
論文 / 著書情報
Article / Book Information

題目(和文) 実演に適したカードベースプロトコルの構成について

Title(English) On the Construction of Easy to Perform Card-Based Protocols

著者(和文) 品川和雅

Author(English) Kazumasa Shinagawa

出典(和文) 学位:博士(理学),
 学位授与機関:東京工業大学,
 報告番号:甲第11391号,
 授与年月日:2020年3月26日,
 学位の種別:課程博士,
 審査員:渡辺 治,田中 圭介,伊東 利哉,尾形 わかは,西崎 真也,縫田 光司

Citation(English) Degree:Doctor (Science),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第11391号,
 Conferred date:2020/3/26,
 Degree Type:Course doctor,
 Examiner:,,,,,

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/

On the Construction of Easy to
Perform Card-Based Protocols

Kazumasa Shinagawa

A dissertation submitted in partial fulfillment
of the requirement for the degree of

DOCTOR OF SCIENCE

Department of Mathematical and Computing Science
Tokyo Institute of Technology

February 2020

Abstract

Secure computation allows a set of players holding secret inputs to compute a
joint function of the inputs without revealing the inputs. Although secure com-
putation is usually done by the use of computers over a network, it can also be
done by using a deck of physical cards. This research area is called card-based
cryptography. In card-based protocols, input information is encoded by a se-
quence of face-down cards, which is called a commitment. Then, operations are
applied in front of all players to the sequence of commitments produced by the
players. These operations include a permutation, which rearranges the order of
the sequence, turning, which opens/closes the symbol of a card by turning the
card over, and shuffle, which applies a random permutation chosen from a prob-
ability distribution so as not to reveal which permutation is applied. The goal of
card-based protocols is either to publicly reveal the output value or to produce a
commitment to the output value without revealing the inputs. Protocols of the
former type are called non-committed format protocols, while protocols of the
latter type are called committed format protocols. Since the output commitment
of a committed format protocol can be used as the input commitment of another
protocol, to compute any Boolean circuit, it is sufficient to construct commit-
ted format protocols for the NOT, AND, and COPY functions. It should be
noted that a commitment is usually designed so that the NOT computation is
trivial. In addition, the COPY computation is necessary since protocols usually
consume and destroy the input commitments.

In 1989, den Boer (Eurocrypt 1989) proposed the first card-based protocol
called the Five-Card Trick, which is a non-committed format AND protocol that
uses five cards and a random cut. A random cut is a shuffle operation that ran-
domly and cyclically shifts the order of a sequence. In 1993, Crépeau and Killian
(CRYPTO 1993) showed that every function f : {0, 1}n → {0, 1} has a commit-
ted format protocol by constructing a 10-card AND protocol, a 12-card XOR
protocol, and an eight-card COPY protocol in a committed format. Again, their
protocols use random cuts only. Subsequently, these protocols were improved
in terms of the number of cards. State-of-the-art protocols include a four-card
AND protocol proposed by Koch, Walzer, and Härtel (Asiacrypt 2015) and a
five-card COPY protocol proposed by Nishimura, Nishida, Hayashi, Mizuki, and
Sone (TPNC 2015). Although these protocols achieve the minimum number of
cards, they are not considered to be easy to perform since they use a heavy
shuffle operation. However, using a heavy operation is sometimes unavoidable.

i

ii ABSTRACT

In fact, Koch (ePrint 2018) proved that any four-card AND protocol requires ei-
ther a non-uniform shuffle or a non-closed shuffle, both of which are not easy to
perform. We believe that it is important to consider not only from the number
of cards but also from the aspect of being easy to perform.

In the first part of this dissertation (Chapter 3), we study card-based proto-
cols using a small number of shuffles restricted to uniform closed shuffles, which
are shuffles whose permutation set is closed and in which each permutation
is chosen uniformly and randomly. To the best of our knowledge, there is no
general protocol in the literature that uses a constant number of shuffles even
with the use of non-uniform or non-closed shuffles. In this work, we construct a
general protocol with a single uniform closed shuffle. This protocol achieves the
minimum number of shuffles, as it is impossible to securely compute any non-
trivial function without shuffles (i.e., with permutations and turnings only). In
addition, the proposed protocol only requires 24q+2n cards, where n is the input
length and q is the number of cards in a circuit computing the function. This
is achieved by introducing a card-based variant of the garbled circuit methodol-
ogy. We also construct a general protocol with two pile-scramble shuffles, which
are one of the easiest to perform shuffles among uniform closed shuffles. This
is accomplished by introducing a batching technique, which combines multiple
pile-scramble shuffles in parallel into one pile-scramble shuffle using a relatively
small number of additional cards.

In the second part of this dissertation (Chapter 4), we study card-based
protocols using private permutations instead of shuffles. A private permuta-
tion is an operation that covertly applies a permutation chosen by a player
according to the player’s input bit. A private permutation is considered easier
to perform than a shuffle since every private permutation can be easily physi-
cally performed while it is not known how to physically perform certain shuffles.
However, since private permutations are necessarily performed at a physically
isolated location so as not to reveal the chosen permutation, protecting against
malicious attacks in private permutations is difficult. Thus, protocols with
private permutations are considered easier to perform but less secure than pro-
tocols with shuffles. We solve this dilemma by defining a new security notion
called active security that captures malicious attacks in private permutations.
Furthermore, we construct several protocols with active security. In particular,
for any function f : {0, 1}n → {0, 1}, we construct a general protocol with n
private permutations, which has the minimum number of private permutations.
We also construct a general protocol with 2n + 7 cards, which is optimized in
terms of the number of cards. In addition, we construct several protocols for
concrete functions that are efficient with a small number of cards and private
permutations.

In the third part of this dissertation (Chapter 5), we study card-based proto-
cols based on polygon-shaped cards. Suppose that we wish to compute a function
f : (Z/mZ)n → Z/mZ for some integer m ∈ N. Although a protocol for any
Boolean function implies a protocol for any f : (Z/mZ)n → Z/mZ, this conver-
sion usually increases the number of cards and shuffles by a factor of O(logm).
To circumvent this inefficiency, we introduce two types of polygon-shaped cards

iii

possessing a (360/m)◦ rotational symmetry: cyclic cards and dihedral cards.
Based on cyclic cards, we construct efficient protocols for concrete functions
such as addition, subtraction, copy, and multiplication. It is also possible to
construct a protocol for any function f : (Z/mZ)n → Z/mZ based on our new
technique, oblivious conversion; however, a large number of cards is required.
Based on dihedral cards, we construct efficient protocols for interesting predi-
cates such as a carry predicate, equality predicate, and greater than predicate.
Because every protocol based on cyclic cards also work based on dihedral cards,
by combining the addition protocol and the carry protocol, we can efficiently
compute addition and subtraction over large integers.

Acknowledgements

I am deeply grateful to Professor Osamu Watanabe, whom I first met at the
ELC Autumn School of Computational Complexity in 2015 when I was a student
at the University of Tsukuba. When I began my doctoral course at the Tokyo
Institute of Technology, he kindly welcomed me to Watanabe laboratory. During
the doctoral course, he supported me as my supervisor and gave me many helpful
comments on my research and school life.

I would like to thank Professor Keisuke Tanaka. He supported me as my sub-
supervisor since the second year of my doctoral course and warmly welcomed
me to Tanaka laboratory and the lab seminar.

I would also like to express my gratitude to Associate Professor Koji Nuida at
the University of Tokyo. He gave me a lot of useful advice and many important
comments as a member of a study group Shin-Akarui Ango Benkyo-Kai and
co-author of some of my papers. Without his support, some results in this
dissertation would not have been possible.

In addition to the aforementioned examiners of this dissertation, I would like
to offer my special thanks to other examiners: Professor Toshiya Itoh, Professor
Wakaha Ogata, and Professor Shin-ya Nishizaki.

I would like to express appreciation to Dr. Goichiro Hanaoka at the National
Institute of Advanced Industrial Science and Technology. I have been part
of Shin-Akarui Ango Benkyo-Kai that he organized since I was a third-year
university student in 2014. Dr. Goichiro Hanaoka encouraged me to study
cryptography and gave me many helpful comments on my research. He also
gave me many opportunities to speak with many excellent researchers.

I owe a great debt to Associate Professor Takashi Nishide at the University
of Tsukuba. He was my supervisor at the University of Tsukuba and supported
me in starting my research on cryptography. I was very lucky to spend time at
Nishide laboratory at the beginning of my research.

I would like to thank my family and colleagues for their support and encour-
agement. I thank all members of Shin-Akarui Ango Benkyo-Kai, all members
and staff of Watanabe laboratory, all members and staff of Tanaka laboratory,
and all members and staff of Nishide laboratory.

v

Contents

Abstract i

Acknowledgements v

1 Introduction 1
1.1 Background . 1

1.1.1 Protocols with shuffles . 2
1.1.2 Protocols with private permutations 6
1.1.3 Protocols based on non-standard cards 7

1.2 Contribution . 9
1.3 Overview of techniques . 11

1.3.1 Overview of protocols with uniform closed shuffles 11
1.3.2 Overview of active protocols with private permutations . 14
1.3.3 Overview of protocols based on polygon-shaped cards . . 16

1.4 Publication overview . 17

2 Preliminaries 19
2.1 Basic notations . 19
2.2 Model of protocols . 19

2.2.1 Deck, sequence, and visible sequence 19
2.2.2 Operation . 21
2.2.3 View . 22
2.2.4 Protocol . 23
2.2.5 Functionality . 26
2.2.6 Correctness . 27
2.2.7 Security . 28
2.2.8 Composition of protocols 28

2.3 Terminologies . 30
2.3.1 Circuit . 30
2.3.2 Branching program . 31

3 Protocols with Uniform Closed Shuffles 33
3.1 Notations . 33
3.2 Base protocol . 34

vii

viii CONTENTS

3.3 Protocol with a single uniform closed shuffle 41
3.4 Protocol with two pile-scramble shuffles 42

3.4.1 Extended pile-scramble shuffle 42
3.4.2 Batching multiple pile-scramble shuffles 43
3.4.3 Protocol with two extended pile-scramble shuffles 45
3.4.4 Protocol with two standard pile-scramble shuffles 46

4 Protocols with Private Permutations 47
4.1 Introducing private permutations 47

4.1.1 Private permutations . 47
4.1.2 Notations . 47
4.1.3 Existing protocols in our model 48

4.2 Active security . 50
4.2.1 Executed permutation list 50
4.2.2 Active security . 52

4.3 One-round protocol in the envelope model 53
4.4 Protocol compiler in the envelope model 54

4.4.1 Commit-and-prove technique 54
4.4.2 Protocol compiler . 55

4.5 Card-efficient protocol in the envelope model 58
4.5.1 Passive protocol based on branching program 58
4.5.2 Active protocol using 2n+ 7 cards 59

4.6 Efficient protocols for specific functions 59
4.6.1 Passive protocol for symmetric functions 59
4.6.2 Active protocol for symmetric functions 60
4.6.3 Active protocol for the AND function 61
4.6.4 Active protocol for equality of two strings 62

5 Protocols Based on Polygon-Shaped Cards 63
5.1 Protocols based on cyclic cards 63

5.1.1 Cyclic cards . 63
5.1.2 Operations for cyclic cards 64
5.1.3 Notations . 66
5.1.4 Outline of protocols . 66
5.1.5 Subtraction protocol . 67
5.1.6 Addition protocol from a rotation shuffle 68
5.1.7 Addition protocol from a backward rotation shuffle 69
5.1.8 Constant multiplication protocol 71
5.1.9 Multiplication protocol 73
5.1.10 Oblivious conversion from a pile random cut 75
5.1.11 Oblivious conversion from a flower shuffle 78
5.1.12 General protocol from oblivious conversion 79

5.2 Protocols based on dihedral cards 81
5.2.1 Dihedral cards . 81
5.2.2 Operations for dihedral cards 83
5.2.3 Notations . 85

CONTENTS ix

5.2.4 Outline of protocols . 85
5.2.5 Initialization protocol . 86
5.2.6 Addition protocol . 87
5.2.7 Sign normalization protocol 88
5.2.8 Sign-to-value protocol . 90
5.2.9 Carry protocol . 91
5.2.10 Equality with zero protocol 92
5.2.11 Equality protocol . 93
5.2.12 Greater-than protocol . 95

6 Conclusion 97

Chapter 1

Introduction

1.1 Background

Suppose that three players – Alice, Bob, and Carol – wish to know who is the
richest person among them; however, everyone wishes to avoid revealing their
amount of money. A cryptographic protocol called secure multiparty computa-
tion [12,63,64] can solve this problem. However, conventional secure multiparty
computation protocols tend to be based on deep mathematics. Therefore, it is
unlikely that all participants executing a given protocol will concretely under-
stand its correctness and security.

Recreational cryptography provides a simpler and more convenient solution,
achieving secure multiparty computation using everyday objects. An incomplete
list of studies on recreational cryptography is as follows:

• Card-based cryptography [9, 10];

• PEZ protocols [1, 3];

• Protocols using a dial lock [30];

• Protocols using the 15 puzzle [30];

• Protocols using light and shadow [23];

• Visual secret sharing scheme [37].

The correctness and security of these protocols can be easily understood, as
all participants can perform the protocols themselves and observe the actual
execution process. Thus, the protocols are suitable for use as educational mate-
rials on cryptography for beginner students. Indeed, some universities including
Cornell University [24], University of Waterloo [8], and Tohoku University [26]
introduced card-based protocols in their cryptography courses.

In this dissertation, we focus on card-based cryptography, which provides
secure multiparty computation protocols using a deck of cards. The deck con-
sists of a number of physical cards, where cards having the same symbol are

1

2 CHAPTER 1. INTRODUCTION

indistinguishable. The initial sequence is a line of face-down cards whose order
potentially depends on the inputs. The goal of card-based protocols is to com-
pute a function f : Xn → Y on n inputs x1, x2, . . . , xn ∈ X without revealing
the inputs. We introduce three models of protocols studied in previous works:
protocols with shuffles (Section 1.1.1), protocols with private permutations (Sec-
tion 1.1.2), and protocols based on non-standard cards (Section 1.1.3).

1.1.1 Protocols with shuffles

The protocols with shuffles is the most standard and popular model. The setting
of this model is as follows. The computing function is a Boolean function f :
{0, 1}n → {0, 1}, and the deck consists of a number of cards with two colors ♣ ♥
with the same back ? (hereafter we refer to this deck as a deck of binary cards).
A single bit x ∈ {0, 1} is encoded by two face-down cards ? ? whose front sides
are ♣ ♥ if x = 0 and ♥ ♣ otherwise. This is called a commitment to x. During
a protocol execution, three types of operations can be applied to a sequence
of cards. The first type of operation is a permutation, which rearranges the
order of the sequence. The second type of operation is a turning, which turns a
card so that a face-down (resp. face-up) card changes to a face-up (resp. face-
down) card. The third type of operation is a shuffle, which covertly applies a
random permutation π ∈ Π according to a probability distribution D over Π.
We assume that the chosen permutation π is hidden from all players (i.e., no
player knows which sequence is obtained). This is the most important property
for achieving the input privacy. The goal of these protocols is to compute a
function f(x1, x2, . . . , xn) given n commitments to x1, x2, . . . , xn and a number
of additional cards (as a computational resource) without revealing the inputs.

There are two types of protocols: committed format and non-committed
format. A protocol in a committed format produces a commitment to the output
value f(x1, x2, . . . , xn) as follows:

? ?︸︷︷︸
x1

? ?︸︷︷︸
x2

· · · ? ?︸︷︷︸
xn

⇒ ? ?︸︷︷︸
f(x1,x2,...,xn)

.

In contrast, a protocol in a non-committed format computes and reveals the
value f(x1, x2, . . . , xn) directly. For example, a five-card AND protocol in a non-
committed format proposed by den Boer [10] opens all cards in the final step
and determines the output value according to the opened symbols as follows:

Output “0”

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

♥ ♣ ♥ ♣ ♥
♣ ♥ ♣ ♥ ♥
♥ ♣ ♥ ♥ ♣
♣ ♥ ♥ ♣ ♥
♥ ♥ ♣ ♥ ♣

Output “1”

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

♣ ♥ ♥ ♥ ♣
♥ ♥ ♥ ♣ ♣
♥ ♥ ♣ ♣ ♥
♥ ♣ ♣ ♥ ♥
♣ ♣ ♥ ♥ ♥

The advantage of protocols in a committed format is the composability of proto-
cols; that is, the output commitment of a protocol can be used as the input com-
mitment of another protocol. Since every Boolean function f : {0, 1}n → {0, 1}

1.1. BACKGROUND 3

can be computed by a circuit with NOT, AND, and COPY1 gates, protocols for
NOT, AND, and COPY in a committed format imply a protocol for f . Note
that a NOT protocol is trivial: given a commitment to x, the protocol simply
swaps the cards. Thus, to compute any function f : {0, 1}n → {0, 1}, it is
sufficient to construct an AND protocol and a COPY protocol in a committed
format.

Known results in a committed format. In 1993, Crépeau and Killian [9]
showed that any function f : {0, 1}n → {0, 1} can be computed by constructing
a 10-card AND protocol2, an eight-card COPY protocol, and a 14-card XOR
protocol in a committed format as follows:

Crépeau-Killian’s AND protocol: ? ?︸︷︷︸
x1

? ?︸︷︷︸
x2

♣ ♥ ♠ ♠ ♦ ♦ ⇒ ? ?︸︷︷︸
x1∧x2

Crépeau-Killian’s COPY protocol: ? ?︸︷︷︸
x

♣ ♣ ♣ ♥ ♥ ♥ ⇒ ? ?︸︷︷︸
x

? ?︸︷︷︸
x

Crépeau-Killian’s XOR protocol: ? ?︸︷︷︸
x1

? ?︸︷︷︸
x2

♣ ♣ ♣ ♥ ♥ ♥ ♠ ♠ ♦ ♦ ⇒ ? ?︸︷︷︸
x1⊕x2

The required shuffles of these protocols are random cuts only. A random cut
(for � cards) is a shuffle that cyclically rotates the sequence as follows:

1

?
2

?
3

?
4

? · · ·
�

? →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

?
2

?
3

?
4

? · · ·
�

? with probability 1/�
2

?
3

?
4

?
5

? · · ·
1

? with probability 1/�
3

?
4

?
5

?
6

? · · ·
2

? with probability 1/�
...

�

?
1

?
2

?
3

? · · ·
�−1

? with probability 1/�

Formally, a random cut for � cards is defined by a set of permutations Π and
a probability distribution D, where Π := {σk | 0 ≤ k ≤ � − 1} for a cyclic
permutation3 σ = (1 2 3 · · · �) and D is a uniform distribution over Π. A
random cut can be easily performed by hand or using a rotating table or roulette.
Although these protocols are efficient in terms of the shuffle type (i.e., random
cut), they are Las-Vegas protocols4, whose expected number of steps is finite
but does not terminate in the worst case. The desired notion, however, is finite

1Since a card-based protocol usually consumes the input commitments, the COPY gate,
that takes a commitment to x and produces two copies of commitments to x, is required.

2The AND protocol and XOR protocol use a deck of cards having four colors ♣ ♥ ♠ ♦ . All

commitments for the input and output are of cards ♣ ♥ and the cards having two additional

colors ♠ ♦ are used as helping cards.
3We denote a cyclic permutation by (i1 i2 · · · i�) =: π which means π(ij) = ij+1 for

1 ≤ j ≤ �− 1 and π(i�) = i1. For the other index i′ �∈ {i1, i2, . . . , i�}, π(i′) = i′.
4The AND/XOR protocols are Las-Vegas but the COPY protocol is finite runtime.

4 CHAPTER 1. INTRODUCTION

runtime, which terminates at a finite number of steps. A number of improved
AND/XOR protocols [34, 38, 59] have been proposed, all of which use random
cuts only and are Las-Vegas protocols.

In 2009, Mizuki and Sone [33] proposed a six-card AND protocol, a six-
card COPY protocol, and a four-card XOR protocol, which are finite runtime
protocols, using a new shuffle called a random bisection cut, as follows:

Mizuki-Sone’s AND protocol: ? ?︸︷︷︸
x1

? ?︸︷︷︸
x2

♣ ♥ ⇒ ? ?︸︷︷︸
x1∧x2

Mizuki-Sone’s COPY protocol: ? ?︸︷︷︸
x

♣ ♣ ♥ ♥ ⇒ ? ?︸︷︷︸
x

? ?︸︷︷︸
x

Mizuki-Sone’s XOR protocol: ? ?︸︷︷︸
x1

? ?︸︷︷︸
x2

⇒ ? ?︸︷︷︸
x1⊕x2

A random bisection cut is a shuffle that divides the deck into two piles and
randomly swaps them as follows (the following is the case of six cards):

1

?
2

?
3

?
4

?
5

?
6

? →

⎧⎨⎩
1

?
2

?
3

?
4

?
5

?
6

? with probability 1/2
4

?
5

?
6

?
1

?
2

?
3

? with probability 1/2

Ueda, Nishimura, Hayashi, Mizuki, and Sone [61] showed how to perform a
random bisection cut. After the invention of random bisection cuts, a number
protocols for “rich” functions based on random bisection cuts were proposed.
For example, an eight-card half adder protocol [29], an eight-card protocol for
a three-input majority function [42], an eight-card protocol for any three-input
function f : {0, 1}3 → {0, 1} [41], and a 2n + 6-card protocol for any function
f : {0, 1}n → {0, 1} [40] were proposed. All of these are finite runtime pro-
tocols while protocols with random cuts [9, 34, 38, 59] are Las-Vegas protocols.
As a result of the invention of random bisection cuts, new shuffles have been
introduced.

In 2013, Cheung, Hawthorne, and Lee [8] designed a five-card Las-Vegas
AND protocol using a new shuffle called an unequal division shuffle as follows:

1

?
2

?
3

?
4

?
5

? →

⎧⎨⎩
1

?
2

?
3

?
4

?
5

? with probability 1/2
3

?
4

?
5

?
1

?
2

? with probability 1/2

Based on this shuffle, Nishimura, Nishida, Hayashi, Mizuki, and Sone [44] de-
signed a five-card Las-Vegas COPY protocol. In 2015, Koch, Walzer, and
Härtel [21] designed a four-card Las-Vegas AND protocol and a five-card finite-
runtime AND protocol using new shuffles as follows:

Koch-Walzer-Härtel’s AND protocol #1: ? ?︸︷︷︸
x1

? ?︸︷︷︸
x2

⇒ ? ?︸︷︷︸
x1∧x2

Koch-Walzer-Härtel’s AND protocol #2: ? ?︸︷︷︸
x1

? ?︸︷︷︸
x2

♣ ⇒ ? ?︸︷︷︸
x1∧x2

1.1. BACKGROUND 5

The four-card Las-Vegas AND protocol (#1) uses a shuffle whose probability
distribution D is not uniform as follows:

1

?
2

?
3

?
4

? →

⎧⎨⎩
1

?
2

?
3

?
4

? with probability 1/3
3

?
4

?
1

?
2

? with probability 2/3

Such a shuffle is said to be non-uniform. The five-card finite runtime AND
protocol (#2) uses a shuffle whose permutation set Π is not closed as follows:

1

?
2

?
3

?
4

?
5

? →

⎧⎨⎩
1

?
2

?
3

?
4

?
5

? with probability 1/3
2

?
3

?
4

?
5

?
1

? with probability 2/3

Such a shuffle is said to be non-closed. The shuffle used in the AND proto-
col (#2) is in fact non-uniform and non-closed. Nishimura, Nishida, Hayashi,
Mizuki, and Sone [43] showed how to perform (a class of) non-uniform/non-
closed shuffles using special cases called sliding covers. However, these shuffles
are considered to be not easy to perform, as sliding covers are not everyday
objects. The authors [21] also proved that their protocols are optimal in terms
of the number of cards by showing that there is no four-card finite runtime AND
protocol. Inspired by these results, Abe, Hayashi, Mizuki, and Sone [2] designed
a five-card Las-Vegas AND protocol using a random cut and random bisection
cut. Kastner, Koch, Walzer, Miyahara, Hayashi, Mizuki, and Sone [18] and
Koch [19] proved the optimality of AND/COPY protocols in various settings:
the optimality of Abe et al.’s five-card AND protocol [2] in the case of Las-Vegas
and uniform closed shuffles, the optimality of Mizuki-Sone’s six-card AND pro-
tocol [33] in the case of finite runtime and uniform closed shuffles, Nishimura et
al.’s five-card COPY protocol [44] in the case of Las-Vegas, and Mizuki-Sone’s
six-card COPY protocol [33] in the case of finite runtime.

Known results in a non-committed format. In 1989, den Boer [10] pro-
posed a five-card AND protocol in a non-committed format that is known as
the Five-Card Trick as follows:

den Boer’s AND protocol: ? ?︸︷︷︸
x1

?
♥

? ?︸︷︷︸
x2

⇒
{

♥ ♣ ♥ ♣ ♥ Output 0

♣ ♥ ♥ ♥ ♣ Output 1

We note that the output is 0 when the opened symbol is cyclically equivalent to
♥ ♣ ♥ ♣ ♥ and 1 otherwise. In 2006, Mizuki, Uchiike, and Sone [34] proposed
a four-card XOR protocol and an eight-card protocol for the four-input XOR
function. In 2012, Mizuki, Kumamoto, and Sone [31] improved the Five-Card
Trick by constructing a four-card AND protocol using a random bisection cut. In
2014, Heather, Schneider, and Teague [16] proposed a six-card protocol for the
three-input equality function; the same protocol was independently rediscovered
by Shinagawa and Mizuki [53]. In 2016, Mizuki [27] proposed a 2n-card protocol
for the n-input AND function.

6 CHAPTER 1. INTRODUCTION

Discussion: obtaining easy to perform protocols. The efficiency of card-
based protocols is measured primarily by the number of cards. However, as
illustrated above, using the minimum number of cards does not imply an easy
to perform protocol. For example, the four-card AND protocol in a committed
format inherently requires either a non-uniform shuffle or a non-closed shuffle
[19], both of which are not easy to perform. This shows that some card-efficient
constructions inherently require kind of heavy operations which are hard to
perform. As another example, a 2n + 6-card protocol [40] for any function
f : {0, 1}n → {0, 1} requires O(2n) random bisection cuts. This shows that
some card-efficient constructions require a large number of operations. To obtain
easy to perform protocols, it is important to focus on a small number of easy to
perform operations.

1.1.2 Protocols with private permutations

As in the model of protocols with shuffles, the model of protocols with private
permutations also focuses on computing a Boolean function f : {0, 1}n → {0, 1}
using a deck of binary cards ♣ ♥ . The main feature of this model is the use
of private permutations instead of shuffles; thus, three types of operations –
permutations, turnings, and private permutations – can be applied. A private
permutation is defined by a permutation π and an index i ∈ {1, 2, . . . , n} for
the input length n, and it is performed by a player with the i-th input bit
xi ∈ {0, 1}. The player covertly rearranges the order of the sequence according
to π if xi = 1 and does nothing otherwise. The other players cannot know which
permutation (π or the identity permutation id) is applied. In actual execution,
this is performed behind the player’s back or under the table so that no players
can see the private permutation process.

Known results with private permutations. In 2016, Nakai, Tokushige,
Misawa, Iwamoto, and Ohta [36] proposed the model of private permutations.
They constructed efficient protocols for the well-known millionaires’ problem,
which is the problem on determining the richest person among all players. Sub-
sequently, Ono and Manabe [46] constructed an improved protocol for the mil-
lionaires’ problem. Nakai, Shirouchi, Iwamoto, and Ohta [35] constructed a
four-card protocol for a three-input voting function that takes three bits as in-
put and outputs 1 if at least two of three input bits are 1 and 0 otherwise.
Following this work, Watanabe, Kuroki, Suzuki, Koga, Iwamoto, and Ohta [62]
improved the efficiency by constructing a three-card protocol for the three-input
voting function. Although these protocols assume that each input is known by
a player, there are several protocols with private permutations that do not hold
this assumption. For example, Ono and Manabe [45, 47] designed several such
protocols for fundamental functions. Instead of private permutations with in-
put bits, their protocols use private permutations with random bits generated
during protocol execution. In particular, the authors introduced a new oper-
ation, a private random bisection cut, in which a designated player chooses a
random bit r ∈ {0, 1} and applies a private permutation according to r. Thus,

1.1. BACKGROUND 7

their protocols can be regarded as alternative implementations of the protocols
proposed by Mizuki and Sone [33] using private permutations instead of random
bisection cuts.

Discussion: protecting protocols against active attacks. Unlike shuf-
fles, no matter how complex a permutation π is, a private permutation with
π can be performed physically. (Recall that it is unknown how to physically
perform certain shuffles.) However, this produces a new threat. Since a private
permutation must be performed so that no player (except the i-th player) sees
the operation process, the i-th player may perform malicious activities in his or
her private permutations if he or she is malicious. Therefore, to obtain easy to
perform and secure protocols based on private permutations, malicious behavior
in private permutations must be addressed.

1.1.3 Protocols based on non-standard cards

Although the majority of card-based cryptography uses a deck of cards with
two colors ♣ ♥ , there are several works that use non-standard cards. In the
following, three types of cards – number cards (also known as playing cards),
cards with a rotationally symmetric back, and polarizing cards – are introduced.

Known results based on number cards. In 1999, Niemi and Renvall [39]
introduced a deck of number cards each with a unique color, which is denoted
by 1 2 3 · · · � when the size of the deck is �. The standard deck of playing
cards can be regarded as a deck of 52 number cards. For any two cards i and
j with i < j, a commitment to x ∈ {0, 1} is defined by two face-down cards
of i j if x = 0 and j i otherwise. Based on this encoding rule, the authors
constructed a five-card Las-Vegas AND protocol, a four-card Las-Vegas XOR
protocol, and a six-card Las-Vegas COPY protocol. Mizuki [28] improved Niemi
and Renvall’s result to finite runtime: an eight-card AND protocol, a four-card
XOR protocol, and a six-card COPY protocol. Koch, Schrempp, and Kirsten
[20] constructed a four-card Las-Vegas AND protocol and showed that there
is no four-card AND protocol with finite runtime. Although these protocols
compute fundamental functions, there are several works that compute other
functions, such as computation over permutations. For example, Hashimoto,
Nuida, Shinagawa, Inamura, and Hanaoka [14] used a deck of number cards
to construct a protocol generating a random permutation with no fixed points.
Such a permutation is known as derrangement, and the original protocol was
proposed by Crépeau and Killian [9]. For this type of computation, a pile-
scramble shuffle, which was introduced by Ishikawa, Chida, and Mizuki [17], is
useful. This type of shuffle is a generalized version of a random bisection cut,
as it divides k� cards into k piles of � cards and permutes them in a completely
random manner as follows (the following is an example of the case k = 3 and

8 CHAPTER 1. INTRODUCTION

� = 2):

1

?
2

?
3

?
4

?
5

?
6

? →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

?
2

?
3

?
4

?
5

?
6

? with probability 1/6
1

?
2

?
5

?
6

?
3

?
4

? with probability 1/6
3

?
4

?
5

?
6

?
1

?
2

? with probability 1/6
3

?
4

?
1

?
2

?
5

?
6

? with probability 1/6
5

?
6

?
1

?
2

?
3

?
4

? with probability 1/6
5

?
6

?
3

?
4

?
1

?
2

? with probability 1/6

A deck of number cards with pile-scramble shuffles (and pile-shifting shuffles, a
cyclic version of pile-scramble shuffles) makes it possible to construct new types
of protocols: a grouping protocol that generates a random permutation with
some conditions [15], zero-knowledge proofs for puzzles [6, 7, 11, 13, 22, 25, 48],
and a ranking protocol [60]. Some of these protocols use a mixed deck of cards
(e.g., ♣ ♥ ♣ ♥ ♣ ♥ 1 2 3 4 5 6). Shinagawa and Mizuki [54] showed an upper
bound on the number of cards for computing any function f : {0, 1}n → {0, 1}
in the case of a mixed deck of cards by constructing a generalized version of
Nishida et al. [40]’s general-purpose protocol.

Known results based on cards with a rotationally symmetric back.
In 2014, Mizuki and Shizuya [32] introduced an entirely different type of card
whose back side has a rotationally symmetric pattern (e.g., a white pattern such

as) and whose front side has a non-rotationally symmetric pattern (e.g., a

pattern with an arrow such as ↓). For a single bit, it is encoded as follows:

↓ = 0, ↑ = 1.

Using a deck of these cards, it is possible to compute any function using ap-
proximately half the number of cards that are required using a deck of binary
cards ♣ ♥ .

Known results based on polarizing cards. In 2015, Shinagawa, Mizuki,
Schuldt, Nuida, Kanayama, Nishide, Hanaoka, and Okamoto [56] proposed a
deck of polarizing cards, which are square-shaped polarizing plates. To encode
a bit x ∈ {0, 1}, two pairs of polarizing cards are encoded as 1 if a stack of them
produces a black pattern (i.e., they have the opposite polarizing directions) and
0 otherwise (i.e., they have the same polarizing direction). Using polarizing
cards, the authors constructed a four-card COPY protocol, a four-card XOR
protocol, and a four-card AND protocol. These protocols have the minimum
construction in terms of the number of cards.

