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Abstract

Hand and finger provide human with high precision and accuracy for actua-

tor. Those who suffer from hand loss suffer with reduce detailed skill work and

need replacement to perform daily task. Fortunately, control command motor

of hand and finger reside in forearm and can be measure for prosthetic hand.

However, most of the practical work in this field focus on using machine learn-

ing and pattern recognition to translate the noisy surface ElectroMyoGraphy

(sEMG) signals to pre-defined grip posture without considering physical con-

trol of human’s hand and finger. The sEMG signal was measure using EMG

sensor place on the skin on top of interest muscles which required skill and

knowledge of human anatomy. Moreover, the muscles which are able to pro-

vide highest quality sEMG signal is limited to 5-7 muscles depend on subject.

Those limitation make finger muscles which small and reside deep inside fore-

arm even harder to detect. Here, we present a study using approach from brain

signal acquisition using large number of electrode with signal analysis to detect

signal from deep under skin. The processed signal was used to estimate finger

angle and stiffness by musculokeletal model to confirm the signal quality and

also potential of musculokeletal model to express finger motion.
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Chapter 1

Introduction

The human hand is one of the human’s extremity consists of five fingers to cre-

ate intricate primary tools that human use to interact with environment. This

tools allow us to not only feel the world but also built and controlled other

tools make from our understanding of surroundings. However, we might have

to lose it before we can understand the power of small but crucial device to

our daily life. In year 1996 U.S.A., estimated 1,285,000 persons living with

limb lose (excluding finger and toes) with increasing around 50,000 every year.

While this happens, thank to rapid advances in engineering and biotechnology,

prosthetic hand with high accuracy and force adjustment in finger control can

mimic human finger motions. The problem is how to capture human’s inten-

tion to control finger, surface ElectroMyoGraphy (sEMG) was used in many re-

searches [3, 13, 15, 17, 27, 39] as control signal to provide non physical control

for prosthetic hand. Multiple models was proposed to classify hand postures

from EMG signals. And some group also succeeded in control finger and wrist

with predetermined grips [12]. However, main functionality still depend on

switching hand predefined grip postures which limit the number of postures

[36].

1



2 Chapter 1. Introduction

1.1 Human hand

The human hand is a versatile and miraculous instrument that serves us ex-

tremely well in multitude of way with large number of degree of freedom (DoFs).

Combine with multi-sensory units that enable us to interact with environment

[10]. We successfully use our hands to contact objects and to extract informa-

tion about them, such as surface texture, compliance, weight, shape, size, ori-

entation, and thermal properties. Human also demonstrate impressive manual

dexterity when reaching for, grasping, and subsequently manipulating objects

within arm’s reach.

1.1.1 Natural Hand Control

Natural limbs are pulled back and stretch

Recent studies by Santello and Soechting [28], show connection between the

central nervous system (CNS) that provide coordinates with many muscles when

using hand. This also indicate CNS might control more muscles than are mini-

mally required to perform certain task. This phenomenon called redundancy/abundance

problem [4]. Due to redundancy of muscles, this problem leads to an infinite

number of solutions for similar tasks and in the case of prehensile actions, ele-

mental variables can be associated with forces and moments of force produced

by individual fingers. Meanwhile, performance variable may be associated with

the total force and moment of force applied to the hand-held object.

1.1.2 Electromyography (EMG) signal

Electromyography (EMG) generated by muscle cells when neuron signal was

receive which generate electric potential activity as shown in Figure 1.1. The
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signals was used to detect medical abnormalities, activation level, recruitment

order, and analyze the bio-mechanics of human or animal movement. Conven-

tionally, EMG is recorded using a device called an electromyograph and write

the voltage directly to paper called electromyogram [7].

Figure 1.1: Sample of EMG signal from Trigno Wireless EMG sensor (Left) and it recti-
fied version (right)

The electric potential is generated when a motor neuron signal from spinal cord

arrives at the muscles’s motor end plate which causes a release of Calcium ions

(Ca2+) that consequently generate ion exchanges across the muscles membrane

[7]. The more muscles that activate, the greater amplitude of action potential

and the greater the EMG reading.

1.2 Mykin muscle model

Mykim model designed from human arm in horizontal plane with two muscles

manipulator consist of six monoarticular muscles and two biarticular muscles.

The mechanical of the bicep is shown as rack-and-pinion gear and a spring con-

nected in series as shown in Figure 1.2 [30].

The Kelvin-Voigt model was used with elastic element for static isometric con-

traction [23]. Muscle tension T is determined from muscle stiffness k(u) and

the stretch length of a muscles [lr(u)− l(θ)] as follows
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Figure 1.2: Mykin model was arrange in arm position which show mechanical of biceps
as gear and spring [30]

.



Chapter 2

Backgrounds and Aims

This chapter will provide the detail about previous work and assumption that

used in this thesis. We will talk about human hand, sEMG signal, ICA, Motion

capture, and Aim of our research.

2.1 Human Hand

Human hand has 27 degree of freedom (DOF): each finger have 4 consist of

3 for extension and flexion and 1 for abduction and adduction; the thumb is

more complicated and has 5 degree of freedom (DOF), leaving 6 degree of free-

dom (DOF) for the rotation and translation of the wrist. In order to accurately

model the hand, a complete structure of muscles, tendors, bones is necessary.

The models we used is simplified version following assumptions: 1. The thumb

is independent of the other fingers. 2. Adduction and abdduction of the finger

joint are independent. 3. Motion frequency does not affect joint interdepen-

dence [9].

In this research, we focus on 5 finger (thumb, index, middle, ring, pinky) and

5



6 Chapter 2. Backgrounds and Aims

due to the muscles location we only considering flexion/extension (1 DOF) for

each finger.

2.1.1 Thumb Finger

Muscles connect to thumb finger can be compared with multiple wires that sup-

porting flag poles, the tension force from each muscles help maintain stability

in the articulated column formed by the bones of the thumb. Therefore, during

thumb motions all muscles attached to thumb are active.

Muscles

The muscles that locate in an extrinsic (forearm) area and attached to thumb

are shown below.

1. Flexor pollicis longus muscle (FPL) shown in Figure 2.1,

Figure 2.1: Flexor pollicis longus muscle (FPL) [11]

2. Abductor pollicis longus muscle (APL) shown in Figure 2.2.

3. Extensor pollicis longus muscle (EPL) shown in Figure 2.3.

4. Extensor pollicis brevis muscle (EPB) shown in Figure 2.4.
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Figure 2.2: Abductor pollicis longus muscle (APL) [11]

Figure 2.3: Extensor pollicis longus muscle (EPL) [11]

Motions

The motions of thumb also classify into flexion, extension, abduction, adduc-

tion, opposition, and reposition as shown in Figure 2.5. The relationship be-

tween muscles and finger motions are presented in Table 2.1 The grip motions

is combination of flexion and adduction, which is not fully obtainable from

forearm muscles. However, the flexion can represent the motions of grip while

counter action of extension also obtainable in forearm muscles. Therefore in

this research, we focus on obtain flexion and extension motions from Flexor

pollicis longus, Extensor pollicis longus, and Extensor pollicis brevis for thumb

finger.
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Figure 2.4: Extensor pollicis brevis muscle (EPB) [11]

Figure 2.5: Motions of thumb [25]

2.1.2 Other Finger

The muscles of other fingers consist of 6 muscles to stabilize and control the

movement of index finger. Pinky finger have one more muscle to perform op-

position and reposition attached to it.

Muscles

Two muscles located in hand are interossei in figure 2.6, and lumbrical in figure

2.7 responsible for abduction and adduction movement, also stability but do

not contribute to flexion and extension movement.

