3.4 Concluding Remarks

For implementation theory, simple mechanisms are important.12 If a mechanism is com-

plicated, and an agent does not understand how to select outcomes, then even if he wants

to achieve the best outcome, he may not choose a message that induces the best outcome

for his preference over the set of attainable.

“Strategy-proofness” requires that in the direct mechanism associated with the single-

10As Korpela (2018) states that Divide-and-Permute is not ex ante fair, we also easily check for Divide-
and-Transpose not being ex ante fair. In addition, the mechanisms of Saijo (1988), Yamato (1992), and
Saijo, Tatamitani, and Yamato (1996) are not always ex ante fair.

11For each a ∈ AΩ, let π(a) = (aπ(1), · · · , aπ(n)). Given s′−i ∈ S−i, let h(Si, s
′
−i) = {h(si, s′−i) : si ∈

Si}. For each A′ ⊆ AΩ, let π(A′) = {π(a) : a ∈ A′}.
12In Thomson (2005), Doğan (2016), and this chapter, the precise definition of simplicity is not pro-

vided. When we say that a mechanism is simple, the message space for each agent is small and how
to select an outcome for each message profile by the outcome mapping is natural as in Divide-and-
Choose i.e., after dividing the social endowment as an allocation, agents exchange the components of
this allocation.
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valued correspondence, truth-telling should be a dominant strategy for each agent. Since

the objective of the planner is achieved at a dominant strategy equilibrium, strategy-

proofness is desirable. However, laboratory experiments regarding strategy-proof social

choice functions reported that in several games, some subjects did not select dominant

strategies.13 For example, in several second-price-auction experiments, most bidders did

not reveal true values (Kagel, Harstad, and Levin, 1987; Kagel and Levin, 1993; and

Harstad, 2000). In an ascending auction and a second-price auction, subjects were sub-

stantially more likely to play truth-telling under the former than under the latter (Kagel,

Harstad, and Levin, 1987). Inspired from these observations, “obvious” strategy-proofness

is defined and characterized as a cognitively limited agent can recognize that truth-telling

is a dominant strategy (Li, 2017). While second-price auctions are not obviously strategy-

proof, ascending auctions are obviously strategy-proof. Therefore, even if a social choice

function is strategy-proof, simpler mechanisms associated with the function work better.

Ex ante fairness should be also considered. A layman would say that he must have the

same opportunities in the mechanism as others do. This suggests that procedural fairness

can sometimes play out before the mechanism is actually executed as a participation

constraint. Ex ante fairness guarantees that this cannot happen.14

13For a summary of laboratory experiments regarding strategy-proof social choice functions, see Cason,
Saijo, Sjöström, and Yamato (2006).

14For other concepts of procedural fairness, see Gaspart (2003), Deb and Pai (2017), Azrieli and
Jain (2018), and Korpela (2018). For the discussion regarding their concepts of procedural fairness, see
Korpela (2018).
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Chapter 4

Double Implementation in Nash Equi-
libria and Undominated Nash Equilibria
without No-Veto-Power

4.1 Introduction

We consider the implementation problem with at least three agents. We study double

implementability of social choice correspondences (hereafter, SCC) in Nash equilibria and

undominated Nash equilibria. There are two reasons to investigate double implementabil-

ity in Nash equilibria and undominated Nash equilibria. First, in laboratory experiments,

subjects do not always adopt undominated strategies (see, e.g., Katok, Sefton, and Yavas,

2002; Cason, Saijo, Sjöström, and Yamato, 2006). Second, in several pivotal-mechanism

experiments in which truth-telling is a dominant strategy for each agent, Nash equilibria

have been frequently observed (Cason, Saijo, Sjöström, and Yamato, 2006). A possible

explanation is that, even though some subjects could not identify undominated strategies,

they were able to determine how to improve upon a strategy.

For Nash implementability, “Maskin-invariance” and “no-veto-power” together are suf-

ficient (Maskin, 1999).1 There are several SCCs that satisfy Maskin-invariance but violate

no-veto-power.2 In this case, to examine Nash implementability, we verify whether an

SCC satisfies a necessary and sufficient condition, such as the one proposed by Sjöström

1Maskin-invariance is also called “Maskin-monotonicity.”
2For these SCCs, see Section 4.5.
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(1991). However, it is not easy to check the condition. Subsequently, to verify Nash

implementability more easily, other sufficient conditions are proposed (Doghmi and Ziad,

2015): “DZ-invariance,” “weak no-veto-power,” and “unanimity.”3

When there are at least three agents, if an SCC is Nash implementable, then it is dou-

bly implementable in Nash equilibria and undominated Nash equilibria (Yamato, 1999).

Then, DZ-invariance, weak no-veto-power, and unanimity together are sufficient for dou-

ble implementability in Nash equilibria and undominated Nash equilibria (Yamato, 1999;

Doghmi and Ziad, 2015). This result is provided indirectly by means of two mecha-

nisms. We prove it directly by constructing another mechanism (Proposition 4.4). This

mechanism is also applied in the proof of our first theorem.

We consider “partially honest” agents as defined by Dutta and Sen (2012).4 A partially

honest agent prefers reporting the true preference profile whenever a lie does not allow

him to obtain an outcome that he prefers; otherwise, he prefers announcing a message

inducing an outcome that he prefers.

For Nash implementability, if there are at least three agents out of which at least one

agent is partially honest, then no-veto-power is sufficient (Dutta and Sen, 2012). We

show that if there are at least three agents out of which at least one agent is partially

honest, then weak no-veto-power and unanimity together are sufficient for double imple-

mentability in Nash equilibria and undominated Nash equilibria (Theorem 4.1). Each of

weak no-veto-power and unanimity is weaker than no-veto-power (Remark 4.1).

For Nash implementability, if there are at least three agents out of which at least two

agents are partially honest, then unanimity is sufficient (Kimya, 2015). We show that if

there are at least three agents out of which at least two agents are partially honest, then

3The simplicity of the three conditions appears in several interesting applications, e.g., in allocation
problems of an infinitely divisible resource with single-peaked preferences. See Doghmi and Ziad (2015)
and Doghmi (2016).

4There are several papers on behavioral implementation theory. For implementation problems with
“decent” agents, see Corchón and Herrero (2004). For implementation problems with “evidences,” see Kar-
tik and Tercieux (2012). For implementation problems with preferences for honesty, see Kartik, Tercieux,
and Holden (2014), Lombardi and Yoshihara (2018, 2019), Mukherjee, Muto, and Ramaekers (2017), and
Savva (2018). For implementation problems in exchange economies with “semi-responsible” agents, see
Lombardi and Yoshihara (2017). For implementation problems with “semi-socially-responsible” agents,
see Hagiwara, Yamamura, and Yamato (2018) and Hagiwara (2018).
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Table 4.1: Previous results.

Non-existence Existence ≥1 Existence ≥2

Maskin-invariance

No-veto-power No-veto-power

Unanimity

Nash (Maskin, 1999) (Dutta and Sen, 2012) (Kimya, 2015)

implementation DZ-invariance

Weak no-veto-power

Unanimity

(Doghmi and Ziad, 2015)

Nash implementability

Double ⇕
implementation Double implementability

(Yamato, 1999)

Table 4.2: Our results regarding sufficient conditions.

Non-existence Existence ≥1 Existence ≥2

DZ-invariance

Double Weak no-veto-power Weak no-veto-power

implementation Unanimity Unanimity Unanimity

(Proposition 4.4, new mechanism) (Theorem 4.1) (Theorem 4.2)

unanimity is sufficient for double implementability in Nash equilibria and undominated

Nash equilibria (Theorem 4.2). Most of SCCs satisfy unanimity, so that those are doubly

implementable in Nash equilibria and undominated Nash equilibria.

Table 4.1 illustrates previous results, and Table 4.2 summarizes our results regarding

sufficient conditions.5,6

When at least one agent is partially honest, if some SCC does not satisfy weak no-veto-

5Non-existence is the assumption that there is no partially honest agent. Existence ≥1 is the assump-
tion that there is at least one partially honest agent. Existence ≥2 is the assumption that there are at
least two partially honest agents. For these three assumptions, see Section 4.2.

6In Tables 4.1 and 4.2, we simply refer to double implementation in Nash equilibria and undominated
Nash equilibria as double implementation.
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power, we cannot verify using Theorem 4.1 whether the SCC is doubly implementable

in Nash equilibria and undominated Nash equilibria or not.7 Then, it is important to

provide a necessary and sufficient condition for double implementability in Nash equilibria

and undominated Nash equilibria when at least one agent is partially honest.

Since most of SCCs satisfy unanimity, we focus on the SCCs that satisfy this con-

dition. For Nash implementability, if there are at least three agents out of which at

least one agent is partially honest and unanimity is satisfied, then LY-condition is nec-

essary and sufficient (Lombardi and Yoshihara, 2019). We show that if there are at least

three agents out of which at least one agent is partially honest and unanimity is satis-

fied, then LY-condition is necessary and sufficient for double implementability in Nash

equilibria and undominated Nash equilibria (Theorem 4.3). Based on the result of Lom-

bardi and Yoshihara (2019) and Theorem 4.3, double implementability in Nash equilibria

and undominated Nash equilibria is equivalent to Nash implementability under a minor

qualification (Corollary 4.1).

From our results, we obtain several positive corollaries in the allocation problem

of an infinitely divisible resource with single-peaked preferences, with single-plateaued

preferences, and the many-to-one matching problem. See Section 4.5. For several positive

corollaries in other applications such as a coalitional problem, see Hagiwara (2017) and

Lombardi and Yoshihara (2019).

This chapter is organized as follows: Section 4.2 presents the model. Section 4.3

reports sufficient conditions for double implementability in Nash equilibria and undomi-

nated Nash equilibria under the assumptions concerning the existence of partially honest

agents when there are at least three agents. Section 4.4 provides a characterization for

double implementability in Nash equilibria and undominated Nash equilibria when there

are at least three agents out of which at least one partially honest agent exists and

unanimity is satisfied. Section 4.5 presents the concluding remarks.

7By Observation 2 of Doghmi and Ziad (2015), unanimity is independent of weak no-veto-power.
Then, there exists an SCC that satisfies unanimity but violates weak no-veto-power.
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4.2 The Model

Let N = {1, ..., n} be the set of agents and A be the set of outcomes. For each i ∈ N ,

let Ri be a preference for agent i over A, whose asymmetric and symmetric components

are defined as Pi and Ii, respectively. For each i ∈ N , let Ri be the set of preferences

admissible for agent i. Let R = (R1, ..., Rn) ∈ R be a preference profile, where R ≡

×i∈NRi.

