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PAPER Special Section on Information Theory and Its Applications

Achievable Rate Regions for Source Coding with Delayed Partial
Side Information∗

Tetsunao MATSUTA†a), Member and Tomohiko UYEMATSU†b), Fellow

SUMMARY In this paper, we consider a source coding with side infor-
mation partially used at the decoder through a codeword. We assume that
there exists a relative delay (or gap) of the correlation between the source
sequence and side information. We also assume that the delay is unknown
but the maximum of possible delays is known to two encoders and the
decoder, where we allow the maximum of delays to change by the block
length. In this source coding, we give an inner bound and an outer bound
on the achievable rate region, where the achievable rate region is the set
of rate pairs of encoders such that the decoding error probability vanishes
as the block length tends to infinity. Furthermore, we clarify that the inner
bound coincides with the outer bound when the maximum of delays for the
block length converges to a constant.
key words: achievable rate region, delay, side information, source coding

1. Introduction

Source coding with partial (or coded) side information is
one of important coding systems introduced by Wyner [2]
and Ahlswede-Körner [3]. In this coding system, two en-
coders independently encode source sequences from two
correlated sources into codewords, and the decoder recon-
structs one of the source sequences from two codewords.
The other source sequence is not reconstructed and used par-
tially as side information at the decoder through the code-
word. We sometimes refer to the source sequence used as
side information as the side information sequence. We also
refer to this coding system as the Wyner-Ahlswede-Körner
(WAK) coding system for the sake of brevity. For the WAK
coding system, Wyner [2] and Ahlswede-Körner [3] char-
acterized the achievable rate region for a discrete stationary
memoryless source (DMS), where the achievable rate region
is the set of rate pairs of encoders such that the decoding er-
ror probability vanishes as the block length tends to infinity.

In the above WAK coding system, it is assumed that
two encoders can receive correlated source symbols simul-
taneously. However, if the encoders are far away from each
other, two encoders are not always able to receive correlated
source symbols simultaneously. Especially, a situation will
occur in which the side information sequence is relatively
delayed to the other one. Moreover, the delay time to ob-
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tain a correlated symbol at the encoder may be unknown
to the coding system. For example, we can consider the
following situation previously mentioned in [4]: An obser-
vatory (encoder) on an island observes a sequence of wave
heights per unit time (source sequence) caused by breeze,
an earthquake, a typhoon, and etc. The observatory trans-
mits this sequence to a weather center (decoder) on a coast
city distant from there. On the other hand, a sequence of
wave heights (side information sequence) can be observed
also on the coast of the city and used partially at the center.
However, since the wave reaches the coast city later than it
reaches the island, these heights at the same time may not
be correlated. Furthermore, observatories and the weather
center do not know the actual delay of the wave in advance,
because there are many uncertainties such as the direction of
breeze, the point of the earthquake center, shielding on the
sea, etc.

In this paper, we consider the WAK coding system with
delayed side information mentioned above. Here, we as-
sume that the delay is unknown but the maximum of pos-
sible delays is known to the system. In other words, the
system knows the worst case delay which can be roughly
setting from the distance between encoders. We allow the
maximum of delays to change by the block length. This
allows us more detailed analyses such as the case where de-
lays affect half of a source sequence. For this coding system,
we give an inner bound and an outer bound on the achiev-
able rate region for a DMS. Furthermore, we clarify that the
inner bound coincides with the outer bound when the maxi-
mum of delays for the block length converges to a constant.
We also clarify that the region does not always coincide with
that for the case without delay.

Proof techniques used in this paper are based on our
previous study [5] which gives the achievable rate region for
a similar coding system of the WAK coding system. In order
to obtain the inner bound by using the previous technique,
we need to show that there exist encoders and a decoder of
which error probability vanishes at a certain desired order
of the block length for a certain mixed source if the pair of
rates is in the inner bound. In the previous study, we used
Gallager’s random coding technique [6], [7] to show the ex-
istence of such encoders and a decoder. Although Gallager’s
technique provides a detailed analysis for the error prob-
ability, it requires the knowledge of special functions and
probability distributions. Hence, in order to obtain the in-
ner bound more simply, we use a different technique, i.e.,
the Chernoff bound (cf. e.g. [8], [9]) in this paper. Specifi-
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cally, to show the existence of encoders and a decoder, we
use a known bound [10] on the error probability of encoders
and a decoder for the WAK coding system. Then, we show
that the bound (and hence the error probability) vanishes at
the desired order by exploiting the Chernoff bound if the
pair of rates of the encoders is in the inner bound. Since
this analysis using the Chernoff bound does not require spe-
cial functions and probability distributions typically used for
Gallager’s technique, we can obtain the inner bound more
simply.

We note that there are some researches related to cod-
ing systems with delayed side information (the Slepian-Wolf
coding system [5], [11], [12], and the Wyner-Ziv coding sys-
tem [4]). Especially, Willems [11] also considered the WAK
coding system with delayed side information. He assumes
the following three conditions (i)–(iii) that are quite different
from our setup: (i) The actual delay is known to the decoder.
(ii) Encoders and the decoder continue to carry out coding
infinitely on a given block length for infinitely long source
sequences (though the block length is finite). (iii) When the
decoder reconstructs a source sequence from the codeword,
it can always utilize all codewords (actually two adjacent
codewords) of side information sequences correlated with
the reconstructed source sequence. Under these conditions,
for a DMS, he showed a quite different result from our re-
sult: The achievable rate region always coincides with that
for the case without delay. In other words, delays have no
effect on coding. This mainly follows from conditions (ii)
and (iii) as explained below: In a conventional manner, sup-
pose that sequences of length n are encoded. Then, due to
the delay, there is no correlation between a part of the end
(or beginning) of the source sequence and the side informa-
tion sequence. In particular, in the case where the delay ex-
ceeds the block length n, there is no correlation between the
sequences. Hence, if we consider a single pair of two code-
words, the correlation may not be sufficiently used. This
makes the rate large. However, due to the conditions (ii)
and (iii), there must exist codewords of side information se-
quences correlated with a source sequence regardless of the
size of the delay, and all these codewords can be used at the
decoder. Thus, if we assume (ii) and (iii), the correlation be-
tween sequences can be used perfectly. This eliminates the
effect of the delay.

There are many controversial problems in the condi-
tions of (i)–(iii). As in the previous example of islands, it is
difficult to know the actual delay as in (i). In practice, it is
not possible to consider infinitely long sequences as in (ii).
If we do not assume such infinitely long sequences, i.e., we
stick to source sequences of finite length, we cannot assume
(iii) because the sequences of finite length may not be cor-
related due to the delay. Moreover, if the decoder does not
know the delay, it is quite difficult to assume (iii) because
the decoder cannot recognize which codewords are of cor-
related sequences. Even if the delay is known to the decoder,
we should note that it must wait a long time until receiving
codewords of correlated sequences if the sequences arrive
late at the encoders as in the example of islands.

