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Abstract This paper presents a nonlinear equivalent-

input-disturbance (NEID) approach to rejecting an un-

known exogenous disturbance in a nonlinear system.

An NEID compensator has two parts: A convention-

al equivalent-input-disturbance (EID) estimator and a

nonlinear state-feedback term. This design ensures that

only the exogenous disturbance is rejected and the use-

ful nonlinearity of the system is retained. Unlike other
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active disturbance-rejection methods, a Lipschitz con-

dition is not necessary to guarantee the convergence of

the observation error. Analysis of control performance

provides upper bounds for the evaluation of disturbance-

rejection and the degree of nonlinearity retention. Nu-

merical examples show the validity and superiority of

this method.

Keywords Nonlinear system · exogenous-disturbance

estimation · performance analysis · equivalent input

disturbance · local uniformly boundedness.

1 Introduction

Nonlinear phenomena, such as chaos [1] and bifurca-

tion [2], are common in the real world. While they are

complicated, they are important for system behavior,

for example, a decrease in cardiac chaos might indicate

congestive heart failure [3], chaos in liquid mixing was

used to improve mixing efficiency [4], and the idea of

anticontrol of chaos was applied to keep a human brain

away from a saddle-type equilibrium [5]. Control of non-

linear behavior have received numerous attention, and

a considerable number of studies has been made on this

topic [5–7]. However, none of them considered the ef-

fect of an exogenous disturbance. A disturbance in a

nonlinear system significantly influences the behavior

of the system [8]. It is more practical to consider the

problem of nonlinear control with disturbances. Since

nonlinearities, which are the source causing nonlinear

phenomena, need to be preserved to feature a system

in many control practice, the difficulty of this problem is

how to reject an unknown exogenous disturbance while

retaining nonlinearities.

Regarding disturbance rejection in a nonlinear sys-

tem, a series of nonlinear disturbance observers (N-
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DOBs) were proposed to estimate and suppress kinds

of disturbances. An NDOB was first used to estimate

a torque disturbance in a nonlinear robotic manipula-

tor [9]. The error of disturbance estimation was proven

to exponentially converge to zero based on Lyapunov

stability theory. However, only a constant disturbance

was dealt with [9]. Then, a harmonic NDOB were de-

vised for a harmonic disturbance [10], and a high-order

disturbance was developed for a general case [11]. The

problem with the NDOBs is that they require that the

system state is measurable [29]. This may be difficult

in control practice. In addition, a priori information,

such as the frequency of a disturbance [10], is required

in system design, but it is usually not available or may

change according to operating conditions.

Other methods of rejecting disturbances in nonlin-

ear systems have also been presented. The sliding-mode

control [12,13] and neural networks [14,15] were used to

compensate for nonlinearities, exogenous disturbances,

and system uncertainties. An adaptive fast finite-time

control [16], a mixed H2/H∞ fuzzy output feedback

control [17], and a robust self-triggered model predic-

tive control algorithm [18] were presented to reduce the

influence of nonlinearities and exogenous disturbances,

and thus improve control performance. These method-

s are effective to suppress the effect of nonlinearities

and exogenous disturbances. However, they cannot be

used to deal with the problem considered in this paper

because they also compensate for the effect of nonlin-

earities.

On the other hand, many methods have been de-

vised for disturbance rejection for a linear system. A-

mong them, since active disturbance rejection methods,

such as the disturbance observer (DOB) [19,20], the ac-

tive disturbance rejection control (ADRC) [21–23], and

the equivalent-input-disturbance (EID) approach [24,

25], exhibit better disturbance-rejection performance

than conventional one-degree-of-freedom methods (for

example, adaptive control [26], predictive control [27],

and internal model principle [28]), they have widely

been investigated theoretically and used in control engi-

neering [29]. Note that these active disturbance-rejection

methods cannot be directly used for the disturbance

rejection of such a kind of a nonlinear system consid-

ered in this study because they produce a compensation

amount for not only disturbances but also nonlineari-

ties. This completely changes the characteristics of a

nonlinear system and is not desirable in many applica-

tions.

Considering that, unlike the DOB method, the EID

approach does not require an inverse model of a plant or

any a prior information on disturbances, and unlike the

ADRC, the system configuration is simple, this paper

extends the EID approach to deal with the disturbance-

rejection problem for a nonlinear system and presents

a nonlinear EID (NEID) approach to rejecting only an

exogenous disturbance and retaining the inherent non-

linearities of a system. An NEID compensator has two

parts: a nonlinear term and an EID compensator. The

nonlinear term keeps the nonlinearities of the system

while the NEID compensator compensated solely for

the disturbance. The advantages of this method over

others are as follows:

(1) A state observer is used to estimate the state of a

nonlinear system, but a Lipschitz condition is not

necessary to guarantee the convergence of the ob-

servation error.

(2) No a priori information of a disturbance is needed.

(3) While the mechanism is simple, it is effective in

rejecting disturbances and retaining nonlinearities.

