T2R2東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	変動風力を受ける1 質点系モデルへの総エネルギー入力の予測精度
Title(English)	Prediction Accuracy of Total Energy Input to Single-Mass Models under Flutuating Wind Force
著者(和文)	
Authors(English)	Xiaoxin Qian, Daiki Sato
出典 / Citation	日本建築学会関東支部研究報告集, , , pp. 241-244
Citation(English)	, , , pp. 241-244
発行日 / Pub. date	2020, 3

変動風力を受ける1質点系モデルへの総エネルギー入力の予測精度

構造-振動

正会員 〇 銭暁鑫

正会員 佐藤大樹

10分間風力 フーリエ変換 振動数領域

時刻歴解析 エネルギー入力 風洞実験

1 はじめに

建築物の耐震設計では,秋山¹⁾は運動方程式の両辺に変 位増分を乗じ、時間で積分してエネルギーの釣合式に基 づく耐震設計法を提示しており、「1 つの地震により構造 物にもたらされる総エネルギー入力は、主として、構造 物の総質量および1次固有周期に依存し,構造物の強度, 質量分布、剛性分布によらない安定した量である。」こと を示している。一方,耐風設計では、吉江ら^{2),3)}は風応答 を対象として1 質点系モデルへの総エネルギー入力の予 測式を誘導し, エネルギーの釣合に基づく弾塑性構造物 の風応答予測手法を提案している。総エネルギー入力に 関する予測式の精度検証において、予測値は「荷重指針」 4)の式による風力パワースペクトル密度 (PSD) を用いて 算出し、精解値はその PSD にフィットするシミュレーシ ョン風力により算出した。しかし、自然風の場合に、提 案されている予測式の精度検証はまだ行われていないた め、本報では自然風に近い風洞実験5のデータに基づく異 なるアンサンブル数、移動平均法および異なる時間刻み を採用し、変動風力を受ける1質点系モデルへの総エネ ルギー入力の予測精度を検証する。

2 解析モデルおよび風力波形の概要

Fig. 1 に示すように、対象建物は高さ H = 100m, 辺長 比 B/D = 1, アスペクト比 Ra = 4, 密度 $\rho = 250$ kg/m³の超 高層建物とし、1 次固有モードは直線モードと仮定した。 本解析は Modal Analysis における1次モードのみに着目し、 1 自由度を持つ1 質点系モデルにより行う。なお、解析パ ラメータとする固有周期 T_0 (10 種) と減衰定数 h (8 種) を Table 1 に示す。

対象建物の頂部平均風速は $U_{\rm H} = 50.41$ m/s (基本風速 36m/s,再現期間 500 年,地表面粗度区分IIIとして換算し た⁴)とする。風向の設定については,建物幅 B に正対 する 1 つの風向とする。本解析は,風速・風向変化を考 慮せず,風洞実験⁵⁾のデータにより換算した 10 分間の風 力波形(時間刻み $\Delta t = 0.01$ s)を 40 波(Wave 1~40)作 成し,それぞれを 1 次モードの一般化風力に変換した。

Prediction Accuracy of Total Energy Input to Single-Mass Models under Flutuating Wind Force Fig. 2 に 1 次モードの一般化風力波形の 1 例(wave 1)を 示す。解析開始時における過度応答を避けるために,各 風力波形の先頭に 50 秒間のエンベロープを設けた。なお, 弾性範囲内で総エネルギー入力の値はほとんど風力の変 動成分によって決まるため,風方向では,平均成分を有 さない風力波形を示している。

 T_0 [s] 1, 2, 3 ~ 8, 9, 10 (interval : 1 s) h 0, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5

