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A general phase reduction method for a network of coupled dynamical elements exhibiting collective
oscillations, which is applicable to arbitrary networks of heterogeneous dynamical elements, is
developed. A set of coupled adjoint equations for phase sensitivity functions, which characterize the
phase response of the collective oscillation to small perturbations applied to individual elements, is
derived. Using the phase sensitivity functions, collective oscillation of the network under weak
perturbation can be described approximately by a one-dimensional phase equation. As an example,
mutual synchronization between a pair of collectively oscillating networks of excitable and oscillatory
FitzHugh-Nagumo elements with random coupling is studied. Published by AIP Publishing.
https://doi.org/10.1063/1.5009669

Networks of coupled dynamical elements exhibiting
collective oscillations often play important functional
roles in real-world systems. Here, a method for dimen-
sionality reduction of such networks is proposed by
extending the classical phase reduction method for non-
linear oscillators. By projecting the network state to a
single phase variable, a simple one-dimensional phase
equation describing the collective oscillation is derived.
As an example, synchronization between collectively
oscillating random networks of neural oscillators is stud-
ied. The derived phase equation is general and will have
wide applicability in control and optimization of collec-
tively oscillating networks.

I. INTRODUCTION

Synchronization of coupled dynamical elements is ubiq-
uitously observed in the real world and often plays important
functional roles in biological and engineered systems.1–3 A
series of beautiful experiments using finely tuned coupled
electrochemical oscillators by Hudson and his collabora-
tors4–10 has vividly revealed intriguing synchronization
dynamics that can occur in a network of coupled oscillators,
including the first experimental realization of the collective
synchronization transition, or Kuramoto transition, of glob-
ally coupled limit-cycle oscillators.

In the real world, it is often the case that a system is
comprised of a number of different dynamical subsystems
(elements), mutually coupled through an interaction network
and exhibits stable collective oscillations, such as our body

in which various organs mutually interact and obey the
approximate 24 h rhythm synchronized to the sun, or the
power grids where synchronization of constituent AC gener-
ators is required for stable operation.11 A network of coupled
chemical oscillators undergoing synchronized collective
oscillations, intensively studied by Hudson,4–10 can be con-
sidered a fundamental experimental model of such collective
dynamics.

In analyzing collective dynamics of a network of
coupled dynamical elements, one useful way is deriving a
low-dimensional description of the collective dynamics by
reducing the dimensionality of the network. For low-
dimensional limit-cycle oscillators, the most successful and
widely used theoretical method for dimensionality reduction
is the phase reduction,1,12–17 where the dynamics of the oscil-
lator is projected onto a single phase equation describing
neutral dynamics along a one-dimensional stable limit cycle
in the state space.

Generalization of the phase reduction method for high-
dimensional systems exhibiting collective oscillations has
recently been developed for coupled phase oscillators with
global coupling18 and with general network coupling,19 and
for active rotators with global coupling.20 A similar idea has
been applied for the analysis of mutual synchronization
between collectively oscillating populations of coupled
phase oscillators.21–23 Moreover, the idea of collective phase
reduction has further been generalized to spatially extended
systems such as thermal convection24,25 and reaction-
diffusion systems exhibiting rhythmic spatio-temporal
dynamics.26

In deriving a phase equation for the collective oscilla-
tion of a network, the phase response of the network to exter-
nal perturbations should be known. In Refs. 18 and 19, phasea)Author to whom correspondence should be addressed: nakao@sc.e.titech.ac.jp
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sensitivity functions for the collective oscillation are derived
for a network of coupled phase oscillators. However, the
frameworks developed in Refs. 18 and 19 are restrictive in
that all the elements should be autonomous oscillators with
approximately the same properties and their mutual coupling
should be weak enough. This hampers experimental investi-
gation of phase response properties of collective oscillations
in real-world systems, such as electrochemical oscillators.