1.2. CONTRIBUTION 9

Discussion: efficiently computing arithmetic circuits. In conventional
secure multiparty computation, arithmetic circuits (i.e., circuits using addition
and multiplication over modm) are well studied, as in the case of Boolean cir-
cuits. However, in card-based cryptography, almost all protocols are focused on
Boolean circuits, with several exceptions [6, 7, 11, 13, 15, 17, 22, 25, 48, 60]). Al-
though a general protocol for Boolean circuits implies a protocol for arithmetic
circuits, it produces inefficiency whereby the numbers of cards and shuffles are
increased by a factor of O(logm). An important open question is how to design
a new card for efficiently computing arithmetic circuits.

1.2 Contribution

In this dissertation, we study three models: protocols with shuffles, protocols
with private permutations, and protocols with non-standard cards.

Protocols with uniform closed shuffles. In the first model, we study pro-
tocols with uniform closed shuffles (Chapter 3). In this model, three types of
operations – permutations, turnings, and uniform closed shuffles – are allowed.
Our contributions are as follows (see also Table 1.1):

• We construct a general protocol for any function f : {0, 1}n → {0, 1} with
a single uniform closed shuffle. The number of cards is 2n+ 24q where q
is the number of AND/COPY gates of a circuit computing f .

• We construct a general protocol with two (extended) pile-scramble shuffles.
In the case of two extended pile-scramble shuffles, the number of cards is
2n + 24q + Δ. In the case of two standard pile-scramble shuffles, the
number of cards is 2n+24q+Δ′ such that Δ′ > Δ. Δ and Δ′ are defined
in Sections 3.4.3 and 3.4.4.

• We propose a card-based variant of the garbled circuit technique, which
computes any function with multiple pile-scramble shuffles. The first gen-
eral protocol is obtained by combining all shuffles in the garbled circuit
construction into a single shuffle.

• We propose a batching technique that combines multiple parallel pile-
scramble shuffles into a single pile-scramble shuffle. The second general
protocol is obtained by applying the batching technique to the garbled
circuit construction.

Active protocols with private permutations. In the second model, we
study active protocols with private permutations (Chapter 4). In this model,
three types of operations – permutations, turnings, and private permutations –
are allowed. We also assume that the initial sequence is a fixed sequence and
that the result is provided as a single face-down card. Our contributions are as
follows (see also Table 1.2):

10 CHAPTER 1. INTRODUCTION

Table 1.1: Protocols with uniform closed shuffles
of cards # of uniform closed shuffles

◦ Any function f : {0, 1}n → {0, 1} with q gates
Section 3.3 2n+ 24q 1 (uniform closed)
Section 3.4.3 2n+ 24q +Δ 2 (extended pile-scramble)
Section 3.4.4 2n+ 24q +Δ′ 2 (pile-scramble)

Table 1.2: Protocols with private permutations
security # of cards # of private permutations

◦ Any function f : {0, 1}n → {0, 1} with depth d
Section 4.3 active 2n n
Section 4.5.1 passive 5 O(2d)
Section 4.5.2 active 2n+ 7 O(2d + n)
◦ Any symmetric function f : {0, 1}n → {0, 1}
Section 4.6.1 passive n n+ 1
Section 4.6.2 active 2n 2n+ 2
◦ AND function for n inputs
Section 4.6.3 active n+ 1 n
◦ Equality of two n-bit strings
Section 4.6.4 active n+ 1 2n

• We define a new security notion, active security, for protocols with private
permutations. Informally, a protocol is said to be actively secure if it does
not leak any input information even when some players behave maliciously
in private permutations. Hereafter, we refer to a protocol with active
security as an active protocol.

• We construct an active protocol for any function f : {0, 1}n → {0, 1} with
n private permutations and 2n cards. This is the minimum construction
in terms of the number of private permutations.

• We construct an active protocol for any function f : {0, 1}n → {0, 1} with
2n+ 7 cards and O(2n) private permutations.

• We construct active protocols for various concrete functions: a protocol
for symmetric functions, a protocol for the AND function, and a protocol
for equality of two strings.

Protocols based on polygon-shaped cards. In the third model, we study
protocols based on polygon-shaped cards (Chapter 5). In particular, we design
two types of polygon shaped cards, cyclic cards and dihedral cards. Our contri-
butions are as follows (see also Tables 1.3 and 1.4):

1.3. OVERVIEW OF TECHNIQUES 11

Table 1.3: Protocols based on cyclic cards: n is the number of inputs; m is the
modulus; R is a rotation shuffle; BR is a backward rotation shuffle; FLW is a
flower shuffle; PRC is a pile random cut.

of cards # of shuffles
R BR FLW PRC

◦ Subtraction: x1 − x2 mod m
Section 5.1.5 2 1 0 0 0
◦ Addition: x1 + x2 mod m
Section 5.1.6 3 2 0 0 0
Section 5.1.7 2 0 1 0 0
◦ Constant multiplication: (0, x, 2x, · · · , (m− 1)x)
Section 5.1.8 m 0 2	logm
 0 0
◦ Multiplication: x1x2 mod m
Section 5.1.9 m+ 1 0 2	logm
 1 0
◦ Oblivious conversion
Section 5.1.10 (k + 1)m+ 1 0 1 0 1
Section 5.1.11 km+ 1 0 0 1 0
◦ Any function: f : (Zm)n → Zm

Section 5.1.12 mn + n 0 0 n 0

• We design a new card called a cyclic card that can treat a multi-valued
input x ∈ Z/mZ naturally. Hereafter, we use Zm to denote Z/mZ.

• Based on cyclic cards, we construct efficient protocols over Zm: a sub-
traction, addition, constant multiplication, multiplication, oblivious con-
version, and general protocol.

• We design a new card called a dihedral card that is a variant of a cyclic
card. As a cyclic card, it can treat a multi-valued input x ∈ Zm naturally.
Moreover, every protocol based on cyclic cards can be easily converted
into a protocol based on dihedral cards.

• Based on dihedral cards, we construct efficient protocols over Zm: an
initialization, addition, sign normalization, sign-to-value, carry, equality
with zero, equality, and greater than protocol.

1.3 Overview of techniques

1.3.1 Overview of protocols with uniform closed shuffles

Rationale for uniform closed shuffles. A uniform closed shuffle is a shuf-
fle whose permutation set Π is closed and the probability distribution D is a

12 CHAPTER 1. INTRODUCTION

Table 1.4: Protocols based on dihedral cards: n is the number of inputs; m is
the modulus; R is a rotation shuffle; FLP is a flipping shuffle; TR is a two-sided
rotation shuffle; p(α) is a function that outputs 1 if α is true and 0 otherwise.

of cards # of shuffles
R FLP TR

◦ Initialization
Section 5.2.5 1 1 0 0
◦ Addition: x1 + x2 mod 2m
Section 5.2.6 2 1 0 0
◦ Sign normalization: x mod m
Section 5.2.7 1 0 0 1
◦ Sign-to-value: p(x ≥ m)
Section 5.2.8 2 1 1 1
◦ Carry: p(x1 + x2 ≥ m)
Section 5.2.9 2 2 1 1
◦ Equality with zero: p(x = 0)
Section 5.2.10 2 1 1 1
◦ Equality: p(x1 = x2)
Section 5.2.11 2 2 1 2
◦ Greater than: p(x1 ≥ x2)
Section 5.2.12 2 2 1 1

uniform distribution over Π. This class of shuffles includes random cuts, ran-
dom bisection cuts, and pile-scramble shuffles. Every uniform closed shuffle is
considered easy to perform, as the effect of the shuffle can be easily produced
using private permutations as follows. Suppose that there are n players in the
execution of a protocol, and the protocol enters a uniform closed shuffle with
Π and D. Then, for 1 ≤ i ≤ n, the i-th player Pi uniformly and randomly
chooses a permutation πi ∈ Π and covertly applies it to the sequence of cards.
Due to the uniform closed property, the resulting permutation π = πn · · ·π2π1

is distributed uniformly and randomly among Π. Moreover, the above process
ensures that no player knows which permutation is chosen unless at least one
player is an honest player. Thus, any uniform closed shuffle is considered easy
to perform. Among uniform closed shuffles, three types of shuffles – random
cuts, random bisection cuts, and pile-scramble shuffles – are considered eas-
ier to perform than other uniform closed shuffles since they have fairly simple
physical implementations: A random cut can be performed by a Hindu cut [61];
A random bisection cut can be performed using a separator card and rubber
band, which is known as a spinning throw [61]; A pile scramble shuffle can be
performed using envelopes [17].

Protocol with a single uniform closed shuffle. We construct a general
protocol with a single uniform closed shuffle. This construction is based on a

1.3. OVERVIEW OF TECHNIQUES 13

card-based variant of the garbled circuit technique. Roughly speaking, the usual
garbled circuit technique to securely evaluate a circuit proceeds as follows: (I)
represent each gate in the circuit as the truth table of the associated function
{0, 1}2 → {0, 1}; (II) randomly permute the four input-output pairs in the
truth table, in order to prevent leakage of the output value when the gate is
evaluated; (III) randomly encode each of the inputs and outputs in the truth
table (in a consistent manner between the output of the previous gate and the
corresponding input(s) of the subsequent gate(s)), in order to hide the input
values; and (IV) then successively open one true output value among the four
in the randomly encoded truth table of each gate, from the bottom to the top.
The base protocol in Section 3.2 is a translation of the process described above
into a card-based protocol, where the random permutations in (II) and the
random encoding in (III) are realized by shuffle operations (the aforementioned
consistency in (III) between the gates is ensured by the property of pile-scramble
shuffles). See Section 3.2 for details. Based on the garbled circuit construction,
we obtain a general-purpose protocol with one shuffle immediately (Section 3.3).
This is achieved by aggregating all shuffles in the garbled circuit construction
into one shuffle. This strategy is effective since all shuffles in the garbled circuit
construction are successively applied.

Protocol with two pile-scramble shuffles. We construct a general protocol
with two (extended) pile-scramble shuffles (Table 1.1). This construction is also
a slightly modified version of the base protocol in Section 3.2. An important
property of the card-based garbled circuit technique is compatibility with the
parallel processing of shuffles. Namely, among the four steps in the garbled
circuit technique, the random permutations (shuffles) for the truth tables in
step (II) can be performed in parallel for all gates, and the random encoding
(shuffles) of the truth tables in step (III) can also be performed in parallel
for all input/output bits of the gates. The parallel executability of the shuffles
combined with our batching technique achieves a protocol with two pile-scramble
shuffles described in Section 3.4.

Batching technique. To explain the batching technique, here we provide
an example of combining a pile-scramble shuffle of k piles and a pile-scramble
shuffle of � piles. The underlying idea is to first apply a pile-scramble shuffle
to all k + � piles and then divide the resulting piles into the first set of k piles
and second set of � piles. Now both the first k piles and second � piles are
individually shuffled uniformly at random whenever the shuffle for the whole
of k + � piles is uniformly random. However, this naive idea is not generally
effective when the piles consist of face-down cards and the symbols on the front
sides of the cards cannot be revealed. In fact, it is impossible in this case to
detect the k piles in the first set among the k + � shuffled piles. To overcome
this issue, before performing the shuffle, we append several auxiliary face-down
cards to the top of each pile, where the auxiliary cards for each of the first k
piles (resp. second � piles) encode information that the pile belongs to the first

14 CHAPTER 1. INTRODUCTION

(resp. second) set of piles. Then, even after the shuffle, by opening the auxiliary
cards for each pile only, the piles in the two sets remain distinguishable from
each other while the front sides of the original cards remain hidden.

1.3.2 Overview of active protocols with private permuta-
tions

Definition of active attacks. In previous works on private permutations, all
players are assumed to be semi-honest; that is, all players always follow proto-
col specifications. Thus, we must first define an active attack, that is, malicious
behavior by a malicious player. It is reasonable to assume that in the execu-
tion of public operations such as permutations and turnings, it is impossible
to act maliciously without detection by other players since all players can see
the execution process at all times. Therefore, we assume that malicious actions
only accor in private permutations. Suppose that a protocol enters a private
permutation and the performing player is malicious. Since the other players
cannot see the process of the private permutation, malicious players can do ar-
bitrary malicious actions, including an illegal opening, in which they forcefully
turn over cards and obtain input information, and an illegal replacement, in
which they forcefully replace some cards with other cards that they themselves
prepared. Clearly, even a weaker notion of security cannot be guaranteed unless
malicious actions are restricted. Consequently, we first assume that in a private
permutation, the least harmful malicious action is to apply a malicious permu-
tation only. This assumption is reasonable when physical objects are available.
For example, illegal openings can be prevented by the use of tamper-evident
envelopes and illegal replacements can be prevented by the use of a physical
unclonable function.

Restricting a set of possible permutations. Next we define the permu-
tations that can be applied in a private permutation. Suppose that a protocol
using six cards enters a private permutation π = (1 2 3 4) with an index i.
Then, the leftmost four cards are passed to the i-th player who performs the
private permutation. If the player is malicious, it is reasonable to assume that
he or she can apply an arbitrary permutation π̃ with conditioning π̃(5) = 5 and
π̃(6) = 6 as follows:

? ? ? ? ? ? → ? ? ? ?︸ ︷︷ ︸
arbitrary arranged

? ?

We refer to the model in which any permutation can be applied as a bare-bone
model. However, the level of maliciousness in the bare-bone model is sometimes
too high. Thus, we also define two alternative models – an envelope model and
a ring-with-envelope model – both of which are justified by the use of physical
objects. In the envelope model, a number of envelopes are used when a private
permutation is executed. For example, if π = (1 4)(2 5)(3 6), the first, second,

1.3. OVERVIEW OF TECHNIQUES 15

and third cards are putted into an envelope, while the fourth, fifth, and sixth
cards are putted into another envelope as follows:

? ? ? ? ? ? → ? ? ?︸ ︷︷ ︸
envelope

? ? ?︸ ︷︷ ︸
envelope

Then, the two envelopes are passed to a player. The player decides whether to
swap them, and then, the envelopes are opened. In this case, due to the physical
nature of the envelopes, even a malicious player cannot apply a permutation π̃ �∈
{id, π}. In the ring-with-envelope model, a ring hanging a number of envelopes
is used when a private permutation is executed. As in the envelope model,
this model restricts the set of possible permutations to a cyclic permutation of
envelopes. For example, if π = (1 3 5)(2 4 6), the first and second cards are
putted into the first envelope, the third and fourth cards are putted into the
second envelope, and the fifth and sixth cards are putted into the third envelope.
Three envelopes are hung with a ring so as not to operate out of cyclic rotations.
The ring is then passed to a player. The player applies a cyclic rotation to them,
and then, the envelopes are opened as follows:

? ? ? ? ? ? → ? ?︸︷︷︸
envelope

? ?︸︷︷︸
envelope

? ?︸︷︷︸
envelope

In this case, due to the physical nature of the envelopes, even a malicious player
cannot apply a permutation π̃ �∈ {id, π, π2}. Finally, we classify attacks into
two types: an out-of-range attack and an inconsistent attack. Suppose that a
protocol enters a private permutation with a permutation π and index i. An
out-of-range attack applies a possible permutation π̃ �∈ {id, π}. An inconsistent
attack applies a permutation π′ ∈ {id, π} which is not inconsistent with a pre-
vious private permutation with index i; that is, the input bit xi for choosing π′

is not matched with that of a previous private permutation.

Active security. We introduce a new operation called an abort operation that
terminates protocol execution if the current visible sequence does not match
that of an honest execution. For example, suppose that a protocol enters an
abort operation with a visible sequence (?, ?, ?, ?,♣,♥) and an index i, and the
current sequence is ? ? ? ? ♥ ♣ . Then, the protocol terminates by claiming
that the i-th player is malicious. We say that a protocol is actively secure
whenever attack happens at a private permutation with an index i, a protocol
immediately aborts with claiming that the i-th player is malicious.

Active protocol with n private permutations. We construct a protocol
for any function f : {0, 1}n → {0, 1} with n private permutations and 2n cards.
This protocol is actively secure in the envelope model. It is optimal in terms of
the number of private permutations, as each input bit must be called by at least
one private permutation to compute a non-trivial function. This construction
is essentially based on a decision tree.

16 CHAPTER 1. INTRODUCTION

Active protocol with 2n+7 cards. We construct a protocol for any function
f : {0, 1}n → {0, 1} with 2n + 7 cards and O(2d) private permutations, where
d is the minimum depth of circuits computing f . This protocol is actively
secure in the envelope model. We actually show that any protocol that is secure
against semi-honest players can be converted into a protocol with active security
by adding 2n+ 2 cards. Based on Barrington’s theorem, there is a semi-honest
protocol with five cards for any function. Thus, we obtain a protocol with 2n+7
cards by applying the compiler to the five-card protocol.

1.3.3 Overview of protocols based on polygon-shaped cards

Cyclic cards. Let m ≥ 2 be any positive integer. A cyclic card for modulus
m is a card having a back side with (360/m)◦ rotational symmetry and a front
side with no rotational symmetry. For example, a square card with a front side
↑ and a back side is a cyclic card for modulus m = 4 as follows:

↑ = 0, ↑ = 1, ↑ = 2,

↑

= 3.

For x ∈ Zm, we use [[x]] to denote a face-down card having the value x. We also
use x to denote a face-up card having the value x. An important property is

that every [[x]] has an identical face on the back side. We show that several
concrete functions f : (Zm)n → Zm can be efficiently computed by using a deck
of cyclic cards. For example, we construct an addition protocol using only two
cards as follows:

︸︷︷︸
[[x1]]

︸︷︷︸
[[x2]]

⇒ ↑︸︷︷︸
0

︸︷︷︸
[[x1+x2]]

.

Since the protocol only uses a single backward rotation shuffle, it has the mini-
mum number of cards and shuffles.

Dihedral cards. Although a deck of cyclic cards makes it possible to compute
several functions efficiently, it is incapable of efficiently computing some classes
of functions. In particular, it has inefficiency to compute predicates that output
either 0 or 1. An important predicate is the carry of addition, which outputs
whether x1+x2 ≥ m. If a protocol computing the carry of addition is available,
it is possible to add any large numbers as follows:

︸︷︷︸
[[x0]]

︸︷︷︸
[[x1]]

· · · ︸︷︷︸
[[xk−1]]

︸︷︷︸
[[y0]]

︸︷︷︸
[[y1]]

· · · ︸︷︷︸
[[yk−1]]

⇒ ︸︷︷︸
[[z0]]

︸︷︷︸
[[z1]]

· · · ︸︷︷︸
[[zk−1]]

︸︷︷︸
[[zk]]

,

where x, y ∈ {1, 2, . . . ,mk}, z = x + y ∈ {1, 2, . . . , 2mk}, and xi, yi, zi ∈ Zm

is the i-th digit of x, y, z when the base is m. To circumvent the limitation of
cyclic cards, we introduce invisible ink to the field of card-based cryptography.
Text written in invisible ink is not visible but can becomes visible whenever
illuminated by a black light. Using invisible ink, we design a new card called
a dihedral card. A deck of dihedral cards is upward compatible with a deck of

1.4. PUBLICATION OVERVIEW 17

cyclic cards in the sense that any protocol based on cyclic cards can be easily
converted into the same protocol based on dihedral cards. In addition, a deck of
dihedral cards makes it possible to compute several concrete predicates including
a carry predicate p(x1+x2 ≥ m), equality with zero predicate p(x = 0), equality
predicate p(x1 = x2), and greater than predicate p(x1 ≥ x2).

1.4 Publication overview

Chapter 3 is based on the paper as follows:

• Kazumasa Shinagawa, Koji Nuida. “A Single Shuffle Is Enough for Se-
cure Card-Based Computation of Any Circuit,” IACR Cryptology ePrint
Archive, 2019/380 [58].

Chapter 4 is based on the papers as follows:

• Kazumasa Shinagawa. “Card-based Cryptographic Protocols Based on
Private Transpositions,” In 2018 Symposium on Cryptography and Infor-
mation Security, SCIS 2018, Niigata, Japan, January 23–26, 2018, Pro-
ceedings, 2018 (In Japanese) [49].

• Kazumasa Shinagawa. “Deterministic Cryptographic Protocols with Ac-
tive Security Using a Deck of Cards, Envelopes and Chains,” In 2019
Symposium on Cryptography and Information Security, SCIS 2019, Shiga,
Japan, January 22–25, 2018, Proceedings, 2019 (In Japanese) [50].

Chapter 5 is based on the papers as follows:

• Kazumasa Shinagawa, Takaaki Mizuki, Jacob C. N. Schuldt, Koji Nuida,
Naoki Kanayama, Takashi Nishide, Goichiro Hanaoka, Eiji Okamoto. “Multi-
party Computation with Small Shuffle Complexity Using Regular Polygon
Cards,” In Provable Security - 9th International Conference, ProvSec 2015,
Kanazawa, Japan, November 24–26, 2015, Proceedings, pages 127–146,
2015 [55].

• Kazumasa Shinagawa, Takaaki Mizuki, Jacob C. N. Schuldt, Koji Nuida,
Naoki Kanayama, Takashi Nishide, Goichiro Hanaoka, Eiji Okamoto. “Card-
Based Protocols Using Regular Polygon Cards,” IEICE Transaction on
Fundamentals of Electronics, Communications and Computer Sciences,
vol.100-A, no. 9, pp.1900–1909, 2017 [57].

• Kazumasa Shinagawa, Takaaki Mizuki. “Card-based Protocols Using Tri-
angle Cards,” In 9th International Conference on Fun with Algorithms,
FUN 2018, June 13–15, 2018, La Maddalena, Italy, pages 31:1–31:13,
2018 [52].

18 CHAPTER 1. INTRODUCTION

• Kazumasa Shinagawa. “Card-based Cryptography with Invisible Ink,”
Theory and Applications of Models of Computation - 15th Annual Con-
ference, TAMC 2019, Kitakyushu, Japan, April 13–16, 2019, Proceed-
ings, volume 11436 of Lecture Notes in Computer Science, pages 566–577.
Springer, 2019 [51].

Chapter 2

Preliminaries

2.1 Basic notations

Throughout this dissertation, we use the following notations: “N” denotes the
set of natural numbers, i.e., N = {1, 2, 3, . . .}. For any natural number m ∈ N,
“[m]” denotes the set [m] = {1, 2, 3, . . . ,m}. For any natural number m ∈ N,
“Sm” denotes the symmetric group of order m, i.e., Sm is the set of all per-
mutations over m symbols. For any real number x, “	x
” denotes the smallest
integer i such that i ≥ x. “log x” denotes the logarithm of x with the base two,
i.e., log2 x. “∅” denotes an empty set.

2.2 Model of protocols

2.2.1 Deck, sequence, and visible sequence

Deck. In Mizuki-Shizuya model, a deck is defined by a finite multiset. For
example, D = {♣,♣,♣,♥,♥,♥} denotes a deck consists of six cards: three clubs
and three hearts. All backsides are assumed to be “?”. (Thus, it is required the
condition that D∩{?} = ∅.) Although it captures some class of decks including
decks of binary cards ♣ ♥ and number cards 1 2 3 , it is not sufficient for our
purpose since it does not capture a deck of “functional” cards. In particular, we
introduce decks of such functional cards: cyclic cards and dihedral cards, both
of which allow to change a symbol of a card by rotating or flipping the card.

In our model, we define a deck as follows:

Definition 2.1 (Deck). A deck D is defined by a five-tuple as follows:

D := (C, T ,Σ, vis,D),

where C is a finite set called a card set, T ⊂ {t | f : C → C} is called a
transformation set, Σ is a finite set called a symbol set, vis : C → Σ is a function
called a vision function, and D is a finite multiset called a deck set, where the

19

20 CHAPTER 2. PRELIMINARIES

base set is C. We assume that T always contains the identity function id : C → C.
The former four-tuple (C, T ,Σ, vis) is called a card specification. �

Example 1. Consider a deck of cards ♣ ♣ ♥ ♥ ♥ whose back sides are ? , which
is used by the Five-Card Trick [10]. The deck is described by the following:

• The card set is C = {♣/?,♥/?, ?/♣, ?/♥};

• The symbol set is Σ = {♣,♥, ?};

• The transformation set is T = {id, turn}, where the function turn is defined
by turn(X/Y) = Y/X for any X,Y ∈ Σ;

• The vision function vis is defined by vis(X/Y) = X for any X,Y ∈ Σ;

• The deck set is D = {♣/?,♣/?,♥/?,♥/?,♥/?} = {(♣/?)2, (♥/?)3}.

For the card set C, the element “♣/?” (resp. “♥/?”) means a face-up card ♣
(resp. ♥) and the element “?/♣” (resp. “?/♥”) means a face-down card ♣
whose front side is ? (resp. ♥). The transformation set has a turning trans-
formation turn. By applying turn to a card, a face-up card is changed to a
face-down card (and vice versa). The vision function specifies what information
is revealed from a card. From face-up cards “♣/?” and “♥/?”, it reveals the
symbols “♣” and “♥”, on the other hand, from face-down cards “?/♣” and
“?/♥”, it reveals “?” only. This card specification (C, T ,Σ, vis) is called the bi-
nary cards. Hereafter, we denote the binary cards by Binary = (Cb, T b,Σb, visb).
We will use the binary cards in Chapters 3 and 4. �

Sequence. We define a sequence as follows:

Definition 2.2 (Sequence). Let D = (C, T ,Σ, vis,D) be a deck. A sequence s
in D is defined as follows:

s = (t1(x1), t2(x2), . . . , t|D|(x|D|)),

where t1, t2, . . . , t|D| ∈ T and D = {x1, x2, . . . , x|D|} as a multiset. The set of

all sequences in D is denoted by SeqD. �

Example 2. Let D = (Binary,D) be the deck in Example 1. An example of a
sequence s of D is as follows:

s = (?/♣, ?/♥,♥/?, ?/♥, ?/♣).

This is because s is represented as follows:

s = (turn(♣/?), turn(♥/?), id(♥/?), turn(♥/?), turn(♣/?)).

It represents a sequence ? ? ♥ ? ? . �

2.2. MODEL OF PROTOCOLS 21

Visible sequence. We define a visible sequence as follows:

Definition 2.3 (Visible sequence). Let D = (C, T ,Σ, vis,D) be a deck and let

s = (x1, x2, . . . , x|D|) ∈ SeqD be a sequence in D. A visible sequence of s in D
is defined as follows:

vis(s) := (vis(x1), vis(x2), . . . , vis(x|D|)).

The set of all visible sequences in D is defined as follows:

VisD = {vis(s) | s ∈ SeqD}.

�

Example 3. Let s be the sequence in Example 2. The visible sequence of s is
vis(s) = (?, ?,♥, ?, ?). We sometimes write it by (?2,♥, ?2) or ?2♥?2. �

2.2.2 Operation

Let D be a deck. Let s ∈ SeqD be a sequence in D. We consider two types of
operations, conversion and opening, as follows:

• Conversion: It converts s into a new sequence s′ ∈ SeqD. When it is
deterministic, it is called a deterministic operation (e.g. permutation).
When it is randomized, it is called a probabilistic operation (e.g. shuffle).
When it depends on the input information, it is called an input-dependent
operation (e.g. private permutation).

• Opening: It reveals some information on s (e.g. sign opening).

Now we define the most standard set of operations (of conversion) for binary
cards. Let D = (Binary,D) be a deck of binary cards such that |D| = � and

let s = (c1, c2, . . . , c�) ∈ SeqD be a sequence in D. We define three sets of
operations, permutation, turning, and shuffle, as follows:

Permutation. For π ∈ S�, a permutation operation (perm, π) generates a new
sequence in D as follows:

(c1, c2, . . . , c�) → (cπ−1(1), cπ−1(2), . . . , cπ−1(�)).

That is, the card in the i-th position in s is moved to the π(i)-th position in the
new sequence. The set of permutations Perm� for sequences of � cards is defined
as follows:

Perm� := {(perm, π) | π ∈ S�}.

22 CHAPTER 2. PRELIMINARIES

Turn. For a set of positions T ⊂ [�], a turning operation (turn, T) takes s as

input and returns a new sequence s′ ∈ SeqD as follows:

(c1, c2, . . . , c�) → (c′1, c
′
2, . . . , c

′
�),

where for i ∈ T , it holds c′i = turn(ci), where this “turn” is a transformation
(i.e., turn ∈ T b), and for i �∈ T , it holds c′i = ci. The set of turnings Turn� for
sequences of � cards is defined as follows:

Turn� := {(turn, T) | T ⊂ [�]}.

Shuffle. A shuffle operation is defined by a tuple (shuffle,Π, D), where Π ⊂ S�

is a subset of permutations andD is a probability distribution on Π. It randomly
generates a new sequence s′ ∈ SeqD as follows:

(c1, c2, . . . , c�) → (cπ−1(1), cπ−1(2), . . . , cπ−1(�)),

where π ∈ Π is independently and randomly chosen according to D. The set of
shuffles Shuf� for sequences of � cards is defined as follows:

Shuf� := {(shuffle,Π, D) | Π ⊂ S�, D is a distribution on Π}.

A shuffle (shuffle,Π, D) is said to be

• uniform if D is a uniform distribution on Π;

• closed if Π is closed;

• uniform closed if it is uniform and closed.

The sets of uniform shuffles, closed shuffles, and uniform closed shuffles for
sequences of � cards are similarly defined and denoted by U�, C�, and UC�,
respectively. Note that all of three are subsets of Shuf� and UC� = U� ∩ C�.

2.2.3 View

Let D be a deck. Let O be a set of operations. For a sequence s ∈ SeqD,
an operation op ∈ O converts it into a new sequence s′ ∈ SeqD with revealed
information r ∈ {0, 1}∗ as follows:

s → s′ revealed information r,

where if op is conversion, revealed information is defined by r = ⊥, and if op is
opening, s′ is equivalent to s. What is revealed from this process to the players?
Before applying op, they observe a visible sequence vis(s). After applying op,
they observe a visible sequence vis(s′) and revealed information r. Thus, all
information revealed from the above process is (vis(s), vis(s′), r).

Suppose that a list of k operations �op ∈ Ok is applied to a sequence s0 as
follows:

s0 → s1 → s2 → · · · → sk.

2.2. MODEL OF PROTOCOLS 23

Assume that the i-th operation brings revealed information ri ∈ {0, 1}∗. Then,
all information revealed from the above process is given as follows:

(vis(s0), r0) → (vis(s1), r1) → (vis(s2), r2) → · · · → (vis(sk), rk),

where r0 = ⊥ and ri = ⊥ if the i-th operation is conversion. This is called a

view of �op starting with the sequence s0. The set of views ViewD is defined as
follows:

ViewD =
(
VisD × {0, 1}∗

)∗
.

Example 4. Let D = (Binary,D) be the deck in Example 1. Let O be a set of
operations O = Perm5 ∪Turn5. Let �op be a list of operations defined as follows:

�op =
(
(perm, (1 2)), (turn, {1, 2}), (perm, (1 3))

)
.

When it is applied to a sequence s0 = (?/♣, ?/♥, ?/♣) as follows:

(?/♣, ?/♥, ?/♣) → (?/♥, ?/♣, ?/♣) → (♥/?,♣/?, ?/♣) → (?/♣,♣/?,♥/?),

a view of �op starting with the sequence s0 is given as follows:

((?, ?, ?),⊥) → ((?, ?, ?),⊥) → ((♥,♣, ?),⊥) → ((?,♣,♥),⊥).

We sometimes omit revealed information it is clear that all operations are con-
version as follows:

(?, ?, ?) → (?, ?, ?) → (♥,♣, ?) → (?,♣,♥).

We also write the above by ?3 → ?3 → ♥♣? → ?♣♥. �

2.2.4 Protocol

Protocol. We define a protocol as follows:

Definition 2.4 (Protocol). A protocol P is defined by a five-tuple as follows:

P = (n,X,D,O, A),

where

• n ∈ N is any natural number called the number of inputs;

• X is a finite set called an input domain;

• D = (C, T ,Σ, vis,D) is a deck ;

• O is a finite set called an operation set ;

• A : ViewD → O ∪ {⊥} is an action function. �

24 CHAPTER 2. PRELIMINARIES

Execution of a protocol. Let P = (n,X,D,O, A) be a protocol. Let s0 ∈
SeqD be a sequence. An execution of P starting with s0 proceeds as follows:

1. The initial sequence is set to s0 as follows:

s0 = ? ? ? · · · ? .

Set s ← s0 and v ← (vis(s0),⊥), where s is a variable of the current
sequence and v is a variable of the entire view of an execution.

2. Compute the action function A(v) = α; if α �= ⊥, apply the operation α
to the sequence s; and obtain a new sequence s′ with revealed information
r ∈ {0, 1}∗; Set s ← s′ and append “→ (vis(s′), r)” to v; Repeat this step
until it happens α = ⊥.

3. If A(v) = ⊥, terminate the execution.

Example 5. We describe a (slightly modified version of) six-card AND protocol
by Mizuki and Sone [33] as follows:

(2, {0, 1},D,O, A).

