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Abstract

Synchronization of nonlinear oscillators is widely observed in the real world.
Recently, experimental studies of synchronization phenomena have entered
the quantum regime with the development of nanotechnology, and the need
for theoretical studies of quantum synchronization is rapidly growing in or-
der to unravel its novel features. In this thesis, we present several theoretical
results using phase dynamics for the analysis of quantum synchronization.
First, we formulate a phase reduction theory for quantum nonlinear oscilla-
tors in the semiclassical regime. Second, we apply the formulation to design
optimal periodic waveforms for quantum entrainment. Third, we go beyond
the semiclassical regime and propose a fully quantum-mechanical definition
of the asymptotic phase for quantum nonlinear oscillators and use it for
analyzing synchronization in the deep quantum regime. Finally, based on
phase dynamics, we apply continuous measurement and feedback control for
enhancement of quantum synchronization. These results help us understand
novel features in quantum synchronization and will pave the way for future
applications of quantum synchronization phenomena in the evolving field of
quantum technologies.
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Chapter 1

Introduction

1.1 Synchronization of classical nonlinear oscilla-
tors

Synchronization of rhythmic dynamical systems, or nonlinear self-sustained
oscillators, is a ubiquitous phenomenon that can be seen in various fields
of science and technology, for example, in electrical oscillations, chemical
oscillations, biological rhythms, and mechanical vibrations [1, 2, 3, 4, 5, 6].

In analyzing the rhythmic dynamics of classical limit-cycle oscillators,
the phase-reduction theory has played a central role [1, 2, 3, 7, 8, 9]. This
theory enables us to quantitatively approximate the dynamics of a non-
linear multi-dimensional limit-cycle oscillator by a simple one-dimensional
phase equation, which has greatly facilitated systematic analysis of univer-
sal properties of limit-cycle oscillators, such as synchronization of oscillators
with external periodic forcing and mutual synchronization between coupled
oscillators. The collective synchronization transition in a system of globally
coupled phase oscillators (the Kuramoto model [2]) is one of the most promi-
nent results predicted by the phase equation; the wobbling of Millennium
footbridge in London caused by synchronization of many pedestrians is a
well-known real-world example [10].

The phase equation has also been used in control and optimization of
nonlinear oscillators [11], for example, minimization of control power for an
oscillator [12, 13], maximization of the phase-locking range of an oscillator
entrained to a periodic forcing [14], maximization of linear stability of an
oscillator entrained to a periodic forcing [15] and of mutual synchronization
between two coupled oscillators [16, 17], maximization of phase coherence
of noisy oscillators [18], phase-selective entrainment of oscillators [19], and
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phase distribution control for a population of oscillators [11].
Moreover, the phase equation has also been helpful for the analysis of

engineering applications of synchronization such as the injection locking [20,
21], ring laser gyroscope [22, 23, 24, 25], Josephson voltage standard [26, 27,
4], phase lock loops in electrical circuits [28, 4], and deep brain stimulation
for the treatment of Parkinson’s disease [29].

1.2 A brief historical perspective

From a historical perspective, synchronization phenomena was first doc-
umented by Christiaan Huygens in the 17th century when there was an
urgent need to invent accurate pendulum clocks for the determination of
longitude in ocean navigation. In his attempt to invent such a clock, he
coincidentally noticed that two clocks hanging on a wall synchronize with
each other as a result of weak interaction through the wall. Several centuries
had passed, with the development of electrical and radio engineering, W. H.
Eccles and J. H. Vincent [30] experimentally studied the synchronization
property of a triode generator that produces a periodically alternating elec-
trical current. This discovery was followed by the theoretical investigation
of the synchronization property of coupled oscillators performed by Edward
Appleton [31] and Balthasar van der Pol [32, 33], who first found the en-
trainment of an oscillator to a weak external signal having a slightly different
frequency and applied it to stabilize the frequency of the triode generators
in radio communication systems. After World War II, with the develop-
ment of computer-based numerical simulation, Arthur Winfree first used
a reduced phase equation for the analysis of biological oscillators in 1967
[34]. Inspired by his work, Yoshiki Kuramoto proposed the well-known Ku-
ramoto model, an analytically solvable model for a population of oscillators
exhibiting collective synchronization, in 1975 [35]. After these historically
significant discoveries, synchronization has been studied in various fields
of science and engineering such as network theory, control theory, physics,
chemistry, biology, and so on [1, 2, 3, 4, 5, 6]. With the recent develop-
ment of nanotechnology in the 21th century, studies on synchronization of
rhythmic dynamical systems have now entered the quantum regimes.

1.3 Quantum synchronization

Experimental realization of synchronization in nonlinear oscillators have re-
cently reached micro and nano scales [36, 37, 38, 39, 40, 41] and the de-
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mand for theoretical studies of synchronization in the quantum regime is
rapidly increasing in order to unravel its novel features. Many research pa-
pers about quantum synchronization have been published in the last several
years [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70], and future potential applications
of quantum synchronization in the fields of quantum methodology, quan-
tum standard, and quantum information have also been discussed in the
literature [46, 62, 63]. In order to systematically analyze quantum synchro-
nization dynamics, analysis using phase dynamics of quantum limit-cycle
oscillators is significantly important.

1.4 Overview of the thesis

In this thesis, we present several theoretical results on the phase-dynamics
approach to the analysis of quantum synchronization.

In Chapter 2, we generalize the conventional phase-reduction theory to
quantum limit-cycle oscillators in the semiclassial regime where the quan-
tum dynamics can be approximately described by a stochastic differential
equation representing a system state in the phase space fluctuating along
a deterministic classical trajectory due to small quantum noise. The de-
veloped semiclassical phase-reduction theory enables us to quantitatively
approximate a quantum oscillator exhibiting stable limit-cycle oscillations
by a simple one-dimensional phase equation, facilitating a systematic anal-
ysis of quantum synchronization in this regime. As a simple example, we
analyze synchronization properties of a typical model of quantum limit-cycle
oscillators, known as the quantum van der Pol oscillator, subjected to a har-
monic driving and squeezing, including the case that the squeezing is strong
and the oscillation is asymmetric. In comparison with the previous studies
that derived a phase equation for quantum oscillator having a symmetric
limit-cycle in the classical limit, the proposed semiclassical phase-reduction
theory provides a systematic analysis tool for quantum synchronization in a
general class of asymmetric limit-cycle oscillators.

In Chapter 3, using the semiclassical phase-reduction theory formulated
in Chapter 2, we consider optimal entrainment of a quantum nonlinear os-
cillator to a periodically modulated weak harmonic drive in the semiclas-
sical regime. We analyze two types of optimization problems, one for the
stability and the other for the phase coherence of the oscillator, and derive
optimal waveforms for the periodic modulation by applying the optimization
methods originally developed for classical nonlinear oscillators to a quantum
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nonlinear oscillator in the semiclassical regime. Using the van der Pol model
with squeezing and Kerr effects, we numerically analyze the performance of
the optimization schemes and discuss their differences.

In Chapter 4, we go beyond the semiclassical regime and introduce an
asymptotic phase, a fundamental quantity characterizing the limit-cycle os-
cillation, of quantum nonlinear oscillators in a fully quantum-mechanical
way. This extends the applicability of the asymptotic phase to the strong
quantum regime and enabling analysis of nontrivial quantum synchroniza-
tion phenomena. We analyze a quantum van der Pol oscillator with Kerr ef-
fect and show that our quantum asymptotic phase yields appropriate results
in the strong quantum regime while reproducing the conventional asymp-
totic phase in the semiclassical regime. We then use the quantum asymp-
totic phase for analyzing the multiple phase locking of the system with a
harmonic drive at several different frequencies, an explicit quantum effect
observed only in the strong quantum regime, and clarify that it can be un-
derstood as synchronization of the system on a torus rather than on a simple
limit cycle.

In Chapter 5, we analyze synchronization of a quantum van der Pol os-
cillator with a harmonic driving signal based on phase dynamics and demon-
strate that performing continuous homodyne measurement and applying a
feedback control can enhance quantum synchronization. We argue that the
phase coherence of the oscillator is increased by the reduction of quantum
fluctuations due to the continuous measurement and that a simple feedback
policy can suppress the measurement-induced fluctuations by adjusting the
frequency detuning between the oscillator and the driving signal. We further
demonstrate that the maximum enhancement of synchronization is achieved
by performing the measurement on the quadrature angle at which the phase
diffusion of the oscillator is maximal and the maximum information about
the phase of the oscillator is extracted.

Finally, Chapter 6 gives the conclusions and the appendices give details
of the calculations.

We note that the mathematical symbols are introduced independently
in each chapter.
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Chapter 2

Semiclassical Phase
Reduction Theory for
Quantum Synchronization

In this chapter, we develop a general theoretical framework of semiclassi-
cal phase reduction for analyzing synchronization of quantum limit-cycle
oscillators. The dynamics of quantum dissipative systems exhibiting limit-
cycle oscillations are reduced to a simple, one-dimensional classical stochas-
tic differential equation approximately describing the phase dynamics of
the system under the semiclassical approximation. The density matrix and
power spectrum of the original quantum system can be approximately re-
constructed from the reduced phase equation. The developed framework
enables us to analyze synchronization dynamics of quantum limit-cycle os-
cillators using the standard methods for classical limit-cycle oscillators in a
quantitative way. As an example, we analyze synchronization of a quantum
van der Pol oscillator under harmonic driving and squeezing, including the
case that the squeezing is strong and the oscillation is asymmetric. The de-
veloped framework provides insights into the relation between quantum and
classical synchronization and will facilitate systematic analysis and control
of quantum nonlinear oscillators.

2.1 Introduction

Spontaneous rhythmic oscillations and synchronization arise in various sci-
ence and technology fields, such as laser oscillations, electronic oscillators,
and spiking neurons [1, 2, 3, 4, 5, 6]. Various nonlinear dissipative systems
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exhibiting rhythmic dynamics can be modeled as limit-cycle oscillators. A
standard theoretical framework for analyzing limit-cycle oscillators in classi-
cal dissipative systems is the phase reduction theory [1, 2, 7, 3, 8, 9]. By using
this framework, we can systematically reduce multi-dimensional nonlinear
dynamical equations describing weakly-perturbed limit-cycle oscillators to a
one-dimensional phase equation that approximately describes the oscillator
dynamics. The simple semi-linear form of the phase equation, characterized
only by the natural frequency and phase sensitivity function (PSF) of the
oscillator, facilitates detailed theoretical analysis of the oscillator dynamics.

The phase reduction theory has been successfully used to analyze univer-
sal properties of limit-cycle oscillators in a systematic way, such as synchro-
nization of oscillators with periodic forcing and mutual synchronization of
coupled oscillators [1, 2, 3, 4, 5, 6]. It has been essential in the understanding
of synchronization phenomena in classical rhythmic systems, for example,
the collective synchronization transition of a population of oscillators and
oscillatory pattern dynamics in spatially extended chemical or biological
systems [1, 2]. Recently, generalizations of the phase reduction theory to
non-conventional physical systems, such as time-delayed oscillators [71, 72],
piecewise-smooth oscillators [73], collectively oscillating networks [74], and
rhythmic spatiotemporal patterns [75, 76], have also been discussed.

Recent progress in experimental studies has revealed that synchroniza-
tion can take place in coupled nonlinear oscillators with intrinsically quantum-
mechanical origins, such as micro and nanomechanical oscillators [36, 37,
38, 39, 40, 41], spin torque oscillators [77], and cooled atomic ensembles
[78, 79]. Moreover, theoretical studies have been performed on the synchro-
nization of nonlinear oscillators which explicitly show quantum signatures
[42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,
63, 64, 65, 66, 67, 68, 69, 70], such as optomechanical oscillators [42, 43, 44],
cooled atomic ensembles [45, 46], trapped ions [47, 48, 49], spins [50, 51],
and superconducting circuits [53]. In particular, a number of studies have
analyzed the quantum van der Pol (vdP) oscillator [47], which is a typical
model of quantum self-sustained oscillators, for example, synchronization of
a quantum vdP oscillator by harmonic driving [54, 44] or squeezing [55],
mutual synchronization of coupled quantum vdP oscillators [48, 56], and
quantum fluctuations around oscillating and locked states of a quantum
vdP oscillator [60, 61].

In addition to its fundamental importance as a novel physical phenomenon
where nonlinear and quantum phenomena have combined effect, quantum
synchronization may also be useful in developing metrological applications,
such as the improvement of the measurement accuracy in the Ramsey spec-
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Figure 2.1: A schematic diagram of the semiclassical phase reduction for
quantum synchronization. A quantum self-sustained oscillator, which has
a stable limit-cycle solution in the classical limit, can be described by an
approximate one-dimensional stochastic differential equation for a phase
variable ϕ that characterizes the system state. The system state can be
approximately reconstructed from the reduced phase equation.

troscopy for atomic clocks [46] and the precise measurement of the resistance
standard with a superconducting device [62]; an application of the limit-cycle
oscillation to analog memory in a quantum optical device [63] has also been
considered.

Considering the importance of phase reduction for analyzing synchro-
nization of classical nonlinear oscillators, we aim to develop a phase re-
duction theory also for quantum nonlinear oscillators. In the analysis of
quantum synchronization, phase-space approaches using the quasiprobabil-
ity distributions of quantum systems are commonly employed. In a pioneer-
ing study, Hamerly and Mabuchi [63] derived a phase equation from the
stochastic differential equation (SDE) describing a truncated Wigner func-
tion of a quantum limit-cycling system in a free-carrier cavity. However, it
is not fully consistent with the classical phase reduction theory, because the
notions of the asymptotic phase and PSF, which are essential in the clas-
sical theory, are not introduced. Consequently, the limit cycle needs to be
approximately symmetric for the analysis of synchronization with periodic
forcing [63]. Similar phenomenological phase equations, where the phase
simply represents the geometric angle of a circular limit cycle, have also
been used in several studies on quantum synchronization [42, 46, 67, 44];
however, a systematic phase reduction theory has not been established so
far.

In this study, we formulate a general framework of the phase reduction
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theory for quantum synchronization under the semiclassical approximation,
where the quantum dynamics can be approximately described by a SDE
representing a system state in the phase space fluctuating along a determin-
istic classical trajectory due to small quantum noise. We derive a linearized
multi-dimensional semiclassical SDE from a general master equation that
describes weakly-perturbed quantum dissipative systems with a single de-
gree of freedom exhibiting stable nonlinear oscillations, and subsequently
reduce it to an approximate one-dimensional classical SDE for the phase
variable of the system (see Fig. 2.1). The derived phase equation has a sim-
ple form, characterized by the natural frequency, PSF, and Hessian matrix
of the limit cycle in the classical limit, and a noise term arising from quan-
tum fluctuations around the limit cycle. The quantum-mechanical density
matrix and power spectrum of the original system can be approximately
reconstructed from the reduced phase equation.

On the basis of the reduced phase equation, synchronization dynamics
of quantum nonlinear oscillators can be analyzed in detail by using stan-
dard techniques for classical nonlinear oscillators [1, 2, 7, 3, 8, 9]. As an
example, we analyze synchronization of a quantum vdP oscillator under
harmonic driving and squeezing. In particular, we consider the case with
strong squeezing, where the oscillation is asymmetric and the analytical
solution is not available. It is shown that, even in such cases, we can numer-
ically calculate the necessary quantities in the classical limit and use them to
analyze the synchronization dynamics of the original quantum system, pro-
vided that the quantum noise and the perturbations given to the oscillator
are sufficiently weak.

The rest of this chapter is organized as follows; In Sec. II, the deriva-
tion of the approximate phase equation for a quantum limit-cycle oscillator
subjected to weak perturbations is given. In Sec. III, we analyze a quantum
vdP oscillator with harmonic driving and squeezing using the derived phase
equation. Section IV gives concluding remarks, and Appendices provide
detailed derivations of the equations and discussions.

2.2 Theory

2.2.1 Stochastic differential equation for phase-space vari-
ables

We consider quantum dissipative systems with a single degree of freedom in-
teracting with linear and nonlinear reservoirs, which has a stable limit-cycle
solution in the classical limit and is driven by weak perturbations. Under the
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assumption that correlation times of the reservoirs are significantly shorter
than the time scale of the main system, a Markovian approximation of the
reservoirs can be employed and the evolution of the system can be described
by a quantum master equation [80, 81],

ρ̇ = −i[H + ϵH̃(t), ρ] +

n∑
m=1

D[Lm]ρ, (2.1)

where ρ is a density matrix representing the system state, H is a system
Hamiltonian, ϵH̃(t) is a time-dependent Hamiltonian representing weak ex-
ternal perturbations applied to the system (0 < ϵ ≪ 1), n is the number
of reservoirs, Lm is the coupling operator between the system and the mth
reservoir (m = 1, . . . , n), D[L]ρ = LρL†−(ρL†L+L†Lρ)/2 denotes the Lind-
blad form, and the reduced Planck constant is set as ℏ = 1. We consider a
physical condition where the effects of the quantum noise and external per-
turbations are sufficiently weak and of the same order, and perturbatively
analyze their effect on the semiclassical dynamics of the system.

First, we transform Eq. (2.1) into a multi-dimensional SDE by intro-
ducing a phase-space quasiprobability distribution, such as the P, Q, or
Wigner representation [80, 81]. We use the P representation, because the
density matrix and spectrum can be reconstructed using a simple and nat-
ural approximation. In the P representation, the density matrix ρ is rep-
resented as ρ =

∫
P (α)|α⟩⟨α|dα, where |α⟩ is a coherent state specified

by a complex value α ∈ C, or equivalently by a two-dimensional complex
vector α = (α, α∗)T ∈ C2×1, P (α) is a quasiprobability distribution of α,
dα = dαdα∗, the integral is taken over the entire space spanned by α, and
* indicates complex conjugate.

The Fokker-Planck equation (FPE) equivalent to Eq. (2.1) can be written
as

∂P (α, t)

∂t
=
[
−

2∑
j=1

∂j{Aj(α) + ϵÃj(α, t)}+
1

2

2∑
j=1

2∑
k=1

∂j∂k{ϵDjk(α)}
]
P (α, t),

(2.2)

whereAj(α) and Ãj(α, t) are the jth components of complex vectorsA(α) =
(A1(α), A∗

1(α))T ∈ C2×1 and Ã(α, t) = (Ã1(α, t), Ã
∗
1(α, t))

T ∈ C2×1 rep-
resenting the system dynamics and perturbations, respectively, ϵDjk(α) is
the (j, k)-th component of the symmetric diffusion matrix ϵD(α) ∈ C2×2

representing quantum fluctuations, and the complex partial derivatives are
defined as ∂1 = ∂/∂α and ∂2 = ∂/∂α∗ (note that A2(α) = A∗

1(α) and
Ã2(α, t) = Ã∗

1(α, t)).
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The drift term A(α) consists of terms arising from the system Hamil-
tonian H and the dissipation {Lm}, ϵÃ(α, t) represents the small terms
arising from the perturbation Hamiltonian ϵH̃(t), and the diffusion matrix
ϵD(α) represents the intensity of the small quantum noise, generally arising
from all terms of H, ϵH̃(t), and {Lm}. These terms can be explicitly calcu-
lated from the master equation in Eq. (2.1) by using the standard calculus
for phase-space representation when H, ϵH̃(t), and {Lm} are given [80, 81].
The external perturbation ϵÃ(α, t) and the diffusion matrix ϵD(α) are as-
sumed to be of the same order, O(ϵ).

By introducing an appropriate complex matrix
√
ϵβ(α) ∈ C2×2 (see Ap-

pendix for the explicit form), the diffusion matrix ϵD(α) can be represented
as ϵD(α) =

√
ϵβ(α)(

√
ϵβ(α))T and the Ito SDE corresponding to Eq. (2.2)

for the phase-space variable α(t) is given by

dα = {A(α) + ϵÃ(α, t)}dt+
√
ϵβ(α)dW , (2.3)

where W (t) = (W1(t),W2(t))
T ∈ R2×1 represents a vector of independent

Wiener processes Wi(t) (i = 1, . . . , 2) satisfying ⟨dWidWj⟩ = δijdt.
It should be noted that diffusion matrix of certain quantum systems in

the P representation becomes negative definite for certain α [80, 81]. For
such systems, we need to employ, for example, the positive P representation
with two additional nonclassical variables in place of the P representation,
as used by Navarrete-Benlloch et al. [60] in the Floquet analysis of quantum
oscillations. In this study, to present the fundamental idea of the semiclassi-
cal phase reduction in its simplest form, we only consider the case for which
the diffusion matrix is always positive semidefinite along the limit cycle and
formulate the phase reduction theory in the two-dimensional phase space of
classical variables.

2.2.2 Derivation of the phase equation

Our aim is to derive an approximate one-dimensional SDE for the phase
variable of the system from the SDE in Eq. (2.3) in the P representation.
To this end, we define a real vector X = (x, p)T = (Re α, Im α)T ∈ R2×1

from the complex vector α. The real-valued expression of Eq. (2.3) for X(t)
is then given by an Ito SDE,

dX = {F (X) + ϵq(X, t)}dt+
√
ϵG(X)dW , (2.4)

where F (X) ∈ R2×1, q(X, t) ∈ R2×1, and G(X) ∈ R2×2 are real-valued
equivalent representations of the system dynamics A(α) ∈ C2×1, perturba-
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tion Ã(α, t) ∈ C2×1, and noise intensity β(α) ∈ C2×2 in Eq. (2.3), respec-
tively.

We assume that the system in the classical limit without perturbation
and quantum noise, Ẋ = F (X), has an exponentially stable limit-cycle
solution X0(t) = (x0(t), p0(t))

T = X0(t + T ) with a natural period T and
frequency ω = 2π/T . In the same way as the phase reduction for classical
limit cycles [1, 2, 7, 3, 8, 9], we can introduce an asymptotic phase function
Φ(X) : B ⊂ R2×1 → [0, 2π) such that ∇Φ(X) · F (X) = ω is satisfied for
all system states X in the basin B of the limit cycle in the classical limit,
where ∇Φ(X) ∈ R2×1 is the gradient of Φ(X). Using this phase function,
we define the phase of a system state X ∈ B as ϕ = Φ(X). It then follows
that ϕ̇ = Φ̇(X) = F (X) ·∇Φ(X) = ω, i.e., ϕ always increases at a constant
frequency ω with the evolution of X. Here, the inner product between
two vectors a = (a0, a2, · · · , aN−1)

T ∈ RN×1 and b = (b0, b2, · · · , bN−1)
T ∈

RN×1 is defined as a · b =
∑N−1

i=0 aibi. In the following formulation, we
represent the system state X on the limit cycle as X0(ϕ) = (x0(ϕ), p0(ϕ))

T

as a function of the phase ϕ rather than the time t. In this representation,
X0(ϕ) is a 2π-periodic function of ϕ, X0(ϕ) = X0(ϕ + 2π). Note that an
identity Φ(X0(ϕ)) = ϕ is satisfied by the definition of Φ(X).

