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Chapter 1

Introduction

1.1 Background

In this section, I review several studies on the use of lattice defects in carbon
materials and describe the ion-beam techniques, which is a method of generat-

ing lattice defects.

1.1.1 Defects in carbon materials

Defects in matter cause the various charge and spin states according to the
Fermi level, and generate the several electronic states; as a result, the interest-
ing electrical, optical, and magnetic functions are obtained. Thus, many sci-
entists have conducted research related to the lattice defects in the semicon-
ductors, carbon-based materials, and other materials. The research of lattice
defects based on theoretical approaches such as first-principle calculation has
been reported because of the experimental difficulty of observing and evaluat-
ing defects in matter. Apart from these theoretical researches, the new func-
tional materials using lattice defects have been studied. Recently, lattice defects
in carbon materials such as diamond, graphene, and graphite, are of interest to

researchers; carbon has seen use in diverse fields including materials science,
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condensed-matter physics, and mechanical and electrical applications.

1.1.1.1 Pt cluster on defective graphite

One of the most important applications is the graphitic structure with vacan-
cies and defects for the development of highly active electrocatalysts. The plat-
inum (Pt) nanoparticles on carbon materials are excellent catalysts for various
fuel cell reactions, Pt is widely used in both anode and cathode electrodes in
the proton exchange membrane fuel cell (PEMFC); however, further activity
improvements are still required.

Previously, researchers proposed that the surface modification of the carbon
support by thermal, chemical, or plasma treatment enhanced the catalytic ac-
tivity of the Pt nanoparticles [1]. In these treatments, the particle size and dis-
persibility of the Pt nanoparticles were controlled by introducing surface func-
tional groups onto the carbon supports. On the other hand, the modification of
carbon supports expecting interfacial interaction has been also proposed. The
electronic structures of the Pt nanoparticles are modulated through the orbital
hybridization between Pt and C [2—4], which is termed as “Pt—C bonding”. The
electronic property of a Pt cluster on the defective graphitic structure has been
investigated theoretically by computer calculation based on density functional
theory [5-7]. The formation of Pt—C bonding is increased by defect vacancies
of the carbon support [5], and the defective carbon support enhances the ORR
activity of the Pt nanoparticles [6]. However, the details of these interfacial
structures and the mechanism of activity enhancement have not been experi-
mentally elucidated due to the difficulty of controlling the interfacial structure.
Although not the Pt nanoparticles on carbon support with defect vacancies, the
Pt nanoparticles on boron carbide and sulfur-doped carbon support were eval-
uated experimentally for catalytic activity and electronic structure in previous

studies [8,9]. These studies commonly expect to improve the catalytic prop-



erties by the metal-support interaction which is Pt-carbon support interaction
(Pt—C interaction) in these cases.

In order to confirm that defect vacancy in the carbon support enhances the
ORR activity of Pt nanoparticles and to elucidate the mechanism of the activity
enhancement, precise manipulation of the Pt/C interfacial structure is required

in a real system.

1.1.1.2 NV center in diamond

The lattice defect in diamond has been also studied for the quantum devices
and applications; the defect is called the nitrogen-vacancy center (NV center).
An NV center is composed of substitutional nitrogen (N) and a vacancy (V) on
adjacent lattice sites in diamond and is expected as a quantum bit and quantum
sensor that can operate at room temperature [10-15]. The electron spin at NV
centers can be manipulated by applying electric and magnetic fields or light,
resulting in sharp resonances in the intensity and wavelength of the photolumi-
nescence.

Recently, the device-development for high-sensitivity quantum sensing has
launched. However, fundamental studies such as preparation of high-quality
samples, characterization of physical properties, and control of quantum states
continue to be carried out, and interesting studies are still being reported. On
sample preparation, the fabrication methods by the irradiation of neutron [16],
electron [17-19], and ion-beam [20, 21] are reported as a method for high-
quality NV centers. Besides, nonlinear optical effects induced by NV centers
and the method of coherent optical manipulation of individual nuclear spin in
diamond with NV centers are reported quite recently [22,23]. Thus, even though
device development has begun, study at the basic level is still at the frontier in

the research field.



1.1.2 Ton-beam modification

The function of solid-state materials is closely related to its lattice defects,
the control of lattice defects is one of the basic concepts for developing new
functional materials. Ion irradiation is well-known as a versatile tool for manip-
ulating the physical, chemical, and magnetic properties of the host materials due
to irradiation effects [24]. The ion-beam can precisely control lattice defects in
materials because the ion-beam has the parameters of energy, ion species, and
fluence. The interaction between ion-beam and solid and the ion-beam modifi-

cation of carbon materials are described below.