Xiaoxin Qian, Daiki Sato

3 エネルギー入力の予測値と精解値の計算式

吉江ら²⁾が提案した予測式により,単位時間当たりのエネルギー入力を *Ė_{input}* で表すと,無減衰の場合に,その予測値 *E*[*Ė_{input}*]は式(1)で求められる。

$$E[\dot{E}_{input}] = \frac{1}{4m} S_f(n_0) \tag{1}$$

ここで, *m*:1次モードの質量, *S_f*(*n*):風力のパワースペクトル密度, *n*₀:固有振動数を表す。

なお,減衰がある場合,単位時間当たりの予測値 *E*[*Ė_{input}*] は式(2)で求められる。

$$E[\dot{E}_{input}] = \int_{0}^{\infty} Re[\dot{H}(n)] \cdot S_{f}(n) dn$$
⁽²⁾

ここで, *Re*[]:[]内の複素数の実数部分を取ることを示 す。*H*(*n*):減衰弾性系の速度に関する伝達関数を表し, 式(3)で得られる。

$$\dot{H}(\omega) = \frac{1}{k} \frac{\omega \cdot 2h\left(\frac{\omega}{\omega_0}\right) + i\omega\left(1 - \left(\frac{\omega}{\omega_0}\right)^2\right)}{\left(1 - \left(\frac{\omega}{\omega_0}\right)^2\right)^2 + 4h^2\left(\frac{\omega}{\omega_0}\right)^2}$$
(3)

一方,総エネルギー入力の精解値 K[E_{input}]は、時刻歴解
 析の結果により、式(4)で求められる。

$$K[E_{input}] = \int_{t_0}^{t_1} f(t) \cdot \dot{y}(t) dt$$
(4)

ここで, *f*(*t*):1次モードの一般化風力, *y*(*t*):1次モードの応答速度を表す。

4 アンサンブル数が予測精度に与える影響

Fig. 3(a)~(c)に,時間領域の風力をフーリエ変換で振動 数領域に変更したパワースペクトル密度(PSD)を示す。 Fig.3 より風方向では,振動数nの変化に伴い,PSD曲線 は緩やかに変化しているのに対して,風直交方向ではn= 0.1Hz付近に鋭いピークを持つことが見られる。本章では, アンサンブル数が異なる3つのケース(10波,20波,40 波)を想定し,アンサンブル数が増えると,総エネルギ ー入力の予測精度はどのように変化することを考察する。 総エネルギー入力の計算区間については,先頭50秒間 のエンベロープを含まない 50%~650% の 600 秒間とする

総エネルキー人力の計算区間については, 先頭 50 秒間 のエンベロープを含まない 50s~650s の 600 秒間とする。 Fig. 4(a)~(c)に式(1), (2)による予測値(600 秒あたり)と 式(4)による精算値(t_0 = 50s, t_1 = 650s)を示す。予測値と 精算値はそれぞれ丸プロットと折れ破線で表現し、減衰 については異なる色で表現する。Fig. 4(c)の 40 波アンサ ンブル平均の結果により,風方向では,同じ減衰定数の 場合に、固有周期の増大に伴い、総エネルギーは増大の 傾向があり、風直交方向では、 $T_0 = 7s$ 付近にピークが生 じていることが見られる。一方、同じ固有周期に対して も、減衰定数の変化に伴い、総エネルギー入力に変化が 生じていることが見られ、特に風直交方向の PSD のピー ク付近に相当する $T_0 = 7s$ 近傍では、減衰定数によって各 総エネルギー入力に非常に大きな差異が生じでいる。な お,予測値と精解値を比較すると,無減衰の場合に,予 測値と精解値は大きくずれている。ただし, 減衰定数の 増大に伴い、予測値と精解値は徐々に互いに近づいてい る。また、アンサンブル数が10波に減ると(Fig. 4(a))、 同じ固有周期に対して減衰定数によって各総エネルギー 入力は相対的に分散している。ただし、アンサンブル数 が20波に増えると(Fig. 4(b))の結果により,各総エネ ルギー入力は 40 波アンサンブルの結果に収束している。 そのため、アンサンブル数の増加に伴い、総エネルギー 入力の安定性が向上することが確認できた。

総エネルギー入力の予測値 *E*[*E*_{input}]と解析値 *K*[*E*_{input}]の 誤差を *Er* で表すと,式(5)で求められる。

$$Er = \left| \frac{E[E_{input}] - K[E_{input}]}{K[E_{input}]} \right| \times 100\%$$
(5)