When the noise and perturbations are sufficiently weak and the deviation
of the state X from the limit cycle is small, we can approximate X(t) by
a state X0(ϕ(t)) on the limit cycle as X(t) ≈ X0(ϕ(t)) and derive a SDE
for the phase in the lowest order approximation by using the Ito formula as
(see Appendix for details)

dϕ = {ω + ϵZ(ϕ) · q(ϕ, t) + ϵg(ϕ)} dt+
√
ϵ{G(ϕ)TZ(ϕ)} · dW , (2.5)

where the drift term is correct up to O(ϵ) and the noise intensity is correct
up to O(

√
ϵ).

In the above phase equation, the gradient ∇Φ of Φ(X) at X is ap-
proximately evaluated at X(ϕ) on the limit cycle and is denoted as Z(ϕ) =
∇Φ|X=X0(ϕ) ∈ R2×1. We call this Z(ϕ) the phase sensitivity function (PSF)
of the limit cycle, which characterizes the linear response property of the
oscillator phase to given perturbations [2, 7]. Similarly, the perturbation
and noise intensity can also be evaluated approximately at X = X0(ϕ) on
the limit cycle and they are denoted as q(ϕ, t) = q(X0(ϕ), t) and G(ϕ) =
G(X0(ϕ)), respectively. The additional function g(ϕ) in the drift term in
Eq. (2.5) arises from the change of the variables and is given by

g(ϕ) =
1

2
Tr
{
G(ϕ)TY (ϕ)G(ϕ)

}
, (2.6)
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where Y (ϕ) = ∇T∇Φ|X=X0(ϕ) is a Hessian matrix of the phase function
Φ(X) also evaluated at X = X0(ϕ) on the limit cycle. All these functions
are 2π-periodic, as they are functions of X0(ϕ).

It is well known in the classical phase reduction theory that the PSF can
be obtained as a 2π-periodic solution to the following adjoint equation and
an additional normalization condition [8, 9, 7]:

ω
d

dϕ
Z(ϕ) = −JT (ϕ)Z(ϕ), Z(ϕ) · dX0(ϕ)

dϕ
= 1, (2.7)

respectively, where J(ϕ) = J(X0(ϕ)) ∈ R2×2 is a Jacobian matrix of F (X)
at X = X0(ϕ) on the limit cycle. It is also known that the Hessian matrix
Y (ϕ) on the limit cycle can be calculated as a 2π-periodic solution of an
adjoint-type equation [82, 83] with an appropriate constraint. These equa-
tions for Y (ϕ) are detailed in the Appendix. In the numerical calculations,
Z(ϕ) can easily be obtained by the backward integration of the adjoint equa-
tion with occasional normalization as proposed by Ermentrout [3], and then
the Hessian Y (ϕ) can be obtained by a shooting method [82].

Because of the additional term g(ϕ) in Eq. (2.10), the effective frequency
ω̃ = ⟨dϕ⟩/dt of the oscillator in the absence of the perturbation q(ϕ, t) is
given by

ω̃ = ω +
ϵ

2π

∫ 2π

0
g(ψ′)dψ′, (2.8)

which is slightly different from the natural frequency of the oscillator ω in
the classical limit. Though not used in the present study, we can further
introduce a new phase variable ψ that is only slightly different from ϕ by a
near-identity transform as ϕ = ψ+ ϵn(ψ), where n(ψ) is a 2π-periodic func-
tion with n(0) = 0, and eliminate the additional function g(ϕ) in Eq. (2.5)
by renormalizing it into the frequency term. The new phase ψ then obeys a
simpler SDE of the form

dψ = {ω̃ + ϵZ(ψ) · q(ψ, t)}dt+
√
ϵh(ψ)dW, (2.9)

where h(ψ) =
√∑2

i=1 {G(ψ)TZ(ψ)}2i andW (t) is a one-dimensional Wiener

process. As before, the drift term is correct up toO(ϵ) and the noise intensity
is correct up to O(

√
ϵ). See Appendix for the details. In this study, we use

the original phase equation in Eq. (2.5) for numerical simulations and verify
its validity. We also note here that the phase equation derived in Ref. [63]
does not contain a term with the Hessian matrix, because the order of the
noise intensity is implicitly assumed to be O(ϵ) in [63].
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From the reduced SDE in Eq. (2.5), we can derive a corresponding FPE
describing the probability density function P (ϕ, t) of the phase variable ϕ
as

∂

∂t
P (ϕ, t) = − ∂

∂ϕ
{ω + ϵZ(ϕ) · q(ϕ, t) + ϵg(ϕ)}P (ϕ, t) + ϵ

2

∂2

∂ϕ2
h(ϕ)2P (ϕ, t).

(2.10)

Using this FPE, we can obtain the stationary distribution and transition
probability of the phase variable ϕ and use them to reconstruct the density
matrix and power spectrum.

2.2.3 Reconstruction of the density matrix

From the reduced phase equation, we can approximately reconstruct the
quantum state as follows. Using the phase variable ϕ, the oscillator state in
the classical limit can be approximated as X ≈ X0(ϕ) = (x0(ϕ), p0(ϕ))

T ,
or α ≈ α0(ϕ) = (α0(ϕ), α0(ϕ)

∗)T = (x0(ϕ) + ip(ϕ), x0(ϕ) − ip(ϕ))T in the
original complex representation. Therefore, the quantum state at phase ϕ
is approximately described as |α0(ϕ)⟩ and the density matrix ρ is approx-
imately represented by using the probability density function P (ϕ) of the
phase variable ϕ, obtained from the SDE in Eq. (2.5) or FPE in Eq. (2.10),
as

ρ ≈
∫ 2π

0
dϕP (ϕ) |α0(ϕ)⟩ ⟨α0(ϕ)| , (2.11)

which is simply a mixture of coherent states weighted by the distribution
of the phase on the classical limit cycle. Thus, we can approximately re-
construct the density matrix of the original quantum oscillator from the
classical SDE for the phase variable ϕ, which is characterized by the natural
frequency ω, PSF Z(ϕ), Hessian matrix Y (ϕ), and noise intensity G(ϕ) that
represents quantum fluctuations around the limit cycle.

The derivation of the phase equation in Eq. (2.5) from the original
quantum-mechanical master equation in Eq. (2.1) and reconstruction of the
quantum-mechanical density matrix from the approximate phase equation,
Eq. (2.11), are the main result of the present work. A schematic diagram of
the proposed method is illustrated in Fig. 2.1. The reduced phase equation
is essentially the same as that for the classical limit-cycle oscillator driven
by noise, and synchronization dynamics of the weakly perturbed quantum
nonlinear oscillator in the semiclassical regime can be analyzed on the ba-
sis of the reduced phase equation by using the standard methods for the
classical limit-cycle oscillator.
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2.3 Examples

2.3.1 Quantum van der Pol oscillator with harmonic driving
and squeezing

As an example, we consider a quantum vdP oscillator subjected to harmonic
driving and squeezing. We assume that the harmonic driving is sufficiently
weak and treat it as a perturbation. As for the squeezing, we consider
two cases; (i) the squeezing is sufficiently weak and can also be treated as
a perturbation, and (ii) the squeezing is relatively strong and cannot be
treated as a perturbation.

We denote by ω0, ωd, and ωsq the frequencies of the oscillator, harmonic
driving, and pump beam of squeezing, respectively. We consider the case
where the squeezing is generated by a degenerate parametric amplifier and
assume ωsq = 2ωd [81]. In the rotating coordinate frame of frequency ωd,
the master equation is given by [54, 55]

ρ̇ = −i
[
−∆a†a+ iE(a− a†) + iη(a2e−iθ − a†2eiθ), ρ

]
+ γ1D[a†]ρ+ γ2D[a2]ρ,

(2.12)

where ∆ = ωd − ω0 is the frequency detuning of the harmonic driving from
the oscillator, E is the intensity of the harmonic driving, ηeiθ is the squeezing
parameter and γ1 and γ2 are the decay rates for negative damping and
nonlinear damping, respectively. The harmonic driving is represented by a
constant E, because a coordinate frame rotating with the driving frequency
ωd is used. Note that the Lindblad term with the quadratic annihilation
operator, D[a2], is essentially important in giving rise to the limit-cycle
oscillations.

We assume that γ2 is sufficiently small and of O(ϵ), for which the semi-
classical approximation is valid, and represent γ2 as γ2 = ϵγ1γ2

′ using a
dimensionless parameter γ2

′ of O(1). In this setting, the size of the sta-
ble limit-cycle solution in Eq. (2.12) in the classical limit is O(1/

√
ϵ), while

we have implicitly assumed it to be O(1) in the derivation of Eq. (2.5).
Therefore, we introduce a rescaled annihilation operator a′ and the corre-
sponding classical variable α′ (α′ = (α′, α′∗) in the vector representation)
as a′|α′⟩ =

√
ϵa|

√
ϵα⟩, and represent the parameters as ∆ = γ1∆

′, E =√
ϵγ1E

′, η = δγ1η
′, where ∆′, E′, and η′ are dimensionless parameters of

O(1). By this rescaling, the size of the limit cycle becomes O(1) and the
parameter δ determines the relative intensity of the squeezing.

The real-valued representationX = (x′, p′)T = (Re α′, Im α′)T of Eq. (2.4)
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after rescaling is then obtained as

dX =

(
1
2x

′ −∆′p′ − γ′2x
′(x′2 + p′2)− ϵE′ − 2δη′(x′ cos θ + p′ sin θ)

1
2p

′ +∆′x′ − γ′2p
′(x′2 + p′2) + 2δη′(p′ cos θ − x′ sin θ)

)
dt′

+
√
ϵG(X)dW ′,

(2.13)

where dt′ = γ1dt and dW
′ =

√
γ1dW . The noise intensity matrix is explic-

itly given by

G(X) =

√(1+R′
1)

2 cos
χ′
1
2

√
(1−R′

1)
2 sin

χ′
1
2√

(1+R′
1)

2 sin
χ′
1
2 −

√
(1−R′

1)
2 cos

χ′
1
2

 , (2.14)

with R′
1e
iχ′

1 = −(γ′2(x
′ + ip′)2 + 2δη′eiθ). Further details of the derivation

can be found in the Appendix.

2.3.2 Weak squeezing

First, we consider the case of weak squeezing with δ = ϵ. The rescaled
system and perturbation Hamiltonians are given by

H = −∆′a′†a′, ϵH̃ = ϵ{iE′(a′ − a′†) + iη′(a′2e−iθ − a′†2eiθ)}. (2.15)

For this system, we obtain F (X) = (x′/2 − ∆′p′ − γ′2x
′(x′2 + p′2), p′/2 +

∆′x′ − γ′2p
′(x′2 + p′2))T . The perturbation is represented by q(X, t) =

(−E′ − 2η′(x′ cos θ+ p′ sin θ), 2η′(p′ cos θ− x′ sin θ))T . Note that the vector
field F (X) in this case is simply a normal form of the supercritical Hopf bi-
furcation. A classical nonlinear oscillator described by this F (X) is known
as the Stuart-Landau (SL) oscillator [2] (which is different from the classical
vdP oscillator) and it is analytically solvable.

The stable limit cycle of the SL oscillator is given by

X0(ϕ) =

√
1

2γ′2

(
cosϕ
sinϕ

)
(2.16)

as a function of phase ϕ = ωt, where the frequency is given by ω = ∆′.
The basin B of this limit cycle is the whole (x′, p′)-plane except (0, 0). The
phase function Φ(X) of this limit cycle can be expressed as Φ(x′, p′) =
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tan−1(p′/x′) [7], which gives ϕ̇ = Φ̇(x′, p′) = ω. The PSF Z(ϕ) and Hes-
sian matrix Y (ϕ) can be obtained by calculating the gradients of the phase
function Φ(X) at X = X0(ϕ) on the limit cycle as

Z(ϕ) =
√

2γ′2

(
− sinϕ
cosϕ

)
, Y (ϕ) = 2γ′2

(
sin 2ϕ − cos 2ϕ

− cos 2ϕ − sin 2ϕ

)
. (2.17)

In this case, the additional term g(ϕ) in Eq. (2.5) and therefore the frequency
shift in Eq. (2.8) vanishes, i.e., ω̃ = ω. The O(ϵ

√
ϵ) terms in the noise

intensity G(ϕ) given by Eq. (2.14) are neglected.
From these results, the phase equation in Eq. (2.5) for the quantum vdP

oscillator driven by weak harmonic driving and squeezing is explicitly given
by

dϕ =

{
∆′ +

√
2ϵ
√
γ′2E

′ sinϕ+ 2ϵη′ sin(2ϕ− θ)

}
dt′ +

√
ϵ

√
3γ′2
2
dW ′

(2.18)

in the lowest-order approximation, where dW ′ =
√
γ1dW . Using the prob-

ability density function P (ϕ) of the phase ϕ described by the FPE (2.10)
corresponding to Eq. (2.18), the approximate density matrix, Eq. (2.11), is
explicitly given by

ρ ≈
∫ 2π

0
dϕP (ϕ)

∣∣∣∣√ γ1
2γ2

eiϕ
〉〈√

γ1
2γ2

eiϕ
∣∣∣∣ . (2.19)

2.3.3 Strong squeezing

Next, we consider the case of strong squeezing with δ = 1 and incorpo-
rate it into the system Hamiltonian. The rescaled system and perturbation
Hamiltonians are given by

H = −∆′a′†a′ + iη′(a′2e−iθ − a′†2eiθ), ϵH̃ = ϵiE′(a′ − a′†). (2.20)

We obtain F (X) = (x′/2−∆′p′−γ′2x′(x′2+p′2)−2η′(x′ cos θ+p′ sin θ), p′/2+
∆′x′ − γ′2p

′(x′2 + p′2) + 2η′(p′ cos θ − x′ sin θ))T with extra terms due to
squeezing, characterized by the parameter η′. When ∆′ > 2η′ (i.e., ∆ > 2η),
this vector field F (X) possesses a stable limit-cycle solution X0(t) in the
classical limit. Due to the strong squeezing, this limit cycle is asymmetric
and the angular velocity of the oscillator state is non-uniform. At ∆′ = 2η′,
this limit cycle disappears via a saddle-node bifurcation on invariant circle.
The perturbation is given by q(X, t) = (−E′, 0).
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In this case, the system is not analytically solvable, but we can nu-
merically obtain the limit-cycle solution X0(ϕ) = (x0(ϕ), p0(ϕ))

T , natural
frequency ω, PSF Z(ϕ), and Hessian matrix Y (ϕ), and use them in the
phase equation in Eq. (2.5). The density matrix can be approximately re-
constructed from Eq. (2.11), where α0(ϕ) = x0(ϕ) + ip0(ϕ). In this case,
the frequency shift does not vanish generally and the effective frequency ω̃
is slightly different from ω in the classical limit without noise.

An example of the limit cycle in the classical limit is shown in Fig. 2.3(c),
and the PSF is shown in Fig. 2.3(d) and (e). The effective frequency is
evaluated as ω̃ = 0.7743 at the parameter values given in Fig. 2.3, which is
slightly different from the natural frequency ω = 0.7746 of the system in the
classical limit without noise. From the phase equation, we can obtain the
stationary phase distribution P (ϕ) by solving the corresponding FPE and
reconstruct the density matrix as a mixture of the coherent states on the
limit cycle.

2.3.4 Reconstruction of density matrices

To test the validity of the reduced phase equation, we compare the density
matrix ρsc, which is reconstructed from Eq. (2.11) by using P (ϕ) obtained
from the FPE in Eq. (2.10) associated with the reduced phase equation in
Eq. (2.5), with the true density matrix ρqm, which is obtained by direct
numerical simulation of master equation in Eq. (2.12), in the steady state
of the system. We use the fidelity F = Tr [

√√
ρscρqm

√
ρsc] [84] to quantify

the similarity between ρsc and ρqm. Numerical simulations of the master
equation have been performed by using QuTiP [85, 86] numerical toolbox.

Figure 2.2(a)-(d) show the steady-state Wigner distributions correspond-
ing to ρsc and ρqm under the weak harmonic driving or the squeezing. In
both cases, the distribution is localized along the limit cycle in the classical
limit, where the width of the distribution is determined by the intensity of
the quantum noise. In Fig. 2.2(a) and (b), only the harmonic driving is
given as the perturbation (η = 0), while in Fig. 2.2(c) and (d), only the
squeezing is given as the perturbation (E = 0). It can be seen that the true
density matrix ρqm is accurately approximated by the density matrix ρsc re-
constructed from the phase equation in both cases. The fidelity is F = 0.963
in the former case and F = 0.982 in the latter case.

It is notable that the Wigner distribution is localized around one phase
point on the limit cycle in Fig. 2.2(a) and (b), which indicates that there is
a 1:1 phase locking [4] between the oscillator and the harmonic driving; In
the classical limit, the phase is locked to the point where the deterministic
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part of Eq. (2.18) vanishes, and thus the Wigner distribution takes large
values around such a point. Similarly, the Wigner distribution is localized
around two phase points on the cycle shown in Fig. 2.2(c) and (d), because
the frequency of the squeezing is twice that of the harmonic driving and
1:2 phase locking occurs, as can be expected from the third term in the
deterministic part of Eq. (2.18) representing the effect of the squeezing.
Note that Fig. 2.2 is depicted in the rotating coordinate frame of frequency
ωd and the locked phase rotates with frequency ωd in the original coordinate.

Figure 2.3(a) and (b) show the Wigner distributions in the case of strong
squeezing and weak harmonic driving, where all quantities are calculated
numerically. In this case, the system exhibits a stable limit cycle in the
rotating coordinate frame of frequency ωd, and constant driving is applied
on the the system as in Eq. (2.13). The limit cycle in the classical limit
is shown in Fig. 2.3(c), the x and p components of the PSF obtained from
Eq. (2.7) are shown in Figs. 2.3(d) and (e), the xx, pp, xp components of
the Hessian matrix are shown in Fig. 2.3(f),(g), and (h) (the px component
is equal to the xp component), and the additional term g(ϕ) is shown in
Fig. 2.3(i). The origin of the phase ϕ = 0 is chosen as the intersection of
the limit cycle and the x′ axis with x′ > 0.

It can be seen that the limit cycle in the classical limit is asymmetric due
to the effect of the strong squeezing. The density matrix ρsc can be recon-
structed from the phase distribution P (ϕ) obtained numerically. As shown
in Fig. 2.3(a) and (b), the true density matrix ρqm is well approximated by
ρsc with fidelity F = 0.976. In Fig. 2.3(a) and (b), the Wigner distribution
is concentrated around the stable phase point where the deterministic part
of the phase equation vanishes. Thus, the reduced phase equation well re-
produces the density matrix of the original quantum system also in this case.
Note that the reconstructed density matrix ρsc is slightly more concentrated
than the original density matrix ρqm in Figs. 2.2 and 2.3. This is because
ρsc is approximated as a weighted mixture of coherent states with minimum
uncertainty along the limit cycle.

2.3.5 Reconstruction of spectra and observed frequencies

The power spectrum Sqm of the original quantum system in the steady state
is defined as

Sqm(ω) =

∫ ∞

−∞
dτeiωτRqm(τ),

Rqm(τ) = ⟨a†(τ)a(0)⟩qm − ⟨a†(τ)⟩qm⟨a(0)⟩qm, (2.21)
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Figure 2.2: Results for the quantum van der Pol oscillator under har-
monic driving (a, b) and under weak squeezing (c,d). (a,c): Wigner
distributions of ρsc reconstructed from the reduced phase equation, and
(b,d): Wigner distributions of ρqm obtained by direct numerical simula-
tion of the original master equation. In (a,b), weak harmonic driving
with (∆, γ2, ηe

iθ, E)/γ1 = (0.05, 0.05, 0,
√
0.1) is applied, and in (c,d), weak

squeezing with (∆, γ2, ηe
iθ, E)/γ1 = (0.05, 0.05, 0.025, 0) is applied. The fi-

delities between ρsc and ρqm are F = 0.963 in (a,b) and F = 0.982 in (c,d),
respectively. Note that the figures are drawn using x and p before rescaling.

where Rqm is the autocovariance and ⟨A⟩qm = Tr [Aρqm] represents the
expectation value of an operator A with respect to the steady state density
matrix ρqm obtained from the master equation in Eq. (2.12). From the
reduced phase equation, using the correspondence between the operators
and c-numbers in the P representation, the power spectrum in Eq. (2.21)
under the semiclassical approximation can be reconstructed as

Ssc(ω) =

∫ ∞

−∞
dτeiωτRsc(τ),

Rsc(τ) = ⟨α∗
0(ϕ2(τ))α0(ϕ1(0))⟩sc − ⟨α∗

0(ϕ2(τ))⟩sc⟨α0(ϕ1(0))⟩sc. (2.22)
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Figure 2.3: Results for the quantum van der Pol oscillator under strong
squeezing and weak harmonic driving with parameters (∆, γ2, ηe

iθ, E)/γ1 =
(0.8, 0.05,−0.1i,

√
0.1). (a): Wigner distribution of ρsc reconstructed from

the reduced phase equation. (b): Wigner distribution of ρqm obtained by
direct numerical simulation of the original master equation. (c): Limit cycle
X0(ϕ) = (x0(ϕ), p0(ϕ))

T in the classical limit. (d, e): The x = Re α and
p = Im α components of the PSF Z(ϕ). (f, g, h): The xx, pp, xp component
of the Hessian matrix Y (ϕ). (i): Additional term g(ϕ) arising form the
change of variables. In (a,b), the fidelity between ρsc and ρqm is F = 0.976.

Here, Rsc is the autocovariance reconstructed from the phase equation, the
mean of a 2π-periodic function B(ϕ) is given by ⟨B(ϕ)⟩sc =

∫ 2π
0 dϕB(ϕ)

Psc(ϕ), and the autocorrelation is given by ⟨B(ϕ2(τ))B(ϕ1(0))⟩sc =
∫ 2π
0 dϕ1∫ 2π

0 dϕ2(B(ϕ2(τ))B(ϕ1(0)))P (ϕ2, τ |ϕ1, 0)Psc(ϕ1), where Psc(ϕ) is a steady
phase distribution and P (ϕ2, t2|ϕ1, t1) is a transition probability. Both of
these probability distributions can be calculated from Eq. (2.10). The ob-
served frequency ωqm of the original system and its approximation ωsc by
the phase reduction can be evaluated from the maxima of the spectra as
ωqm,sc = arg max

ω
Sqm,sc(ω), respectively.