The deck D is defined by D = (Binary, {(♣/?)3, (♥/?)3}). The operation set O
is defined by O = Perm6 ∪ Turn6 ∪ Shuf6. The action function A is defined by:

• A(v0) = (perm, (2 4 3));

• A(v1) = (shuffle,Π, D) where Π = {id, (1 4)(2 5)(3 6)} and D is a uniform
distribution over Π;

• A(v2) = (perm, (2 4 3)−1);

• A(v3) = (turn, {1, 2});

• A(v4) = (perm, (1 2)(3 5)(4 6));

• A(v) = ⊥ for any v �∈ {v0, v1, v2, v3, v4}.

where

• v0 = (?6,⊥);

• v1 = (?6,⊥) → (?6,⊥);

• v2 = (?6,⊥) → (?6,⊥) → (?6,⊥);

• v3 = (?6,⊥) → (?6,⊥) → (?6,⊥) → (?6,⊥);

• v4 = (?6,⊥) → (?6,⊥) → (?6,⊥) → (?6,⊥) → (♥♣?4,⊥).

2.2. MODEL OF PROTOCOLS 25

We describe an execution of this protocol starting with an initial sequence s0 =
(com(x1), com(x2), com(1)) as follows:

s0 = ? ?︸︷︷︸
x1

? ?︸︷︷︸
x2

? ?︸︷︷︸
1

,

where the commitment com(b) (b ∈ {0, 1}) be two face-down cards whose front
sides are ♣ ♥ if b = 0 and ♥ ♣ otherwise. The protocol proceeds as follows:

1. (perm, (2 4 3)): Rearrange the order of the sequence as follows:

? ? ? ? ? ?

? ? ? ? ? ? .

2. (shuffle,Π, D): Apply the shuffle:

1

?
2

?
3

?
4

?
5

?
6

?
(shuffle,Π,UΠ)−−−−−−−−→

⎧⎨⎩
1

?
2

?
3

?
4

?
5

?
6

? with probability 1/2
4

?
5

?
6

?
1

?
2

?
3

? with probability 1/2

This is a random bisection cut (See also Section 1.1.1).

3. (perm, (2 4 3)−1): Rearrange the order of the sequence as follows:

? ? ? ? ? ?

? ? ? ? ? ? .

4. (turn, {1, 2}): Turn the leftmost commitment as follows:

♣ ♥ ? ? ? ?

♥ ♣ ? ? ? ? .

If it is the former case, i.e., the opened symbols are ♣ ♥ , the protocol
terminates. Otherwise, it proceeds to the next Step.

5. (perm, (1 2)(3 5)(4 6)}): Rearrange the order of the sequence as follows:

♥ ♣ ? ? ? ?

♣ ♥ ? ? ? ? .

After Steps 4 and 5, the protocol terminates. Then, the finial sequence is given
as follows:

♣ ♥ ? ?︸︷︷︸
x1∧x2

? ?︸︷︷︸
x1∧x2

.

Since it contains a commitment to x1 ∧ x2, it is said to be an AND protocol. �

26 CHAPTER 2. PRELIMINARIES

2.2.5 Functionality

In order to define the correctness and the security of protocols, we introduce
a notion of functionality. Informally speaking, a functionality is a pair of se-
quences parametrized by input variables �x ∈ Xn. For example, the following is
the functionality FAND of Mizuki-Sone’s AND protocol (See Example 5).

FAND : ? ?︸︷︷︸
x1

? ?︸︷︷︸
x2

? ?︸︷︷︸
1

⇒ ♣ ♥ ? ?︸︷︷︸
x1∧x2

? ?︸︷︷︸
x1∧x2

.

It is also described as follows:

FAND : (com(x1), com(x2), com(1)) ⇒ (♣♥, com(x1 ∧ x2), com(x1 ∧ x2)).

When some part of input/output sequences in a functionality are not important,
⊥ is used. For example, when the AND protocol does not care about the
rightmost commitment in the output sequence, it is described as follows:

F ′
AND : (com(x1), com(x2), com(1)) ⇒ (♣♥, com(x1 ∧ x2),⊥2).

Sequence with a dummy symbol. Let D = (C, T ,Σ, vis,D) be a deck with

C ∩ {⊥} = ∅, where ⊥ is a dummy symbol. Let s = (c1, c2, . . . , c�) ∈ SeqD

be a sequence. A sequence s′ = (c′1, c
′
2, . . . , c

′
�) ∈ (C ∪ {⊥})� is said to be a

dummy sequence of s if c′i ∈ {ci,⊥} for all i ∈ [�]. Thus, there exist 2� dummy
sequences of any sequence of � cards. The set of dummy sequences of s is denoted
by Seq⊥(s). The set of dummy sequences of D is defined by

SeqD⊥ =
⋃

s∈SeqD

Seq⊥(s).

We say that s ∈ SeqD is matched with s′ ∈ SeqD⊥ if s′ ∈ Seq⊥(s).

Example 6. For a sequence s = (c1, c2, c3), Seq⊥(s) is given as follows:

Seq⊥(s) = {(c1, c2, c3), (⊥, c2, c3), (c1,⊥, c3), (c1, c2,⊥),

(⊥,⊥, c3), (c1,⊥,⊥), (⊥, c2,⊥), (⊥,⊥,⊥)}.

For a sequence s′ = (c1, c2, c
′
3) with c′3 �= c3, s

′ is matched with (c1, c2,⊥). �

Variable sequence. Let D be a deck, X be an input domain, and n be the

number of inputs. A variable sequence s over SeqD is defined by a function

s : Xn → SeqD. A variable dummy sequence s over SeqD⊥ is defined by a

function s : Xn → SeqD⊥.

2.2. MODEL OF PROTOCOLS 27

Example 7. An input sequence s(x) of Mizuki-Sone’s AND protocol is a vari-

able sequence s : {0, 1}2 → SeqD defined as follows:

s(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(?/♣, ?/♥, ?/♣, ?/♥, ?/♣, ?/♥) if x = (0, 0)

(?/♣, ?/♥, ?/♥, ?/♣, ?/♣, ?/♥) if x = (0, 1)

(?/♥, ?/♣, ?/♣, ?/♥, ?/♣, ?/♥) if x = (1, 0)

(?/♥, ?/♣, ?/♥, ?/♣, ?/♣, ?/♥) otherwise.

An output sequence s′(x) of Mizuki-Sone’s AND protocol is a variable dummy

sequence s′ : {0, 1}2 → SeqD⊥ defined as follows:

s′(x) =

{
(♣/?,♥/?, ?/♥, ?/♣,⊥2) if x = (1, 1)

(♣/?,♥/?, ?/♣, ?/♥,⊥2) otherwise.

�

Functionality. A functionality is defined as follows:

Definition 2.5 (Functionality). Let D be a deck, X be an input domain, and
n be the number of inputs. A functionality F is defined by a pair:

F = (sin, sout),

where sin : Xn → SeqD is a variable sequence over SeqD and sout : X
n → SeqD⊥

is a variable dummy sequence over SeqD⊥. �

2.2.6 Correctness

Correctness. The correctness of protocols is defined as follows:

Definition 2.6 (Correctness). Let P = (n,X,D,O, A) be a protocol. Let
F = (sin, sout) be a functionality. We say that P correctly realizes F if for
any input �x ∈ Xn, any execution of P starting with sin(�x) terminates with a
sequence s that is matched with sout(�x). �

The correctness of protocols in a committed format is defined as follows:

Definition 2.7 (Correctness in a committed format). Let P = (n,X,D,O, A)
be a protocol for D = (C, T ,Σ, vis,D). Let F = (sin, sout) be a functionality.

Let f : Xn → X be a function. Let com : X → SeqD
′
be a commitment,

where D′
= (C, T ,Σ, vis,D′) such that D contains n copies of D′. We say that

P correctly computes f if it satisfies the following:

• P correctly realizes F ;

• sin = (com(x1), com(x2), · · · , com(xn), s) where s is a (possibly empty)
fixed sequence;

• sout contains com(f(x1, x2, . . . , xn)) on a fixed position. �

28 CHAPTER 2. PRELIMINARIES

2.2.7 Security

The probability distribution of a view. Let P = (n,X,D,O, A) be a

protocol. Let s0 ∈ SeqD be a sequence and let x ∈ Xn be an input. The
probability distribution of a view of P with input x and starting with sequence s0
is denoted by viewP(s0, x), where randomness comes from probability operations
(e.g., shuffles).

Security. The security of protocols is defined as follows:

Definition 2.8 (Security). Let P = (n,X,D,O, A) be a protocol. Let F =
(sin, sout) be a functionality. We say that P securely realizes F if for every
x, x′ ∈ Xn, it holds viewP(sin(x), x) = viewP(sin(x′), x′). �

Example 8. Let us prove that the protocol given in Example 5 securely realizes
the functionality FAND = (sin, sout) defined as follows:

FAND : (com(x1), com(x2), com(1)) ⇒ (♣♥, com(x1 ∧ x2), com(x1 ∧ x2)).

Let x ∈ {0, 1}2 be any input. The probability distribution of a view of the
protocol starting with the sequence sin(x) = (com(x1), com(x2), com(1)) is given
as follows:

view(sin(x), x) =

{
v → (♣♥?4,⊥) with probability 1/2

v → (♥♣?4,⊥) → (♣♥?4,⊥) with probability 1/2

where v = (?6,⊥) → (?6,⊥) → (?6,⊥) → (?6,⊥). Due to the random bisection
cut, the above probability distribution view(sin(x), x) is the same for any x ∈
{0, 1}2. Therefore, it securely realizes the functionality. �

2.2.8 Composition of protocols

Oracle operation. Let P = (n,X,D,O, A) be a protocol. An oracle of P
is a “magical box” that executes the protocol P in a single step: it takes a

sequence s0 ∈ SeqD as an input and outputs a final sequence of P when the
initial sequence is s0 as follows:

Protocol P︷ ︸︸ ︷
? . . . ?︸ ︷︷ ︸

s0

→ ? . . . ?︸ ︷︷ ︸
s1

→ . . . → ? . . . ?︸ ︷︷ ︸
sk−1

→ ? . . . ?︸ ︷︷ ︸
sk

? . . . ?︸ ︷︷ ︸
s0

→ oracle of P → ? . . . ?︸ ︷︷ ︸
sk

Formally, an oracle operation for a protocol P is defined as follows:

(oracle,P, T),

2.2. MODEL OF PROTOCOLS 29

where T ⊂ [�] is a subset of positions such that |T | is the number of cards of P.
(We assume that the number of cards of P is equal to or less than �.) The set
of oracle operations with P is denoted as follows:

Oracle�[P] = {(oracle,P, T) | T ⊂ [�]}.

For protocols P1,P2, . . . ,Pk, we define the set of oracle operations as follows:

Oracle�[P1,P2, . . . ,Pk] = Oracle�[P1] ∪ Oracle�[P2] ∪ · · · ∪ Oracle�[Pk].

We define an oracle-respecting protocol as follows:

Definition 2.9 (Oracle-respecting protocol). Let Fsub = (sin, sout) be a func-
tionality using �sub cards. Let Psub = (nsub, Xsub,Dsub,Osub, Asub) be a protocol
using �sub cards. Let P = (n,X,D,O, A) be a protocol using � cards (� ≥ �sub).
We say that P is oracle-respecting for Psub and Fsub if it satisfies as follows:

• Oracle�[Psub] ⊂ O;

• For any input x ∈ {0, 1}n, whenever P enters an operation (oracle,Psub, T),
the cards on positions T in the current sequence is always equivalent to
sin(x

′) for some input x′ ∈ Xsub. Here, the input x′ for Psub can be varied
for each call of the oracle for Psub. �

Example 9. Let PAND2 be a two-bit AND protocol defined as follows:

PAND2 = (2, {0, 1}, (Binary, {(♣/?)3, (♥/?)3}),Perm6 ∪ Turn6 ∪ Shuf6, A),

that correctly and securely realizes a functionality FAND2 as follows:

FAND2 : ? ?︸︷︷︸
x1

? ?︸︷︷︸
x2

? ?︸︷︷︸
1

⇒ ?
⊥

?
⊥

? ?︸︷︷︸
x1∧x2

? ?︸︷︷︸
1

This is obtained from Mizuki and Sone’s AND protocol in Example 5 with a
small modification. By using the oracle of PAND2, we construct an eight-card
three-bit AND protocol PAND3 defined as follows:

PAND3 = (3, {0, 1}, (Binary, {(♣/?)4, (♥/?)4}),Oracle8[PAND2], A
′).

that realizes a functionality FAND3 = (sin, sout) as follows:

FAND3 : ? ?︸︷︷︸
x1

? ?︸︷︷︸
x2

? ?︸︷︷︸
x3

? ?︸︷︷︸
1

⇒ ?
⊥

?
⊥

?
⊥

?
⊥

? ?︸︷︷︸
x1∧x2∧x3

? ?︸︷︷︸
1

.

It proceeds as follows:

1. (oracle,PAND2, {1, 2, 3, 4, 7, 8}): Apply the two-bit AND protocol for cards
on {1, 2, 3, 4, 7, 8} as follows:

? ?︸︷︷︸
x1

? ?︸︷︷︸
x2

? ?︸︷︷︸
x3

? ?︸︷︷︸
1

→ ?
⊥

?
⊥

? ?︸︷︷︸
x1∧x2

? ?︸︷︷︸
x3

? ?︸︷︷︸
1

.

30 CHAPTER 2. PRELIMINARIES

2. (oracle,PAND2, {3, 4, 5, 6, 7, 8}): Apply the two-bit AND protocol for cards
on {3, 4, 5, 6, 7, 8} as follows:

?
⊥

?
⊥

? ?︸︷︷︸
x1∧x2

? ?︸︷︷︸
x3

? ?︸︷︷︸
1

→ ?
⊥

?
⊥

?
⊥

?
⊥

? ?︸︷︷︸
x1∧x2∧x3

? ?︸︷︷︸
1

.

We can observe that the protocol PAND3 is oracle-respecting for PAND2 and
FAND2: the first condition in Definition 2.9 is satisfied since the operation set of
PAND3 is Oracle8[PAND2]; and, the second condition in Definition 2.9 is satisfied
since for each call of the oracle PAND2, the cards on positions T in the sequence
is equivalent to sin(x

′) for some x′ ∈ {0, 1}2. �

Proposition 2.1 (Composition theorem). Let Pi = (ni, Xi,Di,Oi, Ai) (i ∈ [k])
be a protocol that correctly and securely realizes a functionality Fi. Let P =
(n,X,D,O ∪ Oracle�[P1,P2, · · · ,Pk], A) be a protocol that is oracle-respecting
for Pi and Fi, and O is upward compatible with Oi for every i ∈ [k]. If P
correctly and securely realizes a functionality F , then there exists a protocol
P ′ = (n,X,D,O, A) that correctly and securely realizes F . �

Proof. The protocol P ′ is obtained from the protocol P by replacing all oracle
calls of Pi with the protocols Pi for all i ∈ [k]. We can observe that the final
sequence of P and that of P ′ are the same since P is oracle-respecting. Thus,
P ′ correctly realizes F . We can also observe that a view of P ′ is obtained from
a view of P by replacing all oracle calls of Pi with a view of Pi for all i ∈ [k].
Since P and Pi securely realize F and Fi, respectively, for all i ∈ [k]. Thus, P ′

also securely realizes F . �

2.3 Terminologies

2.3.1 Circuit

In this paper, we use the following formulation for circuits given in [5]. A circuit
C is defined as a six-tuple C = (n,m, q, L,R,G). Here, n ≥ 1 is the number of
input bits, m ≥ 1 is the number of output bits, q ≥ 1 is the number of gates.
We assume that each gate has two incoming wires and one outgoing wire, and
an outgoing wire that is not an output wire of the protocol may then branch
and go into several gates as the incoming wires. Accordingly, the outgoing wire
of a gate and the corresponding incoming wire(s) of the subsequent gate(s) are
identified with each other. We also allow a case where the two incoming wires
of a gate come from the same previous gate, in order to realize by a gate a
single-input function such as the NOT function.

Now we associate indices to the input bits, gates, wires, and the output bits
as follows: Inputs = {1, . . . , n}, Gates = {n+1, . . . , n+q}, Wires = {1, . . . , n+q},
Outputs = {n+ q −m+ 1, . . . , n+ q}. Every wire w ∈ Wires is either an input
wire or an outgoing wire of some gate, which has the same index as the wire
itself. Then, L,R : Gates → Wires\Outputs are functions that map a gate to its

2.3. TERMINOLOGIES 31

left (respectively, right) incoming wire. Moreover, for each w ∈ Wires \Outputs,
we write L−1(w), R−1(w) to denote the set of the gates g satisfying L(g) = w
(respectively, R(g) = w). Finally, G : Gates×{0, 1}2 → {0, 1} is a function that
determines the functionality of each gate; given g ∈ Gates and b1, b2 ∈ {0, 1},
we often write Gg(b1, b2) = G(g, (b1, b2)) ∈ {0, 1} to simplify the description.
We require L(g) ≤ R(g) < g for all g ∈ Gates.

Example 10. We consider a function f : {0, 1}3 → {0, 1}2 given by f(x1, x2, x3) =
((x1 ∧ x2)⊕ x3, (x1 ∧ x2)∨ x3). A circuit for f can be defined by n = 3, m = 2,
q = 3, G4(b1, b2) = b1 ∧ b2, G5(b1, b2) = b2 ⊕ b1, G6(b1, b2) = b2 ∨ b1, L(4) = 1,
R(4) = 2, L(5) = 3, R(5) = 4, L(6) = 3, and R(6) = 4.

2.3.2 Branching program

A branching program is a finite list of instructions which is defined by a three-
tuple 〈p, π0, π1〉 for an index p ∈ [n] and two permutations π0, π1 ∈ Sw. The
number of instructions is called the length and w is called the width.

Let B be a branching program of length � and of width w, where the j-th

instruction is 〈pj , π(j)
0 , π

(j)
1 〉 for j ∈ [�]. We define an executed permutation of B

with an input x ∈ {0, 1}n, denoted by epB,x, by the following permutation:

epB,x = π(�)
xp�

π(�−1)
xp�−1

· · ·π(2)
xp2

π(1)
xp1

.

We say that B computes a function f : {0, 1}n → {0, 1} if epB,x(1) = 1 if and
only if f(x) = 1.

Lemma 2.1 (Barrington’s Theorem [4]). Let f : {0, 1}n → {0, 1} be a function
which can be computed by a depth-d circuit. Then, there exists a branching
program of size 5 and length at most 4d, which computes f .

Chapter 3

Protocols with Uniform
Closed Shuffles

3.1 Notations

In this chapter, we use notations as follows.

Deck and commitment. We assume that a deck is D = (Binary,D), i.e., the
card specification of D is Binary = (Cb, T b,Σb, visb) (see Example 1 in Section
2.2.1). Based on binary cards, we use a commitment com defined as follows:

com(x) =

{
(?/♣, ?/♥) if x = 0

(?/♥, ?/♣) if x = 1

For a commitment to x ∈ {0, 1}, we use a graphical notation as follows:

? ?︸︷︷︸
x

.

Operations. Let � = |D| be the number of cards. We assume that the set of
operations is Ob

� defined as follows:

Ob
� = Perm� ∪ Turn� ∪ UC�.

In other words, we assume that a protocol does not use a non-uniform and/or
non-closed shuffle.

Pile-scramble shuffle. A pile-scramble shuffle for �′ piles of k cards is a
uniform closed shuffle where �′ sets of k cards are rearranged according to a
completely random permutation π ∈ S�′ . Let T1, T2, . . . , T�′ ⊂ [�] be disjoint
sets with Ti = {ti,1, ti,2, . . . , ti,k} for ti,1 < ti,2 < . . . < ti,k. For a permutation

33

34 CHAPTER 3. PROTOCOLS WITH UNIFORM CLOSED SHUFFLES

π ∈ S�′ over �
′ words, a pile permutation pile�[T1, T2, . . . , T�′ ;π] ∈ S� is defined

by a permutation over � words as follows:

pile�[T1, T2, . . . , T�′ ;π](x) =

{
tπ(i),j if x = ti,j for some i ∈ [�′], j ∈ [k]

x otherwise.

Formally, the pile-scramble shuffle is denoted as (shuffle,Π, D) where D is a
uniform distribution of Π and the permutation set Π is defined as follows:

Π = {pile�[T1, T2, . . . , T�′ ;π] | π ∈ S�′}.

Hereafter, we use to denote it as follows:

(pileShuffle, T1, T2, . . . , Tk).

3.2 Base protocol

Preliminaries. Let f : {0, 1}n → {0, 1} be a function and let C = (n, 1, q, L,R,G)
be a circuit computing f . For each gate g ∈ Gates, let tg ∈ {0, 1}12 be the string
representing the truth table of g as follows:

tg =

0 0 Gg(0, 0)
0 1 Gg(0, 1)
1 0 Gg(1, 0)
1 1 Gg(1, 1)

It can also be represented by a single-line bit string as follows:

tg = (0, 0, Gg(0, 0), 0, 1, Gg(0, 1), 1, 0, Gg(1, 0), 1, 1, Gg(1, 1)).

We call the former by a table expression of g and the latter by a string expression
of g. Using additional cards, a truth table tg can be encoded as a sequence of
face-down cards as follows:

? ?︸︷︷︸
0

? ?︸︷︷︸
0

? ?︸︷︷︸
Gg(0,0)

? ?︸︷︷︸
0

? ?︸︷︷︸
1

? ?︸︷︷︸
Gg(0,1)

? ?︸︷︷︸
1

? ?︸︷︷︸
0

? ?︸︷︷︸
Gg(1,0)

? ?︸︷︷︸
1

? ?︸︷︷︸
1

? ?︸︷︷︸
Gg(1,1)

This encoding of 24 cards is denoted by com(tg). The initial sequence Γx for
an input x = (x1, · · · , xn) is the concatenation of com(x1), · · · , com(xn) and
com(tn+1), · · · , com(tn+q) as follows:

Γx = ? ?︸︷︷︸
x1

? ?︸︷︷︸
x2

· · · ? ?︸︷︷︸
xn

24 cards︷ ︸︸ ︷
? ? · · · ? ?︸ ︷︷ ︸

tn+1

· · ·
24 cards︷ ︸︸ ︷

? ? · · · ? ?︸ ︷︷ ︸
tn+q

.

Thus, the number of cards in Γx is 2n + 24q. We note that the commitments
of the truth tables com(tn+1), · · · , com(tn+q) can be put in front of all parties
since all truth tables are publicly known.

3.2. BASE PROTOCOL 35

In the base protocol, two types of shuffles are used. The first type of shuffles
is random bisection cut, which is applied for each wire except the output wire.
This results in two cases: nothing happens or all values associated to the wire
are flipped. For example, suppose that a truth table of tg satisfies L(g) = 1, i.e.,
the left input wire of tg is connected to the input bit x1, and there is no other
gate g′ ∈ Gates \ {g} such that g′ is connected to x1. Then, a random bisection
cut is a random swapping between the •-group and the ◦-group as follows:

•
?

◦
?︸︷︷︸

x1

•
?

◦
? ? ? ? ?

•
?

◦
? ? ? ? ?

•
?

◦
? ? ? ? ?

•
?

◦
? ? ? ? ?︸ ︷︷ ︸

tg

After the random bisection cut, all values associated to the wire are flipped with
probability 1/2 and unchanged with probability 1/2. For any wire w ∈ Wires,

we denote by P
(w)
left (resp. P

(w)
right) a subset of {1, 2, · · · , 2n+24q} representing all

positions of the left (resp. right) card associated to w. The random bisection

cut in the above example is written by (pileShuffle, P
(w)
left , P

(w)
right). (Note that a

random bisection cut is a special case of pile-scramble shuffles.)

The second type of shuffles is pile-scramble shuffle, which is applied for each
gate. This randomly permutes the order of four rows in the truth table. For
example, for a truth table tg, it is a random permutation among four rows, the
•-row, the ◦-row, the �-row and the �-row, as follows:

•
?

•
?

•
?

•
?

•
?

•
?

◦
?

◦
?

◦
?

◦
?

◦
?

◦
?

�

?
�

?
�

?
�

?
�

?
�

?

?

?

?

?

?

?︸ ︷︷ ︸

tg

After the pile-scramble shuffle, one of 24 rearrangements is chosen uniformly

and randomly. For any gates g ∈ Gates, we denote by P
(g)
i (1 ≤ i ≤ 4)

a subset of {1, 2, · · · , 2n + 24q} representing all positions of the i-th row in
the truth table. The pile-scramble shuffle in the above example is written by

(pileShuffle, P
(g)
1 , P

(g)
2 , P

(g)
3 , P

(g)
4).

36 CHAPTER 3. PROTOCOLS WITH UNIFORM CLOSED SHUFFLES

Functionality. A functionality Fb
base,f is defined as follows:

Fb
base,f : ? ?︸︷︷︸

x1

? ?︸︷︷︸
x2

· · · ? ?︸︷︷︸
xn

? ? · · · ? ?︸ ︷︷ ︸
tn+1

· · · ? ? · · · ? ?︸ ︷︷ ︸
tn+q

⇒ ? ?︸︷︷︸
f(x1,x2,...,xn)

♣ ♥ ♣ ♥ ♣ ♥ · · · ♣ ♥︸ ︷︷ ︸
n + 9q − 1 pairs

?
⊥

?
⊥

?
⊥

?
⊥

· · · ?
⊥

?
⊥︸ ︷︷ ︸

3q pairs

.

Note that each ti (n + 1 ≤ i ≤ n + q) consists of 12 pairs of ♣ ♥ . Thus, the
number of cards is 2n+ 24q.

Protocol. The base protocol Pb
base,f is defined as follows:

Pb
base,f = (n, {0, 1}, (Binary, {♣�/2,♥�/2}),Ob

� , A),

where � = 2n + 24q. It consists of the garbling stage and the evaluation stage.
It proceeds as follows.

Garbling: Given a sequence s0 ∈ SeqD, it proceeds as follows:

1. For every w ∈ Wires \ Outputs, apply (pileShuffle, P
(w)
left , P

(w)
right).

2. For every g ∈ Gates, apply (pileShuffle, P
(g)
1 , P

(g)
2 , P

(g)
3 , P

(g)
4).

Evaluation: Given a final sequence of the garbling stage, it proceeds as follows:

1. For every i ∈ [n], apply (turn, {2i − 1, 2i}), i.e., open the i-th input
commitment. Let x′

i ∈ {0, 1} be the opened value.

2. For every gate g ∈ Gates (in order from n + 1 to n + q), apply the
following:

(a) Open the leftmost and center commitments in the table expres-
sion of g, i.e., open eight commitments associated to the input
wires of g. Let li ∈ {0, 1} (resp. ri ∈ {0, 1}) be the i-th row in
the leftmost (resp. center) column.

(b) Let x′
L(g), x

′
R(g) be values associated to the left and right in-

put wires, supposed to be defined in previous steps. Let kg ∈
{1, 2, 3, 4} be an index such that (lkg , rkg) = (x′

L(g), x
′
R(g)).

(c) If it is not the output gate, i.e., g �= n+ q, open the commitment
in the kg-th row of the rightmost column. Let x′

g ∈ {0, 1} be the
opened value.

3. The output commitment is the commitment in the kn+q-th row of
the rightmost column in the output gate. Rearrange the order of the
sequence so that the output commitment is moved to the leftmost,
all opened cards are moved to the next leftmost in order ♣ ♥ , and
other cards are moved to the rightmost.

3.2. BASE PROTOCOL 37

Proof of correctness. We show the correctness of the base protocol Pb
base,f . In

Step 1 of the garbling stage, for each wire w ∈ Wires \ Outputs, a pile-scramble

shuffle is applied over two positions P
(w)
left and P

(w)
right. Recall that the position

P
(w)
left (resp. P

(w)
right) designates the first (resp. second) cards of the commitments

corresponding to the wire w. Thus, it is equivalent to masking the values of
the commitments by an independently and uniformly random value rw ∈ {0, 1}.
Therefore, after applying it, each row (a, b,Gg(a, b)) corresponding to the gate g
turns into (a⊕rL(g), b⊕rR(g), Gg(a, b)⊕rg). Since all values associated with the
wire w are masked by the same random value rw, it preserves the functionality
of the truth table. In Step 2 of the garbling stage, for each gate g ∈ Gates, a pile-

scramble shuffle is applied over the four sets of positions P
(g)
1 , P

(g)
2 , P

(g)
3 , and

P
(g)
4 . It just permutes the four rows in the truth table tg. Thus, it also preserves

the functionality of the truth table. Therefore, the output commitment is surely
a commitment to the output value f(x). We conclude that the base protocol
Pb
base,f correctly realizes the functionality Fb

base,f . �

Proof of security. Let P = Pb
base,f . Let h = |Wires \ Outputs| and q = |Gates|.

Recall that the former h shuffles in Step 1 of the garbling stage are random
bisection cuts and the latter q shuffles in Step 2 of the garbling stage are pile-
scramble shuffles of four piles. Since a permutation in a random bisection cut is
chosen by a random bit r ∈ {0, 1} and a permutation in a pile-scramble shuffle of
four piles is chosen by a random permutation π ∈ S4, a view of P starting with
Γx is completely determined by r1, r2, . . . , rh ∈ {0, 1} and π1, π2, . . . , πq ∈ S4.
We denote it as follows:

vP(Γx; r1, r2, . . . , rh, π1, π2, . . . , πq) ∈ ViewD.

Define the set of all possible views VP ⊂ ViewD as follows:

VP = {vP(Γx; r1, r2, . . . , rh, π1, π2, . . . , πq) | x ∈ {0, 1}n, ri ∈ {0, 1}, πj ∈ S4}.

We claim that for any v ∈ VP and any input x∗ ∈ {0, 1}n, there exist unique
bits r∗i (1 ≤ i ≤ h) and unique permutations π∗

i ∈ S4 (1 ≤ i ≤ q) such that

v = vP(Γx∗ ; r∗1 , r
∗
2 , . . . , r

∗
h, π

∗
1 , π

∗
2 , . . . , π

∗
q).

Given v = vP(Γx; r1, . . . , rh, π1, . . . , πq) ∈ VP and x∗ ∈ {0, 1}n, the bits r∗i ∈
{0, 1} and the permutations π∗

i ∈ S4 are uniquely determined as follows:

1. We first define r∗i ∈ {0, 1} (1 ≤ i ≤ h). Since the input x∗ ∈ {0, 1}n is
fixed, each value of the wire i ∈ Wires is also fixed. The bit r∗i is set to
the value of the wire i.

2. We next define π∗
i ∈ S4 (1 ≤ i ≤ q). Let g = i + n ∈ Gates be the

gate and let a, b ∈ Wires be the left and right input wires of the gate
i. Let τa, τb ∈ S4 be the permutations defined as τa = (1 3)(2 4) and
τb = (1 2)(3 4). We can observe that applying τa (resp. τb) to the initial

38 CHAPTER 3. PROTOCOLS WITH UNIFORM CLOSED SHUFFLES

truth table (00, 01, 10, 11) is equivalent to the bit flipping of the left (reps.
right) row. For example, τa(00, 01, 10, 11) = (10, 11, 00, 01) is equivalent to
the bit flipping of the left row. Thus, it is necessary to satisfy an equation
of permutations as follows:

π∗
i (τb)

r∗b (τa)
r∗a = πi(τb)

rb(τa)
ra .

We have to set the permutation π∗
i as follows:

π∗
i = πi(τb)

rb⊕r∗b (τa)
ra⊕r∗a .

Thus, for any input x ∈ {0, 1}n, the probability distribution viewP(Γx, x) is a
uniform distribution of VP . This implies viewP(Γx, x) = viewP(Γx′ , x′) for any
x, x′ ∈ {0, 1}n. Therefore, P securely realizes Fb

base,f . �

Example 11. We give an example of a protocol execution for the following
circuit.

The initial sequence Γx is arranged as follows:

? ?︸︷︷︸
x1

? ?︸︷︷︸
x2

? ?︸︷︷︸
x3

♣ ♥ ♣ ♥ ♣ ♥
♣ ♥ ♥ ♣ ♣ ♥
♥ ♣ ♣ ♥ ♣ ♥
♥ ♣ ♥ ♣ ♥ ♣︸ ︷︷ ︸

t4

♣ ♥ ♣ ♥ ♣ ♥
♣ ♥ ♥ ♣ ♥ ♣
♥ ♣ ♣ ♥ ♥ ♣
♥ ♣ ♥ ♣ ♣ ♥︸ ︷︷ ︸

t5

In Step 1 of the garbling stage, a pile-scramble shuffle is applied for each wire
w except the output wire. For w = 1, a random bisection cut is applied for the
•-group and the ◦-group as follows:

•
?

◦
?︸︷︷︸

x1

? ?︸︷︷︸
x2

? ?︸︷︷︸
x3

•
?

◦
? ? ? ? ?

•
?

◦
? ? ? ? ?

•
?

◦
? ? ? ? ?

•
?

◦
? ? ? ? ?︸ ︷︷ ︸

t4

? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?︸ ︷︷ ︸

t5

For w = 2, a random bisection cut is applied for the •-group and the ◦-group

3.2. BASE PROTOCOL 39

as follows:

? ?︸︷︷︸
x′
1

•
?

