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Abstract. Recent studies have revealed that Convolutional Neural Net-
works requiring vastly many sum-of-product operations with relatively
small numbers of parameters tend to exhibit great model performances.
Asynchronous Stochastic Gradient Descent provides a possibility of large-
scale distributed computation for training such networks. However, asyn-
chrony introduces stale gradients, which are considered to have negative
effects on training speed. In this work, we propose a method to pre-
dict future parameters during the training to mitigate the drawback of
staleness. We show that the proposed method gives good parameter pre-
diction accuracies that can improve speed of asynchronous training. The
experimental results on ImageNet demonstrates that the proposed asyn-
chronous training method, compared to a synchronous training method,
reduces the training time to reach a certain model accuracy by a factor
of 1.9 with 256 GPUs used in parallel.

1 Introduction

One of the findings in the last few years about Convolutional Neural Network
(CNN) is that models requiring a relatively large number of sum-of-product
Operations Per Parameter (OPP) in the forward step tend to exhibit high accu-
racies in recognition tasks [1–3]. One such example can be seen in the ILSVRC
classification task [4], where GoogLeNet [2], an example of the computation-
ally intensive deep models with about 221 OPP, scored 6.67% top-5 error rate,
whereas AlexNet [5], a parameter-rich model with about 11 OPP, scored 16.4%.

Data-parallel computation in a computing cluster provides possibilities of
significant speed-up in training of computationally intensive models [6–9],by
which we mean models requiring a large amount of computation to produce
gradients with a relatively small number of parameters, like GoogLeNet. In
data-parallelism each processor basically repeats two kinds of processes: 1) the
gradient-computing process reads a small set of training data, which we refer
to as “sub-batch” in this paper, and computes the gradients of the sub-batch



2 I. Sato, R. Fujisaki, Y. Oyama, A. Nomura, and S. Matsuoka

cost; and 2) the parameter-update process updates parameters by adding the
gradients from all or a part of the processors utilizing high-speed interconnect
communication. Data-parallel training of a computationally intensive model is
efficient, compared to that of parameter-rich models, because communication
burden of the former is relatively low.

Two strategies mainly exist in data-parallel neural network training: Syn-
chronous Stochastic Gradient Descent (SSGD) [7, 9] and Asynchronous Stochas-
tic Gradient Descent (ASGD) [6, 8, 10, 11]. In SSGD gradient-computing process
and parameter-update process run one after the other, whereas in ASGD these
two processes run concurrently without waiting the other to be completed. When
compared two strategies under the same computational resources, ASGD gen-
erally enjoys higher parameter-update frequency for computationally intensive
models. This is because ASGD does not suffer from waiting a relatively long
period of gradient computation to complete a parameter update. On the other
hand, an expected cost or error rate drop per parameter update of ASGD is
smaller than that of SSGD in general [8, 10, 11]. In ASGD, gradients are com-
puted based on stale parameters, whose timestamp is older than the current
timestamp. Due to the staleness, the gradient vector computed in ASGD is no
longer parallel to the steepest descent direction at current parameters. One tech-
nical challenge is to develop a mechanism that can predict future parameters,
with which gradients are computed. If this parameter-prediction accuracy can
be made high enough so that the computed gradient vector restores the steepest
descent direction at current parameters to be updated, ASGD acquires nearly
equal expected cost or error rate drop per update as SSGD, and as a conse-
quence, ASGD having a relatively high update frequency outperforms SSGD in
speed of training a computationally intensive CNN.

We propose an algorithm for stale parameter updates in ASGD, named PP-
ASGD (PP stands for “Parameter Predicted”), aiming to improve the cost or
error rate drop per parameter update, compared to a naive ASGD. The contri-
butions of this work are as stated below:

• We propose an ASGD algorithm based on a linear prediction model for pa-
rameter transition, depending on parameter staleness and stale momentum.

• We show an experimental evidence that the proposed method provides good
prediction accuracies of parameter transitions.

• We show experimental evidences that PP-ASGD reduces training time to
reach a certain model accuracy, compared to a naive ASGD with no param-
eter prediction.