1.1.2.1 Interactions between ion-beam and solid

The interactions between ion-beam and solid for each energy range are de-
scribed below [25,26], and the schematics are shown in Fig. 1.1. The ion-beam
deposition is known as one of the methods for thin-film formation, an ion-beam
of the element to be deposited is used at energies of 1 to several hundred eV
(Fig. 1.1 (a)). The sputtering of solid surface and the implantation into ma-
terials cause at several 100 eV to several 10 keV and at more than several 10
keV, respectively. The ion-beam sputtering is often used as a pretreatment for
surface analysis to remove contamination of the sample surface. In ion-beam
implantation, the novel gas ion beams (He, Ar, Xe, and Kr) and the other ion
beams (e.g. transition metal elements) are often used for the introduction of
defect vacancy (Fig. 1.1 (¢)) and doping (Fig. 1.1 (d)), respectively.

I describe the sputtering and implantation which are effects of the keV order
irradiation. Sputtering is a phenomenon in which a part of solid atoms with
kinetic energy obtained by nuclear collision has a kinetic component opposite
to the incident ion, which causes it to jump out of the solid surface (Fig. 1.1(b)).
The ratio of the number of solid atoms emitted from the surface to the number

of ions injected is called the sputtering yield [27]. The sputtering yield is not
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Fig. 1.1: Schematic of the interaction between ion-beam and solid surface: (a) deposition (b)

sputtering (c¢) implantation (defect introduction) (d) implantation (doping).

only dependent on the incident energy of the ions, but also strongly depends on
the combination of ion spices and solid types. When the kinetic energy of the
ions exceeds a few 100 eV, the sputtering yield is greater than 1, resulting in
the shaving of solids. Up to a certain level of ion-energy, energy conversion to
the nucleus occurs near the surface layer of the solid, and sputtering is likely to
occur; the higher the ion-energy, the higher the sputtering yield. As the energy
of the ions increases, there is less energy transfer with the atoms close to the
surface layer, resulting in a disturbance of the atomic positions deep in the solid
where the incident energy is smaller. Sputtering occurs if solid atoms with
energy from the collision jump out from the surface, but the number of atoms
traveling to the surface decreases as the ion-energy increases. That is, above a
certain energy, the sputtering yield decreases as the energy of the incident ions
increases.

In the case of ion implantation into a solid, the penetrating ion loses energy

due to the interaction with the solid atom. The energy that an ion loses per



unit length is called stopping power or linear energy transfer (LET). Among
the stopping power, the power due to elastic collisions is the nuclear stopping
power, S,,, and the power due to inelastic collisions is electronic stopping power,
Se. The LET is obtained as the sum of nuclear stopping power and electronic

stopping power,
dE
o=
In general, nuclear stopping power is dominant over electronic stopping power

S, + 5. (1.1)

only in the case of low-energy ion irradiation, while electronic stopping power
1s more dominant at higher energies. As an example, the LET and each stopping
power of graphite with a density of 2.2 g/cm? irradiated with keV-ordered Ar
1on are calculated by the stopping and range of ions in matter (SRIM) code [28]
and shown in Fig. 1.2. It can be seen that the electronic stopping power is more
than nuclear stopping power at above approximately 100 keV in this condition.

The atoms ejected from the host materials by low-energy ion-beam irradia-
tion, which means sputtering, recover the defective structure by filling the va-
cancies; the low-energy ion-beam irradiation is not suitable for the formation of
defect vacancy. Since much of the energy of the incident particles is lost due to
electronic excitation on the high-energy ion-beam irradiation, high-density de-
fects can be introduced into the region until the ion-stopping depth. Therefore,
ion-energy whose electronic stopping power is higher than the nuclear stopping

power may be useful for introducing lattice defects into the host material.