◦
?︸︷︷︸

x2

? ?︸︷︷︸
x3

? ?
•
?

◦
? ? ?

? ?
•
?

◦
? ? ?

? ?
•
?

◦
? ? ?

? ?
•
?

◦
? ? ?︸ ︷︷ ︸

t4

? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?︸ ︷︷ ︸

t5

For w = 3, a random bisection cut is applied for the •-group and the ◦-group
as follows:

? ?︸︷︷︸
x′
1

? ?︸︷︷︸
x′
2

•
?

◦
?︸︷︷︸

x3

? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?︸ ︷︷ ︸

t4

? ?
•
?

◦
? ? ?

? ?
•
?

◦
? ? ?

? ?
•
?

◦
? ? ?

? ?
•
?

◦
? ? ?︸ ︷︷ ︸

t5

For w = 4, a random bisection cut is applied for the •-group and the ◦-group
as follows:

? ?︸︷︷︸
x′
1

? ?︸︷︷︸
x′
2

? ?︸︷︷︸
x′
3

? ? ? ?
•
?

◦
?

? ? ? ?
•
?

◦
?

? ? ? ?
•
?

◦
?

? ? ? ?
•
?

◦
?︸ ︷︷ ︸

t4

•
?

◦
? ? ? ? ?

•
?

◦
? ? ? ? ?

•
?

◦
? ? ? ? ?

•
?

◦
? ? ? ? ?︸ ︷︷ ︸

t5

In Step 2 of the garbling stage, a pile-scramble shuffle is applied for every
g ∈ Gates. For g = 4 (corresponding to the AND gate), a pile-scramble shuffle
is applied for the •-row, the ◦-row, the �-row and the �-row as follows:

? ?︸︷︷︸
x′
1

? ?︸︷︷︸
x′
2

? ?︸︷︷︸
x′
3

•
?

•
?

•
?

•
?

•
?

•
?

◦
?

◦
?

◦
?

◦
?

◦
?

◦
?

�

?
�

?
�

?
�

?
�

?
�

?

?

?

?

?

?

?︸ ︷︷ ︸

t4

? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?︸ ︷︷ ︸

t5

For g = 5 (corresponding to the XOR gate), a pile-scramble shuffle is applied

40 CHAPTER 3. PROTOCOLS WITH UNIFORM CLOSED SHUFFLES

for the •-row, the ◦-row, the �-row and the �-row as follows:

? ?︸︷︷︸
x′
1

? ?︸︷︷︸
x′
2

? ?︸︷︷︸
x′
3

? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?︸ ︷︷ ︸

t4

•
?

•
?

•
?

•
?

•
?

•
?

◦
?

◦
?

◦
?

◦
?

◦
?

◦
?

�

?
�

?
�

?
�

?
�

?
�

?

?

?

?

?

?

?︸ ︷︷ ︸

t5

In Step 1 of the evaluation stage, all (randomized) input commitments are
opened as follows:

♥ ♣︸︷︷︸
x′
1

♥ ♣︸︷︷︸
x′
2

♣ ♥︸︷︷︸
x′
3

? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?︸ ︷︷ ︸

t4

? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?︸ ︷︷ ︸

t5

In Step 2 of the evaluation stage, a set of randomized commitments are
opened for each gate. For g = 4 (corresponding to the AND gate), the leftmost
and center columns are opened as follows:

♥ ♣︸︷︷︸
x′
1

♥ ♣︸︷︷︸
x′
2

♣ ♥︸︷︷︸
x′
3

♣ ♥ ♥ ♣ ? ?
♥ ♣ ♥ ♣ ? ?
♣ ♥ ♣ ♥ ? ?
♥ ♣ ♣ ♥ ? ?︸ ︷︷ ︸

t4

? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?︸ ︷︷ ︸

t5

Since (x′
1, x

′
2) = (1, 1), the index k4 is defined k4 = 2. Then, the second row of

the rightmost column is opened as follows:

♥ ♣︸︷︷︸
x′
1

♥ ♣︸︷︷︸
x′
2

♣ ♥︸︷︷︸
x′
3

♣ ♥ ♥ ♣ ? ?
♥ ♣ ♥ ♣ ♣ ♥
♣ ♥ ♣ ♥ ? ?
♥ ♣ ♣ ♥ ? ?︸ ︷︷ ︸

t4

? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?︸ ︷︷ ︸

t5

The opened value is x′
4 = 0.

For g = 5 (corresponding to the XOR gate), the leftmost and center columns
are opened as follows:

♥ ♣︸︷︷︸
x′
1

♥ ♣︸︷︷︸
x′
2

♣ ♥︸︷︷︸
x′
3

♣ ♥ ♥ ♣ ? ?
♥ ♣ ♥ ♣ ♣ ♥
♣ ♥ ♣ ♥ ? ?
♥ ♣ ♣ ♥ ? ?︸ ︷︷ ︸

t4

♣ ♥ ♣ ♥ ? ?
♣ ♥ ♥ ♣ ? ?
♥ ♣ ♥ ♣ ? ?
♥ ♣ ♣ ♥ ? ?︸ ︷︷ ︸

t5

3.3. PROTOCOL WITH A SINGLE UNIFORM CLOSED SHUFFLE 41

Since (x′
4, x

′
3) = (0, 0), the index k5 is defined k5 = 1.

The output commitment (pointed by •) is the first row of the rightmost
column in the output gate as follows:

♥ ♣︸︷︷︸
x′
1

♥ ♣︸︷︷︸
x′
2

♣ ♥︸︷︷︸
x′
3

♣ ♥ ♥ ♣ ? ?
♥ ♣ ♥ ♣ ♣ ♥
♣ ♥ ♣ ♥ ? ?
♥ ♣ ♣ ♥ ? ?︸ ︷︷ ︸

t4

♣ ♥ ♣ ♥
•
?

•
?

♣ ♥ ♥ ♣ ? ?
♥ ♣ ♥ ♣ ? ?
♥ ♣ ♣ ♥ ? ?︸ ︷︷ ︸

t5

Finally, the order of the sequence is rearranged so that the output commit-
ment is the leftmost, the opened cards are the next leftmost, and other cards
are the rightmost as follows:

•
?

•
? ♣ ♥ ♣ ♥ ♣ ♥ · · · ♣ ♥︸ ︷︷ ︸

20 pairs

? ? ? ? ? ? ? ? ? ? ? ?︸ ︷︷ ︸
6 pairs

This completes the protocol execution. �

3.3 Protocol with a single uniform closed shuffle

In general, when a protocol applies two (or more) shuffles consecutively, they
are combined into a single shuffle. For example, when a protocol applies two
shuffles (shuffle,Π1, D1) and (shuffle,Π2, D2) consecutively, they are combined
into a new shuffle (shuffle,Π, D) such that Π is defined by Π = {π2 ◦ π1 | π1 ∈
Π1, π2 ∈ Π2} and a distribution D is defined as follows:

1. It randomly chooses π1 ∈ Π1 and π2 ∈ Π2 according to the distributions
D1 and D2, respectively.

2. It outputs π = π2π1 ∈ Π.

Thus, by combining all shuffles in the garbling stage, we obtain a general pro-
tocol with a single shuffle Pb

single,f . The protocol Pb
single,f proceeds as follows:

1. Apply a combined shuffle of all shuffles in the garbling stage of the base
protocol to the sequence.

2. Perform the evaluation stage the same as in the base protocol.

We can easily observe that Pb
single,f correctly and securely realizes Pb

base,f .

The remaining task is to show that the combined shuffle used in Pb
single,f is a

uniform closed shuffle. Note that, in general, a combined shuffle is not neces-
sarily a uniform closed shuffle even if all underlying shuffles are uniform closed
shuffles. We give two examples of the case that the combining technique does
not preserve the property of underlying shuffles.

42 CHAPTER 3. PROTOCOLS WITH UNIFORM CLOSED SHUFFLES

Example 12. We give an example of two closed shuffles but the combined
shuffle of them is not closed. Let (shuffle, {id, (1 2)}) be the first shuffle and let
(shuffle, {id, (2 3)}) be the second shuffle. Then, the combined shuffle of them is
a non-closed shuffle (shuffle, {id, (1 2), (2 3), (1 3 2)}) since the permutation set
does not have (1 3 2)(1 3 2) = (1 2 3).

Example 13. We give an example of two uniform shuffles but the combined
shuffle of them is not uniform. Let (shuffle, {id, (1 2), (3 4)}) be the first shuffle
and let (shuffle, {id, (1 2)(3 4)}) be the second shuffle. Then, the combined
shuffle of them is (shuffle, {id, (1 2), (3 4), (1 2)(3 4)}), which is not uniform.

Nevertheless, the combined shuffle used in Pb
single,f is a uniform closed shuffle.

We prove this fact as follows.

Proposition 3.1. A shuffle used in Pb
single,f is a uniform closed shuffle.

Proof. For w ∈ Wires \Outputs, let S1,w be the shuffle (pileShuffle, P
(w)
left , P

(w)
right)

in Step 1 of the garbling stage, and for g ∈ Gates, let S2,g be the shuffle

(pileShuffle, P
(g)
1 , P

(g)
2 , P

(g)
3 , P

(g)
4) in Step 2 of the garbling stage. The statement

is that the shuffle S∗ which is combined all the shuffles {S1,w}w and {S2,g}g is
a uniform closed shuffle. We first show that S∗ is a closed shuffle. As already
seen in the proof of the correctness of the base protocol, each shuffle S1,w is
equivalent to masking the wire value by a random value rw ∈ {0, 1} and each
shuffle S2,g is equivalent to shuffling four rows of the truth table of g. Thus,
they are commutative, i.e., exchanging the order of any two shuffles provides
the same combined shuffle. Therefore, S∗ is a closed shuffle. As already seen
in the proof of the security of the base protocol, given the input x ∈ {0, 1}n, a
distribution of a view viewP(Γx, x) is a uniform distribution of all possible views
VP , S∗ is also a uniform shuffle. Thus, S∗ is a uniform closed shuffle. �

3.4 Protocol with two pile-scramble shuffles

Among uniform closed shuffles, three types of shuffles – a random cut, a random
bisection cut, and a pile-scramble shuffle – are considered the most easiest to
perform physically. In this section, we construct a general protocol with two
extended pile-scramble shuffles using 2n + 24q + Δ cards where Δ is defined
in later. An extended pile-scramble shuffle is a uniform closed shuffle that can
be performed easily like a standard pile-scramble shuffle. We also construct a
general protocol with two standard pile-scramble shuffles using 2n + 24q + Δ′

cards where Δ′ > Δ is defined in later.

3.4.1 Extended pile-scramble shuffle

An extended pile-scramble shuffle is a shuffle that is similar to a pile-scramble
shuffle except that each pile can have a different number of cards. By applying
it to a sequence, all piles having the same number of cards are completely

3.4. PROTOCOL WITH TWO PILE-SCRAMBLE SHUFFLES 43

rearranged. For example, an extended pile-scramble shuffle for four piles T1 =
{1, 2}, T2 = {3, 4}, T3 = {5, 6, 7}, and T5 = {8, 9, 10} is given as follows:

1

?
2

?
3

?
4

?
5

?
6

?
7

?
8

?
9

?
10

? →

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

?
2

?
3

?
4

?
5

?
6

?
7

?
8

?
9

?
10

? with probability 1/4
1

?
2

?
3

?
4

?
8

?
9

?
10

?
5

?
6

?
7

? with probability 1/4
3

?
4

?
1

?
2

?
5

?
6

?
7

?
8

?
9

?
10

? with probability 1/4
3

?
4

?
1

?
2

?
8

?
9

?
10

?
5

?
6

?
7

? with probability 1/4

An extended pile-scramble shuffle for T1, T2, . . . , Tk is also denoted as follows:

(pileShuffle, T1, T2, . . . , Tk).

3.4.2 Batching multiple pile-scramble shuffles

Basic idea. We say that a number of shuffles are parallel if there is no card
that is touched by two (or more) shuffles. Consider the case that two pile-
scramble shuffles are parallel: one shuffle is between “•” and “◦”, and the other
shuffle is among “�”, “�”, and “∗” as follows:

•
?

•
?

•
?

◦
?

◦
?

◦
?

�

?
�

?
�

?

?

?

?

∗
?

∗
?

∗
? .

The batching technique enables us to combine them into one pile-scramble shuffle
by using additional cards. First, two clubs and three hearts are inserted in the
sequence as follows:

♣ ? ? ? ♣ ? ? ? ♥ ? ? ? ♥ ? ? ? ♥ ? ? ? .

Then, the inserted cards are turned to be face-down cards. Then, a pile-scramble
shuffle among “•”, “◦”, ‘�”, “�”, and “∗” is applied as follows.

•
?

•
?

•
?

•
?

◦
?

◦
?

◦
?

◦
?

�

?
�

?
�

?
�

?

?

?

?

?

∗
?

∗
?

∗
?

∗
? .

After applying it, open the first cards of all piles as follows:

♣ ? ? ? ♥ ? ? ? ♥ ? ? ? ♣ ? ? ? ♥ ? ? ? .

Finally, rearrange five piles so as to the former two piles have ♣ and the latter
three piles have ♥. In this case, the fourth pile (the underlined pile in the
following) is moved to the front of the second pile without changing the order
of cards in each pile.

♣ ? ? ? ♥ ? ? ? ♥ ? ? ? ♣ ? ? ? ♥ ? ? ? .

By ignoring opened cards (two ♣ and three ♥), the result sequence in the fol-
lowing is equivalent (as probability distribution) to the result sequence obtained
by applying two pile-scramble shuffle sequentially.

♣ ? ? ? ♣ ? ? ? ♥ ? ? ? ♥ ? ? ? ♥ ? ? ? .

This is the core idea of our batching technique.

44 CHAPTER 3. PROTOCOLS WITH UNIFORM CLOSED SHUFFLES

Batching technique using an extended pile-scramble shuffle. Suppose
that we wish to perform N pile-scramble shuffles that are parallel: the i-th pile-
scramble shuffle is among �i piles of ni cards. Thus, the i-th shuffle treats �i ·ni

cards and there are
∑N

i=1 �i · ni cards in total. Let σ : [N] → {♣,♥}�log2 N� be
an arbitrary injective function. The batching technique proceeds as follows.

1. (Indexing) For every i ∈ [N], insert 	log2 N
 cards representing σ(i) to
each pile in the i-th shuffle as follows.

· · · ? ? ? ? ? ?︸ ︷︷ ︸
corresponding to the i-th shuffle

· · · −→ · · · ? ?︸︷︷︸
σ(i)

? ? ? ? ?︸︷︷︸
σ(i)

? ? ? · · ·

In total,
∑N

i=1 �i · 	log2 N
 cards are inserted.

2. (Shuffle) Perform an extended pile-scramble shuffle among all piles. The

number of piles is
∑N

i=1 �i.

3. (Turning) Turn the indexes of all piles. In total,
∑N

i=1 �i · 	log2 N
 cards
are turned.

4. (Rearrangement) Rearrange all the cards so as to the first �1 piles are
those having the index σ(1), the next �2 piles are those having the index
σ(2), and so on. Finally, the inserted cards in the Indexing step are
removed. (They can be used in future steps as free cards.)

The number of additional cards Δ0 is:

Δ0 =

N∑
i=1

�i · 	log2 N
.

We define a weight function w♣,k : {♣,♥}k → {0, 1, . . . , k} (resp. w♥,k)
that takes a string of k length and outputs the number of ♣ (resp. ♥). The
number of ♣ in Δ0 cards, denoted by Δ♣

0 , is computed as follows:

Δ♣
0 =

N∑
i=1

w♣,k(σ(i)).

The number of ♥ in Δ0 cards, denoted by Δ♥
0 , is Δ

♥
0 = Δ0−Δ♣

0 . The following
proposition is useful when Δ♣

0 = Δ♥
0 is needed.

Proposition 3.2. For any N ∈ N, there exists an injective function σ : [N] →
{♣,♥}�log2 N� satisfying the following condition:

N∑
i=1

w♣,k(σ(i)) =

N∑
i=1

w♥,k(σ(i)).

�

3.4. PROTOCOL WITH TWO PILE-SCRAMBLE SHUFFLES 45

Proof. Since the value
∑N

i=1 w♣,k(σ(i)) is determined by the range Rσ =
{σ(i) | i ∈ [N]}, it is sufficient to find a subset R ⊂ {♣,♥}�log2 N� such that∑

x∈R w♣,k(x) =
∑

x∈R w♥,k(x).

If N = 2k for some k ∈ N, σ is a bijective function. The range of σ is
Rσ = {♣,♥}�log2 N�. Thus, the condition

∑
x∈Rσ

w♣,k(x) =
∑

x∈Rσ
w♥,k(x) is

trivially satisfied.
Suppose that 2�log2 N� − N = δ > 0. Let R ⊂ {♣,♥}�log2 N� be a variable

that is set to {♣,♥}�log2 N� as an initial value. If δ is an even number δ = 2δ′ for
δ′ ∈ N, remove δ′ pairs of x, x′ ∈ {♣,♥}�log2 N� such that w♣,k(x) = w♥,k(x

′).
Then, R satisfies |R| = N and

∑
x∈R w♣,k(x) =

∑
x∈R w♥,k(x). If δ is an odd

number δ = 2δ′+1 for δ′ ∈ N, remove δ′ pairs of x, x′ ∈ {♣,♥}�log2 N� as above
and remove one element x′′ ∈ {♣,♥}�log2 N� such that w♣,k(x

′′) = w♥,k(x
′′).

Then, R satisfies |R| = N and
∑

x∈R w♣,k(x) =
∑

x∈R w♥,k(x).
Therefore, we have a desired injective function σ for any N ∈ N. �

Batching technique using a standard pile-scramble shuffle. By ap-
pending a number of dummy cards, an extended pile-scramble shuffle can be con-
verted into a standard pile-scramble shuffle. Let nmax = max(n1, n2, . . . , nN).
For the i-th pile-scramble shuffle, (nmax −ni) dummy cards are appended. The
number of dummy cards Δ1 is:

Δ1 =

N∑
i=1

�i · (nmax − ni).

The total number of additional cards of the batching technique using a standard
pile-scramble shuffle is:

Δ0 +Δ1 =

N∑
i=1

�i · (log2 N
+ nmax − ni) .

3.4.3 Protocol with two extended pile-scramble shuffles

A general protocol with two extended pile-scramble shuffles Pb
two1,f is obtained

by applying the batching technique to the base protocol. It proceeds as follows:

1. Apply the batching technique (using an extended pile-scramble shuffle) to
Step 1 of the garbling stage in the base protocol.

2. Apply the batching technique (using a standard pile-scramble shuffle) to
Step 2 of the garbling stage in the base protocol.

3. Perform the evaluation stage in the base protocol.

Note that the batching technique in Step 2 is of a standard pile-scramble
shuffle since all original shuffles in Step 2 have the same number of cards. The
number of additional cards Δ is given as follows:

Δ = max(2(n+ q − 1)	log2(n+ q − 1)
, 4q	log2 q
).

46 CHAPTER 3. PROTOCOLS WITH UNIFORM CLOSED SHUFFLES

The reason why we take a max is all additional cards in the batching technique
can be reused in the next steps. From Proposition 3.2, we can have σ such that
the numbers of ♣ and ♥ are the same.

3.4.4 Protocol with two standard pile-scramble shuffles

By appending a number of dummy cards, we obtain a general protocol with two
standard pile-scramble shuffles Pb

two2,f as follows:

1. Apply the batching technique (using a standard pile-scramble shuffle) to
Step 1 of the garbling stage in the base protocol.

2. Apply the batching technique (using a standard pile-scramble shuffle) to
Step 2 of the garbling stage in the base protocol.

3. Perform the evaluation stage in the base protocol.

We compute the number of additional cards Δ′ ∈ N as follows. Let δ0 =
2(n+q−1)	log2(n+q−1)
 and let δ1 = 4q	log2 q
. We assume that the numbers
of ♣ and ♥ are balanced in these cards from Proposition 3.2. The number of
dummy cards δ2 used in Step 1 is given as follows:

δ2 =

n+q−1∑
w=1

2 · (nmax − |P (w)
left |),

where nmax = max{|P (w)
left | | 1 ≤ w ≤ n + q − 1}. Unlike the δ0 cards and δ1

cards, the δ2 cards are not necessarily balanced. Let α = δ2/2. If α is an even
number, they are Δ′

1/2 ♣ s and Δ′
1/2 ♥ s, i.e., they are balanced. If α is an

odd number, they are (Δ′
1/2 + 1) ♣ s and (Δ′

1/2 − 1) ♥ s, i.e., they are not
balanced. From this observation, we obtain the total number of addition cards
Δ′ as follows:

Δ′ =

⎧⎪⎨⎪⎩
δ1 if δ1 > δ0 + δ2

δ0 + δ2 + 1 if δ1 = δ0 + δ2

δ0 + δ2 otherwise.

The most technical case is the middle case. In the middle case, although Step
1 uses (δ0 + δ2) cards, the number of pairs of ♣ ♥ is (δ0 + δ2)/2 − 1. Thus, to
have (δ0 + δ2) pairs of ♣ ♥ , one ♥ must be added.

Chapter 4

Protocols with Private
Permutations

4.1 Introducing private permutations

4.1.1 Private permutations

Let n be the number of inputs and � be the number of cards. A private per-
mutation is defined by (privatePerm, i, π), where i ∈ [n] is an index of the input
bit and π ∈ S� is a permutation. For a sequence s of � cards and an input
x ∈ {0, 1}n, π is applied to s if xi = 1, otherwise the identity permutation id is
applied to s as follows:

s →
{
π(s) if xi = 1

s otherwise.

Applying a permutation is covertly done by the player having the input bit xi so
that other players cannot know which permutation is chosen. The set of private
permutations is defined by:

PrivatePermn,� := {(privatePerm, i, π) | i ∈ [n], π ∈ S�}.

4.1.2 Notations

In this chapter, we use notations as follows.

Deck. We assume that a card specification is that of binary cards Binary.
That is, all decks D used in this chapter are of type D = (Binary,D).

Cards. We regard ♣ = 0 and ♥ = 1 and use {♣,♥} and {0, 1} interchange-
ably. If a card is ?/♣ if x = 0 and ?/♥ otherwise, we denote it as follows:

?
x
.

47

48 CHAPTER 4. PROTOCOLS WITH PRIVATE PERMUTATIONS

Operations. We assume that the set of operations is Op
n,� as follows:

Op
n,� = Perm� ∪ Turn� ∪ PrivatePermn,�,

where n is the number of inputs and � is the number of cards.

Action function. Every action function A in this chapter can be represented
by a list of pairs of a visible sequence and an operation as follows:

((v0, op1), (v1, op2), . . . , (vk−1, opk)) ∈ (VisD ×Op
n,�)

k,

(Recall that VisD is the set of visible sequences. See Definition 2.3.) For each
round i (1 ≤ i ≤ k), the action function A outputs ⊥ if the visible sequence
of the current sequence is not matched with vi−1, otherwise opi. In the round
k + 1 (i.e. just after applying opk), A always outputs ⊥.

View. We omit revealed information in a view since all operations in Op
n,� do

not produce revealed information. Thus, for a protocol P, an initial sequence

s0 ∈ SeqD, and an input x ∈ {0, 1}n, a view viewP(s0, x) is represented by a list
of visible sequences as follows:

viewP(s0, x) = (v0 → v1 → v2 → · · · → vk′),

where vk′ is the final visible sequence in the sense that the action function A
outputs ⊥. (If A has k operations, then k′ ≤ k.)

4.1.3 Existing protocols in our model

Example 14. A three-card AND protocol proposed by Marcedone, Wen, and
Shi [24] is given by (2, {0, 1}, (Binary, {(♣/?)2,♥/?}),Op

2,3, A). The action func-
tion A is defined by A = ((v1, op1), (v2, op2)) as follows:

1. v1 = (?, ?, ?) and op1 = (privatePerm, 1, (2 3)).

2. v2 = (?, ?, ?) and op2 = (privatePerm, 2, (1 2)).

The functionality is defined as follows:

?
♣

?
♣

?
♥

→ ?
x1∧x2

?
⊥

?
⊥
.

The correctness is verified by the following diagram:

(x1, x2) Sequence Output

(0, 0) ♣ ♣ ♥
op1−−→ ♣ ♣ ♥

op2−−→ ♣ ♣ ♥ 0

(0, 1) ♣ ♣ ♥
op1−−→ ♣ ♣ ♥

op2−−→ ♣ ♣ ♥ 0

(1, 0) ♣ ♣ ♥
op1−−→ ♣ ♥ ♣

op2−−→ ♣ ♥ ♣ 0

(1, 1) ♣ ♣ ♥
op1−−→ ♣ ♥ ♣

op2−−→ ♥ ♣ ♣ 1

4.1. INTRODUCING PRIVATE PERMUTATIONS 49

The security is trivial since the view is the same for all input (x1, x2) ∈ {0, 1}2
as follows:

view(s0, (x1, x2)) =
(
(?, ?, ?) → (?, ?, ?) → (?, ?, ?)

)
,

where s0 = (?/♣, ?/♣, ?/♥). �

Example 15. A (slightly modified version of) four-card majority voting pro-
tocol proposed by Nakai, Shirouchi, Iwamoto, and Ohta [35] is given by:

(3, {0, 1}, (Binary, {(♣/?)2, (♥/?)2},Op
3,4, A).

The action function A is defined by A = ((v1, op1), (v2, op2), (v3, op3)) as follows:

1. v1 = (?, ?, ?, ?) and op1 = (privatePerm, 1, (3 4)).

2. v2 = (?, ?, ?, ?) and op2 = (privatePerm, 2, (1 2 3)).

3. v3 = (?, ?, ?, ?) and op3 = (privatePerm, 3, (1 3)).

The functionality is defined as follows:

?
♣

?
♥

?
♣

?
♥

→ ?
f(x1,x2,x3)

?
⊥

?
⊥

?
⊥
,

where f(x1, x2, x3) = p(x1 + x2 + x3 ≥ 2).

The correctness is verified by the following diagram:

(x1, x2, x3) Sequence Output

(0, 0, 0) ♣ ♥ ♣ ♥
op1−−→ ♣ ♥ ♣ ♥

op2−−→ ♣ ♥ ♣ ♥
op3−−→ ♣ ♥ ♣ ♥ 0

(0, 0, 1) ♣ ♥ ♣ ♥
op1−−→ ♣ ♥ ♣ ♥

op2−−→ ♣ ♥ ♣ ♥
op3−−→ ♣ ♥ ♣ ♥ 0

(0, 1, 0) ♣ ♥ ♣ ♥
op1−−→ ♣ ♥ ♣ ♥

op2−−→ ♣ ♣ ♥ ♥
op3−−→ ♣ ♣ ♥ ♥ 0

(0, 1, 1) ♣ ♥ ♣ ♥
op1−−→ ♣ ♥ ♣ ♥

op2−−→ ♣ ♣ ♥ ♥
op3−−→ ♥ ♣ ♣ ♥ 1

(1, 0, 0) ♣ ♥ ♣ ♥
op1−−→ ♣ ♥ ♥ ♣

op2−−→ ♣ ♥ ♥ ♣
op3−−→ ♣ ♥ ♥ ♣ 0

(1, 0, 1) ♣ ♥ ♣ ♥
op1−−→ ♣ ♥ ♥ ♣

op2−−→ ♣ ♥ ♥ ♣
op3−−→ ♥ ♥ ♣ ♣ 1

(1, 1, 0) ♣ ♥ ♣ ♥
op1−−→ ♣ ♥ ♥ ♣

op2−−→ ♥ ♣ ♥ ♣
op3−−→ ♥ ♣ ♥ ♣ 1

(1, 1, 1) ♣ ♥ ♣ ♥
op1−−→ ♣ ♥ ♥ ♣

op2−−→ ♥ ♣ ♥ ♣
op3−−→ ♥ ♣ ♥ ♣ 1

The security is trivial since the view is the same for all input (x1, x2, x3) ∈
{0, 1}3 as follows:

view(s0, (x1, x2, x3)) =
(
(?, ?, ?, ?) → (?, ?, ?, ?) → (?, ?, ?, ?) → (?, ?, ?, ?)

)
,

where s0 = (?/♣, ?/♥, ?/♣, ?/♥). �

50 CHAPTER 4. PROTOCOLS WITH PRIVATE PERMUTATIONS

4.2 Active security

Although security is defined in Definition 2.8, it is unsatisfied for protocols with
private permutations. This is because unlike public operations, such as per-
mutations, turnings, and shuffles, a private permutation is done in a physically
isolated location so that other players cannot know which permutation is cho-
sen. This situation produces a new threat; it is easy to behave maliciously in
a private permutation. To prevent a malicious attack, we propose active se-
curity. As mentioned in Section 1.3.2, a protocol is said to be actively secure
if whenever a permutation is chosen maliciously in a private permutation, the
protocol does not reveal any secret information and the malicious player is al-
ways detected. In Section 4.2.1, we define a set of executed permutations for a
potentially malicious player. In Section 4.2.2, we define active security.

4.2.1 Executed permutation list

Let Π = (n, {0, 1},D,Op
n,�, A) be a protocol where A has k private permutations.

Note that the length of A can be larger than k when it has an operation other
than a private permutation. We define an executed permutation list as a list of
k permutations applied in the protocol execution. This definition is introduced
to capture malicious behavior during protocol execution. Before defining it
formally, we first present an example of an executed permutation list.

Example 16. Let Π be the four-card majority voting protocol [35] described in
Example 15. An example of executed permutation list is E1 = (id, (1 2 3), (1 3)),
which corresponds to an input x = (0, 1, 1). E2 = (id, (1 2 3), id) is another
example, which corresponds to an input x = (0, 1, 0). �

To define a malicious execution, we must determine the permutations that
can be applied maliciously in a private permutation. We define a permutation
model by a specification whose permutations can be applied in a private per-
mutation. We define three permutation models: a bare-bone model, an envelope
model and an envelope-with-ring model.

Bare-bone model: For a private permutation op = (privatePerm, i, π), a (po-
tentially malicious) player can choose a permutation from a set of permu-
tations Ππ that is defined as follows:

Ππ := {π′ | π′ ∈ S�, fix(π
′) = fix(π)},

where fix is a function that takes a permutation π ∈ S� and outputs a
set of all fixed points of π. In this model, no physical additional objects
such as envelopes are used. Thus, a player performing op is given the j-th
card for all j �∈ fix(π), and applies any permutation to the sequence. The
reason that the player is not given cards in positions fix(π) is that these
cards are not moved regardless of the input bit xi.

4.2. ACTIVE SECURITY 51

Envelope model: We say that a permutation π is an extended transposition
if its transposition decomposition is

π = (i1 i2)(i3 i4) · · · (i2k−1 i2k),

where all ij ’s are different. We also denote it as follows:

π = et((i1, i3, . . . , i2k−1) ↔ (i2, i4, . . . , i2k)).

In this model, for a private permutation op = (privatePerm, i, π) of an
extended transposition π, a set of permutations Ππ is defined as Ππ =
{id, π}; that is, even a malicious player applies either id or π. This is
justified by the use of envelopes. Suppose that two lockable envelopes
are available that contain a number of cards. When a protocol enters
op, all players do the following: k cards in positions (i1, i3, · · · , i2k−1) are
putted into an envelope while other cards in positions (i2, i4, · · · , i2k) are
putted into another envelope. Then, the two envelopes are given to the
i-th player. Finally, the player swaps if xi = 1 and does nothing otherwise.
Here, a private permutation that is not an extended transposition is the
same as that of the bare-bone model.

Ring-with-envelope model: We say that a permutation π is an extended cy-
cle of length m if its cycle decomposition is k tuples of cycles of length
m for some k,m. For example, π = (1 2 3) ◦ (4 5 6) is an extended cy-
cle of length m = 3. An extended transposition is the same notion
as an extended cycle of length m = 2. In this model, for a private
permutation op = (privatePerm, i, π) of an extended cycle π of length
m, a set of permutations Ππ is defined as Ππ = {id, π, π2, · · · , πm−1}.
This is justified by the use of a special ring containing a number of
envelopes, which we call a ring with envelope. As mentioned in Sec-
tion 1.3.2, a ring with envelopes contains a number of identical lock-
able envelopes that are hung from the ring and the ring and envelopes
can be opened and closed when all players agree. Each envelope can
be cyclically moved along with the ring. For example, a ring with en-
velopes containing four envelopes (A,B,C,D) can be in four possible
states (A,B,C,D), (B,C,D,A), (C,D,A,B), (D,A,B,C). When a pro-
tocol enters op, each card is putted into one of m envelopes. Then, the
ring with m envelopes is given to the i-th player. Finally, the player cycli-
cally rotates the envelopes. Here, a private permutation that is not an
extended cycle is the same as that of the bare-bone model.

Now we define an executed permutation list E .

Definition 4.1 (Executed permutation list). Let Π be a protocol whose i-th
private permutation is (privatePerm, ji, πi). We say that a list of k permutations
(π′

1, π
′
2, · · · , π′

k) ∈ (S�)
k is an executed permutation list in a permutation model

if each permutation π′
i is an element of the set Ππi

in the permutation model.
�

52 CHAPTER 4. PROTOCOLS WITH PRIVATE PERMUTATIONS

Next we define an honest execution and a malicious execution.

