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Abstract

In order to extract principal information from observed data, we often exploit the low-rank
structure of the data. Low-rank matrix factorization is a popular method to find such struc-
tures and has a wide application range. This study addresses matrix completion and com-
munity detection as its two major applications, employing methods of statistical mechanics.

For matrix completion, we develop two algorithms, which are inspired from the cavity
method. They are performable wit low computational costs and applicable to large scale data
in parallel and distributed manners. For community detection, on the other hand, we argue
the problem that the underlying ambiguity in real-world networks affects the performance in
detecting community structures. More precisely, we analyze how the overlapping structures
deteriorate the performance of spectral clustering, which is a popular algorithm for detecting
communities, by using the replica method.
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Chapter 1

Introduction

1.1 Background

An enormous amount of data is being generated everyday from various contexts. However,
extracting useful information from them is a difficult task. To tackle this difficulty, fields such
as machine learning and high-dimensional statistics have been receiving attention. Dimen-
sionality reduction [1] plays a central role particularly when the observed data is significantly
large and high-dimensional. This technique enables us not only to compress the data size but
also to obtain principal features of the data. Due to its usefulness, it is often used as a fun-
damental technology in a wide range of domains and methods such as multivariate analysis,
visualization [2], and feature extraction [3, 4].

Given N data points of M -dimensionality {x1, . . . ,xN}, these are often expressed by an
N -by-M matrix X, whose ith row is xi (i = 1, . . . , N). When the matrix sizes N and M are
significantly large, a goal of the dimensionality reduction is to obtain a pair of compressed
matrices U ∈ RN×R and V ∈ RM×R, where R < N,M so that X is approximated well
by UV T . Such methods are generically termed matrix factorization, which constitutes a
core of various sophisticated dimensionality reduction methods that have been developed in
recent years. There are many variants of matrix factorization depending on extra constraints
imposed on the matrices. For instance, singular value decomposition is considered an essential
example, for which the orthogonality is imposed among rows in both U and V . By this, we
are able to interpret the factorized matrices as independent features of the observed data.
Setting rank R much smaller than the original matrix size leads to another usage of matrix
factorization. This assumption is reasonable in many practical settings, because the amounts
of principal information contained in the large observed data can be much smaller than the
data size. In fact, an example shown in Fig. 1.1 supports this assumption. In this example,
the observed matrix is given by the image in Fig. 1.1a, and Fig. 1.1b shows how well the
image is approximated by matrix factorization varying rank R. We can see that the necessary
rank to construct the image sufficiently is much smaller than the image size (= 256), because
the MSE is suddenly reduced around R = 30. This indicates that the factorization into low
rank matrices can be used as efficient lossy data compression techniques.

Low rank matrix factorization of another kind is used for matrices of the form of Y =
XXT , whose (i, j)th element yij represents the similarity between two data points xi and xj.
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Data that represents relationships between data points is called the relational data, and it is
usually expressed by a matrix like Y . Here, let us assume that Y is a sparse matrix. This
indicates a data point is closely related to only few other data points. As before, one can
extract principal information by employing dimensionality reduction for Y . Along this line,
two applications, matrix completion and community detection, are very popular and have
high demands for practical use.

1.2 Purpose

In this thesis, we address issues of low-rank matrix factorization utilizing notions and knowl-
edge of statistical mechanics. One direction is development of practically efficient algorithms
for matrix factorization. In real-world problems, data are often given as considerably large
matrices, and thus the practical algorithms are required to be performable with low com-
putational costs in parallel and/or distributed manners. For answering such demands, we
develop approximate algorithms for matrix factorization, which we call cavity-based matrix
factorization (CBMF) and approximate cavity-based matrix factorization (ACBMF), bor-
rowing an idea from the cavity method. Their usefulness is tested by applications to matrix
completion problems.

The other direction is theoretical analysis of possibilities and limitations of matrix fac-
torization. For this, we take up a community detection problem, and examine how complex
structures that could be contained in real-world data affects the performance of finding com-
munities. Spectral clustering [5], which is based on the low-rank matrix factorization, is a
popular method for community detection. Although this algorithm exhibits excellent perfor-
mance when clusters are clearly separated in given networks, complex structures underlying
in real-world data often deteriorate the detection performance. It is, therefore, of importance
to clarify the mechanism of the deterioration. To this end, we focus particularly on overlap-
ping structure of communities, and analyze the performance of spectral clustering employing
the replica method to random graph models. Our analysis clarifies how the structural infor-
mation is lost from the leading eigenvector depending on the model parameters related to
the size and density of the overlapping structure.

1.3 Organization

The rest of the paper is organized as follows. In Chapter 2, we summarize notations and
knowledge necessary for subsequent chapters. In Chapter 3, we develop two novel matrix
completion algorithms, which we call cavity-based matrix factorization (CBMF) and ap-
proximate cavity-based matrix factorization (ACBMF). In Chapter 4, we investigate the
deterioration mechanism of spectral clustering for overlapping structures by using the replica
method. Finally, Chapter 5 presents a summary of the achievements and possible future
work.
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Figure 1.1: (a) Observed matrix. (b) Mean squared error (MSE) of the approximated matrix
as a function of the rank of the approximated matrix.
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Chapter 2

Preliminaries

In this chapter, we summarize notions and knowledge necessary for subsequent chapters. In
Sec. 2.1, we introduce low-rank matrix factorization. In Secs. 2.2 and 2.3, as its two popular
applications, community detection and matrix completion, are introduced, respectively.

2.1 Low-rank matrix factorization

Matrix factorization has a number of variants depending on the purpose and the imposed con-
straints. The current study particularly concentrates on the case where a matrix is factorized
into a pair of two matrices of smaller sizes. This is called the low-rank matrix factorization.
In the following, we introduce the singular value decomposition. It is regarded as the simplest
example of problems addressed in this paper.

2.1.1 Singular value decomposition (SVD)

Singular value decomposition (SVD) is a common technique in linear algebra, and is applied
in a wide range of fields. SVD can be considered as the generalization of an eigenvalue
decomposition. The eigenvalue decomposition is defined only for a squared matrix, whereas
SVD can also be applied to a non-square matrix, and both are identical for a symmetry
matrix. For matrix Y ∈ RN×M (N ≤M), we can find the following factorization:

Y = U0Σ0V
T

0 . (2.1)

Here, U0 ∈ RN×N and V0 ∈ RM×N are the orthogonal matrices, i.e, U0U
T
0 = UT

0 U0 = IN and
V T

0 V0 = IN . IN ∈ RN×N is the identity matrix. Σ0 ∈ RN×N is the diagonal matrix whose
diagonal elements are the singular values σ1, . . . , σN , and we can assume σ1 ≥ σ2 · · · ≥ σN
without loss of generality. Furthermore, we describe the column vectors of U0 and V0 as
ui ∈ RN (i = 1, . . . , N) and vi ∈ RM (i = 1, . . . , N), respectively. The column vectors ui
and vi are referred to as the left singular vectors and right singular vectors. Here, we can
easily confirm that the squared eigenvalues of Y TY are identical to the singular values of Y
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because Y TY = V0Σ2
0V

T
0 . Moreover, SVD in Eq. (2.1) can be recast as

Y =
N∑
i=1

σiuiv
T
i . (2.2)

This form is useful to discuss a low-rank approximation later.

Low-rank approximation

Given rank-R matrix YR ∈ RN×M , its singular values can be σ̃1 ≥ · · · ≥ σ̃R > 0 and
σ̃R+1 = · · · = σ̃N = 0. In this case, using Eq. (2.2), SVD of YR can be expressed as

YR =
R∑
i=1

σ̃iũiṽ
T
i , (2.3)

where ũi and ṽi (i = 1, . . . , R) are the left and right singular vectors of YR, respectively.
From Eq. (2.3), a rank-R matrix can be interpreted as a weighted sum of rank-1 matrices
that consist of left and right singular vectors, and the weights are given by the singular
values. Therefore, we can consider an approximation that excludes the singular values with
small magnitude. This approximation is called the low-rank approximation. The low-rank
approximation of Y (the rank of Y is greater than R) is formulated as

Y ≈
R∑
i=1

σiuiv
T
i . (2.4)

This approximation sets the smaller singular values than σR to 0. As a result, the approxi-
mated matrix becomes a rank-R matrix. This approximation is called the rank-R low-rank
approximation.

We can show that the low-rank approximation is optimal in terms of minimizing the
squared error. In other words, the solution of the minimization problem

X̂ = argmin
rank(X)=R

‖Y −X‖2
F (2.5)

is given by the rank-R low-rank approximation of Y . Here, X̂ = URΣV T
R , where the column

vectors of UR and VR are formed by the top R left and right singular vectors of Y , respectively.
In the following, we verify Eq. (2.5) in brief. A strict proof is available in Refs. [6, 7]. The
minimization problem in Eq. (2.5) can be rewritten as

min
Q∈RN×R
QTQ=IR

min
B∈RM×R

‖Y −QBT‖2
F . (2.6)

Here, X can be generally factorized into Q ∈ RN×R and B ∈ RM×R, where Q is an orthogonal
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matrix. Then, solving for B, we obtain

min
Q∈RN×R
QTQ=IR

‖Y −QQTY ‖2
F (2.7)

= min
Q∈RN×R
QTQ=IR

Tr
(
(Y −QQTY )T (Y −QQTY )

)
(2.8)

= max
Q∈RN×R
QTQ=IR

Tr(QTY Y YQ). (2.9)

To derive the last equation, a constant term was ignored. Introducing a Lagrange multiplier
Λ ∈ RR×R, we obtain the Lagrange function as

g(Q) = Tr(QTY Y YQ)− Tr
(
ΛT (QTQ− IR)

)
, (2.10)

where Λ is a diagonal matrix Λ = diag(λ1, . . . , λR). Therefore, the optimal solution is given
by solving

SQ = QΛ, (2.11)

where we put S = Y Y T . Letting Q = (q1, . . . , qR), Eq. (2.11) can be described as

(Sq1, . . . , SqR) = (λ1q1, . . . , λRqR). (2.12)

Therefore, each column of Eq.(2.12) is regarded as a different eigenvalue problem of S. The
optimal solution of Eq. (2.9) is given by the sum of the eigenvalues, the columns of Q are
the top R eigenvectors of S. In the light of B = QTY , X̂ is given by the rank-R SVD of Y .

The low-rank approximation allows us to compress the amount of data. The original
matrix Y has NM entries, whereas the factorized matrices have (N + M + R)R entries.
When R� N,M , the amount of data is significantly compressed. In addition, the necessary
computational cost is also reduced compared to the full-rank SVD. The computational cost
of the full-rank SVD is O(N3) in general, whereas the rank-R SVD can be performed with
computational cost of O(N2). Here, when Y is a sparse matrix, its computational cost can
be further reduced. Lanczos algorithm [8] is an efficient algorithm for the rank-R SVD. The
Lanczos algorithm is based on the powered method and computes the top R singular values
by repeating matrix-vector multiplications. The matrix-vector multiplication for a sparse
matrix can be computed with computational cost of O(N) because its computation for zero
entries can be skipped.

SVD for clustering

In this section, we discuss SVD from the perspective of the clustering. This perspective is
of value when considering spectral clustering in Sec.2.2.1. Here, we regard Y as an observed
matrix and its each row yi ∈ RM (i = 1 . . . , N) as the ith observed data point. Then, each
row of SVD in Eq. (2.1) can be recast as

yi =
N∑
j=1

uijσjv
T
j , (2.13)
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where uij is the (i, j)th element of U . In the context of principal component analysis (PCA),
the right singular vector vj is referred to as the jth principal component, the singular value
σj is interpreted as the importance of vj, and uij can be understood as the weight of vj for
observed data yi. From the definition of SVD, the principal components are orthogonal each
other. Namely, the principal components represent the independent features of the observed
data.

Let us consider the rank-R low-rank approximation for Eq. (2.13). Then, the observed
data can be approximated as

yi ≈
R∑
j=1

uijσjv
T
j . (2.14)

This approximation indicates that we pick up top R important features and approximate
the observed data by using only them. From the perspective of the clustering, these features
correspond to the clusters, and uij represents the strength that observed data yi belongs to
the jth cluster.

However, the above mentioned interpretation has a practical issue that weight uij can
take a negative value. When we consider the general setting of the clustering, each data
point is allowed to belong to several clusters simultaneously (overlapping clusters). In this
case, we hope that a clustering algorithm outputs a probability or an assignment of belonging
to each cluster. However, when weight uij takes a negative value, we cannot provide such
interpretation for the factorized matrices. Therefore, ui is often used as a low dimensional
feature of yi. The features can be used for inputs of another clustering algorithm such as k-
means clustering. Although these procedures seem to be redundant at a glance, it is essential
when the observed matrix represents relational data. This type of clustering is called the
spectral clustering (see Sec. 2.2.1 in detail).

Note that to perform the clustering directly by using the low-rank matrix factorization,
we often impose the non-negative constraints on the factorized matrices. This is called the
non-negative matrix factorization (NMF) [9].

2.2 Community detection

Community detection is the task to find a specific structure in a graph. The graph here
represents a basic data structure that consists of nodes and edges. A node represents a
data point, and an edge represents a relation between a pair of nodes. The goal of the
community detection is to identify communities whose nodes are more densely connected in
a graph. Here, we denote an undirected graph as G = (V,E), where V (|V | = N) is a set
of nodes and E (|E| = m) is a set of edges. The graph is represented by N × N adjacency
matrix A, where Aij = 1 when a pair of nodes i and j is connected by an edge and Aij = 0
otherwise. In this paper, the graph is assumed to be sparse, namely the number of neighbors
of a node is much smaller than the system size. The community detection is a popular task
and a number of algorithms for it have been proposed. This paper focuses on the spectral
clustering particularly as a method based on the low-rank matrix factorization.
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2.2.1 Spectral clustering

Spectral clustering [5] is a popular method for community detection. It is based on the low-
rank matrix factorization of a matrix associated with an adjacency matrix of a graph. Such
a matrix is called the Laplacian matrix. In the simplest case, the adjacency matrix itself
is used as the Laplacian matrix. However, its performance is known to be poor in many
cases. Therefore, we usually use more sophisticated Laplacian matrices. In fact, they are
closely related to the objective function of the other community detection methods. In this
subsection, we introduce several objective functions in different contexts of the community
detection, including modularity maximization, graph partitioning and statistical inference.
Then, we show that they can be reduced to a variant of the spectral clustering by the
continuous relaxation. These discussions are also available in Refs. [10, 11].

Modularity maximization

Modularity is the measure of the strength of community structures in a graph [12]. We
can show that maximizing the modularity leads to the spectral clustering with a modularity
matrix.

Given a group assignment, the definition of modularity is given by the difference between
the fraction of edges whose both endpoints belong to the same group and the expected fraction
when edges are distributed at random. A pair of nodes in the same group is expected to be
connected with a higher probability than that in the uniform random graph. Therefore, by
finding a group assignment so that modularity is maximized, the assignment is expected to
reflect on the community structures in the graph. When the number of groups is two, the
definition of modularity Q2 is formulated as

Q2 =
1

2m

∑
ij

(
Aij −

didj
2m

)
sisj + 1

2
. (2.15)

Here, s = [si] (i = 1, . . . , N), si ∈ {−1, 1} is the group assignment, and m (=
∑

ij Aij/2) is
the number of edges in the graph. The first term is the adjacency matrix that represents the
graph structure, and the second term is the probability that a pair of nodes (i, j) connects
randomly when their degrees are given. Due to the factor (sisj + 1)/2, the objective function
takes a non-zero value only when the pair of nodes belongs to the same group. Equation (2.15)
can be recast as

Q2 =
1

4m
sTMs, (2.16)

where

Mij = Aij −
didj
2m

(2.17)

is the (i, j)th element of modularity matrix M . Note that the last term in the last factor in
Eq. (2.15) can be ignored because of

∑
ij didj/2m =

∑
ij Aij.

Maximizing Eq. (2.16) with respect to s is computationally difficult because we require
calculating for exponential patterns (2N). Therefore, a heuristic approach is needed to solve
the problem in practice. A standard heuristics here is a continuous relaxation; the elements
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of s are relaxed to taking any real values. As a result, the modularity maximization problem
with the continuous relaxation is obtained as

max
x

1

N
xTMx

subject to xTx = N. (2.18)

Here, elements of x can take real values, which were introduced instead of s. Its constraint
is required to prevent the optimal solution from diverging. By introducing a Lagrange mul-
tiplier, we can confirm that the solution of this problem is given by the first eigenvector of
M .

Expanding to the case with more than two groups is easy. When the number of groups
is R, Eq. (2.15) can be expanded as

QR =
1

2m

∑
ij

(
Aij −

didj
2m

) R∑
r=1

sirsjr. (2.19)

Here, S ∈ RN×R is the assignment matrix whose (i, r)th element sir = 1 if node i belongs
to group r and sir = 0 otherwise, and its orthogonality is assumed, i.e, STS = IR. Then
Eq. (2.19) can be recast as

QR =
1

2m
Tr
(
STMS

)
. (2.20)

By performing the continuous relaxation of S, minimizing Eq. (2.20) with the orthogonality
constraints becomes identical to Eq. (2.9). This indicates that the optimal solution is given
by X̂ ∈ RN×R whose columns consist of the top R eigenvectors of M . As a result, finding
R groups in a graph in terms of the modularity maximization reduces to the rank-R matrix
factorization. Note that we are required to additionally perform a clustering algorithm, such
as k-means clustering, to get a group assignment because X̂ is no longer viewed as the
assignment matrix.

Graph partitioning

Graph partitioning is also a popular approach for community detection. The goal of the
graph partitioning is to cut a graph so that nodes in the cut subgraphs are connected more
densely. This indicates that this goal is similar to that of the community detection, which
enables us to use the graph partitioning techniques also for the community detection.

The simplest definition of the graph partitioning problem is given as the minimum cut
problem. It aims to find a partition so that the sum of edge weights connected inter the
cut subgraphs are minimized. When the number of partitions R = 2, it is formulated as
minimizing the following objective function:

cut(C,C) =
∑

i∈C,j∈C

Aij. (2.21)

Here, C ⊂ V is the subset of nodes in a cut subgraph and C is the complement of the subsect
C. From this, when the number of partitions is given by R, the objective function of the
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minimum cut problem is obtained as

cut(C1, . . . , CR) =
R∑
r=1

cut(Cr, Cr), (2.22)

where Cr (r = 1, . . . , R) is the subset of nodes in the rth partitioned subgraph. When R = 2
and the elements of the adjacency matrix are non-negative, some algorithms that can solve
the problem in polynomial time are known [13]. On the other hand, when R ≥ 3, the problem
is NP-hard and some heuristics are required in practice. Furthermore, it is known that we get
only a trivial partition by solving the minimum cut problem in many practical cases. Namely,
a partition that one node is isolated and the other nodes are grouped is often provided as
the optimal partition of the minimum cut problem. To avoid this and get a more meaningful
partition, giving a penalty to the size of each partition is an effective approach. Depending
on the types of the imposed penalties, there are two major approaches: Raitio Cut (Rcut)
[14] and Normalized Cut (Ncut) [15]. The objective functions of these graph partitioning are
defined as follows:

Rcut(C1, . . . , CR) =
R∑
r=1

cut(Cr, Cr)

|Cr|
, (2.23)

Ncut(C1, . . . , CR) =
R∑
r=1

cut(Cr, Cr)

vol(Cr)
. (2.24)

Here, |C| is the number of nodes in the subset C, and vol(C) is the sum of edge weights
connected to the nodes in the subset C. In both definitions, the larger the size of each
partition (|Cr| or vol(Cr)) is, the smaller the objective function is. Thus, more balanced and
meaningful partitions are expected to be found.