• We show an experimental evidence that PP-ASGD reduces training time to
reach a certain model accuracy, compared to SSGD, by a factor of 1.9 for a
computationally intensive CNN trained on ImageNet with 256 GPUs.

2 Proposed Method

In this section we discuss the proposed method that works efficiently in a type
of computing clusters as stated below. Suppose we have a computing cluster, in
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which each compute node contains the same number of GPUs, and any two nodes
can communicate through high-speed interconnect. With such computational
environment use of collective communication known as MPI-Allreduce [12] is a
reasonable choice for parameter update [9, 7]. This routine executes element-wise
sum of vectors (gradients, in our case) from every node and places the resultant
vector (sum of gradients) to every node. The communication period necessary to
run one MPI-Allreduce is typically O(log(#nodes)), and this sublinear behavior
helps to avoid a communication bottleneck because the communication duration
needed for an update grows moderately with respect to the number of nodes.
Previous work mostly uses MPI-Allreduce for SSGD [9, 7]; however, it brings
drawback of low update frequency for computationally intensive models. To over-
come this drawback, we introduce an ASGD algorithm with MPI-Allreduce in
Section 2.1. ASGD generally creates a relatively large staleness value in train-
ing a computationally intensive model. In Section 2.2, we discuss a parameter
prediction model to mitigate this problem.

2.1 ASGD with Collective Communication

In Algorithm 1 we give a data-parallel ASGD algorithm that can yield update
frequencies independent of the amount of computation needed to produce gra-
dients [13]. 1 The parameter-update thread repeats the update process inces-
santly. This decouples the parameter-update process from gradient-computing
process, thus makes the update frequency FU independent of the period of gra-
dient computation. The gradient-computation thread uses a GPU to process
gradient computation repeatedly and incessantly without any synchronization.
Gradient-computation frequency FG depends on the amount of computation
for gradients. For comparison, we give SSGD algorithm with MPI-Allreduce in
Algorithm 4, in which update frequency does depend on the load of gradient
computation.

A computationally intensive model experiences high staleness compared to
a parameter-rich model in ASGD for a given number of nodes. We define time-
average staleness, S ∈ R, as

S = 1 + FU/FG. (1)

1 Mutexes need to be implemented in appropriate places to avoid read/write collisions.

grad 

grad grad 

grad grad grad 

grad 

grad 

grad grad grad grad 

grad grad 

grad 

grad 

grad 

grad grad grad grad grad 

update update update update update update update update update update update update update 

grad 

grad grad 

grad grad grad 

grad 

grad 

grad grad grad grad 

grad grad 

grad 

grad grad grad grad 

update update update update update update 

grad 

grad 

grad 

grad 

grad 

grad 

grad 

grad 

grad 

grad 

grad 

grad grad 

staleness 𝑆 = 3 

staleness 𝑆 = 1 

grad 

grad grad 

grad grad grad 

grad 

grad 

grad grad grad grad 

grad grad 

grad 

grad 

grad 

grad grad grad grad grad 

update update update update update update update update update update update update update 

grad 

grad grad 

grad grad grad 

grad 

grad 

grad grad grad grad 

grad grad 

grad 

grad grad grad grad 

update update update update update update 

grad 

grad 

grad 

grad 

grad 

grad 

grad 

grad 

grad 

grad 

grad 

grad grad 

staleness 𝑆 = 3 

staleness 𝑆 = 1 

(a) computationally intensive model (b) parameter-rich model

Fig. 1. Illustration of the time behavior of 4 grad threads and 1 update thread in
ASGD.
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Algorithm 1: ASGD with MPI-Allreduce

input : w0, /* w0: initial param. */

: µ, λ, /* µ: momentum rate, λ: learning rate */

: tf , G, /* tf: max #updates, G: #GPUs in a node */

: b,X /* b: sub-batch size, X: training dataset */

output : w
1 begin
2 global w, ŵ← w0;D1,D2, · · · ,DG,M← 0 · w0;F← true /* in bold face */