On the other hand, we do not assume (i)–(iii) in this
paper. Specifically, we assume that the delay is unknown
to the decoder, and we only consider a single pair of source
sequences of the length n and encode them at once. Thus,
only a single pair of two codewords is used at the decoder.
Note that since we do not assume (ii) and (iii), a correlation
between the sequences cannot be sufficiently used from a
single pair of codewords as described above. Therefore, the
rate must be increased compared with that of the case with-
out delay. This is the main reason why there is a difference
between achievable regions. Hence, the situation considered
in this paper can be regarded as a counterexample to that of
Willems.

The rest of this paper is organized as follows. In Sect. 2,
we provide some notations and the formal definition of the
WAK coding system. In Sect. 3, we show our inner and
outer bounds on the achievable rate region. In Sects. 4 and
5, we show proofs for our inner and outer bounds. In Sect. 6,
we conclude the paper.

2. Preliminaries

In this section, we provide some notations and the precise
definition of the WAK coding system with delayed side in-
formation.

We will denote a sequence of symbols (am, am+1, · · · ,
am′ ) by am′

m , where am′
m = ∅ if m > m′. If m = 1, we will

denote it by am′ for the sake of simplicity. More gener-
ally, we will denote a pair of sequences of symbols ((am, bl),
(am+1, bl+1), · · · , (am′ , bl′ )) by (am′

m , b
l′
l ). For any countable

sets X and Y, we will denote the set of all probability mass
functions (pmfs) over X by P(X), and the set of all condi-
tional pmfs from X to Y by P(Y|X). We will denote the
pmf of a random variable (RV) X on X by PX ∈ P(X), and
the conditional pmf of Y on Y given X by PY |X ∈ P(Y|X).
We will denote the nth power of a pmf PX by Pn

X , i.e.,
Pn

X(xn) =
∏n

i=1 PX(xi), and the nth power of a conditional
pmf PY |X by Pn

Y |X , i.e., Pn
Y |X(yn|xn) =

∏n
i=1 PY |X(yi|xi).

In what follows, we assume that X and Y are finite
sets. We will denote a general source {(Xn,Yn)}∞n=1 (i.e., a
sequence of n-length RVs which are not required to satisfy
the consistency condition (cf. [13])) by the corresponding
boldface letter (X,Y). Since a DMS is represented by a se-
quence of independent copies of a pair of RVs (X,Y), we
simply express it as (X,Y).

In the WAK coding system, two n-length sequences
from a DMS (X,Y) are independently encoded by encoder
1 and encoder 2, respectively. Hence, for positive integers
M(1)

n and M(2)
n , encoder 1 and encoder 2 are defined by map-

pings

f (1)
n : Xn →M(1)

n = {1, · · · ,M(1)
n },

f (2)
n : Yn →M(2)

n = {1, · · · ,M(2)
n },

and rates of these encoders are defined as

R(1)
n ,

1
n

log M(1)
n , R(2)

n ,
1
n

log M(2)
n ,
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respectively. Hereafter, log means the natural logarithm.
Since side information may be delayed, encoder 1 en-

codes a source sequence Xn = (X1, X2, · · · , Xn) while en-
coder 2 may encode a delayed source sequence Yn−3

−2 =

(Y−2,Y−1, · · · ,Yn−3). In general, encoder 1 and encoder 2
encode sequences Xn and Yn−d

1−d = (Y1−d,Y2−d, · · · ,Yn−d), re-
spectively, where d is a non-negative integer which repre-
sents a relative delay. We denote Yn−d

1−d by Yn
(d) for the sake of

brevity.
Without loss of generality, we assume that d ≤ n, be-

cause for any d ≥ n, Xn is independent of Yn
(d)(= Yn−d

1−d ).
Thus, we introduce the maximum dn ∈ {0, 1, 2, · · · , n} of de-
lays, and denote the sequence {dn}

∞
n=1 by d. We allow the

maximum of delays to change with the block length. We
also introduce Dn = {0, 1, 2, · · · , dn} that is the set of possi-
ble delays. Hence, the delay satisfies d ∈ Dn for any block
length n. We note that, for d ∈ Dn, the pmf PXnYn

(d)
can be

written as

PXnYn
(d)

(xn, yn)

= Pd
Y (yd

1)Pn−d
XY (xn−d

1 , yn
d+1)Pd

X(xn
n−d+1), (1)

where PXY is the pmf of the source (X,Y), and PX and PY
are marginal pmfs of PXY . We denote the source with delay
d by (X,Y(d)) = {(Xn,Yn

(d))}
∞
n=1. By definition, (X,Y(d)) is

a special case of the general source. We note that (X,Y(d))
denotes the DMS with delay and does not denote the general
source with delay. In this paper, we do not consider general
sources with delay.

The decoder receives two codewords f (1)
n (Xn) and

f (2)
n (Yn

(d)), and outputs an estimate of the source sequence
Xn. Hence, the decoder is defined by the mapping

ϕn :M(1)
n ×M

(2)
n → X

n.

Then, for a DMS (X,Y) and a delay d, the error probability
is defined as

ε(n)
XY(d)

( f (1)
n , f (2)

n , ϕn) , Pr{ϕn( f (1)
n (Xn), f (2)

n (Yn
(d))) , Xn}.

More generally, we will denote the error probability for a
general source (X,Y) by ε(n)

XY( f (1)
n , f (2)

n , ϕn), i.e.,

ε(n)
XY( f (1)

n , f (2)
n , ϕn) , Pr{ϕn( f (1)

n (Xn), f (2)
n (Yn)) , Xn}.

Thus, by recalling that the source (X,Y(d)) is a spe-
cial case of the general source, the error probability
ε(n)

XY(d)
( f (1)

n , f (2)
n , ϕn) can be regraded as the error probability

ε(n)
XY( f (1)

n , f (2)
n , ϕn) in the case where (X,Y) = (X,Y(d)). We

will sometimes omit the code ( f (1)
n , f (2)

n , ϕn) in the notation
of ε(n)

XY when it is clear from the context.
In this coding system, we assume that the delay d

is unknown but the maximum d of delays is known to
the encoders and the decoder. More precisely, the code
( f (1)

n , f (2)
n , ϕn) is independent of d, but is allowed to depend

on d.
We now define achievability and achievable rate region

for the WAK coding system with delayed side information.