First, we consider the cases with weak squeezing. Figure 2.4(a) shows the
two power spectra Sqm and Ssc for the case where only the harmonic driving
is given, and Fig. 2.4(b) shows the spectra for the case with squeezing only.
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Figure 2.4: Power spectra (a-c) and observed frequencies (d-f) obtained by
direct numerical simulations of the master equation (red solid lines) and ob-
tained from the reduced phase equation (blue dotted lines). (a,d): Weak har-
monic driving without squeezing, (γ2, ηe

iθ, E)/γ1 = (0.05, 0,
√
0.1). ∆ = 0.1

in (a). (b,e): Weak squeezing without harmonic driving, (γ2, ηe
iθ, E)/γ1 =

(0.05, 0.025, 0). ∆ = 0.1 in (b). (c,f): Strong squeezing and weak harmonic
driving, (∆, γ2, ηe

iθ, E)/γ1 = (0.8, 0.05,−0.1i,
√
0.1). ∆e = 0.1 in (c). In

(d-f), the black-dotted lines correspond to the unperturbed cases.

In both cases, the true spectrum Sqm can be accurately approximated by
the reconstructed spectrum Ssc. The dependence of the observed frequencies
ωqm,sc on the parameter ∆, where ∆ determines the natural frequency of
the limit cycle in the classical limit, is shown in Fig. 2.4(d) and (e). It can
be confirmed that ωqm is accurately approximated by ωsc in both cases. The
oscillator strictly synchronizes to the external driving when the frequency
of the oscillator vanishes in the classical limit, because the harmonic driving
acts as a constant force in the rotating frame. Here, strict synchronization
is prevented by the quantum noise and the observed frequencies ωqm,sc do
not vanish completely; however, the tendency toward synchronization can
be clearly seen from the decrease in the observed frequency compared to
that of the unperturbed case.
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Next, we consider the case with strong squeezing, where the system
exhibits asymmetric limit cycle in the classical limit when ∆ > 2η. We
cannot analyze synchronization with the harmonic driving as a stationary
problem by using a rotating coordinate frame of frequency ωd, because the
limit cycle is asymmetric and the variation in ∆ does not correspond directly
to the variation in ωd. We thus explicitly apply harmonic driving with
periodic amplitude modulation E cosωet of frequency ωe and measure ωqm
and ωsc as functions of ∆e = ω − ωe for 0 ≤ ∆e ≤ 0.1 (ω − 0.1 ≤ ωe ≤ ω),
where ω = 0.7746.

In this case, we obtain a periodic (cyclo-stationary) solution of period
Te = 2π/ωe instead of a stationary solution. As shown in Fig. 2.5(a), the
quantum-mechanical averages ⟨x⟩ and ⟨p⟩ of the position and momentum
operators x = (a + a†)/2 and p = −i(a − a†)/2 exhibit steady periodic
dynamics after the initial transient. Here, the initial condition is a coherent
state |α0(ϕ = 0)⟩, where α0(ϕ = 0) is a point on the limit cycle with ϕ = 0.
Figure 2.5(b)-(e) show snapshots of the Wigner distributions in the periodic
state, where the system evolves as (b) → (c) → (d) → (e) → (b). The
tendency toward synchronization can be clearly observed from the existence
of the dense region co-rotating with the external forcing.

We denote the quantum and approximated autocovariance functions at
a given time te (0 ≤ te < Te) of the steady state oscillation as Rteqm,sc(τ),
where Rteqm(τ) is calculated by using a density matrix ρqm(te) at time te
and Rtesc(τ) is calculated by using a phase distribution Psc(ϕ, te) at time
te, respectively, in the steadily oscillating state. Then we use the averaged
power spectra S̄qm,sc(ω) =

∫∞
−∞ dτeiωτ

∫ Te
0 dteR

te
qm,sc(τ)/Te to evaluate the

observed frequencies relative to the frequency of the amplitude modulation
as ω̄qm,sc = arg max

ω
S̄qm,sc(ω) − ωe. Figure 2.4(c) and (f) compare the av-

eraged spectra S̄qm,sc(ω) and observed frequencies ω̄qm,sc obtained by direct
numerical simulation of the original master equation and by the approximate
phase equation, respectively. It can be seen that the spectrum and observed
frequency obtained from the original master equation are accurately repro-
duced by those obtained from the approximate phase equation. Thus, by
using the reduced phase equation, we can approximately reconstruct the
spectrum and observed frequency of the original system also in this case.

2.4 Concluding remarks

We have developed a general framework of the phase reduction theory for
quantum limit-cycle oscillators under the semiclassical approximation and
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Figure 2.5: Synchronization of a quantum vdP oscillator subjected to har-
monic driving with periodic amplitude modulation. (a): Evolution of the
averages ⟨x⟩ and ⟨p⟩ from a coherent-state initial condition. (b-e): Snap-
shots of the Wigner distributions in the periodic steady (cyclo-stationary)
state at time t = 89.5 (b), 91.8 (c), 94.1 (d), and 96.4 (e), respectively. The
parameters are given by (∆, γ2, ηe

iθ, E, )/γ1 = (0.8, 0.05,−0.1i,
√
0.1) and

∆e = 0.1.

confirmed its validity by analyzing synchronization dynamics of the quan-
tum vdP model. The proposed framework can approximately characterize
the dynamics of a quantum nonlinear oscillator by using a simple classical
phase equation, which would serve as a starting point for analyzing synchro-
nization of quantum nonlinear oscillators under the semiclassical approxi-
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mation. Although we have only analyzed a single-oscillator problem with
a single degree of freedom in this study, the developed framework can be
directly extended to two or more quantum oscillators with weak coupling by
using standard methods from the classical phase reduction theory. Analysis
of large many-body systems and the study of their collective dynamics are
of particular interest [48, 67, 42, 47, 68].

In this study, we have employed the P-representation for formulating
the semiclassical phase reduction theory; however, other quasiprobability
distributions can also be used for the formulation. Detailed comparisons
of the results between different representations, including the positive-P
representation which is necessary to treat negative-definite diffusion ma-
trices [80], will be discussed in our forthcoming studies. Also, analysis on
the genuine quantum signature of a quantum limit-cycle oscillator, which,
for instance, can be measured by the negativity of Wigner quasiprobability
distributions [61, 57] as observed in the steady state of a quantum vdP os-
cillator with a strong Kerr drive and external drive [57], could be performed
via an extended version of the developed phase reduction theory.

Recently, the phase reduction theory has been applied to control and
optimization of synchronization dynamics in classical nonlinear oscillators
[14, 13, 15, 18, 17, 87]. In classical dissipative systems, the phase reduction
theory has already been used in technical applications of synchronization
such as in the ring laser gyroscope [22, 23, 24, 25], phase-locked loop [28, 4],
and Josephson voltage standard [26, 27, 4]. The quantum version of these
applications, as well as the recent demonstrations [46, 63], could be system-
atically investigated via the semiclassical phase reduction theory developed
in the present study. These subjects will also be discussed in our forthcoming
studies.
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Chapter 3

Semiclassical optimization of
entrainment stability and
phase coherence in weakly
forced quantum limit-cycle
oscillators

In this chapter, optimal entrainment of a quantum nonlinear oscillator to
a periodically modulated weak harmonic drive is studied in the semiclas-
sical regime. By using the semiclassical phase reduction theory recently
developed for quantum nonlinear oscillators [88], two types of optimization
problems, one for the stability and the other for the phase coherence of the
entrained state, are considered. The optimal waveforms of the periodic am-
plitude modulation can be derived by applying the classical optimization
methods to the semiclassical phase equation that approximately describes
the quantum limit-cycle dynamics. Using a quantum van der Pol oscillator
with squeezing and Kerr effects as an example, the performance of opti-
mization is numerically analyzed. It is shown that the optimized waveform
for the entrainment stability yields faster entrainment to the driving signal
than the case with a simple sinusoidal waveform, while that for the phase
coherence yields little improvement from the sinusoidal case. These results
are explained from the properties of the phase sensitivity function.
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3.1 Introduction

Synchronization of rhythmic nonlinear systems are widely observed all over
the real world, including laser oscillations, mechanical vibrations, and calling
frogs [89, 1, 2, 4, 3, 7]. It often plays important functional roles in biological
or artificial systems, such as cardiac resynchronization [90], phase locked
loops in electrical circuits [28], and synchronous power generators [91, 92].

Recently, experimental studies of synchronization have been performed
in micro- and nano-scale nonlinear oscillators [36, 37, 39, 77, 78, 79] and
theoretical studies of synchronization in the quantum regime have predicted
novel features of quantum synchronization [44, 42, 43, 45, 46, 47, 54, 55,
48, 56, 61, 49, 50, 51, 53, 57, 67, 69]. In particular, experimental realization
of quantum synchronization is expected in optomechanical oscillators [39,
42, 43, 44], oscillators consisting of cooled atomic ensembles [78, 79, 45, 46],
and superconducting devices [53]. Once realized, quantum synchronization
may be applicable in quantum metrology, e.g., improvement of the accuracy
of measurements in Ramsey spectroscopy for atomic clocks [46].

Nonlinear oscillators possessing a stable limit cycle can be analyzed by
using the phase reduction theory [2, 4, 7] when the forcing given to the oscil-
lator is sufficiently weak. In the phase reduction theory, multi-dimensional
nonlinear dynamical equations describing a limit-cycle oscillator under weak
forcing are approximately reduced to a simple one-dimensional phase equa-
tion, characterized only by the natural frequency and phase sensitivity func-
tion (PSF) of the oscillator. The reduced phase equation enables us to
systematically analyze universal dynamical properties of limit-cycle oscilla-
tors, such as the entrainment of an oscillator to a weak periodic forcing or
mutual synchronization of weakly coupled oscillators.

The phase reduction theory has also been used in control and optimiza-
tion of nonlinear oscillators [11]. For example, using the reduced phase
equations, minimization of control power for an oscillator [12, 13], max-
imization of the phase-locking range of an oscillator [14], maximization of
linear stability of an oscillator entrained to a periodic forcing [15] and of mu-
tual synchronization between two coupled oscillators [16, 17], maximization
of phase coherence of noisy oscillators [18], and phase-selective entrainment
of oscillators [19] have been studied.

Similar to classical nonlinear oscillators, quantum nonlinear oscillators in
the semiclassical regime can also be analyzed by using the phase equation. In
Ref. [63], Hamerly and Mabuchi derived a phase equation from the stochastic
differential equation (SDE) describing a truncated Wigner function of a
quantum limit-cycle oscillator in a free-carrier cavity. In Ref. [88], we further
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Figure 3.1: A schematic diagram showing optimization of entrainment of
a quantum limit-cycle oscillator subjected to a periodically modulated har-
monic drive. In the semiclassical regime, the oscillator can be described by
a one-dimensional phase equation. Using the reduced phase equation, we
can formulate optimization problems and solve them to derive the optimal
waveforms of the periodic amplitude modulation of the harmonic drive.

developed a phase reduction framework that is applicable to general single-
mode quantum nonlinear oscillators.

In this chapter, using the semiclassical phase reduction theory [88], we
optimize entrainment of a quantum nonlinear oscillator to a weak harmonic
drive with periodic modulation in the semiclassical regime by employing
the optimization methods originally developed for classical oscillators (see
Fig. 3.1 for a schematic diagram). Specifically, we consider two types of
optimization problems, i.e., (i) improving entrainment stability [15] and (ii)
enhancing phase coherence [18] of the oscillator. By using the quantum van
der Pol (vdP) oscillator with squeezing and Kerr effects as an example, we
illustrate the results of optimization by numerical simulations.

We show that, for the vdP oscillator used in the example, the optimal
waveform for the problem (i) leads to larger stability and faster entrain-
ment than the case with the simple sinusoidal waveform, while the optimal
waveform for the problem (ii) provides only tiny enhancement of phase co-
herence from the sinusoidal case. We discuss the difference between the two
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optimization problems from the properties of the PSF.
This chapter is organized as follows. In Sec. II, we derive a semiclassical

phase equation for a weakly perturbed quantum nonlinear oscillator and
derive the optimal waveforms for entrainment. In Sec. III, we illustrate
the results of the two optimization methods by numerical simulations and
discuss their difference. Sec. IV gives discussion and Appendix gives details
of calculations.

3.2 Theory

3.2.1 Master equation

We consider a quantum dissipative system with a single degree of freedom,
which is interacting with linear and nonlinear reservoirs and has a stable
limit-cycle solution in the classical limit. The system is subjected to a
weak harmonic drive with a periodic amplitude modulation of an arbitrary
waveform. Under the Markovian approximation of the reservoirs, the system
obeys a quantum master equation [81, 80]

ρ̇ = −i[H − iϵE(ωet)(a− a†), ρ] +

n∑
m=1

D[Lm]ρ, (3.1)

in the rotating coordinate frame of the harmonic drive, where ρ is a den-
sity matrix representing the system state, H is a system Hamiltonian, a
and a† denote annihilation and creation operators († represents Hermitian
conjugate), respectively, E(ωet) is a 2π-periodic scalar function representing
the periodic amplitude modulation with frequency ωe, ϵ is a tiny parameter
(0 < ϵ≪ 1) characterizing weakness of the harmonic drive, n is the number
of reservoirs, Lm is the coupling operator between the system andmth reser-
voir (m = 1, . . . , n), D[L]ρ = LρL†− (ρL†L+L†Lρ)/2 denotes the Lindblad
form, and the reduced Planck constant is set as ℏ = 1. It is assumed that
the modulation frequency ωe is sufficiently close to the natural frequency ω
of the limit cycle in the classical limit.

Using the P representation [81, 80], a Fokker-Planck equation (FPE)
equivalent to Eq. (3.1) can be derived as

∂P (α,t)
∂t =

[
−
∑2

j=1 ∂j{Aj(α) + ϵE(ωet)}+ 1
2

∑2
j=1

∑2
k=1 ∂j∂k{ϵDjk(α)}

]
P (α, t),

(3.2)

where α = (α, α∗)T ∈ C2×1 is a two-dimensional complex vector with α ∈
C (∗ represents complex conjugate and T represents transpose), P (α) is
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the P distribution of α, Aj(α) is the jth components of a complex vector
A(α) = (A1(α), A∗

1(α))T ∈ C2×1(A2(α) = A∗
1(α)) representing the system

dynamics, ϵDjk(α) is a (j, k)-component of a symmetric diffusion matrix
ϵD(α) ∈ C2×2 representing quantum fluctuations, and the complex partial
derivatives are defined as ∂1 = ∂/∂α and ∂2 = ∂/∂α∗. The drift term
A(α) and the diffusion matrix ϵD(α) can be calculated from the master
equation (3.1) by using the standard operator correspondence for the P -
representation [81, 80]. The weak harmonic drive with a periodic modulation
ϵE(ωet) and the diffusion matrix ϵD(α) are assumed to be of the same order,
O(ϵ).

Introducing a complex matrix
√
ϵβ(α) ∈ C2×2 satisfying ϵD(α) =√

ϵβ(α)(
√
ϵβ(α))T , the Ito SDE corresponding to Eq. (3.2) for the phase-

space variable α(t) is obtained as

dα(t) = {A(α(t)) + ϵE(ωet)(1, 1)
T}dt+

√
ϵβ(α(t))dW (t), (3.3)

where W = (W1,W2)
T ∈ R2×1 is a vector of independent Wiener processes

Wi(i = 1, 2) satisfying E[dWidWj ] = δijdt and the explicit form of β(α) is
given by

β(α) =

 √ (R12(α)+R11(α))
2 eiχ(α)/2 −i

√
(R12(α)−R11(α))

2 eiχ(α)/2√
(R12(α)+R11(α))

2 e−iχ(α)/2 i

√
(R12(α)−R11(α))

2 e−iχ(α)/2

 (3.4)

where R11(α)eiχ(α) = D11(α) and R12(α) = D12(α) [88]. In what follows,
we only consider the case in which the diffusion matrix is always positive
semidefinite along the limit cycle in the classical limit and derive the phase
equation in the two-dimensional phase space of the classical variables [88].

3.2.2 Phase equation and averaging

As discussed in our previous study [88], we can derive an approximate SDE
for the phase variable of the system from the SDE (3.3) in the P represen-
tation. We define a real vector X = (x, p)T = (Re α, Im α)T ∈ R2×1 from
the complex vector α. Then, the real-valued expression of Eq. (3.3) for X
is given by an Ito SDE,

dX(t) = {F (X(t)) + ϵE(ωet)(1, 0)
T}dt+

√
ϵG(X(t))dW (t), (3.5)

where F (X) ∈ R2×1 and G(X) ∈ R2×2 are real-valued representations of
the system dynamics A(α) ∈ C2×1 and noise intensity β(α) ∈ C2×2 of Eq.
(3.3), respectively.
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We assume that the system in the classical limit without perturbation
and quantum noise, i.e., Ẋ = F (X), has an exponentially stable limit-
cycle solution X0(t) = X0(t + T ) with a natural period T and frequency
ω = 2π/T . Following the standard method in the classical phase reduction
theory [1, 2, 4, 3, 7], we can introduce an asymptotic phase function Φ(X) :
R2×1 → [0, 2π) such that ∇Φ(X) · F (X) = ω is satisfied in the basin
of the limit cycle, where ∇Φ(X) ∈ R2×1 is the gradient of Φ(X) [2, 7].
The phase of a system state X is defined as ϕ = Φ(X), which satisfies
ϕ̇ = Φ̇(X) = F (X) ·∇Φ(X) = ω (· represents a scalar product between two
vectors). We represent the system state X on the limit cycle as X0(ϕ) as a
function of the phase ϕ. Note that an identity Φ(X0(ϕ)) = ϕ is satisfied by
the definition of Φ(X).

Since we assume that the quantum noise and perturbations are suffi-
ciently weak and the deviation of the stateX(t) from the limit cycle is small,
at the lowest-order approximation, we can approximate X(t) by X0(ϕ(t))
and derive a Ito SDE for the phase ϕ as

dϕ =
{
ω + ϵZ(ϕ) · E(ωet)(1, 0)

T + ϵg(ϕ)
}
dt+

√
ϵ{G(ϕ)TZ(ϕ)} · dW .

(3.6)

Here, we introduced the PSFZ(ϕ) = ∇Φ|X=X0(ϕ) ∈ R2×1 characterizing lin-
ear response of the oscillator phase to weak perturbations, a noise intensity
matrix G(ϕ) = G(X0(ϕ)), and a function g(ϕ) = 1

2Tr
{
G(ϕ)TY (ϕ)G(ϕ)

}
where Y (ϕ) = ∇T∇Φ|X=X0(ϕ) ∈ R2×2 is a Hessian matrix of the phase
function Φ(X) at X = X0(ϕ) on the limit cycle. The PSF [3] and Hessian
[82] can be numerically obtained as 2π-periodic solutions to adjoint-type
equations with appropriate constraints. See Ref. [88] for details.

To formulate the optimization problem, we further derive an averaged
phase equation from the semiclassical phase equation (3.6). We introduce a
phase difference ψ = ϕ−ωet between the oscillator and periodic modulation,
which is a slow variable obeying

dψ = ϵ {∆e + Zx(ψ + ωet)E(ωet) + g(ψ + ωet)} dt
+
√
ϵ{G(ψ + ωet)

TZ(ψ + ωet)} · dW , (3.7)

where ϵ∆e = ω − ωe and Zx is the x components of the PSF. Following
the standard averaging procedure [2], the small right-hand side of this equa-
tion can be averaged over one-period of oscillation via the corresponding
FPE [88], yielding an averaged phase equation

dψ = ϵ
{
∆̃e + Γ(ψ)

}
dt+

√
ϵD0 · dW (3.8)
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which is correct up to O(ϵ). Here, Γ(ψ) is the phase coupling function
defined as

Γ(ψ) = ⟨Zx(ψ + θ)E(θ)⟩θ , (3.9)

∆̃e = ∆e + ⟨g(θ)⟩θ = ω + ⟨g(θ)⟩θ − ωe = ω̃ − ωe is the effective detuning
of the oscillator frequency from the periodic modulation (ω̃ := ω + ⟨g(θ)⟩θ
is the effective frequency of the oscillator), D0 =

〈
G(θ)TZ(θ)

〉
θ
, and the

one-period average is denoted as ⟨·⟩θ =
1
2π

∫ 2π
0 (·)dθ.

If the deterministic part of Eq. (3.8) has a stable fixed point at ψ∗,
the phase of the oscillator can be locked to the periodic amplitude modu-
lation, namely, the phase difference ψ between the oscillator and periodic
modulation stays around ψ∗ as long as the quantum noise is sufficiently
weak. We consider optimization of the waveform E of the periodic ampli-
tude modulation for (i) improving entrainment stability and (ii) enhancing
phase coherence of the oscillator. For the simplicity of the problem, we as-
sume ∆̃ = 0, that is, the frequency of the periodic amplitude modulation is
identical with the effective frequency of the system, ωe = ω̃.

3.2.3 Improvement of entrainment stability

First, we apply the optimization method of the waveform for stable entrain-
ment, formulated by Zlotnik et al. [15] for classical limit-cycle oscillators,
to the semiclassical phase equation describing a quantum oscillator. The
entrainment stability is characterized by the linear stability of the phase-
locking point ψ∗ in the classical limit without noise, which is given by the
slope −Γ′(ψ∗). The optimization problem is defined as follows:

maximize − Γ
′
(0), s.t.

〈
E2(θ)

〉
θ
= P. (3.10)

Here, we assume that the phase locking to the periodic modulation occurs at
the phase difference ψ∗ = 0 without losing generality by shifting the origin
of the phase.

The solution to this problem maximizes the linear stability −Γ′(0) of the
fixed point ψ∗ = 0 of the deterministic part of Eq. (3.8). Maximization of the
linear stability minimizes the convergence time to the fixed point, resulting
in faster entrainment of the oscillator to the driving signal when the noise is
absent. This problem is solved under the condition that the control power
⟨E2(θ)⟩θ is fixed to P , where P is assumed to be sufficiently small. As
derived in Appendix, the optimal waveform for Eq. (3.10) is explicitly given
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by

E(θ) = −

√
P

⟨Z ′
x(θ)

2⟩θ
Z ′
x(θ), (3.11)

which is proportional to the differential of the x component Zx(θ) of the
PSF.