For each i ∈ N and each Ri ∈ Ri, let SL(a,Ri) ≡ {b ∈ A : a Pi b} be the strictly

lower contour set at (a,Ri), I(a,Ri) ≡ {b ∈ A : a Ii b} be the indifferent set at

(a,Ri), and L(a,Ri) ≡ SL(a,Ri) ∪ I(a,Ri) be the lower contour set at (a,Ri).

A social choice correspondence (SCC) F : R ↠ A is a set-valued mapping which,

for each preference profile R ∈ R, specifies a non-empty set F (R) ⊆ A.

We focus on mechanisms in which as part of each agent’s strategy, he reports the

information regarding a preference profile. For each i ∈ N , let Mi be the message

space for agent i, where Mi = R× S or Mi = (R ∪ Ω)× S in which Ω and S are the

sets of supplemental messages. Let M = ×i∈NMi. The outcome mapping g : M → A

is a single-valued mapping which, for each message profile m ∈ M , specifies an outcome

g(m) ∈ A. A mechanism Γ consists of a pair (M, g).

We consider “partially honest” agents as defined by Dutta and Sen (2012). A partially

honest agent prefers reporting the true preference profile whenever a lie does not allow

him to obtain an outcome that he prefers; otherwise, he prefers announcing a message

inducing an outcome that he prefers. Formally, preferences for partial honesty are defined

as follows.

We “extend” an agent’s preference over A to that over M . Given R ∈ R and i ∈ N ,

let ≿R
i be a preference for agent i over M at R, whose asymmetric and symmetric

components are denoted by ≻R
i and ∼R

i , respectively:

Partial-honesty: For each pair mi,m
′
i ∈ Mi such that mi = (mi

1, s
i) and m′

i = (m′i
1 , s

′i)

and each m−i ∈ M−i,
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(1) If mi
1 = R, m′i

1 ̸= R, and g(mi,m−i) Ii g(m
′
i,m−i), then (mi,m−i) ≻R

i (m′
i,m−i).

(2) In all other cases, g(mi,m−i) Ri g(m
′
i,m−i) if and only if (mi,m−i) ≿R

i (m′
i,m−i).

Agent i ∈ N is not partially honest if for each R ∈ R, each pair mi,m
′
i ∈ Mi, and

each m−i ∈ M−i, g(mi,m−i) Ri g(m
′
i,m−i) if and only if (mi,m−i) ≿R

i (m′
i,m−i).8

We consider the following three assumptions regarding the existence of partially honest

agents and the class of conceivable sets of partially honest agents:

Non-existence: There is no partially honest agent in N . i.e., H0 ≡ {∅} is the class of

conceivable sets of partially honest agents.

Existence ≥1: There is at least one partially honest agent in N , and H1 ≡ {H ⊆ N :

|H| ≥ 1} is the class of conceivable sets of partially honest agents.

Existence ≥2: There are at least two partially honest agents in N , and H2 ≡ {H ⊆

N : |H| ≥ 2} is the class of conceivable sets of partially honest agents.

Let k ∈ {0, 1, 2}. For each R ∈ R and each H ∈ Hk, let ≿R,H≡ (≿R,H
1 , · · · ,≿R,H

n )

be the preference profile over M such that for each i ∈ H, ≿R,H
i is defined by partial

honesty and for each i ∈ N\H, ≿R,H
i is defined by not-partial-honesty. Let (Γ,≿R,H) be

the game induced by Γ and ≿R,H . Note that under Non-existence, (Γ,≿R,∅) is equivalent

to the game (Γ, R) induced by Γ and R.

A message profile m ∈ M is a Nash equilibrium of (Γ,≿R,H) if for each i ∈ N

and each m′
i ∈ Mi, (mi,m−i) ≿R,H

i (m′
i,m−i). Let NE(Γ,≿R,H) be the set of Nash

equilibria of (Γ,≿R,H).

For each i ∈ N , agent i’s message mi ∈ Mi is weakly dominated by m̃i ∈ Mi

at ≿R,H
i if for each m−i ∈ M−i, (m̃i,m−i) ≿R,H

i (mi,m−i) and for some m−i ∈ M−i,

(m̃i,m−i) ≻R,H
i (mi,m−i). Agent i’s message mi ∈ Mi is undominated at ≿R,H

i if it

is not weakly dominated by any message in Mi at ≿R,H
i . A message profile m ∈ M

8Note that there is a pair consisting of a preference profile and a mechanism such that an agent is
partially honest and “not” partially honest. Then, in general, the term of “not-partial-honesty” may not
be precise. However, in our mechanisms constructed in this chapter, the two definitions of partial-honesty
and not-partial-honesty are distinguished.
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is an undominated Nash equilibrium of (Γ,≿R,H) if for each i ∈ N , mi ∈ Mi is

undominated at ≿R,H
i and m ∈ M is a Nash equilibrium of (Γ,≿R,H). Let UNE(Γ,≿R,H)

be the set of undominated Nash equilibria of (Γ,≿R,H). Note that UNE(Γ,≿R,H

) ⊆ NE(Γ,≿R,H).

Let k ∈ {0, 1, 2}. An SCC F is Nash implementable if there is Γ = (M, g) such

that for each R ∈ R and each H ∈ Hk, F (R) = g(NE(Γ,≿R,H)). An SCC F is doubly

implementable in Nash equilibria and undominated Nash equilibria if there is

Γ = (M, g) such that for each R ∈ R and each H ∈ Hk, F (R) = g(NE(Γ,≿R,H)) =

g(UNE(Γ,≿R,H)).

4.3 Sufficient Conditions for Double Implementability
in Nash Equilibria and Undominated Nash Equi-
libria

4.3.1 Under Non-Existence

First, we study double implementability of SCCs in Nash equilibria and undominated

Nash equilibria under Non-existence with at least three agents.

The following are the two conditions which are studied by Maskin (1999):

Definition 4.1. An SCC F satisfies Maskin-invariance if for each pair R,R′ ∈ R and

each a ∈ F (R′), if for each i ∈ N , L(a,R′
i) ⊆ L(a,Ri), then a ∈ F (R).

Definition 4.2. An SCC F satisfies no-veto-power if for each R ∈ R, each i ∈ N , and

each a ∈ A, if for each j ∈ N\{i}, L(a,Rj) = A, then a ∈ F (R).

Proposition 4.1. (Maskin, 1999) Let n ≥ 3 and suppose that Non-existence holds. If

an SCC satisfies Maskin-invariance and no-veto-power, then it is Nash implementable.

As discussed in Section 4.1, we consider the following three conditions which are

studied by Doghmi and Ziad (2015). These conditions are central to our study.
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For each i ∈ N , each R ∈ R, each a ∈ F (R), and each b ∈ I(a,Ri)\{a}, let

OI(a, b, Ri) ≡ {c ∈ A\{a, b} : a Ii b Ii c} be the set of other-indifferent outcomes

for {a, b} at Ri.9

Definition 4.3. An SCC F satisfies DZ-invariance10 if for each pair R,R′ ∈ R and

each a ∈ F (R′), if for each i ∈ N , SL(a,R′
i) ∪ OI(a, b, R′

i) ∪ {a} ⊆ L(a,Ri) for some

b ∈ I(a,R′
i)\{a}, then a ∈ F (R).

Definition 4.4. An SCC F satisfies weak no-veto-power11 if for each i ∈ N , each

pair R,R′ ∈ R, each a ∈ F (R′), and each b ∈ A, if for some c ∈ I(a,R′
i)\{a},

b ∈ SL(a,R′
i) ∪ OI(a, c, R′

i) ⊆ L(b, Ri) and for each j ∈ N\{i}, L(b, R′
j) = A, then

b ∈ F (R).

Definition 4.5. An SCC F satisfies unanimity if for each R ∈ R and each a ∈ A, if

for each i ∈ N , L(a,Ri) = A, then a ∈ F (R).

Remark 4.1. For each of DZ-invariance, weak no-veto-power, and unanimity, we have

the following remark:

• DZ-invariance implies Maskin-invariance but the converse does not always hold

(Doghmi and Ziad, 2015; Observation 1). If I(a,R′
i)\{a} = ∅, then the hypothesis

in DZ-invariance is SL(a,R′
i) ∪ {a} ⊆ L(a,Ri).

• Weak no-veto-power is implied by no-veto-power but the converse does not always

hold (Doghmi and Ziad, 2015; Observation 2).

• Unanimity is independent of weak no-veto-power (Doghmi and Ziad, 2015; Obser-

vation 2), and unanimity is implied by no-veto-power but the converse does not

always hold.♢

9The set of other-indifferent outcomes is called the “indifferent options subset” by Doghmi and Ziad
(2015).

10DZ-invariance is called “I-monotonicity” by Doghmi and Ziad (2015).
11Weak no-veto-power is called “I-weak no-veto-power” by Doghmi and Ziad (2015).
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The following is a previous result for Nash implementability under Non-existence with

at least three agents.

Proposition 4.2. (Doghmi and Ziad, 2015) Let n ≥ 3 and suppose that Non-existence

holds. If an SCC satisfies DZ-invariance, weak no-veto-power, and unanimity, then it is

Nash implementable.

From the following result, for double implementability in Nash equilibria and undom-

inated Nash equilibria, it suffices to focus on Nash implementability under Non-existence

with at least three agents.

Proposition 4.3. (Yamato, 1999) Let n ≥ 3 and suppose that Non-existence holds. An

SCC is doubly implementable in Nash equilibria and undominated Nash equilibria if and

only if it is Nash implementable.

From Propositions 4.2 and 4.3, we obtain that with at least three agents and under

Non-existence, DZ-invariance, weak no-veto-power, and unanimity together are sufficient

for double implementability in Nash equilibria and undominated Nash equilibria. This

result is provided indirectly by means of two mechanisms. We prove this result directly

by constructing another mechanism. This mechanism is also applied in the proof of our

first theorem.

Proposition 4.4. (Yamato, 1999; Doghmi and Ziad, 2015). Let n ≥ 3 and suppose

that Non-existence holds. If an SCC satisfies DZ-invariance, weak no-veto-power, and

unanimity, then it is doubly implementable in Nash equilibria and undominated Nash

equilibria.