Definition 1 (Achievability). For a DMS (X,Y) and a max-
imum d of delays, a pair (R1,R2) is called achievable if and
only if there exists a sequence of codes {( f (1)

n , f (2)
n , ϕn)} sat-

isfying

lim sup
n→∞

R(1)
n ≤ R1, lim sup

n→∞
R(2)

n ≤ R2, (2)

and

lim
n→∞

max
d∈Dn

ε(n)
XY(d)

( f (1)
n , f (2)

n , ϕn) = 0. (3)

Definition 2 (Achievable rate region). For a DMS (X,Y)
and a maximum d of delays, the achievable rate regionR(X,Y)

d
is defined by

R
(X,Y)
d , cl ({(R1,R2) : (R1,R2) is achievable

for the source (X,Y) and the maximum d}) ,

where cl(·) denotes the closure operation.

3. Inner and Outer Bounds on the Achievable Rate Re-
gion

In this section, we show an inner bound and an outer bound
on the achievable rate region. To this end, we introduce
some definitions.

In what follows, letU be a countably infinite set unless
otherwise stated. For real numbers α, β ∈ [0, 1], we define

Â
(X,Y)
α,β (PU |Y ) , {(R1,R2) : R1 ≥ H(X|U) + αI(X; U),

R2 ≥ (1 − β)I(Y; U)},

A
(X,Y)
α,β ,

⋃
PU |Y∈P(U|Y)

Â
(X,Y)
α,β (PU |Y ),

where the triple of RVs (X,Y,U) is drawn according to PXY×

PU |Y (and hence the Markov chain X−Y−U holds). We also
define

∆d , lim inf
n→∞

dn

n
, ∆d , lim sup

n→∞

dn

n
.

If {dn/n} converges as n→ ∞, we define

∆d , lim
n→∞

dn

n
.

Remark 1. A(X,Y)
0,0 is the achievable rate region for the case

without delay [2], [3]. By noticing that A(X,Y)
0,0 is a closed

and convex set (cf. [2]), A(X,Y)
α,β is also a closed and convex

set. Furthermore, as A(X,Y)
0,0 does, A(X,Y)

α,β will be unchanged
if we only consider PU |Y ∈ P(U|Y) such that |U| = |Y| + 1
(cf. [14]). We show these properties in Appendix A.

Now we give our bounds. The next theorem shows the
outer bound on the achievable rate region.

Theorem 1. For a DMS (X,Y) and a maximum d, we have
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Fig. 1 An image of achievable rate regions.

R
(X,Y)
d ⊆ A

(X,Y)
∆d,∆d

.

The next theorem shows the inner bound on the achiev-
able rate region.

Theorem 2. For a DMS (X,Y) and a maximum d such that
0 < ∆d ≤ ∆d < 1 or ∆d = 0, we have

A
(X,Y)
∆d,∆d

⊆ R
(X,Y)
d .

Remark 2. If the decoder does not employ side informa-
tion, the coding system can be regarded as the source cod-
ing system without side information. In this case, we can
easily show that any pair (R1,R2) satisfying R1 ≥ H(X)
and R2 ≥ 0 is achievable. Thus, it always holds that
A

(X,Y)
1,1 = {(R1,R1) : R1 ≥ H(X),R2 ≥ 0} ⊆ R(X,Y)

d .

According to Theorem 1, Theorem 2, and Remark 2,
we immediately obtain the following corollary.

Corollary 1. For a DMS (X,Y) and a maximum d such that
{dn/n} converges as n→ ∞, we have

R
(X,Y)
d = A

(X,Y)
∆d,∆d

.

This corollary shows that when dn = o(n) the achiev-
able rate region coincides with that for the case without de-
lay. However, in general, the achievable rate region does not
coincide with it. To show this fact, we consider the mini-
mum rate R1,∆d = inf{R1 : ∃(R1,R2) ∈ A(X,Y)

∆d,∆d
} on one side.

Then, it holds that R1,∆d = H(X|Y) + ∆dI(X; Y) (see Ap-
pendix B for details). Thus, when ∆d > 0, the minimum
rate H(X|Y) + ∆dI(X; Y) does not coincide with the mini-
mum rate H(X|Y) for the case without delay (see an image
in Fig. 1).

4. Proof of Theorem 1

In this section, we prove Theorem 1 that gives an outer
bound on R(X,Y)

d .
Let (R1,R2) ∈ R(X,Y)

d . Then there exists a sequence of
codes {( f (1)

n , f (2)
n , ϕn)} satisfying (2) and (3). For these codes

and an arbitrarily fixed delay d ∈ Dn, let M1 , f (1)
n (Xn) and

M2,d , f (2)
n (Yn

(d)).
By Fano’s inequality [15], for any d ∈ Dn, we have

H(Xn|M1,M2,d) ≤ H(Xn|ϕn(M1,M2,d))

≤ ε(n)
XY(d)

log |X|n + 1

= nεn,d, (4)

where εn,d = ε(n)
XY(d)

log |X| + 1
n . Thus, we have

nR(1)
n ≥ H(M1)
≥ H(M1|M2,d)
(a)
≥ H(M1|M2,d) + H(Xn|M1,M2,d) − nεn,d

= H(Xn,M1|M2,d) − nεn,d

= H(Xn|M2,d) − nεn,d, (5)

where (a) comes from (4). The first term in the right-hand
side is further bounded as follows:

H(Xn|M2,d)

=

n−d∑
i=1

H(Xi|Xi−1,M2,d) +

n∑
i=n−d+1

H(Xi|Xi−1,M2,d)

(a)
=

n−d∑
i=1

H(Xi|Xi−1,M2,d) +

n∑
i=n−d+1

H(Xi)

≥

n−d∑
i=1

H(Xi|Xi−1
1−d,Y

i−1
1−d,M2,d) +

n∑
i=n−d+1

H(Xi)

(b)
=

n−d∑
i=1

H(Xi|Ui) + dH(X)

(c)
= (n − d)

n−d∑
i=1

PQ(n) (i)H(X|UQ(n) ,Q(n) = i) + dH(X)

= (n − d)H(X|UQ(n) ,Q(n)) + dH(X)

= nH(X|UQ(n) ,Q(n)) + dI(X; UQ(n) ,Q(n))
(d)
= nH(X|U(n)) + dI(X; U(n)), (6)

where (a) comes from the fact that Xi is independent of
(Xi−1,M2,d) for all i ≥ n − d + 1, (b) comes from Ui ,
(Xi−1