3.2.4 Enhancement of phase coherence

Next, we apply the optimization method of the waveform for enhance-
ment of phase coherence in the weak noise limit, which was formulated by
Pikovsky [18] for classical noisy limit-cycle oscillators, to the semiclassical
phase equation describing a quantum oscillator. In the weak noise limit, the
phase coherence is characterized by the depth v(ψmax)−v(ψ∗) of the poten-

tial v(ψ) =
∫ ψ{−Γ(θ)}dθ of the deterministic part of Eq. (3.8), where ψmax

and ψ∗ give the maximum and minimum of the potential v(ψ), respectively
(we assume that ψ∗ corresponds to the potential minimum, i.e., we focus on
the most stable fixed point if there are multiple stable fixed points). In this
case, the optimization problem is defined as follows:

maximize

∫ ψmax

ψ∗
{−Γ(ψ)}dψ, s.t.

〈
E2(θ)

〉
θ
= P. (3.12)

The solution to this optimization problem maximizes the depth of the
potential v(ψ) at the phase-locked point, thereby minimizing the escape
rate of noise-induced phase slipping and maximizing the phase coherence
of the oscillator under sufficiently weak noise, as discussed in Ref. [18] for
the classical case. As in the previous problem, this optimization problem is
solved under the condition that the control power

〈
E2(θ)

〉
θ
is fixed to P .

In what follows, we introduce ∆ψ = ψmax − ψ∗ and assume ψ∗ = 0
without loss of generality. Then, the optimal waveform is obtained as (see
Appendix for the derivation)

E(θ) = −
√√√√ P〈

(
∫ θ+∆ψ
θ Zx(θ̄)dθ̄)2

〉
θ

∫ θ+∆ψ

θ
Zx(θ̄)dθ̄, (3.13)

which is proportional to the integral of the x component Zx(ϕ) of the PSF, in
contrast to the previous case in which the optimal waveform is proportional
to the differential of Zx(ϕ).
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3.3 Results

3.3.1 Quantum van der Pol oscillator

As an example, we consider a quantum vdP oscillator with squeezing and
Kerr effects subjected to a periodically modulated harmonic drive. In our
previous study [88], we have analyzed entrainment of a vdP oscillator with
only a squeezing effect to a purely sinusoidal periodic modulation; in this
study, we seek optimal waveforms of the periodic modulation for a vdP
oscillator with both squeezing and Kerr effects. We use QuTiP numerical
toolbox for direct numerical simulations of the master equation [85, 86].

We assume that the harmonic drive is sufficiently weak and treat it as a
perturbation, while the squeezing and Kerr effects are both relatively strong
and cannot be treated as perturbations. The frequencies of the oscillator,
harmonic drive, and pump beam of squeezing are denoted by ω0, ωd, and
ωsq, respectively. We consider the case in which the squeezing is generated
by a degenerate parametric amplifier and we set ωsq = 2ωd.

In the rotating coordinate frame of frequency ωd, the master equation
for the quantum vdP oscillator is given by [88, 57]

ρ̇ = −i[−∆a†a+Ka†2a2 − iE(ωet)(a− a†) + iη(a2e−iθ − a†2eiθ), ρ]

+ γ1D[a†]ρ+ γ2D[a2]ρ, (3.14)

where ∆ = ωd−ω0 is the frequency detuning of the harmonic drive from the
oscillator, K is the Kerr parameter, E(ωet) is the periodic amplitude modu-
lation of the harmonic drive, ηeiθ is the squeezing parameter, γ1 and γ2 are
the decay rates for negative damping and nonlinear damping, respectively.

We assume γ2 to be sufficiently small, for which the semiclassical ap-
proximation is valid, and represent γ2 as γ2 = ϵγ1γ

′
2 with a dimensionless

parameter γ
′
2 of O(1). As discussed in Ref. [88], to rescale the size of the

limit cycle to be O(1), we introduce a rescaled annihilation operator a′, clas-
sical variable α′, and rescaled parameters ∆ = γ1∆

′,K = ϵγ1K
′
, E(ωet) =√

ϵγ1E
′(ωet), η = γ1η

′, where ∆′,K ′, E′, η′ are dimensionless parameters of
O(1). We also rescale the time and frequency of the periodic modulation
as t′ = γ1t and ωe = γ1ω

′
e, respectively. The FPE for the P distribution
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corresponding to Eq. (3.14) is then given by

∂P (α′, t′)

∂t′
=
[
−

2∑
j=1

∂′j{Aj(α′) + ϵE′(ω′
et

′)}

+
1

2

2∑
j=1

2∑
k=1

∂′j∂
′
k{ϵDjk(α

′)}
]
P (α′, t′), (3.15)

where α′ = (α′, α′∗) =
√
ϵ(α, α∗), ∂′1 = ∂/∂α′, ∂′2 = ∂/∂α′∗,

A(α′) =

( (
1
2 + i∆′)α′ − (γ′2 + 2K ′i)α′∗α′2 − 2η′eiθα′∗(
1
2 − i∆′)α′∗ − (γ′2 − 2K ′i)α′α′∗2 − 2η′e−iθα′

)
, (3.16)

and

D(α′) =

(
−((γ′2 + 2K ′i)α′2 + 2η′eiθ) 1

1 −((γ′2 − 2K ′i)α′∗2 + 2η′e−iθ)

)
.

(3.17)

The real-valued vector X = (x′, p′)T = (Re α′, Im α′)T of Eq. (3.5) after
rescaling is

dX =(
1
2x

′ −∆′p′ − (γ′2x
′ − 2K ′p′)(x′2 + p′2) + ϵE′(ω′

et
′)− 2η′(x′ cos θ + p′ sin θ)

1
2p

′ +∆′x′ − (γ′2p
′ + 2K ′x′)(x′2 + p′2) + 2η′(p′ cos θ − x′ sin θ)

)
dt

+
√
ϵG(X)dW ′, (3.18)

where dW ′ =
√
γ1dW and the noise intensity matrix is explicitly given by

G(X) =

√(1+R′
1)

2 cos
χ′
1
2

√
(1−R′

1)
2 sin

χ′
1
2√

(1+R′
1)

2 sin
χ′
1
2 −

√
(1−R′

1)
2 cos

χ′
1
2

 (3.19)

withR′
1e
iχ′

1 = −((γ′2+2K ′i)α′2+2η′eiθ). The deterministic part of Eq. (3.18)
without the harmonic drive (E′ = 0) gives an asymmetric limit cycle when
η′ > 0 and cannot be solved analytically. Hence, we numerically obtain the
limit cycle X0(ϕ) and evaluate the PSF Z(ϕ), Hessian matrix Y (ϕ), and
noise intensity G(ϕ). We then use these quantities to derive the optimal
waveforms.

We consider two parameter sets, which correspond to (i) a limit cy-
cle with asymmetry due to the effect of squeezing, (∆, γ2, ηe

iθ,K)/γ1 =
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(0.575, 0.05, 0.2, 0), and (ii) a limit cycle with asymmetry due to squeezing
and Kerr effects, (∆, γ2, ηe

iθ,K)/γ1 = (0, 0.05, 0.15, 0.03). Note that we use
parameter sets for which the limit cycles in the classical limits are asym-
metric for the evaluation of the optimization methods. This is because the
optimal waveform is given by a trivial sinusoidal function when the limit
cycle is symmetric and the x component of the PSF has a sinusoidal form
(see Appendix). We set the control power as P =

√
0.2 and compare the

results for optimal waveforms with those for the simple sinusoidal waveform.
Figures 3.2 (1a-1c) and (2a-2c) show the limit cycles and PSFs in the

classical limit for the cases (i) and (ii), respectively. The natural and effec-
tive frequencies of the oscillator are (ω, ω̃) = (0.413, 0.407) in the case (i)
and (ω, ω̃) = (0.510, 0.451) in the case (ii), respectively. In the case (i), the
drift coefficient of the phase variable is positive when the oscillator rotates
counterclockwise and the origin of the phase ϕ = 0 is chosen as the inter-
section of the limit cycle and the x′ axis with x′ > 0. In the case (ii), the
drift coefficient of the phase variable is positive when the oscillator rotates
clockwise and the origin of the phase ϕ = 0 is chosen as the intersection of
the limit cycle and the x′ axis with x′ < 0.

3.3.2 Improvement of entrainment stability

To evaluate the performance of the optimal waveform for the entrainment
stability, we use half the square of the Bures distance Fq(ρ1, ρ2) = 1 −
Tr [
√√

ρ2ρ1
√
ρ2] obtained by direct numerical simulations of the master

equation (3.14) and the corresponding classical distance Fc(P1(ψ), P2(ψ)) =

1 −
〈√

P1(ψ)P2(ψ)
〉
ψ

for the probability distributions of the phase vari-

able [93] obtained from the reduced phase equation (3.6). We consider the
distance between the system states at t and t + Te with Te = 2π/ωe (i.e.,
one period later), and use Fq(ρt, ρt+Te) and Fc(Pt(ψ), Pt+Te(ψ)) to mea-
sure the performance, since Fq(ρt, ρt+Te) and Fc(Pt(ψ), Pt+Te(ψ)) converge
to zero when the system converges to a periodic steady (cyclo-stationary)
state with period Te.

To eliminate the dependence on the initial phase θ0 of the input, we
calculate F θ0c,q by using an input signal E(ωet + θ0), average it over 0 ≤
θ0 < 2π to obtain

〈
F θ0c,q

〉
θ0
, and use this as the measure for evaluating the

entrainment of the oscillator. We set the initial state of the density matrix as
the steady state of Eq. (3.14) without the periodically modulated harmonic
drive (E = 0), and the initial state of the corresponding phase distribution
as a uniform distribution P (ψ) = 1/(2π). Figures 3.3(1a-1d) and 3.3(2a-2d)
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Figure 3.2: Limit cycles and phase sensitivity functions of a quantum van
der Pol oscillator with only the squeezing effect (1a, 1b, 1c) and with both
squeezing and Kerr effects (2a, 2b, 2c). (1a,2a): Limit cycle X0(ϕ) in the
classical limit. (1b,2b): x component Zx(ϕ) of the PSF Z(ϕ). (1c,2c): p
component Zp(ϕ) of the PSF Z(ϕ). Note that the figures are drawn using
x and p before rescaling.

show the results for the cases (i) and (ii), respectively, where the optimal
waveforms of E are plotted in Figs. 3.3(1a, 2a), the phase-coupling functions
Γ are plotted in Figs. 3.3(1b, 2b), the classical distances Fc are plotted in
Figs. 3.3(1c, 2c), and the quantum distance Fq are plotted in Figs. 3.3(1d,
2d).

In the case (i), the linear stability of the entrained state is given by
−Γ′

opt(0) = 0.226 in the optimized case, which is higher than −Γ′
sin(0) =

0.208 in the sinusoidal case by a factor Γ′
opt(0)/Γ

′
sin(0) = 1.083. As a
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Figure 3.3: Results of optimization for the entrainment stability in the case
(i) (1a-1d) and case (ii) (2a-2d). Red lines show the results for the op-
timal waveform, and blue lines show the results for the sinusoidal wave-
form. (1a,2a): Optimal waveform E of the periodic amplitude modulation.
(1b,2b): Interaction function Γ. (1c,2c): Classical distance Fc. (1d,2d):
Quantum distance Fq.

result, faster entrainment to the entrained state can be observed in both
Figs. 3.3(1c) and 3.3(1d) in the optimized cases. In the case (ii), the linear
stability is given by −Γ′

opt(0) = 0.503 in the optimized case, which is higher
than −Γ′

sin(0) = 0.371 in the sinusoidal case by a factor Γ′
opt(0)/Γ

′
sin(0) =

1.358. Faster entrainment to the entrained state can also be confirmed from
Figs. 3.3(2c) and 3.3(2d), where both Fc and Fq converge faster in the
optimized cases.

Note that larger improvement factor is attained in the case (ii) than in
the case (i), which results from stronger anharmonicity of the PSF in the
case (ii) than in the case (i). This point will be discussed in Sec. III D.

3.3.3 Enhancement of phase coherence

To evaluate the performance of the optimal waveform for the phase coher-
ence, we use the averaged maximum value of theWigner function

〈
maxWψ

〉
ψ
,

where Wψ is the Wigner distribution of the density matrix ρ at phase ψ
of the periodic steady state obtained by direct numerical simulations of
the master equation (3.14). We also use the averaged maximum value for
the corresponding probability distribution of the phase variable

〈
maxPψ

〉
ψ
,

where Pψ is the probability distribution at phase ψ of the periodic steady
state obtained from the reduced phase equation (3.6).

Figure 3.4(1a) and 3.4(2a) show the optimal waveforms of E, and
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Fig. 3.4(1b) and 3.4(2b) show the potential v of the phase difference. In the
case (i), the maximum value of the potential v is given by vopt(∆ψ) = 0.4172
in the optimized case, which is slightly higher than vsin(∆ψ) = 0.4167
in the sinusoidal case by a factor vopt(∆ψ)/vsin(∆ψ) = 1.001. Accord-
ingly, we obtain a tiny enhancement of phase coherence from the averaged
maximum values of both the Wigner distribution of the quantum system〈
maxWψ

opt

〉
ψ
/
〈
maxWψ

sin

〉
ψ

= 1.0028 and the corresponding probability

distribution of the classical phase variable
〈
maxPψopt

〉
ψ
/
〈
maxPψsin

〉
ψ

=

1.0076, although it is difficult to see the difference from Fig. 3.4(1b) itself.
In the case (ii), the maximum value of the potential v is given by

vopt(∆ψ) = 0.7447 in the optimized case, which is also slightly higher than
vsin(∆ψ) = 0.7411 in the sinusoidal case by vopt(∆ψ)/vsin(∆ψ) = 1.005. We
obtain a tiny enhancement of phase coherence from both the averaged max-

imum values of the Wigner function of the quantum system
〈
maxWψ

opt

〉
ψ

/
〈
maxWψ

sin

〉
ψ
= 1.0063 and the corresponding probability distribution of

the classical phase variable
〈
maxPψopt

〉
ψ
/
〈
maxPψsin

〉
ψ
= 1.0143.

For the vdP oscillator used here, only tiny enhancements in the phase
coherence can be observed in both case (i) and case (ii). This is because
the PSF does not have strong high-harmonic components in both cases (see
Fig. 3.5). It should also be noted that the improvement factor in the case
(ii) is larger than in case (i), which results from stronger anharmonicity of
the PSF in the case (ii) than in the case (i). We discuss these points in
Sec. III D.

3.3.4 Comparison of two optimization problems

In Sec. III B, we could observe that the optimized waveforms yield clearly
faster convergence to the entrained state than the sinusoidal waveform,
indicating improvements in the stability of the entrained state, while in
Sec. III C, we could observe only tiny enhancements in the phase coher-
ence from the sinusoidal case. This difference between the two optimization
problems can be explained from the general expressions for the optimized
waveforms.

The optimal waveform for the entrainment stability is proportional to
the differential of the x component Zx of the PSF as can be seen from
Eq. (3.11), while that for the phase coherence is proportional to the integral
of Zx as in Eq. (3.13). Because the PSF is a 2π-periodic function, Zx can
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be expanded in a Fourier series as

Zx(θ) =

∞∑
n=−∞

Zn exp[inθ], (3.20)

where Zn (n = 0,±1,±2, · · · ) are the Fourier coefficients. The differential
of Zx(θ) can then be expressed as

Z ′
x(θ) =

∞∑
n=−∞

inZn exp[inθ], (3.21)

and the integral of Zx(θ) can be expressed as∫ θ+∆ψ

θ
Zx(θ̄)dθ̄ =

∞∑
n=−∞(n ̸=0)

Zn(exp[in(θ +∆ψ)]− exp[inθ])

in
, (3.22)

where n = 0 is omitted from the sum to avoid vanishing denominator with-
out changing the result. Thus, the deviation of the differential Z ′

x(θ) from

39



the sinusoidal function is larger because the nth Fourier component is mul-

tiplied by n, while the deviation of the integral
∫ θ+∆ψ
θ Zx(ψ)dψ from the

sinusoidal function is smaller because the nth Fourier component is divided
by n. This explains the difference in the performance of the two optimiza-
tion problems, namely, why we observed considerable improvement in the
entrainment stability while only tiny improvement in the phase coherence
from the simple sinusoidal waveform.

From the above expressions, we also find that the deviations of Z ′
x(θ) and∫ θ+∆ψ

θ Zx(θ)dψ from the sinusoidal function are more pronounced when the
PSF possesses stronger high-frequency components. Figures 3.5(1a,1b) and
3.5(2a,2b) show the absolute values of the normalized Fourier components
Z̄n = |Zn|/

∑∞
n=0 |Zn| in the cases (i) and (ii), respectively. It can be seen

that the PSF Z̄n in the case (ii) has larger values of the normalized high-
frequency Fourier components than in the case (i), which leads to the larger
improvement factor by the optimization in the case (ii) than in the case (i).

3.4 Discussion

We considered two types of optimization problems for the entrainment of
a quantum nonlinear oscillator to a harmonic drive with a periodic am-
plitude modulation in the semiclassical regime. We derived the optimal
waveforms of the periodic amplitude modulation by applying the optimiza-
tion methods originally formulated for classical limit-cycle oscillators to the
semiclassical phase equation describing a quantum nonlinear oscillator. Nu-
merical simulations for the quantum vdP oscillator with squeezing and Kerr
effects showed that the optimization of the entrainment stability leads to
visibly faster convergence to the entrained state than the simple sinusoidal
waveform, while the optimization for the phase coherence provides only tiny
enhancement of the phase coherence from the sinusoidal case. These re-
sults were explained from the Fourier-spectral properties of the PSF. The
squeezing and Kerr effects induced asymmetry of the limit-cycle orbit in the
classical limit and yielded PSFs with stronger high-harmonic components,
resulting in larger optimization performance. It was also shown that opti-
mization provides better performance when the PSF of the limit cycle has
stronger high-frequency Fourier components in both problems.

The optimal waveforms for three typical optimization problems, i.e., im-
provement of entrainment stability [15], phase coherence [18], and locking
range [14] (not considered in this study), which have been discussed for clas-
sical nonlinear oscillators in the literature, are proportional to the differential
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∑∞
n=0 |Zn| in the cases (i) (top) and (ii)

(bottom). In case (i) (Z̄0, Z̄1, Z̄2, Z̄3, Z̄4, Z̄5, Z̄6, Z̄7, Z̄8, Z̄9) =
(0, 0.87, 0, 0.12, 0, 0.009, 0, 0.001, 0, 0), and in
case (ii) (Z̄0, Z̄1, Z̄2, Z̄3, Z̄4, Z̄5, Z̄6, Z̄7, Z̄8, Z̄9) =
(0, 0.741, 0, 0.219, 0, 0.034, 0, 0.005, 0, 0.001), respectively.

of the PSF, integral of PSF, and PSF itself, respectively. All these waveforms
yield negative feedback to the phase difference between the oscillator and
the periodic forcing. It is interesting to note that these relations between
the optimal waveforms and PSFs bear some similarity to the proportional-
integral-differential (PID) controller in the feedback control theory; in the
framework of the PID control for linear time invariant systems [94], the dif-
ferential control is often used for improving convergence, the integral control
is used for improving the steady-state property, and the proportional con-
trol is used for improving the stability of the system. Thus, similar to the
PID controller, combined use of the three types of optimization methods
for nonlinear oscillators could yield even better performance for achieving
specific control goals of entrainment.

Though we have considered only the optimization problems for the sta-
bility and phase coherence of the entrained state in the present study, we
would also be able to apply other optimization and control methods devel-

41



oped for classical limit-cycle oscillators, e.g. the phase-selective entrainment
of oscillators [19] and maximization of the linear stability of mutual synchro-
nization between two oscillators [16, 17], to quantum nonlinear oscillators by
using the phase equation for a quantum nonlinear dissipative oscillator un-
der the semiclassical approximation. Such methods of optimal entrainment
could be physically implemented with semiconductor optical cavities [63]
or optomechanical systems consisting of optical cavities and mechanical de-
vices [44] exhibiting limit-cycle behaviors, and useful in future applications
of quantum synchronization phenomena in quantum technologies.
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Chapter 4

Quantum asymptotic phase
reveals signatures of
quantum synchronization

In this chapter, we propose a fully quantum-mechanical definition of the
asymptotic phase for quantum nonlinear oscillators. The asymptotic phase
function of the system is introduced in terms of the eigenoperator of the
adjoint Liouville superoperator associated with the fundamental frequency.
This quantum asymptotic phase yields appropriate phase values of the sys-
tem even in the strong quantum regime, while reproducing the conventional
asymptotic phase in the semiclassical regime. We analyze a quantum van
der Pol oscillator with Kerr effect and show that several dominant eigenop-
erators with different fundamental frequencies exist in the strong quantum
regime. Using the quantum asymptotic phase functions with respective fun-
damental frequencies, we reveal that the multiple phase locking of the system
with a harmonic drive at several different frequencies, an explicit quantum
signature observed only in the strong quantum regime, can be interpreted
as synchronization on a torus rather than a simple limit cycle.

4.1 Introduction

Synchronization of spontaneous rhythmic oscillations are widely observed
in nature [1, 2, 4, 7, 3, 6]. Recently, rapid progress has been made in the
experimental realization of synchronization in micro- and nanoscale devices
[41, 95, 96, 97] and theoretical investigations have been performed to reveal
quantum signatures in synchronization [57, 69, 43, 49, 61, 65, 88, 98, 47,
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54, 55, 45, 50, 48]. In the strong quantum regime where only a small num-
ber of energy states participate in the system dynamics, the discrete nature
of the energy spectrum can give rise to explicit quantum signatures, such
as multiple phase locking at different frequencies [57] and synchronization
blockade [69]. Several measures of the system’s phase values for character-
izing quantum synchronization have also been proposed [57, 43, 49, 61, 65].

In the classical case, rhythmic oscillations are typically modeled by non-
linear dynamical systems possessing a stable limit-cycle solution. In analyz-
ing synchronization properties of such nonlinear oscillators, the asymptotic
phase [1, 2, 4, 7, 3], defined by the oscillator’s vector field and increasing
with a constant frequency in the basin of the limit-cycle attractor, plays a
central role. It provides the basis for phase reduction [1, 2, 4, 7, 3, 6], a
standard method for deriving phase equations of weakly-coupled oscillators
by dimensionality reduction. Derivation of phase equations for quantum
nonlinear oscillators in the semiclassical regime has also been performed,
where the system is described by a stochastic differential equation for the
phase-space state fluctuating along a deterministic classical trajectory due
to small quantum noise [63, 88, 98]. However, this method is not applicable
in the strong quantum regime where such a description is not allowed. In
particular, we cannot define the asymptotic phase of the system by using
the classical deterministic trajectory.