3 thread update(w0, µ, λ, tf , G) /* See Algorithm 2 for update(). */

4 thread grad(1, b,X) /* See Algorithm 3 for grad(). */

5 thread grad(2, b,X) /* thread lines are */

6 · · · /* executed in parallel. */

7 thread grad(G, b,X)
8 wait thread /* waits until all the thread complete */

9 w ← w

Algorithm 2: Function update

1 Function update(w0, µ, λ, tf , G)
2 for t← 0 to tf − 1 do
3 DL ← D1 + D2 + · · ·+ DG

4 D1,D2, · · · ,DG ← 0 · w0

5 DA ← MPI-Allreduce(DL)

6 M← µM− λDA

7 w← w + M
8 ŵ← fbSc(w,M)/* Eq.(2) */

9 F← false /* training done */

Algorithm 3: Function grad

1 Function grad(g, b,X)
2 do
3 for k ← 1 to b do
4 xk ← randpick(X)

/* random sampling */

5 w` ← ŵ /* local copy */

6 Dg ← Dg +
∑

k∇wJ(xk;w`)
/* grad. of cost J() */

7 while F

It is an addition of the count of updates in one gradient computation period and
offset one, which comes from the fact that the consecutive updates run inces-
santly. As illustrated in Fig. 1, ASGD training of a computationally intensive
model acquires a relatively large staleness value because it has a relatively large
FU/FG.

There are mainly two approaches to mitigate problems caused by high stal-
eness: S-reduction and gradient “quality” improvement. The former approach
includes use of small sub-batch size [10], and model-parallelism [5, 6, 14]. The lat-
ter approach includes our momentum-based prediction mechanism as presented
next, and a delay compensation technique based on approximated Hessian [8].

2.2 Linear Prediction Model for Parameter Transition

We discuss the proposed method for predicting future parameters to improve
an expected cost or error rate drop per update in ASGD. The basic idea is
that right after parameters get updated, the method predicts future parame-
ters, with which gradients are computed, so that the computed gradient vector
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Algorithm 4: SSGD with MPI-Allreduce

input : w0, µ, λ, tf , G, b,X /* same input as in Algorithm 1 */

output : w
1 begin
2 global ŵ← w0; D1,D2, · · · ,DG ← 0 · w0;F← false /* in bold face */

3 w ← w0,M ← 0 · w0

4 for t← 0 to tf − 1 do
5 thread grad(1, b,X) /* thread lines are */

6 thread grad(2, b,X) /* executed in parallel. */

7 · · · /* See Algorithm 3 for grad(). */

8 thread grad(G, b,X) /* do-while part executed only once */

9 wait thread /* waits until all the thread complete */

10 DL ← D1 + D2 + · · ·+ DG

11 D1,D2, · · · ,DG ← 0 · w0

12 DA ← MPI-Allreduce(DL)

13 M ← µM − λDA

14 w ← w +M
15 ŵ← w + µM /* NAG */

becomes approximately parallel to the steepest-descent direction at the time of
update. Suppose we have a parameter vector wt ∈ RD (D is the dimension of
the parameter space) at timestamp t, compute the forward and backward steps,
and then use the computed gradients to update wt+S to wt+S+1. Here, S is an
integer-valued staleness, with S = 0 being SSGD and S > 0 being ASGD. The
aim of the proposed method is to design a function that can predict parameter
vector that is (S + 1)-timestamp ahead; i.e., to design fS : RD → RD so that
fS(wt, ·) ' wt+S+1.

The explicit form of the parameter prediction function that we use is

fS (wt,Mt) = wt +Mt

S+1∑
S′=1

µS′
, (2)

The function depends on Mt, (stale) momentum vector at timestamp t, and S,
an integer-valued staleness given by S = bSc, where the time-average staleness
S is assumed to be measured during training. The prediction model is a natural
extension of Nesterov’s Accelerated Gradients (NAG) [15] to stale gradients; i.e.,
when a staleness value is zero (SSGD), the proposed method becomes equivalent
to NAG: f0 (w,M) = w + µM , as in Algorithm 4.