1−d,Y
i−1
1−d,M2,d), (c) comes from the fact that Xi − Yi − Ui

and the tuple of RVs (Q(n), X,Y,UQ(n) ) is defined as

PQ(n)XYUQ(n) (i, x, y, u) =
1

n − d
PXY (x, y)PUi |Yi (u|y), (7)

and (d) comes from U(n) , (UQ(n) ,Q(n)). We note that PQ(n)

is the pmf of the RV Q(n), and it holds that PQ(n) (i) = 1
n−d for

any i ∈ {1, · · · , n − d}.
On the other hand, we have

nR(2)
n ≥ H(M2,d)

(a)
= H(M2,d) − H(M2,d |Yn−d

1−d )

= I(M2,d; Yn−d
1−d )
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=

n−d∑
i=1−d

I(M2,d; Yi|Y i−1
1−d)

(b)
=

n−d∑
i=1−d

I(M2,d,Y i−1
1−d; Yi)

(c)
=

n−d∑
i=1−d

I(M2,d,Y i−1
1−d, X

i−1
1−d; Yi)

≥

n−d∑
i=1

I(M2,d,Y i−1
1−d, X

i−1
1−d; Yi)

=

n−d∑
i=1

I(Ui; Yi)

(d)
= (n − d)

n−d∑
i=1

PQ(n) (i)I(UQ(n) ; Y |Q(n) = i)

= (n − d)I(UQ(n) ; Y |Q(n))
(e)
= (n − d)I(UQ(n) ,Q(n); Y)

= (n − d)I(U(n); Y), (8)

where (a) follows since H(M2,d |Yn−d
1−d ) = 0 (because M2,d

is a function of Yn−d
1−d ), (b) comes from the fact that Yi

is independent of Y i−1
1−d, (c) comes from the fact that

Xi−1
1−d − (M2,d,Y i−1

1−d) − Yi, (d) comes from the definition of
(Q(n), X,Y,UQ(n) ) (see (7)), and (e) comes from the fact that
Q(n) is independent of Y .

According to (5), (6), and (8) and setting that d = dn,
we have

R(1)
n ≥ H(X|U(n)) +

dn

n
I(X; U(n)) − εn,dn , (9)

R(2)
n ≥

(
1 −

dn

n

)
I(Y; U(n)). (10)

On the other hand, for any ε > 0 and sufficiently large
n > 0, we have

Ri
(a)
≥ lim sup

n→∞
R(i)

n ≥ R(i)
n − ε, (11)

εn,dn

(b)
≤ ε, (12)

∆d + ε ≥
dn

n
≥ ∆d − ε, (13)

where (a) comes from the definition of the achievability, and
(b) comes from the fact that

lim
n→∞

ε(n)
XY(dn )

≤ lim
n→∞

max
d∈Dn

ε(n)
XY(d)

= 0.

By combining (9)–(13), for sufficiently large n > 0, we
have

R1 ≥ H(X|U(n)) +
dn

n
I(X; U(n)) − 2ε

≥ H(X|U(n)) + ∆dI(X; U(n)) − 2ε − ε log |X|, (14)

R2 ≥ (1 − ∆d)I(Y; U(n)) − ε − ε log |Y|. (15)

By noticing that X−Y−U(n), inequalities (14) and (15) show
that for any ε > 0, there exists PU |Y ∈ P(U|Y) such that

(R1 + ε,R2 + ε) ∈ Â(X,Y)
∆d,∆d

(PU |Y ) ⊆ A(X,Y)
∆d,∆d

.

Since ε > 0 is arbitrary and A(X,Y)
∆d,∆d

is a closed set, we have

(R1,R2) ∈ A(X,Y)
∆d,∆d

. By recalling that (R1,R2) ∈ R(X,Y)
d , this

completes the proof of Theorem 1.

5. Proof of Theorem 2

In order to prove Theorem 2, we use a similar proof tech-
nique as in [5]. The proof consists of three steps: First,
we define a mixed source from original sources with delay.
Next, we show that if the error probability of a code for the
mixed source vanishes at the order o(n−1), that of the same
code for sources with delay also vanishes. Finally, we show
that there exists such a code as long as the pair of rates is in
the inner boundA(X,Y)

∆d,∆d
. This implies that any rate pair in the

inner bound is achievable.
In this final step, as mentioned earlier, we used Gal-

lager’s random coding technique [6], [7] in our previous
study [5]. However, this is rather difficult to simply show
the existence of a code of which error probability vanishes
at a desired order. Thus, to simplify the final step, we use a
known result [10] and the Chernoff bound (cf. e.g. [8], [9])
in this paper.

First of all, we define a mixed source. For any n > 0
and an arbitrarily fixed PU |Y ∈ P(U|Y), let (X̃n, Ỹn, Ũn) be
a triple of RVs defined by

PX̃nỸnŨn (xn, yn, un) = Pdn
U (udn )Pn−dn

U |Y (un
dn+1|y

n
dn+1)

×
∑
d∈Dn

1
|Dn|

PXnYn
(d)

(xn, yn). (16)

We note that X̃n − Ỹn − Ũn, and

PỸnŨn (yn, un) = Pdn
U (udn )Pn−dn

U |Y (un
dn+1|y

n
dn+1)Pn

Y (yn), (17)

PX̃nŨn (xn, un) =
∑
d∈Dn

1
|Dn|

PXn
(d)U

n (xn, un), (18)

where X − Y − U and

PXn
(d)U

n (xn, un) = Pn
U(un)Pdn−d

X (xdn−d
1 )

× Pn−dn
X|U (xn−d

dn−d+1|u
n
dn+1)Pd

X(xn
n−d+1). (19)

We give a precise derivation of (18) in Appendix C. By
using this pmf, we can define the mixed source (X̃, Ỹ, Ũ) ,
{(X̃n, Ỹn, Ũn)}∞n=1.

For this source, we have the next lemma.

Lemma 1. For any code ( f (1)
n , f (2)

n , ϕn), we have

max
d∈Dn

ε(n)
XY(d)

( f (1)
n , f (2)

n , ϕn) ≤ (n + 1)ε(n)
X̃Ỹ

( f (1)
n , f (2)

n , ϕn).



1636
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.12 DECEMBER 2019

Proof. Since the code ( f (1)
n , f (2)

n , ϕn) is a set of determin-
istic functions, for any source (X,Y), the error probability
ε(n)

XY( f (1)
n , f (2)

n , ϕn) is represented as

ε(n)
XY( f (1)

n , f (2)
n , ϕn) =

∑
(xn,yn)∈En( f (1)

n , f (2)
n ,ϕn)

PXnYn (xn, yn),

where En( f (1)
n , f (2)

n , ϕn) is the set of pairs of sequences which
cannot be decoded correctly, i.e.

En( f (1)
n , f (2)

n , ϕn) , {(xn, yn) ∈ Xn × Yn :

ϕn( f (1)
n (xn), f (2)

n (yn)) , xn)}.