In this study, we propose a fully quantum-mechanical definition of the
asymptotic phase for quantum nonlinear oscillators. Our idea is inspired by
the definition of the asymptotic phase for classical stochastic oscillators in
terms of the eigenfunction of the backward Kolmogorov operator by Thomas
and Lindner [99], which is natural from the Koopman-operator viewpoint
(see Appendix). We introduce asymptotic phase functions in terms of the
eigenoperators of the system’s adjoint Liouville superoperator and show that
they can reveal the structure of multiple phase locking of the quantum van
der Pol oscillator with a harmonic drive at several different frequencies [57],
which is observed only in the strong quantum regime.

4.2 Asymptotic phase for quantum nonlinear os-
cillators

We consider quantum dissipative oscillatory systems with a single degree of
freedom. Assuming that interactions of the system with the reservoirs are
instantaneous and Markovian approximation can be employed, the evolution

44



of the system’s density matrix ρ is described by a quantum Master equation

ρ̇ = Lρ = −i[H, ρ] +
n∑
j=1

D[Cj ]ρ (4.1)

in the Schrödinger picture, where L is a Liouville superoperator representing
the evolution of ρ, H is a system Hamiltonian, Cj is a coupling operator
between the system and jth reservoir (j = 1, . . . , n), D[C]ρ = CρC† −
(ρC†C + C†Cρ)/2 is the Lindblad form († denotes Hermitian conjugate),
and the reduced Planck constant is set as ℏ = 1.

We introduce an inner product ⟨X,Y ⟩tr = Tr (X†Y ) of linear oper-
ators X and Y and define the adjoint superoperator L∗ of L satisfying
⟨L∗X,Y ⟩tr = ⟨X,LY ⟩tr,

L∗X = i[H,X] +
n∑
j=1

D∗[Cj ]X, (4.2)

where D∗[C]X = C†XC − (XC†C + C†CX)/2. This L∗ describes the evo-
lution of an observable F as Ḟ = L∗F in the Heisenberg picture, in which
the density matrix ρ does not vary with time while the expectation value
⟨F ⟩ = Tr(ρF ) = ⟨ρ, F ⟩tr of F with respect to ρ is kept the same as in the
Schrödinger picture (note that ρ and F are self-adjoint).

We assume that the superoperators L has a set of eigensystem (an eigen-
value and right and left eigenoperators) {λk, Uk, Vk} satisfying

LUk = λkUk, L∗Vk = λkVk, ⟨Vk, Ul⟩tr = δkl, (4.3)

for k, l = 0, 1, 2, . . ., where the overline indicates complex conjugate [100].
Among {λk}k≥0, one eigenvalue is always 0, which is associated with the
stationary state ρ0 of the system satisfying Lρ0 = 0, and all other eigenvalues
have negative real parts. We assume that the eigenvalues with the largest
non-vanishing real part (the slowest decay rate) are given by a complex-
conjugate pair, reflecting the system’s oscillatory dynamics, and denote them
as Λ1 and Λ1, where Ω1 = Im Λ1 (with the sign to be determined later)
gives the fundamental frequency 1. There may also exist other complex
eigenvalues with different fundamental frequencies that are dominant in the
sense explained later; we denote such eigenvalues by Λ2,Λ3, . . . and their
imaginary parts by Ωj = Im Λj (j ≥ 2), and call {Λj}j≥1 the principal
eigenvalues.

1One may also choose Ω1 = Im Λ1, which reverses the direction of the asymptotic
phase.
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The density matrix ρ can also be described by a quasiprobability distri-
bution in the phase space [80, 81, 101]. We use the P -representation and
write ρ as

ρ =

∫
p(α)|α⟩⟨α|dα, (4.4)

where |α⟩ is a coherent state specified by a complex value α ∈ C, or equiv-
alently by a complex vector α = (α, α)T ∈ C2, p(α) is a quasiprobability
distribution of α, dα = dαdα, and the integral is taken over C. Defining
the P -representation of an observable F as

f(α) = ⟨α|F |α⟩, (4.5)

where the operator F is in the normal order [80, 81, 101], the expectation
value of F is expressed as ⟨F ⟩ = Tr(ρF ) =

∫
dαp(α)f(α) = ⟨p(α), f(α)⟩α,

where we defined the L2 inner product ⟨g(α), h(α)⟩α =
∫
g(α)h(α)dα of

two functions g(α) and h(α).
The time evolution of p(α) corresponding to Eq. (4.1) obeys a partial

differential equation

∂tp(α) = Lp(α), (4.6)

where the differential operator L satisfies Lρ =
∫
Lp(α)|α⟩⟨α|dα and can

be explicitly calculated from Eq. (4.1) by using the standard calculus for
the phase-space representation [80, 81, 101]. The corresponding evolution
of f(α) in the Heisenberg picture is given by

∂tf(α) = L+f(α), (4.7)

where the differential operator L+ is the adjoint of L with respect to the L2

inner product, i.e., ⟨L+g(α), h(α)⟩α = ⟨g(α), Lh(α)⟩α, satisfying L+f(α) =
⟨α|L∗F |α⟩.

The differential operator L also has a set of eigensystem (an eigenvalue
and right and left eigenfunctions) {λk, uk(α), vk(α)} satisfying

Luk = λkuk, L+vk = λkvk, ⟨vk, ul⟩α = δkl, (4.8)

which has one-to-one correspondence with Eq. (4.3); the eigenvalues {λk}k≥0

are the same as those of L, and the eigenfunctions uk, vk of L are related to
the eigenoperators Uk, Vk of L as

Uk =

∫
uk(α)|α⟩⟨α|dα, vk(α) = ⟨α|Vk|α⟩, (4.9)
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which follow from LUk =
∫
uk(α) {L|α⟩⟨α|} dα =

∫
{Luk(α)} |α⟩⟨α|dα =

λkUk and L+vk = L+⟨α|Vk|α⟩ = ⟨α|L∗Vk|α⟩ = λk⟨α|Vk|α⟩ = λkvk.
Now we introduce the quantum asymptotic phase function Φj (j =

1, 2, . . .) of α as the argument (polar angle) of the P -representation of
the eigenoperator Vj associated with the principal eigenvalue Λj satisfying
L∗Vj = ΛjVj , namely,

Φj(α) = arg vj(α) = arg⟨α|Vj |α⟩. (4.10)

In particular, the phase function Φ1 associated with Λ1 corresponds to the
asymptotic phase in the classical limit (see Appendix). In the classical limit,
Φj (j ≥ 2) is not independent from Φ1 and does not provide additional
information, because Ωj (j ̸= 1) is equal to Ω1. However, as we will see, this
relation breaks down in the strong quantum regime and the phase function
Φj yields independent information of the system from Φ1.

4.3 Quantum van der Pol oscillator with Kerr ef-
fect

As an example, we consider a quantum van der Pol oscillator with Kerr
effect. The master equation is given by [98, 57]

ρ̇ = L0ρ, L0ρ = −i [H, ρ] + γ1D[a†]ρ+ γ2D[a2]ρ, (4.11)

where H = ω0a
†a + Ka†2a2, ω0 is the natural frequency of the oscillator,

K is the Kerr parameter, and γ1 and γ2 are the decay rates for negative
damping and nonlinear damping, respectively.

We first consider the semiclassical regime where γ2 and K are small. In
this case, we can approximate Eq. (4.6) by a Fokker-Planck equation for
p(α) (see Appendix ), whose drift term gives the following deterministic
equation:

α̇ =
(γ1
2

− iω0

)
α− (γ2 + 2Ki)αα2. (4.12)

This equation describes the Stuart-Landau oscillator (Hopf normal form) [2]
and possesses a stable limit cycle

α0(ϕ) = R
(
eiϕ, e−iϕ

)T
, (4.13)

which is represented as a function of the phase ϕ = ΩCt with natural fre-

quency ΩC = −ω0 − Kγ1/γ2 and radius R =
√

γ1
2γ2

. The basin B of this
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limit cycle is the whole complex plane except the origin. Introducing a real
representation (x, p) = (Re α, Im α), the classical asymptotic phase function
ΦC of this deterministic system is expressed as

ΦC(α) = tan−1
(p
x

)
− 2K

γ2
ln

√
x2 + p2

R
+ const., (4.14)

where the constant determines the phase origin [7]. This phase function
satisfies Φ̇C(α) = Ωc for all α in B. In Ref. [88], we used this ΦC for the
phase reduction analysis of quantum synchronization in the semiclassical
regime with weak quantum noise.

Figure 4.1(a) shows the eigenvalues of L0 near the imaginary axis ob-
tained numerically, where the principal eigenvalue Λ1 = −µ1+ iΩ1 is shown
by a red dot (µ1 > 0). Here, we adopt a positive value for Ω1 so that
the resulting phase function Φ1 increases in the counterclockwise direction
from 0 to 2π, i.e., Φ1 satisfies

∮
C ∇Φ1(x) · dx = 2π where x = (x, p) and

C is a circle around 0. The rightmost branch of the eigenvalues, approxi-
mately given by a parabola λ̂n = iΩ1n − µ1n

2 (n = 0,±1,±2, . . .) passing
through Λ1, is isolated from other branches of eigenvalues with faster deca
y rates. Also, the fundamental frequencies of the other branches, defined as
the smallest absolute imaginary part of the eigenvalues, are approximately
equal to Ω1. Thus, it is sufficient to consider only Λ1 and introduce a single
phase function Φ1 in this case.

Figures 4.1(b) and 4.1(c) compare the quantum-mechanical phase func-
tion Φ1 with the corresponding classical phase function ΦC . As the quantum
noise is small, the two phase functions closely resemble each other and their
frequencies Ω1 and ΩC are also close to each other. Indeed, in the limit
of vanishing quantum noise, the eigenfunction v1 of L coincides with the
Koopman eigenfunction of Eq. (4.12) with eigenvalue iΩC and therefore Φ1

reproduces the classical phase function ΦC (see Appendix ). Thus, in the
semiclassical regime, we can use ΦC for analyzing the system [88].

Next, we consider a strong quantum regime with large γ2 and K, where
only a small number of energy states participates in the system dynam-
ics and the semiclassical description is not valid. The eigenvalues of L0

are shown in Fig. 4.1(d). In contrast to Fig. 4.1(a), we can identify sev-
eral branches of eigenvalues near the imaginary axis characterized by the
principal eigenvalues Λ1,Λ2,Λ3, . . . whose fundamental frequencies Ω1 =
Im Λ1,Ω2 = Im Λ2,Ω3 = Im Λ3, . . . are different from each other. It is
discussed in Ref. [57] that |m+ 1⟩⟨m| is an approximate eigenoperator of
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Figure 4.1: Eigenvalues of the Liouville superoperator and the quantum and
classical asymptotic phase functions. (a-c): Semiclassical regime. The pa-
rameters are γ1 = 1 and (ω0, γ2,K)/γ1 = (−1, 0.05, 0.025). (a): Eigenvalues
of L0 near the imaginary axis. The red dot represents the principal eigen-
value Λ1 with the the slowest decay rate. (b): Quantum asymptotic phase
function Φ1 with Ω1 = 0.495. (c): Classical asymptotic phase function ΦC
with ΩC = 0.5. (d-f): Strong quantum regime. The parameters are γ1 = 0.1
and (ω0, γ2,K)/γ1 = (300, 4, 100). (d): Eigenvalues of L0. The red dots rep-
resent the principal eigenvalues Λj (j = 1, 2, 3, 4 from the right) with the
fundamental frequencies in individual branches, and the dotted lines indi-
cate λ̃m (m = 0, 1, 2, 3) in Eq. (4.15). (e): Φ1 with Ω1 = −30. (f): ΦC with
ΩC = −32.5. In (a) and (d), individual branches of eigenvalues are shown
with different colors. In (b), (c), (e) and (f), (x, p) = (2.5, 0) is chosen as
the phase origin. In (c) and (f), the red-thin lines represent limit cycles in
the classical limit given by Eq. (4.13).

L0 with eigenvalue

λ̃m = i[∆− 2mK]− 1

2
{γ1(2m+ 3) + 2γ2m

2} (4.15)

for m = 0, 1, 2, . . .. As shown in Fig. 4.1(d), these eigenvalues correspond
to the principal eigenvalues, i.e., Λj ≈ λ̃j−1 and thus Vj ≈ |j⟩⟨j − 1| (j =
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Figure 4.2: Evolution of the expectation values of a and Vj (j = 1, 2, 3, 4) and
their arguments from a pure coherent state in the strong quantum regime.
The parameters are γ1 = 0.1 and (ω0, γ2,K)/γ1 = (300, 4, 100). (a): ⟨a⟩,
(c,e,g,i): ⟨Vj⟩, (b): arg⟨a⟩, (d,f,h,j): arg⟨Vj⟩.

1, 2, 3, 4). The existence of several different fundamental frequencies sug-
gests that the system behaves like a torus rather than a limit cycle with a
single fundamental frequency and that we need to consider phase functions
Φ2,Φ3, . . . associated with Λ2,Λ3, . . . in addition to Φ1 and Λ1. Here, we
take negative value for each Ωj so that the corresponding Φj increases from
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Figure 4.3: Dependence of the order parameters on the frequency detuning
∆ (divided by K) and driving strength E (divided by γ1). (a): |Sa|. (b-e):
|Sj | (j = 1, 2, 3, 4). The parameters are γ1 = 0.1 and (γ2,K)/γ1 = (4, 100).

0 to 2π in the counterclockwise direction.
Figures 4.1(e) and 4.1(f) show the quantum-mechanical phase function

Φ1 and the corresponding classical phase function ΦC . Because the system
is in the strong quantum regime, ΦC is distinctly different from Φ1 and the
classical frequency ΩC also differs from the true quantum frequency Ω1. The
other asymptotic phase functions Φj (j = 2, 3, 4) are shown in Appendix.
Though these phase functions look similar to each other, they characterize
oscillatory dynamics of the system at different frequencies.

To demonstrate that the quantum asymptotic phase functions yield ap-
propriate phase values even in this strong quantum regime, we consider
free oscillatory relaxation of ρ from a coherent initial state ρ = |α0⟩⟨α0|
with α0 = 1 at t = 0 and measured the evolution of the expectation val-
ues of Vj and their arguments arg⟨Vj⟩ (j = 1, 2, 3, 4), as well as those of
the annihilation operator a for comparison. Note that ⟨Vj⟩ at t can be ex-
pressed as Tr [Vjρ(t)] = ⟨α0|Vj(t)|α0⟩ = ⟨δ(α − α0)vj(α, t)⟩α = vj(α0, t) =

eΛjtvj(α0, 0) with α0 = (α0, α
∗
0), so its argument should give the asymptotic

phase of the system, i.e., arg⟨Vj⟩(t) = Φj(α0) + Ωjt, where we explicitly
denoted the time dependence. It is remarkable that each arg⟨Vj⟩ appro-
priately gives constantly varying phase values with frequency Ωj as shown
in Fig. 4.2, verifying the validity of the quantum asymptotic phase Φj . In
contrast, arg⟨a⟩ does not vary constantly with time.
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(∆, γ2,K,E)/γ1 = (0, 4, 100, 1). (a): Pa. (b-e): Pj (j = 1, 2, 3, 4).

4.4 Revealing multiple phase-locking structure

We now consider quantum synchronization of the oscillator with a harmonic
drive. The master equation in the rotating frame of the frequency ωd of the
harmonic drive is

ρ̇ = (L0 + L1)ρ, (4.16)

where the L0 is now given by Eq. (4.11) with H = −∆a†a+Ka†2a2, L1ρ =
−i
[
iE(a− a†), ρ

]
, ∆ = ωd − ω0 is the frequency detuning of the harmonic

drive from the oscillator, and E is the strength of the harmonic drive [98, 57].
We use the same parameters as in Fig. 4.2(d)-4.2(f) and vary the detuning
parameter ∆ by varying ωd while keeping the natural frequency ω0 fixed.
Lörch et al. [57] showed that this system under strong Kerr effect exhibits
phase locking to the harmonic drive at several detuning frequencies ∆ =
2mK (m = 0, 1, 2, . . .) observed as multiple sharp Arnold tongues, while the
corresponding classical system exhibits only a single broad Arnold tongue.
In Ref. [57], the following order parameter Sa and power spectrum Pa defined
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using the annihilation operator a are used to analyze the system:

Sa = |Sa|eiθa =
⟨a⟩√
⟨a†a⟩

, (4.17)

Pa(ω) =

∫ ∞

−∞
dτeiωτ ⟨a†(τ)a(0)⟩ − ⟨a†(τ)⟩⟨a(0)⟩, (4.18)

where the expectation is taken with respect to the steady-state density ma-
trix obtained from the master equation (4.16). Here, instead of these quan-
tities, we use the order parameters and the power spectra based on the
quantum asymptotic phase, which are defined in terms of the eigenopera-
tors Vj of L0 as

Sj = |Sj |eiθj =
⟨Vj⟩√
⟨V †
j Vj⟩

, (4.19)

Pj(ω) =

∫ ∞

−∞
dτeiωτ

(
⟨V †
j (τ)Vj(0)⟩ − ⟨V †

j (τ)⟩⟨Vj(0)⟩
)
, (4.20)

where V †
j (τ) = eΛjτVj(0) and j = 1, 2, 3, 4. Note that |Sa| and |Sj | quantify

the phase coherence of the system, while θa and θj characterize the averaged
phase of the system relative to the harmonic drive.

Figure 4.3 shows the dependence of the order parameters |Sa| and |Sj |
on the detuning ∆ and strength E of the harmonic drive. In Fig. 4.3(a) for
|Sa|, several Arnold tongues representing phase locking of the oscillator at
different frequencies are observed [57]. Remarkably, these Arnold tongues
are clearly decomposed into individual Arnold tongues around ∆ = 2(j −
1)K in Figs. 4.3(b)-4.3(e) for |Sj | (j = 1, 2, 3, 4). Similarly, Fig. 4.4 shows
the power spectra Pa and Pj . Multiple peaks of Pa in Fig. 4.4(a), which
indicate phase-locking frequencies of the oscillator, are clearly decomposed
into individual peaks around ω = ∆−2(j−1)K in Figs. 4.4(b)-4.4(e) for Pj
(j = 1, 2, 3, 4). The Arnold tongue and power spectrum are sharper when
the decay rate characterized by Re Λj is smaller. Though not shown, we
can also detect even smaller tongues and peaks with j ≥ 5.

The above results reveal that, in the strong quantum regime, the sys-
tem behaves like a torus with several fundamental frequencies and each of
the associated oscillating mode individually exhibits phase locking to the
harmonic drive at the respective frequency [102], resulting in the multiple
Arnold tongues and spectral peaks. The quantum asymptotic phase pro-
posed in this study reveals the structure of such mode-wise dynamics of the
system in the strong quantum regime.
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4.5 Conclusion

We proposed a definition of the asymptotic phase for quantum nonlinear
oscillators in terms of the eigenoperator of the adjoint Liouville superoper-
ator, which is fully quantum-mechanical and valid in the strong quantum
regime. By using the order parameters and power spectra based on the
quantum asymptotic phase, the structure of the multiple phase locking, an
explicit quantum signature in synchronization, was successfully character-
ized. The proposed quantum asymptotic phase will serve as a fundamental
quantity for analyzing quantum effects in synchronization [57, 69] and be
useful for future applications of quantum synchronization in the growing
fields of quantum technologies.
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Chapter 5

Continuous measurement
and feedback control for
enhancement of quantum
synchronization

In this chapter, we analyze synchronization of a quantum van der Pol (vdP)
oscillator with a harmonic driving signal and demonstrate that performing
continuous homodyne measurement on a linear additional bath and apply-
ing a feedback control can enhance quantum synchronization. We argue
that the phase coherence of the oscillator is increased by the reduction of
quantum fluctuations due to the continuous measurement, but also that the
measurement backaction inevitably induces fluctuations around the phase-
locking point. We propose a simple feedback policy that can suppress the
measurement-induced fluctuations by adjusting the frequency detuning be-
tween the oscillator and the driving signal, which leads to enhancement of
quantum synchronization. We further demonstrate that the maximum phase
coherence can be achieved by performing the quantum measurement on the
quadrature angle at which the phase diffusion of the oscillator is the largest
and the maximal information of the oscillator phase is attained.

5.1 Introduction

Studies on synchronization of nonlinear oscillators date back to Huygens’
well-known discovery of mutual synchronization between two pendulum clocks
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in the 17th century. Since then, synchronization phenomena have widely
been analyzed in various fields of science and technology, such as chemical
oscillations, spiking neurons, chorusing crickets, and mechanical vibrations
[1, 2, 4, 7, 6]. Engineering applications of synchronization have also been
developed, such as injection locking [20] and phase lock loops in electrical
circuits [28] and deep brain stimulation for the treatment of Parkinson’s
disease [29].

Recently, experimental studies of synchronizing nonlinear oscillators are
reaching the micrometer and nanometer scales [36, 78, 41] and there has
been increasing attention on the theoretical analysis of quantum synchro-
nization [47, 54, 48, 55, 88, 98, 43, 50, 57]. It has been revealed that quantum
fluctuations generally induce phase diffusion of quantum limit-cycle oscilla-
tors and disturb strict synchronization [47, 54, 48, 55, 88]. To overcome this
drawback of quantum effects in synchronization, for example, Sonar [55] uti-
lized the squeezing effect and demonstrated that entrainment of quantum
van der Pol (vdP) oscillator to the squeezing signal can suppress quantum
fluctuations and consequently enhance quantum synchronization.

In quantum systems, one of the peculiar features is the measurement,
which can change the quantum state of the system depending on its proba-
bilistic outcomes [103, 84]. Specifically, when the output of the field environ-
ment interacting with an open quantum system is continuously monitored
and knowledge about the system is indirectly obtained, the dynamics of the
system under the measurement can be described by a continuous quantum
trajectory, i.e. a conditional stochastic evolution of the system [104, 105].
This continuous measurement framework enables us to investigate novel dy-
namical features of the quantum measurement, such as state preparation
[106, 107], dynamical creation of entanglement [108], and unveiling [109, 110]
and controlling [111] chaotic behavior of quantum systems. It is also notable
that experimental aspects of continuous measurement have been intensively
studied [112, 113].

