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ABSTRACT 

 

The thesis presents a comprehensive study on the flexural and shear performance of steel-

encased precast spun concrete (SC) piles using large-scale experimental data and analytical 

modeling. The research mainly focuses on the assimilation of experimental data, improvement of 

currently available flexural and shear design guidelines, and development of numerical models to 

simulate the flexural behavior of SC piles. The results from this study are valuable and useful for 

engineers designing foundations in areas with high seismicity. 

The study first focuses on analyzing the test data from previous experiments on 11 SC pile 

specimens to investigate the bending moment capacity, damage process, and failure criteria for 

flexural failure. The main parameters include the axial load ratio (0–0.35), steel casing thickness 

(4.5–6.0 mm), concrete layer thickness (50–68 mm), and filling material (hollow, cement paste, 

concrete). The test results show that concrete crushing and local buckling of steel are the major 

factors influencing the bending capacity of SC piles, given that global buckling is not permitted. 

The damage at failure state is characterized by local buckling of steel between 0–100 mm, 

concrete crushing at the outer layer of concrete between 0–120 mm, and spalling at the inner layer 

of concrete between 0–240 mm, all from the base. High curvature demands are seen to be 

concentrated between 0–125 mm from the base for drift ratios less than 1.5%. Further, it is 

observed that governing factor changes from concrete crushing to steel local buckling with an 

increase in axial load or reduction in steel to concrete strength ratio. It is found that filling the 

core with a low-cost, low-strength material prevents the spalling of the inner line of concrete and, 

consequently, increases the drift and ductility performance. 

The applicability of stress distribution-based methods given in available guidelines by AIJ 

(2008), Eurocode 4 (2004), and ANSI/AISC 360-16 (2016) for bending capacity of 

columns/composite members under axial-flexural loads is investigated. The applicability of strain 

compatibility-based method in the draft guidelines for SC piles by the AIJ (2020) committee is 

also examined. For this purpose, a database of 79 bending tests on SC piles, including tests from 

literature and pile manufacturers in Japan, is organized. The scope of the dataset is defined by 

characteristic parameters, axial load ratio (-0.4–0.5), section slenderness ratio (36–133), member 

slenderness ratio (6.0–18.8), concrete compressive strength (81–123 MPa) and steel tensile 

strength (301–521 MPa). Modifications are proposed to the drafted guidelines for SC piles to give 

conservative predictions with an error of less than 20% for all tests in the database.  
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The development of a fiber-based finite element model of SC piles is carried out to simulate the 

moment-drift behavior under axial-flexural loads up to and beyond the peak response. The model 

is characterized by a single beam-column element in the damage zone at the base. The stress-

strain relationship of fiber elements of steel in the damage zone follows a pipe buckling model. 

For this, a hysteretic model for steel is developed with a linear falling branch and a constant stress 

branch after initiation of buckling. The fiber elements of steel in the low damage zone do not 

undergo buckling. The enhancement of concrete strength due to confinement by steel casing is 

considered by using a confined concrete model such that the reduction in confinement due to the 

hollow core is also taken onto account. The sectional behavior is validated by comparison with 

the moment-curvature responses from five simply supported bending tests covering axial load 

ratios of -0.4 to 0.5 times the section capacity. Whereas the member behavior is validated by 

comparison with the moment-drift responses from thirteen tests covering simply supported and 

cantilevered bending tests, hollow and filled-core specimens, and axial load ratios of -0.4 to 0.5 

times the section capacity. It is found that the model can simulate the flexural behavior of SC 

piles for axial load ratios of 0 to 0.5 with good accuracy.  

Furthermore, to investigate the performance of SC piles under shear loads, shear tests on 400 

diameter SC piles were conducted with the axial load ratio as the main parameter. The objective 

of these tests is to gather experimental data on the shear behavior of SC piles to investigate the 

shear capacity, damage process, and failure criteria for shear failure. For the case of SC pile with 

high compression axial load ratio of 0.5 and shear span to diameter ratio of 0.5, a brittle shear 

force vs. drift response and shear failure is reported, accompanied by the sudden loss of axial 

capacity to half of the initial value. From the extent of shear yielding along the cross-section, 1/2 

of the area of steel is found to be effective in resisting shear at the failure. Additionally, it is 

confirmed that the design of SC piles is governed by the bending capacity rather than the shear 

capacity in most design situations.  
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