1.1.2.2 Ton-beam modification of carbon materials

Ion-beam irradiation is also well known as a modification tool for carbon ma-
terials. One of the characteristics of carbon materials is that they exhibit widely
different properties depending on their physical structure and chemical bond-
ing forms. Another feature is that it is difficult to add impurities to the carbon

alone. Graphite is known as a special case; certain elements such as fluorine
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Fig. 1.2: The LET, electronic stopping power, and nuclear stopping power versus ion energy
simulated by using the SRIM code when the graphite (density: 2.2 g/cm?) is irradiated with Ar
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can be added by intercalation. The carbon surface is expected to be highly func-
tional and multifunctional by manipulating the structure and adding impurities.
Therefore, many studies using ion-beam irradiation have been carried out [29].
The 1on irradiation in graphite has been extensively studied in connection with
the research such as ion implantation and graphite intercalation compounds,
the graphite surface has been modified by particles irradiation using various ion
species and kinetic energy [30-33]. Also, upon implantation of ions into a trans-
parent natural diamond, the diamond becomes colored and the surface exhibits
a concomitant electrical conductivity. The electrical conductivity is thought to
be caused by the breakdown of the diamond structure. The ion-beam irradiation
into a glassy carbon has also been studied. Glassy carbon is a sintered form of
graphite with a density of about 1.5 g/cm?, which is lower than that of graphite.
However, it 1s used as electrode material in electrochemistry (model electrode)
and high-temperature crucible because of its inertness, electrical conductivity,
thermal stability, and impermeability. It has been reported that ion-implantation
improves the wear resistance [24], wettability [34], and electrochemical prop-
erties [35] of glassy carbon. An estimate of the defect density introduced into

the glassy carbon by ion implantation has also been reported [36,37].

1.2 Objective

As mentioned above, lattice defects in carbon materials create various func-
tionalities. Since ion-beam is a powerful tool for modifying carbon materials,
ion-beam technology is expected to greatly promote the development of func-
tional carbon materials.

In this thesis, I focus the Pt nanoparticles on defective carbon supports as in-
troduced in the previous section. Although it has been theoretically suggested
that Pt clusters on graphite structures with vacancy exhibit high oxygen re-

duction reaction (ORR) activity, the electronic state, interfacial structure, and

8



functionality have not been clarified in real systems due to the difficulty of ma-
nipulating the defective structure experimentally. In order to improve the ORR
activity of the Pt nanoparticles, I proposed to use ion-beam irradiation to in-
troduce lattice defects into the carbon support. In fact, the Pt nanoparticles
on Ar'-irradiated carbon supports were found to be more active than those on
non-irradiated one.

Therefore, the goal of this thesis is to clarify the influence of ion-beam irra-
diation on the defect and electronic structure of the carbon materials with Pt
nanoparticles (Fig. 1.3). In order to achieve this goal, I will elucidate the fol-

lowing issues by spectroscopic and computational methods.

1. To clarify the influence of ion-beam irradiation on the electronic structure
of Pt/C interface.

2. To clarify the defect structure on HOPG surfaces irradiated with ion beams.

3. To confirm the decrease in the d-band center of Pt due to the defect structure
in graphite.

4. To make prospects for revealing the defective structure and electronic state

of carbon materials with ultrafast dynamics.

1.3 Outline

The organization of this thesis is as follows (Fig. 1.4).

Chapter 2 examines the catalytic activity of the Pt nanoparticles on the Ar™-
irradiated glassy carbon substrates. The ORR activity of the Pt nanoparticles on
ArT-irradiated glassy carbon substrates is measured by electrochemical method.

Chapter 3 discusses the electronic states of the Pt nanoparticles on the Ar"-
irradiated glassy carbon and HOPG surfaces. Firstly, the sample preparation

of the Pt nanoparticles on the Ar'-irradiated carbon substrates is described.
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Fig. 1.3: Objective of this thesis.

The X-ray spectroscopy is performed for the prepared samples to clarify the
electronic states.

In Chapter 4, the Ar*-irradiated HOPG with Pt nanoparticles is investigated
by Raman spectroscopy. The characteristic peaks of Raman spectra reveal the
defect structure of irradiated HOPG surfaces. The number of point defects at
the Pt/C interface is estimated by using the phonon correlation length which is
obtained by the intensity ratio of G and D peaks.

The theoretical calculations for the Pt cluster on defective graphite structures
are discussed in Chapter 5. The Pt;3 cluster on the graphite structure with
defect-vacancies is modeled to investigate the influence of the defective struc-
ture in carbon support on the electronic state of Pt atoms. The catalytic activity
1s predicted using the d-band centers obtained from the density of the state of
Pt.