Recently, several investigations on the continuous measurement per-
formed on quantum limit-cycle oscillators have been carried out, such as
measurement-induced transition between in-phase and anti-phase quantum
synchronization [43], unraveling nonclassicality in optomechanical oscilla-
tors via measurement [114], and improvement of the accuracy of Ramsey
spectroscopy through measurement of synchronized atoms [46]. However, as
far as our knowledge is concerned, the effect of continuous measurement on
the enhancement of quantum synchronization has never been discussed.

In this chapter, we consider synchronization of a quantum vdP oscillator
with a harmonic driving signal and demonstrate that performing continuous
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Figure 5.1: Enhancement of synchronization of a quantum vdP oscillator
with a harmonic driving signal by continuous homodyne measurement and
a feedback control.

homodyne measurement on a linear additional bath and applying a feedback
control can enhance quantum synchronization. We show that quantum fluc-
tuations disturbing the phase coherence can be reduced by the continuous
homodyne measurement, while fluctuations around the phase-locking point
are inevitably induced by the measurement backaction. We propose a simple
feedback policy for suppressing the fluctuations by adjusting the frequency
detuning of the quantum vdP oscillator from the harmonic driving signal.
We further demonstrate that the maximum increase in phase coherence is
achieved by performing the measurement on the quadrature angle at which
the phase diffusion of the oscillator is the largest and the maximum infor-
mation on the phase of the oscillator can be extracted via the measurement.

5.2 Model

We consider a quantum vdP oscillator subjected to a harmonic driving sig-
nal. A schematic diagram of the physical setup is shown in Fig. 5.1. We
introduce an additional bath linearly coupled to the oscillator, perform con-
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tinuous homodyne measurement of the outgoing field from the oscillator to
the bath, and apply a feedback control to adjust the frequency detuning of
the driving signal from the oscillator (Fig.5.1).

We denote by ω0 and ωd the frequencies of the vdP oscillator and the
harmonic driving, respectively. The stochastic master equation of this quan-
tum system in the coordinate frame rotating with the frequency ωd is given
by

dρ =
{
− i
[
−(∆ +∆fb)a

†a+ iE(a− a†), ρ
]

+ γ1D[a†]ρ+ γ2D[a2]ρ

+ γ3D[a]ρ
}
dt+

√
ηγ3H[ae−iθ]ρdW,

dY =
√
ηγ3Tr[(ae

−iθ + a†eiθ)ρ]dt+ dW, (5.1)

with D[L]ρ = LρL† − 1
2(L

†Lρ+ ρL†L),H[L]ρ = Lρ+ ρL† −Tr [(L+L†)ρ]ρ,
where D is the Lindblad form and H[ae−iθ] characterizes the measurement
on the quadrature ae−iθ + a†eiθ. In the equations above, ρ is a density ma-
trix representing the system state, a and a† denote annihilation and creation
operators († represents Hermitian conjugate), respectively, ∆ = ωd − ω0 is
the frequency detuning of the harmonic driving signal from the oscillator,
∆fb is the feedback control to adjust the frequency detuning, E is the inten-
sity of the driving signal, γ1, γ2, and γ3 are the decay rates for the negative
damping, nonlinear damping, and linear damping, respectively, η is the effi-
ciency of the measurement (we set η = 1 for the case with measurement and
η = 0 for the case without measurement), θ specifies the quadrature angle of
the measurement, W represents a Wiener process satisfying E[dW ] = 0 and
E[dW 2] = dt, Y is the output of the measurement result, and the reduced
Planck constant is set as ℏ = 1.

We assume that when the measurement is not performed (η = 0), the
oscillator is synchronized with the driving signal and the Wigner distribu-
tion, a quasiprobability distribution [81], of the steady-state density matrix
ρss of Eq. (5.1) is concentrated around a stable phase-locking point along
the limit-cycle orbit in the classical limit (see Fig. 5.3(a)).

The feedback control ∆fb is chosen as (see Appendix for details)

∆fb = −Kfb(θest − θ0), (5.2)

whereKfb (> 0) represents the feedback gain, θ0 = arctan (Tr [pρss]/Tr [xρss])
represents the locking phase in the absence of the measurement, which is
calculated as the angle of the expectation values of the position opera-
tor x = (a + a†)/2 and the momentum operator p = −i(a − a†)/2 with
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respect to the steady state ρss of Eq. (5.1) without measurement, and
θest = arctan (Tr [pρest]/Tr [xρest]) represents the phase of the system cal-
culated from the instantaneous state ρest of Eq. (5.1) with measurement,
where ρest is estimated from the measurement record. In the next section,
we demonstrate that the above feedback control can actually suppress the
fluctuations of the system state around the phase-locking point.

To evaluate the degree of phase coherence of the quantum vdP oscillator,
we use the absolute value |S1| of the quantity [43, 57]

S1 = |S1|eiϕ1 =
Tr [aρ]√
Tr [a†aρ]

(5.3)

as the order parameter, which is a quantum analog of the order parameter
for a single classical noisy oscillator [2, 4] and takes values in 0 ≤ S1 ≤ 1
with S1 = 1 representing the perfectly phase-coherent state and S1 = 0
when the state is perfectly phase-incoherent.

5.3 Results

In this section, we perform numerical simulations of the model described
in the previous section. We set the parameter values in the weak quan-
tum regime, (∆, γ2, γ3, E)/γ1 = (0.05, 0.05, 0.1,

√
0.1), in order to clarify the

relation between the quantum system and its classical limit [88]. The feed-
back gain is set at Kfb/γ1 = 1 when the feedback control is applied. In
Secs. 5.3.1 and 5.3.2, we set θ = 0 for the quadrature of measurement and,
in Sec. 5.3.3, the effect of varying θ is analyzed. The initial state of the
simulation is always taken as the vacuum state, i.e. ρ = |0⟩⟨0|. We use
QuTiP [85] numerical toolbox for the numerical simulations.

5.3.1 Without a feedback control

We first consider the case without the feedback control, i.e. Kfb = 0. When
the measurement is performed, the system trajectories behave stochastically.
We therefore calculate averaged values over 300 trajectories obtained by
numerical simulations of Eq. (5.1) from the same initial sate (ρ = |0⟩⟨0|)
and use them for comparing the results with the case without measurement.
Note that the system trajectory is deterministic when the measurement is
not performed.

Figures 5.2(a), 5.2(b), 5.2(c), and 5.2(d) show the trajectories of the ab-
solute values of the order parameter |S1| characterizing the degree of phase
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Figure 5.2: Measurement-induced increase in phase coherence without a
feedback control. (a): Order parameter |S1|. (b): Purity P . (c): Expec-
tation values of the position operator ⟨x⟩. (d): Expectation values of the
momentum operator ⟨p⟩. For the case with measurement (η = 1), aver-
aged values of the results calculated from 300 trajectories are shown by the
red lines and 10 out of 300 individual trajectories are shown by gray lines
(the dark one represents a single realization of the trajectory). For the case
without measurement (η = 0), results of a single trajectory is shown by blue
lines.

coherence, the purity P = Tr [ρ2], the expectation value of the position op-
erator ⟨x⟩ = Tr [xρ], and the expectation value of the momentum operator
⟨p⟩ = Tr [pρ], respectively. Note that these expectation values are fluctuat-
ing quantities in the case with measurement.

As seen in Fig. 5.2(a), the average value of the order parameter |S1|
with measurement is larger than the (deterministic) value of |S1| without
measurement, e.g. |S1| = 0.847 with measurement and |S1| = 0.737 with-
out measurement at time t = 250, indicating that the phase coherence is
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Figure 5.3: Wigner distributions of the system without a feedback control.
(a): Wigner distribution of the steady state of Eq. (5.1) without measure-
ment. (b,c,d): Wigner distributions at time t = 250 for 3 different trajecto-
ries of Eq. (5.1) with measurement.

increased on average by the continuous homodyne measurement. We can
also see in Fig. 5.2(b) that the average values of the purity P with measure-
ment are larger than the stationary value of P without measurement, e.g.
P = 0.254 with measurement and P = 0.169 without measurement at time
t = 250 sufficiently after the initial relaxation.

Here, we note that the observed increase in |S1| or P is an average effect;
the values of these quantities for a single trajectory of Eq. (5.1) with mea-
surement strongly fluctuate and can take smaller values than those without
measurement, as shown by the dark-gray lines in Figs. 5.2(a) and 5.2(b). As
we show in Appendix, the increase in the purity implies the reduction in the
phase diffusion of the oscillator.

As a drawback of the increase in phase coherence by the measurement,
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the measurement backaction inevitably induces fluctuations of the system
state around the phase-locking point. This can be clearly seen in Figs. 5.2(c)
and 5.2(d), where 10 trajectories of ⟨x⟩ and ⟨p⟩ obtained by simulating
Eq. (5.1) with measurement (gray lines) exhibit strong fluctuations depend-
ing on the outcomes of the measurement.

The increase in phase coherence can also be observed from the Wigner
distribution. Figure 5.3(a) shows the steady-state Wigner distribution ob-
tained from Eq. (5.1) without measurement (note that ρ converges to a
steady state in this case), and Figs. 5.3(b), 5.3(c), and 5.3(d) show the in-
stantaneous Wigner distributions at time t = 250 of 3 trajectories obtained
by simulating Eq. (5.1) with measurement (ρ behaves stochastically in this
case). Comparing Figs. 5.3(b), 5.3(c), and 5.3(d) with Fig. 5.3(a), we can
observe the increase in phase coherence by the continuous homodyne mea-
surement from the strongly concentrated Wigner distributions. We also
observe that the location of the distribution differs from trajectory to tra-
jectory. These fluctuations of the system state are caused by the backaction
of the measurement.

5.3.2 With a feedback control

In Sec. 5.3.1, we observed that the measurement increases phase coherence
but it induces fluctuations around the phase-locking points at the same time.
Here, we study the effect of the feedback control given by Eq. (5.2), which
is introduced in order to suppress the fluctuations of the system state.

Figures 5.4(a), 5.4(b), 5.4(c), and 5.4(d) show the trajectories of |S1|, P ,
⟨x⟩, and ⟨p⟩, respectively. The feedback control is applied from t = 100. As
we see in Fig. 5.4(a), the averaged order parameter |S1| with measurement
takes larger values than |S1| without measurement, e.g. |S1| = 0.888 with
measurement and |S1| = 0.737 without measurement at time t = 250. We
also see in Fig. 5.2(b) that the averaged values of P with measurement are
larger than the values of P without measurement, e.g. P = 0.274 with
measurement and P = 0.169 without measurement at time t = 250.

The role of the feedback control can be clearly seen in Fig. 5.4(c) and 5.4(d),
where 10 trajectories of ⟨x⟩ and ⟨p⟩ obtained by simulating Eq. (5.1) with
measurement are plotted (gray lines). We see that the fluctuations around
the phase-locking point are suppressed after t = 100 at which the feedback
control is turned on. We note that we used the same sequences of the Wiener
increments in the numerical simulations of Eq. (5.1) as the case without the
feedback control.

The suppression of fluctuations by the feedback control can also be seen
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Figure 5.4: Measurement-induced enhancement of quantum synchronization
with a feedback control. The feedback control is applied from t = 100.
(a): Order parameter |S1|. (b): Purity P . (c): Expectation values of the
position operator ⟨x⟩. (d): Expectation values of the momentum operator
⟨p⟩. For the case with measurement (η = 1), averaged values of the results
calculated from 300 trajectories are shown by the red lines and 10 out of
300 individual trajectories are shown by gray lines (the dark one represents
a single realization of the trajectory). For the case without measurement
(η = 0), results of a single trajectory is shown by blue lines.

from the Wigner distribution of the system. Figure 5.5(a) shows the steady-
state Wigner distribution of Eq. (5.1) without measurement and Figs. 5.5(b),
5.5(c), 5.5(d) show three realizations of the Wigner distributions at t = 250
of Eq. (5.1) with measurement. Comparing Figs. 5.5(b), 5.5(c), and 5.5(d)
with Figs. 5.3(b), 5.3(c), and 5.3(d), we see that the fluctuations around the
phase-locking point are well suppressed by the feedback control.

The above results indicate that the measurement-induced enhancement
of synchronization, namely, larger phase coherence and smaller fluctuations
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Figure 5.5: Wigner distributions of the system with feedback control. (a):
Wigner distribution of the steady state of Eq. (5.1) without measurement.
(b,c,d): Wigner distributions at time t = 250 for 3 different trajectories of
Eq. (5.1) with measurement. The feedback control is performed from time
t = 100.

around the phase-locking point, can be achieved when the feedback control
is introduced.

5.3.3 Dependence on the quadrature of the measurement

We have so far fixed θ, which specifies the quadrature, at 0. We here consider
the effect of varying θ on the phase coherence in the case with the feedback
control.

Figures 5.6(a) and 5.6(b) show the averaged values of |S1| and P at
time t = 250 for 0 ≤ θ ≤ 2π, respectively, which are calculated from 300
trajectories of Eq. (5.1) with measurement. For comparison, we also show
the values of |S1| and P for the steady state of Eq. (5.1) without measure-
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Figure 5.6: Dependence of the phase coherence on the quadrature of the
measurement. (a): Order parameter |S1|. (b): Purity P . The order param-
eter and purity averaged over 300 trajectories with measurement at time
t = 250 (red lines) are compared with those for a single trajectory without
measurement (blue lines). The phase-locking point θ0 is shown by a black-
dotted vertical line, and the points orthogonal to the phase-locking point
θ0 + π/2 are shown by black-solid vertical lines.

ment. The maximum values of |S1| and P are attained at θ = 5.341 and
θ = 2.042, respectively, which are approximately orthogonal to the locking
phase, θ0 = 3.696.

This result can be understood as follows. Because the phase diffusion
of the oscillator is maximized when θ is orthogonal to θ0, performing the
measurement on the quadrature specified by this θ can extract the maximum
information about the phase of the oscillator. As a result, maximal reduction
of quantum fluctuations and enhancement of synchronization are realized.
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5.4 Conclusion

We considered synchronization of a quantum van der Pol oscillator with
a harmonic driving signal. We demonstrated that introducing an addi-
tional bath coupled linearly to the system and performing continuous homo-
dyne measurement of the bath can increase phase coherence of the system.
We also proposed a simple feedback policy for suppressing the fluctuations
of the system state around the phase-locking point by adjusting the fre-
quency detuning of the driving signal from the oscillator, and achieved the
measurement-induced enhancement of synchronization. We further showed
that the maximum enhancement of synchronization is achieved when we
perform measurement on the quadrature angle at which the phase diffusion
of the oscillator is maximal and the maximum information about the phase
of the oscillator is extracted. In this study, we only considered the case that
the system is in the weak quantum regime, and investigation in the strong
quantum regime will be our future subject. The quantum measurement, an
essential feature in quantum systems, can be helpful for resolving the issue
of quantum fluctuations that disturbs strict quantum synchronization. It
can thus play an essentially important role for the realization and future
applications of quantum synchronization in the growing fields of quantum
technologies.
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Chapter 6

Conclusions

6.1 Summary

In this thesis, we presented the several theoretical results using phase dy-
namics for the analysis of quantum synchronization. Brief summaries of the
results in each chapter are as follows.

In Chapter 2, we developed a general framework of the phase reduction
theory for quantum limit-cycle oscillators under the semiclassical approx-
imation, enabling a systematic analysis of quantum synchronization in a
general class of asymmetric limit-cycle oscillators.

In Chapter 3, using the semiclassical phase-reduction theory formulated
in the previous chapter, we considered optimal entrainment of a quantum
nonlinear oscillator to a periodically modulated weak harmonic drive in the
semiclassical regime. We analyzed two types of optimization problems, one
for the stability and the other for the phase coherence of the oscillator, and
discussed the performance of the optimization schemes and their differences.

In Chapter 4, we proposed a fully quantum-mechanical definition of the
asymptotic phase for quantum nonlinear oscillators and used it to reveal the
torus-like behavior of the nontrivial multiple phase locking of the oscillator
in the strong quantum regime.

In Chapter 5, we applied continuous measurement and feedback control
for enhancement of quantum synchronization and showed that the quantum
measurement can be helpful for resolving the issue of quantum fluctuations
that generally disturbs strict quantum synchronization.
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6.2 Outlook

The study on phase dynamics approach to the analysis of quantum synchro-
nization is in its early stage. In what follows, we introduce several future
directions of the works presented in the thesis.

First, it is challenging to formulate a fully-quantum mechanical phase-
reduction theory for quantum nonlinear oscillators. By using the quantum-
mechanical definition of the asymptotic phase introduced in Chapter 4, We
would be able to derive an approximated one-dimensional equation for the
asymptotic phase variable describing quantum synchronization dynamics
beyond the semiclassical regime.

Second, it is interesting to apply other optimization and control methods
developed for classical limit-cycle oscillators to quantum limit-cycle oscilla-
tors by using the reduced semiclassical phase equation. For example, using
the phase distribution control of a population of classical oscillators [11], we
would be able to obtain desired phase distribution of a quantum limit-cycle
oscillator.

Third, analysis of quantum synchronization in spin triplet systems using
the asymptotic phase variable would provide new insight into the novel fea-
tures of synchronization in quantum spin systems. This direction of research
is very important since such small spin systems are suitable for investigation
of synchronization in quantum many-body systems [50] and for experimental
realization of quantum synchronization [115].

Lastly, it is interesting to investigate the effect of quantum measurement
back-action on the two dissipatively coupled quantum limit-cycle oscillators.
Continuous measurement and feedback control could also enhance the phase
coherence between the two oscillators.

Quantum synchronization is a burgeoning topic at the boundary between
quantum physics and nonlinear dynamics and attracting much attention
not only in pure and applied physics but also in information science, ap-
plied mathematics, and various engineering fields. The phase equation has
provided systematic tools for the fundamental analysis of synchronization
between classical nonlinear oscillators [1, 2, 7, 3, 8, 9] and has been impor-
tant for analyzing technical applications of synchronization such as the ring
laser gyroscope [22, 23, 24, 25], phase-locked loop [28, 4], and Josephson
voltage standard [26, 27, 4]. Therefore, the phase dynamics approach to
quantum synchronization that we developed in this thesis will not only pro-
vide a framework for systematic analysis of quantum synchronization, but
also help us find novel technical applications of quantum synchronization in
the growing fields of quantum technologies, such as quantum information,
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quantum metrology, and quantum standard.
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Appendix A

Explicit form of β(α)

In this section, we derive an explicit expression of β(α) in Eq. (2.3). The
diffusion matrix of the FPE in Eq. (2.2) in the complex representation is
given by

D(α) = β(α)β(α)T =

(
D11(α) D12(α)
D21(α) D22(α)

)
∈ C2×2, (A.1)

where D22(α) = D∗
11(α) and D12(α) = D21(α). The non-diagonal element

D12(α) = D21(α) is real and positive, because it is a constant of cross dif-
fusion described by ∂2P (α, t)/∂α∂α∗ and it can be obtained as an absolute
value of a complex variable.

We rewrite the FPE in Eq. (2.2) corresponding to the SDE in Eq. (2.4)
in the real-valued representation, i.e., for the quasiprobability distribution
P (X, t) with X = (x, p)T = (Re α, Im α)T , as

∂

∂t
P (X, t) =

[
− ∂

∂X
{F (X) + ϵq(X, t)}+ 1

2

∂2

∂X2
D(X)

]
P (X, t), (A.2)

where

∂

∂α
=

1

2

(
∂

∂x
− i

∂

∂p

)
,

∂

∂α∗ =
1

2

(
∂

∂x
+ i

∂

∂p

)
. (A.3)

The real-valued diffusion matrix D(X) in the above FPE and the complex-
valued diffusion matrix D(α) are related as

D(X) =
1

4

(
1 1
−i i

)
D(α)

(
1 −i
1 i

)
=

1

2

(
Re D11(α) +D12(α) Im D11(α)

Im D11(α) −Re D11(α) +D12(α)

)
∈ R2×2 (A.4)
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and

D(α) =

(
1 i
1 −i

)
D(X)

(
1 1
i −i

)
. (A.5)

By denoting the matrix components of D(α) in the polar representation
as D11(α) = R11(α)eiχ(α) and D12(α) = R12(α), where R11(α), R22(α) ≥ 0
and χ(α) ∈ [0, 2π), the eigenvalues λ±(X) and eigenvectors v±(X) ofD(X)
can be expressed as

λ±(X) =
1

2
(R12(α)±R11(α)) ,

v+(X) =

(
cos χ(α)

2

sin χ(α)
2

)
, v−(X) =

(
sin χ(α)

2

− cos χ(α)
2

)
, (A.6)

and D(X) can be decomposed as

D(X) =
(
v+(X) v−(X)

)(λ+(X) 0
0 λ−(X)

)(
v+(X)T

v−(X)T

)
. (A.7)

Thus, G(X) is given by

G(X) =
(
v+(X) v−(X)

)(√λ+(X) 0

0
√
λ−(X)

)

=

√ (R12(α)+R11(α))
2 cos χ(α)

2

√
(R12(α)−R11(α))

2 sin χ(α)
2√

(R12(α)+R11(α))
2 sin χ(α)

2 −
√

(R12(α)−R11(α))
2 cos χ(α)

2

 ,

(A.8)

and β(α) is obtained from G(X) as

β(α) =

(
1 i
1 −i

)
,

G(X) =

 √ (R12(α)+R11(α))
2 eiχ(α)/2 −i

√
(R12(α)−R11(α))

2 eiχ(α)/2√
(R12(α)+R11(α))

2 e−iχ(α)/2 i

√
(R12(α)−R11(α))

2 e−iχ(α)/2

 .

(A.9)

The assumption in the main text that the diffusion matrix is always
positive semidefinite along the limit cycle is equivalent to the assumption
that λ−(X0(ϕ)) ≥ 0, that is, R12(α0(ϕ)) ≥ R11(α0(ϕ)) is satisfied for all ϕ,
because λ+(X) is always positive. With this assumption, if the initial state
is given in the form of Eq. (2.11), for instance, by a pure coherent state
ρ = |α0(ϕ0)⟩ ⟨α0(ϕ0)| at a given phase point ϕ0 on the limit cycle, the state
always remains in the two-dimensional phase space of the classical variables.
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Appendix B

Derivation of the phase
equation

In this section, we give a detailed derivation of the phase equation in Eq. (2.5).
The asymptotic phase function Φ(X) : B ⊂ R2×1 → [0, 2π) introduced in
the main text satisfies

F (X) · ∇Φ(X) = ω (B.1)

in the basin B of the limit cycle, where ∇Φ ∈ R2×1 indicates the gradient
of Φ with respect to X. Using this Φ(X), we define the phase ϕ of the
oscillator state X as ϕ = Φ(X). As long as X evolves in B, ϕ̇ = Φ̇(X) =
Ẋ · ∇Φ(X) = F (X) · ∇Φ(X) = ω holds. Recently, it has been shown that
this phase function is closely related to an eigenfunction of the Koopman
operator of the system Ẋ = F (X) associated with the eigenvalue iω [116].

When X obeys the Ito SDE in Eq. (2.4), we obtain an Ito SDEs for the
phase ϕ as

dϕ =
[
(∇Φ(X)) · (F (X) + ϵq(X, t)) + 1

2ϵTr
{
G(X)T (∇T∇Φ(X))G(X)

}]
dt

+
√
ϵ(∇Φ(X)) · (G(X)dW )

=

[
ω + ϵ(∇Φ(X)) · q(X, t) +

1

2
ϵTr

{
G(X)T (∇T∇Φ(X))G(X)

}]
dt

+
√
ϵ(G(X)T∇Φ(X)) · dW ,

(B.2)

where the third term in the drift part arises from the change of the variables
by the Ito formula and ∇T∇Φ ∈ R2×2 represents the Hessian matrix of
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Φ(X) with respect to X. This equation is still not closed in the phase
variable ϕ, because each term on the right-hand side depends on X.

When the perturbation and quantum noise are weak, the deviation of
the system state X from the limit cycle is small and of the order of O(

√
ϵ)

because the limit cycle is exponentially stable and the system state is sub-
jected to Gaussian-white noise. Thus, in the lowest-order approximation,
we can approximate the state X by a state X0(ϕ) on the limit cycle as
X(t) = X0(ϕ(t)) +O(

√
ϵ). We then obtain an Ito SDE for the phase vari-

able ϕ,

dϕ = {ω + ϵf(ϕ, t) + ϵg(ϕ)} dt+
√
ϵh(ϕ) · dW , (B.3)

which is correct up to O(ϵ) in the drift term and up to O(
√
ϵ) in the noise

intensity, where

f(ϕ, t) = ∇Φ(X)|X=X0(ϕ) · q(X0(ϕ), t) ∈ R (B.4)

represents the effect of the perturbation on ϕ,

h(ϕ) = G(X0(ϕ))
T∇Φ(X)|X=X0(ϕ) ∈ R2×1 (B.5)

represents the effect of the quantum noise on ϕ, and

g(ϕ) =
1

2
Tr
{
G(X0(ϕ))

T (∇T∇Φ|X=X0(ϕ))G(X0(ϕ))
}

(B.6)

represents a term arising from the change of the variables, respectively.
We denote the gradient vector (PSF) and Hessian matrix of the phase

function Φ(X) evaluated at X = X0(ϕ) on the limit cycle as Z(ϕ) =
∇Φ|X=X0(ϕ) and Y (ϕ) = ∇T∇Φ|X=X0(ϕ), respectively. The components of

the PSF and Hessian matrix ∇T∇Φ|X=X0(ϕ) are explicitly given by

Zi(ϕ) =
∂Φ(X)

∂Xi

∣∣∣∣
X=X0(ϕ)

, (∇T∇Φ|X=X0(ϕ))ij =
∂2Φ(X)

∂Xi∂Xj

∣∣∣∣
X=X0(ϕ)

,

(B.7)

for i, j = 1, 2, respectively.
It is well known in the classical phase reduction theory [7, 3, 8, 9] that

Z(ϕ) is given by a 2π-periodic solution to the following adjoint equation and
normalization condition:

ω
d

dϕ
Z(ϕ) = −J(ϕ)TZ(ϕ), Z(ϕ) · F (X0(ϕ)) = ω. (B.8)
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It is also known [82, 83] that the Hessian matrix Y (ϕ) of the phase function,
evaluated atX = X0(ϕ) on the limit cycle, is given by a 2π-periodic solution
to a differential equation

ω
d

dϕ
Y (ϕ) = −J(ϕ)TY (ϕ)− Y (ϕ)J(ϕ)−Z(ϕ) ◦K(ϕ), (B.9)

which satisfies a constraint

Z(ϕ) · J(ϕ)F (X0(ϕ)) + F (X0(ϕ)) · Y (ϕ)F (X0(ϕ)) = 0. (B.10)

In the above equations, J(ϕ) ∈ R2×2 is a Jacobian matrix of F (X) at
X = X0(ϕ) and K(ϕ) ∈ R2×2×2 is a third order tensor, respectively, whose
components are given by

J(θ)ij =
∂Fi
∂Xj

∣∣∣∣
X=X0(θ)

, K(θ)ijk =
∂2Fi

∂Xj∂Xk

∣∣∣∣
X=X0(θ)

, (B.11)

and the matrix components of the product Z(ϕ) ◦ K(ϕ) ∈ R2×2 are given
by

[Z(ϕ) ◦K(ϕ)]j,k =
2∑
i=1

Zi(ϕ)Kijk(ϕ) (B.12)

for i, j, k = 1, 2.
Thus, when the noise and perturbations are sufficiently weak, we obtain

an approximate Ito SDE for the phase variable as

dϕ = {ω + ϵf(ϕ, t) + ϵg(ϕ)}dt+
√
ϵh(ϕ) · dW (B.13)

at the lowest order, which corresponds to Eq. (2.5) in the main text. It can
be shown that the amplitude effect does not enter the phase dynamics at
the lowest order [117]. As Eq. (B.13) is an Ito SDE, using the property of
the Wiener process, the noise term can be rewritten as

√
ϵh(ϕ) · dW =

√
ϵh(ϕ)dW, (B.14)

where h(ϕ) =
√∑2

i=1(h(ϕ))
2
i andW (t) is a one-dimensional Wiener process.

The errors in the evolution of the phase variable resulting from the
lowest-order approximation above are O(ϵ2) in the drift term and O(ϵ) in
the noise intensity, respectively. Therefore, the error in the mean of ϕ from
the true value grows with time as O(ϵ2t), and the error in the variance of ϕ
grows as O(ϵ2t). Thus, these errors in the phase dynamics remain O(ϵ) up
to t = O(1/ϵ).
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Appendix C

Averaged phase equation

In this section, we derive the averaged phase equation, Eq. (2.9), by using
the near-identity transform. Although Eq. (2.5) is a correct phase equa-
tion for the phase ϕ in the lowest-order approximation, it has an additional
function g(ϕ) in the drift term, which adds tiny periodic fluctuations to
the deterministic part. By further introducing a new phase ψ that is only
slightly different from ϕ, we can eliminate this term and obtain a simpler
SDE,

dψ = {ω̃ + ϵf(ψ, t)}dt+
√
ϵh(ψ)dW, (C.1)

where f(ψ, t) = Z(ψ) · q(ψ, t), W (t) is a one-dimensional Wiener process,
and h(ψ) is a 2π-periodic function of ψ. Here, the new phase ψ is defined
from ϕ by a near-identity transform as ϕ = ψ + ϵn(ψ), where n(ψ) is a 2π-
periodic function with n(0) = 0. Using this transformation, the additional
term g(ϕ) in Eq. (2.5) can be renormalized into the frequency term as

ω̃ = ω +
ϵ

2π

∫ 2π

0
g(ψ′)dψ′, (C.2)

where ω̃ is the effective frequency of the system. As ϵ is assumed to be
sufficiently small, the transformation between the two variables ϕ and ψ is
invertible. Thus, the qualitative properties of the dynamics predicted by the
two-phase equations, such as whether synchronization occurs or not, are in-
variant. In the classical phase-reduction theory, the O(ϵ) difference between
the phase variables due to the near-identity transformation or averaging is
often neglected and both phases are considered to be the same. Below, we
derive the simplified phase equation in Eq. (C.1) from the original phase
equation, Eq. (2.5) or (B.13), by using the near-identity transform [118].
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In Eq. (B.13), the function g(ϕ) contains the Hessian matrix Y (ϕ) of
Φ(X) on the limit cycle, which is typically not included in the phase equation
for classical limit-cycle oscillators and gives a tiny but complex periodic
contribution to the phase dynamics. To eliminate this term, we renormalize
it into the frequency term. For this purpose, we consider a near-identity
transform from the original phase ϕ to a new phase ψ,

ϕ = ψ + ϵn(ψ), (C.3)

where the transformation function n(ψ) is a smooth 2π-periodic function of
ψ satisfying n(0) = 0, and assume that ψ obeys an Ito SDE of the form

dψ = {ω + ϵΩ+ ϵf(ψ, t)}dt+
√
ϵh(ψ)dW (C.4)

in the lowest-order approximation, which does not contain a term corre-
sponding to g(ϕ) but has a small shift ϵΩ in the frequency. From this SDE,
we obtain an Ito SDE for ϕ by using the Ito formula as

dϕ =

[
∂ϕ

∂ψ
{ω + ϵΩ+ ϵf(ψ, t)}+ 1

2
ϵh(ψ)2

∂2ϕ

∂ψ2

]
dt+

√
ϵ
∂ϕ

∂ψ
h(ψ)dW

=

[
(1 + ϵn′(ψ)){ω + ϵΩ+ ϵf(ψ, t)}+ 1

2
ϵh(ψ)2(ϵn′′(ψ))

]
dt

+
√
ϵ(1 + ϵn′(ψ))h(ψ)dW

≈
[
ω + ϵf(ψ, t) + ϵΩ+ ϵωn′(ψ)

]
dt+

√
ϵh(ψ)dW, (C.5)

where we omitted the tiny terms of O(ϵ2) in the drift term and O(ϵ3/2) in
the noise intensity. The replacement of ϕ by ψ in the functions f and h also
results in errors of O(ϵ2) and O(ϵ3/2) in the drift term and noise intensity,
respectively, which can also be neglected.

The above equation coincides with the original Eq. (B.13) if n(ψ) satisfies

Ω + ωn′(ψ) = g(ϕ). (C.6)

As g(ϕ) = g(ψ)+O(ϵ), the equation for n(ψ) is obtained at the lowest order
as

d

dψ
n(ψ) = g(ψ)− Ω, (C.7)

which gives

n(ψ) =

∫ ψ

0
dψ′ [g(ψ′)− Ω

]
, (C.8)
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where n(0) = 0 is used. Moreover, as n(ψ) is 2π-periodic, n(2π) = n(0) = 0
should hold, which determines the frequency shift Ω as

ϵΩ =
ϵ

2π

∫ 2π

0
dψ′g(ψ′). (C.9)

Thus, by introducing the near-identity transform, we obtain an averaged
phase equation

dψ = {ω̃ + ϵf(ψ, t)}dt+
√
ϵh(ψ)dW, (C.10)

where ω̃ = ω + ϵΩ is a renormalized, effective frequency. This corresponds
to Eq. (C.1). The orders of errors caused by the above near-identity trans-
formation are O(ϵ2) in the drift term and O(ϵ3/2) in the noise intensity.
Therefore, the phase equations in Eq. (B.13) and (C.10) are equally correct
in the lowest-order approximation and valid up to t = O(1/ϵ).

The frequency shift ϵΩ can be evaluated by numerically calculating the
Hessian matrix of Φ(X) in g(ψ) and integrating Eq. (C.9), or alternatively
by measuring ω̃ by numerically evolving the SDE in Eq. (2.3) or Eq. (2.4)
without perturbations. In the examples used in the main text, the frequency
shift ϵΩ is zero in the case of Eq. (2.18) with the symmetric limit cycle with
weak squeezing, and takes a tiny value in the case with strong squeezing.
In other applications, for example, in the analysis of coupled identical limit-
cycle oscillators without external forcing, the precise value of ω̃ may not be
required (only the frequency difference matters). In such cases, one may
simply assume ω̃ ≈ ω and avoid the calculation of ϵΩ.
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Appendix D

Phase-space representation
of a quantum vdP oscillator
with harmonic driving and
squeezing

D.1 Weak squeezing

Here, we derive a phase equation for a quantum vdP oscillator with harmonic
driving and squeezing. In the case of weak squeezing with δ = ϵ, the rescaled
system Hamiltonian and the perturbation Hamiltonian are given by

H = −∆′a′†a′, ϵH̃ = ϵ
{
iE′(a′ − a′†) + iη′(a′2e−iθ − a′†2eiθ)

}
, (D.1)

respectively, where the squeezing term is included in the perturbation. The
functions A(α′), ϵA′(α′), and ϵD(α′) in the quantum FPE are calculated
as

A(α′) =

( (
1
2 + i∆′)α′ − γ′2α

′∗α′2(
1
2 − i∆′)α′∗ − γ′2α

′α′∗2

)
, ϵA′(α′) = ϵ

(
−E′ − 2η′eiθα′∗

−E′ − 2η′e−iθα′

)
,

(D.2)

and

ϵD(α′) = ϵ

(
−γ′2α′2 1

1 −γ′2α′∗2

)
, (D.3)
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where the tiny terms of O(ϵ2) in ϵD(α′) are dropped. The explicit form of
β(α′) given by Eq. (A.9) can be obtained from Eq. (D.3) as

β(α′) =

 i

√
1+γ′2R

′2

2 eiδ
′

√
1−γ′2R′2

2 eiδ
′

−i
√

1+γ′2R
′2

2 e−iδ
′
√

1−γ′2R′2

2 e−iδ
′

 , (D.4)

where the modulus R′ and argument δ′ of α′ is introduced as α′ = R′eiδ
′
.

In the real-valued representation with X = (x′, p′)T = (Re α, Im α)T , the
functions F (X), ϵq(X), and

√
ϵG(X) are given by

F (X) =

(
1
2x

′ −∆′p′ − γ′2x
′(x′2 + p′2)

1
2p

′ +∆′x′ − γ′2p
′(x′2 + p′2)

)
,

ϵq(X) = ϵ

(
−E′ − 2η′(x′ cos θ + p′ sin θ)

2η′(p′ cos θ − x′ sin θ)

)
, (D.5)

and

√
ϵG(X) =

√
ϵ

−
√

1+γ′2R
′2

2 sin δ′
√

1−γ′2R′2

2 cos δ′√
1+γ′2R

′2

2 cos δ′
√

1−γ′2R′2

2 sin δ′

 , (D.6)

respectively.
As discussed in the main text, the deterministic part of this equation,

Ẋ = F (X), is a normal form of the supercritical Hopf bifurcation, also
known as the Stuart-Landau oscillator, and it is analytically solvable. The
limit cycle of this system in the classical limit can be obtained as X0(ϕ) =√

1
2γ′2

(cosϕ, sinϕ)T with ϕ = ωt, orα′
0(ϕ) =

√
1

2γ′2
(eiϕ, e−iϕ)T in the complex-

valued representation, where the natural frequency is given by ω = ∆′, and
the frequency shift ϵΩ vanishes. From Eq. (D.3), the eigenvalues of matrix
D(α) can be calculated as

λ±(X) =
1

2

{
R12(α

′)±R11(α
′)
}
=

1

2

(
1± γ′2|α′|2

)
. (D.7)

By plugging the limit-cycle solution X0(ϕ) into this equation, it can be seen
that λ−(X0(ϕ)) = 1

4 > 0 is satisfied for any ϕ on the limit cycle and the
diffusion matrix is always positive semidefinite along the limit cycle, because
the magnitudes of the squeezing and nonlinear damping, which can cause
negative diffusion, are assumed to be sufficiently small.
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D.2 Strong squeezing

In the case of strong squeezing with δ = 1, the rescaled system Hamiltonian
and the perturbation Hamiltonian are given by

H = −∆′a′†a′ + iη′(a′2e−iθ − a′†2eiθ), ϵH̃ = iϵE′(a′ − a′†), (D.8)

respectively, where the squeezing term is included in the system Hamilto-
nian. The functions A(α′), A′(α′), and D(α′) in the phase-space represen-
tation are given by

A(α′) =

( (
1
2 + i∆′)α′ − γ′2α

′∗α′2 − 2η′eiθα′∗(
1
2 − i∆′)α′∗ − γ′2α

′α′∗2 − 2η′e−iθα′

)
, ϵA′(α′) = ϵ

(
−E′

−E′

)
,

(D.9)

and

ϵD(α′) = ϵ

(
−(γ′2α

′2 + 2η′eiθ) 1
1 −(γ′2α

′∗2 + 2η′e−iθ)

)
. (D.10)

The explicit form of β(α′) in this case is given by

β(α′) =

 √
(1+R′

2)
2 eiχ

′
2/2 −i

√
(1−R′

2)
2 eiχ

′
2/2√

(1+R′
2))

2 e−iχ
′
2/2 i

√
(1−R′

2)
2 e−iχ

′
2/2

 , (D.11)

where R′
2e
iχ′

2 = −(γ′2α
′2 + 2η′eiθ). In the real-valued representation with

X = (x′, p′)T = (Re α, Im α)T , the functions F (X), ϵq(X), and
√
ϵG(X)

are given by

F (X) =

(
1
2x

′ −∆′p′ − γ′2x
′(x′2 + p′2)− 2η′(x′ cos θ + p′ sin θ)

1
2p

′ +∆′x′ − γ′2p
′(x′2 + p′2) + 2η′(p′ cos θ − x′ sin θ)

)
,

ϵq(X) = ϵ

(
−E′

0

)
, (D.12)

and

G(X) =

√(1+R′
2)

2 cos
χ′
2
2

√
(1−R′

2)
2 sin

χ′
2
2√

(1+R′
2)

2 sin
χ′
2
2 −

√
(1−R′

2)
2 cos

χ′
2
2

 , (D.13)

respectively.
The deterministic part F (X) gives an asymmetric limit cycle when η >

0, which is difficult to solve analytically. However, we can still obtain the
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limit cycle X0(ϕ) numerically and use it to evaluate the PSF Z(ϕ), Hessian
matrix Y (ϕ), and the noise intensity G(ϕ), and use these quantities in
the phase equation. The PSF Z(ϕ) can be numerically calculated by the
adjoint method, and the Hessian matrix Y (ϕ) can be calculated by using a
shooting-type numerical algorithm.

When the squeezing is too strong, the diffusion matrix can generally be
negative definite on the limit cycle. We choose parameter settings where the
diffusion matrix is always positive semidefinite along the limit cycle in the
main text.
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Appendix E

Derivation of the optimal
waveforms

In this Appendix, we give the derivation of the optimal waveforms. The
optimization problems for the improvement of entrainment stability and
enhancement of phase coherence are rewritten as

maximize

∫ 2π

0

(
−Z ′

x(θ)
)
E(θ)dθ, s.t.

〈
E2(θ)

〉
θ
= P, (E.1)

and

maximize

∫ 2π

0

(
−
∫ θ+∆ψ

θ
Zx(θ̄)dθ̄

)
E(θ)dθ, s.t.

〈
E2(θ)

〉
θ
= P, (E.2)

respectively, where we assume ψ∗ = 0 without loss of generality. In or-
der to analyze both problems together, we consider a general form of an
optimization problem,

maximize

∫ 2π

0
g(θ)E(θ)dθ, s.t.

〈
E2(θ)

〉
θ
= P, (E.3)

where g(θ) = −Z ′
x(θ) for the entrainment stability and g(θ) = −

∫ θ+∆ψ
θ

Zx(ϕ)dϕ for the phase coherence.
We consider an objective function

S{E, λ} = ⟨g(θ)E(θ)⟩θ + λ
(〈
E(θ)2

〉
θ
− P

)
, (E.4)

where λ is a Lagrange multiplier. Then the extremum conditions are given
by

δS

δE
=

1

2π
g(θ) +

λ

π
E(θ) = 0, (E.5)
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∂S

∂λ
=
〈
E(θ)2

〉
θ
− P = 0. (E.6)

The optimal periodic modulation is given by

E(θ) = −g(θ)
2λ

(E.7)

and the constraint is

1

4λ2
〈
g(θ)2

〉
θ
= P, (E.8)

which yields

λ = −
√

1

4P
⟨g(θ)2⟩θ, (E.9)

where the negative sign should be taken in order that the maximized objec-
tive function becomes positive.

Therefore, the optimal periodic modulation is given by

E(θ) =

√
P

⟨g(θ)2⟩θ
g(θ). (E.10)

From the above result, the optimal waveform for the entrainment stability
is given by

E(θ) = −

√
P

⟨Z ′
x(θ)

2⟩θ
Z ′
x(θ) (E.11)

and that for the phase coherence is given by

E(θ) = −
√√√√ P〈

(
∫ θ+∆ψ
θ Zx(ϕ)dϕ)2

〉
θ

∫ θ+∆ψ

θ
Zx(ϕ)dϕ. (E.12)

When the limit cycle is symmetric and the x component Zx of the PSF
has a sinusoidal form, the optimal waveform is also given by a trivial sinu-
soidal function, because the differential and integral of a sinusoidal function
are also sinusoidal.
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Appendix F

Asymptotic phase of classical
nonlinear oscillators

F.1 Background

In analyzing synchronization properties of limit-cycle oscillators in the de-
terministic framework, the asymptotic phase [1, 2, 4, 7, 3] of the oscillator
plays a central role, which is defined by the vector field of the oscillator
and increases with a constant frequency in the basin of the limit-cycle at-
tractor. By defining the asymptotic phase, one can approximately reduce
the dynamics of a weakly perturbed limit-cycle oscillator to a simple one-
dimensional phase equation, which can be analyzed much more easily than
the original multidimensional nonlinear dynamical equation. This method,
called the phase reduction [1, 2, 4, 7, 3], has been successfully used to analyze
a large variety of synchronization phenomena in coupled-oscillator systems,
including nonlinear wave propagation in self-oscillatory media and collective
synchronization in populations of coupled oscillators. The method can be
used for limit-cycle oscillators subjected to sufficiently weak noise, and also
for quantum nonlinear oscillators in the semiclassical regime described by a
quantum Fokker-Planck equation [88, 98].

However, there also exist strongly stochastic oscillatory systems in which
the noise plays essentially important roles in generating the oscillatory dy-
namics. A representative example is the noise-induced oscillations in ex-
citable systems [119]. In this case, the deterministic vector field of the
system does not possess a limit-cycle solution, yet approximately regular
oscillations are evoked due to continuous excitation of the system by noise.
The conventional phase reduction theory cannot be applied to such strongly
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stochastic dynamical systems. In particular, we cannot rely on the deter-
ministic limit cycle in defining the asymptotic phase.

To cope with this problem, Schwabedal and Pikovsky [120] introduced a
definition of the phase in terms of the mean first return time, and Thomas
and Lindner [99] proposed a definition of the asymptotic phase in terms
of the slowest decaying eigenfunction of the backward Kolmogorov (Fokker-
Planck) operator describing the mean first passage time, both of which yield
phase values that increase with a constant frequency on average for stochas-
tic oscillations, in a similar way to the ordinary asymptotic phase for deter-
ministic oscillators.

F.2 Deterministic case

We first explain the asymptotic phase for classical nonlinear oscillators
briefly. We consider a deterministic dynamical system Ẋ = A(X) with
a state X ∈ RN , which has an exponentially stable limit-cycle solution
X0(t) with a natural period T and frequency ω = 2π/T . The asymp-
totic phase function Φ(X) : B ⊂ RN → [0, 2π) is then defined such that
∇Φ(X) · A(X) = ω is satisfied for all system states X in the basin B of
the limit cycle, where ∇ = ∂/∂X is the gradient with respect to X. It
then follows that the phase ϕ = Φ(X) of the system obeys ϕ̇ = Φ̇(X) =
A(X) · ∇Φ(X) = ω, i.e., ϕ always increases at a constant frequency ω
with the evolution of X in B. When the system is weakly perturbed as
Ẋ = A(X) + ϵp(X) with 0 < ϵ ≪ 1, the phase approximately obeys
ϕ̇ = ω+ ϵZ(ϕ) ·p(t), where Z(ϕ) = ∇Φ(X)|X=X0(ϕ/ω) is the gradient of the
phase function Φ(X) evaluated at phase ϕ on the limit cycle. The simplicity
of this phase equation has facilitated extensive studies on synchronization
of coupled-oscillator systems [1, 2, 4, 7, 3].

Here, we point out that the operator A = A(X) · ∇ can be interpreted
as an infinitesimal generator of the Koopman operator describing evolution
of general observables in nonlinear dynamical systems [116, 121, 117, 122].
The Koopman operator U τ is defined by (U τg)(X) = g(SτX), where g is a
smooth observable and Sτ is a flow of the system, i.e., X(t+ τ) = SτX(t).
Using SτX = X+τA(X)+O(τ2) and g(SτX) = g(X)+τA(X) ·∇g(X)+
O(τ2) for small τ , the infinitesimal generator A of U τ is obtained as

d

dt
g(X) = Ag(X) = lim

τ→0

U τg(X)− g(X)

τ

= lim
τ→0

g(SτX)− g(X)

τ
= A(X) · ∇g(X). (F.1)
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It can easily be seen from the definition of the asymptotic phase Φ(X)
that the exponential Ψ(X) = eiΦ(X) of the phase function Φ(X) gives an
eigenfunction of this linear operator A with an eigenvalue iω, satisfying
AΨ(X) = iωΨ(X). Thus, the asymptotic phase function has a natural
operator-theoretic interpretation as an argument

Φ(X) = argΨ(X) (F.2)

of the eigenfunction Ψ(X) of the Koopman operator A [116, 121, 117, 122].
The above definition of the asymptotic phase for deterministic systems

is based on the existence of a limit-cycle solution, which is still applicable if
the system is subjected to sufficiently weak noise. However, it is no longer
valid for strongly stochastic oscillators where the noise plays essential roles.

F.3 Stochastic case

For strongly stochastic oscillators, Thomas and Lindner [99] proposed a defi-
nition of the asymptotic phase in terms of the slowest decaying eigenfunction
of the backward Fokker-Planck operator, based on the consideration of the
mean first passage time. Consider a stochastic system obeying a Fokker-
Planck equation (FPE)

∂

∂t
p(X, t) = LXp(X, t) =

[
− ∂

∂X
A(X) +

1

2

∂2

∂X2
D(X)

]
p(X, t), (F.3)

where X ∈ RN is the system state, p(X, t) is the probability density func-
tion of X at time t, LX is a Fokker-Planck operator representing the time
evolution of p(X, t), A(X) ∈ RN and D(X) ∈ RN×N represent the drift
vector and diffusion matrix of the FPE, respectively. The transition prob-
ability density p(X, t|Y , s) satisfying p(X, t) = p(X, t|Y , s)p(Y , s) (t ≥ s)
obeys the forward FPE

∂

∂t
p(X, t|Y , s) = LXp(X, t|Y , s). (F.4)

The corresponding backward FPE is given by [123]

∂

∂s
p(X, t|Y , s) = −L+

Y p(X, t|Y , s)

= −
[
A(Y )

∂

∂Y
+

1

2
D(Y )

∂2

∂Y 2

]
p(X, t|Y , s), (F.5)
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where

L+
X = A(X)

∂

∂X
+

1

2
D(X)

∂2

∂X2
(F.6)

is the adjoint linear operator of LX with respect to the L2 inner prod-
uct ⟨G(X),H(X)⟩X =

∫
G(X)H(X)dX of two functions G(X) ∈ C and

H(X) ∈ C, i.e., ⟨L+
XG(X),H(X)⟩X = ⟨G(X), LXH(X)⟩X , with the over-

line indicating complex conjugate.
The linear differential operators LX and L+

X have the eigensystem {λk
, Pk, Qk} of the eigenvalue λk, the right eigenfunction Pk(X), and the left
eigenfunction Qk(X), satisfying

LXPk(X) = λkPk(X), L+
XQk(X) = λkQk(X), ⟨Qk(X), Pl(X)⟩X = δkl,

(F.7)

where k, l = 0, 1, 2, . . .. One of the eigenvalues is λ0 = 0 due to the con-
servation of probability, and all other eigenvalues have negative real parts.
Considering that the system exhibits stochastic oscillations, it is assumed
that the eigenvalues with the largest non-negative real part (the slowest
decay rate) are given by a complex-conjugate pair. These eigenvalues are
denoted as λ1 = µ+ iω and λ1 = µ− iω, where µ < 0 represents the decay
rate and ω represents the fundamental oscillation frequency of the associated
eigenfunction.

Thomas and Lindner defined a stochastic asymptotic phase function for
stochastic oscillators as the argument of the left eigenfunction Q1(X) asso-
ciated with λ1, i.e., L

+
XQ1(X) = λ1 Q1(X), as

Φ(X) = argQ1(X), (F.8)

and showed that this Φ(X) gives a phase value that varies with a constant
frequency ω with the evolution of X on average. This definition of the
asymptotic phase for stochastic oscillations is consistent with the definition
of the asymptotic phase in the noiseless limit when the deterministic system
described by the vector field Ẋ = A(X) has a limit-cycle solution [99].

Here we additionally point out that the above definition is also natural
from the Koopman operator viewpoint. First, in the limit of vanishing noise,
we obtain the forward and backward (classical) Liouville equations instead
of FPEs, where the forward Liouville operator is given by

LX = − ∂

∂X
A(X). (F.9)
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The corresponding backward Liouville operator is given by

L+
X = A(X) · ∇ = A(X) · ∂

∂X
, (F.10)

which is nothing but the Koopman operator A in the deterministic case.
Thus, the eigenfunction Q1(X) of L+

X with eigenvalue λ1 = iω (note that
µ → 0 in this limit) coincides with the Koopman eigenfunction Ψ(X) of A
with eigenvalue iω, and therefore the definition of the asymptotic phase in
Eq. (F.8) is equivalent to the definition of the asymptotic phase Eq. (F.2)
in the deterministic case.

In the case with finite noise, the (negative of the) backward Fokker-
Planck operator L+

X can also be considered a Koopman operator of the
stochastic system described by the Fokker-Planck operator LX . For a
smooth observable f , the stochastic Koopman operator is defined by [124]

U τf(X) = E[f(SτX)] =

∫
p(Y , s+ τ |X, s)f(Y )dY , (F.11)

where E[·] represents expectation over realizations of St and s is the initial
time. The infinitesimal generator A of the stochastic Koopman operator U τ

is then calculated as

Af(X) = lim
τ→0

U τf(X)− f(X)

τ

=

∫
lim
τ→0

p(Y , s+ τ |X, s)− p(Y , s|X, s)

τ
f(Y )dY

=

∫
∂p(Y , s+ τ |X, s)

∂τ

∣∣∣∣
τ=0

f(Y )dY =

∫
LY p(Y , s|X, s)f(Y )dY

=

∫
p(Y , s|X, s)L+

Y f(Y )dY = L+
Xf(X), (F.12)

where L+
X is the adjoint operator of LX given in Eq. (F.6), namely, the

(negative of the) backward Fokker-Planck operator. Thus, the eigenfunction
Q1(X) of L+

X with eigenvalue λ1 coincides with the Koopman eigenfunction
Ψ(X) of A with the eigenvalue λ1 also in this case, and the definition of the
asymptotic phase by Eq. (F.8) is a natural extension of the definition for
deterministic systems.

We note that the relation between the evolution of the probability density
function and the evolution of the observable discussed above is parallel to
the relation between Schrödinger and Heisenberg pictures in the main text.
The quantum master equation, the adjoint superoperator L∗ (or the adjoint
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linear differential operator L+ in the P -representation), and the eigenoper-
ator V1 (or the eigenfunction v1 in the P -representation) with eigenvalue Λ1

correspond to the forward Fokker-Planck equation, the backward Fokker-
Planck operator L+

X (or the Koopman operator A), and the eigenfunction

Q1(X) (or the Koopman eigenfunction Ψ(X)) with eigenvalue λ1 in the
classical stochastic system discussed here, respectively. In the main text,
the theory is further generalized to other principal eigenvalues {Λj}j≥2.

89



Appendix G

Quantum van der Pol
oscillator with Kerr effect in
the semiclassical regime

In the semiclassical regime, the linear operator L of the partial differential
equation ∂tp(α) = Lp(α) in the main text, which describes the evolution
of the quasiprobability distribution in the P -representation of the quantum
van der Pol oscillator with Kerr effect, is explicitly given by a quantum
Fokker-Planck operator

L =
[
−

2∑
j=1

∂j{Aj(α)}+ 1

2

2∑
j=1

2∑
k=1

∂j∂k{Djk(α)}
]
, (G.1)

where ∂1 = ∂/∂α, ∂2 = ∂/∂ᾱ. The drift vector A(α) = (A1(α), A2(α)) ∈
C2 and the matrix D(α) = (Djk(α)) ∈ C2×2 are given by

A(α) =

((γ1
2 − iω0

)
α− (γ2 + 2Ki)αα2(γ1

2 + iω0

)
α− (γ2 − 2Ki)αα2

)
, (G.2)

D(α) =

(
−(γ2 + 2Ki)α2 γ1

γ1 −(γ2 − 2Ki)ᾱ2

)
. (G.3)

The corresponding stochastic differential equation is then given by

d

(
α
α

)
=

((γ1
2 − iω0

)
α− (γ2 + 2Ki)αα2(γ1

2 + iω0

)
α− (γ2 − 2Ki)αα2

)
dt+ β(α)

(
dW1

dW2

)
, (G.4)
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where W1 and W2 are independent Wiener processes and the matrix β(α)
is given by

β(α) =

 √ (γ1+R11(α))
2 eiχ(α)/2 −i

√
(γ1−R11(α))

2 eiχ(α)/2√
(γ1+R11(α))

2 e−iχ(α)/2 i

√
(γ1−R11(α))

2 e−iχ(α)/2

 , (G.5)

where R11(α)eiχ(α) = −(γ2 + 2Ki)α2.
In the classical limit, the deterministic part of Eq. (G.4) gives the Stuart-

Landau equation (normal form of the supercritical Hopf bifurcation) [2] for
the complex variable α in the main text, which can also be expressed by
using a real vector X = (x, p) = (Re α, Im α) as(

ẋ
ṗ

)
=

( γ1
2 x+ ω0p− (x2 + p2)(γ2x− 2Kp)

−ω0x+ γ1
2 p− (x2 + p2)(2Kx+ γ2p)

)
. (G.6)

This equation is analytically solvable and the asymptotic phase function
ΦC(x, p) can be explicitly obtained as given in the main text [7]. From
the discussion in Sec. I of this Supplemental Material, this ΦC(x, p) can
be expressed as the argument of the Koopman operator Ψ(X) with the
eigenvalue iΩC of this dynamical system.
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Appendix H

Classical limit of the
Quantum asymptotic phase
function

We here explain that the definition of the quantum asymptotic phase given
in the main text reproduces the deterministic asymptotic phase in the classi-
cal limit in general. The linear operator L of the partial differential equation
∂tp(α) = Lp(α) in the main text, describing the quasiprobability distribu-
tion p(α) in the P -representation, can be approximated by a Fokker-Planck
operator of the form Eq. (G.1) in the semiclassical regime. By introducing
a real vector X = (Re α, Im α) and the corresponding distribution function
p(X), the Fokker-Planck operator L for p(α) can be cast into a real Fokker-
Planck operator LX for p(X) given by Eq. (F.3). From the corresponding
backward Fokker-Planck operator L+

X in Eq. (F.6), we obtain the quantum
asymptotic phase function as the argument of the eigenfunction of L+

X as-
sociated with the eigenvalue Λ1 = −µ + iΩ with the slowest decay rate µ
and the fundamental frequency Ω. Now, in the classical limit, the diffusion
operator in the Fokker-Planck operator LX asymptotically vanishes and LX

converges to a classical Liouville operator given by Eq. (F.9). Also, the de-
cay rate µ converges to 0 and the eigenvalue Λ1 approaches iΩ. Thus, from
the corresponding backward Liouville operator (or the deterministic Koop-
man operator) L+

X given by Eq. (F.10), we obtain the classical asymptotic
phase function Φ1 in the deterministic limit as the argument of the eigen-
function Ψ1 associated with Λ1 = iΩ. Thus, the quantum asymptotic phase
function defined in the main text reproduces the deterministic asymptotic
phase function in the classical limit without quantum noise.
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Appendix I

Asymptotic phase functions
in the strong quantum
regime

Figure I.1 shows the asymptotic phase function Φj given by the argument of
the eigenoperator Vj with the principal eigenvalue Λj , Φj(α) = arg⟨α|Vj |α⟩,
for j = 1, 2, 3 and 4 on the (x = Re α, p = Im α) plane. The parameters
are the same as in Fig. 4.1(d)-(f) in the main text. These asymptotic phase
functions look similar to each other, but they are associated with different
fundamental frequencies and also they are slightly different from each other
near the origin. Thus, they capture different oscillation modes of the system
as demonstrated in the main text.
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Figure I.1: Asymptotic phase functions of the quantum van der Pol oscillator
with Kerr effect in the strong quantum regime. (a): Φ1, (b): Φ2, (c): Φ3,
(d): Φ4. The parameters are γ1 = 0.1 and (ω0, γ2,K)/γ1 = (300, 4, 100).
Figures in the bottom panel show enlargements of the regions near the origin
in the corresponding figures in the top panel. In all figures, (x, p) = (2.5, 0)
is chosen as the phase origin, Φj = 0 (j = 1, 2, 3, 4).
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Appendix J

Asymptotic phase function
for a damped harmonic
oscillator

We here consider a simple damped harmonic oscillator and formally calcu-
late the quantum asymptotic phase. Though this system is completely linear
and does not exhibit synchronization phenomena in the classical sense, the
eigenoperator V1 of the adjoint Liouville operator can be analytically ob-
tained and we can gain physical intuition on the definition of the asymptotic
phase function. In Ref. [125], Thomas and Lindner considered the stochastic
asymptotic phase for a classical linear damped harmonic oscillator described
by a multi-dimensional Ornstein-Uhlenbeck process, and the following result
can be considered a quantum-mechanical version of their result.

The time evolution of a damped harmonic oscillator is given by a master
equation

ρ̇ = Lρ = −i[−ωa†a, ρ] + γD[a]ρ, (J.1)

where ω > 0 is the natural frequency of the system, γ denotes the decay
rate for the linear damping, and D is the Lindblad form as defined in the
main text [80]. The eigenoperator associated with the slowest non-vanishing
decay rate of the adjoint Liouville superoperator L∗ of L is simply given by
V1 = a, i.e., L∗a = Λ1a, where Λ1 = −γ/2 + iω [126, 127]. Therefore, the
asymptotic phase function is obtained as

arg⟨α|a|α⟩ = argα = arg
(
reiθ

)
= θ, (J.2)
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where α = reiθ. Thus, the asymptotic phase simply gives the geometric
angle on the phase plane of the P representation. For the initial condition
ρ = |α0⟩⟨α0| with α0 = r0e

iθ0 , it is easy to show that the expectation of a is
given by

⟨a⟩(t) = Tr [aρ(t)] = ⟨α0|a(t)|α0⟩ = eΛ1t⟨α0|a(0)|α0⟩ = e(−γ/2+iω)tα0.
(J.3)

If we take the phase origin on the positive x axis, the angle θ is given by

θ = arg e(−γ/2+iω)tα0 = ωt+ θ0, (J.4)

which increases with a constant frequency ω.
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Appendix K

Feedback policy

In this section, we discuss the feedback policy for suppressing the fluctua-
tions around the phase-locking point inevitably caused by the measurement
backaction. We consider the system described by Eq. (5.1) without the lin-
ear coupling to the bath, i.e. γ3 = 0. The phase equation for the oscillator
in the classical limit is given by (see also the next section) [54, 88]

dϕ

dt
=

(
∆+∆fb +

√
2γ2
γ1

E sinϕ

)
. (K.1)

If |∆+∆fb| ≤
√

2γ2
γ1
E, there exists a stable fixed point of Eq. (K.1), which

corresponds to the phase-locking point of the system with the driving signal

under the feedback control, satisfying ϕfb = − arcsin
(
∆+∆fb
E

√
γ1
2γ2

)
. The

fixed point in the absence of the feedback control, i.e. ∆fb = 0, is given by

ϕ0 = − arcsin
(
∆
E

√
γ1
2γ2

)
.

Figure K.1 shows a schematic diagram of the feedback policy for sup-
pressing the fluctuations around the phase-locking point. As seen in Fig. K.1,
when θest > θ0, the feedback control is ∆fb = −Kfb(θest − θ0) < 0 and thus
ϕfb < ϕ0. Similarly, when θest < θ0, we obtain ϕfb > ϕ0. Therefore, the
feedback control shifts the locking phase from ϕ0 to ϕfb, which is opposite
to the direction from θ0 to θest. Thus, the feedback control is expected to
suppress the fluctuations around the phase-locking point.
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Figure K.1: Schematic diagram of the feedback policy for suppressing the
fluctuations around the phase-locking point. Feedback control shifts the
phase-locking point from ϕ0 to ϕfb that is opposite to the direction from θ0
to θest.
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Appendix L

Relation between the phase
diffusion and purity

In this section, we discuss the relation between the phase diffusion and purity
of the quantum vdP oscillator when the measurement is absent. We consider
the system described by Eq. (5.1) without the linear coupling to the bath,
i.e. γ3 = 0.

We assume that the system is in the semiclassical regime and driven by
the weak perturbation, and can be approximately described by a stochas-
tic differential equation of the phase variable of the oscillator by using the
semiclassical phase reduction theory [88].

We introduce rescaled parameters γ2 = σγ1γ2
′,∆ + ∆fb = γ1(∆

′ +
∆′
fb), E = ϵγ1E

′/
√
σ, dt′ = γ1dt, dW

′ =
√
γ1dW with dimensionless param-

eters γ2
′, ∆′, ∆′

fb, and E
′ of O(1). We set 0 < σ ≪ 1 (the system is in the

semiclassical regime) and 0 < ϵ≪ 1 (the perturbation is weak). The corre-
sponding semiclassical phase equation for the quantum system in Eq. (5.1)

is then obtained as [88] dϕ =
(
∆′ +∆′

fb + ϵ
√

2γ′2E
′ sinϕ

)
dt′ +

√
σD0dW

′,

with D0 =
3γ′2
2 .

We first evaluate the phase diffusion of the oscillator. It is given by the
effective diffusion constant [128]

Deff ∝ 1/(⟨exp(v(ϕ)/(σD0))⟩ϕ ⟨exp(−v(ϕ)/(σD0))⟩ϕ),

where the potential is given by v(ϕ) = −
∫ ϕ
ϕ0
(∆′ +∆′

fb + ϵ
√
2γ′2E

′ sinϕ′)dϕ′

with a reference phase point ϕ0 and ⟨·⟩ϕ = 1
2π

∫ 2π
0 (·)dϕ. When σ is suf-

ficiently small, using saddle-point approximation, ⟨exp(v(ϕ)/(σD0))⟩ϕ ∝
exp(vmax/(σD0)) and ⟨exp(−v(ϕ)/(σD0))⟩ϕ ∝ exp(−vmin/(σD0)), which
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leads to

Deff ∝ 1

exp((vmax − vmin)/(σD0))
, (L.1)

where vmax and vmin are the maximum and minimum values of the potential
v(ϕ), respectively (See [18] for details).

Next, we evaluate the purity. In the semiclassical phase reduction theory
[88], the density matrix can be approximately reconstructed from the phase

equation as ρ ≈
∫ 2π
0 dϕP (ϕ) |α0(ϕ)⟩ ⟨α0(ϕ)| , where α0(ϕ) =

√
1

2σγ′2
exp(iϕ)

is the system state at ϕ on the classical limit cycle in the phase space of the
P representation [81] and P (ϕ) is the steady-state probability distribution
of the Fokker-Planck equation for the phase variable [4], given by P (ϕ) ∝∫ 2π
0 dϕ′ exp

[
2(v(ϕ′+ϕ)−v(ϕ))

D0σ

]
. Since the size of the limit cycle is O(1/

√
σ), i.e.

α0(ϕ) = O(1/
√
σ), the purity in the weak noise limit can be approximately

evaluated as

P = Tr (ρ2) ≈
∫ 2π

0

∫ 2π

0
dϕdϕ′P (ϕ)P (ϕ′) exp(−|α0(ϕ)− α0(ϕ

′)|2)

∝
∫ 2π

0
dϕP 2(ϕ) ∝

∫ 2π

0
dϕ

(∫ 2π

0
dϕ′ exp

[
2(v(ϕ′ + ϕ)− v(ϕ))

D0σ

])2

∝
∫ 2π

0
dϕ

(
exp

[
2(vmax − v(ϕ))

D0σ

])2

∝ exp

[
4(vmax − vmin)

D0σ

]
.

Thus, introducing a constant of proportionality C, the effective diffusion
constant Deff in the weak noise limit can be approximately represented as

Deff ≈ C

(P )1/4
, (L.2)

which indicates that higher purity leads to smaller phase diffusion of the
oscillator.
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