Proof. Let F be an SCC satisfying DZ-invariance, weak no-veto-power, and unanim-

ity. Let Γ = (M, g) be the mechanism such that for each i ∈ N , Mi = R × A ×

A × {−n, ...,−1, 0, 1, ..., n}, with generic element mi = (Ri, ai, bi, ki), and the outcome

mapping g : M → A is defined by the following four rules.12

12The difference between our mechanism and Yamato’s mechanism is in the second rule of the four
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For each i ∈ N and each Ri ∈ Ri, b̄(Ri) and b
¯
(Ri) are defined as follows:

(1) If there is a pair x, y ∈ A such that x Pi y, then let b̄(Ri) = x and b
¯
(Ri) = y;

(2) Otherwise, pick any pair x, y ∈ A with x ̸= y, let b̄(Ri) = x and b
¯
(Ri) = y.

Rule 1. If for each i ∈ N and each bi ∈ A, mi = (R, a, bi, i) with a ∈ F (R), then

g(m) = a.

Rule 2. If there is i ∈ N such that for each j ∈ N\{i} and each bj ∈ A, mj = (R, a, bj, j)

with a ∈ F (R) and for each bi ∈ A, mi = (Ri, ai, bi, ki) with Ri ̸= R or ai ̸= a or ki ̸= i,

then

g(m) =


bi if for some c ∈ I(a,Ri)\{a}, bi ∈ SL(a,Ri) ∪OI(a, c, Ri) ̸= ∅,

a otherwise.

Rule 3. If there is i ∈ N such that for each j ∈ N\{i} and each bj ∈ A, mj =

(R, a, bj,−i) with a ∈ F (R), then

g(m) =


b̄(Ri) if mi = (R, a, b̄(Ri), i),

b
¯
(Ri) if mi ̸= (R, a, b̄(Ri), i) with ki ≤ 0 or ki = i.

Rule 4. In all other cases, g(m) = bi
∗ , where i∗ = (Σi∈N max{0, ki})(mod n) + 1.

Given R ∈ R and a ∈ F (R), we first show that if for each i ∈ N , mi = (R, a,b̄(Ri), i),

then m ∈ NE(Γ, R). By Rule 1, g(m) = a. Let i ∈ N and let m′
i = (R′i, a′i, b′i, k′i)

be such that for some c ∈ I(a,Ri)\{a}, b′i ∈ SL(a,Ri) ∪ OI(a, c, Ri) ̸= ∅. By Rule 2,

g(m′
i,m−i) = b′i. By the definitions of a strictly lower contour set, a lower contour set,

and a set of other-indifferent outcomes, since b′i ∈ SL(a,Ri)∪OI(a, c, Ri) ⊂ L(a,Ri), we

rules. In the second rule of Yamato’s mechanism, the cases are divided whether the outcome reported by
the odd-man-out is in the lower counter set based on a preference profile reported by all agents excluding
the odd-man-out. By contrast, as in the mechanism of Doghmi and Ziad (2015), in the second rule of
our mechanism, the cases are divided whether the outcome reported by the odd-man-out is in the union
of the strictly lower counter set and the set of other-indifferent outcomes based on a preference profile
reported by all agents excluding the odd-man-out.
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have g(mi,m−i) Ri g(m
′
i,m−i).

By the same proof as that for Lemma 2 of Yamato (1999), given R ∈ R and a ∈ F (R),

for each i ∈ N , mi = (R, a, b̄(Ri), i) is undominated at Ri. Therefore, for each R ∈ R,

F (R) ⊆ g(UNE(Γ, R)).

Next, we show that for each R ∈ R, g(NE(Γ, R)) ⊆ F (R). Let m ∈ NE(Γ, R).

There are four cases concerning m.

Case 1. For each R′ ∈ R, each a ∈ F (R′), each i ∈ N , and each bi ∈ A, mi = (R′, a, bi, i).

By Rule 1, g(m) = a. Let i ∈ N . For some c ∈ I(a,R′
i)\{a}, let d ∈ SL(a,R′

i) ∪

OI(a, c, R′
i) ∪ {a}. Note that if I(a,R′

i)\{a} = ∅, let d ∈ SL(a,R′
i) ∪ {a} ̸= ∅. Let

m′
i = (R′i, a′i, d, k′i) with R′i ̸= R′ or a′i ̸= a or ki ̸= i. By Rule 2, g(m′

i,m−i) = d.

Since m ∈ NE(Γ, R), we have a = g(mi,m−i) Ri g(m
′
i,m−i) = d. Then, d ∈ L(a,Ri).

Therefore, SL(a,R′
i) ∪OI(a, c, R′

i) ∪ {a} ⊆ L(a,Ri). By DZ-invariance, a ∈ F (R).

Case 2. For each R′ ∈ R and each a ∈ F (R′), there is i ∈ N such that for each j ∈ N\{i}

and each bj ∈ A, mj = (R′, a, bj, j) and for each bi ∈ A, mi = (Ri, ai, bi, ki) with Ri ̸= R′

or ai ̸= a or ki ̸= i.

There are two subcases concerning mi = (Ri, ai, bi, ki).

Subcase 2-1. For some c ∈ I(a,R′
i)\{a}, bi ∈ SL(a,R′

i) ∪OI(a, c, R′
i) ̸= ∅.

By Rule 2, g(m) = bi. Let d ∈ SL(a,R′
i) ∪ OI(a, c, R′

i) ̸= ∅ and m′
i = (R′i, a′i, d, k′i)

with R′i ̸= R′ or a′i ̸= a or k′i ̸= i. By Rule 2, g(m′
i,m−i) = d. Since m ∈ NE(Γ, R),

we have bi = g(mi,m−i) Ri g(m′
i,m−i) = d. Then, d ∈ L(bi, Ri). Therefore, bi ∈

SL(a,R′
i) ∪ OI(a, c, R′

i) ⊆ L(bi, Ri). For each j ∈ N\{i}, since m ∈ NE(Γ, R), we have

L(bi, Rj) = A. By weak no-veto-power, bi ∈ F (R).

Subcase 2-2. Otherwise.

By the same argument as Case 1, by DZ-invariance, g(m) ∈ F (R).

Case 3. Rule 3 applies.

We show that if g(m) /∈ F (R), then m /∈ NE(Γ, R). Since g(m) /∈ F (R) and F

satisfies unanimity, there are ℓ ∈ N and b ∈ A such that b Pℓ g(m). There are two
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subcases concerning agent ℓ.

Subcase 3-1. ℓ = i.

If i ̸= 1, let m′
i = (R′i, a′i, b, i − 1) and if i = 1, let m′

i = (R′i, a′i, b, n). By Rule 4,

g(m′
i,m−i) = b. Then, g(m′

i,m−i) Pi g(mℓ,m−ℓ). Hence, m /∈ NE(Γ, R).

Subcase 3-2. ℓ ̸= i.

If agent ℓ deviates to m′
ℓ = (R′ℓ, a′ℓ, b, k′ℓ) ̸= mℓ such that (Σm̸=ℓk

m + k′ℓ)(mod n) +

1 = ℓ, then by Rule 4, g(m′
ℓ,m−ℓ) = b. Then, g(m′

ℓ,m−ℓ) Pℓ g(mℓ,m−ℓ). Hence,

m /∈ NE(Γ, R).

Case 4. In all other cases, Rule 4 applies.

Suppose that g(m) /∈ F (R). Since F satisfies unanimity, there are ℓ ∈ N and b ∈ A

such that b Pℓ g(m). Let m′
ℓ = (R′ℓ, a′ℓ, b, k′ℓ) ̸= mℓ be such that (Σm ̸=ℓk

m + k′ℓ)(mod

n) + 1 = ℓ and it induces Rule 4. By Rule 4, g(m′
ℓ,m−ℓ) = b. Then, g(m′

ℓ,m−ℓ) Pi

g(mℓ,m−ℓ). Hence, m /∈ NE(Γ, R).

4.3.2 Under Existence ≥1

The following is a previous result for Nash implementability under Existence ≥1 with at

least three agents.

Proposition 4.5. (Dutta and Sen, 2012) Let n ≥ 3 and suppose that Existence ≥1

holds. If an SCC satisfies no-veto-power, then it is Nash implementable.

We show that with at least three agents and under Existence ≥1, if an SCC satisfies

weak no-veto-power and unanimity, then it is doubly implementable in Nash equilibria

and undominated Nash equilibria. By Remark 4.1, each of weak no-veto-power and

unanimity is weaker than no-veto-power.

Theorem 4.1. Let n ≥ 3 and suppose that Existence ≥1 holds. If an SCC satisfies weak

no-veto-power and unanimity, then it is doubly implementable.
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Proof. Let F be an SCC satisfying weak no-veto-power and unanimity. Let Γ = (M, g)

be the same mechanism as in the proof of Proposition 4.4. By similar arguments to the

proof of Lemma 4.1, for each R ∈ R, each H ∈ H1, and each a ∈ F (R), if for each i ∈ N ,

mi = (R, a,b̄(Ri), i), then m ∈ NE(Γ,≿R,H) with g(m) = a.

We show that given R ∈ R, H ∈ H1, and a ∈ F (R), for each i ∈ N , mi =

(R, a,b̄(Ri), i) is undominated at ≿R,H
i . Suppose that there is a pair b, c ∈ A with b Pi c.

Then, b̄(Ri) Pi b
¯
(Ri). We show that for each m̃i ≠ mi, there is m̃−i ∈ M−i such that

(mi, m̃−i) ≻R,H
i (m̃i, m̃−i). There are two cases concerning m̃i ̸= mi.

Case 1. k̃i ≤ 0 or k̃i = i.

For each j ∈ N\{i} and each bj ∈ A, let m̃j = (R, a, bj,−i). By Rule 3, g(mi, m̃−i) =b̄(Ri)

and g(m̃i, m̃−i) =b
¯
(Ri), so that (mi, m̃−i) ≻R,H

i (m̃i, m̃−i).

Case 2. k̃i > 0 and k̃i ̸= i.

Define m̃−i ∈ M−i as follows: for some j ∈ N\{i}, m̃j = (R′, a′,b
¯
(Ri), j − 1), for

some h ∈ N\{i, j}, m̃h = (R′′, a′′,b
¯
(Ri), k̃

h), and for each ℓ ∈ N\{i, j.h}, each Rℓ ∈

R, and each bℓ ∈ A, m̃ℓ = (Rℓ, bℓ,b
¯
(Ri), k̃

ℓ), where (R, a) ̸= (R′, a′) ̸= (R′′, a′′) and

(Σp ̸=i,j k̃
p + i + (j − 1))(mod n) + 1 = i with for each q ∈ N\{i, j}, k̃q ≥ 0. By Rule 4,

g(mi, m̃−i) =b̄(Ri) and g(m̃i, m̃−i) =b
¯
(Ri), so that (mi, m̃−i) ≻R,H

i (m̃i, m̃−i).