In this paper, we extend the idea of collective phase
reduction and derive a phase equation for a network of cou-
pled dynamical elements in the most general form, where the
dynamics of the elements can be arbitrary and the mutual
interaction between the elements can be strong; the only
assumption is that the whole network undergoes a stable col-
lective limit-cycle oscillation. We derive a set of coupled
adjoint equations, which give the phase sensitivity functions
of the collective oscillation of the network to weak external
perturbations applied to constituent dynamical elements, and
reduce the dynamics of the whole network to a one-
dimensional phase equation. As an example, we calculate
the phase response property of a network of FitzHugh-
Nagumo (FHN) elements exhibiting collective oscillations,
where both excitable and oscillatory elements are coupled
via random network connections, and analyze mutual syn-
chronization between a pair of FHN networks.

II. PHASE REDUCTION OF A NETWORK OF COUPLED
DYNAMICAL ELEMENTS

A. Phase reduction

We consider a general network of N coupled dynamical
elements described by

d

dt
XiðtÞ ¼ FiðXiÞ þ

XN

j¼1

GijðXi;XjÞ ði ¼ 1; 2;…;NÞ; (1)

where XiðtÞ 2 Rmi is a mi ð% 1Þ-dimensional state of element
i at time t, Fi : Rmi ! Rmi represents individual dynamics of
element i, and Gij : Rmi & Rmj ! Rmi describes the effect of
element j on element i, respectively. It is assumed that

Gii ¼ 0 for all i, that is, self coupling does not exist or is
absorbed into the individual part Fi. The dimensionality of
each element does not need to be identical, and the dynamics
Fi can differ from element to element. The interaction net-
work Gij can also be arbitrary as long as the network is con-
nected and no element is isolated.

We assume that the whole network exhibits stable col-
lective oscillation, i.e., the network possesses a stable limit-
cycle solution

Xð0Þi ðtþ TÞ ¼ Xð0Þi ðtÞ ði ¼ 1; 2;…;NÞ (2)

of period T and frequency x ¼ 2p=T. That is, each element
repeats the same oscillatory behavior periodically with the
same period T, though individual dynamics of the elements
may differ from each other. See Fig. 1 for an example. We
assume that such collective oscillation described by Eq. (1)
is exponentially stable and persists even if subjected to weak
perturbations.

Because the whole network exhibits collective oscilla-
tions, we can introduce a single collective phase variable
hðtÞ 2 ½0; 2pÞ of the network, which increases with a con-
stant natural frequency x as

d

dt
hðtÞ ¼ x; (3)

and represent the state of the whole network (i.e., states of
all the elements) as

XiðtÞ ¼ Xð0Þi hðtÞ½ ( ði ¼ 1; 2;…;NÞ; (4)

as a function of the phase h(t).
Now, suppose that the network described by Eq. (1),

undergoing stable collective oscillations, is weakly perturbed as

d

dt
XiðtÞ ¼ FiðXiÞ þ

XN

j¼1

GijðXi;XjÞ þ !piðtÞ ði¼ 1;2;…;NÞ;

(5)

where piðtÞ 2 Rmi represents the external perturbation given
to the element i at time t and 0 < !) 1 is a small parameter

FIG. 1. (a) Schematic figure of a network of randomly coupled 10 FHN elements (circles). Color reflects the variable v (arbitrary scale). The numbers #1-#10
are indices of the elements (#1-#7: excitable, #8-#10: oscillatory). The color of each element corresponds to the value viðtÞ (i ¼ 1; 2;…; 10). (b) Collective
oscillation of the network. Periodic dynamics of the v components of the 10 coupled FHN elements are shown. See Fig. 2 for individual traces.
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representing the intensity of the perturbation. Because the
whole network can be seen as a single big limit-cycle oscilla-
tor, by generalizing the standard phase reduction method,12

we can approximately represent the dynamics of the whole
network by using a single scalar equation for the collective
phase h(t) when ! is sufficiently small.

As derived in the Appendix, the approximate phase
equation for the collective phase h(t), which is correct up to
O(!), is given by

d

dt
hðtÞ ¼ xþ !