(4) The stability of the system is guaranteed by the

stability of the linear part of a nonlinear system.

(5) Upper bounds for the evaluation of disturbance-

rejection and the degree of nonlinearity retention are

analyzed and used to show the disturbance-rejection

performance of an NEID estimator.

In this paper, for a vector x(t) =
[
x1(t) · · · xn(t)

]T
,

‖x‖2 :=
√∫∞

0
xT(t)x(t)dt, ‖x(t)‖2 :=

√
xT(t)x(t), and

‖xi‖∞ := sup
t
|xi(t)|. For any a function g(t), ‖g‖1 :=∫ +∞

−∞ |g(τ)|dτ . For a complex number z, Re z is the

real part of z. And for a square matrix A (∈ Rn×n),

λi(A) (i = 1, 2, . . . , n) is its eigenvalues, and λmin(A) is

the minimum one and λmax(A) is the maximum one.

2 Configuration of NEID-based

disturbance-rejection system

Consider a nonlinear plant
dx(t)

dt
= Ax(t) +Bf(x(t)) +Bu(t) +Bd(t),(1a)

y(t) = Cx(t), (1b)

where x(t) (∈ Rn) is the state; u(t) (∈ Rnu) is the

control input; y(t) (∈ Rny ) is the output; d(t) (∈ Rnu)

is an unknown exogenous disturbance; f(x(t)) (∈ Rnu)

is a state-dependent nonlinearity; and A, B, and C are

constant matrices with suitable dimensions. Note that

f(x(t)) and u(t) are in the same channel.

For convenience, this paper discusses only a single-

input, single-output (SISO) plant, which means that

nu = 1 and ny = 1. However, the result can easily be

extended to a multiple-input, multiple-output (MIMO)

one.

The following assumptions were made in this study:
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Fig. 1 Configuration of NEID-based disturbance-rejection
system.

Assumption 1 (A,B,C) is controllable and observ-

able.

Assumption 2 The disturbance, d(t), satisfies

‖d‖∞ ≤ dM , (2)

where dM is a positive number.

Assumption 3 f(x) is a continuous smooth function

satisfying

‖f‖2
‖x‖2

→ 0 as ‖x‖2 → 0. (3)

Remark 1 Assumption 3 is used to derive a stability

condition for the NEID-based disturbance-rejection sys-

tem. If nonlinearities do not satisfy Assumption 3 but

satisfy

‖f‖∞ ≤ ϕ, (4)

where ϕ is a positive constant, the NEID approach is

also effective (see the second example in Numerical ver-

ification) and the stability is analyzed based on the con-

cept of global uniformly boundedness (see Appendix).

An NEID-based disturbance-rejection system (Fig.

1) contains three parts: The plant, a state observer, and

an NEID compensator. The NEID compensator has two

parts: An EID estimator and nonlinear state feedback.

F (s) in the EID estimator is a low-pass filter, and

B+ =
(
BTB

)−1
BT. (5)

The improved control input (Fig 1)

u(t) = uf (t)− d̃e(t) (6)

is used in the NEID compensator.

According to the explanations given by Gao et al.

[30], there is an EID, de(t), on the control input chan-

nel that produces the same effect as the disturbance

and the nonlinearity on the output. So, the EID-based

system description of the plant is
dx(t)

dt
= Ax(t) +B[u(t) + de(t)],

y(t) = Cx(t),

(7)

where

de(t) = f(x(t)) + d(t). (8)

A full-order observer
dx̂(t)

dt
= Ax̂(t) +Buf (t) + L[y(t)− Cx̂(t)], (9a)

ŷ(t) = Cx̂(t) (9b)

is used to estimate the EID. x̂(t) in (9) is a reconstruct-

ed state of x(t).

Define

∆x(t) = x̂(t)− x(t). (10)

An estimate of the EID is (Gao et al. [30])

d̂e(t) = B+LC∆x(t) + uf (t)− u(t). (11)

Subtracting (1a) from (9a) gives

d∆x(t)

dt
=(A− LC)∆x(t) +Buf (t)−Bu(t)

−Bf(x(t))−Bd(t).

(12)

This paper chooses

uf (t) = f(x̂(t)) (13)

to retrieve the nonlinearity of the system and to ensure

that only d(t) is rejected by the NEID compensator.

A low-pass filter F (s)
dxF (t)

dt
= AFxF (t) +BF d̂e(t), (14a)

d̃e(t) = CFxF (t) (14b)

is used to select an angular frequency bandwidth for

disturbance estimation. It is selected to satisfy

F (jω) ≈ I, ∀ω ∈ [0, ωr], (15)

where ωr is the highest angular frequency for distur-

bance estimation.
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Fig. 2 Configuration of NDOB-based disturbance-rejection
system.

Remark 2 The NEID approach is different from the

conventional EID approach. uf (t) is designed in a gen-

eral way and rejects both d(t) and f(x(t)) for the con-

ventional one, but it is chosen to be (13) and rejects

only d(t) for the NEID approach. This choice plays a

key role and adroitly solves the problem of retaining

the characteristics of a nonlinear system.