Suppose that for each pair b, c ∈ A, b Ii c. Obviously, mi is undominated at ≿R,H
i

To establish that for each R ∈ R and each H ∈ H1, g(NE(Γ,≿R,H)) ⊆ F (R), the

proof is the same as in Lemma 4.3, except for Case 1 in Lemma 4.3. We show that if

g(m) /∈ F (R), then m /∈ NE(Γ,≿R,H). For each R′ ∈ R, each a ∈ F (R′)\F (R), each

i ∈ N , and each bi ∈ A, let mi = (R′, a, bi, i). By Rule 1, g(m) = a. Under Existence

≥1, there is a partially honest agent h ∈ H. Let m′
h = (R, a′h, a, k′h) ̸= mh. By Rule

2, g(m′
h,m−h) = a. Then, g(mh,m−h) = g(m′

h,m−h). Since h ∈ H, (m′
h,m−h) ≻R,H

h

(mh,m−h). Hence, m /∈ NE(Γ,≿R,H).
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4.3.3 Under Existence ≥2

The following is a previous result for Nash implementability under Existence ≥2 with at

least three agents.

Proposition 4.6. (Kimya, 2015) Let n ≥ 3 and suppose that Existence ≥2 holds. If an

SCC satisfies unanimity, then it is Nash implementable.

We show that with at least three agents and under Existence ≥2, if an SCC satisfies

unanimity, then it is doubly implementable in Nash equilibria and undominated Nash

equilibria. Therefore, if the assumption concerning the existence of partially honest

agents is changed from Existence ≥1 into Existence ≥2, a sufficient condition for double

implementability in Nash equilibria and undominated Nash equilibria is weakened.

Theorem 4.2. Let n ≥ 3 and suppose that Existence ≥2 holds. If an SCC satisfies

unanimity, then it is doubly implementable in Nash equilibria and undominated Nash

equilibria.

Proof. Let F be an SCC satisfying unanimity. Let Γ = (M, g) be the mechanism such

that for each i ∈ N , Mi = R×A×A×{−n, ...,−1, 0, 1, ..., n} and the outcome mapping

g : M → A is defined as follows:13

Rule 1: If there is i ∈ N such that for each j ∈ N\{i} and each bj ∈ A, mj = (R, a, bj, j)

with a ∈ F (R), then g(m) = a.

Rule 2: If there is i ∈ N such that for each j ∈ N\{i} and each bj ∈ A, mj = (R, a, bj,−i)

with a ∈ F (R), then

g(m) =


b̄(R̃i) if mi = (R, a, b̄(R̃i), i)

b
¯
(R̃i) if mi ̸= (R, a, b̄(R̃i), i) with ki ≤ 0 or ki = i.

13For the mechanism designed in Theorem 4.2, the first and second rules of the mechanism constructed
in Proposition 4.4 is changed as in Dutta and Sen (2012). The reason is that in the case considered in
the second rule of the mechanism constructed in Proposition 4.4, there is a partially honest agent in the
set of all agents excluding the the odd-man-out by Existence ≥2.
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Rule 3: In all other cases, g(m) = bi∗ , where i∗ = (Σi∈N max{0, ki})(mod n) + 1.

Given R ∈ R, H ∈ H2, and a ∈ F (R), we first show that if for each i ∈ N ,

mi = (R, a,b̄(Ri), i), then m ∈ NE(Γ,≿R,H). By Rule 1, g(m) = a. No unilateral

deviation can change the outcome and for each i ∈ N , Ri = R. Hence, m ∈ NE(Γ,≿R,H).

By the same proof as in that for Theorem 4.1, given R ∈ R, H ∈ H2, and a ∈ F (R),

for each i ∈ N , mi = (R, a, b̄(Ri), i) is undominated at ≿R,H
i . Therefore, for each R ∈ R

and each H ∈ H2, F (R) ⊆ g(UNE(Γ,≿R,H)).

Next, we show that for each R ∈ R and each H ∈ H2, g(NE(Γ,≿R,H)) ⊆ F (R). To

show this, we prove that if g(m) /∈ F (R), then m /∈ NE(Γ,≿R,H). There are four cases

concerning m.

Case 1. For each R′ ∈ R, each i ∈ N , each a ∈ F (R′)\F (R), and each bi ∈ A,

mi = (R′, a, bi, i).

By Rule 1, g(m) = a. Under Existence ≥2, there is a partially honest agent h ∈ H.

Let m′
h = (R, a′h, b′h, k′h). By Rule 1, g(m′

h,m−h) = a. Then, g(m′
h,m−h) = g(mh,m−h).

Since h ∈ H, (m′
h,m−h) ≻R,H

h (mh,m−h). Hence, m /∈ NE(Γ,≿R,H).

Case 2. For each R′ ∈ R and each a ∈ F (R′)\F (R), there is i ∈ N such that for each

j ∈ N\{i} and each bj ∈ A, mj = (R′, a, bj, j), and for each bi ∈ A, mi ̸= (R′, a, bi, i).

By Rule 1, g(m) = a. Under Existence ≥2, since |H| ≥ 2, there is a partially

honest agent h ∈ H\{i}.14 Without loss of generality, let i = 1 and h = 2. Let

m′
2 = (R, a′2, b′2, k′2) be such that (Σj ̸=2k

j+k′2)(mod n)+1 = 3. By Rule 3, g(m′
2,m−2) =

b3 = a. Then, g(m′
2,m−2) = g(m2,m−2). Since h = 2 ∈ H, (m′

2,m−2) ≻R,H
2 (m2,m−2).

Hence, m /∈ NE(Γ,≿R,H).

Case 3. Rule 2 applies.

Case 4. In all other cases, Rule 3 applies.

The proofs of Case 3 and Case 4 are the same as the proof of Proposition 4.4.

14Note that under Existence ≥1, when |H| = 1 and agent i is partially honest, there is no partially
honest agent in N\{i}.
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4.4 A Characterization of Double Implementability in
Nash Equilibria and Undominated Nash Equilibria

As discussed in Section 4.1, it is important to provide a necessary and sufficient condition

for double implementability in Nash equilibria and undominated Nash equilibria under

Existence ≥ 1 when there are at least three agents and unanimity is satisfied.

For each a ∈ A, each i ∈ N , each Ri ∈ Ri, and each B ⊆ A, let I(a,Ri, B) = {b ∈ B :

a Ii b} be the indifferent set at (a,Ri) restricted to B. The following is the condition

which is studied by Lombardi and Yoshihara (2019).

Definition 4.6. An SCC F satisfies LY-condition if there is B ⊆ A, and for each

R′ ∈ R, each i ∈ N , and each a ∈ B such that a ∈ F (R′), there is Ci(a,R
′) ⊆ B with

a ∈ Ci(a,R
′) ⊆ L(a,R′

i) such that for each R ∈ R and each H ∈ H1, the following

conditions are satisfied:

(1) There is Si(R
′, a;R) ̸= ∅ such that Si(R

′, a;R) ⊆ Ci(a,R
′),

(2) For each h ∈ H, if a /∈ Sh(R, a;R), then Sh(R, a;R) ⊆ SL(a,Rh),

(3) If b ∈ Ci(a,R
′) ⊆ L(a,Ri), b /∈ F (R), and for each j ∈ N\{i}, B ⊆ L(a,Rj),

(3-a) if H = {i}, then Si(R
′, a;R) ∩ I(b, Ri, B) ̸= ∅ and b /∈ Si(R

′, a;R), and

(3-b) if i /∈ H, then there is j ∈ H such that a /∈ Sj(R, a;R).

The following is the previous result of a characterization for Nash implementability

under Existence ≥ 1 when there are at least three agents and unanimity is satisfied.

Proposition 4.7. (Lombardi and Yoshihara, 2019) Let n ≥ 3 and let F be an SCC

satisfying unanimity. Suppose that Existence ≥ 1 holds. Then, F is Nash implementable

if and only if it satisfies LY-condition.

Note that “Assumption 2” of Lombardi and Yoshihara (2019), where the class of

conceivable sets of partially honest agents has all non-empty subsets of N as elements, is

included in Existence ≥ 1.

We obtain a characterization of double implementability in Nash equilibria and un-
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dominated Nash equilibria under Existence ≥ 1 when there are at least three agents and

unanimity is satisfied.

Theorem 4.3. Let n ≥ 3 and let F be an SCC satisfying unanimity. Suppose that Ex-

istence ≥ 1 holds. Then, F is doubly implementable in Nash equilibria and undominated

Nash equilibria if and only if it satisfies LY-condition.

By Proposition 4.7 and Theorem 4.3, we obtain the following corollary.

Corollary 4.1. Let n ≥ 3 and let F be an SCC satisfying unanimity. Suppose that Ex-

istence ≥ 1 holds. Then, F is doubly implementable in Nash equilibria and undominated

Nash equilibria if and only if it is Nash implementable.

For Theorem 4.3, if an SCC is doubly implementable in Nash equilibria and undom-

inated Nash equilibria, then it is Nash implementable. By Proposition 4.7, it satisfies

LY-condition. Then, it suffices to show that if an SCC satisfies LY-condition, then it is

doubly implementable in Nash equilibria and undominated Nash equilibria. The proof

of this result is obtained by similar arguments of the proofs of Theorem 1 of Lombardi

and Yoshihara (2019) and Theorem 4.1 in this chapter. Thus, we omit the formal proof.

We only propose the mechanism to show that if an SCC satisfies LY-condition, then it is

doubly implementable in Nash equilibria and undominated Nash equilibria.