The proposed method is expected to work well in those cases, which the
popular momentum method [16] or its variants, such as NAG, can accelerate
convergence, or in other words, the gradients are quite correlated between ar-
bitrary two consecutive iterations. If the parameter prediction accuracy can be
made very high, PP-ASGD has a huge advantage to speed-up training of a com-
putationally intensive model as PP-ASGD has a higher update frequency than
SSGD.
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Fig. 2. Classification error rate curves of PP-ASGD, ASGD, and SSGD on the CIFAR-
10 validation dataset. Staleness values of PP-ASGD and ASGD are varied: (a) S = 3,
(b) S = 9, and (c) S = 27. Horizontal axes are in logarithmic scale.

3 Evaluation

We conducted image classification experiments to compare training times be-
tween PP-ASGD and ASGD, and between PP-ASGD and SSGD.

We used three datasets for evaluation: 1) ImageNet-1000 [4]2 –the 1000-
class ILSVRC classification dataset; 2) ImageNet-32 –a subset of ImageNet-
1000, consisting of 32 randomly chosen classes by the authors; and 3) CIFAR-
10 [17]3. For ImageNet training, on-line data augmentation technique includ-
ing random scaling, cropping and weak elastic distortion [18] was adopted. For
CIFAR-10 training, no data augmentation is used. We used the minimum sub-
batch size, i.e., b = 1, for all ImageNet training.

We used following computational environments. All ImageNet experiments
were conducted in TSUBAME-KFC/DL supercomputer4. The program of dis-
tributed training is written in C++, CUDA and OpenMPI from scratch. All
CIFAR-10 experiments were conducted in a single node with one GPU with
a program written in MATLAB. To test (PP-)ASGD on CIFAR-10, nonzero
staleness was artificially generated.

We used simple CNN architectures as follows. Convolutional kernels always
have 3× 3 spatial sizes. Non-overlapping maximum-pooling is adapted. Activa-
tion function is given by max(a, 0.01a), similar to ReLU [19]. Cross entropy loss
is used with softmax output. CIFAR-10 CNN has a form of CCPCPCPFFF, where
‘C’ means convolutional, ‘P’ means pooling, and ‘F’ means fully-connected layers.
Description of the numbers of maps and neurons are omitted. In all experiments
the same momentum rate 0.99 is used.

2 See http://image-net.org for details.
3 See https://www.cs.toronto.edu/~kriz/cifar.html for details.
4 Each compute node of TSUBAME-KFC/DL contains 2 Intel Xeon E5-2620 v2 CPUs

and 4 NVIDIA Tesla K80. Since K80 contains 2 GPUs internally, each node has 8
GPUs for total. FDR InfiniBand is equipped for interconnect.
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Fig. 3. Left: classification error rate curves of PP-ASGD and ASGD on the ImageNet-
32 validation dataset. Right: plot of ‖wt+S0+1 − fS (wt)‖2 for S = 0, 1, · · · , 13 with
measured staleness S0 = 7. Each point is an average of 100 measurements right after 1
epoch. CNN architecture: CPCPCCPCCPCCPCCF. We used 32 GPUs to train each model.

3.1 Training Speed: PP-ASGD vs ASGD

CIFAR-10 Figure 2 shows classification error rate curves of PP-ASGD and
ASGD with staleness values S = 3, 9, 27. For S = 3 the error rate of PP-ASGD
at a given point in epoch is lower than or similar to that of ASGD. For S = 9 the
error rates of PP-ASGD in the interval of first 7 epochs is clearly lower than that
of ASGD. The most notable speed-up is observed for S = 27 by roughly 5× to
reach the same error rate 0.3. As for generalization ability, PP-ASGD produces
a much lower error rate than ASGD for S = 27. For the case of S = 3 or
S = 9, though the error rate curve fluctuates time-to-time, the model accuracy
produced by PP-ASGD is by and large equal to that produced by ASGD.

ImageNet-32 The left side of Fig. 3 shows classification error rate curves of PP-
ASGD and ASGD. We used 32 GPUs (4 nodes × 8 GPUs) in each training. The
time-average staleness is about 8.5 for both cases. Note that the computational
time for the parameter prediction part is negligible. It is evident from the left side
of Fig. 3 that PP-ASGD outperforms ASGD in training speed approximately by
a factor of two to reach the same top-5 error rate, say 0.2.