Next, an NDOB for (1) is [29]
dz(t)

dt
= −l(x(t))Bz(t)− l(x(t))Bp(x(t)) (16a)

−l(x(t)) [Ax(t) +Bf(x(t)) +Bu(t)] ,

d̂D(t) = z(t) + p(x(t)), (16b)

where z(t) is an auxiliary variable vector, d̂D(t) is a

disturbance estimate, p(x(t)) is a function vector for

the design and it is chosen to satisfy

l(x) =
∂p(x)

∂x
. (17)

The NDOB-based disturbance-rejection system (Fig. 2)

has two parts: The plant and an NDOB estimator.

Define the error of the disturbance estimation to be

eD(t) = d̂D(t)− d(t). (18)

Then, the dynamics of the disturbance estimation error

is

ėD(t) =
˙̂
dD(t)− ḋ(t)

= ż(t) +
∂p(x)

∂x
ẋ(t)− ḋ(t)

= −l(x(t))BeD(t)− ḋ(t).

(19)

If

ḋ(t) = 0, (20)

the NDOB is effective to estimate constant disturbances

for a suitable l(x(t)).

There are two main differences between the NDOB

method and the NEID approach:

1) The disturbance-rejection mechanism is different. The

NDOB uses the nonlinear dynamics of the distur-

bance estimation error to construct a disturbance

observer. Moreover, it requires that the system s-

tate is measurable. However, the NEID approach

first constructs a state observer and then it elabo-

rates the information of the observer to estimate a

disturbance.

2) The NDOB method requires ḋ(t) = 0 to ensure

the convergence of the disturbance estimation error,

which means that it is only effective to estimate and

compensate for constant disturbances in theory. But

the NEID approach does not need the requiremen-

t. Thus, it is effective to estimate and compensate

for not only constant disturbances but also time-

varying disturbances.

According to the above explanation, it is known that

the application range is wider for the NEID approach

than for the NDOB method.

It is not easy to select a nonlinear function, p(x(t)),

in an NDOB estimator [9]. For a time-varying distur-

bance, the NDOB method needs the frequency of the

disturbance to design a disturbance compensator [10].

Thus, the problem of rejecting a time-varying distur-

bance in a nonlinear system is much easier to be han-

dled for the NEID approach than for the NDOB method.

3 Stability of NEID-based

disturbance-rejection system

This section shows the local uniformly boundedness of

the NEID-based disturbance-rejection system. The fol-

lowing definitions and lemmas are employed in the sta-

bility analysis.

Definition 1 (Definition 4.2 [32]) A continuous func-

tion α : [0, a)→ [0,∞) belongs to class K if it is strictly

increasing and α(0) = 0, and belongs to class K∞ if

a =∞ and α(r)→∞ as r →∞.

Definition 2 (Definition 4.3 [32]) A continuous func-

tion β : [0, a) × [0,∞) → [0,∞) belongs to class KL if

the following conditions hold: 1) for each fixed q, the

mapping β(p, q) belongs to class K with respect to p,

2) for each fixed p, the mapping β(p, q) decreases with

respect to q, and β(p, q)→ 0 as q →∞.



Title Suppressed Due to Excessive Length 5

Definition 3 (Definition 4.6 [32]) The solutions of

an autonomous system

dx

dt
= h(x) (21)

are uniformly bounded if there exists a positive constant

c that is independent of t0 (≥ 0), and for every a ∈
(0, c), there is β = β(a) > 0 that is independent of t0,

such that

‖x(t0)‖2 ≤ a ⇒ ‖x(t)‖2 ≤ β, ∀t ≥ t0. (22)

Lemma 1 (Theorem 4.7 [32]) Let x = 0 be an equi-

librium point of the system (21), where h : D → Rm is

continuously differentiable and D is a neighborhood of

the origin and defined as D = {x ∈ Rm| ‖x‖2 < r} (r

is a positive constant). Let

M =
dh(x)

dx

∣∣∣
x=0

. (23)

Then,

(1) the origin is asymptotically stable if Re λi < 0 for

all eigenvalues of M ,

(2) the origin is unstable if Re λi > 0 for one or more

of the eigenvalues of M .

Lemma 2 (Corollary 4.3 [32]) Let x = 0 be an equi-

librium point of the system (21), where h(x) is contin-

uously differentiable in a neighborhood of x = 0. Then,

x = 0 is an exponentially stable equilibrium point of the

system (21) if and only if (23) is Hurwize.

Lemma 3 (Theorem 4.14 [32]) Let x = 0 be an

equilibrium point of a nonlinear system

dx

dt
= h(t, x), (24)

where h : [0,∞) × D → Rm is continuously differen-

tiable, a neighborhood of the origin D, and the Jaco-

bian matrix
∂h(t, x)

∂x
is bounded on D and uniformly in

t. Let κ, λ∗, and r0 be positive constants with r0 <
r

κ
.

Let D0 = {x ∈ Rm| ‖x‖2 < r0}. Assume that the tra-

jectories of the system satisfy‖x(t)‖2 ≤ κ‖x(t0)‖2e−λ
∗(t−t0),

∀x(t0) ∈ D0, ∀t ≥ t0 ≥ 0.
(25)

Then, there exists a function V : [0,∞)×D0 → R that

satisfies

c1‖x‖22 ≤ V (t, x) ≤ c2‖x‖22,

∂V (t, x)

∂t
+
∂V (t, x)

∂x
h(t, x) ≤ −c3‖x‖22,∥∥∥∥∂V∂x

∥∥∥∥
2

≤ c4‖x‖2

(26)

for positive constants c1, c2, c3, and c4. Moreover, if

r = ∞, then the origin is globally exponentially stable

and V (t, x) is well defined and satisfies (26) globally.

Furthermore, if the system is autonomous, V (t, x) can

be chosen independent of t.

Lemma 4 (Theorem 4.18 [32]) Let V : [0,∞) ×
D → R be a continuously differentiable function such

that
α1(‖x‖2) ≤ V (t, x) ≤ α2(‖x‖2),

∂V (t, x)

∂t
+
∂V (t, x)

∂x
h(t, x) ≤ −W3(x),

∀‖x‖2 ≥ µ > 0, ∀ t ≥ 0, ∀ x ⊂ D,

(27)

where α1 and α2 are class K functions and W3(x) is a

continuous positive-definite function. Take r > 0 such

that Br ⊂ D and suppose that

µ < α−12 (α1(r)). (28)

Then, there exists a class KL function β and, for every

initial state x(t0) that satisfies ‖x(t0)‖2 ≤ α−12 (α1(r)),

there is T (> 0) [dependent on x(t0)] and µ such that

the solution of (24) satisfies‖x(t)‖2 ≤ β(‖x(t0)‖2, t− t0), ∀t0 ≤ t ≤ t0 + T,

‖x(t)‖2 ≤ α−11 (α2(µ)), ∀t ≥ t0 + T,

(29)

which means that the system (24) is uniformly bounded.

Moreover, if D = Rm and α1 belongs to class K∞, then

(29) hold for any initial state x(t0) with no restriction

on how large µ is.

If Assumptions 2 and 3 are satisfied, the lumped

disturbance including f(x(t)) has influences on the sta-

bility of the NEID-based disturbance-rejection system.

The local uniformly boundedness of the NEID-based

disturbance-rejection system is analyzed below. Comb-

ing (1), (6), (12), (13), and (14) yields

dx(t)

dt
= Ax(t) +Bf(x(t))−BCFxF (t)

+Bd(t) +Bf(x̂(t)), (30a)

d∆x(t)

dt
= (A− LC)∆x(t) +BCFxF (t)

−Bf(x(t))−Bd(t), (30b)

dxF (t)

dt
= −BFB+LC∆x(t)

+(AF +BFCF )xF (t). (30c)

Define the state of the disturbance-rejection system

(Fig. 1) to be

ξ(t) = [xT(t) ∆xT(t) xF (t)]T. (31)
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Thus,

dξ(t)

dt
= Āξ(t) + B̄f(x̂(t)) + B̄bf(x(t)) + B̄dd(t), (32)

where

Ā =

A 0 −BCF
0 A− LC BCF
0 −BFB+LC AF +BFCF

, (33)

B̄ =

B0
0

, B̄b =

 B

−B
0

 , B̄d =

 0

−B
0

 . (34)

Letting

σ(t) = B̄dd(t) (35)

and

η(ξ(t)) = B̄f(x̂(t)) + B̄bf(x(t))

=

Bf(x(t)) +Bf(x̂(t))

−Bf(x(t))

0

 (36)

gives

dξ(t)

dt
= Āξ(t) + η(ξ(t)) + σ(t). (37)

The stability analysis of the system (37) is divided

into two steps. First, show the asymptotically stable of

the system when d(t) = 0. Then, show that the system

is uniformly bounded for d(t) 6= 0.

First, let d(t) = 0. Then (37) becomes

dξ(t)

dt
= g(ξ(t)) = Āξ(t) + η(ξ(t)). (38)

It is clear that the origin is an equilibrium point of (38).

According to Lemma 1, stability of the origin can be

characterized by the locations of the eigenvalues of the

matrix Ā. Thus, if Ā is Hurwitz, then, for any positive-

definite symmetric matrix Q, the solution, P , of

PĀ+ ĀTP = −Q (39)

is positive definite. Let

V1(ξ(t)) = ξT(t)Pξ(t) (40)

be a Lyapunov function candidate of (38). The deriva-

tive of V1(ξ(t)) along the trajectories of (38) is given

by

dV1(ξ(t))

dt
= −ξT(t)Qξ(t) + 2ξT(t)Pη(ξ(t)). (41)

The first term on the right side of (41) is negative def-

inite while the second term is indefinite. According to

Assumption 3, the function η(ξ(t)) satisfies

‖η‖2
‖ξ‖2

→ 0 as ‖ξ‖2 → 0. (42)

Therefore, for any γ > 0, there exists ν > 0 such that

‖η‖2 < γ‖ξ‖2, ∀‖ξ‖2 < ν. (43)

Hence,

dV1(ξ(t))

dt
< −ξT(t)Qξ(t) + 2γ‖P‖2‖ξ‖22, ∀‖ξ‖2 < ν.

(44)

However, ξT(t)Qξ(t) ≥ λmin(Q)‖ξ‖22. Note that λmin(Q)

is real and positive because Q is symmetric and positive

definite. Thus,

dV1(ξ(t))

dt
< − [λmin(Q)− 2γ‖P‖2] ‖ξ‖22, ∀‖ξ‖2 < ν.

(45)

Choosing

γ <
λmin(Q)

2‖P‖2
(46)

ensures that dV1(ξ(t))/dt is negative definite. Thus, if

Ā is Hurwitz then the origin of (38) is asymptotically

stable.

Now, we are ready to analyze the local boundedness

of the system for d(t) 6= 0.

The origin of (38) is exponentially stable based on

Lemma 2. Thus, there exist constants κ and λ∗ such

that‖ξ(t)‖2 ≤ κ‖ξ(t0)‖2e−λ
∗(t−t0),

∀‖ξ(t0)‖2 < ν, ∀t ≥ t0 ≥ 0.
(47)

Choosing

ν0 < min{ν, ν/κ}, (48)

all the conditions of Lemma 3 are satisfied: (47) corre-

sponds to (25) and (48) corresponds to r0. Thus, there

is a Lyapunov function V2(ξ(t)) of (38) for ‖ξ‖2 < ν0
that satisfies

c1‖ξ‖22 ≤ V2(ξ(t)) ≤ c2‖ξ‖22,

dV2(ξ)

dξ
g(ξ(t)) ≤ −c3‖ξ‖22,∥∥∥∥dV2

dξ

∥∥∥∥
2

≤ c4‖ξ‖2.

(49)
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Let V2(ξ(t)) be a Lyapunov function candidate of (37).

The derivative of V2(ξ(t)) along the trajectories of (37)

is given by

dV2(ξ(t))

dt
=
∂V2
∂ξ

[g(ξ(t)) + σ(t)]

≤(−c3‖ξ(t)‖2 + c4‖B̄‖2dM )‖ξ(t)‖2
≤c3(−‖ξ(t)‖2 + r)‖ξ(t)‖2,

(50)

where

r =
c4‖B̄‖2dM

c3
. (51)

If

µ <
c1r

c2
, (52)

conditions in Lemma 4 are satisfied: (49) and (52) cor-

respond to (27) and (28), respectively. Thus,

‖ξ(t)‖2 ≤ r, ∀t ≥ t0. (53)

According to Definition 3, (37) is local uniformly bound-

edness. Thus, the following theorem is obtained.

Theorem 1 The system (37) is local uniformly bound-

edness for (53) if (52) is satisfied and Ā is Hurwitz.

If (52) is not satisfied, we can tune Ā to increase ν

and finally ensure that (52) is satisfied.

Remark 3 This paper presented the stability analysis

of the NEID-based disturbance-rejection system for a

class of nonlinearities satisfying Assumption 3. For such

a class of nonlinearities, the stability-analysis method

presented in the original EID approach [24] and the

linear-matrix-inequality-based approach used in [30] can

hardly be extended to obtain a simple stability condi-

tion for the system design. Thus, in this paper, we de-

rived the stability conditions based on the concept of

local uniformly boundedness.

4 Performance analysis for NEID-based

disturbance-rejection system

Since the nonlinear term is bounded for a stable NEID-

based disturbance-rejection system, it is reasonable to

assume that

‖f‖∞ ≤ fM , ∀‖ξ‖2 ≤ r, (54)

where fM is a positive constant. Thus,

‖de‖∞ = ‖f + d‖∞ ≤ ‖f‖∞ + ‖d‖∞
≤ fM + dM .

(55)

Using ∆x(t) to describe the dynamics (9) [31] and

redrawing Fig. 1 yield Fig. 3, in which

KN = −B+LC, N(s) = −[sI − (A− LC)]−1B. (56)

The figure clearly illustrates the feature of the NEID

estimator: It provides us a new degree of freedom to add

a compensation amount directly to the control input

channel to compensate for the EID. The bound analysis

is carried out by making use of this feature.

Define

∆de(t) = d̃e(t)− de(t). (57)

Let de(t) be the input and ∆de(t) be the output. The

transfer function from de(t) to ∆de(t) is (Fig. 3)

G∆d(s) = [I − F (s)GL(s)]−1[I − F (s)], (58)

where

GL(s) = I −KNN(s). (59)

Thus,

∆de(t) = g∆d(t) ∗ de(t), g∆d(t) = `−1[G∆d(s)], (60)

where g∆d(t) is the inverse Laplace transform ofG∆d(s),

∗ is the convolution operator, and `−1 is the inverse

Laplace transform.