Let Ω ̸= ∅ be an arbitrary set such that Ω ∩ R = ∅ and that there is a bijection

ϕ : R → Ω. Note that there is ϕ−1 such that for each R ∈ R, ϕ−1 ◦ ϕ(R) = R. For

each i ∈ N , let Mi = (R ∪ Ω) × A × A × {−n, ...,−1, 0, 1, ..., n}, with generic element

mi = (mi
1,m

i
2,m

i
3,m

i
4) = (Ri, ai, bi, ki). For each R ∈ R, each i ∈ N , and each a ∈ B
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with a ∈ F (R), σi(R, a) is defined as follows:

σi(R, a) =



{ϕ(R)} × {a} × A× {−n, ...,−1, 0, 1, ..., n} if there is j ∈ N\{i} such that

a ∈ Sj(R, a;R) and for each ℓ ∈ N\{j},

a /∈ Sℓ(R, a;R)

{R} × {a} × A× {−n, ...,−1, 0, 1, ..., n} otherwise

Let σ(R, a) = (σi(R, a))i∈N , with generic element ((σi
1(R, a), σi

2(R, a), σi
3(R, a), σi

4(R, a)))i∈N .

The outcome mapping g : M → A is defined as follows:

Rule 1: If for each i ∈ N , mi ∈ σi(R, a) and mi
4 = i, then g(m) = a.

Rule 2: If there is i ∈ N such that mi /∈ σi(R, a), and for each j ∈ N\{i}, mj ∈ σj(R, a),

and mj
4 = j, then there are three cases:

Rule 2-1: If mi
1 = Ri = R or mi

1 = ϕ(Ri) = ϕ(R), then g(m) = a.

Rule 2-2: If mi
1 = Ri ̸= R or mi

1 = ϕ(Ri) ̸= ϕ(R), then given R = ϕ−1 ◦ ϕ(R) and

Ri = ϕ−1 ◦ ϕ(Ri), and for some c ∈ Si(R, a;Ri),

g(m) =



ai if ai ∈ Si(R, a;Ri)

ai if ai ∈ Ci(a,R)\Si(R, a;Ri) and Si(R, a;Ri) ⊆ SL(ai, Ri
i)

d if ai ∈ Ci(a,R)\Si(R, a;Ri) and d ∈ Si(R, a;Ri) ∩ I(ai, Ri
i, A)

c otherwise

Rule 2-3: If mi
1 = Ri = R ̸= σi

1(R, a), then for some c ∈ Si(R, a;R),

g(m) =


ai if ai ∈ Si(R, a;R)

c otherwise
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Rule 3. If there is i ∈ N such that for each j ∈ N\{i}, mj ∈ σj(R, a) and mj
4 = −i,

then given R = ϕ−1 ◦ ϕ(R),

g(m) =


b̄(Ri) if mi = (σi

1(R, a), σi
2(R, a), b̄(Ri), i),

b
¯
(Ri) if mi ̸= (σi

1(R, a), σi
2(R, a), b̄(Ri), i) with ki ≤ 0 or ki = i.

Rule 4: In all other cases, g(m) = bi∗ , where i∗ = (Σi∈N max{0, ki})(mod n) + 1.

4.5 Concluding Remarks

If there are at least three agents and there is no partially honest agent, DZ-invariance,

weak no-veto-power, and unanimity together are sufficient for double implementability in

Nash equilibria and undominated Nash equilibria (Proposition 4.4). As an application, we

consider the allocation problem of an infinitely divisible resource with single-peaked pref-

erences. The no-envy correspondence satisfies DZ-invariance, weak no-veto-power, and

unanimity, but violates no-veto-power (Doghmi and Ziad, 2008a, 2013, 2015; Thomson,

2010).15,16 Thus, by Proposition 4.4, the no-envy correspondence is doubly implementable

in Nash equilibria and undominated Nash equilibria.

If there are at least three agents out of which at least one agent is partially honest, then

weak no-veto-power and unanimity together are sufficient for double implementability in

Nash equilibria and undominated Nash equilibria (Theorem 4.1). As an application, we

consider the allocation problem of an infinitely divisible resource with single-plateaued

preferences. The Pareto correspondence satisfies weak no-veto-power and unanimity, but

neither DZ-invariance nor no-veto-power (Doghmi and Ziad, 2013). By Theorem 4.1,

15For the other SCCs, see Thomson (2010) and Doghmi and Ziad (2013).
16By Lemma 1 of Doghmi and Ziad (2013), the no-envy correspondence satisfies weak no-veto-power.

Moreover, by the previous results, the no-envy correspondence satisfies DZ-invariance: The no-envy cor-
respondence satisfies Maskin-invariance but violates no-veto-power (see, e.g., Thomson, 2010). Doghmi
and Ziad (2008a) show that in the allocation problem of an infinitely divisible resource with single-
peaked preferences, Maskin-invariance is equivalent to its variant, which Doghmi and Ziad (2008b) called
“strict monotonicity.” In general, DZ-invariance is weaker than strict monotonicity but stronger than
Maskin-invariance (Doghmi and Ziad, 2015, Observation 1). Then, in the problem, Maskin-invariance
is equivalent to DZ-invariance. Therefore, the no-envy correspondence satisfies DZ-invariance.
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the Pareto correspondence is doubly implementable in Nash equilibria and undominated

Nash equilibria.17 As another application, we consider the many-to-one matching prob-

lem (Gale and Shapley, 1962; Doghmi and Ziad, 2015). Any sub-solution of the stable

matching correspondence satisfies weak no-veto-power and unanimity but may violate

no-veto-power (Doghmi and Ziad, 2015). Thus, by Theorem 4.1, such SCCs are doubly

implementable in Nash equilibria and undominated Nash equilibria.

If there are at least three agents out of which at least two agents are partially hon-

est, then unanimity is sufficient for double implementability in Nash equilibria and un-

dominated Nash equilibria (Theorem 4.2). From this result, we obtain several positive

corollaries in several interesting applications such as a generalized one-to-one matching

problem (Sönmez, 1996; Ehlers, 2004). See an earlier version of this chapter (Hagiwara,

2017).

If there are at least three agents out of which at least one agent is partially honest

and unanimity is satisfied, then LY-condition is necessary and sufficient for double im-

plementability in Nash equilibria and undominated Nash equilibria (Theorem 4.3). By

Proposition 4.7 and Theorem 4.3, double implementability in Nash equilibria and un-

dominated Nash equilibria is equivalent to Nash implementability (Corollary 4.1). Then,

from Corollary 4.1 and the discussion of Lombardi and Yoshihara (2019) for Nash im-

plementability in several interesting applications such as a bargaining problem (Nash,

1950), we obtain several positive corollaries regarding double implementability in Nash

equilibria and undominated Nash equilibria. See Lombardi and Yoshihara (2019).

Although our results are positive, the mechanisms for these results are still compli-

cated. Regarding a simple mechanism for double implementability of any unanimous

single-valued SCC in Nash equilibria and undominated Nash equilibria, see Hagiwara

(2018).

17In the allocation problem of an infinitely divisible resource with single-plateaued preferences, by
Lemma 1 in Doghmi and Ziad (2013), unanimity is sufficient for double implementability in Nash equi-
libria and undominated Nash equilibria under Existence ≥1. We also obtain this result in allocation
problems of an infinitely divisible resource with single-peaked preferences, and with single-dipped pref-
erences. See Doghmi and Ziad (2013).
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Chapter 5

A Simple and Procedurally Fair Mecha-
nism for Double Implementation in Nash
Equilibria and Undominated Nash Equi-
libria with Semi-Socially-Responsible Agents

5.1 Introduction

We investigate the possibility of double implementability of social choice functions in

Nash equilibria and undominated Nash equilibria by means of a simple and procedurally

fair mechanism when each agent is “semi-socially-responsible.”1

We study the implementation problem under complete information. The objective of

a social planner is embodied by a social choice function. Mathematically, a social choice

function (SCF) is a single-valued mapping which, for each possible preference profile,

specifies an outcome. Each agent knows the other agent preferences, but the planner

does not know the agents’ preferences. Then, she specifies a message space for each agent

and a single-valued mapping which, for each possible message profile, chooses an outcome.

The pair consisting of the list of agents’ message spaces and a mapping is a mechanism.

Jackson, Palfrey, and Srivastava (1994), Tatamitani (1993), and Yamato (1999) have

constructed mechanisms for double implementation in Nash equilibria and undominated

Nash equilibria. In their mechanisms, each agent’s strategy has at least three components,

1For reasons why we investigate double implementation in Nash equilibria and undominated Nash
equilibria, see Chapter 4.
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namely a preference profile, an outcome, and an integer, and the outcome mapping dis-

tinguishes between at least three types of message profiles. It has been argued that such

mechanisms are complex.2 In addition, their mechanisms are not always “ex ante fair”

(Korpela, 2018).3 The possibility of double implementation in Nash equilibria and un-

dominated Nash equilibria by means of a simple and ex ante fair mechanism is remained

open.

Traditional implementation theory usually assumes that each agent only cares about

satisfying their own preferences. However, there are several experimental observations

which suggest that some agents care about fairness, honesty, or reciprocity. For example,

by Gneezy (2005) and Hurkens and Kartik (2009), agents are one of two kinds: either an

agent will never lie, or an agent will lie whenever he prefers the outcome obtained by lying

over the outcome obtained by telling the truth. In addition, the result of Gneezy (2005)

suggests that the smaller the gains from lying are, the greater the number of subjects who

tell the truth is (see Footnote 10 in the paper).4 Following such experimental observations,

a bunch of papers introduce behavioral implementation theory.5

For a mechanism in which a component of each agent’s message space is the set of

outcomes, an agent is “semi-socially-responsible” if he prefers reporting the socially desir-

able outcome at the true preference profile whenever announcing a socially undesirable

outcome does not change the outcome to one that he prefers; otherwise, he reports a

message inducing an outcome that he prefers.6 Note that semi-social-responsibility is

defined with respect to a particular SCF (Remark 5.1).

The existence of such agents is natural in a number of situations. Consider the

2Under some assumptions on environments, Kartik, Tercieux, and Holden (2014) and Yamato (1993)
have constructed simpler mechanisms for double implementability in Nash equilibria and undominated
Nash equilibria. For the definitions of those assumptions, see “separable punishment” in Kartik, Tercieux,
and Holden (2014), and see (A1)-(A3) in Yamato (1993). We do not consider those assumptions. Note
that Kartik, Tercieux, and Holden (2014) investigate the implementation notion in two rounds of iterated
deletion of strictly dominated strategies, and this is also a study of double implementability in Nash
equilibria and undominated Nash equilibria. I am grateful to Bhaskar Dutta for pointing out this fact.

3For the definition of ex ante fairness, see Chapter 3.
4In Hurkens and Kartik (2009), the same tendency as in Gneezy (2005) is observed, but there is no

statistical significant unlike Gneezy.
5There are several papers on behavioral implementation theory. See Footnote 4 in Chapter 4.
6Semi-socially-responsible agents are called “socially responsible” agents by Hagiwara, Yamamura,

and Yamato (2018).



CH. 5: A SIMPLE AND PROCEDURALLY FAIR MECHANISM FOR DOUBLE
IMPLEMENTATION 57

following voting game: There are two candidates a and b. Each agent’s message space

is {a, b}. Given all agents’ messages except for agent i’s, candidate a is selected if agent

i reports candidate a and candidate b is selected if he reports candidate b. Suppose

that a preference profile for which an SCF selects candidate a is such that agent i is

indifferent between the two candidates. In this case, since by reporting candidate a, he

fulfills his social responsibility, we can imagine that agent i prefers reporting candidate a

to candidate b.

Our point of departure for double implementability in Nash equilibria and undom-

inated Nash equilibria by means of a simple and ex ante fair mechanism is the “HYY

mechanism” (Hagiwara, Yamamura, and Yamato, 2018), which achieves Nash imple-

mentability with semi-socially-responsible agents.7 This mechanism is simple and ex

ante fair.8 Indeed, in this mechanism, each agent reports an outcome and a positive

integer between 1 and n where n is the number of agents. The outcome mapping is

defined as follows: If at least n − 1 agents report the same outcome, then this outcome

is chosen; otherwise, the outcome is chosen by a “modulo game.”9,10 There remains the

issue of double implementability in Nash equilibria and undominated Nash equilibria by

means of this mechanism.

We show that if there are at least three agents and each agent is semi-socially-

responsible with respect to a “unanimous” SCF, then the HYY mechanism doubly im-

plements this SCF in Nash equilibria and undominated Nash equilibria (Theorem 5.1).

For this mechanism, if at least one agent is not semi-socially-responsible, then the set of

undominated Nash equilibrium outcomes may be smaller than the set of Nash equilibrium

outcomes (Example 5.1).

Although the basic structure of the HYY mechanism looks similar to that of Dutta
7The HYY mechanism is called the “outcome mechanism” by Hagiwara, Yamamura, and Yamato

(2018).
8As discussed in Chapter 4, the precise definition of simplicity is not provided in this chapter either.
9In the modulo game in the HYY mechanism, the outcome reported by the agent whose identification

matches the modulo of the sum of the integers reported by all agents plus 1 is chosen.
10For the results in Hagiwara, Yamamura, and Yamato (2018) and our result, we need to use a module

game, not an “integer game.” See Hagiwara, Yamamura, and Yamato (2018). The mechanism might be
criticized because of the use of the modulo game which may lead to unwanted mixed strategy equilibria
(see, e.g., Jackson, 1992).
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and Sen’s mechanism which is a variant of the canonical mechanisms for Nash imple-

mentability, the HYY mechanism has the following advantages over it.

First, in Dutta and Sen’s mechanism, each agent reports the other agents’ preferences

as well as his own preference. On the other hand, in the HYY mechanism, each agent no

longer needs to reveal any information on preferences.

The second advantage is that the complete information assumption can be weakened.

In order to guarantee that which message profile is a Nash equilibria is common knowledge

among agents in Dutta and Sen’s mechanism, we usually need the assumption that all

agents’ preferences are common knowledge among agents.11 By contrast, in the HYY

mechanism, even when preferences are not common knowledge among agents, the set

of Nash equilibria might be common knowledge. In Section 5.4, we illustrate how the

complete information assumption can be weakened.

Our study is closely related to the following papers. Matsushima (2008) investigates

the case in which some agent suffers a small utility loss from reporting socially undesirable

outcomes. In his framework, the planner can impose small fines on agents. He shows that

if there are at least three agents, every SCF is implementable in the iterative elimination of

strictly dominated strategies. While Matsushima (2008) considers the probabilistic social

choice problems with monetary transfers, we study deterministic social choice problems

in which the planner cannot impose any small fines on agents. Moreover, Doğan (2013)

examines allocation problems of indivisible goods with “responsible agents.” A responsible

agent wants to maximize the number of agents to whom socially optimal indivisible goods

are allocated. In this setting, he shows that if the planner knows that there are at least

three responsible agents, every SCF is implementable in Nash equilibria. While Doğan

(2013) investigates allocation problems of indivisible goods in which each agent has a

preference over the set of allocations, we consider general environments in which each

agent has a preference over the set of message profiles.

This chapter is organized as follows: Section 5.2 presents the model. Section 5.3

11For the definition of common knowledge, see Aumann (1976).
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reports our main result, a remark, and an example. Section 5.4 discusses informational

requirements necessary for the HYY mechanism.

5.2 The Model

Let N = {1, · · · , n} be the set of agents and A be the set of outcomes. For each i ∈ N , let

Ri be a preference of agent i over A, whose asymmetric and symmetric components are

denoted by Pi and Ii, respectively. For each i ∈ N , let Ri be the set of possible preferences

for agent i. Let R = (R1, ..., Rn) ∈ R be a preference profile, where R = ×i∈NRi.

A social choice function (SCF) f : R → A is a single-valued mapping which, for

each preference profile R ∈ R, specifies an outcome f(R) ∈ A, interpreted as the socially

desirable outcome for R.

We investigate the possibility of double implementability in Nash equilibria and un-

dominated Nash equilibria by means of a simple and ex ante fair mechanism. Our point

of departure is the HYY mechanism (Hagiwara, Yamamura, and Yamato, 2018). For

each i ∈ N , let Mi = A × N be the message space of agent i, with generic element

mi = (ai, ki). Let M = ×i∈NMi. The outcome mapping g : M → A is defined as

follows: Let m = (mi)i∈N ∈ M .

Rule 1: If there is i ∈ N such that for each j ∈ N\{i}, mj = (a, kj), then g(m) = a.

Rule 2: In all other cases, g(m) = ai
∗ , where i∗ = (Σi∈Nk

i)(mod n) + 1.

Let Γ ≡ (M, g).

We “extend” an agent’s preference over A to that over M . For the HYY mechanism,

semi-socially-responsible preferences are defined as follows. Given an SCF f , R ∈ R, and

i ∈ N , let ≿f(R)
i be the preference of agent i over M at f(R), whose asymmetric and

symmetric components are denoted by ≻f(R)
i and ∼f(R)

i , respectively:

Semi-social-responsibility with respect to f :12 For each pair mi,m
′
i ∈ Mi such that

12In the model of Kartik and Tercieux (2012), “semi-socially-responsible preferences” can be defined
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mi = (ai, ki) and m̃i = (ãi, k̃i) and each m−i ∈ M−i,

(1) If ai = f(R), ãi ̸= f(R), and g(mi,m−i) Ii g(m̃i,m−i), then (mi,m−i) ≻f(R)
i

(m̃i,m−i).

(2) In all other cases, g(mi,m−i) Ri g(m̃i,m−i) if and only if (mi,m−i) ≿f(R)
i (m̃i,m−i).

Let ≿f(R)≡ (≿f(R)
1 , · · · ,≿f(R)

n ).

Given R ∈ R, let (Γ,≿f(R)) be the game induced by Γ and ≿f(R). A message

profile m ∈ M is a Nash equilibrium of (Γ,≿f(R)) if for each i ∈ N and each m̃i ∈

Mi, (mi,m−i) ≿f(R)
i (m̃i,m−i). Let NE(Γ,≿f(R)) be the set of Nash equilibria of

(Γ,≿f(R)).

The mechanism Γ implements the SCF f in Nash equilibria if for each R ∈ R,

{f(R)} = g(NE(Γ,≿f(R))).

For each i ∈ N , agent i’s message mi ∈ Mi is weakly dominated by m̃i ∈ Mi

at ≿f(R)
i if for each m−i ∈ M−i, (m̃i,m−i) ≿f(R)

i (mi,m−i) and for some m−i ∈ M−i,

(m̃i,m−i) ≻f(R)
i g(mi,m−i). Agent i’s message mi ∈ Mi is undominated at ≿f(R)

i if

it is not weakly dominated by any message in Mi at ≿f(R)
i . A message profile m ∈ M

is an undominated Nash equilibrium of (Γ,≿f(R)) if for each i ∈ N , mi ∈ Mi is

undominated at ≿f(R)
i and m ∈ M is a Nash equilibrium of (Γ,≿f(R)). Let UNE(Γ,≿f(R))

be the set of undominated Nash equilibria of (Γ,≿f(R)) .

The mechanism Γ doubly implements the SCF f in Nash equilibria and

undominated Nash equilibria if for each R ∈ R, {f(R)} = g(NE(Γ,≿f(R))) =

g(UNE(Γ,≿f(R))).

5.3 Results

Our main result is that the following axiom is sufficient for double implementability in

Nash equilibria and undominated Nash equilibria by means of a simple and ex ante fair

similarly. However, their model is different from ours. In their model, each agent’s strategy space is the
product of his cheap-talk message space and his feasible set of “evidences.” An evidence is a discriminatory
signal about the true preference profile, as opposed to a cheap-talk message.
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mechanism when each agent is semi-socially-responsible with respect to this SCF.

Definition 5.1. An SCF f is unanimous if for each R ∈ R and each a ∈ A, if for each

i ∈ N and each b ∈ A, a Ri b, then a = f(R).

We apply the following result to our main result.

Proposition 5.1. (Hagiwara, Yamamura, and Yamato, 2018).13 Let n ≥ 3 and f be

a unanimous SCF. Suppose that at least two agents are semi-socially-responsible with

respect to f .14 The mechanism Γ implements f in Nash equilibria.

The following is our main result.

Theorem 5.1. Let n ≥ 3 and f be a unanimous SCF. Suppose that each agent is semi-

socially-responsible with respect to f . The mechanism Γ doubly implements f in Nash

equilibria and undominated Nash equilibria.

Proof. Let f be a unanimous SCF and R ∈ R. Since {f(R)} = g(NE(Γ,≿f(R)))

(Proposition 5.1) and g(UNE(Γ,≿f(R))) ⊆ g(NE(Γ,≿f(R))), it suffices to show that

{f(R)} ⊆ g(UNE(Γ,≿f(R))).

For each i ∈ N , let mi = (f(R), ki). Note that m ∈ NE(Γ,≿f(R)). We show that for

each m̃i ∈ Mi, [ for each m̃−i ∈ M−i, (mi, m̃−i) ∼f(R)
i (m̃i, m̃−i) ] or [ there is m̃−i ∈ M−i

such that (mi, m̃−i) ≻f(R)
i (m̃i, m̃−i) ].

We distinguish between two cases concerning the messages of agent i.

Case 1. For each b ∈ A\{f(R)} and each k̃i ∈ N , m̃i = (b, k̃i).

For each j ∈ N\{i}, let m̃j = (b, k̃j). By Rule 1, g(mi, m̃−i) = g(m̃i, m̃−i) = b. Since

ai = f(R) and b ̸= f(R), then by semi-social-responsibility, (mi, m̃−i) ≻f(R)
i (m̃i, m̃−i).

Case 2. For each k̃i ∈ N\{ki}, m̃i = (f(R), k̃i).

13Hagiwara, Yamamura, and Yamato (2018) propose the result of Proposition 5.1 concerning “social
choice correspondences” in their Theorem (2). In the model with “partially honest” agents, similar results
are established (Kimya, 2015; Lombardi and Yoshihara, 2019).

14The assumption that all agents are partially honest is also considered (see, e.g., Dutta and Sen, 2012;
Kimya, 2015; Lombardi and Yoshihara, 2019).
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When |N | = 3 and |A| = 2, for each message profile, Rule 1 applies. Then, for each

m̃−i ∈ M−i, g(mi, m̃−i) = g(m̃i, m̃−i). Since ai = ãi = f(R), then for each m̃−i ∈ M−i,

(mi, m̃−i) ∼f(R)
i (m̃i, m̃−i).

In the other situations, we distinguish between two subcases concerning the prefer-

ences of agent i.

Subcase 2-1. There are a, b ∈ A such that a Pi b.

There are (k̃1, · · · , k̃i−1, k̃i+1, · · · , k̃n) and {ℓ, ℓ′} ⊂ N such that agent ℓ ≡ (Σj∈N\{i}k̃
j+

ki)(mod n) + 1 reports a and agent ℓ̃ ≡ (Σj∈N\{i}k̃
j + k̃i)(mod n) + 1( ̸= ℓ) reports b. Let

m̃−i ∈ M−i be messages satisfying these conditions and such that Rule 2 applies for

both (mi, m̃−i) and (m̃i, m̃−i). By Rule 2, g(mi, m̃−i) = a and g(m̃i, m̃−i) = b. Then,

(mi, m̃−i) ≻f(R)
i (m̃i, m̃−i).

Subcase 2-2. For each a, b ∈ A, a Ii b.

For each m̃−i ∈ M−i, g(mi, m̃−i) Ii g(m̃i, m̃−i). Since ai = ãi = f(R), then for each

m̃−i ∈ M−i, (mi, m̃−i) ∼f(R)
i (m̃i, m̃−i).

There are the following two remarks:

Remark 5.1.15 The HYY mechanism does not depend on the particular SCF f , but

semi-socially-responsible preferences are defined with respect to f . On the other hand,

in previous models (e.g., Jackson, Palfrey, and Srivastava, 1994; Kartik, Tercieux, and

Holden, 2014; Tatamitani, 1993; Yamato, 1999), a mechanism doubly implementing the

SCF f in Nash equilibria and undominated Nash equilibria depends on f , but preferences

are defined independently of f .♢

Remark 5.2. The HYY mechanism is applicable to the case of at least four agents.

In the case of only three agents, Hagiwara, Yamamura, and Yamato (2018) construct a

modified HYY mechanism, ΓmHY Y = (M, g). For each i ∈ N , the message space

of agent i consists of Mi = A × {0, 1} × N , with generic element mi = (ai, f i, ki). The

15I owe this remark to William Thomson.



CH. 5: A SIMPLE AND PROCEDURALLY FAIR MECHANISM FOR DOUBLE
IMPLEMENTATION 63

outcome mapping g : M → A is defined as follows:

Rule 1: If there is i ∈ N such that for each j ̸= i, mj = (a, 0, kj), then g(m) = a.

Rule 2: In all other cases, g(m) = ai
∗ , where i∗ = (Σi∈Nk

i)(mod n) + 1. ♢

For the HYY mechanism, if at least one agent is not semi-socially-responsible, then

the set of undominated Nash equilibrium outcomes may be smaller than the set of Nash

equilibrium outcomes. This is illustrated by the following example.

Example 5.1. Let N = {1, 2, 3}, A = {a, b, c}, and R = {R,R′}. Preferences are

defined as follows:
R1 R2 R3

a b c

b, c c a

a b

R′
1 R′

2 R′
3

a a a

b b b

c c c

Consider the following SCF. For each i ∈ N , each Ri ∈ Ri, and each a ∈ A, let

B(Ri, a) ≡ k if outcome a is the k-th most preferred outcome at Ri.

Borda function, fB: For each R ∈ R and each a ∈ A,

Σi∈NB(Ri, f
B(R)) < Σi∈NB(Ri, a).

We calculate that fB(R) = c and fB(R′) = a. Suppose that only agent 1 is not

semi-socially-responsible: for each R̃ ∈ R, each pair m1, m̃1 ∈ M1, and each m−1 ∈ M−1,

g(m1,m−1) R̃1 g(m̃1,m−1) if and only if (m1,m−1) ≿fB(R̃)
1 (m̃1,m−1).

For each i ∈ N and each ki ∈ N , let mi = (c, ki). Then, (mi)i∈N ∈ NE(Γ,≿fB(R)).

Actually, the message profiles at which each agent reports outcome c are only Nash equi-

libria of (Γ,≿fB(R)). On the other hand, m1 = (c, k1) is weakly dominated by m̃1 = (a, k1)

at ≿fB(R)
1 . Therefore, {fB(R)} = g(NE(Γ,≿fB(R))) = {c}, but g(UNE(Γ,≿fB(R))) =

∅.16■

16If we consider “social choice correspondences,” instead of social choice functions, then our main result
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5.4 Informational Requirements Necessary for the HYY
Mechanism

In order to guarantee that which message profile is a Nash equilibrium is common knowl-

edge among agents in the canonical mechanisms for Nash implementability, we usually

need the assumption that all agents’ preferences are common knowledge among agents.

By contrast, in the HYY mechanism, even when preferences are not common knowledge

among agents, the set of Nash equilibria might be common knowledge. The following

example clarifies how the complete information assumption can be weakened.

Example 5.2.17 Let N = {1, ..., n} with n ≥ 3, and let A = {a, b, c}. By abuse of

notation, let abc denote the preference ordering a P b P c. For each i ∈ {1, 2}, let

Ri = {abc, acb, bca}, and for each j ∈ N\{1, 2}, let Rj = {abc}. By abuse of notation, an

element of R is denoted by (αβγ, δϵε), because all agents other than agent 1 and agent

2 are essentially irrelevant. An SCF f is given as follows:

R1\R2 abc acb bca

abc a a a

acb a a a

bca a a b

Note that f satisfies “no-veto-power.”18 An information partition is a partition of R.

The following left (resp. middle, right) table represents agent 1’s (resp. agent 2’s, for

each j ∈ N/{1, 2}, agent j’s) information partition P1 (resp. P2, Pj) in terms of the most

does not hold. We investigate the same example except for R2 ∈ R2 with b P2 a I2 c. We study the
“Borda correspondence”. For the definition of the Borda correspondence, see, e.g., Jackson, Palfrey, and
Srivastava (1994). Then, even if all agents are semi-socially-responsible, the set of undominated Nash
equilibrium outcomes is smaller than the set of Nash equilibrium outcomes.

17I owe this example to Hagiwara, Yamamura, and Yamato (2018).
18For the definition of no-veto-power, see Chapter 4.
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preferred outcomes.19

R1\R2 abc acb bca

abc a a a

acb a a a

bca a a b

R1\R2 abc acb bca

abc a a a

acb a a a

bca a a b

R1\R2 abc acb bca

abc a a a

acb a a a

bca a a b

Let E = {(abc, abc), (abc, acb), (acb, abc), (acb, acb)} ⊂ R be an event. Suppose that

the true preference profile is (abc, abc). The event E is common knowledge, although

(abc, abc) is not common knowledge under these information partitions P1, ...,Pn. We

can easily check that for each pair R,R′ ∈ E, NE(Γ,≿f(R)) and UNE(Γ,≿f(R)) are

equal to NE(Γ,≿f(R′)) and UNE(Γ,≿f(R′)), respectively. Hence, as long as the event E

is common knowledge, all agents can commonly know the set of Nash equilibria.■

In the HYY mechanism, the set of best response messages depends only on (1) the set

of each agents’ most preferred outcomes, (2) the set of socially desirable outcomes,20 and

(3) the set of semi-socially-responsible agents. Therefore, as long as (1) - (3) are common

knowledge among agents, all agents deductively know which message profile is a Nash

equilibrium. This advantage of the HYY mechanism can be a significant improvement

if an SCF satisfies “tops-only.”21 In this case, if the set of the most preferred outcomes

of each agent only is common knowledge, agents commonly deduce the socially desirable

outcome, so that it can be also common knowledge. Especially, when there are a lot of

19Formally,

P1 = {{(abc, abc),(abc, acb)} , {(acb, abc),(acb, acb)} , {(bca, abc), (bca, acb)}, {(abc, bca)} , {(acb, bca)} , {(bca, bca)}},
P2 = {{(abc, abc),(acb, abc)} , {(abc, acb),(acb, acb)} , {(abc, bca), (acb, bca)}, {(bca, abc)} , {(bca, acb)} , {(bca, bca)}},

and for each j ∈ N\{1, 2},

Pj = {{(abc, abc), (acb, abc), (abc, acb), (acb, acb)} , {(abc, bca), (acb, bca)}, {(bca, abc), (bca, acb)}, {(bca, bca)}}.

20If the event, f−1(f(R)) = {R′ ∈ R : f(R) = f(R′)}, is common knowledge among agents, then the
socially desirable outcome f(R) is also common knowledge among agents.

21Given Ri ∈ Ri, let t(Ri) = {a ∈ A : aRib for each b ∈ A} be the set of top outcomes in A according
to Ri. An SCF f satisfies tops-only if for each pair R,R′ ∈ R, if for each i ∈ N t(Ri) = t(R′

i), then
f(R) = f(R′).
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feasible outcomes, the use of the HYY mechanism can radically reduce the amount of

information about other agents each agent has to know.
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Chapter 6

Conclusion

We conclude this thesis by summarizing its contributions (Section 6.1) and discussing

the following three remaining issues in the thesis (Section 6.2): (1) irrational choices; (2)

repeated implementation; and (3) laboratory experiments.