The right side of Fig. 3 shows the parameter prediction error, expressed by
‖wt+S0+1 − fS(wt)‖2, where S0 is the measured staleness and S is swept from
0 to 13. From this experiment ‖wt+S0+1 − fS(wt)‖2 has a minimum at S = S0,
indicating that the coefficient in the stale momentum term of the proposed pre-
diction model is indeed appropriate. The horizontal dashed line indicates discrep-
ancy between the stale parameter vector and the future ((S0 +1)-ahead) param-
eter vector; whereas the red circle indicates discrepancy between the predicted
parameter vector by our method and the future ((S0 +1)-ahead) parameter vec-
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Fig. 4. (a) Classification error rate curves of PP-ASGD and SSGD on the ImageNet-
1000 validation dataset. Numbers in parentheses indicate #GPUs. (b) Relative speeds
to reach 0.6 top-1 validation error rate. Black lines indicate ideal linear speed-up lines.
(c) Time-average batch size B (here, “batch” means a set of sub-batches used for an
update), time-average staleness S, and update frequency FU . All the experiments use
the CNN of the same form, CCPCCPCPCCPCF.

tor. The latter discrepancy (by PP-ASGD) is 42% of the former discrepancy (by
ASGD). It is considered that this improvement results in the training speed-up.

3.2 Training Speed: PP-ASGD vs SSGD

CIFAR-10 Figure 2 also shows classification error rate curves of SSGD, besides
PP-ASGD with staleness values S = 3, 9, 27. SSGD has the largest error rate
drop in the interval of the first few epochs, but PP-ASGD with S = 3(9) reaches
very similar error rates as SSGD after 4(9)-th epoch. As for S = 27 case, PP-
ASGD clearly produces a degraded generalization performance compared with
SSGD.

ImageNet-1000 We conducted large-scale training experiments on ImageNet-
1000 by PP-ASGD and SSGD. In Fig. 4 the leftmost figure shows error rate
curves, and the middle figure shows the relative training speeds to reach 0.6
top-1 error rate. We ran each training a couple of times with different learning
rates, and show the best performing results. The learning rates used for the
results shown in Fig. 4 are ranged from 1e-4 to 8e-4.5 We did not drop learning
rate during training. From the figure it is observed that PP-ASGD consistently
outperforms SSGD in training speed by a factor of 1.8-1.9 when the same number

5 In every case the learning rate is varied from 0 to the target value linearly from
the beginning of the training until the end of the first epoch for stability. After this
period, the learning rate is held fixed at the target value.
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of GPUs are used. It is also observed that PP-ASGD exhibits a near-linear speed-
up behavior with respect to the number of GPUs up to 256-GPU, while SSGD
exhibits a sublinear behavior.

4 Discussion and Conclusion

In this work, we proposed PP-ASGD algorithm that uses a parameter predic-
tion model for asynchronous, data-parallel CNN training. The prediction model
is based on a linear function of a stale momentum vector with a coefficient de-
pending on measured staleness value. Experiments showed that our model has
good parameter prediction accuracies, that result in reduction of training time
to reach a certain model accuracy, compared with a naive ASGD. PP-ASGD
also outperforms SSGD in training speed to reach the same model accuracy by
a factor of 1.9, when a computationally intensive model is trained on ImageNet
using 256 GPUs in parallel.

Lastly, we discuss a possibility of further improvement of gradient quality in
asynchronous settings. Zheng, et al. [8] proposed a delay compensation tech-
nique for asynchronous, distributed deep learning. In their method a compute
thread computes gradients and an approximated Hessian matrix using stale pa-
rameters, and an update thread corrects the stale gradients by the product of
the approximated Hessian and the difference vector between the stale and cur-
rent parameter vectors. Our method differs in that gradients are computed by
predicted parameters by stale momentum and that Hessian computation is not
necessary. Indeed, it is expected that by combining the method of Zheng, et al.
and ours gradient quality can be further improved. In the combined method, a
compute thread computes gradients and approximated Hessian matrix using pre-
dicted parameters, and an update thread corrects the gradients by the product
of the approximated Hessian and the difference vector between the predicted and
current parameter vectors (that is, the parameter-prediction error). Our method
can yield small parameter-prediction error, with which the Hessian correction
term would further improve the gradient quality.
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