First, let us see Rcut in detail and show its objective function (2.23) can be reduced to
a variant of the spectral clustering. We define the normalized group assignment sr ∈ RN

(r = 1, . . . , R), whose ith element sir is given by

sir =

{
1√
|Cr|

if i ∈ Cr

0 otherwise .
(2.25)

Besides, we define a Laplacian matrix as

L = D − A, (2.26)

which are called the unnormalized graph Laplacian. Here, D is the diagonal matrix, whose
ith diagonal element is di =

∑N
j=1Aij. Now we focus on the following quadratic form.

sTr Lsr = sTr (D − A)sr (2.27)

=
∑
ij

Aij(s
2
ir − sirsjr) (2.28)

=
1

2

∑
ij

Aij(sir − sjr)2. (2.29)
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To derive the third equation, we used the fact that A is a symmetric matrix. Inserting
Eq. (2.25) into (2.29), we obtain

sTr Lsr =
1

2

∑
i∈Cr
j∈Cr

Aij
1

|Cr|
+

1

2

∑
i∈Cr
j∈Cr

Aij
1

|Cr|
(2.30)

=
cut(Cr, Cr)

|Cr|
. (2.31)

To derive the last equation, we used Eq. (2.21). Accordingly, the objective function of Rcut
(2.23) can be rewritten as

Rcut(C1, . . . , CR) =
R∑
r=1

sTr Lsr = Tr(STLS), (2.32)

where S ∈ RN×R is the normalized assignment matrix, whose rth column vector is sr. Here,
the orthogonal constraint is imposed on S. After all, Rcut objective function becomes

min
{C1,...CR}

Tr(STLS)

subject to STS = IR. (2.33)

However, this problem is NP-hard. Thus, we again relax S to real matrix X ∈ RN×R. Rcut
objective function is then reduced to

min
X∈RN×R

Tr(XTLX)

subject to XTX = IR. (2.34)

This optimization problem is analogical to Eq. (2.9). Its optimal solution is given by the
smallest R eingenvectors of L.

Similarly to Rcut, we can show that the objective function of Ncut (2.24) is reduced to
a variant of the spectral clustering. Because its derivation is similar to that of Rcut, we will
show it in brief here. We define the normalized group assignment tr ∈ RN (r = 1, . . . , R),
whose ith element tir is given by

tir =

{
1√

vol(Cr)
if i ∈ Cr

0 otherwise .
(2.35)

Similarly to Rcut, the quadratic form with respect to t and L is related to the minimum cut
objective function, i.e.,

tTr Ltr =
cut(Cr, Cr)

vol(Cr)
. (2.36)

Therefore,
Ncut(C1, . . . , CR) = Tr(T TLT ), (2.37)
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where T ∈ RN×R is the normalized assignment matrix whose rth column is tr. In additoin,
we can confirm that there are orthogonal constraints with respect to T as follows.

tTrDtr =
∑
i

ditirtir =
∑
i∈Cr

di
vol(Cr)

= 1, (2.38)

tTrDts =
∑
i

ditirtis = 0. (r 6= s) (2.39)

Therefore,
T TDT = IR. (2.40)

From Eqs. (2.37) and (2.40), we can recast the minimizing problem of Ncut as

min
{C1,...CR}

Tr(T TLT )

subject to T TDT = IR. (2.41)

Similarly to Rcut, we relax T to real matrix X ∈ RN×R. As a result, the continuous relaxed
Ncut problem are obtained by

min
X∈RN×R

Tr(XTLX)

subject to XTDX = IR. (2.42)

The optimal solution of this problem is given by the smallest R generalized eigenvectors.
The generalized eigenvalue problem is formulated as Lx = λDx. Here, by replacing as
X ′ = D

1
2X, Eq. (2.42) can be recast as

min
X′∈RN×R

Tr(X ′T L̃X ′)

subject to X ′TX ′ = IR, (2.43)

where
L̃ = D−

1
2LD−

1
2 (2.44)

is a Laplacian matrix, which is called the normalized graph Laplacian. From Eq. (2.43), the
optimal solution is again given by the smallest R eigenvectors of L̃.

Statistical inference

Statistical inference is also a widely used approach for community detection. In this approach,
a generative model is assumed and the observed data are assumed to be sampled from the
model. A goal of the statistical inference approach is to find the most fitted parameters of
the model for the observed data. In the context of community detection, stochastic block
model (SBM) is a popular generative model because it holds the simplicity, expressiveness
and extensibility. The simplicity comes from the block structure of SBM. The probability a
pair of nodes is connected by an edge is determined by the block (group) to which the nodes
belong. Moreover, the expressiveness of SBM is high because it can generate a wide variety of
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graphs not only with community structures but also with disassortative structures [16], core-
periphery structures [17] and so on. In terms of the extensibility, a number of variants have
been proposed such as labeled SBM [18], degree corrected SBM [19], overlapping SBM [20]
and microcanonical SBM [21]. The detailed discussion of SBM is available in a comprehensive
review [22]. In the following, we introduce the standard SBM and its inference method, and
then we discuss the equivalence with the spectral clustering. The following discussion is also
available in [10, 11, 23].

In the standard SBM, node i is assumed to belong to only one group denoted as ti, and
the probability that a pair of nodes (i, j) is connected by an edge is denoted as ρtitj . Each
edge is drawn independently and randomly with probability ρrs, which is the (r, s)th element
of the R × R affinity matrix ρ = [ρrs], 0 ≤ ρrs ≤ 1. The probability of being generated a
graph instance is expressed as

P (A|R, t,ρ) =
∏
i<j

ρ
Aij
titj

(
1− ρtitj

)1−Aij , (2.45)

where R is the number of groups and t is the group assignment, whose ith element is ti.
To infer t, we often adopt the Bayesian approach. Here, prior P (t|γ) =

∏
i γti , where

γr is the fraction of nodes in the rth group, is introduced to consider partition function
P (A|ρ,γ) =

∑
t P (A|R, t,ρ)P (t|R,γ) of posterior P (t|A,R,ρ,γ). However, inferring the

posterior is computational intractable because of
∑
t operation, and thus we usually use an

approximate inference such as variational Bayes [24], belief propagation [25] and MCMC [26].
As well as t, the model contains parameters ρ and γ, which must be inferred in general. To
realize both inferences, EM algorithm can be used [24, 27].

In contrast to the Bayesian approach, in the following, we consider to find optimal t so
that the likelihood function is maximized. We show that its objective function is equivalent
to that of the modularity maximization when ρ is given and the graph is sparse. We now
introduce an extension of the standard SBM. In Eq. (2.45), the probability a pair of nodes
(i, j) is connected by an edge follows the Bernoulli distribution with mean ρti,tj . Here, we
replace the Bernoulli distribution with the Poisson distribution with mean ρti,tj . As a result,
we obtain

Q(A|R, t,ρ) =
∏
i<j

ρ
Aij
titj

Aij!
e−ρtitj . (2.46)

This Poisson SBM is often used because of the theoretically tractable. Actually, the random
variables that follow Bernoulli and Poisson SBMs behave roughly in the same way when ρti,tj
is sufficiently small [28]. Considering the log-likelihood of the two models, we obtain

logP (A|R, t,ρ) ≈
∑
i<j

(
Aij log ρtitj − ρtitj + Aijρtitj

)
, (2.47)

logQ(A|R, t,ρ) ≈
∑
i<j

(
Aij log ρtitj − ρtitj

)
. (2.48)

Here, the O(1/N) and constant terms are ignored. Eqs. (2.47) and (2.48) are equivalent
except for the slight shift by the last term in Eq. (2.47). Note that although the Poisson SBM
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has a possibility to generate multiple edges, its probability is much small when ρti,tj � 1.
Then, we consider an extension to the degree-corrected SBM [19]. Actually, it is known
that the standard SBM rarely provides a good fit for real-world networks because of the
tight assumption for the degree distribution. Although degrees of nodes in the same group
follow the same Poisson distribution in the standard SBM, real-world networks usually have a
heterogeneous non-Poisson degree distribution. To improve the fit for the real-world networks,
an additional parameter θi is often introduced for each node. The modified generative model
is given by

QD(A|R, t,ρ) =
∏
i<j

θiθjρ
Aij
titj

Aij!
e−θiθjρtitj . (2.49)

Here, degree di is often used for the parameter θi. The log-likelihood of Eq. (2.49) is

logQD(A|R, t,ρ) ≈
∑
i<j

(
Aij log ρtitj − didjρtitj

)
, (2.50)

where again the O(1/N) and constant terms are ignored. Here, we assume that the number
of groups is two and the graph has an assortative structure, namely the diagonal elements of
ρ are given by ρin and the others are ρout (ρin > ρout). Then, we express each element of ρ
as follows.

ρtitj =
1

2

(
(ρin + ρout) + δtitj(ρin − ρout)

)
, (2.51)

log ρtitj =
1

2

(
log ρinρout + δtitj log

ρin

ρout

)
, (2.52)

where δtitj represents the Kronecker’s delta. Inserting Eqs. (2.51) and (2.52) into (2.50), we
obtain

B
∑
ij

(Aij − γdidj) δtitj + C, (2.53)

where γ = (pin−pout)/(log pin−log pout) is the so-called resolution parameter [23]. B and C are
constants depending only on ρin and ρout. Given ρ, Eq. (2.53) is equivalent to the modularity
objective function (2.15) if the resolution parameter is set appropriately. Therefore, this
problem reduces to the spectral clustering with the modularity matrix.

2.3 Matrix completion

Recent technological advances triggered the generation and accumulation of significant amounts
of data. In response to the trend, several methods are proposed to extract useful information
from them. This produced significant results in various fields including science and engineer-
ing. A typical example can be found in collaborative filtering, which is a methodology that
is used in recommender systems [29]. As a comprehensive example, we consider a user-movie
matrix Y ∈ RN×M , where N and M denote the number of users and movies, respectively, and
an entry of Y , yij, denotes rating from user i movie j. Users normally evaluate only a small
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fraction of movies, and thus most entries of Y are missing. Under the aforementioned types
of setting, the primary objective of matrix completion involves predicting missing entries.

Under this type of setting, a natural approach for this involves minimizing the rank of
the matrix under constraints yielded by observed entries, and this is generally referred to
as “low-rank matrix completion”. Unfortunately, it is NP-hard to literally solve the rank
minimization problem. In order to practically overcome the difficulty, relaxation of matrix
rank to nuclear norm was proposed [30]. Interestingly, it is guaranteed that the solution of the
nuclear norm minimization is exactly in agreement with that of the original rank minimization
if certain conditions are satisfied [31, 32, 33, 34]. The minimization of nuclear norm belongs
to the class of convex optimization problems, and thus the optimal solution is determined via
versatile semidefinite programming solvers when the matrix size is relatively small. However,
in several realistic problems, matrix sizes are not so small, and computational and memory
costs required by the nuclear norm minimization often exceed practically acceptable levels.

In order to deal with such situations, a non-convex approach using matrix factorization
was proposed more recently [29]. When the objective matrix is factorized into two matrices
of lower rank, nuclear norm is evaluated as the sum of their Frobenius norms. The non-
convex formulation significantly reduces necessary computational and memory costs while
we can generally find only local minima. However, a recent study [35] indicated that under
a certain condition, the objective function of matrix factorization does not exhibit spurious
local minima. Each local minimum is transformed to another via trivial operations such as
permutations of column/rows with high probabilities.

In this section, we discuss the several types of the matrix completion problems: rank
minimization, nuclear norm minimization, and matrix factorization. Together with these,
standard algorithms to solve them will be introduced.

2.3.1 Rank minimization

As before, the goal of matrix completion is to recover missing entries of sparse observed matrix
Y . To this end, we often assume that Y is a low-rank matrix. If the additional constraint
is not imposed, it is an ill-posed problem, and we can fill the missing entries with arbitrary
values. The low-rank constraint originates from a practical situation that the amount of
principal information contained in the observed matrix is often much smaller than its data
size, as mentioned in Introduction. To see this in more detail, let us consider the Netflix
prize [36] as a famous example of the application of the low-rank matrix completion. The
Netflix prize was the competition of algorithms for the recommender system, and particularly
focused on user-movie rating datasets. Users who watched a movie rate it by five-point scales;
if the movie is preferred by the user, it gets score 5, while if it is not, it gets score 1. Here, in
observed matrix Y ∈ RN×M , where N is the number of users and M is the number of movies,
its (µ, i)th element yµi ∈ {1, 2, 3, 4, 5} denotes a rating from user µ to movie i. However, users
normally evaluate only a small fraction of movies, and thus most entries of Y are missing.
The primary objective of matrix completion involves predicting missing entries. Under the
aforementioned types of setting, the low-rank approximation for Y is reasonable. This is
because of the underlining assumption of the collaborative filtering, which states that users
who have similar preferences tend to watch similar movies. Here, the number of the users’
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preferences approximately correspond to the rank of Y . Therefore, the low-rank assumption
is reasonable because the number of the users’ preferences is normally much smaller than
N . Similarly, the genres of movies also correspond to the matrix rank. In the case of the
Netflix prize, although Y is a significantly large matrix (N = 480, 189 and M = 17, 770), the
amount of its principal information is regarded to be much smaller because of the low-rank
approximation.

First, we introduce the low-rank matrix completion problem via the rank minimization.
It is defined as

min
X

rank(X)

subject to xµi = yµi, (µ, i) ∈ Ω (2.54)

where X is the decision matrix, yµi is an element of the observed matrix, and Ω is the set of
observed entries. This problem is to find the lowest rank matrix under the constraint that
the elements of the decision matrix are the same as the observed elements. However, this
problem is known to be NP-hard.

The above problem was defined in a noise-free environment. However, it is far from a
practical setting in general. Therefore, we next consider the low-rank matrix completion in
a noisy environment [37]. This problem is defined as

min
X

rank(X)

subject to

√ ∑
(µ,i)∈Ω

(xµi − yµi)2 ≤ δ, (2.55)

where δ > 0 is a tolerance parameter for the fitting error. Overfitting against the noise can
be prevent depending on the tolerance parameter. Further, we can recast Eq. (2.55) as

min
X

∑
(µ,i)∈E

(xµi − yµi)2

subject to rank(X) ≤ r, (2.56)

Here, r is also a tolerance parameter, which corresponds to δ in Eq. (2.55). When Y is a
full-filled observed matrix, the optimal solution of the minimization problem (2.56) is given
by the rank-r SVD of Y . However, when Y has missing entries, it is difficult to find the
optimal solution because the problem becomes non-convex. In this case, if giving up on
finding the global minimum, a handy algorithm based on heuristics can be used to find a
local minimum. First, missing entries of Y are filled in with zero to prepare an initialization
matrix. Second, the rank-r SVD is performed for the filled matrix, and then only the entries
that were missing are replaced by the corresponding entries of the rank-r approximation
matrix. Here, the observed entries remain unchanged. These procedures are repeated until
convergence is achieved. This heuristic method requires the rank-r SVD computation at
each iteration. Thus, the computational cost at each iteration is O(N2). This computational
cost is too high to deal with real data in many practical cases. Therefore, to transform into
a more tractable problem, we introduce some relaxations and assumptions in the following
subsection.
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2.3.2 Nuclear norm minimization

The nuclear norm minimization is a common approach to transform the rank minimization
problem into a more tractable convex problem. Because the rank function is not convex and
difficult to handle flexibly, we consider to approximate it as a more tractable form. To this
end, the nuclear norm ‖X‖∗ has suitable properties. It is defined as

‖X‖∗ =

min{N,M}∑
k=1

σk, (2.57)

where σk ≥ 0 is the kth largest singular value of X. The rank of X is determined by the
number of non-zero singular values of X. On the other hand, the nuclear norm is defined
as the sum of singular values of X. Therefore, it can be expected that the nuclear norm
minimization is a good approximation of the rank minimization. By replacing the matrix
rank in Eq. (2.54) with the nuclear norm, we obtain

min
X

‖X‖∗
subject to xµi = yµi. (µ, i) ∈ Ω (2.58)

In addition, the rank minimization problem in noisy environment (Eqs. (2.55) and (2.56))
can also be relaxed to

min
X

1

2

∑
(µ,i)∈Ω

(yµi − xµi)2 + λ‖X‖∗ . (2.59)

Here, we describe it in Lagrangian form. λ > 0 is a constant parameter for inducing the
reduction of ‖X‖∗. It is chosen appropriately by using such as cross-validation.

Now we wonder if the solution from the nuclear norm minimization problem matches that
of the original rank minimization problem. A number of studies have tackled this problem
and shown that solving either problem can recover the original matrix if several conditions
are satisfied. These conditions are related to the so-called coherence and the number of
observed entries. They are briefly described below.

Coherence is intuitively a measure of how biased the matrix entries are. The higher the
coherence is, the more biasedly distributed the matrix entries are, and the more difficult it
is to recover the missing entries. As an example, let us consider a rank-1 matrix as follows.

S1 = eNe
T
1 =


0 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...
...

1 0 · · · 0 0

 , (2.60)

where ei is the basis vector which have all zero entries except that its ith element is 1.
Although recovering missing entries of a rank-1 matrix is a relatively easy problem in general,
this case is not easy. This is because this matrix has only one non-zero entry in the bottom-
left corner, and we cannot hope to recover the non-zero entry unless it is observed directly.
This is an example of a matrix that has much high coherence. On the other hand, as an
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example of a low coherence rank-1 matrix, we can consider S2 = u1u
T
2 , where u1 and u2

are random vectors whose entries are independently sampled from the standard Gaussian
distribution. We can expect that the entries of the random matrix are not biased rather than
S1, and its recovery can be easier. This indicates that the coherence is closely related to the
difficulty to recover the missing entries.

In addition, the number of the observed entries is also an essential factor for the condition
to recover the missing entries. Of course, a mostly filled observed matrix is easier to be
recovered, and it becomes more difficult as the number of observations decreases. By focusing
on the degree of freedom of the rank-R matrix, we can confirm that at least (N +M)R−2R2

observations are required. This can be verified by considering the rank-R SVD. The second
term comes from the constraints of the orthogonal matrices.

From another point of view, it turns out that at least O(N logN) observations are required
for the recovery. This comes from the so-called coupon collector’s problem [38]. The definition
of this problem is simple. Let us assume a situation that there are a large number of coupons
of which have N types, and we take out the coupons one by one randomly and independently
to check the content of the coupon. In this situation, how many trials on average to collect all
types of coupons is given by O(N logN). This is closely related to the number of observations
to recover the missing entries. Let us consider a rank-1 matrix Y1 as an example as follows.

Y1 =


∗ ∗ · · · ∗ ∗
y21 y22 · · · y2(N−1) y2N
...

...
...

...
...

yN1 yN2 · · · yN(N−1) yNN

 . (2.61)

Here, ∗ represents a missing entry and all entries of the first row of Y1 are missing. In this
case, we cannot hope to recover the first row. This is because when we can factorize as
Y1 = v1v

T
2 , where v1 and v2 are a certain vector, we have no information to infer the first

element of v1. Accordingly, we require at least one observation in a row and column. This
can be viewed as the coupon collector’s problem. In the following, we review the coupon
collector’s problem shortly and how the fact the O(N logN) observations are required is
derived.

First, we define Z as a random variable following the geometric distribution with param-
eter p, i.e., P (Z = k) = (1− p)k−1p. Thus, the random variable of the geometric distribution
indicates the number of trials required before an event with probability p occurs. Using this,
the expected number of trials to collect all types of coupons can be expressed as

E[X] = E[X1] + · · ·+ E[XN ], (2.62)

where Xi is a random variable following the geometric distribution with parameter (N−i)/N .
This is because when i types of coupons have been already collected, the probability to hit an
uncollected coupon by one trial is (N−i)/N . Therefore, using X1 = 1 and E[Xi] = N/(N−i),
we obtain

E[X] = 1 +
N

N − 1
+

N

N − 2
+ · · ·+ N

2
+N (2.63)

= NHN , (2.64)
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where HN =
∑N

i=1(1/i) is the harmonic number. According to the asymptotic expansion of
the harmonic number, we obtain

HN = logN + γ +O

(
1

N

)
, (2.65)

where γ ≈ 0.57721 is the Euler–Mascheroni constant. Accordingly, when N is large, we can
confirm the expected number of trials is given by E[X] = O(N logN).

A number of studies have theoretically investigated the number of the observations needed
to recover the original matrix perfectly by solving the nuclear norm minimization problem.
When the original matrix has sufficiently small coherence, Candès and Recht (2008) [31]
shows M ≥ CN1.2R logN observations are required to recover the original matrix with
high probability. C is a positive constant. After that, several studies shows the more tight
inequality [32, 33, 34, 39].

To solve the nuclear norm minimization problem, we have many options because it is
convex unlike the rank minimization problem. In a noise-free environment (2.58), Fazel
(2002) [30] shows the nuclear norm minimization problem can be recast as an equivalent
problem in terms of semidefinite programming. This is derived by using the fact that the
nuclear norm is expressed by the sum of the singular values. A number of efficient methods
can be used to solve such types of problem [40]. However, standard solvers for such problems
are problematic when the system size is large. To alleviate it, a more scalable method has
been proposed in Cai at el (2008) [41]. The proposed method, which is referred to as singular
value thresholding algorithm, is a first-order method, and it is scalable for the system size
and adaptable to a larger matrix. This method consists of two steps. The first step shrinks
the singular values to induce a low rank, and the second step updates the variable to fit the
observed entries. In the first step, the shrinkage is performed by using the singular value
shrinkage operator Sλ, which is defined as

Sλ(X) = UΣλV
T , (2.66)

where Σλ = diag[(σ1− λ)+, · · · , (σR− λ)+]. Here, (x)+ represents x = 0 if x < 0, and U and
V are given by the rank-R SVD X = UΣV T . The operator Sλ(X) works to shrink the rank
of matrix X by λ. The singular value shrinkage operator is closely related to the nuclear
norm minimization problem. It obeys

Sλ(Z) = arg min
X

{
1

2
‖X − Z‖2

F + λ‖X‖∗
}
. (2.67)

The proof to show this equation can be found in Ref. [41]. Note that the right-hand side
of Eq. (2.67) is defined for a dense matrix Z. Using this operator, the following heuristic
procedure can be considered {

Zk = Sλ
(
Xk−1

)
Xk = Xk−1 + δkPΩ

(
Y − Zk

)
,

(2.68)

where PΩ is the projection operators, which is defined as

[PΩ(Y )]ij =

{
yij if (i, j) ∈ Ω
0 if (i, j) /∈ Ω.

(2.69)
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Thus, the role of operator PΩ(Y ) is to fill the missing entries of Y to zero. δk is the step size
in kth iteration, and Y is the observation matrix. This procedure starts with X0 = 0 and is
repeated for k = 1, 2, . . . until convergence. This convergence is guaranteed and its proof is
presented in Ref. [41]. Of course, because the rank of X is unknown in advance, we choose
relatively large R (< M). However, its redundant rank can reduce to 0 by the operator Sλ
according to λ.

Mazumber at el (2010) [42] propose another algorithm, which is called SOFT-IMPUTE,
for the nuclear norm minimization. This algorithm is inspired by the heuristic algorithm
for a rank minimization problem, which was introduced in Sec. 2.3.1. This heuristic algo-
rithm performs the rank-R SVD repeatedly and updates only the entries corresponding to
the missing ones. Similarly to this, SOFT-IMPUTE operates the singular value shrinkage
operator repeatedly and updates only the entries corresponding to the missing ones. Its
specific procedure is given as follows.

Xk = Sλk
(
PΩ(Y ) + P⊥Ω (Xk−1)

)
. (2.70)

Here, P⊥Ω (X) is an operator to fill the (i, j)th entry of X to zero, where (i, j) /∈ Ω, and λk is
predetermined in advance by a decreasing grid, i.e., λ1 > λ2 > · · · . The procedure starts with
X0 = 0 and is repeated for k = 1, 2, . . . until convergence. This algorithm also guaranteed
to converge to the global minimum. Besides, it has an advantage rather than the previous
algorithm in term of the computational cost. The input of the operator Sλk in Eq. (2.70) can
be reformulate as

Sk−1 = PΩ(Y ) + P⊥Ω (Xk−1) = PΩ(Y −Xk−1) +Xk−1. (2.71)

Here, the first term in the rightmost side is a sparse matrix, and the second term is a low-
rank matrix. The leading computational cost in Eq. (2.70) comes from the calculation of the
rank-R SVD, whose computational cost is generally O(MNR) by using standard algorithms
such as a Lanczos method [8]. However, we can use a specific structure in Eq. (2.71) to reduce
the computational cost to be linear with the matrix size. The Lancroz method is based on
the powered method, and its most expensive step stems from matrix-vector multiplications,
i.e., uTSk−1 or Sk−1v, where u ∈ RN and v ∈ RM . By multiplying v from the right in
Eq. (2.71), we obtain

Sk−1v = PΩ(Y −Xk−1)v +Xk−1v. (2.72)

The computational cost of the first term in the right-hand side is O(|Ω|) because we can ignore
the computation of the zero entries, and the computational cost of the second term is O((N+
M + R)R) because it can be factorized by the rank-R SVD as Xk−1 = Uk−1Σk−1(V k−1)T .
Here, this rank-R SVD has already been computed in the previous iteration. This is analogous
to the left multiplication uTSk−1. Therefore, when a small R (� N,M) is chosen, the
computational cost is linear with the matrix size. In addition, the memory cost is also
significantly reduced due to the sparse and low-rank structures.

The SOFT-IMPUTE succeeds in reducing the computational cost significantly. However,
it requires to compute the rank-R SVD for each iteration. In a practical setting, the observed
matrix size is extremely large in many cases. Therefore, the alleviation of the computational
cost is not enough. To address the practical problems, we introduce a further relaxation
below.

22



2.3.3 Low-rank matrix factorization

The methods to solve the nuclear norm minimization problem required to compute the rank-
R SVD for each iteration. To alleviate the high computational cost for practical use, we
introduce a low-rank matrix factorization technique in this subsection. As seen before, the
low-rank matrix factorization is a common technique for dimensionality reduction in a wide
range of fields. Given a rank-R matrix X ∈ RN×M , it can be factorized into two smaller
matrices U ∈ RN×R and V ∈ RM×R, i.e., X = UV T . The rank-R SVD is a specific case
of the low-rank matrix factorization, where the orthogonality is imposed among rows in the
factorized matrices. Due to the constraints, the rank-R SVD provides an unique factorization
when the order of its singular values is fixed. On the other hand, the factorization cannot be
determined uniquely without any constraints. For arbitrary orthogonal matrix O ∈ RR×R, we
can recast as X = UV T = UO(V O)T , namely they have the rotational symmetry. However,
the lack of the orthogonal constraints and uniqueness is often less of an issue, rather it
has practical advantages in matrix completion problems. First, when any constraints are
imposed, it can be solved faster because some efficient iterative algorithms such as stochastic
gradient decent (SGD) and alternating least square (ALS) can be used. Second, in terms of
the matrix completion problems, the uniqueness of the factorized matrices are not required as
long as the missing entries can be recovered uniquely. Here, we define the matrix completion
problem using the low-rank matrix factorization as follows.

min
U,V

1

2

∑
(µ,i)∈Ω

(
yµi −

R∑
r=1

uµrvir

)2

+
1

2
λ‖U‖2

F +
1

2
λ‖V ‖2

F . (2.73)

Here, the second and third terms are the regularization terms, and λ controls the extent
of shrinkage for the variables. As discussed later, they originate from the nuclear norm.
Actually, this problem cannot guarantee the uniqueness of the recovered entries because
it is no longer a convex problem. However, it was empirically known that the recovered
matrix obtained from solving Eq. (2.73) matches the original matrix very well. Given this
fact, Ge at el. [35] provides a proof that every local minimum to which the gradient decent
algorithm converges is also a global minimum even if it starts from a random initialization.
Therefore, the formulation of the low-rank matrix factorization is suitable for practical matrix
completion problems. However, it should be noted that the rank of the factorized matrices
must be determined in advance, and it is generally kept unchanged, unlike the nuclear norm
minimization. In the following, we will see the relation to the nuclear norm minimization
problem, and introduce some existing major algorithms to optimize Eq. (2.73).

The low-rank matrix factorization problem (2.73) is closely related to the nuclear norm
minimization problem (2.59) when the matrix rank is given by R. According to Refs. [43,
42, 44], the nuclear norm is expressed by the sum of the Frobenius norms of the factorized
matrices as follows:

‖X‖∗ = min
U,V

{
1

2

(
‖U‖2

F + ‖V ‖2
F

)
: X = UV T

}
. (2.74)

This equation can be verified as follows. Letting the rank-R SVD of X be X = URΣRV
T
R ,
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the nuclear norm ‖X‖∗ can be rewritten as follows.

‖X‖∗ = Tr(ΣR) (2.75)

= Tr(UT
RXVR) (2.76)

= Tr
(
UT
RU

(
V T
R V
)T)

. (2.77)

Here, we can derive the following relationship between the trace and the Frobenius norms
for two real matrices B and C.

Tr(BCT ) =
∑
ij

bijcij (2.78)

≤

(∑
ij

b2
ij

)1/2(∑
ij

c2
ij

)1/2

(2.79)

= ‖B‖F‖C‖F . (2.80)

To derive Eq. (2.79), we used the Cauchy–Schwarz inequality. Using this inequality for
Eq. (2.77), we obtain

‖X‖∗ ≤ ‖UT
RU‖2

F‖V T
R V ‖2

F (2.81)

= ‖U‖2
F‖V ‖2

F (2.82)

≤ 1

2

(
‖U‖2

F + ‖V ‖2
F

)
. (2.83)

Here, we used relation (‖U‖F −‖V ‖F )2 ≥ 0 and the fact that the Frobenius norm is invariant
for orthogonal transformations. We can confirm that the equalities are accomplished when
U = URΣ

1/2
R and V = VRΣ

1/2
R . By inserting Eq. (2.74) into Eq. (2.59), we obtain Eq. (2.73).

Problems like Eq. (2.73) are called the biconvex problem because it reduces to a convex
problem if one of the two types of variable U and V is fixed. To solve these types of problem,
a number of efficient local search algorithms can be used. These algorithms can work fast
and have scalability for significantly large scale datasets. In the following, we introduce two
major algorithms to solve Eq. (2.73): alternating least squares (ALS) and stochastic gradient
decent (SGD).

The ALS is a widely known approach to the biconvex optimization problem due to its
simplicity. A number of variants have been proposed and their theoretical analyses are
provided [45, 46, 47, 48]. When V is fixed, each row of U is independently calculated, and
the minimization problem of (2.73) is then expressed as follows.

min
uµ

1

2

∑
i∈∂µ

(
yµi − uTµvi

)2
+ λ ‖uµ‖2 , (2.84)

where uµ and vi denote the µth and ith rows of U and V respectively, and ∂µ denotes a
set of observed indices of µth row of Y . Thus, Eq. (2.84) leads to the following closed form
solution

u∗µ =

(∑
i∈∂µ

viv
T
i + λIR

)−1(∑
i∈∂µ

yµivi

)
, (2.85)
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where IR denotes R × R unit matrix. Subsequently, we fix U and solve V in tern, and
ALS repeats this operation until convergence. The main advantage of ALS is the ease of
the parallelization and distribution. This is realized because its update rules are described
independently with respect to each row of U and V , like Eq. (2.85). Another advantage
of ALS is that because its update equation (2.85) can be described as a closed form, it is
expected to converge faster and does not require the delicate scheduling of any additional
parameters such as a learning rate. On the other hand, as its disadvantage, its computational
costs are more expensive because of the inverse matrix in Eq (2.85). Note that hereafter, we
use ‘iteration’ for counting the unit of computation in which all variables are updated once
on average, while the unit of elemental renewal of the variables is referred to as ‘update’.

The other algorithm, SGD, is also widely known as a standard algorithm for continuous
optimization problem. Specifically, SGD computes a gradient only with respect to pairwise
indices (µ, i) ∈ Ω selected at random, and the gradient renews the corresponding variables
based on the given learning rate η as follows.

uµ ← uµ − η
{
λuµ −

(
yµi − uTµvi

)
vi
}
, (2.86)

vi ← vi − η
{
λvi −

(
yµi − uTµvi

)
uµ
}
. (2.87)

This algorithm exhibits an advantage wherein its computational cost per update is lower.
However, it has two major disadvantages. The first is that an overwriting issue can arise
when the several updates are conducted in parallel. The second is that it is highly sensitive
to the learning rate. Distributed SGD (DSGD) [49] (the name Jellyfish used in [49]) overcomes
the first disadvantage by dividing the observed matrix into a few blocks, considering a set of
independent blocks, and updating a pair of indices from each block in it. However, the second
disadvantage still remains, and the learning rate should be carefully tuned and scheduled.
The adjustment of the learning rate significantly affects the convergence of the algorithm.

In Chapter 3, we develop algorithms, which we call cavity-based matrix factorization
(CBMF) and approximate cavity-based matrix factorization (ACBMF), borrowing an idea
from the cavity method of statistical mechanics. They are performable with low computa-
tional costs in parallel and/or distributed manners.

25



Chapter 3

Approximate matrix completion based
on cavity method

As mentioned in the end of the previous chapter, two major algorithms, alternating least
squares (ALS) [50, 45, 46] and stochastic gradient descent (SGD) [51, 52, 49] are proposed
for the matrix factorization to date. The main objective of this study is to develop a new
algorithm by borrowing an idea from the cavity method from statistical mechanics. Even if
the absence of spurious local minima is guaranteed, the performance of the solution search is
determined via dynamical properties of the used algorithm. We experimentally illustrate that
the proposed cavity-based algorithms exhibit better performance than the two algorithms
without delicate tuning of control parameters when the number of observed data is relatively
small.

Several existing studies apply the cavity method for the matrix factorization problems.
An approximate message passing (AMP) based approach to generalized bilinear inference
problem including the matrix completion was proposed in Ref. [53, 54]. A detailed derivation
of AMP-type algorithms and performance analysis for the Bayes optimal cases are provided in
Ref. [55]. Reference [56] presents an AMP based algorithm for low-rank matrix reconstruction
and its application to K-means type clustering. All of these methods follow the Bayesian
framework. The differences of the present study from these are as follows. We do not employ
the Bayesian approach, and thus it is not necessary to select a prior distribution. Additionally,
we focus on the matrix completion as a particular application of matrix factorization, and
aim to develop efficient algorithms exploiting the properties of the specific problem.

The remainder of this chapter is organized as follows. In Sec. 3.1, we explain the details of
the proposed algorithm. In Sec. 3.2, the performance of the proposed algorithms is illustrated
via applications for synthetic and realistic data. The final section presents the summary.

3.1 A Cavity-Based Approach

In order to explore the possibility of achieving a better performance, we develop an al-
gorithm for the matrix factorization based on the cavity method [58]. Thus, we first ex-
press the variable dependence of Eq. (2.73) by a factor graph (Fig. 3.1). The variable
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Figure 3.1: Graphical expression of (3.1) (left) and its enlarged illustration (right). Circle
and squares correspond to variable and function nodes, respectively. Equation (3.2) is also
computed in a similar manner. The figures are taken from Ref. [57].

Figure 3.2: Graphical expression of (3.3) (left) and its enlarged illustration (right). Equation
(3.4) is also computed in a similar manner. The figures are taken from Ref. [57].
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nodes are expressed by circles and denote entries of two matrices U and V while the fac-
tor nodes are represented by squares and stand for factors constituting (2.73), namely,

(1/2)
(
yµi −

∑R
r=1 uµrvir

)2

,(λ/2)u2
µr and (λ/2)v2

ir. An edge for a pair of variable and fac-

tor nodes is provided if and only if the variable and factor nodes are directly related.
The basic idea of the cavity method is to approximate the multivariate minimization prob-

lem (2.73) via a bunch of minimization problems with respect to single variables. Hence, we
introduce “cavity objective functions” fµr→(µi)(uµr) and gir→(µi)(vir). The function fµr→(µi)(uµr)
denotes the objective function after the minimization with respect to all variables other than

uµr is performed in the “(µi)-cavity system” that is defined by removing (1/2)
(
yµi −

∑R
r=1 uµrvir

)2

from Eq. (2.73), and similarly for gir→(µi)(vir). The summation of the cavity objective func-

tions and (1/2)
(
yµi −

∑R
r=1 uµrvir

)2

approximates the full objective function of Eq. (2.73).

Conversely, we remove the contribution of fµr→(µi)(uµr) from the full summation and mini-
mize the resulting function with respect to all variables except for uµr. This yields “cavity bias

function” f̂(µi)→µr(uµr), and this denotes the effective influence of the factor (1/2)
(
yµi −

∑R
r=1 uµrvir

)2

to the variable uµr, and similarly for ĝ(µi)→ir(vir). The summation of the cavity bias func-

tions with the exception of f̂(µi)→µr(uµr) and (λ/2)u2
µr yields fµr→(µi)(uµr), and similarly for

gir→(µi)(vir). They constitute a closed set of functional equations to determine the cavity
objective and bias functions as follows:

f̂(µi)→µr(uµr) = min
{uµ,vi}\uµr

{
1

2
(yµi −

∑
s

uµsvis)
2 +

∑
s 6=r

fµs→(µi)(uµs) +
∑
s

gis→(µi)(vis)

}
,

(3.1)

ĝ(µi)→ir(vir) = min
{uµ,vi}\vir

{
1

2
(yµi −

∑
s

uµsvis)
2 +

∑
s

fµs→(µi)(uµs) +
∑
s 6=r

gis→(µi)(vis)

}
, (3.2)

fµr→(µi)(uµr) =
∑

(µj)∈∂µr\(µi)

f̂(µj)→µr(uµr) +
1

2
λu2

µr, (3.3)

gir→(µi)(vir) =
∑

(νi)∈∂ir\(µi)

ĝ(νi)→ir(vir) +
1

2
λv2

ir, (3.4)

where uµ and vi denote the µ-th and i-th rows of U and V , respectively, and A\a generally
indicates a set that is defined via eliminating an element a from a set A. The indices of factor
nodes are denoted with parentheses while those of variable nodes are not. The notation
∂µr stands for the set of factor nodes that directly connect variable node indexed by µr.
After determining the cavity objective and bias functions from Eqs. (3.1)-(3.4), “marginal”
objective functions for each variable are provided as follows:

fµ(uµr) =
∑

(µi)∈∂µr

f̂(µi)→µr(uµr) +
1

2
λu2

µr, (3.5)
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gi(vir) =
∑

(µi)∈∂ir

ĝ(µi)→ir(vir) +
1

2
λv2

ir. (3.6)

Thus, entries of the factorized matrices are evaluated as follows:

u∗µr = arg min
uµr

{fµ(uµr)} , (3.7)

v∗ir = arg min
vir

{gi(vir)} . (3.8)

3.1.1 Derivation of the algorithm

Two issues are emphasized here. First, when the factor graph does not contain any cycles, the
solution given by the cavity method is exact. However, cycles generally exist in the matrix
factorization problem. However, if the positions of the observed entries are randomly selected
and their number is limited up to O(N) as assumed in the following, then the resulting factor
graph is considered as a sparse random graph. Thus, the lengths of the cycles typically scale
as O(lnN) when the system size N increases. Therefore, it is reasonable to expect that the
cavity method yields reasonably accurate approximates for large N as the effect of the cycles
becomes negligible. Second, solving Eqs. (3.1)-(3.4) is, unfortunately, technically difficult
since they are provided as functional equations. In order to overcome the difficulty, we
parameterize the cavity objective and bias functions in the form of quadratic functions as
follows:

f̂(µi)→µr(uµr) =
1

2
â(µi)→µru

2
µr − b̂(µi)→µruµr, (3.9)

ĝ(µi)→ir(vir) =
1

2
ĉ(µi)→irv

2
ir − d̂(µi)→irvir, (3.10)

fµr→(µi)(uµr) =
1

2
aµr→(µi)u

2
µr − bµr→(µi)uµr +

1

2
λu2

µr, (3.11)

gir→(µi)(vir) =
1

2
cir→(µi)v

2
ir − dir→(µi)vir +

1

2
λv2

ir. (3.12)

However, the insertion of Eqs. (3.9)-(3.12) into Eqs. (3.1)-(3.4) does not yield a closed form
of equations to determine the parameters. This indicates that a further approximation is
required. For this, in optimizing Eq. (3.1), we fix vi to the value in the previous iteration.
This yields quadratic form with respect to urµ and leads to a set of closed form equations,
where urµ denotes a vector excluding uµr from uµ. More explicitly, Eq. (3.1) is then reduced
to

f̂(µi)→µr(uµr) = min
{uµ}\uµr

{
1

2
(urµ)T

(
Γar

µ→(µi)
+ vri (v

r
i )
T
)

urµ −
{
brµ→(µi) + (yµi − uµrvir)vi

}T
urµ

}
,

(3.13)
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where arµ→(µi) denotes a vector excluding aµr from aµ→(µi) = (aµ1→(µi), ..., aµR→(µi)), and

Γar
µ→(µi)

and Γbr
µ→(µi)

indicate, respectively, diag(arµ→(µi) + λ1) and diag(brµ→(µi)). Similarly

for brµ→(µi). A similar treatment is also made for Eq. (3.2) and vri , where vri is a vector
excluding vir from vi.

The minimization problem in Eq. (3.13) is solved as follows:

(urµ)∗ =
(

Γar
µ→(µi)

+ vri (v
r
i )
T
)−1 {

brµ→(µi) − (yµi − uµrvir)vri
}
. (3.14)

Based on Sherman–Morrison formula, the inverse matrix in (3.14) is re-expressed as follows:

(Γar
µ→(µi)

+ vri (v
r
i )
T )−1 = Γ−1

ar
µ→(µi)

−
Γ−1
ar
µ→(µi)

vri (v
r
i )
TΓ−1

ar
µ→(µi)

1 + (vri )
TΓ−1

ar
µ→(µi)

vri
. (3.15)

We insert Eqs. (3.14) and (3.15) into Eq. (3.13) to yield the following expression:

f̂(µi)→µr(uµr) =
1

2

v2
ir

1 + χ(µi) −
v2
ir

aµr→(µi)+λ

u2
µr −

y(µi) −∆(µi) + uµr→(µi)vir

1 + χ(µi) −
v2
ir

aµr→(µi)+λ

viruµr, (3.16)

where χ(µi), ∆(µi) and uµr→(µi) are defined as follows:

χ(µi) =
∑
r

v2
ir

aµr→(µi) + λ
, (3.17)

∆(µi) =
∑
r

uµr→(µi)vir, (3.18)

uµr→(µi) =
bµr→(µi)

aµr→(µi) + λ
. (3.19)

From Eqs. (3.9) and (3.16), we obtain the following:

â(µi)→µr =
v2
ir

1 + χ(µi) −
v2
ir

aµr→(µi)+λ

, (3.20)

b̂(µi)→µr =
y(µi) −∆(µi) + uµr→(µi)vir

1 + a(µi) −
v2
ir

χµr→(µi)+λ

vir. (3.21)

Further, we insert Eqs. (3.9) and (3.11) into Eq. (3.3) to yield the following expression:

aµr→(µi) = aµr − â(µi)→µr, (3.22)

bµr→(µi) = bµr − b̂(µi)→µr, (3.23)
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where aµr and bµr are defined as follows:

aµr =
∑

(µi)∈∂µr

â(µi)→µr, (3.24)

bµr =
∑

(µi)∈∂µr

b̂(µi)→µr. (3.25)

Finally, entries of the factorized matrices u∗µr are re-expressed from Eq. (3.7) as follows:

u∗µr =
bµr

aµr + λ
(3.26)

Similarly, we can re-express equations with respect to ĉ(µi)→ir, d̂(µi)→ir and cir→(µi), dir→(µi)

based on Eqs. (3.2),(3.4) and Eqs. (3.10),(3.12).
In summary, the resulting equations are expressed as follows:

• Update equations for U :

χt+1
(µi) =

∑
r

(vtir)
2

atµr→(µi) + λ
(3.27)

∆t+1
(µi) =

∑
r

utµr→(µi)v
t
ir (3.28)

ât+1
(µi)→µr =

(vtir)
2

1 + χt(µi) −
(vtir)

2

at
µr→(µi)

+λ

(3.29)

b̂t+1
(µi)→µr =

y(µi) −∆t
(µi) + utµr→(µi)v

t
ir

1 + χt(µi) −
(vtir)

2

at
µr→(µi)

+λ

vtir (3.30)

at+1
µr =

∑
(µi)∈∂µr

ât(µi)→µr (3.31)

bt+1
µr =

∑
(µi)∈∂µr

b̂t(µi)→µr (3.32)

at+1
µr→(µi) = atµr − ât(µi)→µr (3.33)

bt+1
µr→(µi) = btµr − b̂t(µi)→µr (3.34)

ut+1
µr→(µi) =

btµr→(µi)

atµr→(µi) + λ
(3.35)

ut+1
µr =

btµr
atµr + λ

(3.36)

• Update equations for V :
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ηt+1
(µi) =

∑
r

(ut+1
µr )2

ctir→(µi) + λ
(3.37)

Θt+1
(µi) =

∑
r

vtµr→(µi)u
t+1
µr (3.38)

ĉt+1
(µi)→ir =

(ut+1
µr )2

1 + ηt(µi) −
(ut+1
µr )2

ct
ir→(µi)

+λ

(3.39)

d̂t+1
(µi)→ir =

y(µi) −Θt
(µi) + vtir→(µi)u

t+1
µr

1 + ηt(µi) −
(ut+1
µr )2

ct
ir→(µi)

+λ

ut+1
µr (3.40)

ct+1
ir =

∑
(µi)∈∂ir

ĉt(µi)→ir (3.41)

dt+1
ir =

∑
(µi)∈∂ir

d̂t(µi)→ir (3.42)

ct+1
ir→(µi) = ctir − ĉt(µi)→ir (3.43)

dt+1
ir→(µi) = dtir − d̂t(µi)→ir (3.44)

vt+1
ir→(µi) =

dtir→(µi)

ctir→(µi) + λ
(3.45)

vt+1
ir =

dtir
ctir + λ

(3.46)

Here, t denotes the counter index for the update. It should be noted that in order to update
variables for V at time t, ut+1

µr is used instead of utµr. We term the algorithm composed of
Eqs. (3.27)-(3.46) as cavity-based matrix factorization (CBMF).

The computational cost per update of each equation is O(|Ω|R) and the necessary memory
cost corresponds to O(|Ω|R). The computational cost is competitive, and this is discussed
later. Conversely, the necessary memory cost of CBMF exceeds those of ALS and SGD
(Table 3.1). Although this is a disadvantage of CBMF, its necessary memory size is reduced
to that of ALS and SGD by utilizing an approximation that is similar to that for deriving
AMP from belief propagation [59] as shown below.

3.1.2 Derivation of the approximate algorithm

CBMF entails O(|Ω|R) memory cost, and this is equivalent to the number of edges in the
factor graph. When R and c, which is the average number of the observed entries per column,
are sufficiently large, the effect caused by omitting a variable node is expected to be negligible.
Thus, the variables corresponding to the edges can be replaced by those corresponding to
nodes. The goal of this subsection involves deriving update equations with respect to the
variables corresponding to the nodes. In the following, R and c are assumed as sufficiently
large.

Equation (3.29) is approximately re-expressed as follows:
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â(µi)→µr =
v2
ir

1 +
∑

s
v2
is

aµs→(µi)+λ
− v2

ir

aµr→(µi)+λ

' v2
ir

1 + χ(µi)

, (3.47)

where χ(µi) is also approximated by ignoring one of c terms as follows:

χ(µi) '
∑
s

v2
is

aµs + λ
. (3.48)

Operating
∑

(µi)∈∂µr on both sides of Eq. (3.47) yields

aµr =
∑

(µi)∈∂µr

v2
ir

1 + χ(µi)

. (3.49)

Similarly, Eq. (3.30) is re-expressed as follows:

b̂(µi)→µr '
(
y(µi) −

∑
s uµs→(µi)vis

1 + χ(µi)

+
viruµr→(µi)

1 + χ(µi)

)
vir, (3.50)

where uµs→(µi) is also approximated by ignoring one of R or c terms as follows:

uµs→(µi) ' uµs − φ(µi)
vis

aµs + λ
, (3.51)

where φ(µi) is defined as follows:

φ(µi) =
y(µi) −

∑
s uµs→(µi)vis

1 + χ(µi)

(3.52)

'
y(µi) −

∑
s uµsvis + φ(µi)χ(µi)

1 + χ(µi)

. (3.53)

The second line is derived from Eqs. (3.48) and (3.51). We insert Eq. (3.51) into Eq. (3.50)
and operate

∑
(µi)∈µr on both sides to yield the following expression:

bµr =
∑

(µi)∈µr

φ(µi)vir + uµr
∑

(µi)∈µr

v2
ir

1 + χ(µi)

. (3.54)

Similarly, the update equations (3.37)-(3.46) are re-expressed by the same procedure.
Finally, the approximate update equations are summarized as follows:

• Update equations for U :
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χt+1
(µi) =

∑
s

(vtis)
2

atµs + λ
(3.55)

φt+1
(µi) =

y(µi) −
∑

s u
t
µsv

t
is + φt(µi)χ

t
(µi)

1 + χt(µi)
(3.56)

at+1
µr =

∑
(µi)∈∂µr

(vtir)
2

1 + χt(µi)
(3.57)

bt+1
µr =

∑
(µi)∈µr

φt(µi)v
t
ir + utµr

∑
(µi)∈µr

(vtir)
2

1 + χt(µi)
(3.58)

ut+1
µr =

btµr
atµr + λ

(3.59)

(3.60)

• Update equations for V :

ηt+1
(µi) =

∑
s

(ut+1
is )2

ctis + λ
(3.61)

ψt+1
(µi) =

y(µi) −
∑

s u
t+1
µs v

t
is + ψt(µi)η

t
(µi)

1 + ηt(µi)
(3.62)

ct+1
ir =

∑
(µi)∈∂ir

(ut+1
µr )2

1 + ηt(µi)
(3.63)

dt+1
ir =

∑
(µi)∈ir

ψt(µi)u
t+1
µr + vtir

∑
(µi)∈ir

(ut+1
µr )2

1 + ηt(µi)
(3.64)

vt+1
ir =

dtir
ctir + λ

(3.65)

We term the algorithm composed of Eqs. (3.55)-(3.65) as the approximate cavity-based
matrix factorization (ACBMF). The necessary memory cost to execute the algorithm is
O((N +M)R + |Ω|), which is equivalent to the number of nodes in the factor graph. When
compared to CBMF, ACBMF significantly reduces the required memory cost while the nec-
essary computational cost is unchanged.

Additionally, one can illustrate that the fixed point of ACBMF is in agreement with that
of ALS. Equation (3.53) is solved with respect to φ(µi), and we obtain the following expression:

φ(µi) = y(µi) −
∑
s

uµsvis. (3.66)

We insert Eqs. (3.49) and (3.66) into Eq. (3.54) to yield the following expression:

bµr =
∑

(µi)∈µr

(
y(µi) −

∑
s

uµsvis

)
vir + uµraµr. (3.67)
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From Eq. (3.26), we obtain the following expression:

λur =
∑

(µi)∈µr

(
y(µi) − uTr vi

)
vi. (3.68)

We solve Eq. (3.68) with respect to ur to yield the following expression:

u∗r =

 ∑
(µi)∈µr

viv
T
i + λIR

−1 ∑
(µi)∈µr

y(µi)vi

 , (3.69)

and this is equivalent to Eq. (2.85). Similarly for v∗r .
In contrast to ALS, ACBMF does not completely optimize U (V ) for a given V (U) in

each iteration, and thus the necessary computation is reduced. Evidently, this may decrease
the convergence speed. However, the complete optimization for it does not necessarily bring
U (V ) to a better state when V (U) is far from the convergent solution. Therefore, it is not
advised to expend significant computational cost on this. Additionally, the optimization in
each iteration tends to strengthen time correlations of the variables, and this may make the
cavity treatment inappropriate. Actually, the results of experiments shown below indicate
that this concern is the case.

3.1.3 Comparison with ALS and SGD

We briefly compare (A)CBMF with ALS and SGD. ALS and SGD are algorithms that at-
tempt to iteratively minimize the multivariate objective function (2.85). Although their
working principle is natural, the performance of these algorithms can be negatively affected
by the self-feedback effect caused by cycles from the graph. Conversely, (A)CBMF reduces
such effect by introducing the seemingly artificial cavity functions, and this may lead to
the performance improvement. In a manner similar to ALS, (A)CBMF can also be easily
parallelized, and is free from learning parameters unlike SGD.

The computational and memory costs of the four algorithms are summarized in Table
3.1. The computational cost is defined as that necessary per iteration. Given this definition,
SGD only updates the variables based on the gradients although the computational cost
of SGD appears the lowest. Conversely, CBMF and ALS update them with closed forms,
which could offer the faster convergence than SGD in terms of the total computational time.
A comparison of (A)CBMF and ALS indicates that the computational cost of the former is
lower. Conversely, the memory cost of CBMF is the highest while that of ACBMF is identical
to that of ALS and SGD.

3.2 Numerical Experiments

3.2.1 Synthetic Data Analysis

In order to systematically compare the performance of the four algorithms, namely ALS,
SGD, and (A)CBMF (C++ implementation is available at [60]), we performed extensive
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CBMF ACBMF ALS SGD

Computational costs O(|Ω|R) O(|Ω|R) O((|Ω|R2 + (N +M)R3)) O((N +M)R)
Memory costs O(|Ω|R) O((N +M)R + |Ω|) O((N +M)R + |Ω|) O((N +M)R + |Ω|)

Table 3.1: Comparison of computational costs to update all variables once on average. Specif-
ically, |Ω| denotes the number of observed entries, and this is assumed to exceed or be equal
to the number of variables to be determined (N +M)R.

numerical experiments using synthetic datasets with and without noises. A dataset for the
experiment was prepared as follows: For a noiseless dataset, the original matrix Y 0 is simply
provided as Y 0 = U0(V 0)T . For a noisy dataset, the original matrix Y 0 ∈ RN×M is provided
from U0 ∈ RN×R, V 0 ∈ RM×R, and Z ∈ RN×M as Y 0 = U0(V 0)T + Z, where entries of
U0 and V 0 are independently sampled from the standard Gaussian distribution while those
of Z are independently and identically distributed based on a Gaussian of zero mean and
variance 0.09. We randomly select “observed entries” out of Y 0 with probability of c/N where
c ∼ O(1) denotes the average number of the observed entries per column. The collection
of the observed entries constitutes the observed matrix Y . We assume that true rank R is
known in advance.

We evaluate the performance of the algorithms via the relative root mean square er-
ror (rRMSE) and the reconstruction rate. rRMSE is evaluated via the mean of the min-

imum value of
√∑

µi(y
0
µi − uµrvir)2/

√∑
µi(y

0
µi)

2 out of the ten initial conditions over 50

samples, and the recontruction rate is defined as follows: Given the effect of the regular-
ization parameter λ and the noise Z, it is impossible to perfectly reconstruct Y 0 in the
current setting. Therefore, we consider estimated factorized matrices U and V as successful

if
√∑

µi(y
0
µi − uµrvir)2/

√∑
µi(y

0
µi)

2 ≤ ε holds, where ε is a predetermined acceptable er-

ror level. The convergence of the three algorithms is not guaranteed, and thus we attempt
ten random initial conditions for each sample and algorithm and counted a “success” if at
least one of the ten initial conditions leads to the successful reconstruction. In the end,
the reconstruction rate is defined as the fraction of the reconstruction success over the 50
samples.

Figures 3.3 (a) and (b) plot the experimental results for the noiseless case versus the
average number c of observations per column for R = 10, ε = 10−4 and λ = 10−2. The
figures show that all the algorithms exhibit similar performances. Solutions of Eq. (2.59) are
characterized by Eq. (2.85), where the matrix inversion can induce numerical instability due
to possible rank deficiency for too small λ(> 0). On the other hand, as far as we investigated,
the performance of the algorithms is not so sensitive as long as it is set sufficiently large. We,
therefore, chose the value of λ out of several candidates ranging from 10−5 to 10 so that the
performance differences of the algorithms are shown most significantly for both noiseless and
noisy cases.

Figure 3.4a plots the results for reconstruction rate for noisy datasets. As perfect recon-
struction is impossible for the noisy case, we set a larger threshold ε = 0.15. The order in
performance among the algorithms is not sensitive to the value of ε. The value of ε = 0.15 is
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chosen out of several candidates so that the order is shown most clearly. Maximization of the
reconstruction rate led to λ = 10−2. The figure indicates that (A)CBMF outperforms the
other algorithms. It should be noted that (A)CBMF exhibits a better reconstruction rate up
to a smaller value of c than ALS while they are theoretically guaranteed to share the same
fixed point. We speculate that this is because (A)CBMF weakens the self-feedback effect
via the cavity treatment and by not performing optimization in each iteration. In order to
verify the validity of this speculation, we examine the manner in which the reconstruction
rate changes when the number of updates of ACBMF for each iteration increases, which is
plotted in figure 3.4b. When the updates are repeated until convergence in each iteration, U
(V ) is optimized for a given V (U). This implies that the performance would become worse
when the number of the updates increases by spending more computational cost. The figure
shows that this is actually the case and supports our speculation.

Figure 3.5a shows the results for rRMSE for noisy data. The performance of SGD is
significantly worse when compared to that of (A)CBMF and ALS. This is potentially because
the scheduling of the learning rate used in the SGD experiments is not optimally tuned. The
default scheduling that is provided in a code distribution [61] leads to a terrible result, and
thus we select a better scheduling although it is non-trivial to determine the optimal one.
Conversely, (A)CBMF and ALS are free from such issues as they involve no scheduling of
parameters. (A)CBMF exhibits slightly better performance when compared to that ALS.
Similarly, for reconstruction rate, the performance of ACBMF approaches that of ALS when
the number of iterations per update increases (Fig. 3.5b).
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Figure 3.3: Comparison of reconstruction rate (a) and rRMSE (b) between (A)CBMF,
ALS, and SGD for noiseless data as a function of c for matrices with rank R = 10,
and system size N = 500, M = 1000. For each c, the rate was evaluated from 50 ex-
periments where λ = 10−2 was used. Reconstruction is considered as successful when√∑

µi(y
0
µi − uµrvir)2/

√∑
µi(y

0
µi)

2 ≤ 10−4 is achieved for at least once in ten trials. The

figures are taken from Ref. [57].
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Figure 3.4: Reconstruction rate for noisy data as a function of c for matrices with rank
R = 10, and system size N = 500,M = 1000. For each c, the rate was evaluated from
50 experiments where λ = 10−2 was used. Reconstruction is considered as successful when√∑

µi(y
0
µi − uµrvir)2/

√∑
µi(y

0
µi)

2 ≤ 0.15 for at least once in ten trials. (a) Comparison

between (A)CBMF, ALS and SGD. (b) Results for ACMBF when the number of updates
per iteration increases. The figures are taken from Ref. [57].

3.2.2 Real Data Analysis

We also examined the usefulness of the proposed algorithm via application to three bench-
mark datasets of recommender systems, namely MovieLens 1M, 10M, and 20M [62]. Specif-
ically, the 1M dataset is composed of rating values s from 1 to 5 with step 1, and 10M and
20M are from 0.5 to 5 with step 0.5. The higher values correspond to higher evaluations for
movies or music provided by users. Details of the datasets are summarized in Table A.1.

The performance of each algorithm for the matrix is evaluated as follows: We randomly
split the matrix entries into 10 groups, matrix factorization is performed by using data of
9-of-the-10 groups, and the performance of the obtained factorization is measured by using
data of the remaining group. We employ root mean square error (RMSE) as a performance
measure, and it is averaged over 50 samples of the experiment. In all the experiments, we set
R = 10. The regularization parameter λ is chosen out of several candidates so that RMSE
is minimized for the test set.

Figures 3.6-3.8 show the performance measure of (A)CBMF, ALS and SGD evaluated
for the three datasets. The figures represent RMSE relative to the number of iterations.
The figures indicate that all the algorithms finally achieve similar performance although the
number of iterations necessary for convergence is minimized for ALS. However, it should be
noted that the ALS requires a significantly higher computational cost than (A)CBMF and
SGD per iteration (Table3.1). Thus, (A)CBMF converges faster than the other algorithms
in terms of actual time when R is relatively large.
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Figure 3.5: Relative root mean square error (rRMSE) of reconstructed samples as a function
of c. Experimental conditions are identical to those in Figure 3.4. (a) Comparison between
(A)CBMF, ALS and SGD. (b) Results for ACBMF when the number of updates per iteration
increases. The figures are taken from Ref. [57].

3.3 Summary

In summary, we developed matrix factorization algorithms that are abbreviated as CBMF and
ACBMF based on the cavity method. In terms of computational cost, CBMF is competitive
with SGD because CBMF updates variables in closed forms (which generally reduces the
number of iterations necessary for convergence) although a comparison of the necessary
computational cost to update all variables once on average indicates that the computational
cost of SGD is the smallest of the three. In a manner similar to CBMF, ALS updates
variables in closed form although its computational cost exceeds that of CBMF because ALS
requires the matrix inversion operation, which CBMF does not require. Conversely, in terms
of the memory cost, CBMF requires more capacity than the others, and thus we developed
ACBMF by utilizing an approximation that is similar to that for deriving AMP from belief
propagation. The necessary memory cost of ACBMF is identical to that of SGD and ALS.

Experiments involving noisy synthetic data indicated that (A)CBMF exhibits better per-
formance without the necessity of parameter tuning when observed entries are not suffi-
ciently large. The superiority of the performance presumably stems from the reduction of
self-feedback effects via the introduction of cavity treatment and avoidance of the complete
optimization in each update. Experiments using real world dataset indicated that all algo-
rithms achieved similar performance although (A)CBMF converges faster than the other two
in actual time when rank R is relatively large.

Future work includes generalization of CBMF to matrix factorization problems with ad-
ditional constraints such as non-negative matrix factorization [63].

39



0 10 20 30 40 50
Iteration

0.85

0.90

0.95

1.00

1.05

1.10

RM
SE

CBMF
ACBMF
ALS
SGD

Figure 3.6: Results for MovieLens 1M dataset, RMSE is plotted versus iteration. In the
experiments, we set R = 10, and the regularization parameter λ is fixed as 3. The figure
compares the result of the four algorithms, (A)CBMF, ALS, and SGD. The figure is taken
from Ref. [57].

0 10 20 30 40 50

Iteration

0.80

0.85

0.90

0.95

1.00

1.05

RM
SE

CBMF
ACBMF
ALS
SGD

Figure 3.7: Results for MovieLens 10M dataset. Experimental conditions are identical to
those in Figure 3.6. The figure is taken from Ref. [57].
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Figure 3.8: Results for MovieLens 20M dataset. Experimental conditions are identical to
those in Figure 3.6. The figure is taken from Ref. [57].
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Chapter 4

Fragility of spectral clustering for
networks with an overlapping
structure

A graph or a network that represents related data is a common data structure in multi-
variate statistics, machine learning, and statistical mechanics. Identifying densely connected
subgraphs—community detection—is useful for graph analysis. Such subgraphs (or the corre-
sponding node set) are referred to as communities. Spectral clustering is a popular community
detection algorithm that is efficient yet highly accurate on random graph models [64, 65, 66,
67]. Nevertheless, spectral clustering often fails to identify plausible communities when it is
applied to real-world networks. This is presumably because of specific features of real-world
networks that are missing in simple random graph models. To fill this discrepancy, in this
paper, we theoretically investigate how overlapping of communities affects accuracy of spec-
tral clustering. We will give precise definitions of a community, an overlapping community,
and the accuracy of clustering in Sec. 4.1.

We denote an undirected graph as G = (V,E), where V (|V | = N) is a set of nodes and
E (|E| = m) is a set of edges. The graph is represented by the N ×N adjacency matrix A,
where Aij = 1 when a pair of nodes i and j is connected by an edge and Aij = 0 otherwise.
The adjacency matrix of graphs with strong (Fig. 4.1a) and weak (Fig. 4.1b) non-overlapping
community structures are illustrated in Fig. 4.1.

To identify the community structure, spectral clustering [5] computes the leading eigen-
values and eigenvectors of a regularized adjacency matrix; in this paper, as an example, we
focus on the so-called modularity matrix [12] as the regularized adjacency matrix. When the
community structure can be clearly identified, the isolated leading eigenvectors have relevant
information of the communities, while a bulk of eigenvalues emerges from the randomness
of a graph. For example, Fig. 4.1c shows the spectral density of the modularity matrix
corresponding to the adjacency matrix in Fig. 4.1a. In this case, the largest eigenvalue is
clearly separated from the bulk of eigenvalues, and we can extract two communities using the
isolated leading eigenvector. On the other hand, Fig. 4.1d shows the case corresponding to
the adjacency matrix in Fig. 4.1b. The eigenvalue correlated to the community structure is
buried in the bulk of eigenvalues, and the spectral density is no longer distinguishable from
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that of a uniformly random graph. The phase transition point that the eigenvalues do not
exhibit community structure at all is referred to as the (algorithmic) detectability limit [64,
68, 69] of spectral clustering.

As a tool for theoretical analysis, we use the replica method that originated from statistical
physics. It enables us to calculate the ensemble average over random graph instances. As
a result, we obtain a detectability phase diagram that indicates the effect of overlapping on
spectral clustering.

Several existing studies have investigated the fragility, i.e., lack of robustness, of spectral
clustering. Owing to the fact that real-world networks have more complex structures than
a simple random graph, the studies have considered the fragility in case of, e.g., adversarial
perturbations [70], noise perturbations [71, 72], tangles and cliques [73], and localization of
eigenvectors [68, 69, 74]. In this paper, we analyze the effect of the overlapping structure
on the graph spectra. Specifically, we found that, when the size of the community overlap
is increased, it is the isolated eigenvalue that is mainly affected. On the other hand, it is
the bulk of eigenvalues that is mainly affected when the density of the community overlap is
increased.

Noted that identifying an overlapping community structure itself is not a goal of this
paper. There are in fact many algorithms for such a purpose [75, 76, 77, 78, 20, 79, 80, 81,
82]. To identify or to assess an overlapping community structure, one should use a suitable
algorithm. Usually, however, we do not a priori know whether communities are overlapped.
Moreover, even when it is the case, it is hard to imagine that the spectral clustering becomes
completely useless. Thus, we investigate how the signal of structural heterogeneity remains
in the spectral clustering, although it may not be the best algorithm to use.

The rest of the paper is organized as follows. In Sec. 4.1, we introduce the overlapping
random graph models that we consider. In Sec. 4.2, we provide the replica analysis for
the graph spectra of the random graph model. In Sec. 4.3, we show the results and their
interpretation obtained by the replica analysis. Finally, Sec. 4.4 presents a discussion.

4.1 Overlapping stochastic block model

Throughout this paper, we consider a class of random graph models called the stochastic
block model (SBM). It is a random graph model that has a preassigned (planted) modular
structure. Here, as a particular case of the SBM, we introduce the overlapping SBM. Although
we focus only on the so-called canonical SBM in the main text, its microcanonical counterpart
[21, 83] (see Appendix C for a detailed definition) is also analyzed in Appendix C.2.

4.1.1 Canonical SBM

Before considering the overlapping SBM, we first introduce the (canonical) SBM with a
general structure. We define a block as a node set in which the nodes are statistically
equivalent. A graph with K blocks is generated from the SBM as follows. For each node of
the graph, we preassigned a block label t = [ti] ti ∈ {1, · · · , K} (i ∈ V ). Then, each pair of
nodes (i, j) is connected by an edge with probability ρtitj independently and randomly; this
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Figure 4.1: Adjacency matrices of graphs with a non-overlapping structure and the corre-
sponding histograms of the bulk of eigenvalues of the modularity matrix. (a, c) Nodes in
the same communities are more densely connected internally than externally (strong com-
munity structure). (b, d) All nodes are connected with almost the same probability (weak
community structure).

probability is provided as an element of the K × K affinity matrix ρ = [ρkl], 0 ≤ ρkl ≤ 1.
Therefore, the probability of a graph instance is expressed as

P (A|K, t,ρ) =
∏
i<j

ρ
Aij
titj(1− ρtitj)

1−Aij . (4.1)

Here, because we consider undirected simple graphs, we assume that Aii = 0 and Aij = Aji.
Moreover, we focus on sparse graphs throughout this paper; i.e., we assume ρrs = O(1/N)
for all r and s. When every matrix element of ρ is equal, the model becomes the so-called
Erdős–Rényi random graph model. We also introduce a vector that represents the block-
size distribution as p = [pk] (k ∈ {1, . . . , K}), where pk =

∑N
i=1 δk,ti/N (δa,b represents

Kronecker’s delta).
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Figure 4.2: (a) Classification chart of communities and blocks using schematic pictures of
adjacency matrices. Communities are classified into non-overlapping and overlapping com-
munities, and an overlapping community consists of nodes in community blocks and nodes
in an overlapping block. Each matrix element represents a pair of block labels, i.e., the
corresponding set of node pairs. (b) Structure of the overlapping SBM that we consider.
The node sets incident on the (1, 1) and (3, 3) elements correspond to the community blocks,
while the node set incident on the (2, 2) element corresponds to the overlapping block. α, ε,
and σ are the fraction of the overlapping block size, the inverse of the community structure
strength, and the density of the overlapping block, respectively. The value of each block
corresponds to an element of affinity matrix (4.5) divided by ρin. (c) Adjacency matrices of
graph instances of the overlapping SBM with σ = 0.3, 1, and 3.

For example, a two-block SBM is parameterized as

p = (p1, p2), (4.2)

ρ =

(
ρin ρout

ρout ρin

)
=

(
1 ε
ε 1

)
ρin. (4.3)
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Here, edges in the (1, 1) and (2, 2) elements have the same generation probability ρin. In
contrast, edges in the (1, 2) and (2, 1) elements have the generation probability ρout; ε =
ρout/ρin is a parameter that controls the strength of the community structure. We define non-
overlapping communities as node sets incident on the (1, 1) and (2, 2) elements, as illustrated
in Fig. 4.2a.

4.1.2 Overlapping canonical SBM

We define the overlapping SBM as the three-block SBM that has parameters

p = (p1, p2, p3), (4.4)

ρ =

 ρin ρin ρout

ρin σρin ρin

ρout ρin ρin

 =

1 1 ε
1 σ 1
ε 1 1

 ρin. (4.5)

Here, p and ρ are illustrated in Fig. 4.2b. As illustrated in Fig. 4.2a, we define the node sets
incident on the sets of elements {(1, 1), (1, 2), (2, 1), (2, 2)} and {(2, 2), (2, 3), (3, 2), (3, 3)}
as overlapping communities, respectively; edges therein have the same generation probability
ρin, except for the (2, 2) element. Within the overlapping communities, we define the node
sets incident on the (1, 1) and (3, 3) elements as community blocks and the node set incident on
the (2, 2) element as an overlapping block. We let the edge generation probability of the (1, 3)
and (3, 1) elements be ρout (= ερin). The edge generation probability of the (2, 2) element
is parametrized as σρin; σ is a parameter that controls the density of the overlapping block.
Adjacency matrices with different values of σ are exemplified in Fig. 4.2c (see Appendix F
for the relationship between this overlapping SBM and the mixed-membership SBM [20].)

We define the average degree of each block c = (c1, c2, c3), where the degree of a node
is the number of edges connected to the node. The ratio c1/c2 can also be expressed as
(1 + α + ε)/(σα + 2) using the affinity matrix elements, where we introduced α ≡ p2/p1.
Therefore, the parameters of the overlapping SBM are constrained as

c1(σα + 2) = c2(1 + α + ε). (4.6)

For simplicity, we assume the symmetry between the community blocks, i.e., p1 = p3 and
c1 = c3. We assume that the affinity matrix is symmetric, owing to the fact that we consider
undirected graphs.

A technically interesting aspect of the present analysis is that this is a model-inconsistent
scenario; while the overlapping SBM that we consider consists of three blocks, we consider
the partitioning into two non-overlapping communities.

How to evaluate the accuracy of the spectral clustering on the overlapping SBM is an
arguable issue. In this paper, we evaluate whether the community blocks are identified
correctly and neglect the partitioning with respect to the overlapping block. That is, we
define an accuracy of a partition as

Accuracy ≡ max
{
f(t̂), f

(
P(t̂)

)}
,

f(t̂) =
1

N(p1 + p3)

(∑
i∈V1

δt̂i,1 +
∑
i∈V3

δt̂i,2

)
. (4.7)
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Here,
∑

i∈Vk is the sum over the node indices belonging to the kth block, t̂ = [t̂i] (t̂i ∈ {1, 2})
is the inferred non-overlapping community label of node i. The operator P permutes the
inferred labels; namely, t̂i = 1 is replaced by t̂i = 2 and vice versa. The maximization is
required to eliminate the degrees of freedom by permutation.

4.2 Replica analysis

We now calculate the spectrum of the overlapping SBM and show that a phase transition
point of the largest eigenvalue exhibits the detectability limit. It should be noted that the
same result is obtained in the case of the microcanonical SBM (Appendix C.2).

4.2.1 Spectrum and the detectability limit of the overlapping SBM

As an example of a regularized adjacency matrix, we consider the modularity matrix. Each
element of the matrix is defined as

Mij = Aij −
didj
2m

, (4.8)

where di (=
∑N

j=1Aij) is the degree of a node i and m (= |E|) is the total number of the edges.
Partitioning into two non-overlapping communities can be identified by the eigenvector of
the largest eigenvalue. Thus, our goal is to solve the following maximization problem.

λ(M) =
1

N
max
x
x>Mx, subj. to x>x = N, (4.9)

where λ(M) is the largest eigenvalue of M , and x> is the transpose of a vector x. This
problem can be expressed as

f(M,β) = − 1

βN
logZ(M,β), (4.10)

λ(M) = −2 lim
β→∞

f(M,β), (4.11)

Z(M,β) =

∫
dxe

β
2
x>Mxδ(x>x−N), (4.12)

where Z(M,β) is the partition function. The constraint (4.9) is imposed by the delta function
in (4.12), and taking β → ∞ in (4.11) leads to the maximization of the exponent of the
exponential function in (4.12). Because we are interested in the typical behavior of the graph
instances, we analyze

[λ(M)]M = 2 lim
β→∞

1

βN
[logZ(M,β)]M , (4.13)

where [· · · ]M represents the ensemble average over graph instances. Unfortunately, it is
difficult to calculate the average [logZ(M,β)]M analytically. To overcome this difficulty, we
use the replica trick, namely,

[logZ(M,β)]M = lim
n→0

∂

∂n
log[Zn(M,β)]M . (4.14)
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Here, the exponent n in [Zn]M is a real value. However, we treat n as an integer for a
moment. In the end, we perform the analytic continuation to the real value. This treatment
is termed the replica method.

From Eq. (4.12), the nth moment the partition function is obtained as

[Zn(M,β)]M =

∫ ( n∏
a=1

dxaδ(x
>
a xa −N)

)[
exp

(
β

2

∑
a

x>aMxa

)]
M

, (4.15)

where a ∈ {1, . . . , n} is an index of n identical copies. For further calculations, we in-
troduce several order parameters and approximations. Detailed calculations are described
in Appendix B. As a result, the average largest eigenvalue in the limit of N → ∞ is
obtained by the following saddle-point (extremum) condition of nine auxiliary variables
(φ,Ω, Ω̂,m1k,m2k, m̂1k, m̂2k, ak, âk).

[λ(M)]M = extr
φ,Ω,Ω̂,m1k,m2k,m̂1k,m̂2k,ak,âk

{
φ+ 2Ω̂Ω− Ω2

+
1

2
N
∑
k,k′

Wkk′

ak′
(
m2k − 2Ω̂√

c̄
+ 4Ω̂2

c̄

)
+ 2m1k′

(
m1k − 2Ω̂√

c̄

)
+ akm2k′

akak′ − 1

−
m2k − 2Ω̂√

c̄
m1k + 4Ω̂2

c

ak
− m2k′

ak′


−
∑
k

pkck

(
m2k + 2m1km̂1k + m̂2k

ak − âk
− m2k′

ak′

)

+
1

N

∑
k

∑
i∈Vk

∞∑
d=0

Pck(d)

φ− dâk
(
dm̂2k + d(d− 1)m̂2

1k

)}
. (4.16)

Here, Wkl and c̄ are defined as Wkl ≡ pkρklpl and c̄ ≡ 2m/N , respectively. Pck(d) is the
Poisson probability mass function of degree d of each node in block k that has expectation
ck. m1k is the the mean of the largest eigenvector elements that corresponds to the kth
block. m1k plays an important role in the derivation of the detectability limit. Definitions
and interpretations of the other auxiliary variables are omitted here, because they are not
directly relevant to the detectability limit (see Appendix B for the precise definitions).

The detectability limit is derived by solving the equations of the nine auxiliary variables.
In particular, m11 (= −m13) plays an important role for the detectability limit. When m2

11 >
0, the spectral clustering retains the ability to detect the community structure better than a
random guess (detectable condition). On the other hand, when m2

11 = 0, the result of spectral
clustering is uncorrelated to the planted structure (undetectable condition). Accordingly, the
phase transition point is derived by the condition m2

11 = 0. This corresponds to the condition
that the largest eigenvalue is buried in the bulk of the eigenvalues, as we mentioned in
Introduction.
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Figure 4.3: Detectability phase diagram of the (ε, α) plane. The model parameters are set
to c1 = 10 and σ = 2. Along the line of the results of the numerical experiments determined
by constraint (4.6), degree c2 takes a fixed value. The lines in this figure, from left to right,
correspond to the values of c2 from 19 to 11.

4.3 Accuracy of the spectral clustering on the overlap-

ping SBM

In this section, using the results obtained by the replica analysis, we show how the size and
density of the overlapping block affect the spectrum. We also check the validity of our ana-
lytical calculations by comparing them to the results of numerical experiments. Here, we use
the microcanonical SBM in the numerical experiments instead of the canonical SBM. Here,
for a technical reason that we describe in Appendix C.4, we use the microcanonical counter-
part of the SBM. We used graph-tool [84] to generate graph instances of the microcanonical
SBM.

4.3.1 Detectability phase diagram and the leading eigenvalue

First, to observe the overall dependency of overlapping structures, we show the detectability
phase diagram. Figure 4.3 shows the detectability phase diagram of the (ε, α) plane. As
mentioned above, ε is the parameter that controls the strength of the community structure
and α = p2/p1 is the ratio of the overlapping block and a community block. The bound-
ary between the blue and orange regions represents the detectability limit of the spectral
clustering predicted by the replica analysis. The dots represent the results of the numerical
experiments; the color gradient represents the accuracy defined in Eq. (4.7). We can see that
both boundaries are in a good agreement. Note that the numerical experiment is possible
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Figure 4.4: Eigenvalues derived by the replica analysis as a function of α. We set c1 = 10,
c2 = 18, and σ = 2. The solid and dashed lines represent the isolated leading eigenvalues
and the bulk edges of eigenvalues, respectively. The boundary between the blue and orange
regions represents the detectability limit. The green dots represent the top ten eigenvalues
computed in the numerical experiments.

only on specific curves in the parameter space because of constraint (4.6), and c2 can take
only natural numbers in the microcanonical SBM. In this experiment, we set c1 = 10 and
σ = 2. Then, the range c2 can take is restricted between 11 and 19 because of the assortative
condition 0 ≤ ε ≤ 1. This phase diagram is the result that shows how fragile the spectral
clustering is against the overlapping structure.

Figure 4.4 shows the leading eigenvalue and the edge of the bulk of the eigenvalues1, which
are predicted by the replica analysis, and the top ten eigenvalues computed in the numerical
experiments. We can confirm that the replica analysis accurately describes the behavior
of numerical experiments. When α is small, the leading eigenvalue is separated from the
bulk of the eigenvalues. As α increases, the leading eigenvalue approaches the bulk of the
eigenvalues. As we described in Introduction, when it reaches the bulk of the eigenvalues,
the spectral clustering loses ability to detect the community structure, i.e., the detectability
limit. Note the value of ε also varies according to (4.6) as α varies. Thus, the horizontal axis
in Fig. 4.4 corresponds to the line in Fig. 4.3 with c2 = 18.

4.3.2 Effects of the size of the overlapping structure

We now investigate the effect of the overlapping structure on the accuracy of the spectral
clustering when we increase the size of the overlapping block. Because the overlapping block
can have denser (or sparser) edge density than the other blocks, the average degree also
increases (or decreases) accordingly, as the size of the overlapping block increases. This

1The edge of the bulk of eigenvalue is derived as the largest eigenvalue under the undetectable condition.
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Figure 4.5: Comparison between the overlapping and bimodal SBMs. This figure shows the
eigenvalues of bimodal SBM in addition to those in Fig. 4.4. The blue dots represent the
top ten eigenvalues of the bimodal SBM computed in the numerical experiments. The brown
solid and dashed lines represent the leading eigenvalue and the bulk edge of the eigenvalues
of the bimodal SBM that are derived by the replica analysis, respectively. The spectrum of
the overlapping SBM is plotted as in Fig. 4.4. These models are identical only when α = 0.
However, their bulk edges should coincide when α = 0 and α = 1. For the value of ε of the
bimodal SBM, we used the same value as the overlapping SBM, which varies as α increases
owing to constraint (4.6).

implies that the width of the bulk of the eigenvalues is trivially influenced, because the bulk
is known to depend on the average degree [64].

However, it is not trivial if it is the only effect. Namely, the overlapping structure may
affect the isolated eigenvalue or the bulk in another way. To assess the effect of the overlapping
structure rather than the effect of the average degree, we compare the overlapping SBM with
the model with no overlapping structures but that has the same degree distribution as the
overlapping SBM. In the case of the microcanonical overlapping SBM, the degree distribution
is bimodal: all the nodes in the overlapping block have the same degree, while all the other
nodes have the other degree. Therefore, we consider the non-overlapping SBM with a bimodal
degree distribution (see Appendix D for a detailed definition). We assume that the sizes of
the blocks are equal. Hereafter, we refer to this model as the bimodal SBM.

Figure 4.5 shows the bulks of eigenvalues and the leading eigenvalues of the overlapping
and bimodal SBMs. We can confirm that both bulk edges almost coincide. In contrast, the
leading eigenvalue of the bimodal SBM is separated from the bulk in the whole space, while
that of the overlapping SBM approaches to its bulk as α increases. This indicates that the
increase of the size of the overlapping block mainly affects the leading eigenvalue instead of
the bulk.

The fact that the bulk is not considerably affected is not very trivial. If we take a closer
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look, the bulk edges do not exactly coincide in Fig. 4.5, although the deviation is very small.
This is because the models are not identical even when there is no community structure (i.e.,
ε = 1). When α = 0, the two models reduce to the c1-regular SBM. Thereby, their bulk
edges become equal to 2

√
c1 − 1. When α = 1, the overlapping SBM becomes a uniform (one

block) model with (average) degree c2, while the bimodal SBM has the community structure
with (average) degree c2. However, the bulk edge of the SBM with no overlapping blocks
depends only on its average degree. Thus, although the models are not identical, their bulk
edges are both 2

√
c2 − 1.

4.3.3 Effects of the density of the overlapping structure

Next, we investigate how density σ of the overlapping block affects the detectability. As
mentioned in the previous subsection, the higher density of the overlapping block trivially
makes the width of the bulk of the eigenvalues expand wider.

Figures 4.6a–4.6b show the detectability phase diagram derived by the replica analysis
and the results of the corresponding numerical experiments for σ = 0.5 and 2. Notably, the
detectable region is wider when σ is small. This indicates that the higher density deteriorates
the detectability more significantly.

Let us examine σ dependency. Figure 4.7a shows the α dependencies derived by the
replica analysis of the canonical SBM. They are the isolated leading largest eigenvalues and
the bulk of the eigenvalues for σ = 0, 0.5, 1, 1.5, and 2. Interestingly, the isolated largest
eigenvalue does not depend on σ considerably. In contrast, the bulk is highly dependent
on σ. This indicates that the deterioration of the detectability due to σ is caused by the
expansion of the bulk rather than the shrinkage of the isolated leading eigenvalue. Figure 4.7b
similarly shows the ε dependencies. Again, we can see that the isolated largest eigenvalue
does not depend on σ considerably while the bulk is highly dependent.

Notably, we cannot test the result of Fig. 4.7a directly in numerical experiments, because
α cannot be varied continuously as ε is fixed. This is due to the constraints of the microcanon-
ical SBM. Similarly, in Fig. 4.7b, ε cannot be varied continuously as α is fixed. Nevertheless,
we can draw smooth curves in the replica analysis, because we consider the canonical SBM
that is not subject to the constraints of the microcanonical SBM. Importantly, the results
of the microcanonical SBM coincide with those of the canonical SBM with the regular ap-
proximation at the points where the microcanonical SBM is realizable. We also note that
(Appendix C.2) the distinction between the canonical and microcanonical SBMs is invisible
in infinite graph size limits.

4.4 Summary

We investigated the effect of the size and the density of the overlapping block on the ac-
curacy of spectral clustering using the replica method. Both larger size and higher density
help the isolated eigenvalue to be buried in the bulk of the eigenvalues, i.e., deteriorate the
detectability. Importantly, however, their mechanisms are strikingly different. We found
that increasing the size of the overlapping block has a prominent effect on making the iso-
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Figure 4.6: Detectability phase diagram of the (ε, α) plane for σ = 0.5, 2 and c1 = 10. A
detailed explanation is provided in the caption of Fig. 4.3.
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Figure 4.7: (a) Isolated eigenvalues (solid lines) and bulk edges (dashed lines) as a function
of α for σ = 0, 0.5, 1, 1.5, 2. Parameters are set to c1 = 10 and ε = 0.3. The value of degree c2

varies according to (4.6). (b) Isolated eigenvalues (solid lines) and bulk edges (dashed lines)
as a function of ε. α is fixed as 0.3. Other experimental conditions are identical to those of
Fig. 4.7a.

lated eigenvalue smaller (Fig. 4.5). In contrast, increasing the density of the overlapping
block makes the bulk width larger, while the isolated eigenvalue remains almost the same
(Fig. 4.7a).

According to our findings, the results of the replica analysis are consistent with those
of the numerical experiments. This indicates that the detectability phase transition of the
spectral clustering in the present setting is regarded as a phenomenon that can be understood
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in the scope of the mean-field theory.
Although spectral clustering typically deals with non-overlapping structures, we showed

that it is also possible to analyze the model-inconsistent case, such as the overlapping SBM.
It is possible, in principle, to investigate even more complex situations using the replica
method. However, for example, we would need to deal with saddle-point equations with
many variables if we were to analyze a general three-block SBM. Therefore, we believe that
the present model is an extreme case where the analytical calculation is executable and the
results are interpretable.

54



Chapter 5

Conclusion

5.1 Summary of the achievements

This thesis studied sparse low-rank matrix factorization problems employing notions and
techniques of statistical mechanics. Such types of matrix factorization are often used in
analyzing real-world data. However, the real-world data is often difficult to deal with, from
which we are required to address many issues that arise. With this in mind, we studies the
problems from the following two perspective.

First, we developed efficient algorithms of matrix factorization, which enables us to deal
with significantly large data. This perspective is practically important because the real-world
data is often given with significantly large sizes. We proposed two approximate algorithms,
which are termed CBMF and ACBMF, for matrix factorization. The proposed algorithms
are performable with low computational costs in parallel and distributed manners, which is
preferred for practical use. Their usefulness is tested by application to matrix completion
problems. By numerical experiments, we verified that our algorithms outperform existing
major algorithms, ALS and SGD. This outperformance presumably originates from avoiding
extra computation and weakening the self-feedback effect via the cavity treatment. Compared
to the existing algorithms in terms of computational cost, our algorithms are superior to ALS,
while they are competitive with SGD. However, it is known that the SGD is highly sensitive
to the learning rate in its update equations and required its delicate scheduling. By contrast,
our algorithms allow us to avoid such troublesome.

Second, we theoretically analyzed possibilities and limitations of matrix factorization. We
tool up the spectral clustering, which is a popular method for community detection. Over-
lapping structures are often contained in real-world networks and generally deteriorate the
performance of the spectral clustering. We examined this deterioration mechanism employ-
ing the replica method. More precisely, we assessed the algorithm accuracy when varying
the model parameters, which are corresponding to the size and density of the overlapping
structures, of the overlapping SBM. From this, it was revealed that the deterioration mech-
anism was different depending on which model parameters are varied. Increasing the size of
the overlapping structure makes the isolated eigenvalue smaller, while increasing the density
of the overlapping structure makes the width of the bulk of eigenvalues larger. In either
case, eventually the spectral clustering loses the ability to detect community structures as
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the isolated eigenvalue is no longer distinguishable from the bulk of eigenvalues.

5.2 Future study

The usefulness of the developed algorithms, CBMF and ACBMF, was demonstrated for ma-
trix completion problems. However, it can be applicable to various matrix factorization
problems. For instance, they are also applicable to the community detection. Although the
factorized matrices generated from our algorithms do not have the orthogonal condition un-
like the spectral clustering, they can still be utilized for finding communities in conjunction
with the use of k-means clustering. This line of methods are called the graph factorization
[85]. Our algorithm may improve its performance compared to the standard graph factoriza-
tion algorithm, as well as the matrix completion. Besides, the proposed algorithms can be
extended for performing the non-negative matrix factorization (NMF). This extension is rel-
atively easy because we are just required to additionally impose the non-negative constraint
on them. This addition can be done naively in the update rules of the proposed methods.
Due to the non-negative constraint, the interpretability of the factorized matrices can be
higher because they are directly viewed as a probability distribution or group assignment of
belonging to each group.

Our theoretical analysis of the spectral clustering revealed that the density of the overlap-
ping structure considerably affects the bulk of the eigenvalues, but not the isolated eigenvalue.
This result is particularly interesting. It can provide rooms for application to practical al-
gorithms such as detection of overlapping structures. Although our study focused on the
overlapping structure, real-world networks often contain various kinds of structures such as
link labels and hierarchical structures, as well as the overlapping structures. Investigating
the influence of such structures on the spectral clustering performance is left for future work.
In addition, investigating how the addition of the non-negative constraint affects its per-
formance is of interest. This modification allows us to expect to improve the performance
when a graph contains overlapping structures. Finally, the difference in how to deal with the
sparse matrix between the matrix completion and community detection is also of interest.
In the community detection, most of its entries are regarded as zero, whereas in the matrix
completion, most of them are unobserved. In the latter case, regarding variables as unob-
served allows them to have rooms to take non-zero values. Investigating how this difference
influences their performance is also left for future study.
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Appendix A

Benchmark datasets

We performed numerical experiments on three different benchmark datasets as follows: the
MovieLens 1M, 10M, and 20M datasets (https://movielens.org/). The characteristics of each
dataset is represented in Table A.1.

Dataset Rating set #Users #Items #Ratings

MovieLens 1M {1,2,3,4,5} 6,040 3,900 1,000,209
MovieLens 10M {0.5,1,1.5,2,2.5,3,3.5,4,4.5,5} 10,681 71,567 10,000,054
MovieLens 20M {0.5,1,1.5,2,2.5,3,3.5,4,4.5,5} 138,493 27,278 20,000,263

Table A.1: The details of the datasets used in this study. MovieLens is a dataset that consists
of the ratings for movies from users who watched the movies, and the ratings of 1M dataset
takes an integer value from 1 to 5 and those of 10M and 20M datasets take a value from
0.5 to 5 with step 0.5. When a user likes a movie very much, he or she rates the movie
as 5. #Users and #Items correspond to the row and column sizes of the observed matrix,
respectively, and #Ratings denotes the number of observations.
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Appendix B

Derivation of the spectrum and the
detectability limit of the canonical
SBM

The goal of this appendix is to derive saddle-point expression of the average largest eigenvalue
(4.16). Note that a similar calculation using the replica method can be found in Refs. [86,
68, 69]. We start with the average of nth moment of the partition function

[Zn(M,β)]M =

∫ ( n∏
a=1

dxaδ(x
>
a xa −N)

)[
exp

(
β

2

∑
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x>aMxa
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where γi ≡ di/
√

2m. Introducing order parameters
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We have set c̄ ≡ 2m/N . Moreover, Ω̂a is the auxiliary variable that is conjugate to Ωa. To
derive this expression, we transformed the delta function to

δ

(
√
NΩa −

∑
i

γixia

)
=

∫ +i∞

−i∞

β
√
N

2π
dΩ̂ae

β
√
NΩ̂a(

√
NΩa−

∑
i γixia). (B.7)

Inserting Eq. (B.6) into the exponential factor in (B.2), we obtain[
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Here, we took the configuration average over the canonical SBM (4.1) and approximated
ρtitj

1−ρtitj
≈ ρtitj by using the fact that ρtitj = O(N−1).

Let us now introduce the order-parameter functions

Qk(u) =
1

pkN

∑
i∈Vk

∏
a

δ(ua − xia), (k ∈ {1, . . . , K}) (B.10)

where
∑

i∈Vk is the sum over the node indices that belong to the kth block. Then, the last
exponential factor in (B.9) can be approximated as
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where we approximated that the contribution from the diagonal elements is negligible, and
we defined Wkk′ ≡ pkρkk′pk′ . Inserting Eq. (B.11) into (B.9), Eq. (B.1) is now expressed as
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Here, we use the expansion of the delta function
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and the identity
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∏
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Here,
∫
DQk is the functional integral with respect to Qk(µ), and Q̂k(µ) was introduced as

the conjugate of Qk(µ). To derive Eq. (B.15), we used the expansion of the delta function.
By inserting the identity, we can focus on Qk(µ) corresponding to the replacement in (B.10).
Note that without the insertion of the identity, the replacement of (B.10) becomes invalid.
From these, we can recast Eq. (B.12) as
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Here, we assume the functional form of Qk(u) and Q̂k(u) are restricted to Gaussian
mixtures. This indicates that Qk(u) and Q̂k(u) can be expressed as

Qk(u) = q0
k
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Q̂k(u) = q̂0
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where qk(A,H) is the weight of a Gaussian distribution with the mean and precision param-
eter equal to H/A and H, respectively. q̂k(Â, Ĥ) is defined analogously. q0

k and q̂0
k are the
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normalization constants; it can be deduced that q0
k = 1 and q̂0

k = ck from the saddle-point
conditions when n = 0. Inserting Eq. (B.20) and (B.21) into (B.17)–(B.19), we have
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Lk(Qk, Q̂k) =
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− H2

A

)]
,

(B.23)

Mi,k(Q̂k, {φa}) =

(
2π

β

)n
2
∞∑
d=0

cdk
d!

∫ d∏
g=1

(
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To derive Eq. (B.24), we expanded the exponential as eQ̂k(xi) =
∑∞

d=0
1
d!
Q̂d
k(xi).

Hereafter, let us assume no distinction among the variables with different replica indices,
i.e., φa = φ, Ωa = Ω, and Ω̂a = Ω̂. This is referred to as the replica symmetric assumption.
We insert Eq. (B.22)–(B.24) into (B.16) under this assumption. Then, we obtain the following
saddle-point equation for the average largest eigenvalue from Eqs. (4.10), (4.11), and (4.14)
as
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Here, Pck(d) is the probability mass function of degree d of each node in block k that has
expectation ck. From the saddle-point condition in Eq. (B.26), we obtain the functional
equations with respect to qk(A,H) and q̂k(Â, Ĥ) as

qk(A,H) =
∞∑
d=0

Pck(d)d

∫ d−1∏
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Ĥg

)
δ

(
A− φ+

d−1∑
g=1

Âg
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Ĥ − H ′ − 2Ω̂√
c̄

A′

 . (B.28)

To derive Eq. (B.27), we used the fact that the expectation of H2/A becomes 0, which is
derived by substituting Ĥ = Â = 0. Moreover, the saddle-point condition with respect to φ
yields ∑

k

pk

∫
dAdHQk(A,H)

(
H

A

)2

= 1, (B.29)

where
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Âg

)
.

(B.30)

Equation (B.29) corresponds to the normalization constraint in (4.9). Equations (B.27) and
(B.28) constitute functional equations under constraint (B.29), and solving these equations
yields the distribution of the largest eigenvector elements. Note that qk(A,H) was introduced
as the weight in the Gaussian mixture, which approximates the empirical distribution of the
largest eigenvector elements in (B.10). This indicates that qk(A,H) exhibits the probability
density of the eigenvector-element distribution.

Unfortunately, solving the functional form of equations is still not analytically tractable.
Thus, we introduce further approximations that qk(A) = δ(A − ak) and q̂k(Â) = δ(Â − âk),
i.e., we ignore the fluctuation of the precision parameters. This is called the effective medium
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approximation (EMA) [87, 86]. Performing the EMA for (B.26), we arrive at
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where m`k and m̂`k stand for the `th moments of H and Ĥ, respectively, i.e., m`k =∫
dHH`qk(H) and m̂`k =

∫
dĤĤ`q̂k(Ĥ).

The saddle-point conditions from (B.31) lead to the equations for the auxiliary variables
φ,Ω, Ω̂,m`k, m̂`k, ak, and âk. Here, we focus on a model with the symmetry between the
community blocks: p1 = p3 and c1 = c3. Due to this assumption, we can apply the same
assumptions to the physical quantities ak, âk,m2k, m̂2k, that is, a1 = a3, â1 = â3, m21 = m23,
and m̂21 = m̂23. This is because these quantities are the second-order statistics and do not
depend on the signs.

Further, we assume m12 = 0. This assumption stems from the fact that the overlapping
block does not contain nodes in the community blocks. Thus, the corresponding elements
of the eigenvector come from a random structure of the graph. Moreover, we classify the
solution into the cases of m11 = 0 and m11 6= 0. For the solution with m11 = 0, we can assume
m13 = 0 owing to the symmetry. On the other hand, for the solutions with m11 6= 0, we can
assume m11 = −m13 due to the symmetry and the fact that the eigenvector elements of x
tend to have the same signs in the same block. In summary, we have two types of solutions:
m11 = −m13 6= 0, m12 = 0 and m11 = m12 = m13 = 0. In fact, the former corresponds to the
detectable condition and the latter corresponds to the undetectable condition. The leading
eigenvalue is calculated for each of the two conditions, and the detectability limit is derived
as the boundary between these two conditions. We further simplify the problem using the
regular approximation with respect to the degree, namely the random variables following the
Poisson distribution d in (4.16) are fixed as their means ck.

First, under the detectable condition, we can derive the equations for a1, a2, â1, and â2
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from the saddle-point conditions as

a1 + (c1 − 1)â1 = a2 + (c2 − 1)â2, (B.32)
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. (B.34)

1
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=
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a2
1 − 1

. (B.35)

We let the solutions of Eq. (B.32)–(B.35) as adet
1 , adet

2 , âdet
1 , and âdet

2 . Then, we obtain the
average leading eigenvalue as

[λ(M)]M = φ = adet
k + (ck − 1)âdet

k (k = 1, 2) (B.36)

and the condition of the detectability limit as

D(adet
1 , adet

2 , âdet
1 , âdet

2 ) = 0, (B.37)

where
D(a1, a2, â1, â2) = M11M22 −M12M21, (B.38)

M11 = (1 + ε)
a2

1 + 1

(a2
1 − 1)2

+ α
a2

2

(a1a2 − 1)2
− (1 + α + ε)

1

(a1 − â1)2

c1

c1 − 1
, (B.39)

M12 =
α

(a1a2 − 1)2
, (B.40)

M21 =
2

(a1a2 − 1)2
, (B.41)

M22 =
2a2

1

(a1a2 − 1)2
+ σα

a2
2 + 1

(a2
2 − 1)2

− (σα + 2)
1

(a2 − â2)2

c2

c2 − 1
. (B.42)

The detectability limit (B.37) is derived by condition m̂2
11 = 0, because D(a1, a2, â1, â2) is

proportional to m̂2
11.

Second, under the undetectable condition, we can derive the equations for a1, a2, â1, and
â2 from the saddle-point conditions as

a1 + (c1 − 1)â1 = a2 + (c2 − 1)â2, (B.43)

1

a1 − â1

=
1 + ε

1 + α + ε

a1

a2
1 − 1

+
α

1 + α + ε

a2

a1a2 − 1
, (B.44)

1

a2 − â2

=
σα

σα + 2

a2

a2
2 − 1

+
2

σα + 2

a1

a1a2 − 1
, (B.45)

D(a1, a2, â1, â2) = 0. (B.46)

These equations are analogous to those for the detectable conditions (B.32)–(B.35). A crucial
difference is that we have condition m̂2

11 = 0 instead of Eq. (B.35). We let the solutions of
these equations be aund

1 , aund
2 , âund

1 , and âund
2 . Using this solution, we obtain the average

leading eigenvalue in the undetectable conditions as follows.

[λ(M)]M = φ = aund
k + (ck − 1)âund

k . (k = 1, 2) (B.47)
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Appendix C

Microcanonical overlapping SBM

In this appendix, we discuss the microcanonical SBM. In Sec. C.1, we introduce the definition
of the microcanonical overlapping SBM. In Sec. C.2, we provide the replica analysis to derive
its spectrum and the detectability limit. In Sec. C.3, we derive the saddle-point conditions
for normalization constant NG, from which we can derive crucial relations used in Sec. C.2.
Finally, in Sec. C.4, we discuss the distinction between the canonical and microcanonical
SBMs and discuss the reason of their use in our numerical experiments.

C.1 Model definition

Microcanonical SBM is an SBM that is formulated on the basis of different constraints from
its canonical model. Although the canonical SBM specifies the expected number of edges
within the blocks, the microcanonical SBM specifies the number of edges within the blocks
as well as the degree sequence as hard constraints. The microcanonical SBM generates a
graph uniformly and randomly from all realizable graphs under these constraints. We denote
the sequence of node degrees as d = [di]. We let ekl be the number of edges between blocks
k and l; we denote the corresponding matrix as e = [ekl]. Moreover, t = [ti] ti ∈ {1, · · · , K}
(i ∈ V ) are the planted block labels of the nodes. An instance of the microcanonical SBM is
generated according to the following probability distribution.

P (A|d, e, t) =
1

Ω(d, e, t)
, (C.1)

where Ω(d, e, t) is the number of all realizable graphs under given d, e, and t.
We consider a microcanonical SBM with an overlapping structure with the following

parametrization.

p = (p1, p2, p3) = (p1, αp1, p1) , (C.2)

e =

1 α ε
α σα2 α
ε α 1

 e11, (C.3)

di = cti . (C.4)
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Although we can provide an arbitrary degree sequence, for simplicity, we assume the nodes
belonging to the same block k have equal degree ck. As in the canonical SBM, the model
parameters must satisfy constraint (4.6).

C.2 Derivation of the spectrum and the detectability

limit of the microcanonical SBM

Here, we conduct an analysis analogous to Appendix B for the microcanonical SBM. As a
result of the present analysis, we obtain the same average largest eigenvalues as those of the
canonical case in (B.36) and (B.47). However, a different technique is required to impose
the microcanonical constraints. The calculations in this appendix are extensions of those in
Refs. [68, 69]. We start with the nth moment of the partition function (4.15)

[Zn(M,β)]M =

∫ ( n∏
a=1

dxaδ(x
>
a xa −N)

)[
exp

(
β

2

∑
a

x>aMxa

)]
M

. (C.5)

As defined in Appendix C.1, we assume the three blocks model. Then, the exponential factor
in (C.5) can be recast as

x>aMxa =
∑
ij∈V1

uijxiaxja +
∑
ij∈V2

yijxiaxja +
∑
ij∈V3

uijxiaxja

+ 2
∑
i∈V1

∑
j∈V2

vijxiaxja + 2
∑
i∈V2

∑
j∈V3

vijxiaxja + 2
∑
i∈V1

∑
j∈V3

wijxiaxja − (γ>xa)
2, (C.6)

where uij, yij, vij, and wij are the adjacency matrix elements. These parameters were intro-
duced to distinguish blocks that obey different statistics. Again, the summation

∑
i∈Vk is

taken over indices of the nodes that belong to block k.
To calculate the ensemble average over the microcanonical SBM, we take the sum over all

possible graph configurations as imposing the microcanonical constraints by delta functions.
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Thus, the configuration average of the exponential factor in (C.5) is[
exp

(
β

2

∑
a

x>aMxa

)]
M

=
1

NG

∑
{uij},{wij},{vij},{wij}

∏
i∈V1

δ

(∑
l∈V1

uil +
∑
m∈V2

vim +
∑
n∈V3

win − c1

)

×
∏
j∈V2

δ

(∑
l∈V1

ujl +
∑
m∈V2

vjm +
∑
n∈V3

wjn − c2

) ∏
k∈V3

δ

(∑
l∈V1

ukl +
∑
m∈V2

vkm +
∑
n∈V3

wkn − c3

)

× δ

(
σp2

∑
i∈V1

∑
j∈V2

vij − p1

∑
i,j∈V2

yij

)
δ

(
σp2

∑
i∈V2

∑
j∈V3

vij − p3

∑
i,j∈V2

yij

)

× δ

(
p2

∑
i,j∈V1

uij − p1

∑
i∈V1

∑
j∈V2

vij

)
δ

(
p2

∑
i,j∈V3

uij − p3

∑
i∈V2

∑
j∈V3

vij

)

× δ

(
ε
∑
i,j∈V1

uij −
∑
i∈V1

∑
j∈V3

wij

)
δ

(
ε
∑
i,j∈V3

uij −
∑
i∈V1

∑
j∈V3

wij

)
exp

(
β

2

∑
a

x>aMxa

)
. (C.7)

Here, NG is the number of all realizable graphs that satisfy the constraints. The first three
delta functions in (C.7) represent Kronecker’s deltas that impose the degree constraints, while
the remaining ones represent Dirac’s deltas that impose the constraints with respect to the
number of edges between blocks, as specified by matrix e.

We use the integral expression of the delta functions as follows.

δ(x) =

∮
dz

2π
zx−1, (C.8)

δ(x) =

∫ i∞

−i∞

dη

2π
e−ηx. (C.9)

Here, Eqs. (C.8) and (C.9) correspond to the Kronecker’s and Dirac’s deltas. Then, Eq. (C.7)
can be recast as follows.

1

NG

∮ ∏
k=1,2,3

∏
i∈Vk

dzi
2π
z
−(1+ck)
i

∫
dζ

2π

∫
dξ

2π

∫
dτ

2π

∫
dκ

2π

∫
dη

2π

∫
dθ

2π
e−

β
2

∑
a(γ>xa)2

×
∏
i<j
i,j∈V1

∑
uij∈{0,1}

(
zizje

β
∑
a xiaxja−2τp2−2ηε

)uij ∏
i<j
i,j∈V2

∑
yij∈{0,1}

(
zizje

β
∑
a xiaxja+2ξp3+2ζp1

)yij
×
∏
i<j
i,j∈V3

∑
uij∈{0,1}

(
zizje

β
∑
a xiaxja−2κp2−2θε

)uij ∏
i∈V1

∏
j∈V2

∑
vij∈{0,1}

(
zizje

β
∑
a xiaxja−σζp2+τp1

)vij
×
∏
i∈V2

∏
j∈V3

∑
vij∈{0,1}

(
zizje

β
∑
a xiaxja−σξp2+κp3

)vij ∏
i∈V1

∏
j∈V3

∑
wij∈{0,1}

(
zizje

β
∑
a xiaxja+η+θ

)wij
,

(C.10)
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where parameters ζ, ξ, τ, κ, η, and θ are the auxiliary variables provided by the integral repre-
sentation of the delta function. Because variables uij, yij, vij, and wij only take binary values,
their summations in (C.10) can be calculated straightforwardly. For example,∏

i<j
i,j∈V1

∑
uij∈{0,1}

(
zizje

β
∑
a xiaxja

)uij
=
∏
i<j
i,j∈V2

(1 + zizje
β
∑
a xiaxja) ≈

∏
i<j
i,j∈V3

exp(zizje
β
∑
a xiaxja).

(C.11)
To derive the last equation in (C.11), we assume that |zi| and |zj| are sufficiently small.

Here, we introduce the order-parameter functions

Qk(µ) =
1

pkN

∑
i∈Vk

zi

n∏
a=1

δ(xia − µa), (k = 1, 2, 3) (C.12)

which is similar but not completely equivalent to (B.10). Using the order-parameter functions
(C.12), when N � 1, Eq. (C.11) can be approximated as

∏
i<j
i,j∈V1

exp(zizje
β
∑
a xiaxja) ≈ exp

(
(p1N)2

2

∫ n∏
a=1

dµadνaQ1(µ)Q1(ν)eβ
∑
a µaνa

)
, (C.13)

where we approximated that the contribution from the diagonal elements is negligible. Using
the similar calculations, (C.5) is now written as

[Zn(M,β)]M = eNTn(Q)+NSn , (C.14)

where

NTn(Q) =
(p1N)2

2

∫ n∏
a=1

dµadνaQ1(µ)Q1(ν)eβ
∑
a µaνa−2τp2−2ηε

+
(p2N)2

2

∫ n∏
a=1

dµadνaQ2(µ)Q2(ν)eβ
∑
a µaνa+2ξp3+2ζp1

+
(p3N)2

2

∫ n∏
a=1

dµadνaQ3(µ)Q3(ν)eβ
∑
a µaνa−2κp2−2θε

+ p1p2N
2

∫ n∏
a=1

dµadνaQ1(µ)Q2(ν)eβ
∑
a µaνa−σζp2+2τp1

+ p2p3N
2

∫ n∏
a=1

dµadνaQ2(µ)Q3(ν)eβ
∑
a µaνa−σξp2+2κp3

+ p1p3N
2

∫ n∏
a=1

dµadνaQ1(µ)Q3(ν)eβ
∑
a µaνa+η+θ (C.15)
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and

eNSn =

∫ N∏
i=1

n∏
a=1

dxia

n∏
a=1

δ

(
N∑
i=1

x2
ia −N

)∫ √
N

n∏
a=1

dΩaδ

(
√
NΩa −

∑
i

γixia

)
e−

β
2

Ω2
a

× 1

NG

∫
dζ

2π

∫
dξ

2π

∫
dτ

2π

∫
dκ

2π

∫
dη

2π

∫
dθ

2π
. (C.16)

Here, Ωa is the order parameter defined in (B.3). As in the case of the canonical SBM in
(B.14), for Eq. (C.16), we insert the identity

1 =
∏

k=1,2,3

pkN

∫
DQk

2π
δ

(∑
i∈Vk

zi

n∏
a=1

δ(xia − µa)− pkNQk(µ)

)
(C.17)

=
∏

k=1,2,3

pkN

∫
DQkDQ̂k

2π
exp

( ∑
k=1,2,3

∫
dµQ̂k(µ)

(∑
i∈Vk

zi

n∏
a=1

δ(xia − µa)− pkNQk(µ)

))
.

(C.18)

In (C.17), we perform the functional integration over the space of function Qk(µ). It is
required to insert identity (C.17), because it indicates that we performed the replacement of
a function in (C.12) by Qk(µ). Furthermore, using the integral representation of the delta
functions (B.7) and (B.13), we obtain

eNSn =

∫ ∏
k=1,2,3

pkN
DQkDQ̂k

2π

∫ ∏
a

βdφa
4π

∫ ∏
a

βNdΩaΩ̂a

2π

∫
dζ

2π

∫
dξ

2π

∫
dτ

2π

∫
dκ

2π

∫
dη

2π

∫
dθ

2π

× exp

(
− logNG −N

∑
k

Kk(Qk, Q̂k) +
βN

2

∑
a

(2ΩaΩ̂a − Ω2
a + φa)−

∑
k

log ck!

+
∑

k=1,2,3

logLk

(
Q̂k, {Ω̂a}, {φa}

))
, (C.19)

where

Kk(Qk, Q̂k) = pk

∫
dµQk(µ)Q̂k(µ), (C.20)

Lk

(
Q̂k, {Ω̂a}, {φa}

)
=

∫ ∏
i∈Vk

∏
a

dxia
∏
i∈Vk

(
Q̂ck
k (xi) exp

(
−β
∑
a

(√
NΩ̂aγixia +

1

2
φax

2
ia

)))
.

(C.21)

Here, we used the relation∮
dzi
2π
z
−(1+ck)
i eziQ̂k(xi) =

∮
dzi
2π
z
−(1+ck)
i

∞∑
m=0

1

m!

(
ziQ̂k(xi)

)m
(C.22)

=
∞∑
m=0

1

m!
Q̂k(xi)

∮
dzi
2π
z
m−(1+ck)
i (C.23)

=
1

ck!
Q̂ck
k (xi). (C.24)
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Now, the variable depending on the node index i only appears as xi. Hence, after the integral

with respect to xi is carried out in Lk

(
Q̂k, {Ω̂a}, {φa}

)
, Eq. (C.19) can be expressed only

with integrals over the auxiliary variables φa, Ωa, Ω̂a, ζ, ξ, τ , κ, η, θ and functional integrals
over Qk(µ) and Q̂k(µ).

For further calculations, as in the case of the canonical SBM (Eqs. (B.20) and (B.21)), we
assume the functional form of Qk and Q̂k are restricted to the Gaussian mixtures as follows.

Qk(µ) = Tk

∫
dAdHqk(A,H)

(
βA

2π

)n
2

exp

(
−βA

2

∑
a

(
µa −

H

A

)2
)
, (C.25)

Q̂k(µ) = T̂k

∫
dÂdĤq̂k(Â, Ĥ) exp

(
β

2

∑
a

(
Âµ2

a + 2Ĥµa

))
, (C.26)

where Tk and T̂k represent the normalization constants. With these functional forms, we
can calculate the integrals over µ in (C.20) and x in (C.21). Then, we obtain the following
expressions.

Kk(qk, q̂k) = ckpk

∫
dAdH

∫
dÂdĤqk(A,H)q̂k(Â, Ĥ)

×
(

A

A− Â

)n
2

exp

(
nβ

2

(
(H + Ĥ)2

A− Â
− H2

A

))
, (C.27)

Lk

(
q̂k, {Ω̂a}, {φa}

)
= T̂ ckk

(
2π

β

)n
2
∫ ck∏

g=1

(dÂgdĤg q̂k(Âg, Ĥg))
n∏
a=1

(
φa −

ck∑
g=1

Âg

)− 1
2

× exp

(
β

2

∑
i∈Vk

(
√
NΩ̂aγi −

∑ck
g=1 Ĥg)

2

φa −
∑ck

g=1 Âg

)
. (C.28)

In Appendix C.3, we solve for normalization constants Tk and T̂k. By using (C.54), we can
replace TkT̂k with ck. This is how we eliminated the normalization constants in Eq. (C.27).
By inserting (C.25) and (C.26) in (C.15), we can calculate the integrals over µ and obtain

Tn = N

∫
dAdH

∫
dA′dH ′

(
AA′

A− A′

)n
2

exp

(
nβ

2
Ξ(A,A′, H,H ′)

)
×
(
c1

2

p2
1

p1 + p2 + εp1

q1(A,H)q1(A′, H ′) +
c2

2

σp2
2

p1 + σp2 + p3

q2(A,H)q2(A′, H ′)

+
c3

2

p2
3

p3 + p2 + εp3

q3(A,H)q3(A′, H ′) + c2
p1p2

p1 + σp2 + p3

q1(A,H)q2(A′, H ′)

+c2
p2p3

p1 + σp2 + σp3

q2(A,H)q3(A′, H ′) + c1
εp2

1

p1 + p2 + εp1

q1(A,H)q3(A′, H ′)

)
,

(C.29)
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where

Ξ(A,A′, H,H ′) =
A′H2 + AH ′2 + 2HH ′

AA′ − 1
− H2

A
− H ′2

A′
. (C.30)

Here, we used the relations between T1, T2, and T3 (C.55)–(C.61). From the calculations
so far, we have performed all the integrals over z, x, and µ. The functional integrals over
Qk(µ) and Q̂k(µ) in (C.19) have been replaced by the integral over the functions qk(A,H) and
q̂k(Â, Ĥ). In summary, the nth moment of the partition function (C.14) is now represented
by the integrals with respect to auxiliary variables φa, Ωa, and Ω̂a and the functional integrals
over qk(A,H) and q̂k(Â, Ĥ). Note that the other variables ζ, ξ, τ , κ, η, and θ can be erased
when inserting the relations between the normalization constants (C.55)–(C.61).

Again, as we assumed in the canonical SBM, we impose the replica symmetric assumptions
for the parameters φa,Ωa, and Ω̂a, i.e., φa = φ, Ωa = Ω, and Ω̂a = Ω̂ in Eq. (C.27)–(C.29).
Inserting Eq. (C.27)–(C.29) under the assumptions into (C.14) and taking the limit N →∞,
the average largest eigenvalue can be expressed as follows.

[λ(M)]M = 2 lim
β→∞

1

βN
lim
n→0

∂

∂n
log[Zn]M (C.31)

= extr
qk,q̂k,φ,Ω,Ω̂

{∫
dAdH

∫
dA′dH ′Ξ(A,A′, H,H ′)

×
(
c1

2

p2
1

p1 + p2 + εp1

q1(A,H)q1(A′, H ′) +
c2

2

σp2
2

p1 + σp2 + p3

q2(A,H)q2(A′, H ′)

+
c3

2

p2
3

p3 + p2 + εp3

q3(A,H)q3(A′, H ′) + c2
p1p2

p1 + σp2 + p3

q1(A,H)q2(A′, H ′)

+c2
p2p3

p1 + σp2 + p3

q2(A,H)q3(A′, H ′) + c1
εp2

1

p1 + p2 + εp1

q1(A,H)q3(A′, H ′)

)
−
∑

k=1,2,3

ckpk

∫
dAdH

∫
dÂdĤqk(A,H)q̂k(Â, Ĥ)

(
(H + Ĥ)2

A− Â
− H2

A

)
+ 2ΩΩ̂− Ω2 + φ

+
1

N

∑
k=1,2,3

∫ ck∏
g=1

(
dÂgdĤg q̂k(Âg, Ĥg)

)∑
i∈Vk

(√
NΩ̂γi −

∑ck
g=1 Ĥg

)2

φ−
∑ck

g=1 Âg

 . (C.32)
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From Eq. (C.32), we obtain the saddle-point conditions as

q̂1(Â, Ĥ) =

∫
dA′dH ′

p1q1(A′, H ′) + p2q2(A′, H ′) + εp1q3(A′, H ′)

p1 + p2 + εp1

δ

(
Â− 1

A′

)
δ

(
Ĥ − H ′

A′

)
,

(C.33)

q̂2(Â, Ĥ) =

∫
dA′dH ′

p1q1(A′, H ′) + σp2q2(A′, H ′) + p3q3(A′, H ′)

p1 + σp2 + p3

δ

(
Â− 1

A′

)
δ

(
Ĥ − H ′

A′

)
,

(C.34)

q̂3(Â, Ĥ) =

∫
dA′dH ′

p3q1(A′, H ′) + p2q2(A′, H ′) + εp3q3(A′, H ′)

p3 + p2 + εp3

δ

(
Â− 1

A′

)
δ

(
Ĥ − H ′

A′

)
,

(C.35)

and

qk(A,H) =
1

pkN

∫ ck−1∏
g=1

(
dÂgdĤg q̂k(Âg, Ĥg)

)
δ

(
H −

ck−1∑
g=1

Ĥg +
√
NΩ̂γi

)
δ

(
A− φ+

ck−1∑
g=1

Âg

)
.

(C.36)

Moreover, the saddle-point conditions with respect to φ yield

∑
k

pk

∫
dAdHQk(A,H)

(
H

A

)2

= 1, (C.37)

where

Qk(A,H) =
1

pkN

∑
i∈Vk

∫ ck∏
g=1

(
dÂgdĤg q̂k(Âg, Ĥg)

)
δ

(
H −

ck∑
g=1

Ĥg +
√
NΩ̂γi

)
δ

(
A− φ+

ck∑
g=1

Âg

)
.

(C.38)

Equations (C.33)–(C.36) constitute functional equations under the constraint (C.37). This
constraint corresponds to the normalization constraints in (4.9). By solving these equations,
we obtain the distribution of the largest eigenvector elements.

As in the canonical case, solving the functional form of equations is still not analytically
tractable. Thus, we again introduce the EMA, i.e., the precision parameters of the Gaussian
mixtures A and Â are fixed as constants, i.e., qk(A,H) = q(H)δ(A − ak) and q̂k(Â, Ĥ) =
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q̂k(Ĥ)δ(Â− âk). Performing the EMA for (C.32), we have

[λ(M)]M = extr
φ,Ω,Ω̂,m1k,m2k,m̂1k,m̂2k,ak,âk

[
c1p

2
1

p1 + p2 + εp1

a1m21 +m2
11

a2
1 − 1

+
c2σp

2
2

p1 + σp2 + p3

a2m22 +m2
12

a2
2 − 1

+
c3p

2
3

p3 + p2 + εp3

a3m23 +m2
13

a2
3 − 1

+
c2p1p2

p1 + σp2 + p3

a2m21 + a1m22 + 2m11m̂11

a1a2 − 1

+
c2p2p3

p1 + σp2 + p3

a3m22 + a2m23 + 2m12m13

a2a3 − 1
+

c1εp
2
1

p1 + p2 + εp1

a3m21 + a1m23 + 2m11m13

a1a3 − 1

−
∑
k

ckpk
m2k + 2m1km̂1k + m̂2k

ak − âk
+ 2ΩΩ̂− Ω2 + φ

+
1

N

∑
k

∑
i∈Vk

1

φ− ckâk

(
(
√
NΩ̂γi)

2 − 2
√
NΩ̂γickm̂1k + ckm̂2k + ck(ck − 1)m̂2

1k

)]
,

(C.39)

where m`k and m̂`k represent the `th moments of H and Ĥ, respectively, i.e., m`k =∫
dHH`qk(H) and m̂`k =

∫
dĤĤ`q̂k(Ĥ).

As in the canonical case, we introduce further assumptions. First, we assume the sym-
metry between the community blocks, namely p1 = p3 and c1 = c3. Hence, a1 = a3, â1 = â3,
m21 = m23, and m̂21 = m̂23. Second, we think of two types of solutions: m11 = −m13, m12 =
0 and m11 = m12 = m13 = 0. Under these assumptions, we obtain the same solutions as those
of the canonical SBM with the regular approximation. When m11 = −m13 and m12 = 0, the
average largest eigenvalue is obtained as in Eq. (B.36). When m11 = m12 = m13 = 0, the
average largest eigenvalue is obtained as in Eq. (B.47). The detectability limit is given by
Eq. (B.37).

C.3 Saddle-point conditions for NG

The goal of this subsection is to derive the relations of the normalization constants of the
Gaussian mixtures Tk and T̂k in (C.25) and (C.26). They can be derived using saddle-point
conditions for the number of all realizable graphs NG. This can be calculated by taking
the sum over all possible graph configurations as imposing the microcanonical constraints by
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delta functions. Thus, we have

NG =
∑

{uij},{wij},{vij},{wij}

∏
i∈V1

δ

(∑
l∈V1

uil +
∑
m∈V2

vim +
∑
n∈V3

win − c1

)

×
∏
j∈V2

δ

(∑
l∈V1

ujl +
∑
m∈V2

vjm +
∑
n∈V3

wjn − c2

) ∏
k∈V3

δ

(∑
l∈V1

ukl +
∑
m∈V2

vkm +
∑
n∈V3

wkn − c3

)

× δ

(
σp2

∑
i∈V1

∑
j∈V2

vij − p1

∑
i,j∈V2

yij

)
δ

(
σp2

∑
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∑
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vij − p3

∑
i,j∈V2

yij

)

× δ

(
p2

∑
i,j∈V1

uij − p1

∑
i∈V1

∑
j∈V2

vij

)
δ

(
p2

∑
i,j∈V3

uij − p3

∑
i∈V2

∑
j∈V3

vij

)

× δ

(
ε
∑
i,j∈V1

uij −
∑
i∈V1

∑
j∈V3

wij

)
δ

(
ε
∑
i,j∈V3

uij −
∑
i∈V2

∑
j∈V3

wij

)
. (C.40)

Using the integral representation of the delta function (C.8) and (C.9), we have

NG =
∑

{uij},{wij},{vij},{wij}

∮ ∏
i∈V1

dzi
2π
z
∑
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∑
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i∈V2

dzi
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∑
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∑
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i,j∈V1
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wij) (C.41)

=

∮ ∏
k=1,2,3

∏
i∈Vk

dzi
2π
z
−(1+ck)
i

∫
dζ

2π

∫
dξ

2π

∫
dτ

2π

∫
dκ

2π

∫
dη

2π

∫
dθ

2π

×
∏
i<j
i,j∈V1

∑
uij

(
zizje

−2τp2−2ηε
)uij ∏

i<j
i,j∈V2

∑
yij

(
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2ξp3+2ζp1
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∑
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(
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∏
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∑
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−σζp2+τp1
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∑
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−σξp2+κp3
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∑
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(
zizje

η+θ
)wij

.

(C.42)

Here, we introduce the order parameters

qk =
1

pkN

∑
i∈Vk

zi. (k = 1, 2, 3) (C.43)

80



Equation (C.42) is now written as

NG =
∏

k=1,2,3

(
pkN

∫
dqk

∏
i∈Vk

∮
dzi
2π
z
−(1+ck)
i

)∫
dζ

2π

∫
dξ

2π

∫
dτ

2π

∫
dκ

2π

∫
dη

2π

∫
dθ

2π

×
∏
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δ

(
pkNqk −

∑
i∈Vk

zi

)
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1

2
e−2τp2−2εη(p1Nq1)2 +

1

2
e2ζp1+2ξp3(p2Nq2)2
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1

2
e−2κp2−2ξθ(p3Nq3)2 + e−σζp2+τp1p1p2N

2q1q2 + e−σξp2+κp3p2p3N
2q2q3 + eη+θp1p3N

2q1q3)

)
.

(C.44)

Here, we used the same approximation as in (C.11). Using relations (C.9) and (C.24),
Eq. (C.44) becomes

NG =
∏

k=1,2,3

(
pkN

∫
dqkdq̂k

2π

)∫
dζ

2π

∫
dξ

2π

∫
dτ

2π

∫
dκ

2π

∫
dη

2π

∫
dθ

2π

× exp

(
1

2
e−2τp2−2εη(p1Nq1)2 +

1

2
e2ζp1+2ξp3(p2Nq2)2

+
1

2
e−2κp2−2ξθ(p3Nq3)2 + e−σζp2+τp1p1p2N

2q1q2

+e−σξp2+κp3p2p3N
2q2q3 + eη+θp1p3N

2q1q3)

+ N
∑

k=1,2,3

(−q̂kpkqk + pkck log q̂k − pk log ck!)

)
. (C.45)

In the limit N →∞, we have the following saddle-point conditions.

εp1q1e
−2τp2−2εη = p3q3e

η+θ (C.46)

εp3q3e
−2κp2−2εθ = p1q1e

η+θ (C.47)

q2e
2ζp1+2ξp3 = σq1e

−σζp2+τp1 (C.48)

q1e
−2τp2−2εη = q2e

−σζp2+τp1 (C.49)

q3e
−2κp2−2εθ = q2e

−σξp2+κp3 (C.50)

q̂1

N
= p1q1e

−2τp2−2εη + p2q2e
−σζp2+τp1 + p3q3e

η+θ (C.51)

q̂2

N
= p2q2e

−2ζp1+2ξp3 + p1q1e
−σζp2+τp1 + p3q3e

−σξp2+κp3 (C.52)

q̂3

N
= p3q3e

−2κp2−2εθ + p2q2e
−σξp2+κp3 + p1q1e

η+θ (C.53)

qkq̂k = ck. (k = 1, 2, 3) (C.54)
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From Eq. (C.46)–(C.54), we obtain

q2
1 =

1

N
e2τp2+2εη c1

p1 + p2 + εp1

, (C.55)

q2
2 =

1

N
e−2ζp1−2ξp3

c2σ

p1 + σp2 + p3

, (C.56)

q2
3 =

1

N
e2κp2+2εθ c3

p3 + p2 + εp3

, (C.57)

q1q2 =
1

N
eσζp2−τp1

c2

σp2 + p1 + p3

, (C.58)

q2q3 =
1

N
eσξp2−κp3

c2

σp2 + p1 + p3

, (C.59)

q1q3 =
1

N
e−(η+θ)p1

p3

c1ε

p1 + p2 + εp1

, (C.60)

c1(σp2 + p1 + p3) = c2(p1 + p2 + εp3). (C.61)

By substituting (C.55)–(C.61) into (C.45), NG is expressed in terms of the model parameters.
The order parameters (C.43) correspond to the order-parameter functions (B.10) when n = 0.
This indicates that the normalization constants of the Gaussian mixtures Tk and T̂k in (C.25)
and (C.26) are identical to qk and q̂k, respectively. Accordingly, we obtain the relations
between Tk and T̂k as Eqs. (C.54)–(C.60). Besides, (C.61) is identical to the constraint
between the model parameters (4.6), i.e., the same constraint is derived by both the model
definition and the replica analysis.

C.4 Comparison between the canonical and microcanon-

ical SBMs

In the main text, we used the canonical SBM for deriving the detectability limit, whereas we
used the microcanonical SBM for conducting the numerical experiments. This is because the
derivation under the canonical SBM is more straightforward and simpler, while the canonical
SBM causes a problem when conducting the numerical experiments. The canonical SBM
required the regular approximation as an additional approximation to calculate the average
largest eigenvalue in the replica analysis. The approximation creates a large difference of
the derived solutions from the original ones because of ignoring the fluctuation of the degree
distribution. Thus, it becomes difficult to validate the results of the analytical calculation
by comparing them to the results of the numerical experiments.

However, the microcanonical SBM does not require the regular approximation because
it can be defined with an arbitrary degree sequence, and we can choose one that avoids
the effects of the fluctuation. Meanwhile, as mentioned in Sec. 4.3.1, the microcanonical
SBM requires an additional constraint that c1 and c2 can take only natural numbers. This
originates from the fact that it specifies a certain degree for each node as its model parameters.
Note that the replica analysis with the microcanonical SBM (and canonical SBM) required
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another approximation, which is called EMA. However, the effect of this approximation can
be neglected under the experimental condition in Sec. 4.3, as discussed in Appendix E.

In short, the canonical SBM is appropriate to explain the derivation of the detectability
limit because of the simplicity. The microcanonical SBM is appropriate for conducting the
numerical experiments because it does not require the regular approximation.
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Appendix D

Bimodal stochastic block model

In this appendix, we explain the bimodal SBM in detail. This model is a variant of the SBM
that has no overlapping structure. The bimodal SBM has a bimodal degree distribution: each
node randomly takes either degree c1 or c2. We denote the fraction of the nodes that have
degree c1 as b1 and that of c2 as b2 (b1 + b2 = 1). Note that, because the degree assignment
is independent of the group assignment, one cannot infer the planted structure based on the
degree sequence.

We define the two-blcok bimodal SBM in the microcanonical formulation. The model is
parametrized as follows.

e =

(
1 ε
ε 1

)
e11, (D.1)

b = (b1, b2) = (2p1, p2). (D.2)

Here, as defined in Sec. 4.1, ekl is the number of edges between blocks k and l, and ε is the
parameter that controls the strength of community structure. Moreover, p1 and p2(= αp1)
are the sizes of the community and overlapping blocks of the overlapping SBM, respectively.
As mentioned in the main text, the purpose of introducing the bimodal SBM is to compare
the overlapping SBM to the SBM with the non-overlapping structure and the same average
degree. We can confirm that both models have the same average degree.

Subsequently, we show the average largest eigenvalue of the bimodal SBM under the
detectable and undetectable conditions. As in the overlapping SBM, we can calculate it
using the replica method. The detailed derivation can be found in Ref. [68].

First, under the detectable condition, we obtain the equation for a as

cb(c2A−B)(c1A−B) = (a2 − 1) (cbA−B)B, (D.3)

where

A = (cb − 1)Γ− a, (D.4)

B = Γ(c2 − cb)− acb, (D.5)

Γ =
1− ε
1 + ε

. (D.6)
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Here, a is the precision parameter of the Gaussian mixture, which corresponds to a1 and a2

in the case of the overlapping SBM. Besides, cb ≡ b1c1 + b2c2 and c2
b ≡ b1c

2
1 + b2c

2
2. Note

that a has no indices because of the symmetry between the two blocks. We let the solutions
of Eq. (D.3) be adet. Using this solution, we obtain the following expression of the average
largest eigenvalue.

[λ(M)]M =
c1c2

(adet)3

A

B
. (D.7)

Second, under the undetectable case, we obtain the equations for a and φ as follows.

∑
t=1,2

btc
2
t

(φ− ct/a)2
=

(a2 + 1)

cb

(
cba

a2 − 1

)2

. (D.8)

When we let the solutions of these equations be aund and φund, we obtain the average largest
eigenvalue as [λ(M)]M = φund.
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Appendix E

Accuracies of the EMA and the
regular approximation

For the replica analysis, we introduced two approximations: the regular approximation and
EMA. Here, we investigate the dependencies of the average degree on the accuracy of each
approximation. It is known that when the average degree is sufficiently large, the effect
of these approximations can be asymptotically ignored. However, it is not trivial how the
approximations affect the results for a graph with a low average degree.

To derive the detectability limit of the canonical SBM, we used both the EMA and the
regular approximation. To derive that of the microcanonical SBM, we used the EMA only.
Thus, by comparing both results, we can measure how each approximation differs from the
original result. Figs. E.1a and E.1b show the results of the canonical and microcanonical
SBMs, respectively. We can see that the results of the replica analysis and the numerical
experiments are in agreement for c1 ≥ 30 in the canonical case. On the other hand, they
are in agreement for c1 ≥ 6 in the microcanonical case. Therefore, we can conclude that
the effect of the EMA is smaller than that of the regular approximation. Therefore, for the
numerical experiments in Sec. 4.3, we used the microcanonical SBM and set c1 = 10, so that
the effect of the approximation can be ignored.
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Figure E.1: Largest eigenvalues as a function of α. The lines represent the results of the
replica analysis and the dots represent those of the numerical experiments. (a) The figure
shows the results of the canonical SBM for c1 = 10, 14, 18, 22, 26, 30. (b) The figure shows
the results of the microcanonical SBM for c1 = 3, 4, 5, 6. The figures are taken from Ref. [88].
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Appendix F

Relationship with the
mixed-membership SBM

Mixed-membership stochastic block model (MMSBM) [20] is a popular random graph model
that considers an overlapping structure. In this section, we discuss the relationship between
our overlapping SBM and the MMSBM. We define a membership vector of node i as πi = [πik]
(k ∈ {1, . . . , K}),

∑K
k=1 πik = 1, 0 < πik ≤ 1. That is, πik represents the probability that

node i is assigned to block k. In the MMSBM, the edge generation probability of a pair of
nodes (i, j) is expressed as

P (Aij = 1|ρ,πi,πj) = π>i ρπj. (F.1)

To see the correspondence to our overlapping SBM, we consider a two-block MMSBM, and
exclusive node sets V1, V2, and V3, where V1 and V3 represent community blocks and V2

represents the overlapping block. For example, let us consider the following parameterization
of πi.

πi =


(1, 0)> (i ∈ V1)

(1/2, 1/2)> (i ∈ V2)

(0, 1)> (i ∈ V3).

(F.2)

We consider the same parameterization as Eq. (4.3) for the affinity matrix ρ. By inserting
Eqs. (4.3) and (F.2) into Eq. (F.1), we obtain the edge generation probability matrix ρin

ρin+ρout

2
ρout

ρin+ρout

2
ρin+ρout

2
ρin+ρout

2

ρout
ρin+ρout

2
ρin

 . (F.3)

This equation never coincides with Eq. (4.5). In fact, one can easily confirm that the MMSBM
does not coincide with our overlapping SBM for arbitrary choices of πi in Eq. (F.2).

It is interesting to consider a variant of the standard MMSBM. We define a membership
vector of node i as an unnormalized propensity vector gi = [gik] (k ∈ {1, . . . , K}), gik ≥ 0.
Similarly to the standard MMSBM, the edge generation probability of a pair of nodes (i, j)
is expressed as

P (Aij = 1|ρ, gi, gj) = g>i ρgj. (F.4)
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Again, we consider the case of K = 2 and the following parameterization of gi.

gi =


(1, 0)> (i ∈ V1)

( 1
1+ε

, 1
1+ε

)> (i ∈ V2)

(0, 1)> (i ∈ V3).

(F.5)

Here, the labels of the two community blocks are exchangeable because of the permutation
symmetry. By inserting Eqs. (4.3) and (F.5) into Eq. (F.4), we obtain the edge generation
probability matrix  ρin ρin ρout

ρin
2

1+ε
ρin ρin

ρout ρin ρin

 . (F.6)

Equation (F.6) becomes identical to Eq. (4.5) when σ = 2/(1 + ε). In fact, one can confirm
that the parameterization of πi in Eq. (F.5) is the only nontrivial choice that achieves the
equivalence to our overlapping SBM. Therefore, this generalized MMSBM and our overlap-
ping SBM share the same model space in the range of 1 ≤ σ ≤ 2.
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