Definition 4.2 (Honest execution and first malicious point). Let Π be a pro-
tocol whose i-th private permutation is (privatePerm, ji, πi) and let E be an
executed permutation list E = (π′

1, π
′
2, · · · , π′

k). We say that a subsequence
E ′
i = (π′

1, π
′
2, · · · , π′

i) for 1 ≤ i ≤ k is honest if there exists an input x ∈ {0, 1}
such that for all i, each permutation π′

i is consistent with the input bit xji . We
say that an executed permutation list is an honest execution if it is honest. It
is called a malicious execution if it is not honest. For an executed permutation
list E , the first malicious point i is defined as the minimum number i such that
the prefix of E of length i − 1 is honest but that of length i is not honest. If
such an i does not exist (i.e., E is an honest execution), it is defined as k+1. �

Example 17. We use the same example as Example 16. An executed permuta-
tion list E1 = (id, (1 2 3), (1 3)) is an honest execution since it is consistent with
the input (0, 1, 1). E2 = (id, (1 2 3), id) is also an honest execution since it is
consistent with the input (0, 1, 0). E3 = (id, (1 2), (1 3)) is a malicious execution
since the second permutation is neither (1 2 3) nor id. The first malicious point
of E3 is 2. �

4.2.2 Active security

Although we have already defined a view viewP(s0, x), it does not capture an
execution when some players behave maliciously. Due to this, we re-define a
view as follows:

Definition 4.3 (View). Let P = (n, {0, 1},D,Op
n,�, A) be a protocol. Let s0 ∈

SeqD be a sequence. Let E be an executed permutation list. A view with s0 and
E , denoted by viewP(s0, E), is defined by a list of visible sequences when private
permutations are done according to E . �

Based on the new definition of view, the security in Definition 2.8 (in this
chapter, we call this notion passive security) is re-defined as follows:

Definition 4.4 (Passive security). Let P = (n, {0, 1},D,Op
n,�, A) be a protocol.

Let F be a functionality whose initial sequence is s0 ∈ SeqD. We say that P
securely realizes F with passive security if for any honest executions E , E ′ of P,
it holds that viewP(s0, E) = viewP(s0, E ′). �

The active security is defined as follows:

Definition 4.5 (Active security). Let P = (n, {0, 1},D,Op
n,�, A) be a proto-

col. Let F be a functionality whose initial sequence is s0 ∈ SeqD. We say
that P securely realizes F with actively secure in a permutation model if for
any execution permutation lists E , E ′ in the permutation model, it holds that
viewP(s0, E) = viewP(s0, E ′) if and only if the first malicious points of E , E ′ are
the same. �

4.3. ONE-ROUND PROTOCOL IN THE ENVELOPE MODEL 53

4.3 One-round protocol in the envelope model

In this section, we construct a general protocol called one-round protocol that
requires exactly one private permutation for each input bit. To compute a
function f : {0, 1}n → {0, 1}, the total number of private permutations is n.
It has the minimum number of private permutations since any protocol for a
non-trivial function requires at least one private permutation for each input bit.
The construction is based on a truth table. The number of cards is 2n which
equals to the number of lines in the truth table. Since all permutations used
in the protocol are extended transpositions, it is actively secure in the envelope
model.

Functionality. Let f : {0, 1}n → {0, 1} be any function. The functionality
Fp

round,f = (sin, sout(x)) is defined as follows:

sin = (f(0 · · · 00), f(0 · · · 01), f(0 · · · 10), f(0 · · · 11), . . . , f(1 · · · 11)).
sout = (f(x1 · · ·xn−1xn),⊥2n−1).

Protocol. One round protocol Pp
round,f is defined as follows:

Pp
round,f = (n, {0, 1}, (Binary, {(♣/?)k, (♥/?)2

n−k},Op
n,2n , A),

where a := |{x | x ∈ {0, 1}n, f(x) = 0}|. The action function

A = ((v0, op1), (v1, op2), . . . , (vn−1, opn))

is defined as follows. For i ∈ [n], the visible sequence is defined as vi−1 = ?2
n

and the operation is defined as follows:

opi = (privatePerm, i, et((1, 2, . . . , 2n−i) ↔ (2n−i + 1, 2n−i + 2, . . . , 2n−i+1)).

Note that this permutation is an extended transposition that swaps the first
2n−i cards and the next 2n−i cards. When i = 1, it swaps the former half and
the latter half of the sequence. When i = n, it swaps the first card and the
second card.

Correctness. The initial sequence s0 is given as follows:

s0 =
(
f(0 · · · 00), f(0 · · · 01), f(0 · · · 10), f(0 · · · 11), . . . , f(1 · · · 11)

)
.

At the first round, the former half and the latter half of the sequence are swapped
if x1 = 1. Thus, the sequence just after applying op1 is as follows:(

f(x1 · · · 00), f(x1 · · · 01), f(x1 · · · 10), f(x1 · · · 11), · · ·
)
.

Repeating this process, the sequence just after applying opi is as follows:(
f(x1x2 · · ·xi0 · · · 00), f(x1x2 · · ·xi0 · · · 01), f(x1x2 · · ·xi0 · · · 10), · · ·

)
.

Thus, the first card of the final sequence is f(x1 · · ·xn−1xn). Therefore, the
Pp
round,f correctly realizes the functionality Fp

round,f .

54 CHAPTER 4. PROTOCOLS WITH PRIVATE PERMUTATIONS

Security. The passive security of Pp
round,f is trivial since all cards are always

face-down. Since every private permutation is of an extended transposition, any
out-of-range attack does not happen. Since every input bit is only called one
time, any inconsistent attack does not happen. Thus, Pp

round,f securely realizes

Fp
round,f with active security in the envelope model.

4.4 Protocol compiler in the envelope model

In this section we design a protocol compiler that converts a passively secure
protocol computing a function f : {0, 1}n → {0, 1} into an actively secure
protocol computing the same function in the envelope model, while the number
of cards and the number of private permutations are increased.

4.4.1 Commit-and-prove technique

Let P be a passively secure protocol where every private permutation is of an
extended transposition. To enhance the security of P from passive to active,
it is enough to prevent inconsistent attacks. In the subsection, we introduce a
commit-and-prove technique which prevents inconsistent attacks.

Assume that the number of cards of P is �. Then, a compiled protocol P ′

to be defined requires �+ 2n+ 2 cards: 2n cards are formed n commitments to
x1, x2, · · · , xn ∈ {0, 1} as follows:

1

?
2

? · · ·
�

?︸ ︷︷ ︸
� cards

l1

?
r1

?︸︷︷︸
x1

l2

?
r2

?︸︷︷︸
x2

· · ·
ln

?
rn

?︸︷︷︸
xn

c0

?
♣

c1

?
♥
,

where all li, ri and ci represent positions. When P enters a private transposition
(privatePerm, 1, (1, 2), (3, 4)), P ′ performs as follows:

1. (privatePerm, 1, et((1, 2, l1, c0) ↔ (3, 4, r1, c1))): The “•” group and the “◦”
group are swapped if x1 = 1 as follows:

•
?

•
?

◦
?

◦
? ? · · · ?︸ ︷︷ ︸

� cards

•
?

◦
?︸︷︷︸

x1

? ?︸︷︷︸
x2

· · · ? ?︸︷︷︸
xn

•
?
♣

◦
?
♥
.

Let x′
1 ∈ {0, 1} be the chosen bit in the private transposition. If it is

honestly executed, it holds x′
1 = x1.

2. (turn, {l1}): Open the left card of the 1st commitment. The opened symbol
is ♣ if and only if it holds x′

1 = x1.

? ? ? ? ? · · · ?︸ ︷︷ ︸
� cards

♣ ?︸︷︷︸
x1⊕x′

1

? ?︸︷︷︸
x2

· · · ? ?︸︷︷︸
xn

? ?︸︷︷︸
x′
1

.

3. (turn, {l1}): Before entering the turning operation, check that the current
visible sequence is matched with ?�♣?2n+1. If it is not the case, the action

4.4. PROTOCOL COMPILER IN THE ENVELOPE MODEL 55

function A outputs ⊥ and an execution is terminated. Otherwise, close
the opened card.

4. (perm, (l1 c0) ◦ (r1 c1)): Now we know that the last two cards consist of a
commitment to x1. This and the 1st commitment are exchanged. Then,
we obtain the following sequence:

? ? ? ? ? · · · ?︸ ︷︷ ︸
� cards

? ?︸︷︷︸
x1

? ?︸︷︷︸
x2

· · · ? ?︸︷︷︸
xn

?
♣

?
♥
,

i.e., for the former � cards, (privatePerm, 1, (1, 2), (3, 4)) is honestly exe-
cuted, and for the latter 2n + 2 cards, it is the same sequence before
applying the step 1.

4.4.2 Protocol compiler

Original functionality. A functionality F is defined as F = (sin(x), sout(x)).

Original protocol. A protocol P is defined as follows:

P = (n, {0, 1}, (Binary,D),Op
n,�, A).

Here, � = |D|. The action function is defined as:

A =
(
(v0, op1), (v1, op2), . . . , (vk−1, opk).

We assume that P correctly and passively realizes the functionality F . We
also assume that every private permutation of P is an extended transposition.
Note that this assumption is reasonable since without loss of generality every
passively secure protocol can be transformed into that satisfying this assumption
by decomposing a permutation into a number of transpositions.

Compiled functionality. A functionality F ′ is defined as follows:

F ′ : ? ? · · · ?︸ ︷︷ ︸
sin(x)

?
♣

?
♥

?
♣

?
♥

· · · ?
♣

?
♥︸ ︷︷ ︸

n + 1 pairs

⇒ ? ? · · · ?︸ ︷︷ ︸
sout(x)

? ?︸︷︷︸
x1

? ?︸︷︷︸
x2

· · · ? ?︸︷︷︸
xn

?
♣

?
♥
,

where sin(x) is the input sequence of F .

Compiled protocol. A protocol P ′ is defined as follows:

P ′ = (n, {0, 1}, (Binary,D ∪ {(♣/?)n+1, (♥/?)n+1}),Op
n,�+m, A′),

where m = 2n+ 2. For ease of explanation, we use notations as follows:

1

?
2

? · · ·
�

?︸ ︷︷ ︸
s0

l1

?
♣

r1

?
♥

l2

?
♣

r2

?
♥

· · ·
ln

?
♣

rn

?
♥

c0

?
♣

c1

?
♥
.

56 CHAPTER 4. PROTOCOLS WITH PRIVATE PERMUTATIONS

That is, li = � + 2i − 1 and ri = � + 2i for i ∈ [n], and cj = � + 2n + 1 + j for
j ∈ {0, 1}. The action function A′ is defined as follows:

A′ =
(
(v′0,1, op

′
0,1), (v

′
0,2, op

′
0,2), . . . , (v

′
0,n, op

′
0,n)︸ ︷︷ ︸

Commit stage

,

(v′1,1, op
′
1,1), (v

′
1,2, op

′
1,2), . . . , (v

′
1,4, op

′
1,4)︸ ︷︷ ︸

corresponding to (v0, op1)

,

(v′2,1, op
′
2,1), (v

′
2,2, op

′
2,2), . . . , (v

′
2,4, op

′
2,4)︸ ︷︷ ︸

corresponding to (v1, op2)

, . . .

. . . , (v′i,1, op
′
i,1), (v

′
i,2, op

′
i,2), . . . , (v

′
i,4, op

′
i,4)︸ ︷︷ ︸

corresponding to (vi−1, opi)

, . . .

. . . , (v′k,1, op
′
k,1), (v

′
k,2, op

′
k,2), . . . , (v

′
k,4, op

′
k,4)︸ ︷︷ ︸

corresponding to (vk−1, opk)

.

The first n steps are called the commit stage while the remaining steps are called
the evaluation stage.

The commit stage proceeds as follows: For 1 ≤ i ≤ n, a pair of a visible
sequence and an operation (v′0,i, op

′
0,i) is defined as follows:

(v′0,i, op
′
0,i) =

(
(vi−1, ?

˜�), (privatePerm, i, et((li) ↔ (ri)))
)
.

After the i-th step, a pair of cards on position (li, ri) consists of a commitment
to xi. Thus, after the commit stage, we obtain the sequence as follows:

1

?
2

? · · ·
�

?︸ ︷︷ ︸
s0

l1

?
r1

?︸︷︷︸
x1

l2

?
r2

?︸︷︷︸
x2

· · ·
ln

?
rn

?︸︷︷︸
xn

c0

?
♣

c1

?
♥
.

The evaluation stage proceeds as follows: Let 1 ≤ i ≤ k. When opi is either
a permutation or a turning, four pairs (v′i,j , op

′
i,j) for j ∈ [4] are defined as

follows:

• (v′i,1, op
′
i,1) =

(
(vi−1, ?

m), opi
)
.

• (v′i,2, op
′
i,2) =

(
(vi, ?

m), (perm, id)
)
.

• (v′i,3, op
′
i,3) =

(
(vi, ?

m), (perm, id)
)
.

• (v′i,4, op
′
i,4) =

(
(vi, ?

m), (perm, id)
)
.

Here, opi ∈ Op
n,� is converted into op′i,1 ∈ Op

n,�+m in a canonical way. That is,
every (perm, π ∈ S�) is converted into (perm, π′ ∈ S�+m) such that π′(x) = π(x)
for all 1 ≤ x ≤ � and π′(x) = x for all �+1 ≤ x ≤ �+m, and every (turn, T ⊂ [�])
is converted into (turn, T ′ ⊂ [� + m]) with T ′ = T . When opi is a private
permutation opi = (privatePerm, ι, et(T0 ↔ T1)), four pairs (v

′
i,j , op

′
i,j) for j ∈ [4]

are defined as follows:

4.4. PROTOCOL COMPILER IN THE ENVELOPE MODEL 57

• (v′i,1, op
′
i,1) =

(
(vi−1, ?

m), (privatePerm, ι, et((T0, li, c0) ↔ (T1, ri, c1)))
)
.

• (v′i,2, op
′
i,2) =

(
(vi, ?

m), (turn, {li})
)
.

• (v′i,3, op
′
i,3) =

(
(vi, ?

2i−2♣?2n−2i+3), (turn, {li})
)
.

• (v′i,4, op
′
i,4) =

(
(vi, ?

m), (perm, (li c0) ◦ (ri c1))
)
.

Correctness. After the commit stage, the initial sequence is changed to the
sequence as follows:

1

?
2

? · · ·
�

?︸ ︷︷ ︸
s0

l1

?
♣

r1

?
♥

l2

?
♣

r2

?
♥

· · ·
ln

?
♣

rn

?
♥

c0

?
♣

c1

?
♥

→
1

?
2

? · · ·
�

?︸ ︷︷ ︸
s0

l1

?
r1

?︸︷︷︸
x1

l2

?
r2

?︸︷︷︸
x2

· · ·
ln

?
rn

?︸︷︷︸
xn

c0

?
♣

c1

?
♥
.

To prove the correctness, it is sufficient to show that in the evaluation stage,
each step of P is correctly simulated as follows:

1

?
2

? · · ·
�

?︸ ︷︷ ︸
si−1

l1

?
r1

?︸︷︷︸
x1

l2

?
r2

?︸︷︷︸
x2

· · ·
ln

?
rn

?︸︷︷︸
xn

c0

?
♣

c1

?
♥

→
1

?
2

? · · ·
�

?︸ ︷︷ ︸
si

l1

?
r1

?︸︷︷︸
x1

l2

?
r2

?︸︷︷︸
x2

· · ·
ln

?
rn

?︸︷︷︸
xn

c0

?
♣

c1

?
♥
.

Since it is trivial when opi is either a permutation or a turning, we consider
the case when opi is a private permutation opi = (privatePerm, ι, et(T0 ↔ T1)).
Without loss of generality, we can assume i = 1. After applying the private
permutation op′i,1 = (privatePerm, ι, et((T0, li, c0) ↔ (T1, ri, c1))), the current
sequence is as follows:

1

?
2

? · · ·
�

?︸ ︷︷ ︸
si

l1

?
♣

r1

?
♥

l2

?
r2

?︸︷︷︸
x2

· · ·
ln

?
rn

?︸︷︷︸
xn

c0

?
c1

?︸︷︷︸
x1

.

After applying op′i,2 = (turn, {l1}), the current sequence is as follows:

1

?
2

? · · ·
�

?︸ ︷︷ ︸
sj

l1
♣

r1

?
♥

l2

?
r2

?︸︷︷︸
x2

· · ·
ln

?
rn

?︸︷︷︸
xn

c0

?
c1

?︸︷︷︸
x1

.

Note that the visible sequence of the above sequence is matched with v′i,3 =

(vi, ?
2i−2♣?2n−2i+3). After applying op′i,3 = (turn, {l1}), the current sequence

is as follows:
1

?
2

? · · ·
�

?︸ ︷︷ ︸
sj

l1

?
♣

r1

?
♥

l2

?
r2

?︸︷︷︸
x2

· · ·
ln

?
rn

?︸︷︷︸
xn

c0

?
c1

?︸︷︷︸
x1

.

After applying op′i,4 = (perm, et((l1, r1) ↔ (c0, c1))), the current sequence is as
follows:

1

?
2

? · · ·
�

?︸ ︷︷ ︸
sj

l1

?
r1

?︸︷︷︸
x1

l2

?
r2

?︸︷︷︸
x2

· · ·
ln

?
rn

?︸︷︷︸
xn

c0

?
♣

c1

?
♥
.

Thus, P ′ correctly realizes the functionality F ′.

58 CHAPTER 4. PROTOCOLS WITH PRIVATE PERMUTATIONS

Active security in the envelope model. We show that if P securely re-
alizes F with passive security, P ′ securely realizes F ′ = (s′in, s

′
out) with active

security in the envelope model. We can observe that out-of-range attacks do
not happen since every private permutation is an extended transposition. Thus,
it is sufficient to show that any inconsistent attack in the evaluation stage can
be immediately detected by the successive turning operation.

Now suppose that the first player acts maliciously in the private permutation
(privatePerm, 1, et((T0, l1, c0) ↔ (T1, r1, c1))). Then, the current sequence is as
follows:

1

?
2

? · · ·
�

?︸ ︷︷ ︸
sj

l1

?
♥

r1

?
♣

l2

?
r2

?︸︷︷︸
x2

· · ·
ln

?
rn

?︸︷︷︸
xn

c0

?
c1

?︸︷︷︸
x1

.

After applying (turn, {l1}), the current sequence is as follows:

1

?
2

? · · ·
�

?︸ ︷︷ ︸
sj

l1
♥

r1

?
♣

l2

?
r2

?︸︷︷︸
x2

· · ·
ln

?
rn

?︸︷︷︸
xn

c0

?
c1

?︸︷︷︸
x1

.

Thus, the protocol terminates since the action function A′ outputs ⊥. Since the
view depends only the first malicious points of the execution only, for any execu-
tion permutation lists E , E ′ in the envelope model, it holds that viewP′(s′in, E) =
viewP′(s′in, E ′) if and only if the first malicious points of E , E ′ are the same. Thus,
P ′ securely realizes F ′ with active security in the envelope model.

4.5 Card-efficient protocol in the envelope model

4.5.1 Passive protocol based on branching program

Let B be any branching program of width w and length k, which computes a
function f : {0, 1}n → {0, 1}. We design a protocol with passive security using
w cards and k private permutations.

Functionality. A functionality Fp
five,f is defined by:

Fp
five,f : ?

♥

w−1︷ ︸︸ ︷
?
♣

?
♣

· · · ?
♣

⇒ ?
f(x)

w−1︷ ︸︸ ︷
?
⊥

?
⊥

· · · ?
⊥

.

Protocol. A protocol Pp
five,f is defined by:

Pp
five,f = (n, {0, 1}, (Binary, {(♣/?)w−1,♥/?},Op

n,w, A).

The action function A is as follows:

A = ((v, op1), (v, op2), (v, op3), . . . , (v, op2k)),

where v = ?w and op2i−1, op2i (1 ≤ i ≤ k) are defined by: for the i-th operation
〈j, π0, π1〉 of B,

4.6. EFFICIENT PROTOCOLS FOR SPECIFIC FUNCTIONS 59

• op2i−1 = (privatePerm, j, (π0)
−1 ◦ π1);

• op2i = (perm, π0).

Correctness. If xi = 0, the applied permutation is π0. If xi = 1, the applied
permutation is π0 ◦ ((π0)

−1 ◦ π1) = π1. Thus, the above protocol simulates
the branching program B. Therefore, the above protocol correctly realizes the
functionality so as B computes f .

Passive security. This is trivial since all sequences are always face-down.

4.5.2 Active protocol using 2n+ 7 cards

Theorem 4.1. Let f : {0, 1}n → {0, 1} be any function. There exists a protocol
using 2n + 7 cards that correctly and securely realizes a functionality F with
active security defined as follows:

F : ?
♥

?
♣

?
♣

?
♣

?
♣

?
♣

?
♥

?
♣

?
♥

· · · ?
♣

?
♥︸ ︷︷ ︸

n + 1 pairs

⇒ ?
f(x)

?
⊥

?
⊥

?
⊥

?
⊥

? ?︸︷︷︸
x1

? ?︸︷︷︸
x2

· · · ? ?︸︷︷︸
xn

?
♣

?
♥
.

The deck of the protocol is D = (Binary, {(♣/?)n+5, (♥/?)n+1}). �

Proof. From Barrington’s Theorem (Lemma 2.1), for any function f : {0, 1}n →
{0, 1}, there exists a branching program B of width 5 and length at most 4d,
where d is the depth of a circuit computing f . Thus, we have a protocol with
passive security using 5 cards. By applying our protocol compiler, we obtain a
protocol with active security using 2n+ 7 cards.

4.6 Efficient protocols for specific functions

4.6.1 Passive protocol for symmetric functions

Let w(x) ∈ {0, 1, . . . , n} be the Hamming weight of x ∈ {0, 1}n, that is,
for x = x1x2 · · ·xn ∈ {0, 1}n, w(x) =

∑n
i=1 xi. We say that a function

f : {0, 1}n → {0, 1} is symmetric if f(x) = f(x′) for any x, x′ ∈ {0, 1}n such
that w(x) = w(x′). We construct two protocols for computing any symmetric
function. The first protocol Pp

sym1,f is passively secure and the second protocol

Pp
sym2,f is actively secure in the ring-with-envelope model.

Functionality Fp
sym1,f . A functionality Fp

sym1,f is defined as follows:

Fp
sym1,f = ?

z0
?
z1

· · · ?
zn

⇒ ?
f(x)

n︷ ︸︸ ︷
?
⊥

?
⊥

· · · ?
⊥
,

where zi is the output of f(x) with w(x) = i.

60 CHAPTER 4. PROTOCOLS WITH PRIVATE PERMUTATIONS

Protocol Pp
sym1,f . A protocol Pp

sym1,f is defined by:

Pp
sym1,f = (n, {0, 1}, (Binary, {(♣/?)a, (♥/?)n+1−a},Op

n,n+1, A),

where a := |{x | x ∈ {0, 1}n, f(x) = 0}|. The action function A is as follows:

A = ((v, op1), (v, op2), (v, op3), . . . , (v, opn)),

where v = ?n+1 and opi (1 ≤ i ≤ n) is defined as follows:

opi = (privatePerm, i, σ),

for σ = (n+ 1 · · · 3 2 1).

Correctness of Pp
sym1,f . When w(x) = i, a permutation σi is totally applied

to the initial sequence. Thus, the first card of the final sequence is zi which
is the output value f(x). Therefore, Pp

sym1,f correctly realizes the functionality

Fp
sym1,f .

Passive security of Pp
sym1,f . It is trivial since all sequences are always face-

down.

4.6.2 Active protocol for symmetric functions

Functionality Fp
sym2,f . A functionality Fp

sym2,f is defined as follows:

Fp
sym2,f = ?

z0
?
z1

· · · ?
zn

n︷ ︸︸ ︷
?
♣

?
♣

· · · ?
♣

?
♥

⇒ ?
f(x)

n︷ ︸︸ ︷
?
⊥

?
⊥

· · · ?
⊥

n︷ ︸︸ ︷
?
♣

?
♣

· · · ?
♣

?
♥
.

Protocol Pp
sym2,f . A protocol Pp

sym2,f is defined as follows:

Pp
sym2,f = (n, {0, 1}, (Binary, {(♣/?)a+n, (♥/?)n+2−a},Op

n,2n+2, A),

where a := |{x | x ∈ {0, 1}n, f(x) = 0}|. For ease of explanation, we use
notations as follows:

1

?
z0

2

?
z1

3

?
z2

4

?
z3

· · ·
n+1

?
zn

p0

?
♣

p1

?
♣

p2

?
♣

p3

?
♣

· · ·
pn

?
♥
,

where pi = n+ 2 + i denotes a position. The action function A is as follows:

A = ((v, op1), (v, op2), (v, op3), . . . , (v, op4n)),

where v4i−j and op4i−j (1 ≤ i ≤ n and 1 ≤ j ≤ 4) is defined as follows:

• (v4i−3, op4i−3) =
(
?2n+2, (privatePerm, i, (p0 pn))

)
;

• (v4i−2, op4i−2) =
(
?2n+2, (privatePerm, i, στ)

)
for σ = (n + 1 · · · 3 2 1)

and τ = (pn · · · p2 p1 p0);

• (v4i−1, op4i−1) =
(
?2n+2, (turn, {pn})

)
;

• (v4i, op4i) =
(
?2n+1♥, (turn, {pn})

)
.

4.6. EFFICIENT PROTOCOLS FOR SPECIFIC FUNCTIONS 61

Correctness. Since the leftmost n + 1 cards are always equivalent to those
of Pp

sym1,f , the leftmost card in the final sequence is f(x) = zi with w(x) = i.
In addition, after the operation op4i (1 ≤ i ≤ n), the rightmost n+ 1 cards are
equivalent to as follows:

n︷ ︸︸ ︷
?
♣

?
♣

· · · ?
♣

?
♥
.

Therefore, Pp
sym2,f correctly realizes the functionality Fp

sym2,f .

Active security in the ring-with-envelope model. Let P = Pp
sym2,f . Let

π1 = (p0 pn) and π2 = στ . Any executed permutation list E in the ring-with-
envelope model is written by the following:

E = (πb1
1 , πc1

2 , πb2
1 , πc2

2 , . . . , πbn
1 , πcn

2),

where bi ∈ {0, 1} and 0 ≤ ci ≤ n for all i ∈ [n]. When E is an honest execution,
bi = ci for all i ∈ [n] and the view viewP(s0, E) is a sequence as follows:

viewP(s0, E) =
(
(?2n+2 → ?2n+2 → ?2n+2 → ?2n+1♥)n → ?2n+2

)
.

When E is a malicious execution whose malicious point is 1 ≤ j ≤ 2n, the view
viewP(s0, E) is a sequence as follows:

viewP(s0, E) =
(
(?2n+2 → ?2n+2 → ?2n+2 → ?2n+1♥)j/2−1

→ ?2n+2 → ?2n+2 → ?2n+2 → ?2n+1♣
)
.

Note that j is an even number since every private permutation of π1 is the first
call of the input bit. Thus, it holds viewP(E) = viewP(E ′) for any executed per-
mutation lists E , E ′ whose malicious points are the same. Therefore, P securely
realizes Fp

sym2,f with active security in the ring-with-envelope model.

4.6.3 Active protocol for the AND function

Functionality. A functionality Fp
AND is defined as follows:

Fp
AND :

n︷ ︸︸ ︷
?
♣

?
♣

· · · ?
♣

?
♥

⇒ ?
f(x)

n︷ ︸︸ ︷
?
⊥

?
⊥

· · · ?
⊥
,

Protocol. A protocol Pp
AND is defined as follows:

Pp
AND = (n, {0, 1}, (Binary, {(♣/?)n,♥/?},Op

n,n+1, A).

The action function A is as follows:

A = ((v, op1), (v, op2), (v, op3), . . . , (v, opn)),

where v = ?n+1 and opi (1 ≤ i ≤ n) is defined as follows:

opi = (privatePerm, i, (n+ 1− i n+ 2− i)).

62 CHAPTER 4. PROTOCOLS WITH PRIVATE PERMUTATIONS

Correctness. After applying op1 to the initial sequence ♣n♥, the rightmost
card and the next rightmost card are swapped if x1 = 1 as follows:

♣n♥ →
{
♣n−1♥♣ if x1 = 1

♣n−1♣♥ otherwise.

Thus, if x1 = 1, the position of ♥ is moved to the left. We can observe that the
rightmost ♥ in the initial sequence is moved to the leftmost in the final sequence
if and only if x1 = x2 = · · · = xn = 1. Thus, the rightmost card is ♥ if and only
if x1 ∧ x2 ∧ · · · ∧ xn = 1. Therefore, Pp

AND correctly realizes the functionality
Fp

AND.

Active security in the bare-bone model. Since every private permutation
is a transposition, out-of-range attacks do not happen. In addition, every input
bit is called at once, inconsistent attacks do not happen. Thus, Pp

AND securely
realizes Fp

AND with active security in the bare-bone model.

4.6.4 Active protocol for equality of two strings

Functionality. Let x, y ∈ {0, 1}n. A functionality Fp
EQ is defined as follows:

Fp
EQ : ?

♥

n︷ ︸︸ ︷
?
♣

?
♣

· · · ?
♣

⇒ ?
p(x=y)

n︷ ︸︸ ︷
?
⊥

?
⊥

· · · ?
⊥

.

Protocol. A protocol Pp
EQ is defined as follows:

Pp
EQ = (2n, {0, 1}, (Binary, {(♣/?)n,♥/?},Op

2n,n+1, A).

(We refer the former n bits as x ∈ {0, 1}n and the latter n bits as y ∈ {0, 1}n.)
The action function A is as follows:

A = ((v, op1), (v, op2), (v, op3), . . . , (v, op2n)),

where v = ?n+1 and (op2i−1, op2i) (1 ≤ i ≤ n) is defined as follows:

• op2i−1 = (privatePerm, i, (1 i+ 1));

• op2i = (privatePerm, i+ n, (1 i+ 1)).

Correctness. After applying op2i−1 and op2i, the first card and the i-th card
are swapped if and only if xi �= yi. We can observe that the leftmost card in
the final sequence is ♥ if and only if (x1 = y1) ∧ (x2 = y2) ∧ · · · ∧ (xn = yn).
Therefore, Pp

EQ correctly realizes the functionality Fp
EQ.

Active security in the bare-bone model. Since every private permutation
is a transposition, out-of-range attacks do not happen. In addition, every input
bit is called at once, inconsistent attacks do not happen. Thus, Pp

EQ securely
realizes Fp

EQ with active security in the bare-bone model.

Chapter 5

Protocols Based on
Polygon-Shaped Cards

5.1 Protocols based on cyclic cards

5.1.1 Cyclic cards

Let m ≥ 2 be any integer. A cyclic card of modulus m is a card as follows:

• One side (referred as back side) has a (360/m)◦ rotational symmetry;

• The other side (referred as front side) has no rotational symmetry.

For example, a cyclic card of modulus 4 is implemented as follows:

↑︸︷︷︸
front side

︸︷︷︸
back side

.

The advantage of cyclic cards is that a single card can have a non-binary value
x ∈ Zm as follows:

↑ = 0, ↑ = 1, ↑ = 2,

↑

= 3.

A card specification of cyclic cards. For x ∈ Zm, we denote a face-up
card having x by x and a face-down card having x by [[x]]. The card set of cyclic
cards of modulus m, denoted by Cc

m, is defined as follows:

Cc
m = {0, 1, . . . ,m− 1, [[0]], [[1]], . . . , [[m− 1]]}.

For a card c ∈ Cc
m, we define two types of transformations: rotation and turning.

For any j ∈ Zm, a rotation operation with a degree j is defined as follows:

rotj(c) =

{
i+ j if c = i for some i ∈ Zm

[[i− j]] if c = [[i]] for some i ∈ Zm

63

64 CHAPTER 5. PROTOCOLS BASED ON POLYGON-SHAPED CARDS

Physically, this is a rotation with (360/m)◦. Note that a face-down card [[i]] is
transformed into a face-down card [[i− j]] since a rotation of face-down cards is
a backward rotation of face-up cards. A turning operation is defined as follows:

turn(c) =

{
[[i]] if c = i for some i ∈ Zm

i if c = [[i]] for some i ∈ Zm

The transformation set of cyclic cards of modulus m, denoted by T c
m, is defined

as follows:
T c
m = {id, rot, rot2, . . . , rotm−1, turn}.

The symbol set of cyclic cards of modulus m, denoted by Σc
m, is defined as

follows:
Σc

m = {0, 1, 2, · · · ,m− 1, ?}.
The vision function viscm : Cc

m → Σc
m of cyclic cards of modulus m is defined as

follows:

viscm(c) =

{
i if c = i for 0 ≤ i ≤ m− 1

? otherwise.

A card specification of cyclic cards of modulus m, denoted by Cyclicm, is defined
as follows:

Cyclicm = (Cc
m, T c

m,Σc
m, viscm).

Commitment. A commitment to x ∈ Zm is defined by com(x) = [[x]].