Substituting (8) and (14b) into (30b) yields

d∆x(t)

dt
= (A− LC)∆x(t) +B∆de(t). (61)
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Note that there are no nonlinear terms in (61). Thus,

a Lipschitz condition is not necessary for the conver-

gence of ∆x, which means that our method is effective

no matter the nonlinear term satisfying the Lipschitz

condition or not. Moreover,

∆x(t) = g∆x(t) ∗ de(t), (62)

where

g∆x(t)

= `−1{−N(s)[I − F (s)GL(s)]−1[I − F (s)]}.
(63)

Remark 4 The Lipschitz condition usually is used to

ensure the convergence of the observation error for non-

linear systems. It is difficult to do that without such a

condition. This paper uses the NEID approach to suc-

cessfully construct the error system (61) that does not

contain the nonlinearity. The convergence of the obser-

vation error is guaranteed by the linear part. Thus, it

avoids the Lipchitz condition.

According to Table 2.2 [33], (60) and (62) become

‖∆de‖∞ = ‖g∆d‖1‖de‖∞ (64)

and

‖∆xi‖∞ = ‖g∆xi‖1‖de‖∞, 1 ≤ i ≤ n. (65)

Substituting (55) into (64) and (65) yields

‖∆de‖∞ ≤ ‖g∆d‖1(fM + dM ), (66)

and

‖∆xi‖∞ ≤ ‖g∆xi
‖1(fM + dM ), 1 ≤ i ≤ n. (67)

Let the nonlinearity reconstruction error to be

ef (t) = f(x(t))− f(x̂(t)). (68)

According to the mean value theorem,

ef (t) = φ (x̂(t)− x(t)) = φ∆x(t), (69)

where
φ = DF (δ), DF =

[
∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xn

]
,

δ = x(t) + θ∆x(t), θ ∈ (0, 1).

(70)

Thus,

‖ef‖∞ = ‖φ∆x‖∞ ≤ ‖φ‖∞
n∑
i=1

‖∆xi‖∞

≤

(
n∑
i=1

‖g∆xi
‖1

)
‖φ‖∞(fM + dM ).

(71)

Note that, since f(x) is known and the stable region is

given in Section 3, ‖φ‖∞ is easy to obtain.

Next, we are ready to calculate the upper-bound of

the estimate error for the NEID estimator. Note that

the function of the NEID estimator is to produce an

estimate of the exogenous disturbance. The exogenous-

disturbance estimate is

d̂(t) = d̃e(t)− f(x̂(t)). (72)

The error of the disturbance estimation is

ed(t) = d̂(t)− d(t) = d̃e(t)− f(x̂(t))− d(t). (73)

That is,

ed(t) = [d̃e(t)− de(t)] + [f(x(t))− f(x̂(t))]

= ∆de(t) + ef (t).
(74)

As a result,

‖ed‖∞ ≤ ‖∆de‖∞ + ‖ef‖∞
≤ ‖g∆d‖1(fM + dM ) + ‖ef‖∞
≤ ‖g∆d‖1(fM + dM )

+

(
n∑
i=1

‖g∆xi
‖1

)
‖φ‖∞(fM + dM )

≤

[
‖g∆d‖1 +

(
n∑
i=1

‖g∆xi‖1

)
‖φ‖∞

]
(fM + dM ).

(75)

Summarizing the above results gives the following

theorem.

Theorem 2 The upper bound of the disturbance esti-

mation error is

sup ‖ed‖∞

=

[
‖g∆d‖1 +

(
n∑
i=1

‖g∆xi
‖1

)
‖φ‖∞

]
(fM + dM ),

(76)

and the upper bound of the nonlinearity reconstruction

error is

sup‖ef‖∞ =

(
n∑
i=1

‖g∆xi‖1

)
‖φ‖∞(fM + dM ). (77)

5 Numerical verification

First, a numerical example is used to illustrate the de-

sign procedures and demonstrate the validity of the

method. The parameters of the plant (1) are

A =

[
0 1

−1 −0.5

]
, B =

[
0

1

]
, C =

[
0 1
]
,

d(t) = sin t,

(78)



Title Suppressed Due to Excessive Length 9

-0.20

-0.10

0.00

0.10

20151050

y
(t

) 

t [s]

with NEID

without disturbance
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Fig. 4 Outputs of (78) and (79) to initial condition (89). (a)
With and without an NEID compensator. (b) With NEID
and without disturbance.

and

f(x(t)) = −x32(t). (79)

Since only x2(t) is measurable, the conventional N-

DOB approach cannot be applied in this example. Set

uf (t) = −x̂32(t). (80)

A first-order filterF (s) =
100

s+ 101
,

AF = −101, BF = 100, CF = 1
(81)

was used in this study.