Four muscles located in extrinsic (forearm) provide flexion and extension move-
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Flexion Extension Abduction Adduction Opposition Reposition

Flexor pollicis longus strong medium

Abductor pollicis longus weak strong weak

Extensor pollicis longus medium weak weak

Extensor pollicis brevis medium weak weak

Table 2.1: The relative force applied by each muscles in forearm connect to thumb
finger in different thumb motions [14]

Figure 2.6: Dorsal interossei muscles [11]

Figure 2.7: Lumbricals muscles [11]
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ment consist of the following muscles.

1. Flexor digitorum superficialis (FDS) muscle shown in Figure 2.8 function

as flexion of the middle phalanges of the index fingers at the proximal in-

terphalangeal joints. However, under continued contraction, it also flexes

the metacarpophalangeal joints and wrist joint.

Figure 2.8: Flexor digitorum superficialis (FDS) [11]

2. Flexor digitorum profundus (FDP) muscle shown in Figure 2.9 function as

flexor of the wrist, metacarpophalangeal and interphalangeal joints. This

muscles support the motions of lumbrical muscles and make the finger

cannot fully perform extension if the wrist is fully flexed.

Figure 2.9: Flexor digitorum profundus (FDP) [11]

3. Extensor digitorum (ED) muscle shown in Figure 2.10 function on the
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proximal phalanges, acting to extend the metacarpophalangeal joint. Ex-

tension of the proximal and distal interphalangeal joints.

Figure 2.10: Extensor digitorum (ED) [11]

4. Extensor indicis (EI) muscle shown in Figure 2.11 function as extensor of

the index finger.

Figure 2.11: Extensor indicis (EI) [11]

Motions

All the motion of other fingers that control by muscles in extrinsic are flexion

and extension motions. Therefore, using the same method with thumb finger,

we will focus on flexion and extension from flexor digitorum profundus mus-

cles (FDP) and extensor indicis (EI) muscles of the index finger.
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Figure 2.12: Index finger motions [2]

2.2 sEMG signal

EMG signal used in this thesis are monopole EMG signal using Bio-semi EEG

system. Original desired to collect EEG data from brain but we convert it to use

with EMG signal from forearm. We also include conventional sEMG processing

method in this section.

2.2.1 Biosemi

Bio-semi is the new standards for multi channel, high resolution biopotential

measurement system for research applications. The system can increase the

number of electrode to 256+8 electrode and 7 sensor channels in a single ultra

compact box as shown in Figure 2.13

Conventional Bio-semi system used head cap with electrode holder for EEG

acquisition system as shown in Figure 2.14. The layout of each electrodes are

shown in Figure 2.15.

Head cap save time in the acquisition process of multi-channel EEG. All EEG

caps will have electrodes which are placed according to international standards.

EEG headsets should come with a variety of sizing options and be easily ad-
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Figure 2.13: Bio-semi EEG acquisition system [5]

justed to fit subject anatomy.

2.2.2 sEMG pre-processing

Motor units are skeletal muscles which are form of striated muscle tissue that

is under the voluntary control of the somatic nervous system. As the number

of activated motor unit increase mean amplitude of EMG signal was increase as

well. Therefore, the maximum amplitute of EMG measured in an experiment

can indicate amplitude of action force of muscles.

The electrochemical signals will arrive at neuromuscular junction which is the

gap between motor neuron and muscles fiber that use chemical to communi-

cate. Muscles contraction start and result in the depolarization of the muscle
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Figure 2.14: Head Cap 160 medium size [5] Figure 2.15: Lumbricals muscles [5]

fiber, which is propagated by saltatory conduction (propagation of action po-

tentials along myelinated axons from one node of Ranvier to the next node, in-

creasing the conduction velocity of action potentials long its axon. While Ca ion

release in motor units, the muscles contraction will continue active and result

in slowly declined active contraction due to the Sarco/endoplasmic reticulum

calcium-ATPase (SERCA) pumps calcium ion back. Result in Ca ion declines to

resting levels, the force declines and relaxation occurs.

The processing step of EMG signal from bio-semi system can be classified roughly

into 5 steps of Re-referencing, Rectification, low-pass filter, and Normalization.

Re-referencing

The bio-semi have active electrode, therefore it can record data reference-free

and use re-reference after experiment. The re-reference using average reference

from all channel [5].

Re-referencing was used with average re-reference in EEGLAB plugin on MAT-

LAB 2019b platform. The method was calculate average value of all electrode

and use that value as nominal signal for all electrode. This method proof to be

effective in conventional EEG signal pre-processing.
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Rectification

Rectification translate raw EMG signal to all positive. The propose of rectifica-

tion the signal was to ensure the raw signal does not provide average zero, this

was affect of raw WMG signal have both positive and negative value. There is

mainly two method to rectify EMG signal.

Absolute filter inverse all negative signal into positive signal and provide good

muscles activation graph which increase stability of EMG signal. However, ref-

erence electrode should be firmly place on skin that provide minimal distant to

bone to reduce noise as much as possible. Another method is to use multiple

electrode in the same area and average the reference signal across all electrode.

Fail to provide good reference signal will lead to abnormal high muscles activity

that got enhance by absolute rectification method.

Positive filter rejects all negative signal and leaves only positive signal as shown

in Figure 1.1, the filter might reject some actual muscles activity but also reduce

noise from reference. Best application for the positive filter is the muscles that

provide very high EMG signal and movement noise. However, moving artifact

and motions noise still affect the amplitude and quality of EMG signal.

Other methods also include EMG signal decomposition. This used theory that

EMG signals measure by surface electrode made up of several motor units un-

der that electrode area.

Normalization

Different person has a different characteristic of muscles, the same activation

potential of the EMG signal will not produce same force or muscles activity.

Moreover after extended exercise or muscles recovery period, the relation be-

tween force, EMG signal, and joint angle can be changes. Therefore, the method
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to simplify EMG signal from different people that produce different force for

different joint angle called normalization. There are four methods considered

in this thesis,

• Maximum (peak) activation levels during maximum contractions, the most

common method to normalize EMG signals from muscles of interest recorded

from the same muscles during a maximal voluntary isometric contraction

(MVIC) as a reference value. This method required reference test before

every experiment by measure the muscles of interest and ask subject to

produce the maximum force on force sensor. Based on the repeat-ability

between tests subjects, many research recommend to conduct MVIC 3

times and provide rest time between each experiment at least 2 minutes

to avoid fatigue [22].

After normalization, EMG signal is considering as the percentile of refer-

ence EMG signal with force and lead to easy force estimation from muscles

by EMG signal. However, this reference is based on isometric contraction

which means the joint angle must remain the same as the length of mus-

cles must not changes.

• Peak or mean activation levels obtained during the task under investing,

this method based on the maximum value given by subject throughout the

experiment and produce high reliability between experiments. However,

the use of this method to normalize EMG data to compare muscles ac-

tivation levels between individuals and between different muscles in the

experiment is not valid. The reason is the reference value is in task and

changes according to subject, it cannot compare muscle activation levels

between different tasks [1, 38, 6, 18].

• Activation levels during sub-maximal isometric contractions, the main
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problem of the first and second method is the difficulty in getting subjects

to mobilize their maximal potential especially in symptomatic subjects

who cannot perform a maximum contraction because of pain, muscles in-

hibition, or risk of injury [6, 18, 35]. Therefore, the use of submaximal

contraction levels produces reference EMG levels for the purposes of nor-

malizing the EMG signal by use EMGs from contractions that lower than

80% of maximal voluntary isometric contraction (MVIC) [8].

In summary, only MVICs method can be validly used to compare muscle activ-

ity levels and patterns between muscles, tasks, and individuals but the subject

are constant to isometric contraction and over maximum value are possible.

Peak or mean activation levels obtained during the task under investing also

possible because the musculoskeletal model also required individual parame-

ters.

2.2.3 Limitation of EMG signal

Surface EMG signal have limited usage due to problems associated with it. As

the muscles activity voltage travels to the surface of the skin, the Adipose tissue

(fat) can affect EMG recordings by obstructing the voltage.

EMG signal are typically accurate with individuals with lower body fat and

complaint skin. For example, young people is more accurate than old. Also the

cross talk between muscles reduce reliability of the signal. Deep muscles also

hard to detect.
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2.3 Aims

In this study, we will considering the best method to detect EMG signal from

deep muscles (finger muscles) by compare between conventional method and

new EMG array method. Therefore, three objectives we would like to achieve

from this study is;

1. The possibility to changes from conventional pattern recognition system

to regression which is the same as musculoskeletal model.

2. The method to provide better deep muscles EMG signal by signal process-

ing many sensor around forearm.

3. The performance of such method compare with conventional one.
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Finger angle and force estimation

using musculoskeletal model

Conventional prosthetic hand control system controls finger using pattern recog-

nition from surface ElectroMyoGraphy signal (EMG) from muscles in the fore-

arm. Most of the finger muscles are located in the forearm with tendon con-

nected to the finger, elbow, shoulder skeletal. Pattern recognition can provide

only limited posture and grip motion which is different from natural muscu-

loskeletal models of hand. Although science understands the relation between

muscle activity and finger motion but most prosthetic arms still operate using

the conventional method of pattern recognition such as machine learning and

artificial neuron network.

The proposed method used sEMG from muscles and movement of finger to

train model to estimate equilibrium position and stiffness in one degree of free-

dom (DOF) for each finger call musculoskeletal model. In this study, we in-

terested in using the same principle of the musculoskeletal model to estimate

equilibrium position and stiffness of thumb and index finger separately by mea-

19
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suring position in 3-dimensional space. The result will be confirmed by mea-

suring position, force and EMG of the subject simultaneously.

3.1 Aim of this section

This study provided new study in the field of thumb and index finger angle

and force estimation. The main target is to measure the characteristic of thumb

and index finger muscles using proposed MSM. The sEMG was considered as

muscle contractions and motion of thumb and index finger was simplified into

flexion (+) and extension (-) motions.

3.2 Methodology

The method used to calculate thumb and index finger angle from surface EMG

signal is mathematic equation derived from MSM. Stiffness and force command

were converted into torque using simple spring theory, then applied to motor.

All calculations were performed in computer with specification of;

1. Microsoft Windows 10 64 bit

2. Processor Intel(R) Xeon(R) CPU E5-1680 v4 @ 3.40GHz, 3401 Mhz, 8

Core(s), 16 Logical Processor(s)

3. Installed Physical Memory (RAM) 64.0 GB

4. Intel(R) C610 series/X99 chipset

5. NVIDIA Quadro P2000
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Figure 3.1: Structure of musculoskeletal model [16].

3.2.1 Musculoskeletal Model

The musculoskeletal model (MSM) is second order linear regression with con-

strain on some parameters to reduce the complexity of finger musculoskeletal

structure according to Mykin model [40]. The model using 2 muscles as springs

connect to one degree of freedom joint and controlled by muscle activation as

shown in Figure 3.1. In real anatomy, musculoskeletal structure is consist of

more than single muscles for joint and multiple supported muscles for stabi-

lization. However, most of them work as an independent group that provide

almost uniform motions for finger motion [30]. In this paper, flexor muscles

was referred as muscle 1 and extensor muscles was referred as muscle 2.

According to Wondae R. et al, the location of sEMG sensor was identified with

anatomy and motion of subject according to human forearm [26]. Thus, our

research started from select the interested muscles that responsible for finger

motion. In this case, flexion and extension motion. Also the muscles need to be

large enough to acquired good sEMG signal. Thumb has 4 muscles connected,

and finger have 5 muscles. For this study, we select:

For thumb finger;
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1. Flexor pollicis longus muscles (FPL)

2. Extensor pollicis brevis muscle (EPB)

For index finger;

1. Flexor digitorum superficialis (FDS)

2. Extensor digitorum (ED)

The sEMG sensor was place by measuring sEMG signal while asking the subject

to move the finger in flexion and extension motions to find the signal. The posi-

tion also receive small adjustment multiple time. Finally, the reasonable signal

to noise ratio of the subject was acquired. In case of signal strength reduction,

the data of particular experiment was rejected and the subject repeated the ex-

periment.

Muscles Tension

The muscle tension or force was calculated from muscles activity in which re-

ferred by sEMG signal of muscles i when i represent flexion muscle and ex-

tension muscle as 1 and 2, respectively. The sEMG signal was rectified, noise

level rejected and normalized with filters of the following low-pass filters with

impulse response characteristics shown in Equation 3.1. The characteristics

were derived from the study on estimation of joint torque with neural networks

which reproduce latent, contraction and relaxation period between sEMG sig-

nal and muscle tension [21].

h(t) = 6.44× (e−10.80t − e−16.52t) (3.1)
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The tension Fi of muscles i is expressed as Equation 3.2.

Fi = (k0i + k1iui)(l0i + l1iui − aiθ) (3.2)

ai denotes moment arm of muscle i; k0i , k1i , l0i , l1i , parameters (all in posi-

tive values) to define the characteristics of muscle i, θ indicate the joint angles,

where angle in flexion is expressed as positive. Signs for moment arm are ex-

pressed as follows to indicate the effects resulting from the difference in posi-

tion of the muscles: a1 > 0, a2 < 0.

Joint Torque, Equilibrium Points and Stiffness

The torque of each muscle represented by muscle contraction, string constant,

and length of muscles, which were separated between flexor and extensor. The

torque of said joint was expressed by adding up torque of flexor and extensor as

shown in Equation 3.3 [27], where torque in the flexion direction was expressed

as the positive value.

τ =
2∑
i=1

ai(k0i + k1iui)(l0i + l1iui − aiθ) (3.3)

Equilibrium point of the joint was calculated by solving Equation 3.3 for the

joint angle (θ) that τ = 0. Equilibrium points were defined as the angles at

which torque generated by muscles was balanced to stop when no external

forces were applied to the joints as shown in Equation 3.4 [27].
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Θeq =
∑2
i=1 ai(k0i + k1iui)(l0i + l1iui)∑2

i=1(ai)2(k0i + k1iui)
(3.4)

Stiffness K was defined by torque generated by displacement between equilib-

rium point and joint angles or partially differentiating Equation 3.3 by joint

angles (τ) as shown in Equation 3.5.

K = −∂τ
∂θ

=
2∑
i=1

(ai)
2(k0i + k1iui) (3.5)

Therefore, the simple spring equation could represent the relations between

joint torque, equilibrium point, and stiffness K as show in Equation 3.6.

τ = −K(θ −Θeq) (3.6)

3.2.2 Linear Regression Model

Linear Regression Model (LRM) was used in this research to make it easier to

understand the impact of MSM and compare it with other conventional models.

θlif ,i = βi,0 + βi,1 ∗ui,1 + βi,2 ∗ui,2 + ε (3.7)
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3.3 Experiment Setup

The experiment performed on 10 right-handed male subjects age between 21-28

years old with an average age at 25.2. Subjects were given a command by stim-

ulus program showing the preferred action on the screen which was 2.5 meters

away as shown in Figure 3.2. The motion of fingers were captured by Optitrack

with Baseline Upper Body + Fingers (33). The markers were placed on proxi-

mal interphalangeal joints of thumb finger, distal interphalangeal joints of the

index finger, and proximal interphalangeal joints of index finger according to

human anatomy.

Figure 3.2: Stimulus was shown by monitor place 2.5 meters away from subjects in
motion capture environment.

Surface EMG sensors with local reference were placed on Flexor Pollicis Longus

(FPL), Flexor Digitorum Superficialis (FDS), Extensor Pollicis Brevis (EPB), and

Extensor Indicis (EI) as shown in Figure 3.3. The wireless EMG sensor and

optical motion capture were used to ensure maximum freedom of motion while

measuring finger angle and EMG signal, simultaneously. The data from both
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devices were synchronized and stored using LSL (lab streaming layer). Each

subject performed at least 10 trials with 5 trials for variable estimation and 5

trials for verification choosing randomly. In each trial, the calibration period

was set at the start of the trial to reduce noise.

Figure 3.3: Trigno Wireless surface EMG sensors were placed on Flexor Pollicis Longus
(FPL), Flexor Digitorum Superficialis (FDS), Extensor Pollicis Brevis (EPB), and Exten-
sor Indicis (EI).

3.3.1 Experiment Protocol

In this study, we used MSM and LRM to estimate finger angle and force from

EMG signal. However, due to technical limitation we could not measure both

finger angle and force at the same time, resulting in separation of the experi-

ment into two parts of finger angle experiment and finger force experiment.

Finger angle experiment

In order to confirm the performance of MSM on finger, we designed the experi-

ment protocol to measure finger muscle activity and finger motion, simultane-

ously. The motion we were interested in this research was thumb flexion, thumb
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extension, index flexion, and index extension. Previous research provided ex-

periment protocol which able to avoid muscle fatigue [27]. The protocol was 3

seconds of activation and 3 seconds of rest between activations. In one trial, in

order to ensure the performance of our model to estimate small force, we sepa-

rated flexion motion into full flexion and half flexion as shown in Figure 3.4.

Figure 3.4: The protocol was 3 seconds of activation and 3 seconds of rest between
activations. In one trial, in order to ensure the performance of our model to estimate
small force, we separated flexion motion into full flexion and half flexion.

Finger force experiment

In order to measure the force from finger, we used replicate version of Reach-

Man robot [34] and designed to separate each side of ReachMan robot to accom-

modate only thumb and index finger as shown in Figure 3.5. The experiment

protocol was similar to previous finger angle experiment but reduce number of

trails to 3 trials per finger to reduce fatigue.

3.3.2 Performance Indicator

We present the result from this study using performance indicators for each

subject. correlation coefficient (CC) and Root-mean-square-error (RMSE) was

selected.
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Figure 3.5: We used replicate version of ReachMan robot [40] and designed to separate
each side of ReachMan robot to accommodate only thumb and index finger.

Correlation Coefficient

The correlation coefficient (CC) is a method to measure the strength of relation-

ship between two variables. CC range is between -1.0 which represent perfect

negative correlation (inverse) and 1.0 represents a perfect positive correlation

(increase and decrease the same amount). CC of 0.0 no relationship between

two variables. In this study we used equation for correlation coefficient as Equa-

tion 3.8.

CC =
1

n− 1

n∑
i=1

(xi − x
Sx

)(yi − y
Sy

) (3.8)

Root-mean-square-error

The Root-mean-square-error (RMSE) used to measure different of 2 variables.

The equation was shown in Equation 3.9.

RMSE =

√∑n
i=1(xi − yi)2

n
(3.9)
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3.4 Result

The result in this study was the statistical analysis (CC and RMSE) between

measured finger angle, force and estimated finger angle, force from MSM and

LRM. Each subject performed 5 trials of each experiment (thumb and index

finger). The first trial was used to estimate finger parameter (k0i , k1i , l0i , l1i).

And the other 4 trials were used as test, 5-fold verification was performed to

generate 20 data of CC and RMSE to ensure the performance of model.

In the first experiment, the estimated angles from MSM and LRM were com-

pared with measured finger angles in time serial as shown in Figure 3.6. The

statistical analysis (CC and RMSE) of each subject were shown using box-and-

whisker in comparation between MSM and LRM model in Figure 3.7 (thumb

finger) and Figure 3.8 (index finger). The result showed different between MSM

and LRM average correlation coefficient of 0.05 with RMSE average at 16.12

degree. LRM showed lower CC and higher RMSE which was expected due to

lower order of regression.

Figure 3.6: The estimate angle was compared with measured finger angles in time serial
(Correlation Coefficient: 0.83) Red: Musculoskeletal model (MSM) , Yellow: Linear
Regression model (LRM), Blue: Measured from Optitrack.

For the second experiment, the estimated force from MSM and LRM were com-

pared with measured finger force in time serial as shown in Figure 3.9. The
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Figure 3.7: Thumb finger angle correlation and RMSE between estimated angle using
musculoskeletal model, linear regression, and measured angle using Optitrack system.

statistical analysis (CC and RMSE) of each subject were shown using box-and-

whisker in comparation between MSM and LRM model in Figure 3.10 (thumb

finger) and Figure 3.11 (index finger).

The p-value of CC values between MSM and LRM calculated by using pair t-test

for finger angle were below 0.05 which were considered statistically significant.

However, for force estimation, p-value were higher than 0.05 which means no

significant difference between MSM and LRM.

3.5 Discussion

Generally, the statistical analysis showed high correlation between sEMG sig-

nal and thumb, index angle estimated by MSM and LRM. MSM showed bet-

ter performance due to 2-order regression. However, MSM was still unable to

maintain finger angle during smaller activation after motion due to its lack of

damper element.

For the first experiment, the result showed highly consistence CC with differ-
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Figure 3.8: Index finger angle correlation and RMSE between estimated angle using
musculoskeletal model, linear regression, and measured angle using Optitrack system.

ent around 0.04±0.06 for thumb finger and 0.08±0.06 for index finger which

was relatively low in term of CC value. This indicated that MSM and LRM per-

formed very similarly with small improvement. In term of RMSE, it showed

similar improvement in the same trend as CC value. Some subject such as sub-

ject 8 and 10 showed very small improvement in both CC and RMSE. This indi-

cated the relation between sEMG and finger angle of those subjects to be almost

first-order linear. The average RMSE of finger angle was 20 degree which was

around 10% (range is 180 degree), This error came from sEMG signal reduction

after the target position was reached.

For the second experiment, the result were still consistence for thumb finger but

less consistence in index finger. In some subject, the force estimated using LRM

showed better performance. The different between MSM and LRM also became

much smaller, indicated that finger force might be able to represent using only

1-order linear regression. MSM also showed deep dip before force activation.

This happened because subject unconsciously extended their fingers before the

experiment which could be reduced by repeating the experiment multiple times



32 Chapter 3. Finger angle and force estimation using musculoskeletal model

Figure 3.9: The estimate thumb force was compared with measured finger force in time
serial (CC is 0.92) with blue line: estimated from MSM or LRM red line: measured from
optitrack motion tracking.

Figure 3.10: Finger force correlation and RMSE between estimated force using muscu-
loskeletal model, linear regression, and measured force using ReachMan Robot.

on one subject. However due to muscles fatigue, we try to limit the number of

repeated experiments to as small as possible for each subject.

The results of MSM and LRM in force were not different because the relation

between EMG signal and force from finger was linear. Therefore, MSM did not

provide any advantage over LRM.
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Figure 3.11: Finger force correlation and RMSE between estimated force using muscu-
loskeletal model, linear regression, and measured force using ReachMan Robot.
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Array sEMG system for deep

muscles investigation.

After regression method was confirmed using musculoskeleton model and con-

ventional Surface ElectroMyoGraphy (EMG) sensor. Many problem was arise

as followed.

• sEMG sensor needs to be directly above the joint control muscles and also

align with muscle direction. This leads to rejecting some of the subjects

who have too large wrist muscles and we cannot find the location for fin-

ger muscles.

• During the experiment, subjects must not changes posture or rotate the

wrist. This changes the location of muscles and in some cases, the experi-

ment needs to be redone. The subject was asked to repeat all the processes

again if sensors cannot acquire reasonable data.

• Cannot differentiate between wrist and finger muscles due to close prox-

imity. This happened to subject with small arms who have relatively small

34
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finger muscles and cannot find the location in which the EMG sensor can

sense those muscles.

• Due to the contamination of the wrist muscle signal, some subjects need

to be trained to control the finger without co-contraction of the wrist.

In order to address such issue, the method inspired by EEG system by place

electrodes around the forearm and collect data simultaneously. We called this

system array EMG sensors and select only signal that have potential to explain

motion. The arm sleeve was made by bio-semi device, 96 channel with distance

between electrode, in ventral-dorsal direction 20 millimeters, and radial-ulnar

direction 16.6 millimeters.

We using this system with independent component analysis (ICA) and find the

best independent component (IC) that match the each finger motions while lo-

cated inside the anatomical location. We extract IC from EMG signal, then

finger angles were estimated from linear regression model (LRM) and muscu-

loskeletal model (MSM). The result was analysis using correlation coefficients

(CC) and root-mean-square-error (RMSE) for all fingers. The average CC val-

ues were higher than 0.7 with RMSE less than 0.1 demonstrating the strength of

the linear relationship. The different in performance of LRM and MSM suggests

that the IC method can reduce noise while increase the signal to noise ratio. The

result show ICA provide higher CC value at around 0.2±0.10. The result of this

study indicate array EMG sensors with ICA can improve the quality of signal

while reduce problems of conventional EMG sensors. This result in raise the

performance of regression method to imitate natural finger motion.
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4.1 Aim of this section

In this thesis, we proposed a method using array EMG system around the fore-

arm. The EMG signal was process by ICA to find IC and select IC that acti-

vate in the same period and also originated from the same area as indicated by

anatomy data. Finally, the estimated finger angle and measured finger angle

were statistically compared using correlation coefficients (CC) and Root-mean-

square-error (RMSE).

4.2 Methodology

The proposed method using array EMG sensors on the forearm. The arm mask

was made with each sensor size around 10 millimeter and place apart with dis-

tant of minimal 15 millimeter. Pattern of placement was 10 column horizon-

tally and 5 row vertically on both side (100 position) according to Figure 4.1.

Electrode was placed in zig-zag pattern to minimize distant between each group

of electrode. The electrodes was separated into 2 groups of flexor: A1-A32, C1-

C16 (48 channels), and extensor: B1-B32, C16-C32 (48 channels) according to

Figure 4.2.

4.2.1 Subjects

In this experiment, we have 10 healthy subject (7 males and 3 females), age

between 24 and 28 years old with mean of 26.2 and SD of 1.8. The study proto-

col was approved by the ethics committee of the Tokyo Institute of Technology.

The experiment was carried out in accordance with the Declaration of Helsinki.

Written informed consent was obtained from each participant before the exper-

iment.
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Figure 4.1: The arm mask was made with each sensor size around 10 millimeter and
place apart with distant of minimal 15 millimeter. Pattern of placement was 10 column
horizontally and 5 row vertically on both side (100 position).

4.2.2 Experiment Protocol

All subject performed 30 experiments of 5 experiments per each finger (Thumb,

Index, Middle, Ring, and Pinky) and 5 experiments for test experiments.

We conduct 2 kind of experiment;

• Training experiment to collect data for parameters estimation [16]. The

experiment was desired to minimize the cross-talking between different

finger muscles to acquire a better EMG signal.

• Testing experiment to collect data for verification of proposed method.

The other finger that do not have stimulus was expected to be rest at nat-
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Figure 4.2: The arm mask was made with each sensor size around 10 millimeter and
place apart with distant of minimal 15 millimeter. Pattern of placement was 10 column
horizontally and 5 row vertically on both side (100 position).

Figure 4.3: Experiment flow for train data and test data, the finger Thumb, Index,
Middle, Ring, and Pinky. In flexion, subject flex finger to 0.9±0.175 rad or 162±10
degrees for 2 seconds. rested for 2 seconds, extend finger to -0.20 rad or -36 degree) for
2 seconds, and rested for for 2 seconds.

ural position.



4.2. Methodology 39

In each train experiments, subject flex finger to 0.9±0.175 rad or 162±10 de-

grees for 2 seconds. rested for 2 seconds, extend finger to -0.20±0.175 rad or

-36±10 degree) for 2 seconds, and rested for for 2 seconds. This cycle was re-

peated 6 times (see Figure 4.3). In each experiments, there is 5 second calibra-

tion period to detect noise and prepare subject for experiment.

In testing experiment, only 1 finger is move to 0.9±0.175 rad or 162±10 degrees

for 2 seconds. rested for 2 seconds, extend -0.20±0.175 rad or -36±10 degree

for 2 seconds, and rested for another 2 seconds. This cycle was repeated 2 times

per experiment.

Figure 4.4: Example time serial data. Each section of graph show the separation using
stimulus signal (trigger).

In case of interconnection between finger muscles lead to motion of other finger.

For example, When attempting to move the ring finger, it is likely to cause

movements in the middle and pinky fingers. This following our aim to study

the natural motion of human finger. Therefore, the subjects were instructed to

not attempting to resist the motion of other fingers.

4.2.3 Independent Component analysis (ICA)

Independent Component Analysis separates independent sources linearly mixed

in multiple sensors. We assumed that the signal from the muscles should be
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scattered to multiple sensors that located around the forearm, this method was

used to extract the EMG signal of muscle groups that corresponded to flexion

and extension period of interested fingers.

EMG was sampling with 2000 Hz, band-pass filtering between 5 Hz and 200

was applied. the data were resampled to 500 Hz to reduce computational time.

The calculate done in MATLAB with MoBILAB toolbox51. The EEGLAB ver-

sion 15 (https://sccn.ucsd.edu/wiki/EEGLAB) was used to interact with ICA

algorithms and EMG data. From several ICA in EEGLAB, we select adaptive

component analysis (AMICA) according to these features [24]:

• Adaptive Source Densities

• Multiple / Mixture Models

• Data Likelihood (Model Probability)

• Parallel Implementation

All calculation was perform with the same machine as previous chapter 4.

With my IC, this cause problem of how to pick a appropriate IC for each mus-

cles.

To understand the source of IC signal, we illustrate the weight of IC in spatial

space and compare it with anatomical data.

To determine the source of the IC signal, we compared its location with the

anatomical data. The weight was plot on 2D space and changes value into color

of blue to red as shown in Figure 4.5. Channel A1-A32 and C1-C16 corre-

sponded to the left side as mostly flexor. Channel B1-B32 and C17-C32 corre-

sponded to the right side as mostly extensor.



4.2. Methodology 41

Only 16 IC with top score CC value will be displayed with its topology plot to

remove noise. The best IC was found from the location that correlate to the

general anatomy data (see Figure 4.6).

Figure 4.5: Configuration (July 2018) of topology plot for show IC weight as color from
-1 (blue) to 0 (green) to 1 (red). Identify the source of IC data on the spatial array EMG
system. Topology plot find and match the relation between weight of IC and electrode
channel.

Figure 4.6: 16 IC with top score CC value.

4.2.4 Topology plot to investigate spacial data of independent

component (IC)

The topology plot shows spatial data of the weight of the independent com-

ponent (IC) in sensors. Topology plot consist of 2 part which shown sensor
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located in flexion (inner arm) and extension (outer arm) groups. These group

was rearrange to left and right side, respectively as shown in Figure 4.5.

The bio-semi electrodes were separated into a group of 4 electrodes with a max-

imum distance between electrodes of 15 centimeters, therefore, electrodes were

arranged in a S pattern to compliant. The image of the topology plot also re-

place channel labels with the relative geometry location of sensors on the fore-

arm and from here onward, we will describe the topology in term of array EMG

area not channel labels.

Figure 4.7: The general location of muscles activation according to anatomy data ac-
cording to finger motion (flexion and extension) and finger.