Fig. 5(a) ~ (c)に式(5)による予測値と精解値の誤差 Er[%]を示す。誤差の大きさについては、10%以下を緑、 10~20%を黄、20%以上を赤で区別する。本報では、 $h \ge$ 0.01の範囲に着目し、予測精度を評価する。Fig. 5(c)の 40 波アンサンブルの結果により、風方向では、 $T_0 \ge 2s$ 時に 全て10%以下の誤差を示している。 $T_0 = 1s$ 時に、一部分 の誤差は 10%を超えている。風直交方向でも、同じ結論 が得られる。また、Fig. 5(a)、(b)の結果により、アンサン ブル数の減少に伴い、個別の誤差が増大しかつ 10%を超 え、予測精度が減少することが確認できた。

5 移動平均法が予測精度に与える影響

本章では、Fig. 3(c)のパワースペクトル密度(PSD)に 移動平均法(直近の 21 個のデータの重み付けのない単純 な平均)を採用し、滑らかな自己回帰曲線(黒線)を作 成し、総エネルギー入力の予測値を再計算する。精解値 については、そのまま 40 波アンサンブル平均の結果とす る。Fig. 6 に、移動平均法による予測値の誤差 Er を示す。 Fig. 5(c)の結果との比較により、 $h \ge 0.01$ の範囲に着目す ると、風方向では個別の誤差が増大しかつ 10%を超え、 予測精度は低下していることが確認できた。ただし、風

(c) average of 40 waves (wave 1~40)

1E+06

1E+04

1E+02

1E+00

0.001

n [Hz]

 $S_f(n)$ [kN²·s

across-wind dir

0.01

(b) average of 20 waves (wave 1~20)

Fig. 3 Power spectrum of wind force

along-wind dir

0.1

n [Hz]

1

1E+06

1E+04

1E+02

1E+00

Along-wind dir.

Across-wind dir.

0.001

 $S_f(n)$ [kN²·s

across-wind dir

0.01

(a) average of 10 waves (wave 1~10)

along-wind dir.

XIM

0.1

Fig. 4 Comparison of predicted and analytical total energy input (600 seconds)