Existing cards with a 180◦ rotationally symmetric back. Mizuki and
Shizuya [32] proposed a card with a 180◦ rotationally symmetric back as follows:

↓︸︷︷︸
front side

︸︷︷︸
back side

.

It can be regarded as a cyclic card with modulus 2. Thus, a deck of cyclic cards
is considered to be a natural generalization of Mizuki and Shizuya’s cards.

5.1.2 Operations for cyclic cards

Rotation. For T ⊂ [�] and a ∈ Zm, a rotation operation is defined as follows:

(rot, T, a).

For a sequence s = (c1, c2, . . . , c�) ∈ SeqD, by applying a rotation operation

(rot, T, a), it is transformed into a new sequence s′ = (c′1, c
′
2, . . . , c

′
�) ∈ SeqD

such that c′i = rota(ci) for all i ∈ T and c′i = ci for all i �∈ T . For example,
for a sequence s = (0, 1, [[2]], [[3]]) with modulus m = 4, a rotation operation
(rot, {1, 2, 4}, 1) transforms it into a new sequence s′ = (1, 2, [[2]], [[2]]) as follows:

↑︸︷︷︸
0

↑︸︷︷︸
1

︸︷︷︸
[[2]]

︸︷︷︸
[[3]]

→ ↑︸︷︷︸
1

↑︸︷︷︸
2

︸︷︷︸
[[2]]

︸︷︷︸
[[2]]

.

5.1. PROTOCOLS BASED ON CYCLIC CARDS 65

The set of rotations Rotm,� is defined as follows:

Rotm,� = {(rot, T, a) | T ⊂ [�], a ∈ Zm}.

Rotation shuffle. For T ⊂ [�], a rotation shuffle is defined as follows:

(rotshuf, T).

For all i ∈ T , the i-th card in the sequence is rotated with a degree r ∈ Zm, here
r is uniformly and randomly chosen from Zm and this r is common for all i ∈ T .
Other cards are unchanged. For example, for a sequence ([[x1]], [[x2]], [[x3]], [[x4]])
with modulus m = 4, a rotation shuffle (rotshuf, {1, 2, 3}) generates a sequence
([[x1 − r]], [[x2 − r]], [[x3 − r]], [[x4]]) for a random r ∈ Z/4Z as follows:

︸︷︷︸
[[x1]]

︸︷︷︸
[[x2]]

︸︷︷︸
[[x3]]

︸︷︷︸
[[x4]]

→ ︸︷︷︸
[[x1−r]]

︸︷︷︸
[[x2−r]]

︸︷︷︸
[[x3−r]]

︸︷︷︸
[[x4]]

.

The set of rotation shuffles is defined as follows:

RotShufm,� = {(rotshuf, T) | T ⊂ [�]}.

Backward rotation shuffle. For T1, T2 ⊂ [�] such that T1 ∩ T2 = ∅, a back-
ward rotation shuffle is defined as follows:

(backrot, T1, T2).

By applying this operation, each card in T1 is rotated with a degree r ∈ Zm while
each card in T2 is rotated with a degree −r ∈ Zm. Other cards are unchanged.
For example, for a sequence ([[x1]], [[x2]], [[x3]], [[x4]]), a backward rotation shuffle
(backrot, {1}, {2, 3}) generates a sequence ([[x1 − r]], [[x2 + r]], [[x3 + r]], [[x4]]) for
a random r ∈ Zm as follows:

︸︷︷︸
[[x1]]

︸︷︷︸
[[x2]]

︸︷︷︸
[[x3]]

︸︷︷︸
[[x4]]

→ ︸︷︷︸
[[x1−r]]

︸︷︷︸
[[x2+r]]

︸︷︷︸
[[x3+r]]

︸︷︷︸
[[x4]]

.

The set of backward rotation shuffles is defined as follows:

BackRotm,� = {(backrot, T) | T ⊂ [�]}.

Flower shuffle. A flower shuffle is a random rotation with a cyclic permuta-
tion. In the case ofm = 4, it takes a sequence of five cards ([[x]], [[y0]], [[y1]], [[y2]], [[y3]])
and outputs ([[x− r]], [[yr]], [[yr+1]], [[yr+2]], [[yr+3]]) as follows:

︸︷︷︸
[[x]]

︸︷︷︸
[[y0]]

︸︷︷︸
[[y1]]

︸︷︷︸
[[y2]]

︸︷︷︸
[[y3]]

→ ︸︷︷︸
[[x−r]]

︸︷︷︸
[[yr]]

︸︷︷︸
[[yr+1]]

︸︷︷︸
[[yr+2]]

︸︷︷︸
[[yr+3]]

.

That is, the leftmost card [[x]] is rotationally randomized and the other four
cards ([[y0]], [[y1]], [[y2]], [[y3]]) are cyclically and randomly shifted. [[x]] is called the

66 CHAPTER 5. PROTOCOLS BASED ON POLYGON-SHAPED CARDS

center of the flower shuffle and [[yi]] is called the i-th petal of the flower shuffle.
The center and a petal can be take multiple cards. For example, a flower shuffle
takes ([[x]], [[x′]], [[y0]], [[y′0]], [[y1]], [[y

′
1]], [[y2]], [[y

′
2]], [[y3]], [[y

′
3]]) as input and outputs

([[x− r]], [[x′ − r]], [[yr]], [[y
′
r]], [[yr+1]], [[y

′
r+1]], [[yr+2]], [[y

′
r+2]], [[yr+3]], [[y

′
r+3]]).

In this case, the center consists of two cards and each petal consists of two cards.
Formally, it is defined as follows:

(flower, C, T0, T1, · · · , Tm−1),

where C, T0, T1, · · · , Tm−1 ⊂ [�] are pairwise disjoint subsets of positions such
that |T0| = |T1| = · · · = |Tm−1| = k for some integer k. Here, Ti is an ordered
list Ti = (ti,1, ti,2, · · · , ti,k). By this operation, each card in C is rotated with
a degree r while each card ti,j , which is the j-th card in Ti, is moved to the
position of the card ti+r,j , which is the j-th card in Ti+r. Other cards are
unchanged. The set of backward rotation shuffles is defined as follows:

Flowerm,� = {(flower, C, T0, T1, · · · , Tm−1) | C, T0, T1, · · · , Tm−1 ⊂ [�]}.

5.1.3 Notations

Hereafter, we use notations as follows.

Operations. The set of permutations, turnings, and shuffles for cyclic cards
of modulus m is similarly defined as that for binary cards, and denoted by
Permm,�, Turnm,�, and Shufm,�, respectively, where � is the number of cards.
We assume that the set of operations is Oc

m,� defined as follows:

Oc
m,� = Permm,�∪Turnm,�∪Shufm,�∪Rotm,�∪RotShufm,�∪BackRotm,�∪Flowerm,�.

View. We omit revealed information in a view since all operations in Oc
m,�

never produce revealed information.

5.1.4 Outline of protocols

Our protocols based on cyclic cards in this chapter are as follows:

• Subtraction protocol (Section 5.1.5): It takes two cards ([[x1]], [[x2]]) as
input and outputs a card [[x2 − x1]].

• Addition protocol #1 (Section 5.1.6): It takes three cards ([[x1]], [[x2]], [[0]])
as input and outputs a card [[x1 + x2]]. It calls the subtraction protocol
two times.

• Addition protocol #2 (Section 5.1.7): It takes two cards ([[x1]], [[x2]]) as
input and outputs a card [[x1 + x2]].

5.1. PROTOCOLS BASED ON CYCLIC CARDS 67

• Constant multiplication protocol (Section 5.1.8): It takes a card [[x]] and
m−1 copies of [[0]] as input and outputs ([[ix]])0≤i≤m−1. It calls an extended
addition protocol (Section 5.1.7) multiple times.

• Multiplication protocol (Section 5.1.9): It takes two cards ([[x1]], [[x2]]) and
m−1 copies of [[0]] as input and outputs a card [[x1x2]]. It calls the constant
multiplication protocol once.

• Oblivious conversion #1 (Section 5.1.10): It takes a card [[x]], m copies of
[[0]], and m sequences (Ei)0≤i≤m−1 and outputs a sequence [[Ex]]. It calls
a copy protocol (Section 5.1.7) once.

• Oblivious conversion #2 (Section 5.1.11): It takes a card [[x]] and m se-
quences (Ei)0≤i≤m−1 and outputs a sequence [[Ex]].

• General protocol (Section 5.1.12): It takes n cards ([[x1]], [[x2]], . . . , [[xn]])
and outputs a card [[f(x1, x2, . . . , xn)]]. It calls the oblivious conversion
#2 (Section 5.1.11) n times.

5.1.5 Subtraction protocol

Functionality. A functionality Fc
sub is defined as follows:

Fc
sub : ︸︷︷︸

[[x1]]

︸︷︷︸
[[x2]]

⇒ ↑︸︷︷︸
0

︸︷︷︸
[[x2−x1]]

.

Protocol. A subtraction protocol Pc
sub is defined as follows:

Pc
sub = (2,Zm, (Cyclicm, {0, 0}),Oc

m,2, A).

It proceeds as follows:

1. (rotshuf, {1, 2}): Apply a rotation shuffle to them:

︸︷︷︸
[[x1]]

︸︷︷︸
[[x2]]

→ ︸︷︷︸
[[x′

1]]

︸︷︷︸
[[x′

2]]

,

where x′
i := xi − r (i ∈ {1, 2}) for a random r ∈ Zm.

2. (turn, {1}): Turn the left card [[x′
1]]:

︸︷︷︸
[[x′

1]]

︸︷︷︸
[[x′

2]]

→ ↑︸︷︷︸
x′
1

︸︷︷︸
[[x′

2]]

.

3. (rot, {2}, x′
1): Rotate the right card with a degree x′

1:

↑︸︷︷︸
x′
1

︸︷︷︸
[[x′

2]]

→ ↑︸︷︷︸
x′
1

︸︷︷︸
[[x′

2−x′
1]]

.

68 CHAPTER 5. PROTOCOLS BASED ON POLYGON-SHAPED CARDS

4. (rot, {1},−x′
1): Rotate the left card with a degree −x′

1:

↑︸︷︷︸
x′
1

︸︷︷︸
[[x′

2−x′
1]]

→ ↑︸︷︷︸
0

︸︷︷︸
[[x′

2−x′
1]]

.

The protocol terminates.

Correctness. Since x′
1 = x1 − r and x′

2 = x2 − r, the right card in the final
sequence is [[x′

2 − x′
1]] = [[(x2 − r)− (x1 − r)]] = [[x2 − x1]]. Thus, the subtraction

protocol Pc
sub correctly realizes the functionality Fc

sub.

Security. Let x = (x1, x2) ∈ (Zm)2 be any input. The probability distribution
of a view of the protocol starting with the sequence sin(x) = ([[x1]], [[x2]]) is given
as follows:

viewPc
sub
(sin(x), x) =

(
(?, ?) → (?, ?) → (x′

1, ?) → (x′
1, ?) → (0, ?)

)
,

where x′
1 = x1 − r for a uniform random value r ∈ Zm. This is equivalent to a

probability distribution view∗ defined as follows:

view∗ =
(
(?, ?) → (?, ?) → (r′, ?) → (r′, ?) → (0, ?)

)
,

where r′ ∈ Zm is a uniform random value. The distribution view∗ does not
depend on x. Thus, for every x, x′ ∈ (Zm)2, the following holds:

viewPc
sub
(sin(x), x) = viewPc

sub
(sin(x

′), x′) = view∗.

Therefore, Pc
sub securely realizes Fc

sub.

Efficiency. The number of cards is two. Note that this is the minimum num-
ber of cards since the number of inputs is two. The number of probabilistic
operations is one (one rotation shuffle).

Extended subtraction protocol. We can extend to the above protocol into
a protocol that (correctly and securely) realizes a functionality defined as follows:

︸︷︷︸
[[x1]]

︸︷︷︸
[[x2]]

︸︷︷︸
[[x3]]

· · · ︸︷︷︸
[[xk]]

⇒ ↑︸︷︷︸
0

︸︷︷︸
[[x2−x1]]

︸︷︷︸
[[x3−x1]]

· · · ︸︷︷︸
[[xk−x1]]

.

We call it an extended subtraction protocol.

5.1.6 Addition protocol from a rotation shuffle

Functionality. A functionality Fc
add1 is defined as follows:

Fc
add1 : ︸︷︷︸

[[x1]]

︸︷︷︸
[[0]]

︸︷︷︸
[[x2]]

⇒ ↑︸︷︷︸
0

↑︸︷︷︸
0

︸︷︷︸
[[x1+x2]]

.

5.1. PROTOCOLS BASED ON CYCLIC CARDS 69

Protocol. An addition protocol Pc
add1 is defined as follows:

Pc
add1 = (2,Zm, (Cyclicm, {0, 0, 0}),Oc

m,3 ∪ Oracle[Pc
sub], A).

It proceeds as follows:

1. (oracle,Pc
sub, {1, 2}): Apply the subtraction protocol to the first and second

cards:

︸︷︷︸
[[x1]]

︸︷︷︸
[[0]]

︸︷︷︸
[[x2]]

→ ↑︸︷︷︸
0

︸︷︷︸
[[−x1]]

︸︷︷︸
[[x2]]

.

2. (oracle,Pc
sub, {2, 3}): Apply the subtraction protocol to the second and

third cards:
↑︸︷︷︸
0

︸︷︷︸
[[−x1]]

︸︷︷︸
[[x2]]

→ ↑︸︷︷︸
0

↑︸︷︷︸
0

︸︷︷︸
[[x2+x1]]

.

The protocol terminates.

Correctness. The correctness is trivial from the above description.

Security. Let x = (x1, x2) ∈ (Zm)2 be any input. The probability distribution
of a view of the protocol starting with the sequence sin(x) = ([[x1]], [[0]], [[x2]]) is
given as follows:

viewPc
add1

(sin(x), x) =
(
(?, ?, ?) → (0, ?, ?) → (0, 0, ?)

)
.

It does not depend on x since it is just a fixed sequence. Thus, for every
x, x′ ∈ (Zm)2, the following holds:

viewPc
add1

(sin(x), x) = viewPc
add1

(sin(x
′), x′).

Therefore, Pc
add1 securely realizes Fc

add1.

Efficiency. The number of cards is three. The number of oracle calls is two
(two calls of the subtraction protocol). From Proposition 2.1, an addition pro-
tocol without oracles can be obtained. The number of shuffles of the protocol
is two (two rotation shuffles).

5.1.7 Addition protocol from a backward rotation shuffle

Functionality. A functionality Fc
add2 is defined as follows:

Fc
add2 : ︸︷︷︸

[[x1]]

︸︷︷︸
[[x2]]

⇒ ↑︸︷︷︸
0

︸︷︷︸
[[x1+x2]]

.

70 CHAPTER 5. PROTOCOLS BASED ON POLYGON-SHAPED CARDS

Protocol. An addition protocol Pc
add2 is defined as follows:

Pc
add2 = (2,Zm, (Cyclicm, {0, 0}),Oc

m,2, A).

It proceeds as follows:

1. (backrot, {1}, {2}): Apply a backward rotation shuffle to them:

︸︷︷︸
[[x1]]

︸︷︷︸
[[x2]]

→ ︸︷︷︸
[[x′

1]]

︸︷︷︸
[[x′

2]]

,

where x′
1 := x1 − r and x′

2 := x2 + r for a random r ∈ Zm.

2. (turn, {1}): Turn the left card [[x′
1]]:

︸︷︷︸
[[x′

1]]

︸︷︷︸
[[x′

2]]

→ ↑︸︷︷︸
x′
1

︸︷︷︸
[[x′

2]]

.

3. (rot, {1, 2},−x′
1): Rotate them with a degree −x′

1:
↑︸︷︷︸

x′
1

︸︷︷︸
[[x′

2]]

rot−→ ↑︸︷︷︸
0

︸︷︷︸
[[x′

2+x′
1]]

.

The protocol terminates.

Correctness. Since x′
1 = x1 − r and x′

2 = x2 + r, the right card in the final
sequence is [[x′

2 + x′
1]] = [[(x2 + r) + (x1 − r)]] = [[x2 + x1]]. Thus, the addition

protocol Pc
add2 correctly realizes the functionality Fc

add2.

Security. Let x = (x1, x2) ∈ (Zm)2 be any input. The probability distribution
of a view of the protocol starting with the sequence sin(x) = ([[x1]], [[x2]]) is given
as follows:

viewPc
add2

(sin(x), x) =
(
(?, ?) → (?, ?) → (x′

1, ?) → (0, ?)
)
,

where x′
1 = x1 − r for a uniform random value r ∈ Zm. This is equivalent to a

probability distribution view∗ defined as follows:

view∗ =
(
(?, ?) → (?, ?) → (r′, ?) → (0, ?)

)
,

where r′ ∈ Zm is a uniform random value. The distribution view∗ does not
depend on x. Thus, for every x, x′ ∈ (Zm)2, the following holds:

viewPc
add2

(sin(x), x) = viewPc
add2

(sin(x
′), x′) = view∗.

Therefore, Pc
add2 securely realizes Fc

add2.

5.1. PROTOCOLS BASED ON CYCLIC CARDS 71

Efficiency. The number of cards is two. Note that this is the minimum num-
ber of cards since the number of inputs is two. The number of probabilistic
operations is one (one backward rotation shuffle).

Extended addition protocol. We extend to the above protocol into a pro-
tocol that (correctly and securely) realizes a functionality defined as follows:

︸︷︷︸
[[x1]]

︸︷︷︸
[[x2]]

︸︷︷︸
[[x3]]

· · · ︸︷︷︸
[[xk]]

⇒ ↑︸︷︷︸
0

︸︷︷︸
[[x2+x1]]

︸︷︷︸
[[x3+x1]]

· · · ︸︷︷︸
[[xk+x1]]

.

We call it an extended addition protocol denoted by Pc
exadd.

Copy protocol. By using a multiple addition protocol, we also obtain a pro-
tocol that (correctly and securely) realizes a functionality defined as follows:

︸︷︷︸
[[x]]

k︷ ︸︸ ︷
︸︷︷︸
[[0]]

︸︷︷︸
[[0]]

· · · ︸︷︷︸
[[0]]

⇒ ↑︸︷︷︸
0

k︷ ︸︸ ︷
︸︷︷︸
[[x]]

︸︷︷︸
[[x]]

· · · ︸︷︷︸
[[x]]

.

We call it a copy protocol denoted by Pc
copy.

5.1.8 Constant multiplication protocol

Functionality. A functionality Fc
cmult is defined as follows:

Fc
cmult : ︸︷︷︸

[[x]]

m−1︷ ︸︸ ︷
︸︷︷︸
[[0]]

︸︷︷︸
[[0]]

· · · ︸︷︷︸
[[0]]

⇒ ︸︷︷︸
[[0]]

︸︷︷︸
[[x]]

︸︷︷︸
[[2x]]

· · · ︸︷︷︸
[[(m−1)x]]

.

Notation. The goal of the protocol is for every 0 ≤ i ≤ m − 1, the card on
position i is [[ix]] as follows:

0

︸︷︷︸
[[0]]

1

︸︷︷︸
[[x]]

2

︸︷︷︸
[[2x]]

· · ·
m−1

︸︷︷︸
[[(m−1)x]]

.

For any sequence s = ([[a0x]], [[a1x]], . . . , [[am−1x]]) for 0 ≤ ai ≤ m− 1, we define
the capacity of the card on position i by i− ai. We say that a card on position
i achieves the goal if the capacity of the card on position i is 0, i.e., ai = i. For
example, when m = 4, consider a sequence s as follows:

s =
0

︸︷︷︸
[[0]]

1

︸︷︷︸
[[x]]

2

︸︷︷︸
[[x]]

3

︸︷︷︸
[[x]]

.

The capacities of the cards on positions {0, 1, 2, 3} are 0, 0, 1, and 2, respectively.
Thus, the cards on positions {0, 1} achieve the goal. On the other hand, the
cards on positions {2, 3} do not achieve the goal.

72 CHAPTER 5. PROTOCOLS BASED ON POLYGON-SHAPED CARDS

Protocol. A constant multiplication protocol Pc
cmult is defined as follows:

Pc
cmult = (1,Zm, (Cyclicm, {0, 0, · · · , 0︸ ︷︷ ︸

m

}),Oc
m,m ∪ Oracle[Pc

exadd], A)

It proceeds as follows:

1. (perm, (1 2)): Swap the cards on positions {0, 1} as follows:

0

︸︷︷︸
[[x]]

1

︸︷︷︸
[[0]]

2

︸︷︷︸
[[0]]

· · ·
m−1

︸︷︷︸
[[0]]

→
0

︸︷︷︸
[[0]]

1

︸︷︷︸
[[x]]

2

︸︷︷︸
[[0]]

· · ·
m−1

︸︷︷︸
[[0]]

.

After the permutation, the cards on positions {0, 1} achieve the goal.

2. Repeat the following until all cards achieve the goal:

(a) Let i∗ ∈ {0, 1, 2, . . . ,m − 1} be the maximum value satisfying the
conditions as follows:

• The card on position i achieves the goal.

• The capacity of the card on position m− 1 is equal to or greater
than i.

(b) (perm, (1 i∗ + 1)): Swap the cards on positions {0, i∗}. After the
permutation, the card on position i does not achieve the goal.

(c) Let T ⊂ {0, 1, . . . ,m−1} be a subset of positions j ∈ {0, 1, . . . ,m−1}
satisfying the conditions as follows:

• The card on position j does not achieve the goal.

• The capacity of the card on position j is equal or greater than
i∗.

Note that i∗ ∈ T since the card on position i does not achieve the goal.
We note thatm−1 ∈ T since the card on positionm−1 has the largest
capacity. Apply (oracle,Pc

exadd, T
′) for T ′ = {1}∪{i+1 | i ∈ T}, where

Pc
exadd is an extended addition protocol.

(d) (turn, 1): Turn the card on position 0 so that it changed to a face-
down card [[0]]. Note that before applying the turning, the card on
position 0 is a face-up card 0.

Correctness. We can observe that at least one [[x]] is contained in every step
of the current sequence throughout a protocol execution. Thus, there exists
i∗ satisfying the conditions at Step 2(a). By applying the extended addition
protocol a number of times, it eventually matches the finial sequence of Fc

cmult.
Thus, the above protocol Pc

cmult correctly realizes Fc
cmult.

5.1. PROTOCOLS BASED ON CYCLIC CARDS 73

Efficiency. The number of cards is m. The number of oracle calls am ∈ N is
computed as follows:

am = 2L+ p(m ≥ 2L + 2L−1)− 2,

where L = 	logm
. From Proposition 2.1, a constant multiplication protocol
without oracles can be obtained. The number of shuffles of the protocol is am
(am backward rotation shuffles).

Security. Let x ∈ Zm be any input. The probability distribution of a view of
the protocol starting with the sequence sin(x) = ([[x]], [[0]], [[0]], . . . , [[0]]) is given
as follows:

viewPc
cmult

(sin(x), x) =
(
?m(→ ?m → ?m → (0, ?m−1) → ?m)am

)
,

Note that it means am repetitions of “→ ?m → ?m → (0, ?m−1) → ?m”. The
distribution view∗ does not depend on x since it is just a fixed sequence. Thus,
for every x, x′ ∈ Zm, the following holds:

viewPc
cmult

(sin(x), x) = viewPc
cmult

(sin(x
′), x′) = view∗.

Therefore, Pc
cmult securely realizes Fc

cmult.

5.1.9 Multiplication protocol

Functionality. A functionality Fc
mult is defined as follows:

Fc
mult : ︸︷︷︸

[[x1]]

m−1︷ ︸︸ ︷
︸︷︷︸
[[0]]

︸︷︷︸
[[0]]

· · · ︸︷︷︸
[[0]]

︸︷︷︸
[[x2]]

⇒ ︸︷︷︸
[[x1x2]]

⊥ ⊥
· · ·

⊥︸ ︷︷ ︸
m−1

↑︸︷︷︸
0

.

Protocol. A multiplication protocol Pc
mult is defined as follows:

Pc
mult = (2,Zm, (Cyclicm, {0, 0, · · · , 0︸ ︷︷ ︸

m+1

}),Oc
m,m+1 ∪ Oracle[Pc

cmult], A).

It proceeds as follows:

1. (oracle,Pc
cmult, {1, 2, . . . ,m}): Apply the constant multiplication protocol

Pc
cmult to the former m cards as follows:

︸︷︷︸
[[x1]]

︸︷︷︸
[[0]]

︸︷︷︸
[[0]]

· · · ︸︷︷︸
[[0]]

︸︷︷︸
[[x2]]

→ ︸︷︷︸
[[0]]

︸︷︷︸
[[x1]]

︸︷︷︸
[[2x1]]

· · · ︸︷︷︸
[[(m−1)x1]]

︸︷︷︸
[[x2]]

.

2. (flower, {m+ 1}, (1), (2), . . . , (m)): Apply a flower shuffle to them:

︸︷︷︸
[[0]]

︸︷︷︸
[[x1]]

︸︷︷︸
[[2x1]]

· · · ︸︷︷︸
[[(m−1)x1]]

︸︷︷︸
[[x2]]

→ ︸︷︷︸
[[z0]]

︸︷︷︸
[[z1]]

︸︷︷︸
[[z2]]

· · · ︸︷︷︸
[[zm−1]]

︸︷︷︸
[[x′

2]]

,

where zi = (r + i)x1 and x′
2 = x2 − r for a random r ∈ Zm.

74 CHAPTER 5. PROTOCOLS BASED ON POLYGON-SHAPED CARDS

3. (turn, {m+ 1}): Turn the rightmost card:

︸︷︷︸
[[z0]]

︸︷︷︸
[[z1]]

︸︷︷︸
[[z2]]

· · · ︸︷︷︸
[[zm−1]]

︸︷︷︸
[[x′

2]]

→ ︸︷︷︸
[[z0]]

︸︷︷︸
[[z1]]

︸︷︷︸
[[z2]]

· · · ︸︷︷︸
[[zm−1]]

↑︸︷︷︸
x′
2

.

4. (perm, (1 x′
2)): Swap [[z0]] and [[zx′

2
]] as follows:

︸︷︷︸
[[z0]]

︸︷︷︸
[[z1]]

︸︷︷︸
[[z2]]

· · · ︸︷︷︸
[[zm−1]]

↑︸︷︷︸
x′
2

→ ︸︷︷︸
[[zx′

2
]]

︸︷︷︸
[[z1]]

︸︷︷︸
[[z2]]

· · · ︸︷︷︸
[[zm−1]]

↑︸︷︷︸
x′
2

.

5. (rot, {m+ 1},−x′
2): Rotate the rightmost card with a degree −x′

2:

︸︷︷︸
[[zx′

2
]]

︸︷︷︸
[[z1]]

︸︷︷︸
[[z2]]

· · · ︸︷︷︸
[[zm−1]]

↑︸︷︷︸
x′
2

→ ︸︷︷︸
[[zx′

2
]]

︸︷︷︸
[[z1]]

︸︷︷︸
[[z2]]

· · · ︸︷︷︸
[[zm−1]]

↑︸︷︷︸
0

.

The protocol terminates.

Correctness. Since zi = (r+ i)x1 and x′
2 = x2 − r for a random r ∈ Zm, the

card [[zx′
2
]] is equal to [[zx′

2
]] = [[(r + x′

2)x1]] = [[(r + x2 − r)x1]] = [[x1x2]]. Thus,
the above protocol Pc

mult correctly realizes the functionality Fc
mult.

Security. Let x = (x1, x2) ∈ (Zm)2 be any input. The probability distribution
of a view of the protocol starting with the sequence sin(x) = ([[x1]], [[0]], [[0]], . . . , [[0]], [[x2]])
is given as follows:

viewPc
mult

(sin(x), x) =
(
?m+1 → ?m+1 → ?m+1 → (?m, x′

2) → (?m, x′
2) → (?m, 0)

)
,

where x′
2 = x2 − r for a uniform random value r ∈ Zm. This is equivalent to a

probability distribution view∗ defined as follows:

view∗ =
(
?m+1 → ?m+1 → ?m+1 → (?m, r′) → (?m, r′) → (?m, 0)

)
,

where r′ ∈ Zm is a uniform random value. The distribution view∗ does not
depend on x. Thus, for every x, x′ ∈ (Zm)2, the following holds:

viewPc
mult

(sin(x), x) = viewPc
mult

(sin(x
′), x′) = view∗.

Therefore, Pc
mult securely realizes Fc

mult.

Efficiency. The number of cards is m + 1. The number of oracle calls is
one (one call of the constant multiplication protocol). From Proposition 2.1, a
multiplication protocol without oracles can be obtained. The number of shuffles
of the protocol is am defined in Efficiency of the constant multiplication protocol
(am backward rotation shuffles).

5.1. PROTOCOLS BASED ON CYCLIC CARDS 75

5.1.10 Oblivious conversion from a pile random cut

Functionality. A functionality Fc
oc1 = (sin, sout) is defined as follows:

sin = ([[x]], [[0]], [[0]], . . . , [[0]]︸ ︷︷ ︸
m

, E0, E1, . . . , Em−1).

sout = (0, 0, 0, . . . , 0︸ ︷︷ ︸
m+1

, Ex, Ex+1, . . . , Ex+m−1).

Here, E0, E1, . . . , Em−1 are face-down sequences of the same length k, i.e.,
vis(Ei) = ?k for all i.

Pile random cut. A pile random cut is a shuffle operation, which is a gen-
eralized version of random cuts. An example of a pile random cut is as follows:

1 2 3 4 5 6

→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 2 3 4 5 6

w.p. 1/3
3 4 5 6 1 2

w.p. 1/3
5 6 1 2 3 4

w.p. 1/3

That is, it randomly shifts the order of piles like a random cut.
Now we define a pile random cut used in the oblivious conversion protocol.

The sequence just before applying the shuffle is as follows:

1 2

· · ·
m t1,1 t1,2

· · ·
t1,k

︸ ︷︷ ︸
E0

t2,1 t2,2

· · ·
t2,k

︸ ︷︷ ︸
E1

· · ·
tm,1 tm,2

· · ·
tm,k

︸ ︷︷ ︸
Em−1

.

Define a shift permutation σ as follows:

σ = (m m− 1 · · · 2 1)τ1τ2 · · · τk,

for τi = (tm,i tm−1,i · · · t2,i t1,i) (i ∈ [k]). By applying the shift permutation σ
to the above sequence, it is changed to a sequence as follows:

2 3

· · ·
1 t2,1 t2,2

· · ·
t2,k

︸ ︷︷ ︸
E1

t3,1 t3,2

· · ·
t3,k

︸ ︷︷ ︸
E2

· · ·
t1,1 t1,2

· · ·
t1,k

︸ ︷︷ ︸
E0

.

The pile random cut is a shuffle that applies a shift permutation σr for a random
0 ≤ r ≤ k − 1. Formally, it is defined by (shuffle,Π = {id, σ, σ2, . . . , σk−1}, UΠ)
where UΠ is the uniform distribution over Π.

Protocol. An oblivious conversion protocol Pc
oc1 is defined as follows:

Pc
oc1 = (1,Zm, (Cyclicm, {0, 0, . . . , 0︸ ︷︷ ︸

�

}),Oc
m,� ∪ Oracle[Pc

copy], A),

where � is defined by � = m+ 1 +mk for k = |E0|. It proceeds as follows:

76 CHAPTER 5. PROTOCOLS BASED ON POLYGON-SHAPED CARDS

1. (oracle,Pc
copy, {1, 2, 3, . . . ,m}): Applying the copy protocol to the leftmost

m+ 1 cards as follows:

︸︷︷︸
[[x]]

︸︷︷︸
[[0]]

︸︷︷︸
[[0]]

︸︷︷︸
[[0]]

︸︷︷︸
[[0]]

→ ↑︸︷︷︸
0

︸︷︷︸
[[x]]

︸︷︷︸
[[x]]

︸︷︷︸
[[x]]

︸︷︷︸
[[x]]

.

Note that this is the former m+ 1 cards when m = 4.

2. (perm, (� · · · 3 2 1)) for � = m + 1 + mk: Rearrange the order of the
sequence so that the leftmost card is moved to the rightmost as follows:

1

↑
2 3

· · ·
�−1 �

→
2 3 4

· · ·
� 1

↑

3. For i ∈ {2, 3, . . . ,m}, apply a rotation operation (rot, {i}, i−1) as follows:

︸︷︷︸
[[x]]

︸︷︷︸
[[x]]

︸︷︷︸
[[x]]

︸︷︷︸
[[x]]

→ ︸︷︷︸
[[x]]

︸︷︷︸
[[x−1]]

︸︷︷︸
[[x−2]]

︸︷︷︸
[[x−3]]

.

Note that this is the former m cards when m = 4.

4. (shuffle,Π, UΠ): Apply the pile random cut defined in the above.

5. (turn, {1, 2, . . . ,m}): Turn the leftmost m cards as follows:

· · ·︸ ︷︷ ︸
mk

↑ → ↑︸︷︷︸
x′
0

↑︸︷︷︸
x′
1

↑︸︷︷︸
x′
2

↑︸︷︷︸
x′
3

· · ·︸ ︷︷ ︸
mk

↑ .

A list of the opened values (x′
0, x

′
1, . . . , x

′
m−1) is expected to be a cyclic

shit of the decreasing order (m−1,m−2, . . . , 1, 0). If it is not the case, the
action function outputs ⊥ (i.e., the protocol execution terminates before
entering the next operation). Let i∗ ∈ [m] be the index such that x′

i∗ = 0.
(In the above sequence, i∗ = 3 since x′

3 = 0.)

6. Apply a permutation operation (perm, σi∗) to the sequence.

7. Apply rotation operations so that every faced-up card is changed to 0.
(Thus, m− 1 rotation operations are applied.)

8. Apply a permutation operation so that all face-up cards 0 are moved to
the leftmost cards without changing the order of other face-down cards.

Correctness. Suppose that in the pile random cut at Step 4, a shift permu-
tation σr is chosen for some 0 ≤ r ≤ k − 1. In addition, at Step 6, it is applied
a shift permutation σi∗ . Thus, the sequence just after Step 6 should be given
as follows:

︸︷︷︸
[[x−a]]

︸︷︷︸
[[x−(a+1)]]

︸︷︷︸
[[x−(a+2)]]

︸︷︷︸
[[x−(a+m−1)]]

︸︷︷︸
Ea

︸︷︷︸
Ea+1

︸︷︷︸
Ea+2

· · · ︸︷︷︸
Ea+m−1

,

5.1. PROTOCOLS BASED ON CYCLIC CARDS 77

where a = r + i∗ and each Ej is depicted by a single card. Just after Step 3,
the x-th card of the sequence is [[0]]. (Here, the leftmost card is the 0-th card.)
From this, we can observe that i∗ = x− r. Thus, a = r + i∗ = r + (x− r) = x.
It means that the final sequence is:

↑ ↑ · · · ↑︸ ︷︷ ︸
m+1

︸︷︷︸
Ex

︸︷︷︸
Ex+1

︸︷︷︸
Ex+2

· · · ︸︷︷︸
Ex+m−1

,

which is matched with the output sequence of sout. Therefore, the protocol Pc
oc1

correctly realizes the functionality Fc
oc1.

Security. Let x ∈ Zm be any input. The probability distribution of a view of
the protocol starting with the sequence sin(x) = ([[x]], [[0]]m, E0, E1, . . . , Em−1)
is given as follows:

viewPc
oc1
(sin(x), x) =

(
· · · → (?m(k+1), 0) → (x′

0, x
′
1, . . . , x

′
m−1, ?

mk, 0)

→ (0,m− 1,m− 2, . . . , 1, ?mk, 0) → · · ·

→ (0m, ?mk, 0) → · · · → (?m(k+1), 0)
)
.

(Note that the view before Step 4 is omitted since it is not essential for proving
the security.) The above x′ = (x′

0, x
′
1, . . . , x

′
m−1) is a cyclic shit of the decreasing

order (m− 1,m− 2, . . . , 1, 0). Since the index i∗ such that x′
i∗ = 0 is i∗ = x− r,

it is equivalent to a probability distribution view∗ defined as follows:

view∗ =
(
· · · → (?m(k+1), 0) → (r′0, r

′
1, . . . , r

′
m−1, ?

mk, 0)

→ (0,m− 1,m− 2, . . . , 1, ?mk, 0) → · · ·

→ (0m, ?mk, 0) → · · · → (?m(k+1), 0)
)
,

where (r′0, r
′
1, . . . , r

′
m−1) is a uniform random shift of (m − 1,m − 2, . . . , 1, 0).

The distribution view∗ does not depend on x. Thus, for every x, x′ ∈ Zm, the
following holds:

viewPc
oc1
(sin(x), x) = viewPc

oc1
(sin(x

′), x′) = view∗.

Therefore, Pc
oc1 securely realizes Fc

oc1.

Efficiency. The number of cards is (k+1)m+1. The number of oracle calls is
one (one call of the copy protocol). From Proposition 2.1, an oblivious conver-
sion without oracles can be obtained. The number of probabilistic operations is
two (one backward rotation shuffle and one pile random cut).

78 CHAPTER 5. PROTOCOLS BASED ON POLYGON-SHAPED CARDS

5.1.11 Oblivious conversion from a flower shuffle

Functionality. A functionality Fc
oc2 = (sin, sout) is defined as follows:

sin = (E0, E1, . . . , Em−1, [[x]]).

sout = (Ex, Ex+1, . . . , Ex+m−1, 0).

Here, E0, E1, . . . , Em−1 are face-down sequences of the same length k, i.e.,
vis(Ei) = ?k for all i.

Protocol. An oblivious conversion protocol Pc
oc2 is defined as follows:

Pc
oc2 = (1,Zm, (Cyclicm, {0, 0, . . . , 0︸ ︷︷ ︸

�

}),Oc
m,�, A),

where � is defined by � = 1 +mk for k = |E0|. It proceeds as follows:

1. (flower, {mk+1}, T0, T1, . . . , Tm−1) for Ti = ((i−1)k+1, (i−1)k+2, . . . , ik):
Apply a flower shuffle to the sequence:

︸︷︷︸
E0

︸︷︷︸
E1

︸︷︷︸
E2

· · · ︸︷︷︸
Em−1

︸︷︷︸
[[x]]

→ ︸︷︷︸
Er

︸︷︷︸
Er+1

︸︷︷︸
Er+2

· · · ︸︷︷︸
Er+m−1

︸︷︷︸
[[x−r]]

,

where r ∈ Zm is a random number and each Ei is depicted by a single
card although it is a sequence of k cards.

2. (turn, {mk + 1}): Turn the rightmost card as follows:

︸︷︷︸
Er

︸︷︷︸
Er+1

︸︷︷︸
Er+2

· · · ︸︷︷︸
Er+m−1

︸︷︷︸
[[x−r]]

→ ︸︷︷︸
Er

︸︷︷︸
Er+1

︸︷︷︸
Er+2

· · · ︸︷︷︸
Er+m−1

↑︸︷︷︸
x−r

.

Let x′ = x− r ∈ Zm be the open value.

3. (rot, {mk + 1},−x′): Rotate the rightmost card so that it is changed to 0
as follows:

︸︷︷︸
Er

︸︷︷︸
Er+1

︸︷︷︸
Er+2

· · · ︸︷︷︸
Er+m−1

↑︸︷︷︸
x−r

→ ︸︷︷︸
Er

︸︷︷︸
Er+1

︸︷︷︸
Er+2

· · · ︸︷︷︸
Er+m−1

↑︸︷︷︸
0

.

4. (perm, σx′
) where σ is defined by σ = τ1τ2 · · · τk where:

τi = ((m− 1)k + i (m− 2)k + i · · · 2k + i k + i i).

Correctness. By applying a permutation σx′
at Step 4, the sequence is changed

as follows:

︸︷︷︸
Er

︸︷︷︸
Er+1

︸︷︷︸
Er+2

· · · ︸︷︷︸
Er+m−1

↑︸︷︷︸
0

→ ︸︷︷︸
Er+x′

︸︷︷︸
Er+x′+1

︸︷︷︸
Er+x′+2

· · · ︸︷︷︸
Er+x′+m−1

↑︸︷︷︸
0

.

5.1. PROTOCOLS BASED ON CYCLIC CARDS 79

Since x′ = x− r, this is equivalent to the following:

︸︷︷︸
Ex

︸︷︷︸
Ex+1

︸︷︷︸
Ex+2

· · · ︸︷︷︸
Ex+m−1

↑︸︷︷︸
0

.

Therefore, the protocol Pc
oc2 correctly realizes the functionality Fc

oc2.

Security. Let x ∈ Zm be any input. The probability distribution of a view
of the protocol starting with the sequence sin(x) = (E0, E1, . . . , Em−1, [[x]]) is
given as follows:

viewPc
oc2
(sin(x), x) =

(
?mk+1 → ?mk+1 → (?mk, x′) → (?mk, 0) → (?mk, 0)

)
,

where x′ = x− r for a uniform random r ∈ Zm. It is equivalent to a probability
distribution view∗ defined as follows:

view∗ =
(
?mk+1 → ?mk+1 → (?mk, r′) → (?mk, 0) → (?mk, 0)

)
,

where r′ ∈ Zm is a uniform random number. The distribution view∗ does not
depend on x. Thus, for every x, x′ ∈ Zm, the following holds:

viewPc
oc2
(sin(x), x) = viewPc

oc2
(sin(x

′), x′) = view∗.

Therefore, Pc
oc2 securely realizes Fc

oc2.

Efficiency. The number of cards is km + 1. The number of probabilistic
operations is one (one flower shuffle).

5.1.12 General protocol from oblivious conversion

Functionality. Let f : {0, 1}n → {0, 1} be any function. A functionality F c
f

is defined as follows:

Fc
f : · · ·︸ ︷︷ ︸

E

︸︷︷︸
[[xn]]

︸︷︷︸
[[xn−1]]

· · · ︸︷︷︸
[[x1]]

⇒ ︸︷︷︸
[[f(x1,x2,...,xn)]]

mn−1︷ ︸︸ ︷
⊥ ⊥

· · ·
⊥

↑ ↑ · · · ↑︸ ︷︷ ︸
n

,

where E is a sequence of mn cards defined as follows:

E = ([[f(z)]])z∈(Zm)n .

The order of E is the lexical order as follows:

E = ([[f(0, · · · , 0, 0)]], [[f(0, · · · , 0, 1)]], [[f(0, · · · , 0, 2)]], . . . , [[f(0, · · · , 0,m− 1)]],

[[f(0, · · · , 1, 0)]], [[f(0, · · · , 1, 1)]], . . . , [[f(m− 1, · · · ,m− 1,m− 1)]]).

For any z ∈ (Zm)n and k ∈ N, we define Ez:k by a subsequence of E of length
k starting from [[f(z)]].

80 CHAPTER 5. PROTOCOLS BASED ON POLYGON-SHAPED CARDS

Protocol. A protocol Pc
f for f is defined as follows:

Pc
f = (n,Zm, (Cyclicm, {0, 0, . . . , 0︸ ︷︷ ︸

�

}),Oc
m,� ∪ Oracle[Pc

oc2], A),

where � is defined by � = n+mn. It proceeds as follows:

1. For any x ∈ Zm, define z(x) ∈ (Zm)n by z(x) = (x, 0, 0, . . . , 0). Apply the
oblivious conversion protocol Pc

oc2 to the sequence

(Ez(0):mn−1 , Ez(1):mn−1 , . . . , Ez(m−1):mn−1)

with a commitment [[x1]]. Then, the first mn−1 cards are changed to
Ez(x1):mn−1 .

2. For any x ∈ Zm, define z(x1, x) ∈ (Zm)n by z(x1, x) = (x1, x, 0, . . . , 0).
Apply the oblivious conversion protocol Pc

oc2 to the sequence

(Ez(x1,0):mn−2 , Ez(x1,1):mn−2 , . . . , Ez(x1,m−1):mn−2)

with a commitment [[x2]]. Then, the first mn−2 cards are changed to
Ez(x1,x2):mn−2 .

3. Similarly, in the i-th iteration 1 ≤ i ≤ n, define z(x1, x2, . . . , xi−1, x) ∈
(Zm)n by z(x1, x2, . . . , xi−1, x) = (x1, x2, . . . , xi−1, x, 0, . . . , 0). Apply the
oblivious conversion protocol Pc

oc2 to the sequence

(Ez(x1,x2,...,xi−1,0):mn−i , Ez(x1,x2,...,xi−1,1):mn−i , . . . , Ez(x1,x2,...,xi−1,m−1):mn−i)

with a commitment [[xi]]. Then, the first mn−i cards are changed to
Ez(x1,x2,...,xi−1,xi):mn−i .

4. After n iterations, the first card is Ez(x1,x2,...,xn):1 = [[f(x1, x2, . . . , xn)]].
The protocol terminates.

Correctness. We can observe that the first mn−i cards in the sequence after
the i-th iteration is Ez(x1,x2,...,xi−1,xi):mn−i . Thus, the first card in the final
sequence is Ez(x1,x2,...,xn):1 that is equivalent to [[f(x1, x2, . . . , xn)]]. Thus, the
protocol Pc

f correctly realizes the functionality Fc
f .

Security. Let x = (x1, x2, . . . , xn) ∈ (Zm)n be any input. The probability
distribution of a view of the protocol starting with the sequence sin(x) = E =
([[f(z)]])z∈(Zm)n is given as follows:

viewPc
f
(sin(x), x) =

(
?m

n+n → (?m
n+n−1, 0) → (?m

n+n−2, 02) → (?m
n+n−3, 03)

→ · · · → (?m
n+1, 0n−1) → (?m

n

, 0n)
)
.

It does not depend on x since it is just a fixed sequence. Thus, for every
x, x′ ∈ (Zm)n, the following holds:

viewPc
f
(sin(x), x) = viewPc

f
(sin(x

′), x′).

Therefore, Pc
f securely realizes Fc

f .

5.2. PROTOCOLS BASED ON DIHEDRAL CARDS 81

Efficiency. The number of cards is mn + n. The number of oracle calls is n
(n calls of the oblivious conversion). From Proposition 2.1, a general protocol
without oracles can be obtained. The number of probabilistic operations is n
(n flower shuffles).

5.2 Protocols based on dihedral cards

5.2.1 Dihedral cards

Let m ≥ 2 be any integer. A dihedral card of modulus m is a card as follows:

• It holds a non-binary value x ∈ Z2m;

• A transformation from x to x+ c (for any constant c ∈ Z2m) is allowed;

• A transformation from x to −x+ c (for any constant c ∈ Z2m) is allowed;

• For a card holding x, it is possible to observe whether x ≥ m only;

• For a card holding x, it is possible to observe x mod m only.

Thus, the shape of dihedral cards of modulus m is a regular 2m-sided polygon.
For example, a dihedral card of modulus 4 is implemented as follows:

Four vertices among eight vertices have blue dots and an arrow is written on the
center. The front side and the back side are the same pattern satisfying that
any vertex having a blue dot in the front side also has a dot in the back side.
Here, all blue circles and arrows are written by invisible ink1 in order to hide a
value of a card. Since it is a hexagon, it can hold a value x ∈ Z8 as follows:

The first transformation from x to x+ c is done by a rotation with (360/2m)◦

as in the case of cyclic cards. A nontrivial property is to allow the second
transformation from x to −x + c. This is done by a flipping. Say c = 0. A
transformation from x to −x is done by a flipping with a vertical line as follows:

1Invisible ink is used for writing, which is invisible but can be made visible with illuminating
a black light. It can be used for steganography, which hides the existence of plain texts while
cryptography hides the contents of plain texts.

82 CHAPTER 5. PROTOCOLS BASED ON POLYGON-SHAPED CARDS

Each axis of line symmetry corresponds to some c ∈ Z8 as follows:

Indeed, a transformation from x to −x+ 7 is done by a flipping as follows:

Finally, we need to open a bit p(x ≥ m) and a value x mod m. Thanks to the
property of invisible ink, this is done by illuminating a black light with a cover.
For a card holding x, it is possible to observe p(x ≥ m) only as follows:

In the above case, since the vertex has a blue dot, the predicate p(x ≥ m) is 0.
(We can observe that for a card holding x, the vertex has a blue dot if and only
if x < 4.) Similarly, it is possible to observe the value x mod m only as follows:

In the above case, since the card holds either 1 or 5, the value x mod m is 1.
For x ∈ Z2m, p(x ≥ m) is called a sign of x and x mod m is called a value of x.

A card specification of dihedral cards. For x ∈ Z2m, we denote a card
holding x by [[x]]. The card set of dihedral cards of modulus m, denoted by Cd

m,
is defined as follows:

Cd
m = {[[0]], [[1]], . . . , [[2m− 1]]}.

Let [[x]] ∈ Cd
m be a card holding a value x ∈ Z2m. For any constant a ∈ Z2m, a

rotation operation with a degree a is defined as follows:

rota([[x]]) = [[x+ a]]

5.2. PROTOCOLS BASED ON DIHEDRAL CARDS 83

For any constant a ∈ Z2m, a flipping operation with an axis a is defined as
follows:

flipa([[x]]) = [[−x+ a]].

The transformation set of dihedral cards of modulus m, denoted by T d
m, is

defined as follows:

T d
m = {id, rot, rot2, . . . , rot2m−1, flip0, flip1, . . . , flip2m−1}.

The symbol set of dihedral cards of modulus m, denoted by Σd
m, is defined as

follows:
Σd

m = {?}.
The vision function visdm : Cd

m → Σd
m of dihedral cards of modulus m is defined

as follows:
visdm([[x]]) = ? for any x ∈ Z2m.

A card specification of dihedral cards of modulus m, denoted by Dihedralm, is
defined as follows:

Dihedralm = (Cd
m, T d

m,Σd
m, visdm).

Commitment. A commitment to x ∈ Z2m is defined by [[x]].

5.2.2 Operations for dihedral cards

As the model of cyclic cards, we use the following operations:

• Permutation Permm,�;

• Shuffle Shufm,�;

• Rotation Rotm,�;

• Rotation shuffle RotShufm,�;

• Flower shuffle Flowerm,�;

For dihedral cards, we additionally introduce five operations: flipping, flip-
ping shuffle, two-sided rotation shuffle, sign opening, and value opening.

Flipping. A flipping operation is defined as follows:

(flip, a, T),

where a ∈ Z2m is an axis of flipping and T ⊂ [�] is a subset of positions. By
applying a flipping operation (flip, a, T), a sequence is converted as follows:

([[x1]], [[x2]], . . . , [[x�]]) → ([[x′
1]], [[x

′
2]], . . . , [[x

′
�]]),

where x′
i = −xi + a for all i ∈ T and x′

i = xi for all i �∈ T . For exam-
ple, for a sequence ([[0]], [[2]], [[5]], [[7]]) of modulus m = 4, a flipping operation
(flip, 0, {1, 2, 3, 4}) converts it into a new sequence ([[0]], [[6]], [[3]], [[1]]). The set of
flipping operations Flipm,� is defined as follows:

Flipm,� = {(flip, j, T) | j ∈ Z2m, T ⊂ [�]}.

84 CHAPTER 5. PROTOCOLS BASED ON POLYGON-SHAPED CARDS

Flipping shuffle. A flipping shuffle is defined as follows:

(flipshuf, (a1, a2, . . . , ak), T1, T2, . . . , Tk),

where k ∈ [�] is the number of axes, a1, a2, . . . , ak ∈ Z2m are axes of flipping and
T1, T2, . . . , Tk ⊂ [�] are disjoint subsets of positions. For all 1 ≤ i ≤ k, all cards
on Ti are flipped (by flipai

) randomly and simultaneously. Here, the random
bit designating whether flipped or not is common for all i. Other cards are
unchanged. For example, for a sequence ([[0]], [[2]], [[5]], [[7]]) of modulus m = 4, a
flipping shuffle (flipshuf, (0, 1), {1, 2}, {3, 4}) generates a new sequence:

([[0]], [[2]], [[5]], [[7]]) →
{
([[0]], [[2]], [[5]], [[7]]) with probability 1/2

([[0]], [[6]], [[4]], [[2]]) with probability 1/2

A flipping shuffle is implemented by using two wooden boards as follows:

The set of flipping shuffles is defined as follows:

FlipShufm,� = {(flipshuf, (a1, a2, . . . , ak), T1, T2, . . . , Tk) |
k ∈ [�], a1, a2, . . . , ak ∈ Z2m,

T1, T2, . . . , Tk ⊂ [�] s.t. ∀a, b ∈ [k], Ta ∩ Tb = ∅}.

Two-sided rotation shuffle. A two-sided rotation shuffle is defined by:

(twoshuf, T),

where T ⊂ [�] is a subset of positions. By applying a two-sided rotation shuffle
(twoshuf, T), a sequence is converted as follows:

([[x1]], [[x2]], . . . , [[x�]]) → ([[x′
1]], [[x

′
2]], . . . , [[x

′
�]]),

where x′
i = xi + rm for a random bit r ∈ {0, 1} if i ∈ T and x′

i = xi oth-
erwise. Note that the random bit r is common for all i ∈ T . For example,
for a sequence ([[0]], [[2]], [[5]], [[7]]) of modulus m = 4, a two-sided rotation shuffle
(twoshuf, {1, 2, 3, 4}) generates a new sequence as follows:

([[0]], [[2]], [[5]], [[7]]) →
{
([[0]], [[2]], [[5]], [[7]]) with probability 1/2

([[4]], [[6]], [[0]], [[1]]) with probability 1/2

A two-sided rotation shuffle is implemented by using two clips as follows:

5.2. PROTOCOLS BASED ON DIHEDRAL CARDS 85

The set of two-sided rotation shuffles is defined as follows:

TwoShufm,� = {(twoshuf, T) | T ⊂ [�]}.

Sign opening. A sign opening is defined as follows:

(sgnopen, i),

where i ∈ [�] is a position. For a sequence ([[x1]], [[x2]], . . . , [[x�]]), it publicly
reveals a bit value p(xi ≥ m) ∈ {0, 1}. It is treated as revealed information.
That is, it outputs revealed information r = p(xi ≥ m) without changing the
sequence. For example, for a sequence ([[0]], [[2]], [[5]], [[7]]) of modulus m = 4, a
sign opening (sgnopen, 3) outputs the sign of the third card “1” (p(5 ≥ 4)) as
revealed information. The set of sign openings is defined as follows:

SgnOpenm,� = {(sgnopen, i) | i ⊂ [�]}.

Value opening. A value opening is defined as follows:

(valopen, i),

where i ∈ [�] is a position. For a sequence ([[x1]], [[x2]], . . . , [[x�]]), it publicly
reveals a value xi mod m ∈ Zm. It is treated as revealed information. That is,
it outputs revealed information r = (xi mod m) without changing the sequence.
For example, for a sequence ([[0]], [[2]], [[5]], [[7]]) of modulus m = 4, a value opening
(valopen, 4) outputs the value of the fourth card “3” (= 7 mod 4) as revealed
information. The set of value openings is defined as follows:

ValOpenm,� = {(valopen, i) | i ⊂ [�]}.

5.2.3 Notations

Hereafter, we use notations as follows.

Operations. We assume that the set of operations is Od
m,� defined as follows:

Od
m,� = Permm,�∪Turnm,�∪Shufm,�∪Rotm,�∪RotShufm,�∪BackRotm,�∪Flowerm,�.

5.2.4 Outline of protocols

Our protocols based on dihedral cards in this chapter are as follows:

• Initialization protocol (Section 5.2.5): It takes a card [[x]] (x ∈ Z2m) as
input and outputs a card [[0]].

• Addition protocol (Section 5.2.6): It takes two cards ([[x1]], [[x2]]) (x1, x2 ∈
Z2m) as input and outputs a card [[x1 + x2]]. The difference from the
addition protocol #2 in Section 5.1.7 is that the protocol in this section
uses a rotation shuffle while that in Section 5.1.7 uses a backward rotation
shuffle.

86 CHAPTER 5. PROTOCOLS BASED ON POLYGON-SHAPED CARDS

• Sign normalization protocol (Section 5.2.7): It takes a card [[x]] (x ∈ Z2m)
as input and outputs a card [[x mod m]].

• Sign-to-value protocol (Section 5.2.8): It takes two cards ([[x]], [[0]]) (x ∈
Z2m) as input and outputs a card [[p(x ≥ m)]]. It calls the initialization
protocol once.

• Carry protocol (Section 5.2.9): It takes two cards ([[x1]], [[x2]]) (x1, x2 ∈
Zm) as input and outputs a card [[p(x1 + x2 ≥ m)]]. It calls the addition
protocol once and the sign-to-value protocol once.

• Equality with zero protocol (Section 5.2.10): It takes two cards ([[x]], [[0]])
(x ∈ Zm) as input and outputs a card [[p(x = m)]]. It calls the sign-to-value
protocol once.

• Equality protocol (Section 5.2.11): It takes two cards ([[x1]], [[x2]]) (x1, x2 ∈
Zm) as input and outputs a card [[p(x1 = x2)]]. It calls the subtraction
protocol once, the sign normalization protocol once, and the equality with
zero protocol once.

• Greater than protocol (Section 5.2.12): It takes two cards ([[x1]], [[x2]])
(x1, x2 ∈ Zm) as input and outputs a card [[p(x1 ≥ x2)]]. It calls the
subtraction protocol once and the sign-to-value protocol once.

5.2.5 Initialization protocol

Functionality. A functionality Fd
init is defined as follows:

Fd
init : [[x]] ⇒ [[0]].

where x ∈ Z2m.

Protocol. An initialization protocol Pd
init is defined as follows:

Pd
init = (1,Z2m, (Dihedralm, {[[0]]}),Od

m,1, A).

It proceeds as follows:

1. (rotshuf, {1}): Apply a rotation shuffle to it:

[[x]] → [[x′]].

2. (open, 1): Apply an opening operation to it. Let x′ ∈ Z2m be the opened
value, which is treated as revealed information.

revealed information x′.

3. (rot, {1},−x′): Rotate it with a degree −x′ as follows:

[[x′]] → [[0]]

The protocol terminates.

5.2. PROTOCOLS BASED ON DIHEDRAL CARDS 87

Correctness. The correctness is trivial.

Security. Let x ∈ Z2m be any input. The probability distribution of a view
of the protocol starting with the sequence sin(x) = [[x]] is given as follows:

viewPd
init
(sin(x), x) =

(
(?,⊥) → (?,⊥) → (?, x′) → (?,⊥)

)
,

where x′ = x + r for a uniform random value r ∈ Z2m. This is equivalent to a
probability distribution view∗ defined as follows:

view∗ =
(
(?,⊥) → (?,⊥) → (?, r′) → (?,⊥)

)
,

where r′ ∈ Z2m is a uniform random value. The distribution view∗ does not
depend on x. Thus, for every x, x′ ∈ Z2m, the following holds:

viewPd
init
(sin(x), x) = viewPd

init
(sin(x

′), x′) = view∗.

Therefore, Pd
init securely realizes Fd

init.

Efficiency. The number of cards is one. Note that this is the minimum num-
ber of cards. The number of probabilistic operations is one (one rotation shuffle).

5.2.6 Addition protocol

Functionality. A functionality Fd
add is defined as follows:

Fd
add : ([[x1]], [[x2]]) ⇒ ([[0]], [[x1 + x2]]) .

where x1, x2 ∈ Z2m.

Protocol. An addition protocol Pd
add is defined as follows:

Pd
add = (2,Z2m, (Dihedralm, {[[0]], [[0]]}),Od

m,2, A).

It proceeds as follows:

1. (flip, 0, {1}): Flip the left card along with the 0-axis as follows:

([[x1]], [[x2]]) → ([[−x1]], [[x2]]).

2. (rotshuf, {1, 2}): Apply a rotation shuffle to them:

([[−x1]], [[x2]]) → ([[x′
1]], [[x

′
2]]).

3. (sgnopen, 1): Apply a sign opening operation to the left card. Let s′ ∈
{0, 1} be the opened value, which is treated as revealed information.

revealed information s′.

88 CHAPTER 5. PROTOCOLS BASED ON POLYGON-SHAPED CARDS

4. (valopen, 1): Apply a value opening operation to the left card. Let v′ ∈ Zm

be the opened value, which is treated as revealed information.

revealed information v′.

5. (rot, {1, 2},−(s′m+ v′)): Rotate them so that they are added by −(s′m+
v′):

([[x′
1]], [[x

′
2]]) → ([[x′

1 − (s′m+ v′)]], [[x′
2 − (s′m+ v′)]])

Correctness. By the rotation shuffle, x′
1 = −x1 + r and x′

2 = x2 + r for a
uniform random value r ∈ Z2m. Since s′ and v′ are the sign and the value of
x′
1, the degree of rotation −(s′m+ v′) equals to −x′

1. Thus, the left card in the
final sequence is [[x′

1 − (s′m+ v′)]] = [[0]] and the right card in the final sequence
is [[x′

2 −x′
1]] = [[(x2 + r)− (−x1 + r)]] = [[x1 +x2]]. Therefore, the above protocol

Pd
add correctly realizes the functionality Fd

add.

Security. Let x = (x1, x2) ∈ (Z2m)2 be any input. The probability distribu-
tion of a view of the protocol starting with the sequence sin(x) = ([[x1]], [[x2]]) is
given as follows:

viewPd
add
(sin(x), x) =

(
(?2,⊥) → (?2,⊥) → (?2,⊥) → (?2, s′) → (?2, v′) → (?2,⊥)

)
,

Since s′ and v′ are the sign and the value of x′
1 = x1 + r for a uniform random

value r ∈ Z2m, the above distribution is equivalent to a probability distribution
view∗ defined as follows:

view∗ =
(
(?2,⊥) → (?2,⊥) → (?2,⊥) → (?2, r′0) → (?2, r′1) → (?2,⊥)

)
.

where r′0 ∈ {0, 1} and r′1 ∈ Zm are uniform random values. The distribution
view∗ does not depend on x. Thus, for every x, x′ ∈ Z2m, the following holds:

viewPd
add
(sin(x), x) = viewPd

add
(sin(x

′), x′) = view∗.

Therefore, Pd
add securely realizes Fd

add.

Efficiency. The number of cards is two. Note that this is the minimum num-
ber of cards since the number of inputs is two. The number of probabilistic
operations is one (one rotation shuffle).

5.2.7 Sign normalization protocol

Functionality. A functionality Fd
sign is defined as follows:

Fd
sign : [[x]] ⇒ [[x mod m]],

where x ∈ Z2m.

5.2. PROTOCOLS BASED ON DIHEDRAL CARDS 89

Protocol. A protocol Pd
sign is defined as follows:

Pd
sign = (1,Z2m, (Dihedralm, {[[0]]}),Od

m,1, A).

It proceeds as follows:

1. (twoshuf, {1}): Apply a two-sided rotation shuffle to the input card as
follows:

[[x]] → [[x′]],

where x′ = x+ rm for a uniform random bit r ∈ {0, 1}.

2. (sgnopen, 1): Apply the sign opening to the card. Let s′ ∈ {0, 1} be the
sign of the card, which is treated as revealed information.

[[x′]] → [[x′]], revealed information s′.

3. (rot, {1}, s′m): Rotate the card with a degree s′m:

[[x′]] → [[x′ + s′m]].

Correctness. Let x = v+ sm for v ∈ Zm and s ∈ {0, 1}. Due to the property
of a two-sided rotation shuffle, x′ is represented by x′ = v + (s⊕ r)m and s′ is
represented by s′ = s⊕ r. Thus, the card in the final sequence is [[x′ + s′m]] =
[[v + (s ⊕ r)m + s′m]] = [[v + (s ⊕ r)m + (s ⊕ r)m]] = [[v]]. (Note that every
computation is done over Z2m.) Therefore, the above protocol Pd

sign correctly

realizes the functionality Fd
sign.

Security. Let x = v + sm ∈ Z2m (v ∈ Zm and s ∈ {0, 1}) be any input. The
probability distribution of a view of the protocol starting with the sequence
sin(x) = [[x]] is given as follows:

viewPd
sign
(sin(x), x) =

(
(?,⊥) → (?, s′) → (?,⊥) → (?,⊥)

)
,

where s′ = s ⊕ r ∈ {0, 1} for a uniform random bit r. It is equivalent to a
probability distribution view∗ defined as follows:

view∗ =
(
(?,⊥) → (?, r′) → (?,⊥) → (?,⊥)

)
.

where r′ ∈ {0, 1} is a uniform random value. Thus, for every x, x′ ∈ Z2m, the
following holds:

viewPd
sign
(sin(x), x) = viewPd

sign
(sin(x

′), x′) = view∗.

Therefore, Pd
sign securely realizes Fd

sign.

Efficiency. The number of cards is one. Note that this is the minimum num-
ber of cards. The number of probabilistic operations is one (one two-sided
rotation shuffle).

90 CHAPTER 5. PROTOCOLS BASED ON POLYGON-SHAPED CARDS

5.2.8 Sign-to-value protocol

Functionality. A functionality Fd
sv is defined as follows:

Fd
sv : ([[x]], [[0]]) ⇒ ([[p(x ≥ m)]], [[0]]),

where x ∈ Z2m.

Protocol. A protocol Pd
sv is defined as follows:

Pd
sv = (1,Z2m, (Dihedralm, {[[0]], [[0]]}),Od

m,2 ∪ Oracle[Pd
init], A).

It proceeds as follows:

1. (twoshuf, {1}): Apply a two-sided rotation shuffle to the input card as
follows:

([[x]], [[0]]) → ([[x+ r1m]], [[r1m]]),

where r1 ∈ {0, 1} is a uniform random bit.

2. (sgnopen, 1): Apply the sign opening to the left card. Let s1 ∈ {0, 1} be
the sign of the left card, which is treated as revealed information. (We
can observe that s1 = p(x ≥ m)⊕ r1.)

3. (rot, {2}, s1m): Rotate the right card with a degree s1m:

([[x+ r1m]], [[r1m]]) → ([[x+ r1m]], [[(r1 ⊕ s1)m]]).

4. (oracle,Pd
init, {1}): Apply the initialization protocol Pd

init as follows:

([[x+ r1m]], [[(r1 ⊕ s1)m]]) → ([[0]], [[(r1 ⊕ s1)m]]).