The EMG signals representative was selected by separate the signal from area

according to The general location of muscles activation according to anatomy

data according to finger motion (flexion and extension) and finger (see Figure

4.7). Each channel signal was compare with the finger motions for correlation

coefficient (CC) to find the electrode that provided the best-fitted pattern be-

tween EMG signal and finger motions.
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4.2.5 Selection of IC data

This section explained in deed how we select each IC to represent finger flexor

and extensor.

intuition

We check time serial data and spacial data of each IC, for example, 32 IC from

thumb flexion and extension. Time serial present in Figure 4.8 and spacial data

present in Figure 4.9.

Figure 4.8: Time serial show the period of flexion and exntension of 32 IC from thumb
flexion and extension motion

After we plot all of weight of first 32 IC, we can observe the spatial data of each

IC and can estimate roughly where the signal came from.

For this dataset of thumb flexion and extension motions. The location of thumb

flexor should be around top right of the left panel which related to component

1 and 2, While the location of thumb extention should be around middle right

of the right panel which related to component 3, 6 and 14
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Figure 4.9: Topology plot show the location of 32 IC from thumb flexion and extension
motion

If the signal show location in expected area and activation pattern going ac-

cording to experiment expectation, we considering it potent for represent that

muscles. We checked and confirmed that component 1 and 2 were activate in

flexion period. Likewise, component 3, 6 and 14 were activate in extension pe-

riod. Lastly, component 4 and 32 were unable to confirm the activation period

which indicate noise signal.

Confirm of muscles location using anatomy data

We investigate the anatomy data to show our result is correct.

The muscles we interest in this section consist of 5 muscles:

• 2. Flexor carpi radialis muscle (Wrist Flexor)

• 6. Flexor digitorum superficialis Muscle (Finger Flexor, intermediate layer

muscles)

• 14. Flexor carpi ulnaris muscle (Wrist Flexor)
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Figure 4.10: Identify the different between wrist and finger muscles signal. We check
the location of muscles using anatomy data, we found. 2 wrist muscles, 2 finger mus-
cles, and 1 thumb muscles.

• 15. Flexor pollicis longus muscle (Thumb Flexor)

• 18. Flexor digitorum profundus muscle (Finger Flexor, Deep layer mus-

cles)

as shown in Figure 4.10.

The sensor we expected to receive the signal was, for finger muscles, sensor in

row B1, A1, A2 (Flexor digitorum superficialis Muscle, intermediate). Sensor in

row A5, and B5 (Flexor digitorum profundus muscle, deep muscles). For wrist

muscles, Sensor in row B1, A1, A2 (Flexor carpi radialis muscle). Sensor in row

A3, and A4 (Flexor carpi ulnaris muscle) as shown in Figure 4.11.

The time serial data was used to find component which activate in griping pe-

riod as shown on Figure 4.12 and 4.13.

Match the component with topology plot as shown on Figure 4.14. We can

assume that component 1, 5, and 9 was Flexor digitorum profundus muscle
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Figure 4.11: We add the sensor number to represent which sensor row should response
to that muscles.

(Finger Flexor, Deep layer muscles) and component 27 was Flexor digitorum

superficialis Muscle (Finger Flexor, intermediate layer muscles).

In case of more than IC match the muscles, we select IC with highest signal to

noise ratio.

Dipole signature

As we check the topology plot, we can observe most component follow dipole

from ICA in EEG analysis as shown in Figure 4.15

We can observe some distant between highest and lowest weigh value, this also

indicate di-pole data of component. This might indicate deep muscles.

4.2.6 Finger angle tracking using realsense camera with convolutional-

pose-machine

In order to find finger angle, at the time of experiment we do not have method to

extract all 5 fingers angle simultaneously. We use convolutional-pose-machine
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Figure 4.12: IC activation in time serial with indicate griping period and component 1,
5, and 9 which we interested.

Figure 4.13: IC activation in time serial with indicate griping period and component
27 which we interested.

[37] on realsense camera to extract ground-truth measurement, a state-of-the-

art posture estimator. The model was remodel to improve performance by add

depth layer with image from Realsense depth camera. The training process

using joints’ 2D position from the five fingers. In calibration period, all finger

was record nominal range of each finger as shown in figure 4.4. Then we applied
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Figure 4.14: The topology plot of component 1, 5, 9, and 27.

Figure 4.15: Topology plot from IC that might indicate deep muscles.

low-pass filter with cutoff frequency of 1 Hz to reduce noise during posture

estimation.

Figure 4.16: Left: example of data from convolutional-pose-machines. Right: the finger
angle was defined as normalized root mean square error (NRMSE) in 2D space.
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Finger angle (θf ) was calculated from direction indication of trigger (Tdir) which

provide the direction of flexion and extension in finger angle and normalized

root-mean-square error (NRMSE) as shown in Equation 4.1. The maximum

of flexion and extension motion that depend on experiment trigger value was

2.094 radian or 120 degree and -0.523 radian or -30 degree, respectively.

θf = Tdir ·NRMSDf (4.1)

The low-pass filter was applied to reduce noise in estimated finger positions

before calculate normalized root-mean-square error (NRMSE). The rest period

data also used to adjust the nominal range of each finger to reduce static error

due to subjects moved their hand out of detection range. The subject was asked

to perform section of experiment again if the convolutional-pose-machines could

not track finger or loss track while experiment was conducted.

Optitrack thumb, index, and pinky finger tracking system was used to confirm

the performance of the realsense camera with convolutional-pose-machine’s

finger tracking. The optitrack was setup in Baseline Upper Body + Fingers

(33) to extract thumb, index, and pinky finger angle in 3D space while was

normalized into 2D space data (axis on the hand direction and palm). Thus,

we compare only 3 fingers to evaluate the performance between convolutional-

pose-machine and the Optitrack system. The result showed an average R2 of

0.87 with CC at 0.9040±0.1, this implied that the convolution-pose-machine

provides an accurate ground-truth measurement of the finger angles.
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4.2.7 Data acquisition

The subjects were sat in front of screen that given instructions. The screen to

subject distant is 50 centimeters with SD of 20 centimeters according to subject

arm length. Right hand was place in front of realsense camera to capture finger

motions. The array EMG system was attached to subjects’ right forearm.

Figure 4.17: Example of bio-semi eletrode sensor in first experiment, other experiment
also use the same pattern, please notice the CMS and DRL electrodes. The location
of this electrodes need to changes according to subject with 1. on the back of hand 4
centimeters apart, 2. between the hand and upper arm, 3. in position A26 and B26.

Data was acquired as follow:

• EMG signal: Biosemi Active Two, 24-bit resolution, sampling rate: 2048

Hz.

• Finger angle was estimated using realsense camera with convolutional-

pose-machine with sampling rate of 100 Hz.

• The experiment stimulus work in MATLAB 2015b (The MathWorks, Inc.,

U.S.A.) program.

• Lab Streaming Layer [20] synchronize the EMG, finger angle, and experi-

mental stimulus.

EMG signals sampling at 2048 Hz, The electrodes were separated into three

groups: Group A represented mainly flexion muscles located in the inner fore-

arm; Group B represented mainly extensor muscles, which are located in the
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outer forearm; Group C was optional for the subject who has long arm and

were separated into two groups of 16-flexion and 16-extension electrodes. In

case of CMS and DRL electrodes, the location of this electrodes need to changes

according to subject with 1. on the back of hand 4 centimeters apart, 2. between

the hand and upper arm, 3. in position A26 and B26 as shown in Figure 4.17.

4.2.8 Finger angle regression model

Musculoskeletal Model (MSM)

Musculoskeletal model (MSM) was a second order regression with constrain to

control the variable according to Mykin model [30].

Linear Regression Model (LRM)

Linear Regression Model (LRM) was a first order regression without constrain.

4.2.9 Performance Indicators

In this study, we used representatives of performance for our proposed system

using performance indicators. The representatives are correlation coefficient

(CC) and Root-mean-square-error (RMSE) with mean and standard deviation

according to section 3.3.2.

4.3 Results

The monopole EMG signal was collect from 96 channel Bio-semi sensor. Raw

signals was re-reference (using average reference) and band-pass filtering be-

tween 5 Hz and 200 Hz to reduce noise [29]. The EMG channels was select for

each finger muscles with 2 criteria:
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• EMG channels has to be within the area where we expect the muscle to be

located as shown in Figure 4.7;

• That channel has the highest correlation between EMG signal and ground-

truth finger motion.

Next ICs was calculated from all EMG channels using AMICA. After AMICA,

the EMG and IC signals were rectified and low-pass with cut-off frequency of 3

Hz according to [19]. The IC was select for each finger muscles with multiple

criteria according to Figure 4.6.

The train data of EMG, IC, and finger angle was used to find muscles pa-

rameters for MSM and beta variables for LRM. Then, we used those parame-

ters and variables to estimate finger angle from each method (see Figure 4.18).

These estimation were compared with the ground-truth finger angles from the

convolution-pose-machine to calculate the CC and RMSE (see Figure 4.19). The

result from MSM and LRM was used to test the hypothesis that CC and RMSE

of IC and EMG method were statistical significantly different, a paired t-test

was used. The p-values of CC and RMSE between IC and EMG were below 0.05

which considered statistically significant.

To reduce complexity, the analysis result of MSM using EMG and IC will be

called MSM-EMG and MSM-ICA, respectively. Likewise, the analysis result of

LRM using EMG and IC will be called LRM-EMG and LRM-ICA, respectively.

Figure 4.20 and Figure 4.21 shown CC in boxplot and RMSE in barplot average

and SD from all subject for each finger. MSM-ICA was represented with red

area, MSM-EMG was represented with green area, LRM-ICA was represented

with yellow area, LRM-EMG was represented with blue area.

The first analysis used 5 train data experiments to find finger muscle param-
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Figure 4.18: Example of time serial data of index finger between estimated using MSM
and measurement from realsense camera with convolutional-pose-machine.

Figure 4.19: Research analysis flow.

eters for MSM and variables for LRM. The model was validated using 5 test

data experiments (see figure 4.20) and statistical analysis. This analysis show

the performance of proposed method in case of abundance dataset can be ac-

quired. Therefore, the performance was expected to be high.

The second analysis used 1 test data experiments to find finger muscle param-

eters for MSM and variables for LRM. The model was validated using 4 test

data experiments (see figure 4.21) and statistical analysis. This analysis show

the performance of proposed method in case of small number of dataset was ac-

quired. Therefore, the performance was expected to be lower than first analysis.

5-fold validation was adapted to ensure non-bias result.
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Figure 4.20: Performance of proposed method in first analysis: 5 train data for training
and 5 test data for testing. The correlative coefficient was in boxplot and root-mean-
squre-error in barplot. number of data = 50 (10 subjects * 5 tests).

4.4 Discussion

The performance of ICA and EMG show almost 0.1 better in ICA. Meanwhile

MSM and LRM show better performance in both CC and RMSE for MSM. The

different between MSM and LRM were explained by the second order of MSM

help in regression for finger angle. The different between ICA and EMG were

explained by the robustness of the ICA approach to reject noise and motion

artifacts compare to EMG signal. Table 4.1 provide summary each finger CC

and RMSE for each method on 2 analysis.

The first analysis (Figure 4.20) confirm the result in optimal situation, MSM-

EMG with average CC value at 0.90±0.30 with high signal to noise ratio EMG
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Figure 4.21: Performance of proposed method in second analysis: 1 test data for train-
ing and 4 test data for testing. 5-fold validation was adapted to ensure non-bias result.
The correlative coefficient was in boxplot and root-mean-squre-error in barplot. num-
ber of data = 50 (10 subjects * 5 tests).

signal. This clearly show distinguishable activation pattern. While LRM-EMG

performed worst with average CC value at 0.55±0.05 because of the relation

between EMG signal and finger angle was not single order linear. RMSE also

showed higher value in MSM method average 2.0 degree. However, the impact

of ICA method still visible in comparison and as a result. MSM-ICA showed the

best performance from all proposed method.

The second analysis (Figure 4.21) confirm the result in real situation where er

have limited data. The performmance of MSM showed lower CC at 0.70±0.10

and LRM at 0.55±0.10 using EMG signal. While ICA showed significant higher

performance and better robustness for MSM and LRM with CC value at 0.84±0.10
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and 0.76±0.06. MSM show best result with lower RMSE of 3.0±1.0, 2±1.0, and

4.0±1.0 degree compare to MSM-EMG, LRM-ICA, and LRM-EMG, respectively.

We narrow the interest into ICA and EMG signal by compare only MSM-ICA,

MSM-EMG and LRM-ICA, LRM-EMG. The MSM-ICA and MSM-EMG method

showed 10% (CC 0.10) increased in CC values and 3.0-5.0 degree lower average

RMSE. Every finger have CC more than 0.7 that indicated a strong uphill lin-

ear relationship. The LRM-ICA and LRM-EMG method showed 20% (CC 0.20)

improved performance with 1.0-3.0 degree lower average RMSE.

These result indicated that ICA method reduce noise and increase signal to

noise ratio for MSM model. However ICA method still need human supervi-

sion on IC selection process. If the process can be automate, ICA should able to

consistently provide better performance.

4.5 Conclusions

In this study, we proposed new method called array EMG system to replace

conventional surface EMG sensor. The array EMG system place over forearm

by integral Bio-semi and arm mask to detect mono-pole surface EMG signal

simultaneously. Muscles EMG signal source can be determined in post analy-

sis. Moreover, the ICA method can be used to find higher quality signal source.

The setup time of this system is about 30 minutes with two operators. The pro-

posed method also provided overall better signal quality and other advantage

as shown in Table 4.2.

The finger angle was calculated from the NRMSE of convolutional-pose-machines-

tensorflow according to the trigger to determine the direction of finger angle

(flexion or extension). The EMG signal from flexor and extensor muscles were
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Table 4.2: Array EMG system advantage to conventional EMG sensor

Array EMG system EMG sensor
Do not need information

of muscles location
3 7

Do not need predefined
number of muscles

3 7

Can handle muscles location
changes during experiment

Post analysis adjustment 7

Use ICA to reduce noise 3 7

Signal to noise ratio 3.0-100.0 1.2-4.5

selected by highest CC between measured finger angle EMG activation pat-

tern. IC was extracted from all surface EMG signals using AMICA [24]. The

EMG and IC was considered as representative of flexor and extensor muscles

for each finger. The result of estimated finger angle show relatively higher CC

using MSM-ICA and LRM-ICA. Considering the practical application in robotic

hand, we designed the experiment so that all fingers move continuously with-

out interruption. The experiment showed lowest CC at 0.7±0.2 using LRM-

EMG method. However for amputee subject, the muscle locations can be differ

from general anatomy data and might unable to find the best location for finger

muscles. The proposed method provided a bypass to collect data from entire

area and and estimated the location of muscles post analysis.
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Topology plot of multiple subject.

As we plot the topology plot of each subject, we found some similarities that

should provide insight to estimate deep muscles EMG signal. However, large

scale studies of these are still lagging and some researchers also said that it

should be impossible to estimate deep muscles signal due to high crosstalk of

wrist muscles.

5.1 Aim of this section

In this study, we found some interesting results from the previous study that

deem should be expressed.

The location of each plot will be reference according to igure 5.1

5.2 Topology plot of each subject

This section will show the topology plot of each subject separated between fin-

ger muscles, flexor and extensor.

59
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Figure 5.1: Reference to the name of each location in topology plot.

5.2.1 Thumb finger

For the thumb finger, we interested in:

• Flexor pollicis longus muscle (FPL) Figure 2.1.

• Extensor pollicis longus muscle (EPL) Figure 2.3.

• Extensor pollicis brevis muscle (EPB) Figure 2.4.

Compare to our topology plot the flexor should originate from Top-right of the

left panel as shown in Figure 5.2.