Chapter 6 discusses the ultrafast dynamics and coherent control of optical

10



phonons. These are fundamental studies to elucidate the influence of the lattice
defects in carbon materials on the ultrafast dynamics. The coherent control of

optical phonons in diamond by femtosecond optical pulses is treated theoreti-

cally and experimentally.

Chapter 7 presents the conclusion of this thesis.

Chapter 6

{Ultrafast dynamics ]

r
1
1
1

Carbon

Pam—

1
1
Y

C: Electronic state

Defect structure

Chapter 4

Chapter 3
X-ray spectroscopic analysis ]

41 Raman spectroscopic analysis j

Chapter 2

Electrochemical measurement ]

____________

4" Pt: Electronic state |—| Catalytic activity

Platinum

Fig. 1.4: Flowchart of this thesis.
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Chapter 2

Catalytic activity of the Pt nanoparticles for
fuel cell applications

2.1 Introduction

The proton exchange membrane fuel cell (PEMFC) is a promising device that
provides a highly efficient and clean source of energy. Many studies on related
materials have been performed toward its widespread use [1,2]. Pt nanoparticles
on a carbon material are excellent catalysts for various fuel cell reactions such
as the hydrogen oxidation reaction, oxygen reduction reaction (ORR) [3], and
methanol oxidation reaction; therefore, Pt is widely used in both anode and
cathode electrodes in the PEMFC. The potential loss at the cathode, which is
caused by relatively sluggish kinetics of the ORR, is a critical issue to be solved
for further improvement of the PEMFC performance [4, 5].

In this chapter, we carry out electrochemical measurements of the Pt nanopar-
ticles on the glassy carbon substrate irradiated with Ar" and then demonstrate

that the Ar™ irradiation improves their ORR activity.

16



2.2 Estimation methods for oxygen-reduction catalyst
2.2.1 Cyclic voltammetry

Electrochemical measurement is a means of investigating the electrical prop-
erties of electrodes and solutions by controlling the potential or current applied
to the electrodes [6,7]. Cyclic voltammetry (CV) is one of the potentiodynamic
electrochemical measurements, and measures the response of the current by
varying the potential over time. In CV, a potentiostat is used to repeatedly
change the potential within a certain range at a constant potential scan rate
(mV/s) and the current associated with the electrode surface reaction is mea-
sured according to the potential change. CV is widely used for the characteri-
zation of electrodes and clarification of oxidation-reduction processes, as well
as for the evaluation of catalytic layers in fuel cells.

The principle of CV is expressed by the Nernst equation,

E:EOJrlna—Rx, (2.1)

ao?

where F' and E° are the half-cell reduction potential and standard half-cell re-
duction potential, respectively. a is the chemical activity for the relevant species,
where ap is the activity of the reduced form and ap is the activity of the oxi-
dized form. When the potential £ is manipulated, the equilibrium of the oxygen
reduction reaction moves according to this equation, and change to a new equi-
librium state. Electrochemical measurements that control the potential, such as
CV, observe current fluctuations that follow the Nernst equation in the redox
reaction.

The CV measurements are conducted by using potentiostat, electrodes, and
solution. A potentiostat is a device to control the potential. A standard CV ex-
periment employs three electrodes: working electrode, reference electrode, and
counter electrode. The working electrode is the electrode that causes the oxy-

gen reduction reaction. In this study, the working electrode is Pt nanoparticles
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on Ar"-irradiated glassy carbon substrates. The reference electrode is the elec-
trode that has a stable and well-known electrode potential. Standard hydrogen
electrode (SHE), silver chloride electrode (Ag/AgCl electrodes), and saturated
calomel electrode (SCE) are commonly used as a reference electrode. In this
study, KCl-saturated Ag/AgCl reference electrodes are used and converted to
the value of the reversible hydrogen electrode (RHE). The counter electrode,
along with the working electrode, provides a circuit over which current is ap-
plied. The potential of the counter electrode is usually not measured and is
adjusted so as to balance the reaction occurring at the working electrode. In this
study, a commonly used Pt wire is used as a counter electrode.

The method for evaluating the electrochemical active surface area (ECSA) of
Pt by CV is described below. The response of Pt electrode in sulfuric acid and
perchloric acid is well known, and the voltammogram is drawn as shown in Fig.
2.1. The vertical axis of the figure is the current value, and the reduction and

oxidation currents are denoted by negative and positive values, respectively.
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Fig. 2.1: Cyclic voltamogram for Pt nanoparticles on carbon substrate (solution: Nj-saturated
0.1 M HCIOy, scan range: