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Abstract— An active structural-control strategy has been 

widely studied to improve the control performance. Most 

studies used the linear quadratic-regulator (LQR) method to 

design the state-feedback controller. The LQR method 

requires to tune many weights in the cost function to design 

the controller. Moreover, various earthquake waves have to be 

considered. Thus, it is difficult to determine the weights. This 

paper determines the weights by using the Bayesian 

optimization method with multiple earthquake waves to 

reduces the burden of tuning the weights. 

Index Terms—Active structural control, LQR, Bayesian 

optimization method, parameter tuning 

I.  INTRODUCTION  

The active structural-control method has been studied 

rapidly in these few decades. Many control methods are 

applied to design the controller gain such as the classical 

control method, modern control theory, and some advanced 

control strategies. One of the most common methods is the 

linear quadratic-regulator (LQR) method [1]. The state-

feedback controller is designed by minimizing the cost 

function that has the weighting matrices. Since the 

relationship between the weighting parameters and the 

control performance is complex, the trial-and-error method 

has been used to determine the controller gain [2]. In 

contrast, Fujitani et al. clarified the influence on the weights 

to the dynamic characteristics for the single degree-of-

freedom (SDOF) models [3]. This study used the building 

model that does not have a damping factor. To solve this 

problem, Sato et al. extended this method to a building 

model with a damping factor and presented a new design 

spectrum [4]. 

These studies deal with the SDOF model, however, 

most buildings are modeled as the multi-DOF (MDOF) 

model. In recently, some studies consider a MDOF models. 

For example, Kohiyama et al. presented a method that 

estimates the responses for the MDOF model by using the 

complex-complete-quadratic-combination (CCQC) method 

[5]. Elumalai et al. have shown the weighting matrices can 

be yielded by solving the inverse problem for MDOF 

models [6]. However, if a building model is high-DOF 

system, many damping ratios and natural frequencies have 

to be chosen to calculate the weighting matrices. To solve 

these problems, the Bayesian optimization (BO) method is 

applied. This method is one of the nonparametric 

optimization methods, and it estimates the relationship 

between the input and output by using the Gaussian process 

[8].  

Marco et al. applied the BO method to determine the 

LQR weighting matrices and Miyamoto et al. extended this 

method for tuning active structural-control systems [9,10]. 

Miyamoto et al. used the BO method to determine the 

weighting matrices (AD-LQR method), considering not 

only the displacement, but also the absolute acceleration 

and the inter-story drifts and velocities [10]. In this study, 

only one artificial wave was used to find the weights. 

However, the dominant frequency is different for different 

earthquake wave and several waves have to be considered 

to design the state-feedback controller.  

   This paper presents a new BO method that determines the 

weighting matrices using multiple earthquake waves. The 

numerical example uses the 11-DOF base-isolated building 

model. 

 

II. BUILDING DYNAMICS AND LQR METHOD 

The dynamics of the building model is  
)()()()()( tuEtxEMtxKtxDtxM ugdSSSS +−=++ &&&&&&  (1) 

where MS is the mass matrix, DS is the damping matrix, KS 

is the stiffness matrix, Ed is the disturbance input matrix, Eu 

is the control input matrix, x(t) is the displacement vector, 

and the xg(t) is the displacement of the ground. 

The state space representation of (1) is shown in  

)()()()( tdBtButAztz d++=&  (2) 

where 





















=








=










−−
=








= −−

.
0

,
0

10
,

)(

)(
)( 11

uS

u

dS

d

SSSS

EM
B

EM
B

DMKM
A

tx

tx
tz

&

 (3) 
The state consists of the relative displacement and the 
relative velocity of the building.  

The block diagram of the control system, (2), is 
described in Fig. 1. 

The state-feedback controller is designed by the LQR 
method. The LQR method determines the state-feedback 
controller by minimizing the following cost function J: 
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Figure 1. Block diagram of state-feedback control system  
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 (4) 
where Qd (>0) and Qg (>0) are the weighting matrices for 
these responses and Δx(t) is the inter-story drift vector,  
which is given by 
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Regrouping the equation of motion, (1), gives  
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where [ ] 11
DMKM

−− −−=Ξ  and uEM
1−−=Ψ , 

Substituting (5) and (6) into (4) yields 
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The state-feedback controller, Kp, is given by  
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where P (> 0) is the solution of the Riccati equation: 
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III. SELECTING WEIGHTS USING BAYESIAN OPTIMIZATION 

METHOD 

This section explains the Bayesian optimization method 
and formulates the optimization problem for selecting 
weighting matrices. 
 
3.1. Optimization problem of weights selection for one 

earthquake wave 

The state-feedback controller, Kp, is described by using 
the parameters A, B, Qd, Qg and R :  

)  ,  ,  ,  ,( RQQBALQRK gdp = . (11) 

The controller gain, Kp, can be shown by using the  
vector θ to formulate the optimization problem:  

)  ,)θ(  ),θ(  ,  ,()θ( RWWBALQRK gdp = . (12) 

where )θ(dW  and )θ(gW
 
are positive symmetric matrices, 

and the BO method searches θ by minimizing the objective 
function that is described in section 3.2. 

The previous optimization problem is set as follows 
[9]: 
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where )θ(CA  and )θ(0max D  are the maximum absolute 
acceleration and displacement for the vector, θ, and 0Da  is 
the allowable displacement for an earthquake wave. 
 
3.2. Optimization problem of weights for multiple waves 

Equation (13) searches the weights by using only one 
earthquake wave. However, as already stated before, the 
dominant frequency is different for each earthquake wave. 
Thus, many waves have to be considered to design the  
controller.  
   To take into account the influence of the multiple waves, 
this paper presents the following objective function: 
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where AC,i (θ) and ANC,i are the maximum absolute 
acceleration for a building model with and without active 
structural controller, and maxD0,i (θ) is the maximum inter-
story displacement for the i-th earthquake wave. 

 
3.3. Gaussian process and model estimation  

If a process follows the Gaussian distribution, then the 
process is defined as the Gaussian process (GPs). 

The relationship between the weights, θ, and the 
response of the building is modeled and estimated by the  
GPs in this paper. 

The estimated value of Ac(θ), )θ(
~

CA , is described by  

ε)θ()θ(
~

+= CC AA . (15) 

where )σ   ,0(~ε 2
εN is a Gaussian noise, and )σ   ,0( 2

εN
 is 

a Gaussian distribution with the average and variance are 0 

and 
2σε .  This paper estimates )θ(

~
CA  by using the Gaussian 

process. If a process f (θ) follows the Gaussian process it is 

expressed by  

))θ,θ(   ),θ(μ(~)( '
CKGPf fθ , (16) 

where μf is the mean function and KC is the covariance.  
The mean function and a covariance matrix determine 

the characteristics of the GP. In (16), μf (θ) can be chosen to 
be 0, θ’ is an arbitrary input, and KC is given by 
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where 2
fσ  is the prior variance of f (θ) and Σ is a variance-

covariance matrix. 



An input vector [ ]n*1** θ,...,θθ = , which is selected by 

the BO method, is used for training;
 
and the output of the 

vector, [ ])θ(),...,θ()θ( *1** nCCC AAA = ,
 
is set to calculate the 

prior average and variance of the objective function, Ac(θ ). 
The estimated Gaussian distribution is described as  
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~

( *
2
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 where )}θ(  ,θ{Φ ** CA=  is a data set. The mean function, 

μ( *θ ), and variance, σ2( *θ ), are given by 
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3.4. Bayesian optimization 

Bayesian optimization searches a global optimum value 

without calculating the gradient of an objective function. 

Explicit objective function or its gradient are not required to  

calculate an optimal value. 

This optimization method iteratively renews the 

estimation of )θ(
~

newCA  by updating the parameter, newθ , 

and the objective function, )θ( newCA . The updated point, 

θnew, is obtained by maximizing the following acquisition 

function, α( newθ ): 

)θ(α  maxargθ *new = . (21) 

The following probability of improvement of the  

objective function as the acquisition function: 

)]θ(
~

)θ(μ  ,0[max()θ(α ρρ Cbest AE −= . (22) 

where μρ(θ) is the mean function of the posterior 

distribution, bestθ  is the location that optimizes the objective  

function, and )θ(μρ best is the average of bestθ .  

 

IV. NUMERICAL EXAMPLE 

4.1 Building model 

This section shows the numerical example and 
compares with the previous and new BO method. This 
paper uses the base isolated building, which is a 250 m high. 
The building is modeled as the 10-DOF shear building 
model and the base isolation is described by using the linear 
spring and viscous damper. The active structural controller 
is located in the base isolated story. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The parameters of the building model are shown as 
follows: 
Density of passive base-isolation story: 2551 kg/m2 
Damping for passive base-isolation period (ζ0): 0.05 

Area of building: 40 m×40 m 
Natural first mode period of superstructure (Tu): 5.0 s  
Density of superstructure (for all stories): 175 kg/m3 

Height of superstructure (hu): = Tu /0.02 m 

Each story height of superstructure (hi): = hu/10 m 

Damping of superstructure: Stiffness-proportional 
damping model (damping ratio for the first 
mode is assumed to be 0.02) 

Stiffness of superstructure: Stiffness of the i-th story is  
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 (23) 
whereω  is the first natural circular frequency; and for the 

i-th story (i = 0, 1, ..., 10), iφ  is the first mode and mi is the 

mass for i-th story, which is given by the area of 
superstructure, each story height and the density of the 
superstructure. In this paper, the straight-line mode is used 
as the first mode to design the stiffness of each story. 

The mass of the base isolated story is given by the 
product of the density and the area of the base isolated story. 
A laminated rubber in the base isolated story is modeled a 
linear spring and the viscous damper is modeled as a linear 
dashpot because of using the LQR method, which is the 
linear control strategy. The stiffness, k0, and the damping  
coefficient, d0, of the base isolated story are  
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T
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( ) 0000 2 kmMd S += ξ . (25) 

where T0 (= 8.0 s) is the period of the base isolated story 
with the building is assumed to be a rigid body, and  
MS is the total mass of the superstructure. 
4.2 Earthquake wave 

The following three waves to design the controller: 
1． Art Hachinohe wave: the spectrum of the pseudo 

velocity response, pSv, is 100 cm/s after a corner period 
of 0.64 s for a building with the damping ratio of 5%, 
and the phase characteristic is the same as those of the 
earthquake wave of Hachinohe EW 1968. 

Figure 3. Building model  

40 m
40 m

250 m

T  =5.0 su

Figure 2. 11-DOF models (a) without and (b)with 

active structural control device 
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Figure 4.Art Hachinohe wave 

(a) accelerogram 

(b) pseud velocity response 
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Figure 5. Kobe wave 

(a) accelerogram 

(b) pseud velocity response 
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Figure 6. Taft wave: (a) accelerogram and (b) pseud velocity 

response 
 

2． Kobe wave: JMA Kobe 1995, and 
3． Taft wave: Taft NS 1952 

Figure 4 shows that the velocity response for the Art 
Hachinohe wave is very large and it is 100 cm/s. Figures 5 
and 6 show that the high frequency is dominant for the 
Kobe wave and low frequency is dominant for the Taft 
wave. This paper designes the state-feedback controller 
using the combination of these erathquake waves.  

The following two waves are used to verify of our 
method:  
・Shinjuku wave: The Niigata-ken Chuetsu-oki Earthquake 
(2007), at Shinjuku NS, and   
・Kushiro wave: Tokachi-oki earthquake (2003) at Kushiro 
EW. 

The accelerogram and the pseudo response spectrum are 
shown in Figs. 7 and 8. 
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Figure 7 Shinjuku wave: (a) 

accelerogram and (b) pseud 

velocity response 
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Figure 8 Kushiro wave: (a) 

accelerogram and (b) pseud 

velocity response 
 

4.3 Simulation results 

The weighting matrices are defined as equation (26): 
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Qd  is for the inter-story drift (qd1 ~ qd11) and the velocity 
(qd12 ~ qd22), and Qg is for the absolute acceleration for each 
story. Note that the constraint of the optimization is set at 
the displacement of the base-isolated story, and the  
allowable range is set as 55 cm.  

The control systems are assessed by using the Shinjuku 
and Kurhiro waves. The maximum displacement, inter-story 
drift and the maximum absolute acceleration are evaluated. 
Figures 9-14 show the results of the simulation. In these 
figures,  
・K: the controller designed by using the Kobe wave. 

・T: the controller designed by using the Taft wave. 

・A: the controller designed by using the Art Hachinohe. 

・A_K: the controller designed by using the Art Hachinohe 
and the Kobe waves. 

・ A_T: the controller designed by using the Art Hachinohe 
and Taft waves. 

・K_T: the controller designed by using the Kobe and the 
Taft waves. 

・ A_K_T: the controller designed by using the Art 
Hachinohe, Kobe and the Taft waves. 

・NC is the building without a controller.  
Figures 9-11 show that if the controller is designed by 

considering the Taft wave, the maximum inter-story drift 
and the maximum absolute acceleration can be more 

suppressed than the other controllers against the Shinjuku 
wave. However, Figures 12-14 show that, if the controller is 

designed by using the Taft wave, the maximum 
displacement is very large, and the base isolated story is 

140 cm beyond the allowable range, 55 cm. Moreover, the 
control performance of NC is better against Kushiro wave. 
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Figure 9. Maximum displacement for Shinjuku wave 
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Figure 10. Maximum inter-story drift for Shinjuku wave 
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Figure 11. Maximum absolute acceleration for Shinjuku wave 
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Figure 12. Maximum displacement for Kushiro wave 
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Figure 13. Maximum inter-story drift angle for Kushiro wave 
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Figure 14. Maximum absolute acceleration for Kushiro wave 

 

The previous BO method considers only one wave. 
However, it is may not enough to suppress various 
earthquake waves. A_K_T model, which considers multiple 
earthquake waves, performs better against both Shinjuku 
and Kushiro waves.  
 

V. CONCLUSION 

This study presented a new Bayesian optimization (BO) 
method, which consideres various earthquake waves, to 
select weigting matrices of LQR controllers. The 11 degree-
of-freedom model with base isolation and five kinds of 
earthquake waves are used to verify our method. The 
simulation results show that if only one earthquake wave is 
taken into account in the optimization method, it may not be 
enough to suppress the responses for the various earthquake 
waves. On the other hand, our method considers multiple 
earthquake waves to select the weights at the same time, 
and it suppressses the responses of the control system for 
the different dominant frequency waves. 
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