Optimizing the performance index [24]

JL =

∫ ∞
0

{ρxTL(t)QLxL(t) + uTL(t)RLuL(t)}dt (82)

yields

L =
(
R−1L CPρ

)T
, (83)

where Pρ is a positive symmetrical solution of the Ric-

cati equation

APρ + PρA
T − PρCTR−1L CPρ + ρQL = 0. (84)

The selection of

QL = I, RL = 1, ρ = 105 (85)

-0.12

-0.11

-0.10

-0.09

-0.08

20151050

t [s]
e
  (

t)
d

  

-2

-1

0

1

2

20151050

t [s]

d(t) d(t)

d
(t

)，
d

 (
t)

∧

∧

(a)

(b)

Fig. 5 Responses of (78) and (79) to initial condition (89)

for d̂(t) and d(t) [(a)], and ed(t) [(b)].

gives

L = [−999.90 1000.00]T. (86)

The above selection results

Ā =


0 1 0 0 1

−1 −0.5 0 0 −1

0 0 0 1000.99 0

0 0 −1 −1000.50 1

0 0 0 −100000 −1

 . (87)

The eigenvalues of (87) are

−886.43, − 115.06, − 0.01, − 0.25± 0.97j. (88)

It is clear that Ā is Hurwitz.

Simulations were carried out for the initial state

x1(0) = 0.1, x2(0) = 0.1. (89)

Fig. 4 (a) shows the simulation results for the plant (78)

and (79), with and without using the NEID compen-

sator. Observing from Fig. 4 (a), the disturbance had a

big effect on the output when the NEID compensator

was not used. The output oscillated at a vibration angu-

lar frequency of 1 rad/s. On the other hand, incorporat-

ing the NEID compensator in the system dramatically

reduced the influence of the disturbance. More specif-

ically, the largest output was reduced by more than

99.5% (from 0.89 to 0.03). Fig. 4 (b) shows simulation

results for the plant without the disturbance and the
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Fig. 6 Responses of (78) and (79) to initial condition (89)
for f(x(t)) and f(x̂(t)) [(a)], and ef (t) [(b)].

plant using the NEID compensator. In Fig. 4 (b), the

output of the system with the NEID compensator is

almost the same as that without the disturbance. This

shows that the nonlinear behavior was recovered to that

without the disturbance using the NEID compensator.

Fig. 5 shows the effect of the NEID compensator

for disturbance estimation. The NEID estimator was

produced with a very high precision [Fig. 5 (a)]. The
largest relative estimation error

|max |d̂(t)| −max |d(t)||
max |d(t)|

× 100% (90)

is 8.8% [Fig. 5 (b)]. Fig. 6 shows the effect of the nonlin-

ear state feedback term for nonlinearity reconstruction.

And the nonlinearity was well reconstructed as shown

in Fig. 6 (a). The largest relative reconstruction error

|max |f(x(t))| −max |f(x̂(t))||
max |f(x(t))|

× 100% (91)

is 0.1% [Fig. 6 (b)]. Those show the effectiveness of the

NEID compensator.

Next, another numerical example is used to compare

with the NDOB method. In this example, the nonlinear

term is chosen to be

f(x(t)) = cosx2(t). (92)

Note that the nonlinear term (92) satisfies the Lipschitz

condition and (4) rather than Assumption 3.

403020100

t [s]

0.6

0.4

0.2

0

-0.2

y
( t

) 

with NDOBwith NEID

0.05

-0.05

0

4035302520

Fig. 7 Outputs of (78) and (92) to initial condition (89) for
y(t).
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20151050
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∧
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0
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D
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e
   

(t
)

D

Fig. 8 Repones of (78) and (92) to initial condition (89) for

d̂(t) and d̂D(t) [(a)], and ed(t) and eD(t) [(b)].

The low-pass filter and the observer gain were cho-

sen to be the same as (81) and (86), respectively, and

the control law was chosen to be

uf (t) = cosx̂2(t) (93)

to design an NEID compensator for (78) and (92).

To design an NDOB for (78) and (92), we assume

that the system state is available. The parameters of

the NDOB were selected to be

p(x(t)) = 30x2(t), l(x(t)) =
[
0 30

]
. (94)

Then, the disturbance estimate is

d̂D(t) = z(t) + 30x2(t) (95)

according to (16b).
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Simulations were carried out for the initial state

(89). This paper uses the steady-state peak-to-peak val-

ue (PPV) to evaluate the disturbance-rejection perfor-

mance and the disturbance-estimation accuracy of the

two methods.

Fig. 7 shows the outputs for (78) and (92) using the

NEID compensator and the NDOB. The steady-state

PPV of the output using the NEID compensator is 0.05

which is about 33.3% of that using the NDOB method

(0.15). This means that the disturbance-rejection per-

formance is better for the NEID approach than for the

NDOB method.

Fig. 8 (a) shows the disturbance estimates calculat-

ed by the NEID estimator [d̂(t)] and the NDOB [d̂D(t)],

and Fig. 8 (b) shows their estimation errors [ed(t) and

eD(t)]. The PPV of ed(t) is 0.03 which is about 42.9% of

that of eD(t) (0.07). This means that the disturbance-

estimation accuracy is higher for the NEID approach

than for the NDOB method.

Furthermore, the above presentation shows that our

method is effective not only for a nonlinear system sat-

isfying Assumption 3 but also for a nonlinear system

satisfying (4).

6 Conclusion

This paper presented a method of compensating for

an unknown exogenous disturbance in a class of non-

linear systems. It has two parts: An equivalent-input-

disturbance (EID) estimator and a nonlinear term. The

nonlinear term is used to reconstruct the actual nonlin-

earities of the system. The combination of the nonlinear

term and the EID estimator ensures that only the ex-

ogenous disturbance is rejected but the nonlinearities of

the system is retained. The configuration of the nonlin-

ear EID (NEID) compensator is simple, and the design

of the NEID-based disturbance-rejection is easy. Unlike

other disturbance-rejection methods for nonlinear sys-

tems, a Lipschitz condition is not necessary to guaran-

tee the convergence of the observation error, which ex-

tends the application range of the NEID compensator.

The upper bounds of disturbance-estimation error and

the degree of nonlinearity retention were presented for

this method.

Since the characteristics of a nonlinear system do

not change after inserting the NEID compensator into

the system, exploring the use of this method by utilizing

this characteristic to control other nonlinear phenom-

ena with disturbances, such as limit cycle, chaos, and

bifurcation, is of great significance and will be carried

out in the future.

This study first considered matched nonlinearities

and exogenous disturbances. However, many practical

control systems contain mismatched nonlinearities and

exogenous disturbances. Thus, extending the NEID ap-

proach to deal with mismatched nonlinearities and ex-

ogenous disturbances is meaningful, and will be carried

out in the future.
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Appendix

Stability of the NEID-based disturbance-rejection sys-

tem for (4) is analyzed below.

The state-space representation of the NEID-based

disturbance-rejection system is

dξ(t)

dt
= Āξ(t) + B̄f(x̂(t)) + B̄bf(x(t)) + B̄dd(t), (A.1)

where

Ā =

A 0 −BCF
0 A− LC BCF
0 −BFB+LC AF +BFCF

,

B̄ =

B0
0

, B̄b =

 B

−B
0

 , B̄d =

 0

−B
0

 .
If Ā is Hurwitz, then, for any positive-definite sym-

metric matrix K, the solution, Pg, of

PgĀ+ ĀTPg = −K (A.2)

is positive definite. Let

Vg(ξ(t)) = ξT(t)Pgξ(t) (A.3)

be a Lyapunov function candidate of (A.1). The deriva-

tive of Vg(ξ(t)) along the trajectories of (A.1) is given

by

dVg(ξ(t))

dt
= −ξT(t)Kξ(t) + Π1 + Π2 + Π3, (A.4)
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where

Π1 = 2ξT(t)PgB̄f(x̂(t)), Π2 = 2ξT(t)PgB̄bf(x(t)),

Π3 = 2ξT(t)PgB̄dd(t).

Since

Π1 ≤
1

θ1
ξT(t)Γ1ξ(t) + θ1f

T(x̂(t))f(x̂(t))

≤ 1

θ1
ξT(t)Γ1ξ(t) + θ1‖f‖2∞

≤ 1

θ1
ξT(t)Γ1ξ(t) + θ1ϕ

2,

(A.5)

Π2 ≤
1

θ2
ξT(t)Γ2ξ(t) + θ2f

T(x(t))f(x(t))

≤ 1

θ2
ξT(t)Γ2ξ(t) + θ2‖f‖2∞

≤ 1

θ2
ξT(t)Γ2ξ(t) + θ2ϕ

2,

(A.6)

and

Π3 ≤
1

θ3
ξT(t)Γ3ξ(t) + θ3d

T(t)d(t)

≤ 1

θ3
ξT(t)Γ3ξ(t) + θ3d

2
M ,

(A.7)

(A.4) becomes

dVg(ξ(t))

dt

≤ −ξT(t)Kξ(t) +
1

θ1
ξT(t)Γ1ξ(t) +

1

θ2
ξT(t)Γ2ξ(t)

+
1

θ3
ξT(t)Γ3ξ(t) + θ1ϕ

2 + θ2ϕ
2 + θ3d

2
M

≤ −[λmin(K)− 1

θ1
λmax(Γ1)− 1

θ2
λmax(Γ2)

− 1

θ3
λmax(Γ3)]‖ξ‖22 + θ1ϕ

2 + θ2ϕ
2 + θ3d

2
M ,

where θ1, θ2, θ3 are positive numbers and

Γ1 = PgB̄B̄
TPg, Γ2 = PgB̄bB̄

T
b Pg, Γ3 = PgB̄dB̄

T
d Pg.

It is easy to check that there exist positive numbers

θ1, θ2, θ3, such that

λmin(K) >
λmax(Γ1)

θ1
+
λmax(Γ2)

θ2
+
λmax(Γ3)

θ3
(A.8)

is true. Thus,

dVg(ξ(t))

dt
< 0,

which means that the NEID-based disturbance-rejection

system is global uniformly boundedness for (4).
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