6.1 Implications

In Chapter 2, we investigated the implementation problem under incomplete informa-

tion and private values. We showed that an SCF is doubly implementable in dominant

strategy equilibria and ex post equilibria if and only if it is weakly securely-strategy-proof

(Theorem 2.1). This result involves showing that an SCF f is doubly implementable

in dominant strategy equilibria and ex post equilibria if and only if it is doubly imple-

mented in dominant strategy equilibria and ex post equilibria by the direct mechanism

associated with f (Corollary 2.1). Therefore, for double implementability of an SCF in

dominant strategy equilibria and ex post equilibria, it suffices to focus on one of sim-

plest mechanisms, its associated direct mechanism. By our result, for a school choice

problem (Abdulkadiroğlu and Sönmez, 2003) under incomplete information, the tenta-

tive acceptance rule is not doubly implementable in dominant strategy equilibria and ex

post equilibria (Example 2.4). On the other hand, for a school choice problem under

incomplete information and a condition on the set of preference profiles, the tentative

acceptance rule is doubly implementable in dominant strategy equilibria and ex post
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equilibria (Example 2.5). These examples suggest that the “larger” the set of preference

profiles is, the easier satisfying double implementability in dominant strategy equilibria

and ex post equilibria is.

In Chapter 3, we considered the allocation problem of infinitely divisible resources

with at least three agents. We showed that if there are at least three agents, Choose-

Two-Bundles-and-Transpose implements the no-envy correspondence in Nash equilibria

(Theorem 3.1). This result proposes the possibility of Nash implementation of the no-

envy correspondence by means of a both simple and procedurally fair mechanism.

In Chapter 4, we considered the implementation problem with at least three agents

and studied double implementability of SCCs in Nash equilibria and undominated Nash

equilibria. We showed that if there are at least three agents out of which at least one

agent is partially honest, then weak no-veto-power and unanimity together are sufficient

for double implementability in Nash equilibria and undominated Nash equilibria (Theo-

rem 4.1). In addition, we proved that if there are at least three agents out of which at least

two agents are partially honest, then unanimity is sufficient for double implementabil-

ity in Nash equilibria and undominated Nash equilibria (Theorem 4.2). Moreover, we

showed that if there are at least three agents out of which at least one agent is partially

honest and unanimity is satisfied, then LY-condition is necessary and sufficient for dou-

ble implementability in Nash equilibria and undominated Nash equilibria (Theorem 4.3).

By these results, we had several positive corollaries (see Section 4.4). Therefore, if the

existence of some partially honest agent(s) is assumed, then much more SCCs are Nash

implementable. However, for our results, complicated mechanisms are used. As in Hagi-

wara (2018) or Chapter 5, some simple mechanism(s) for double implementability in Nash

equilibria and undominated Nash equilibria should be constructed.

In Chapter 5, we assumed that each agent is “semi-socially-responsible” and we inves-

tigated the possibility of double implementability of SCFs in Nash equilibria and undomi-

nated Nash equilibria by means of a simple and procedurally fair mechanism. We showed

that if there are at least three agents and each agent is semi-socially-responsible with
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respect to a unanimous SCF, then the HYY mechanism doubly implements this SCF in

Nash equilibria and undominated Nash equilibria (Theorem 5.1). For the HYY mecha-

nism, if at least one agent is not semi-socially-responsible, then the set of undominated

Nash equilibrium outcomes may be smaller than the set of Nash equilibrium outcomes

(Example 5.1). This result suggests that if all agents want to report the socially desir-

able outcome to the planner as long as reporting a socially undesirable outcome induces

an outcome which is at least less preferred, then most SCFs are doubly implementable

in Nash equilibria and undominated Nash equilibria by means of a simple and proce-

durally fair mechanism, the HYY mechanism. However, for doubly implementability in

Nash equilibria and undominated Nash equilibria, we may be able to construct a sim-

ple and procedurally fair mechanism which is not the HYY mechanism and to consider

SCCs or the assumption that some agent is not semi-socially-responsible. These are open

questions.

6.2 Further Research Topics

(1) Irrational choices:

In all chapters of this thesis, we assumed that each agent’s choice is rational, in the

sense of being consistent with the maximization of a context-independent preference.

However, there is ample evidence on irrational choices in marketing, psychology, and be-

havioral economics. There are some classic examples such as temptation and self-control.

In order to capture these examples, recent papers encode agents’ choice correspondences

instead of preferences. For this approach to irrationality, see Hurwicz (1986), Ray (2010),

Korpela (2012), and de Clippel (2014). In addition, there are other ways to investigate

implementation problems with irrational choices. Eliaz (2002) studies Nash implementa-

tion which is robust to the presence of “faulty” agents, where faulty agents may behave in

any possible way.1 Cabrales and Serrano (2011) investigate implementation problems un-

der the behavioral assumption that agents adjust myopically their actions in the direction

1Ortner (2015) studies fault tolerant Nash implementability with “minimally honest” agents.
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of better responses or best responses.2 Renou and Schlag (2011) consider the problem

of implementing SCCs in environments where agents have doubts about the rationality

of their opponents.3 Saran (2016) studies the implementation problem with bounded

depths of rationality under complete information. de Clippel, Saran, and Serrano (2018)

analyze the implementation problem with bounded depths of reasoning under incomplete

information.4

de Clippel (2014) proposed a necessary condition and a sufficient condition for Nash

implementation with irrational choices. However, a both necessary and sufficient con-

dition has not been investigated. Therefore, providing a characterization is an open

question.

(2) Repeated implementation:

In all chapters of this thesis, we considered one-shot implementation problems. How-

ever, a number of applications naturally fit several situations where the agents’ preferences

change over time in an uncertain way and the planner’s objective is to repeatedly im-

plement the same SCF for each possible preference profile. For example, in repeated

auctions, the bidders’ valuations over the objects could follow a stochastic process, and

the planner wants to sell each object to the bidder with highest valuation. Lee and

Sabourian (2011), Mezzetti and Renou (2017), and Āzacis and Vida (2019) investigate

repeated implementation problems under complete information.5 Lee and Sabourian

(2011) provide a necessary and almost sufficient condition (weak efficiency in the range

of an SCF ) for infinitely repeated Nash implementation under some additional assump-

tions on the preferences. Mezzetti and Renou (2017) also propose a necessary and almost

sufficient condition (dynamic monotonicity) for finitely or infinitely repeated Nash imple-

mentation.6 Their results hold in both finite and infinite horizon problems irrespective
2For related literature, see Cabrales (1999), Mathevet (2010), Cabrales and Serrano (2012), Healy

and Mathevet (2012), and Tumennasan (2013). For related experiments, see Chen and Plott (1996),
Chen and Tang (1998), and Cabrales, Charness, and Corchón (2003).

3For implementation problems from the viewpoint of decision theory, see Bose and Renou (2014), Liu
(2016), de Castro, Liu, and Yannelis (2017), and Guo and Yannelis (2017).

4For a related research, see de Clippel, Saran, and Serrano (2014).
5See also Chambers (2004), Kalai and Ledyard (1998), Lee and Sabourian (2015), and Renou and

Tomala (2015).
6Mezzetti and Renou (2017) also investigate sufficiency of Nash repeated implementation when there
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of the magnitude of the discount factor. Under the same model as Mezzetti and Renou

(2017), Āzacis and Vida (2019) characterize dynamic monotonicity based on “Maskin

monotonicity∗.” They also provide a characterization of SCFs that are repeatedly Nash

implementable when there are at least three agents.

In contrast to the above three papers, Lee and Sabourian (2009, 2013) study repeated

implementation problems under incomplete information. Lee and Sabourian (2009) pro-

vided sufficient conditions for repeated ex post implementation. However, they do not

propose any necessary condition so that this is an open question.

For repeated implementation problems in the above papers, we assume that each

agent is rational. Then, the repeated implementation problem when agents’ choice may

be irrational has not been investigated.

(3) Laboratory experiments:

In all chapters of this thesis, we studied implementation problems mainly from the

theoretical viewpoint. However, even if an SCC is theoretically implemented by a mech-

anism, the mechanism may not work in practice. In order to investigate whether theoret-

ical results are consistent with the observations in practical situations, a bunch of papers

conducted experiments. We will see three points.

First, we usually assume that each agent maximizes his own preference whatever

other agents get payoffs. Laboratory experiments observed that this assumption is not

necessary satisfied. From the results of Gneezy (2005) and Hurkens and Kartik (2009),

agents are one of two kinds: either an agent will never lie, or an agent will lie whenever

he prefers the outcome obtained by lying over the outcome obtained by telling the truth.

Second, from the theoretical viewpoint, strategy-proofness is desirable as discussed

in Chapters 1 and 2. However, laboratory experiments observed that this property is

not necessarily enough to induce the socially desirable outcome. For pivotal-mechanism

experiments, Attiyeh, Franciosi, and Isaac (2000) and Kawagoe and Mori (2001) observed

that less than half of subjects did not adopt dominant strategies. For second-price-auction

are only two agents.
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experiments, Kagel, Harstad, and Levin (1987), Kagel and Levin (1993), and Harstad

(2000) observed that most bidders did not reveal true values.

Third, an appealing feature of iterative elimination of strictly dominated strategies is

that it can be based on simple rationality assumptions. Abreu and Matsushima (1992b)

propose a mechanism which virtually implements almost any SCF via iterative elimination

of strictly dominated strategies. However, it has been argued that when many iterations

of dominance are required, this solution concept is not compelling (Glazer and Rosen-

thal, 1992).7 Then, Glazer and Rosenthal (1992) provide a modification of the Abreu-

Matsushima mechanism for implementation via backward induction. Katok, Sefton, and

Yavas (2002) report experimental results on the relative performance of mechanisms of

Abreu and Matsushima (1992b) and Glazer and Rosenthal (1992).8 Surprisingly, despite

the above criticism, the performance of the mechanism of Abreu and Matsushima (1992b)

is relatively better than that of Glazer and Rosenthal (1992) in their experiment.

The above three points suggest that we should not only study implementation theory

but also conduct laboratory experiments to support the theoretical results. Even if the

conducted experiments do not support the theoretical results, experimental results give

us hints to modify the current theory of implementation, such as in Li (2017). The

experiments for the mechanisms which are studied in this thesis should be conducted.

7For a response to Glazer and Rosenthal (1992), see Abreu and Matsushima (1992a).
8For another experiment on the Abreu-Matsushima mechanism, see Sefton and Yavas (1996).
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