5. (flipshuf, (flip1, flipm), (1, 2)): Apply a flipping shuffle as follows:

([[0]], [[(r1 ⊕ s1)m]]) → ([[r2]], [[(r1 ⊕ s1 ⊕ r2)m]]),

where r2 ∈ {0, 1} is a uniform random bit.

6. (sgnopen, 2): Apply the sign opening to the right card. Let s2 ∈ {0, 1} be
the sign of the right card, which is treated as revealed information. (We
can observe that s2 = r1 ⊕ s1 ⊕ r2.) If s2 = 0, the protocol terminates.

7. (rot, {2},m): If s2 = 1, rotate the right card with a degree m:

([[r2]], [[m]]) → ([[r2]], [[0]]).

8. (flip, 1, {1}): If s2 = 1, apply a flipping with an axis 1 as follows:

([[r2]], [[0]]) → ([[−r2 + 1]], [[0]]).

The protocol terminates.

5.2. PROTOCOLS BASED ON DIHEDRAL CARDS 91

Correctness. If s2 = 0 at Step 6, the protocol terminates. In this case, the
left card in the final sequence is given as follows:

[[r2]] = [[r1 ⊕ s1]] = [[p(x ≥ m)]].

If s2 = 1 at Step 6, the protocol proceeds to Step 8. In this case, the left card
in the final sequence is given as follows:

[[−r2 + 1]] = [[−(1− r1 ⊕ s1) + 1]] = [[r1 ⊕ s1]] = [[p(x ≥ m)]].

Therefore, the above protocol Pd
sv correctly realizes the functionality Fd

sv.

Security. Let x = v + sm ∈ Z2m (v ∈ Zm and s ∈ {0, 1}) be any input. The
probability distribution of a view of the protocol starting with the sequence
sin(x) = ([[x]], [[0]]) is given as follows:

viewPd
sv
(sin(x), x) =

(
(?2,⊥) → (?2,⊥) → (?2, s1) → (?2,⊥) → (?2,⊥)

→ (?2,⊥) → (?2, s2)
[
→ (?2,⊥) → (?2,⊥)

]s2)
,

where s1 = p(x ≥ m)⊕r1 ∈ {0, 1} for a uniform random bit r1, s2 = r1⊕s1⊕r2 ∈
{0, 1} for a uniform random bit r2, and the last two components “→ (?2,⊥) →
(?2,⊥)” appears only when s2 = 0. It is equivalent to a probability distribution
view∗ defined as follows:

view∗ =
(
(?2,⊥) → (?2,⊥) → (?2, r′1) → (?2,⊥) → (?2,⊥)

→ (?2,⊥) → (?2, r′2)
[
→ (?2,⊥) → (?2,⊥)

]r′2),
where r′1, r

′
2 ∈ {0, 1} are uniform random bits and the last two components

appears only when r′2 = 0. Thus, for every x, x′ ∈ Z2m, the following holds:

viewPd
sv
(sin(x), x) = viewPd

sv
(sin(x

′), x′) = view∗.

Therefore, Pd
sv securely realizes Fd

sv.

Efficiency. The number of cards is two. The number of oracle calls is one (one
call of the initialization protocol). From Proposition 2.1, a sign-to-value protocol
without oracles can be obtained. The number of probabilistic operations is three
(one rotation shuffle, one two-sided rotation shuffle, and one flipping shuffle).

5.2.9 Carry protocol

Functionality. A functionality Fd
carry is defined as follows:

Fd
carry = ([[x1]], [[x2]]) ⇒ ([[p(x1 + x2 ≥ m)]], [[0]]),

where x1, x2 ∈ Zm.

92 CHAPTER 5. PROTOCOLS BASED ON POLYGON-SHAPED CARDS

Protocol. A carry protocol Pd
carry is defined as follows:

Pd
carry = (2,Zm, (Dihedral2m, {[[0]], [[0]]}),Od

2m,2 ∪ Oracle[Pd
add,Pd

sv], A).

It proceeds as follows:

1. (oracle,Pd
add, {1, 2}): Apply the addition protocol in Section 5.2.6 to the

sequence as follows:

([[x1]], [[x2]]) → ([[x1 + x2]], [[0]]).

2. (oracle,Pd
sv, {1}): Apply the sign-to-value protocol in Section 5.2.8 to the

first card as follows:

([[x1 + x2]], [[0]]) → ([[p(x1 + x2 ≥ m)]], [[0]]).

Correctness. The correctness is trivial.

Security. Let x = (x1, x2) ∈ (Zm)2 be any input. The probability distribution
of a view of the protocol starting with the sequence sin(x) = ([[x1]], [[x2]]) is given
as follows:

viewPd
carry

(sin(x), x) =
(
(?2,⊥) → (?2,⊥) → (?2,⊥)

)
.

It does not depend on x since it is just a fixed sequence. Thus, for every
x, x′ ∈ (Zm)2, the following holds:

viewPd
carry

(sin(x), x) = viewPd
carry

(sin(x
′), x′).

Therefore, Pd
carry securely realizes Fd

carry.

Efficiency. The number of cards is two. The number of oracle calls is two
(one call of the addition protocol and one call of the sign-to-value protoocol).
From Proposition 2.1, a carry protocol without oracles can be obtained. The
number of probabilistic operations is four (two rotation shuffles, one two-sided
rotation shuffle, and one flipping shuffle).

5.2.10 Equality with zero protocol

Functionality. A functionality Fd
zero is defined as follows:

Fd
zero = ([[x]], [[0]]) ⇒ ([[p(x = 0)]], [[0]]),

where x ∈ Zm.

5.2. PROTOCOLS BASED ON DIHEDRAL CARDS 93

Protocol. A carry protocol Pd
zero is defined as follows:

Pd
zero = (1,Zm, (Dihedral2m, {[[0]], [[0]]}),Od

2m,2 ∪ Oracle[Pd
sv], A).

It proceeds as follows:

1. (flip, 0, {1}): Flip the first card along with the axis 0 as follows:

([[x]], [[0]]) → ([[2m− x]], [[0]]).

2. (oracle,Pd
sv, {1}): Apply the sign-to-value protocol in Section 5.2.8 to the

first card as follows:

([[2m− x]], [[0]]) → ([[s]], [[0]]),

where s = p(2m− x ≥ m).

3. (flip, 1, {1}): Flip the first card along with the axis 1 as follows:

([[s]], [[0]]) → ([[−s+ 1]], [[0]]).

The protocol terminates.

Correctness. For any x ∈ Zm, it holds p(2m − x ≥ m) = 0 if and only if
x = 0. Thus, the above protocol Pd

zero correctly realizes the functionality Fd
zero.

Security. Let x ∈ Zm be any input. The probability distribution of a view of
the protocol starting with the sequence sin(x) = ([[x]], [[0]]) is given as follows:

viewPd
zero

(sin(x), x) =
(
(?2,⊥) → (?2,⊥) → (?2,⊥)

)
.

It does not depend on x since it is just a fixed sequence. Thus, for every
x, x′ ∈ (Zm)2, the following holds:

viewPd
zero

(sin(x), x) = viewPd
zero

(sin(x
′), x′).

Therefore, Pd
zero securely realizes Fd

zero.

Efficiency. The number of cards is two. The number of oracle calls is one
(one call of the sign-to-value protocol). From Proposition 2.1, an equality with
zero protocol without oracles can be obtained. The number of probabilistic
operations is three (one rotation shuffle, one two-sided rotation shuffle, and one
flipping shuffle).

5.2.11 Equality protocol

Functionality. A functionality Fd
equal is defined as follows:

Fd
equal = ([[x1]], [[x2]]) ⇒ ([[p(x1 = x2)]], [[0]]),

where x1, x2 ∈ Zm.

94 CHAPTER 5. PROTOCOLS BASED ON POLYGON-SHAPED CARDS

Protocol. A carry protocol Pd
equal is defined as follows:

Pd
equal = (2,Zm, (Dihedral2m, {[[0]], [[0]]}),Od

2m,2 ∪ Oracle[Pd
sub,Pd

sign,Pd
zero], A).

It proceeds as follows:

1. (oracle,Pd
sub, {1}): Apply the subtraction protocol to the sequence as fol-

lows:

([[x1]], [[x2]]) → ([[x2 − x1]], [[0]]).

2. (oracle,Pd
sign, {1}): Apply the sign normalization protocol in Section 5.2.7

to the first card as follows:

([[x2 − x1]], [[0]]) → ([[z]], [[0]]).

3. (oracle,Pd
zero, {1, 2}): Apply the equality with zero protocol in Section

5.2.10 as follows:

([[z]], [[0]]) → ([[p(z = 0)]], [[0]]).

Correctness. By the sign normalization protocol Pd
sign, z = x2 − x1 mod m.

Thus, the sequence ([[z]], [[0]]) is matched with an oracle of Pd
zero. We can also

observe that z = 0 if and only if x1 = x2. Thus, the above protocol Pd
equal

correctly realizes the functionality Fd
equal.

Security. Let x = (x1, x2) ∈ (Zm)2 be any input. The probability distribution
of a view of the protocol starting with the sequence sin(x) = ([[x1]], [[x2]]) is given
as follows:

viewPd
equal

(sin(x), x) =
(
(?2,⊥) → (?2,⊥) → (?2,⊥) → (?2,⊥)

)
.

It does not depend on x since it is just a fixed sequence. Thus, for every
x, x′ ∈ (Zm)2, the following holds:

viewPd
equal

(sin(x), x) = viewPd
equal

(sin(x
′), x′).

Therefore, Pd
equal securely realizes Fd

equal.

Efficiency. The number of cards is two. The number of oracle calls is three
(one call of the subtraction protocol, one call of the sign normalization protocol,
and one call of the equality with zero protocol). From Proposition 2.1, an
equality protocol without oracles can be obtained. The number of probabilistic
operations is five (two rotation shuffles, two two-sided rotation shuffles, and one
flipping shuffle).

5.2. PROTOCOLS BASED ON DIHEDRAL CARDS 95

5.2.12 Greater-than protocol

Functionality. A functionality Fd
gr is defined as follows:

Fd
gr = ([[x1]], [[x2]]) ⇒ ([[p(x2 ≥ x1)]], [[0]]),

where x1, x2 ∈ Zm.

Protocol. A carry protocol Pd
gr is defined as follows:

Pd
gr = (2,Zm, (Dihedral2m, {[[0]], [[0]]}),Od

2m,2 ∪ Oracle[Pd
sub,Pd

sv], A).

It proceeds as follows:

1. (oracle,Pd
sub, {1, 2}): Apply the subtraction protocol in Section 5.2.6 to the

sequence as follows:

([[x1]], [[x2]]) → ([[x2 − x1]], [[0]]).

2. (oracle,Pd
sv, {1, 2}): Apply the sign-to-value protocol in Section 5.2.8 as

follows:
([[x2 − x1]], [[0]]) → ([[1− p(x2 ≥ x1)]], [[0]]).

3. (flip, 1, {1}): Flip the first card along with the axis 1 as follows:

([[1− p(x2 ≥ x1)]], [[0]]) → ([[p(x2 ≥ x1)]], [[0]]).

The protocol terminates.

Correctness. The correctness is trivial.

Security. Let x = (x1, x2) ∈ (Zm)2 be any input. The probability distribution
of a view of the protocol starting with the sequence sin(x) = ([[x1]], [[x2]]) is given
as follows:

viewPd
gr
(sin(x), x) =

(
(?2,⊥) → (?2,⊥) → (?2,⊥) → (?2,⊥)

)
.

It does not depend on x since it is just a fixed sequence. Thus, for every
x, x′ ∈ (Zm)2, the following holds:

viewPd
gr
(sin(x), x) = viewPd

gr
(sin(x

′), x′).

Therefore, Pd
gr securely realizes Fd

gr.

Efficiency. The number of cards is two. The number of oracle calls is two (one
call of the subtraction protocol and one call of the sign-to-value protocol). From
Proposition 2.1, a greater than protocol without oracles can be obtained. The
number of probabilistic operations is four (two rotation shuffles, one two-sided
rotation shuffle, and one flipping shuffle).

Chapter 6

Conclusion

In this dissertation, we have studied easy to perform card-based protocols.
In Chapter 3, we have studied protocols with uniform closed shuffles. In

particular, we have provided a general protocol with a single uniform closed
shuffle. An important open problem involves minimizing the number of cards
in a general protocol with a single uniform closed shuffle. From the aspect of
being easy to perform, it is also important to consider a similar problem in
the case of a restricted shuffle such as a random cut, random bisection cut,
and pile-scramble shuffle. Although we have obtained a general protocol with
two pile-scramble shuffles that is moderately efficient in terms of the number
of cards, there lacks an efficient construction in the case of random cuts and
random bisection cuts.

In Chapter 4, we have studied protocols based on private permutations.
We have solved the security problem that is inherent to private actions by
defining the active security and introducing the commit-and-prove technique.
In particular, we have given a 2n+ 7-card protocol with active security for any
function f : {0, 1}n → {0, 1}. A natural question is whether the construction
is optimal or not in terms of the number of cards. From the aspect of being
easy to perform, it is important to study protocols with a small number of both
cards and private permutations.

In Chapter 5, we have introduced cyclic cards and dihedral cards and con-
structed protocols based on them. Due to the power of partial openings, we
have developed efficient protocols for interesting predicates including the carry
of addition, the equality predicate, and the greater-than predicate. One prob-
lem for future work is to construct other efficient protocols using cyclic cards
and dihedral cards. Another interesting problem is to design a new card that
enables efficient computation of interesting functions.

97

Bibliography

[1] Yoshiki Abe, Mitsugu Iwamoto, and Kazuo Ohta. Efficient private PEZ
protocols for symmetric functions. In Dennis Hofheinz and Alon Rosen, ed-
itors, Theory of Cryptography - 17th International Conference, TCC 2019,
Nuremberg, Germany, December 1-5, 2019, Proceedings, Part I, volume
11891 of Lecture Notes in Computer Science, pages 372–392. Springer, 2019.

[2] Yuta Abe, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone. Five-card
AND protocol in committed format using only practical shuffles. In Pro-
ceedings of the 5th ACM on ASIA Public-Key Cryptography Workshop,
APKC@AsiaCCS, Incheon, Republic of Korea, June 4, 2018, pages 3–8,
2018.

[3] József Balogh, János A. Csirik, Yuval Ishai, and Eyal Kushilevitz. Private
computation using a PEZ dispenser. Theor. Comput. Sci., 306(1-3):69–84,
2003.

[4] David A. Mix Barrington. Bounded-width polynomial-size branching pro-
grams recognize exactly those languages in nc1. In Proceedings of the
18th Annual ACM Symposium on Theory of Computing, May 28-30, 1986,
Berkeley, California, USA, pages 1–5, 1986.

[5] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of gar-
bled circuits. In the ACM Conference on Computer and Communications
Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012, pages 784–796,
2012.

[6] Xavier Bultel, Jannik Dreier, Jean-Guillaume Dumas, and Pascal Lafour-
cade. Physical zero-knowledge proofs for akari, takuzu, kakuro and kenken.
In Erik D. Demaine and Fabrizio Grandoni, editors, 8th International Con-
ference on Fun with Algorithms, FUN 2016, June 8-10, 2016, La Mad-
dalena, Italy, volume 49 of LIPIcs, pages 8:1–8:20. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016.

[7] Xavier Bultel, Jannik Dreier, Jean-Guillaume Dumas, Pascal Lafourcade,
Daiki Miyahara, Takaaki Mizuki, Atsuki Nagao, Tatsuya Sasaki, Kazumasa
Shinagawa, and Hideaki Sone. Physical zero-knowledge proof for makaro.
In Taisuke Izumi and Petr Kuznetsov, editors, Stabilization, Safety, and

99

100 BIBLIOGRAPHY

Security of Distributed Systems - 20th International Symposium, SSS 2018,
Tokyo, Japan, November 4-7, 2018, Proceedings, volume 11201 of Lecture
Notes in Computer Science, pages 111–125. Springer, 2018.

[8] Eddie Cheung, Chris Hawthorne, and Patrick Lee. Cs 758 project: Secure
computation with playing cards, 2013. https://csclub.uwaterloo.ca/

~cdchawth/files/papers/secure_playing_cards.pdf.

[9] Claude Crépeau and Joe Kilian. Discreet solitary games. In Advances in
Cryptology - CRYPTO ’93, 13th Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 22-26, 1993, Proceedings,
pages 319–330, 1993.

[10] Bert den Boer. More efficient match-making and satisfiability: The Five
Card Trick. In Advances in Cryptology - EUROCRYPT ’89, Workshop
on the Theory and Application of of Cryptographic Techniques, Houthalen,
Belgium, April 10-13, 1989, Proceedings, pages 208–217, 1989.

[11] Jean-Guillaume Dumas, Pascal Lafourcade, Daiki Miyahara, Takaaki
Mizuki, Tatsuya Sasaki, and Hideaki Sone. Interactive physical zero-
knowledge proof for norinori. In Ding-Zhu Du, Zhenhua Duan, and Cong
Tian, editors, Computing and Combinatorics - 25th International Confer-
ence, COCOON 2019, Xi’an, China, July 29-31, 2019, Proceedings, volume
11653 of Lecture Notes in Computer Science, pages 166–177. Springer, 2019.

[12] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
1987, New York, New York, USA, pages 218–229, 1987.

[13] Ronen Gradwohl, Moni Naor, Benny Pinkas, and Guy N. Rothblum. Cryp-
tographic and physical zero-knowledge proof systems for solutions of sudoku
puzzles. In Fun with Algorithms, 4th International Conference, FUN 2007,
Castiglioncello, Italy, June 3-5, 2007, Proceedings, pages 166–182, 2007.

[14] Yuji Hashimoto, Koji Nuida, Kazumasa Shinagawa, Masaki Inamura, and
Goichiro Hanaoka. Toward finite-runtime card-based protocol for generat-
ing a hidden random permutation without fixed points. IEICE Transac-
tions, 101-A(9):1503–1511, 2018.

[15] Yuji Hashimoto, Kazumasa Shinagawa, Koji Nuida, Masaki Inamura, and
Goichiro Hanaoka. Secure grouping protocol using a deck of cards. In In-
formation Theoretic Security - 10th International Conference, ICITS 2017,
Hong Kong, China, November 29 - December 2, 2017, Proceedings, pages
135–152, 2017.

[16] James Heather, Steve Schneider, and Vanessa Teague. Cryptographic pro-
tocols with everyday objects. Formal Asp. Comput., 26(1):37–62, 2014.

BIBLIOGRAPHY 101

[17] Rie Ishikawa, Eikoh Chida, and Takaaki Mizuki. Efficient card-based pro-
tocols for generating a hidden random permutation without fixed points.
In Unconventional Computation and Natural Computation - 14th Inter-
national Conference, UCNC 2015, Auckland, New Zealand, August 30 -
September 3, 2015, Proceedings, pages 215–226, 2015.

[18] Julia Kastner, Alexander Koch, Stefan Walzer, Daiki Miyahara, Yu-ichi
Hayashi, Takaaki Mizuki, and Hideaki Sone. The minimum number of cards
in practical card-based protocols. In Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, Hong Kong, China, December 3-7,
2017, Proceedings, Part III, pages 126–155, 2017.

[19] Alexander Koch. The landscape of optimal card-based protocols. IACR
Cryptology ePrint Archive, 2018:951, 2018.

[20] Alexander Koch, Michael Schrempp, and Michael Kirsten. Card-based
cryptography meets formal verification. In Steven D. Galbraith and Shiho
Moriai, editors, Advances in Cryptology - ASIACRYPT 2019 - 25th Inter-
national Conference on the Theory and Application of Cryptology and In-
formation Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part
I, volume 11921 of Lecture Notes in Computer Science, pages 488–517.
Springer, 2019.

[21] Alexander Koch, Stefan Walzer, and Kevin Härtel. Card-based crypto-
graphic protocols using a minimal number of cards. In Advances in Cryp-
tology - ASIACRYPT 2015 - 21st International Conference on the Theory
and Application of Cryptology and Information Security, Auckland, New
Zealand, November 29 - December 3, 2015, Proceedings, Part I, pages 783–
807, 2015.

[22] Pascal Lafourcade, Daiki Miyahara, Takaaki Mizuki, Tatsuya Sasaki, and
Hideaki Sone. A physical ZKP for slitherlink: How to perform phys-
ical topology-preserving computation. In Swee-Huay Heng and Javier
López, editors, Information Security Practice and Experience - 15th In-
ternational Conference, ISPEC 2019, Kuala Lumpur, Malaysia, November
26-28, 2019, Proceedings, volume 11879 of Lecture Notes in Computer Sci-
ence, pages 135–151. Springer, 2019.

[23] Pascal Lafourcade, Takaaki Mizuki, Atsuki Nagao, and Kazumasa Shina-
gawa. Light cryptography. In Lynette Drevin and Marianthi Theocharidou,
editors, Information Security Education. Education in Proactive Informa-
tion Security - 12th IFIP WG 11.8 World Conference WISE 12, Lisbon,
Portugal, June 25-27, 2019, Proceedings, volume 557 of IFIP Advances in
Information and Communication Technology, pages 89–101. Springer, 2019.

[24] Antonio Marcedone, Zikai Wen, and Elaine Shi. Secure dating with four or
fewer cards. Cryptology ePrint Archive, Report 2015/1031, 2015.

102 BIBLIOGRAPHY

[25] Daiki Miyahara, Tatsuya Sasaki, Takaaki Mizuki, and Hideaki Sone. Card-
based physical zero-knowledge proof for kakuro. IEICE Transactions, 102-
A(9):1072–1078, 2019.

[26] Takaaki Mizuki. Applications of card-based cryptography to education.
IEICE Technical Report, 116(289):13–17, 2016.

[27] Takaaki Mizuki. Card-based protocols for securely computing the conjunc-
tion of multiple variables. Theor. Comput. Sci., 622:34–44, 2016.

[28] Takaaki Mizuki. Efficient and secure multiparty computations using a stan-
dard deck of playing cards. In Cryptology and Network Security - 15th In-
ternational Conference, CANS 2016, Milan, Italy, November 14-16, 2016,
Proceedings, pages 484–499, 2016.

[29] Takaaki Mizuki, Isaac Kobina Asiedu, and Hideaki Sone. Voting with a
logarithmic number of cards. In Unconventional Computation and Natural
Computation - 12th International Conference, UCNC 2013, Milan, Italy,
July 1-5, 2013. Proceedings, pages 162–173, 2013.

[30] Takaaki Mizuki, Yoshinori Kugimoto, and Hideaki Sone. Secure multi-
party computations using a dial lock. In Theory and Applications of Mod-
els of Computation, 4th International Conference, TAMC 2007, Shanghai,
China, May 22-25, 2007, Proceedings, pages 499–510, 2007.

[31] Takaaki Mizuki, Michihito Kumamoto, and Hideaki Sone. The five-card
trick can be done with four cards. In Advances in Cryptology - ASIACRYPT
2012 - 18th International Conference on the Theory and Application of
Cryptology and Information Security, Beijing, China, December 2-6, 2012.
Proceedings, pages 598–606, 2012.

[32] Takaaki Mizuki and Hiroki Shizuya. Practical card-based cryptography.
In Fun with Algorithms - 7th International Conference, FUN 2014, Lipari
Island, Sicily, Italy, July 1-3, 2014. Proceedings, pages 313–324, 2014.

[33] Takaaki Mizuki and Hideaki Sone. Six-card secure AND and four-card
secure XOR. In Frontiers in Algorithmics, Third International Workshop,
FAW 2009, Hefei, China, June 20-23, 2009. Proceedings, pages 358–369,
2009.

[34] Takaaki Mizuki, Fumishige Uchiike, and Hideaki Sone. Securely computing
XOR with 10 cards. The Australasian Journal of Combinatorics, 36:279–
293, 2006.

[35] Takeshi Nakai, Satoshi Shirouchi, Mitsugu Iwamoto, and Kazuo Ohta. Four
cards are sufficient for a card-based three-input voting protocol utilizing pri-
vate permutations. In Information Theoretic Security - 10th International
Conference, ICITS 2017, Hong Kong, China, November 29 - December 2,
2017, Proceedings, pages 153–165, 2017.

BIBLIOGRAPHY 103

[36] Takeshi Nakai, Yuuki Tokushige, Yuto Misawa, Mitsugu Iwamoto, and
Kazuo Ohta. Efficient card-based cryptographic protocols for millionaires’
problem utilizing private permutations. In Cryptology and Network Secu-
rity - 15th International Conference, CANS 2016, Milan, Italy, November
14-16, 2016, Proceedings, pages 500–517, 2016.

[37] Moni Naor and Adi Shamir. Visual cryptography. In Advances in Cryp-
tology - EUROCRYPT ’94, Workshop on the Theory and Application of
Cryptographic Techniques, Perugia, Italy, May 9-12, 1994, Proceedings,
pages 1–12, 1994.

[38] Valtteri Niemi and Ari Renvall. Secure multiparty computations without
computers. Theor. Comput. Sci., 191(1-2):173–183, 1998.

[39] Valtteri Niemi and Ari Renvall. Solitaire zero-knowledge. Fundam. Inform.,
38(1-2):181–188, 1999.

[40] Takuya Nishida, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone. Card-
based protocols for any boolean function. In Theory and Applications of
Models of Computation - 12th Annual Conference, TAMC 2015, Singapore,
May 18-20, 2015, Proceedings, pages 110–121, 2015.

[41] Takuya Nishida, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone. Se-
curely computing three-input functions with eight cards. IEICE Transac-
tions, 98-A(6):1145–1152, 2015.

[42] Takuya Nishida, Takaaki Mizuki, and Hideaki Sone. Securely computing
the three-input majority function with eight cards. In Theory and Prac-
tice of Natural Computing - Second International Conference, TPNC 2013,
Cáceres, Spain, December 3-5, 2013, Proceedings, pages 193–204, 2013.

[43] Akihiro Nishimura, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone. An
implementation of non-uniform shuffle for secure multi-party computation.
In Proceedings of the 3rd ACM International Workshop on ASIA Public-
Key Cryptography, AsiaPKC@AsiaCCS, Xi’an, China, May 30 - June 03,
2016, pages 49–55, 2016.

[44] Akihiro Nishimura, Takuya Nishida, Yu-ichi Hayashi, Takaaki Mizuki, and
Hideaki Sone. Five-card secure computations using unequal division shuffle.
In Theory and Practice of Natural Computing - Fourth International Con-
ference, TPNC 2015, Mieres, Spain, December 15-16, 2015. Proceedings,
pages 109–120, 2015.

[45] Hibiki Ono and Yoshifumi Manabe. Card-based cryptographic protocols
with the minimum number of cards using private operations. In A. Nur
Zincir-Heywood, Guillaume Bonfante, Mourad Debbabi, and Joaqúın
Garćıa-Alfaro, editors, Foundations and Practice of Security - 11th Inter-
national Symposium, FPS 2018, Montreal, QC, Canada, November 13-15,
2018, Revised Selected Papers, volume 11358 of Lecture Notes in Computer
Science, pages 193–207. Springer, 2018.

104 BIBLIOGRAPHY

[46] Hibiki Ono and Yoshifumi Manabe. Efficient card-based cryptographic pro-
tocols for the millionaires’ problem using private input operations. In 13th
Asia Joint Conference on Information Security, AsiaJCIS 2018, Guilin,
China, August 8-9, 2018, pages 23–28. IEEE Computer Society, 2018.

[47] Hibiki Ono and Yoshifumi Manabe. Card-based cryptographic pro-
tocols with the minimum number of rounds using private operations.
In Cristina Pérez-Solà, Guillermo Navarro-Arribas, Alex Biryukov, and
Joaqúın Garćıa-Alfaro, editors, Data Privacy Management, Cryptocurren-
cies and Blockchain Technology - ESORICS 2019 International Workshops,
DPM 2019 and CBT 2019, Luxembourg, September 26-27, 2019, Proceed-
ings, volume 11737 of Lecture Notes in Computer Science, pages 156–173.
Springer, 2019.

[48] Tatsuya Sasaki, Takaaki Mizuki, and Hideaki Sone. Card-based zero-
knowledge proof for sudoku. In 9th International Conference on Fun with
Algorithms, FUN 2018, June 13-15, 2018, La Maddalena, Italy, pages 29:1–
29:10, 2018.

[49] Kazumasa Shinagawa. Deterministic cryptographic protocols with active
security using a deck of cards, envelopes and chains. In 2018 Symposium
on Cryptography and Information Security, SCIS 2018, Niigata, Japan,
January 23-26, 2018, Proceedings, 2018.

[50] Kazumasa Shinagawa. Card-based cryptographic protocols based on pri-
vate transpositions. In 2019 Symposium on Cryptography and Informa-
tion Security, SCIS 2019, Shiga, Japan, January 22-25, 2018, Proceedings,
2019.

[51] Kazumasa Shinagawa. Card-based cryptography with invisible ink. In T. V.
Gopal and Junzo Watada, editors, Theory and Applications of Models of
Computation - 15th Annual Conference, TAMC 2019, Kitakyushu, Japan,
April 13-16, 2019, Proceedings, volume 11436 of Lecture Notes in Computer
Science, pages 566–577. Springer, 2019.

[52] Kazumasa Shinagawa and Takaaki Mizuki. Card-based protocols using
triangle cards. In 9th International Conference on Fun with Algorithms,
FUN 2018, June 13-15, 2018, La Maddalena, Italy, pages 31:1–31:13, 2018.

[53] Kazumasa Shinagawa and Takaaki Mizuki. The six-card trick: Secure com-
putation of three-input equality. In Information Security and Cryptology -
ICISC 2018 - 21st International Conference, Seoul, South Korea, November
28-30, 2018, Revised Selected Papers, pages 123–131, 2018.

[54] Kazumasa Shinagawa and Takaaki Mizuki. Secure computation of any
boolean function based on any deck of cards. In Yijia Chen, Xiaotie Deng,
and Mei Lu, editors, Frontiers in Algorithmics - 13th International Work-
shop, FAW 2019, Sanya, China, April 29 - May 3, 2019, Proceedings, vol-
ume 11458 of Lecture Notes in Computer Science, pages 63–75. Springer,
2019.

BIBLIOGRAPHY 105

[55] Kazumasa Shinagawa, Takaaki Mizuki, Jacob C. N. Schuldt, Koji Nuida,
Naoki Kanayama, Takashi Nishide, Goichiro Hanaoka, and Eiji Okamoto.
Multi-party computation with small shuffle complexity using regular poly-
gon cards. In Provable Security - 9th International Conference, ProvSec
2015, Kanazawa, Japan, November 24-26, 2015, Proceedings, pages 127–
146, 2015.

[56] Kazumasa Shinagawa, Takaaki Mizuki, Jacob C. N. Schuldt, Koji Nuida,
Naoki Kanayama, Takashi Nishide, Goichiro Hanaoka, and Eiji Okamoto.
Secure multi-party computation using polarizing cards. In Advances in
Information and Computer Security - 10th International Workshop on Se-
curity, IWSEC 2015, Nara, Japan, August 26-28, 2015, Proceedings, pages
281–297, 2015.

[57] Kazumasa Shinagawa, Takaaki Mizuki, Jacob C. N. Schuldt, Koji Nuida,
Naoki Kanayama, Takashi Nishide, Goichiro Hanaoka, and Eiji Okamoto.
Card-based protocols using regular polygon cards. IEICE Transactions,
100-A(9):1900–1909, 2017.

[58] Kazumasa Shinagawa and Koji Nuida. A single shuffle is enough for secure
card-based computation of any circuit. IACR Cryptology ePrint Archive,
2019:380, 2019.

[59] Anton Stiglic. Computations with a deck of cards. Theor. Comput. Sci.,
259(1-2):671–678, 2001.

[60] Ken Takashima, Yuta Abe, Tatsuya Sasaki, Daiki Miyahara, Kazumasa
Shinagawa, Takaaki Mizuki, and Hideaki Sone. Card-based secure ranking
computations. In Combinatorial Optimization and Applications - 13th In-
ternational Conference, COCOA 2019, Xiamen, China, December 13-15,
2019, Proceedings, pages 461–472, 2019.

[61] Itaru Ueda, Akihiro Nishimura, Yu-ichi Hayashi, Takaaki Mizuki, and
Hideaki Sone. How to implement a random bisection cut. In Theory and
Practice of Natural Computing - 5th International Conference, TPNC 2016,
Sendai, Japan, December 12-13, 2016, Proceedings, pages 58–69, 2016.

[62] Yohei Watanabe, Yoshihisa Kuroki, Shinnosuke Suzuki, Yuta Koga, Mit-
sugu Iwamoto, and Kazuo Ohta. Card-based majority voting protocols with
three inputs using three cards. In International Symposium on Information
Theory and Its Applications, ISITA 2018, Singapore, October 28-31, 2018,
pages 218–222. IEEE, 2018.

[63] Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-
stract). In 23rd Annual Symposium on Foundations of Computer Science,
Chicago, Illinois, USA, 3-5 November 1982, pages 160–164, 1982.

[64] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th Annual Symposium on Foundations of Computer Science,
Toronto, Canada, 27-29 October 1986, pages 162–167, 1986.