Thus, we have

max
d∈Dn

ε(n)
XY(d)

( f (1)
n , f (2)

n , ϕn)

= max
d∈Dn

∑
(xn,yn)∈En( f (1)

n , f (2)
n ,ϕn)

PXnYn
(d)

(xn, yn)

≤
∑
d∈Dn

∑
(xn,yn)∈En( f (1)

n , f (2)
n ,ϕn)

PXnYn
(d)

(xn, yn)

= |Dn|
∑

(xn,yn)∈En( f (1)
n , f (2)

n ,ϕn)

PX̃nỸn (xn, yn)

= |Dn|ε
(n)
X̃Ỹ

( f (1)
n , f (2)

n , ϕn)

≤ (n + 1)ε(n)
X̃Ỹ

( f (1)
n , f (2)

n , ϕn),

where the last inequality follows since 0 ≤ dn ≤ n. �

According to this lemma, if the error probability
ε(n)

X̃Ỹ
( f (1)

n , f (2)
n , ϕn) vanishes at the order o(n−1), the error

probability maxd∈Dn ε
(n)
XY(d)

( f (1)
n , f (2)

n , ϕn) also vanishes as n
increases. We will show the existence of a code of which er-
ror probability vanishes exponentially rather than o(n−1). To
this end, we give a known result [10] for the WAK coding
system.

Theorem 3 ([10, Corollary 6] ). Let (X,Y,U) =

{(Xn,Yn,Un)} be a general source such that Xn − Yn − Un.
Then, for arbitrary γ1, γ2 ≥ 0, n > 0, and M(1)

n ,M(2)
n > 0,

there exists a code ( f (1)
n , f (2)

n , ϕn) whose error probability sat-
isfies

ε(n)
XY ≤ Pr{(Un, Xn) ∈ T (n)

1 (γ1)c ∪ (Un,Yn) ∈ T (n)
2 (γ2)c}

+ e−nR(1)
n +γ1 +

1
2

√
e−nR(2)

n +γ2 ,

where the superscript c denotes the complement of a set, and

T
(n)
1 (γ1) ,

{
(un, xn) ∈ Un × Xn :

log
1

PXn |Un (xn|un)
≤ γ1

}
,

T
(n)
2 (γ2) ,

{
(un, yn) ∈ Un × Yn :

log
PYn |Un (yn|un)

PYn (yn)
≤ γ2

}
.

Applying this theorem to our mixed source, we have
the following two corollaries. Here, for any RVs (X,Y,U),
we use the following notations:

i(X) = − log PX(X),
i(X|U) = − log PX|U(X|U),

i(Y; U) = log
PY |U(Y |U)

PY (Y)
,

ψX(γ) = sup
λ≥0

(
λγ − log E

[
eλX

])
.

Corollary 2. For arbitrary γ1,1, γ1,2, γ2 ≥ 0, n > 0, and
M(1)

n ,M(2)
n > 0, there exists a code ( f (1)

n , f (2)
n , ϕn) whose error

probability satisfies

ε(n)
X̃Ỹ
≤ e−dnψi(X)

(
γ1,1−

log |Dn |
dn

)
+ e−(n−dn)ψi(X|U)(γ1,2)

+ e−(n−dn)ψi(Y;U)(γ2) + e−nR(1)
n +dnγ1,1+(n−dn)γ1,2

+
1
2

√
e−nR(2)

n +(n−dn)γ2 ,

where (X,Y,U) ∼ PXY × PU |Y .

Proof. In Theorem 3, we substitute γ(n)
1 = dnγ1,1+(n−dn)γ1,2

and γ(n)
2 = (n − dn)γ2 into γ1 and γ2, respectively. Then, we

have

ε(n)
X̃Ỹ
≤ Pr{(Ũn, X̃n) ∈ T (n)

1 (γ(n)
1 )c}

+ Pr{(Ũn, Ỹn) ∈ T (n)
2 (γ(n)

2 )c}

+ e−nR(1)
n +γ(n)

1 +
1
2

√
e−nR(2)

n +γ(n)
2 . (20)

The first term in the right-hand side is bounded as follows:

Pr{(Ũn, X̃n) ∈ T (n)
1 (γ(n)

1 )c}

(a)
=

∑
(xn,un)∈Xn×Un:

log |Dn |∑
d∈Dn PXn

(d) |U
n (xn |un)>γ

(n)
1

∑
d∈Dn

1
|Dn|

PXn
(d)U

n (xn, un)

(b)
≤

∑
d∈Dn

1
|Dn|

∑
(xn,un)∈Xn×Un:

log |Dn |
PXn

(d) |U
n (xn |un )>γ

(n)
1

PXn
(d)U

n (xn, un)

=
∑
d∈Dn

1
|Dn|

Pr
{
i(Xn

(d)|U
n) > γ(n)

1 − log |Dn|
}
, (21)

where (a) comes from the fact that the pmf of (X̃n, Ũn) can
be expressed as (18), and (b) follows since it holds that

log
|Dn|∑

d∈Dn
PXn

(d) |U
n (xn|un)

≤ log
|Dn|

PXn
(d) |U

n (xn|un)

for any d ∈ Dn. Here, for any d ∈ Dn, we have

Pr
{
i(Xn

(d)|U
n) > γ(n)

1 − log |Dn|
}

= Pr
{
− log Pdn−d

X (Xdn−d
(d),1 )Pd

X(Xn
(d),n−d+1)



MATSUTA and UYEMATSU: ACHIEVABLE RATE REGIONS FOR SOURCE CODING WITH DELAYED PARTIAL SIDE INFORMATION
1637

− log Pn−dn
X|U (Xn−d

(d),dn−d+1|U
n
dn+1) > γ(n)

1 − log |Dn|
}

(a)
= Pr

{
i(Xdn ) + i(Xn

dn+1|U
n
dn+1) > γ(n)

1 − log |Dn|
}

(22)
(b)
≤ Pr

{
i(Xdn ) > dnγ1,1 − log |Dn|

}
+ Pr

{
i(Xn

dn+1|U
n
dn+1) > (n − dn)γ1,2

}
(c)
≤ e−ψi(Xdn )(dnγ1,1−log |Dn |) + e

−ψi(Xn
dn+1 |U

n
dn+1)((n−dn)γ1,2)

= e−dnψi(X)

(
γ1,1−

log |Dn |
dn

)
+ e−(n−dn)ψi(X|U)(γ1,2), (23)

where the sequence of RVs {(Xi,Ui)}ni=1 is i.i.d. drawn
according to PXU , (a) comes from the fact that
(Xdn−d

(d),1 , X
n
(d),n−d+1) = Xdn and (Xn−d

(d),dn−d+1,U
n
dn+1) =

(Xn
dn+1,U

n
dn+1) according to (19), (b) comes from the fact that

Pr{X + Y > α + β} ≤ Pr{X > α} + Pr{Y > β},

and (c) follows the Chernoff bound:

Pr{X ≥ γ} ≤ e−ψX (γ).

On the other hand, the second term of (20) is bounded
as

Pr{(Ũn, Ỹn) ∈ T (n)
2 (γ(n)

2 )c}

= Pr

log
PỸn |Ũn (Ỹn|Ũn)

PỸn (Ỹn)
> γ(n)

2


(a)
= Pr

log
Pn−dn

Y |U (Ỹn
dn+1|Ũ

n
dn+1)

Pn−dn
Y (Ỹn

dn+1)
> γ(n)

2


(b)
= Pr

log
Pn−dn

Y |U (Yn−dn |Un−dn )

Pn−dn
Y (Yn−dn )

> γ(n)
2


= Pr

{
i(Yn−dn ; Un−dn ) > γ(n)

2

}
(c)
≤ e−ψi(Yn−dn ;Un−dn )(γ

(n)
2 ) (24)

= e−(n−dn)ψi(Y;U)(γ2), (25)

where the sequence of RVs {(Yi,Ui)}ni=1 is i.i.d. drawn ac-
cording to PYU , (a) comes from (17), (b) comes from
(Ỹn−dn , Ũn

dn+1) = (Yn−dn ,Un−dn ), and (c) comes from the
Chernoff bound.

Combining (20), (21), (23), and (25), we have the de-
sired bound. �

Corollary 3. Let ∆d = 0. Then, for arbitrary γ1, γ2 ≥ 0,
δ > 0, M(1)

n ,M(2)
n > 0, and sufficiently large n > 0, there

exists a code ( f (1)
n , f (2)

n , ϕn) whose error probability satisfies

ε(n)
X̃Ỹ
≤ e−n(ψi(X|U)(γ1)−δ) + e−n(ψi(Y;U)(γ2)−δ)

+ e−nR(1)
n +nγ1 +

1
2

√
e−nR(2)

n +nγ2 .

Proof. In Theorem 3, we substitute γ(n)
1 = nγ1 and γ(n)

2 =

nγ2 into γ1 and γ2, respectively. Then, by following the
same way as the proof of Corollary 2, we have (20), (21),
(22), and (24). In what follows, let p(n)

1 denote the right-hand

side of (22), and p(n)
2 denote the right-hand side of (24) for

the sake of brevity.
For any λ ≥ 0, p(n)

1 can be bounded as follows:

p(n)
1

(a)
≤ e

−ψi(Xdn )+i(Xn
dn+1 |U

n
dn+1)(γ

(n)
1 −log |Dn |)

≤ e−λ(γ(n)
1 −log |Dn |)+log E

[
exp

(
λi(Xdn )+λi(Xn

dn+1 |U
n
dn+1)

)]
= e−n(λγ1−log E[exp(λi(X|U))]−δn),

where (a) comes from the Chernoff bound, and δn =

λ
log |Dn |

n −
dn
n log E

[
exp (λi(X|U))

]
+ dn

n log E
[
exp (λi(X))

]
.

Since E
[
exp (λi(X|U))

]
≥ 1, δn is bounded as

δn ≤ λ
log |Dn|

n
+

dn

n
log E

[
exp (λi(X))

]
.

Since ∆d = 0 and E[exp(λi(X))] < ∞, we have
lim supn→∞ δn ≤ 0 for any λ ≥ 0. Thus, we have

lim sup
n→∞

1
n

log p(n)
1 ≤ −λγ1 + log E

[
exp (λi(X|U))

]
.

Since this holds for any λ ≥ 0, we have

lim sup
n→∞

1
n

log p(n)
1 ≤ −ψi(X|U)(γ1).

Now, for any δ > 0 and sufficiently large n > 0, we have

1
n

log p(n)
1 ≤ lim sup

n→∞

1
n

log p(n)
1 + δ ≤ −ψi(X|U)(γ1) + δ.

That is

p(n)
1 ≤ e−n(ψi(X|U)(γ1)−δ). (26)

On the other hand, p(n)
2 can be bounded as follows:

p(n)
2 ≤ e−λγ

(n)
2 +(n−dn) log(E[exp(λi(Y;U))])

= e−n(λγ2−log(E[exp(λi(Y;U))])+δn)

where

δn =
dn

n
log

(
E

[
exp (λi(Y; U))

])
.

Since ∆d = ∆d = 0 and E[exp(λi(Y; U))] > 0, we have

lim sup
n→∞

1
n

log p(n)
2 ≤ −λγ2 + log

(
E

[
exp (λi(Y; U))

])
.

Since this holds for any λ ≥ 0, we have

lim sup
n→∞

1
n

log p(n)
2 ≤ −ψi(Y;U)(γ2).

Now, for any δ > 0 and sufficiently large n > 0, we have

1
n

log p(n)
2 ≤ lim sup

n→∞

1
n

log p(n)
2 + δ ≤ −ψi(Y;U)(γ2) + δ.

That is
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p(n)
2 ≤ e−n(ψi(Y;U)(γ2)−δ). (27)

Combining (20), (21), (26), and (27), we have the de-
sired bound. �

The function ψX(γ) has the following basic property
(cf. e.g. [9, Theorem 14.3]).

Lemma 2. ψX(γ) = 0 for any γ ≤ E[X] and ψX(γ) > 0 for
any γ > E[X].

Now we prove Theorem 2.

Proof of Theorem 2. For PU |Y ∈ P(U|Y), ε > 0, and
(R1,R2) such that

R1 = H(X|U) + ∆dI(X; U) + 2ε + ε log |X|,
R2 = (1 − ∆d)I(Y; U) + 2ε + ε log |Y|,

we set M(i)
n =

⌈
enRi

⌉
for all i ∈ {1, 2}.

We will show that (R1,R2) is achievable for any PU |Y ∈

P(U|Y) and ε > 0. This implies that(
H(X|U) + ∆dI(X; U), (1 − ∆d)I(Y; U)

)
∈ R

(X,Y)
d

for any PU |Y ∈ P(U|Y). Thus we have the inner bound

A
(X,Y)
∆d,∆d

⊆ R
(X,Y)
d .

First, we consider the case where 0 < ∆d ≤ ∆d < 1.
From this assumption, for sufficiently small δ ∈ (0, 1) and
large n > 0, it holds that δn < dn < (1 − δ)n. Thus, we
have dn → ∞ and n − dn → ∞. By setting γ1,1 = H(X) + ε,
γ1,2 = H(X|U) + ε, and γ2 = I(Y; U) + ε in Corollary 2, we
have for sufficiently large n > 0,

ε(n)
X̃Ỹ

(a)
≤ e−dnψi(X)(H(X)+ε/2) + e−(n−dn)ψi(X|U)(H(X|U)+ε)

+ e−(n−dn)ψi(Y;U)(I(Y;U)+ε)

+ e−nR(1)
n +dnH(X)+(n−dn)H(X|U)+nε

+
1
2

√
e−nR(2)

n +(n−dn)(I(Y;U)+ε)

(b)
≤ e−dnψi(X)(H(X)+ε/2) + e−(n−dn)ψi(X|U)(H(X|U)+ε)

+ e−(n−dn)ψi(Y;U)(I(Y;U)+ε)

+ e−n(R1−H(X|U)− dn
n I(X;U)−ε)

+
1
2

√
e−n(R2−

n−dn
n I(Y;U)−ε)

(c)
≤ e−dnψi(X)(H(X)+ε/2) + e−(n−dn)ψi(X|U)(H(X|U)+ε)

+ e−(n−dn)ψi(Y;U)(I(Y;U)+ε)

+ e−n(R1−H(X|U)−∆dI(X;U)−ε−ε log |X|)

+
1
2

√
e−n(R2−(1−∆d)I(Y;U)−ε−ε log |Y|)

= e−dnψi(X)(H(X)+ε/2) + e−(n−dn)ψi(X|U)(H(X|U)+ε)

+ e−(n−dn)ψi(Y;U)(I(Y;U)+ε) + e−nε +
1
2

√
e−nε ,

where (a) comes from the fact that limn→∞
log |Dn |

dn
= 0, (b)

follows since R(i)
n ≥ Ri, and (c) comes from (13). Since

E[i(X)] = H(X), E[i(X|U)] = H(X|U), and E[i(Y; U)] =

I(Y; U), we have ψi(X)(H(X) + ε/2) > 0, ψi(X|U)(H(X|U) +

ε) > 0, and ψi(Y;U)(I(Y; U) + ε) > 0 according to Lemma
2. Thus, the error probability ε(n)

X̃Ỹ
vanishes exponentially.

According to Lemma 1 and noticing that limn→∞
log(n+1)

dn
= 0

and limn→∞
log(n+1)

n−dn
= 0, the error probability maxd∈Dn ε

(n)
XY(d)

with the same code also vanishes. Thus by noticing that
lim supn→∞ R(i)

n = Ri for all i ∈ {1, 2}, (R1,R2) is achievable.
Finally, we consider the case where ∆d = 0. By setting

that γ1 = H(X|U) + ε and γ2 = I(Y; U) + ε, and choosing
δ > 0 so that ψi(X|U)(γ1) − δ > 0 and ψi(Y;U)(γ2) − δ > 0 in
Corollary 3, we have for sufficiently large n > 0,

ε(n)
X̃Ỹ
≤ e−n(ψi(X|U)(H(X|U)+ε)−δ) + e−n(ψi(Y;U)(I(Y;U)+ε)−δ)

+ e−n(R(1)
n −H(X|U)−ε) +

1
2

√
e−n(R(2)

n −I(Y;U)−ε)

≤ e−n(ψi(X|U)(H(X|U)+ε)−δ) + e−n(ψi(Y;U)(I(Y;U)+ε)−δ)

+ e−n(ε+ε log |X|) +
1
2

√
e−n(ε+ε log |Y|).

Thus, the error probability vanishes exponentially. Accord-
ing to Lemma 1 and noticing that lim supn→∞ R(i)

n = Ri for
all i ∈ {1, 2}, this implies that (R1,R2) is also achievable in
this case. �

6. Conclusion

In this paper, we have considered the WAK coding system
with delayed side information. We have given inner and
outer bounds on the achievable rate region for a DMS. These
bounds coincide with each other when the maximum of de-
lays for the block length converges to a constant. We have
clarified that the achievable rate region does not always co-
incide with that for the case without delay.
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Appendix A: Some Properties ofA(X,Y)
α,β

First of all, we give the next lemma.

Lemma 3. For any PU |Y ∈ P(U|Y), we have

Â
(X,Y)
α,β (PU |Y ) = B̂

(X,Y)
α,β (PU |Y ),

where

B̂
(X,Y)
α,β (PU |Y )

=
{
(R1,R2) : fα,β(R1,R2) ∈ Â(X,Y)

0,0 (PU |Y )
}
,

and fα,β(R1,R2) =
(

R1−αH(X)
1−α , R2

1−β

)
.

Proof. Let fα(R1) =
R1−αH(X)

1−α and fβ(R2) = R2
1−β . We note

that fα,β(R1,R2) = ( fα(R1), fβ(R2)).
For any (R1,R2) ∈ Â(X,Y)

α,β (PU |Y ), it holds that

R1 ≥ H(X|U) + αI(X; U),
R2 ≥ (1 − β)I(Y; U).

Thus, we have

fα(R1) ≥
H(X|U) + αI(X; U) − αH(X)

1 − α
= H(X|U),

fβ(R2) ≥
(1 − β)I(Y; U)

1 − β
= I(Y; U).

This means that

fα,β(R1,R2) = ( fα(R1), fβ(R2)) ∈ Â(X,Y)
0,0 (PU |Y ),

and

Â
(X,Y)
α,β (PU |Y ) ⊆ B̂(X,Y)

α,β (PU |Y ). (A· 1)

On the other hand, for any (R1,R2) ∈ B̂(X,Y)
α,β (PU |Y ), it

holds that

H(X|U) ≤ fα(R1) =
R1 − αH(X)

1 − α
,

I(Y; U) ≤ fβ(R2) =
R2

1 − β
.

Thus, we have

R1 ≥ (1 − α)H(X|U) + αH(X) = H(X|U) + αI(X; U),
R2 ≥ (1 − β)I(Y; U).

This means that

B̂
(X,Y)
α,β (PU |Y ) ⊆ Â(X,Y)

α,β (PU |Y ). (A· 2)

Due to (A· 1) and (A· 2), we have the lemma. �

According to this lemma, we have

A
(X,Y)
α,β

=
⋃

PU |Y∈P(U|Y)

Â
(X,Y)
α,β (PU |Y )

=
⋃

PU |Y∈P(U|Y)

B̂
(X,Y)
α,β (PU |Y )

=
⋃

PU |Y∈P(U|Y)

{
(R1,R2) : fα,β(R1,R2) ∈ Â(X,Y)

0,0 (PU |Y )
}

=

(R1,R2) : fα,β(R1,R2) ∈
⋃

PU |Y∈P(U|Y)

Â
(X,Y)
0,0 (PU |Y )


(A· 3)

=
{
(R1,R2) : fα,β(R1,R2) ∈ A(X,Y)

0,0

}
. (A· 4)

We consider an arbitrary convergent sequence (R(k)
1 ,

R(k)
2 ) → (R1,R2) (k → ∞), where (R(k)

1 ,R(k)
2 ) ∈ A(X,Y)

α,β .

Here, according to (A· 4), it holds that fα,β(R
(k)
1 ,R(k)

2 ) ∈
A

(X,Y)
0,0 . Since fα,β is a continuous function, we have

fα,β(R
(k)
1 ,R(k)

2 ) → fα,β(R1,R2). Since A(X,Y)
0,0 is a closed

set, this implies that fα,β(R1,R2) ∈ A(X,Y)
0,0 . Thus, we have

(R1,R2) ∈ A(X,Y)
α,β due to (A· 4). This implies that A(X,Y)

α,β is a
closed set.

We assume that (R1,R2) ∈ A(X,Y)
α,β and (r1, r2) ∈ A(X,Y)

α,β .

By recalling that A(X,Y)
0,0 is a convex set and noticing that

fα,β(R1,R2) ∈ A(X,Y)
0,0 and fα,β(r1, r2) ∈ A(X,Y)

0,0 , we have
λ fα,β(R1,R2) + (1 − λ) fα,β(r1, r2) ∈ A(X,Y)

0,0 . Since fα(R1) and
fβ(R2) are linear functions, we have, for any λ ∈ [0, 1]
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λ fα,β(R1,R2) + (1 − λ) fα,β(r1, r2)
= fα,β(λR1 + (1 − λ)r1, λR2 + (1 − λ)r2).

Thus, we have fα,β(λR1 + (1−λ)r1, λR2 + (1−λ)r2) ∈ A(X,Y)
0,0 .

This means that (λR1 + (1 − λ)r1, λR2 + (1 − λ)r2) ∈ A(X,Y)
α,β .

Thus,A(X,Y)
α,β is a convex set.

On the other hand, again according to Lemma 3, we
have

A
(X,Y)
α,β

=
⋃

PU |Y∈P(U|Y)

Â
(X,Y)
α,β (PU |Y ) (A· 5)

(a)
=

(R1,R2) : fα,β(R1,R2) ∈
⋃

PU |Y∈P(U|Y)

Â
(X,Y)
0,0 (PU |Y )


(b)
=

(R1,R2) : fα,β(R1,R2) ∈
⋃

PU |Y∈P(U|Y):
|U|=|Y|+1

Â
(X,Y)
0,0 (PU |Y )


=

⋃
PU |Y∈P(U|Y):
|U|=|Y|+1

{
(R1,R2) : fα,β(R1,R2) ∈ Â(X,Y)

0,0 (PU |Y )
}

=
⋃

PU |Y∈P(U|Y):
|U|=|Y|+1

B̂
(X,Y)
α,β (PU |Y )

=
⋃

PU |Y∈P(U|Y):
|U|=|Y|+1

Â
(X,Y)
α,β (PU |Y ), (A· 6)

where (a) comes from the right-hand side of (A· 3) and (b)
comes from the fact that A(X,Y)

0,0 will be unchanged if we
only consider PU |Y ∈ P(U|Y) such that |U| = |Y| + 1 (cf.
[14, Theorem 10.2]). Thus,A(X,Y)

α,β is also unchanged, which
means that the right-hand side of (A· 5) is equal to the right-
hand side of (A· 6).

Appendix B: The Minimum Rate on One Side

In this appendix, we show that R1,∆d = H(X|Y) + ∆dI(X; Y).
By the definition of A(X,Y)

∆d,∆d
, for any R1 ∈ {R1 :

∃(R1,R2) ∈ A(X,Y)
∆d,∆d
}, there exists an RV U such that X−Y−U

and

R1 ≥ H(X|U) + ∆dI(X; U)
= (1 − ∆d)H(X|U) + ∆dH(X)
≥ (1 − ∆d)H(X|Y) + ∆dH(X)
= H(X|Y) + ∆dI(X; Y).

Thus, we have

R1,∆d ≥ H(X|Y) + ∆dI(X; Y). (A· 7)

On the other hand, by noticing that X − Y − Y , we have

(H(X|Y) + ∆dI(X; Y), (1 − ∆d)I(Y; Y)) ∈ Â(X,Y)
∆d,∆d

(PY |Y )

⊆ A
(X,Y)
∆d,∆d

.

This implies that

R1,∆d ≤ H(X|Y) + ∆dI(X; Y). (A· 8)

The inequalities (A· 7) and (A· 8) show that R1,∆d =

H(X|Y) + ∆dI(X; Y).

Appendix C: Precise Derivation of (18)

We have

PX̃nŨn (xn, un)

=
∑
yn

PX̃nỸnŨn (xn, yn, un)

=
∑
yn

∑
d∈Dn

1
|Dn|

Pdn
U (udn )Pn−dn

U |Y (un
dn+1|y

n
dn+1)

× Pd
Y (yd

1)Pn−d
XY (xn−d

1 , yn
d+1)Pd

X(xn
n−d+1)

=
∑
yn

d+1

∑
d∈Dn

1
|Dn|

Pdn
U (udn )Pn−dn

U |Y (un
dn+1|y

n
dn+1)

× Pn−d
XY (xn−d

1 , yn
d+1)Pd

X(xn
n−d+1)

=
∑
yn

d+1

∑
d∈Dn

1
|Dn|

Pdn
U (udn )Pn−dn

U |Y (un
dn+1|y

n
dn+1)

× Pdn−d
XY (xdn−d

1 , ydn
d+1)Pn−dn

XY (xn−d
dn−d+1, y

n
dn+1)

× Pd
X(xn

n−d+1)
(a)
=

∑
yn

d+1

∑
d∈Dn

1
|Dn|

Pdn
U (udn )Pdn−d

XY (xdn−d
1 , ydn

d+1)

× Pn−dn
XYU(xn−d

dn−d+1, y
n
dn+1, u

n
dn+1)Pd

X(xn
n−d+1)

=
∑
d∈Dn

1
|Dn|

Pdn
U (udn )Pdn−d

X (xdn−d
1 )

× Pn−dn
XU (xn−d

dn−d+1, u
n
dn+1)Pd

X(xn
n−d+1)

=
∑
d∈Dn

1
|Dn|

Pn
U(un)Pdn−d

X (xdn−d
1 )

× Pn−dn
X|U (xn−d

dn−d+1|u
n
dn+1)Pd

X(xn
n−d+1),

where (a) follows since X − Y − U.
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