Figure 5.2: Topology plot of thumb flexor from 10 subjects participate in previous
study.
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Likewise, Extensor should originate from Top-middle of the right panel as shown

in all subject of as shown in Figure 5.3.

Figure 5.3: Topology plot of thumb extensor from 10 subjects participate in previous
study.

Some cross-location also detected, however, that can be explained by the prox-

imity between those muscles.

5.2.2 Index finger

For the index finger, we interested in:

• Flexor digitorum superficialis muscle (FDS) Figure 2.8.

• Extensor digitorum (ED) Figure 2.10.

• Extensor indicis (EI) Figure 2.11.

Compare to our topology plot the flexor should originate from center-right of

the left panel as shown in Figure 5.4.

Figure 5.4: Topology plot of index flexor from 10 subjects participate in previous study.

Likewise, Extensor should originate from center-middle of the right panel as

shown in all subject of Figure 5.5.
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Figure 5.5: Topology plot of index extensor from 10 subjects participate in previous
study.

5.2.3 Middle finger

For the middle finger, we interested in:

• Flexor digitorum superficialis muscle (FDS) Figure 2.8.

• Flexor digitorum profundus muscles (FDP) Figure 2.9.

• Extensor digitorum (ED) Figure 2.10.

Compare to our topology plot the flexor should originate from center-middle of

the left panel as shown in Figure 5.6.

Figure 5.6: Topology plot of middle flexor from 10 subjects participate in previous
study.

Likewise, Extensor should originate from center-right of the right panel as shown

in all subject of Figure 5.7.

5.2.4 Ring finger

For the ring finger, we interested in:
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Figure 5.7: Topology plot of middle extensor from 10 subjects participate in previous
study.

• Flexor digitorum profundus muscles (FDP) Figure 2.9.

• Extensor digitorum (ED) Figure 2.10.

Compare to our topology plot the flexor should originate from center-left to

bottom-left of the left panel as shown in Figure 5.8.

Figure 5.8: Topology plot of ring flexor from 10 subjects participate in previous study.

Likewise, Extensor should originate from center-right to bottom of the right

panel as shown in all subject of Figure 5.9.

Figure 5.9: Topology plot of ring extensor from 10 subjects participate in previous
study.

5.2.5 Pinky finger

For the pinky finger, we interested in:
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• Flexor digitorum profundus muscles (FDP) Figure 2.9.

• Extensor digitorum (ED) Figure 2.10.

Compare to our topology plot the flexor should originate from center-left to

bottom-left of the left panel as shown in Figure 5.10. Likewise, Extensor should

originate from center-right to bottom of the right panel as shown in all subject

of Figure 5.11.

Figure 5.10: Topology plot of pinky flexor from 10 subjects participate in previous
study.

Figure 5.11: Topology plot of pinky extensor from 10 subjects participate in previous
study.

The problem was ring and pinky finger have very close result and really hard to

separate them. This also reflex in the fact that few people can separately control

ring and pinky finger.

5.2.6 Average Result

The average weight of all subject after normalization was shown in Figure 5.12.

The average activation pattern show that, although there is variety of anatomy

of each subject but the pattern of signal location still clustered together.
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Figure 5.12: Topology plot of average of all subject separate in each finger.

5.3 Dipole of deep muscles signal

We also observe some pattern of dipole from our data. Compare between finger

muscles topology plot as shown Figure 5.13 and wrist muscles topology plot as

shown in Figure 5.14.

Figure 5.13: Topology plot of component that represent grip and open motion.

The first plot was collect from component that activate during grip motion and

small activate in open motion. The distance between highest and lowest weight

was calculate by Manhattan distant (h()) of vertical was 20 millimeters, and

horizontal was 16.666 millimeters.

Averagely, h() of component from first Figure 5.13 (index finger component)

was 3.42 times higher than h() of component from second Figure 5.14. This

might indicate deep muscles.
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Figure 5.14: Topology plot of component that represent wrist flexion and extension
motion.



Chapter 6

Conclusion

6.1 Summary

This dissertation study the possibility to use regression method instant of pat-

tern recognition to estimate finger angle. The start point was musculoskeleton

model (MSM) 3.2.1. MSM was a model that able to estimate both joint angle

and torque simultaneously. Therefore, the experiment was designed to ensure

MSM performance with finger joint.

The result shown that MSM perform better due to 2-order regression but un-

able to maintain finger angle during smaller activation after motion due to its

lack of damper element. The results of MSM and LRM in force were not differ-

ent because the relation between EMG signal and force from finger was linear.

Therefore, MSM did not provide any advantage over LRM.

All of those result have the following problem; according to chapter 3.

1. in order to acquired high quality sEMG signal, sEMG sensor need to be

directly above the joint control muscles and also align with muscles direc-
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tion. This lead to reject some of subject who have too large wrist muscles

and we cannot find location for finger muscles.

2. During experiment, subject must not changes postal or rotate wrist. This

changes location of muscles and experiment need to be terminated. The

subject was ask to repeat all the process again if sensor cannot acquired

reasonable data.

3. Cannot differentiate between wrist and finger muscles due to close prox-

imity. This happened to subject with small arm who have relatively small

finger muscles and cannot find the location which EMG sensor can sense

those muscles.

4. Due to contamination of wrist muscles signal, subject need to be trained

to control finger without co-contraction of wrist. Any dataset which show

sign of contamination was rejected and redo the experiment.

We used method inspired by EEG system to measure EMG signal from many

position around forearm. We use MSM and LRM to produce naturals finger

motion. IC was extract from EMG signal using ICA. Operator pick the best

IC that matches general anatomical data. The finger was EMG and IC compo-

nent for flexion and extension muscles. Each finger angle was estimated and

statistically analysis to prove the possibility to produce finger angle separately

according to chapter 4.

Our new array EMG sensor provide multiple advantage over conventional de-

vices according to chapter 4.

1. Operator do not need knowledge of muscles location and spend time to

find space directly above the joint control muscles and also align with
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muscles direction. Post-analysis result shown the signal source generated

from approximately correct location of muscles according to anatomical

knowledge.

2. We are able to guarantee signal quality during experiment regardless of

changing postal or rotate wrist by distribute signal source to area around

the target channel. All subjects was able to get high correlation and smaller

RMSE without repeat experiment and confirm signal quality after experi-

ment.

3. Using ICA, we are able to achieve better finger muscles signal. However,

there are still different between subjects correlate with arm size which

smaller show lower signal to noise ratio.

4. Because ICA and PCA are able to separate multiple co-contraction of mus-

cles. All of subject do not need pre-train before the experiment. Decon-

tamination was done in analysis period.

6.2 Aim result

1. The possibility to changes from conventional pattern recognition sys-

tem to regression which is the same as musculoskeletal model: We con-

duct 2 experiments to estimate finger angle and force from EMG signal.

we conclude that it is possible to regress finger angle and force from sEMG

signal as long as EMG was high quality.

2. The method to provide better deep muscles EMG signal by signal pro-

cessing many sensor around forearm: In order to achieve better quality

EMG signal, we use EMG array system to acquired multiple EMG source

at the same time and use post analysis to extract finger EMG signal using
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ICA. EMG signal from ICA show much higher quality compare to con-

ventional EMG sensor and also show better performance using the same

regression method.

3. The performance of such method compare with conventional one: We

compare our array EMG system with conventional sEMG method and they

show 10% higher CC value and 10% lower RMSE. Therefore, we conclude

that array EMG system + MSM provide better performance in finger angle

estimation but no different in finger force estimation.

6.3 Future work

1. We would like to develop this system to be automate without operator

interaction and ensure maximum performance.

2. We would like to optimize this model so it can be implemented into em-

bedded system and operating without engineering support.

3. We would like to implement this system into parallel robots such as the

delta robot due to its application in the haptic system and its ability to

transfer the haptic information between environments. [31, 32, 33].
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