											R[%]			0~10		10 ~ 20			20 ~						
h I o	1	2	3	4	5	6	7	8	9	10	h	1	2	3	4	5	6	7	8	9	10	h	1	2	
0.000	60.9	37.9	51.2	38.7	31.5	123.5	120.6	20.3	53.9	33.0	0.000	47.3	9.5	41.2	13.4	3.5	53.1	32.0	69.9	28.2	52.7	0.000	32.1	9.0	38
0.005	21.0	0.7	8.1	14.3	7.0	31.9	28.8	28.8	13.7	0.7	0.005	18.3	7.5	3.3	6.1	1.9	25.7	8.2	42.8	16.6	14.5	0.005	16.2	3.0	7.
0.010	15.2	4.2	0.3	3.2	4.8	4.1	16.1	8.9	16.2	11.6	0.010	14.4	6.7	2.4	2.3	3.8	4.5	5.7	10.7	0.4	15.9	0.010	13.4	4.5	0.
0.020	12.3	5.1	1.7	1.3	1.4	0.8	6.9	5.3	8.3	5.1	0.020	11.9	5.2	2.8	3.0	2.0	2.2	1.9	3.9	4.3	4.6	0.020	11.5	4.7	2.
0.050	10.5	5.1	2.0	1.8	1.8	2.2	3.9	3.5	4.1	1.3	0.050	9.9	4.4	2.6	3.3	1.6	2.8	1.7	2.7	3.2	1.9	0.050	9.9	4.7	2.
0.100	9.5	5.0	2.7	2.4	3.0	3.1	3.5	3.4	3.6	3.2	0.100	8.8	4.3	3.0	3.2	2.9	2.8	2.3	2.9	2.9	3.1	0.100	9.1	4.7	3.
0.200	8.4	4.6	3.2	3.0	3.3	3.5	3.5	3.6	3.7	3.9	0.200	7.8	4.2	3.2	3.2	3.2	2.9	2.8	3.1	3.3	3.8	0.200	8.2	4.5	3.
0.500	6.7	4.1	3.5	3.5	3.6	3.7	3.9	4.0	4.1	4.3	0.500	6.2	3.9	3.5	3.4	3.4	3.4	3.5	3.7	3.9	4.0	0.500	6.6	4.2	3.
																							-		
h To	1	2	3	4	5	6	7	8	9	10	h I o	1	2	3	4	5	6	7	8	9	10	h	1	2	1
0.000	1.3	8.0	20.2	1.1	180.0	36.5	45.2	20.5	39.7	21.6	0.000	45.6	26.3	62.8	0.5	49.5	38.7	26.9	32.2	25.1	12.4	0.000	94.4	1.4	2.
0.005	104.6	6.4	0.4	1.8	56.6	9.4	24.1	10.8	10.0	9.9	0.005	103.3	11.5	12.3	1.0	27.8	13.5	6.9	0.8	30.0	24.0	0.005	97.0	6.6	2.
0.010	79.7	7.0	3.2	0.7	26.8	8.4	9.7	1.2	4.6	9.7	0.010	78.4	9.1	6.5	1.8	15.2	11.2	1.9	8.3	15.2	3.2	0.010	76.6	8.0	3.
0.020	57.8	8.3	4.2	2.6	13.0	5.1	3.1	1.2	4.1	7.4	0.020	57.1	8.4	4.9	4.4	9.5	6.2	1.0	4.4	6.7	5.6	0.020	57.3	8.5	4.
0.050	35.3	8.1	4.2	4.5	5.3	2.2	1.9	1.5	2.6	3.7	0.050	35.3	7.8	4.2	4.7	5.1	2.1	1.7	2.2	2.5	3.4	0.050	36.3	8.0	4.
0.100	22.8	6.9	4.1	4.2	3.4	0.6	1.6	1.8	2.3	3.0	0.100	23.0	6.8	3.9	4.1	3.4	0.6	1.8	2.1	2.1	2.7	0.100	23.8	7.2	4.
0.200	14.0	5.6	3.7	3.4	2.2	0.1	1.1	1.6	1.9	2.3	0.200	14.1	5.5	3.6	3.2	2.2	0.1	1.2	1.7	1.9	2.2	0.200	14.8	5.9	4.
0.500	7.2	3.8	2.7	2.0	1.2	0.4	0.3	0.7	1.1	1.3	0.500	7.2	3.8	2.6	1.9	1.1	0.3	0.3	0.8	1.1	1.4	0.500	7.6	4.0	2.

(a) average of wave 1~10 (10 waves)

(b) average of wave 1~20 (20 waves)

1.0 (c) average of wave 1~40 (40 waves)

12.6

3.2 2.7

2.0 2.5 2.7 4.7 4.8

2.8

3.7 0.8 6.9 3.2 4.9

0.6 1.6 2.6 2.6 2.7

0.2 0.5 0.9 1.2 1.4

4.8 15.5 14.5 4.5 35.8

5.5 5.9 1.6 5.9 7.8 4.8 7.1

5.4 3.4 0.8 3.4 2.8 6.5 4.9

4.2

3.7 3.4

3.6 3.4 3.1 3.3 3.7 4.1 4.5

3.6 3.6 3.7 3.8 4.0 4.1

0.5 14.4 4.3 9.0 5.3

0.3 6.7 4.6 1.3 8.5 6.3 5.0

3.0

4.0

1.9

4.8 4.2 3.5 1.5 1.5 3.6 2.6 2.9

2.8 3.2 1.9 0.1 1.2 1.9 2.2 2.3

10

33.9

4.5

4.2

10

23.6

17.9 16.1

45.7 0. 3.9

8.8

14.4

2.8 3.5 4.1

24.6

Fig. 5 Error of predicted total energy input ($\Delta t = 0.01$ s)

方直交向では、予測精度に顕著な変化が生じていない。 そのため、PSD に移動平均法を採用しても、予測精度は 向上していないことが確認できた。

6 時間刻みが予測精度に与える影響

4、5章の総エネルギー入力に関する計算は、時間刻み $\Delta t = 0.01s$ で行った。本章では、固有周期 T_0 と時間刻み Δt の関係が誤差 Er に及ぼす影響について検討する。Fig. 7 に、Δt=0.05s による予測値の誤差 Er を示す。h≥0.01の 範囲に着目すると、風方向では T₀≧3s 時に、全て 10%以 下の誤差を示している。風直交方向では T₀≧4s 時に, 3 つの10%以上の誤差(12.3%, 10.9%, 10.6%)を除く, 全 て 10%以下の誤差を示している。上述の 3 つの 10%以上 の誤差については、精解値の変動係数はそれぞれ 0.45、 0.43, 0.32 と大きいため、無視できると考えられる。4章 の10%以下の誤差を確保するために,最小固有周期 T₀ = 2s を時間刻み $\Delta t = 0.01s$ で除すると, $T_0/\Delta t \ge 200$ が必要と なっている。それによって本章の時間刻み Δt = 0.05s の場 合に,最小固有周期 T₀≧0.05×200 = 10s となっている。た だし, Fig. 7 より最小固有周期 $T_0 = 4s$ となっている。換 言すれば、 $T_0 \ge 4s$ 時に10%以下の誤差を確保するために、 最大時間刻み ∆t≦4×200 = 0.02s となっている。ただし, 本章の時間刻み Δt = 0.05s とし 0.02s を超えている。その ため,時間刻みの増大に伴い,固有周期が短い1次モー ドに対して、予測精度は低下する傾向があるが、 $T_0/\Delta t$ の 限界は適切に緩和できると考えられる。

7 まとめ

本報では、風洞実験のデータによる風力波形に基づく 異なるアンサンブル数、移動平均法および異なる時間刻 みを採用し、提案された1 質点モデルへの総エネルギー 入力の予測式の精度についての検討を行った。得られた 結論を以下にまとめる。

- アンサンブル数の増加に伴い、総エネルギー入力の 安定性が向上し、個別の予測精度は少し向上することを確認した。
- パワースペクトル密度の平滑化効果ための移動平均 法を採用した場合に、予測精度は向上していないこ とを確認した。
- 時間刻みが 0.01s の場合に,10%以下の予測誤差を確 保するために,最小固有周期と時間刻みの比 T₀ / Δt ≧200 が必要となる。時間刻みが 0.05s の場合に,予 測精度は低下することを確認した。また,10%以下 の予測誤差を確保するための T₀ / Δt の限界は適切に 緩和できると考えられる。

		R[%]		0~10		1	.0 ~ 20)	2			
	h To	1	2	3	4	5	6	7	8	9	10	
_	0.000	17.3	3.0	24.4	11.2	7.7	8.4	16.7	52.0	10.0	26.2	ĺ
alt.	0.005	15.6	5.6	7.3	3.7	5.7	11.7	2.4	41.4	10.6	69.8	
pg	0.010	14.0	5.3	1.6	4.1	2.8	2.4	4.1	11.9	0.5	29.6	
IIM	0.020	12.0	5.0	1.8	4.6	3.8	2.9	3.3	6.3	2.3	20.7	
5 S	0.050	10.1	5.1	3.2	4.6	4.7	3.7	3.7	5.4	4.6	13.6	
AIO	0.100	9.3	5.2	3.8	4.6	4.6	4.0	4.2	5.5	6.3	9.7	
4	0.200	8.4	5.1	4.3	4.5	4.6	4.5	4.9	5.8	6.8	7.6	
	0.500	7.1	5.0	4.7	4.8	5.0	5.2	5.5	5.7	5.9	6.0	
	h I o	1	2	3	4	5	6	7	8	9	10	
	0.000	95.7	13.7	23.3	1.7	21.8	8.5	12.0	0.8	4.8	23.3	
dır	0.005	94.7	9.8	7.6	3.9	15.0	9.4	9.2	22.5	13.0	15.7	
nd	0.010	77.3	8.8	1.3	5.1	7.7	1.2	5.5	2.4	1.6	6.0	
-	0.020	58.2	8.2	3.1	6.8	5.8	2.4	5.7	0.2	0.6	6.5	
SSC	0.050	36.6	8.2	5.2	7.0	4.1	2.7	4.6	1.2	1.9	4.1	
VCL	0.100	24.2	7.6	5.4	5.8	2.8	2.3	3.5	1.9	2.2	3.0	
4	0.200	15.1	6.4	4.8	4.1	1.6	1.4	2.4	2.2	2.1	2.2	
	0 500	79	44	31	19	0.6	0.4	10	14	15	16	

Fig. 6 Error of predicted total energy input by moving average

		R[%]		0~1	0	1	.0 ~ 20		2		
	h T o	1	2	3	4	5	6	7	8	9	10
dir.	0.000	104.4	25.6	24.8	9.0	20.3	17.2	16.4	45.7	0.8	5.2
	0.005	223.5	3.6	1.5	7.5	19.3	15.3	6.0	35.6	9.3	32.4
ind	0.010	430.7	10.4	7.6	8.7	8.6	2.5	7.3	7.6	4.1	6.1
-W	0.020	602.3	14.5	8.2	8.8	5.4	1.7	4.5	2.8	5.9	4.2
gu	0.050	416.0	16.8	7.2	7.3	4.7	3.1	3.4	2.9	4.4	4.3
Alo	0.100	259.6	16.5	7.3	6.5	4.9	3.7	3.5	3.7	3.9	4.2
۲	0.200	100.8	14.8	7.5	6.0	4.9	4.1	3.8	3.9	4.1	4.3
	0.500	42.5	12.0	7.2	5.6	4.8	4.4	4.3	4.2	4.2	4.2
	h To	1	2	3	4	5	6	7	8	9	10
н.	0.000	117.4	110.9	2.4	6.6	24.0	1.3	27.1	20.7	4.8	25.9
1 d	0.005	144.1	53.0	12.6	5.1	16.9	3.4	11.4	0.9	22.1	11.6
inc	0.010	161.0	50.3	15.0	6.2	9.1	5.3	3.7	12.3	10.9	9.0
M-8	0.020	206.9	47.5	16.1	8.9	6.9	4.3	3.0	10.6	7.6	9.2
SO	0.050	537.8	42.4	15.7	9.6	5.4	2.1	3.5	7.1	6.6	7.3
Acr	0.100	478.6	34.9	14.4	8.7	4.3	1.2	3.5	5.7	6.2	6.7
4	0.200	108.0	25.2	11.8	6.8	3.0	0.6	2.9	4.4	5.3	5.8
	0.500	36.1	13.9	7.4	4.0	1.7	0.2	1.5	2.6	3.4	4.0

Fig. 7 Error of predicted total energy input ($\Delta t = 0.05$ s)

謝辞

本研究の一部は、JST 産学共創プラットフォーム共同研究推進プログ ラム (JPMJOP1723) によるものです。また、日建設計の吉江氏には本 研究についてご助言をいただきました。ここに記して感謝いたします。

参考文献

- 秋山宏:エネルギーの釣合に基づく建築物の耐震設計,技報堂出版,1999
- 吉江慶佑,北村春幸,大熊武司:変動風力による弾塑性構造物への総エネルギー入力に関する研究,日本建築学会構造系論文集, Vol. 68, No. 572, pp. 31-38, 2003.10
- 吉江慶佑,北村春幸,大熊武司:エネルギーの釣合に基づく変動 風力を受ける弾塑性構造物の応答予測手法,日本建築学会構造系 論文集, Vol. 70, No. 589, pp. 59-66, 2005.10
- 4) 日本建築学会:建築物荷重指針・同解説, 2015
- 5) 丸川比佐夫,大熊武司,北村春幸,吉江慶祐,鶴見俊雄,佐藤大 樹:風洞実験に基づく高層建物の多層層風力によるエネルギー入 力性状(その2)矩形高層建築物に作用する層風力特性,日本建 築学会学術講演梗概集, Vol. B-1, pp. 193-194, 2010.7

*1 東京工業大学

Tokyo Institute of Technology