XN

i¼1

QiðhÞ * piðtÞ; (6)

where QiðhÞ 2 Rmi is the phase sensitivity function of the
element i (i ¼ 1; 2;…;N). Thus, we can individually evalu-
ate the effect of external perturbation piðtÞ applied to each
element i on the phase h(t) of the collective oscillation of the
network, and approximately describe the collective oscilla-
tion of the whole network by a simple reduced phase
equation.

As derived in the Appendix, the phase sensitivity func-
tions QiðhÞ are given by a 2p-periodic solution to the follow-
ing set of coupled adjoint equations

x
d

dh
QiðhÞ ¼ +J†

i ðhÞQiðhÞ +
XN

j¼1

M†
ijðhÞQiðhÞ

+
XN

j¼1

N†
jiðhÞQjðhÞ ði ¼ 1; 2; ::; :NÞ; (7)

where JiðhÞ ¼ @FiðXiÞ=@Xi 2Rmi&mi ; MijðhÞ ¼ @GijðXi;XjÞ=
@Xi 2Rmi&mi , and NijðhÞ ¼ @GijðXi;XjÞ=@Xj 2Rmi&mj are

Jacobian matrices of Fi and Gij evaluated at Xi ¼Xð0Þi ðhÞ,
respectively, and † indicates matrix transpose. Also, the
phase sensitivity functions should satisfy the normalization
condition

XN

i¼1

QiðhÞ *
dX
ð0Þ
i ðhÞ
dh

¼ 1: (8)

By numerically finding a 2p-periodic solution to the adjoint
equation (7) with the normalization condition (8), we can
obtain the phase sensitivity functions QiðhÞ and evaluate the
effect of weak perturbations given to the dynamical elements
on the collective phase.

Note that the above result is applicable to arbitrary
networks of coupled dynamical elements, where coupling
networks and properties of constituent elements are arbitrary.
The only assumption is that the whole network has a stable
limit-cycle solution. When the network under consideration
is of a reaction-diffusion type, the above results can be
related to the previous results on continuous reaction-
diffusion media (see the Appendix).

B. Synchronization between a pair of interacting
networks

A representative application of the reduced phase equa-
tion is the analysis of synchronization properties of mutually

coupled oscillating networks. We here consider mutual syn-
chronization between a pair of symmetrically coupled net-
works with identical properties, A and B, given by

d

dt
XA

i ðtÞ ¼ FiðXA
i Þ þ

XN

j¼1

GijðXA
i ;X

A
j Þ þ !

XN

j¼1

HijðXA
i ;X

B
j Þ;

d

dt
XB

i ðtÞ ¼ FiðXB
i Þ þ

XN

j¼1

GijðXB
i ;X

B
j Þ þ !

XN

j¼1

HijðXB
i ;X

A
j Þ;

(9)

where XA
i and XB

i are the state variables of elements
i ¼ 1;…;N in networks A and B, respectively, HijðXA

i ;X
B
j Þ

represents inter-network coupling between XA
i and XB

j , and !
is a small parameter. For simplicity, it is assumed that the
two networks are identical, i.e., they share the same parame-
ter values for the elements and the same internal coupling
network Gij. It is also assumed that collective oscillation of
each network persists when small mutual interaction
between the networks is introduced.

We denote the collective phase of the two networks as
hAðtÞ and hBðtÞ, respectively. Then, by using the phase sensi-
tivity functions Qi, which are common to both networks, the
dynamics of the above two-coupled networks can be reduced
to a pair of coupled phase equations, which is correct up to
Oð!Þ, as

d

dt
hAðtÞ¼xþ!

XN

i¼1

QiðhAÞ*
XN

j¼1

Hij Xð0Þi ðh
AÞ;Xð0Þj ðh

BÞ
h i

;

d

dt
hBðtÞ¼xþ!

XN

i¼1

QiðhBÞ*
XN

j¼1

Hij Xð0Þi ðh
BÞ;Xð0Þj ðh

AÞ
h i

: (10)

Now, by following the standard procedure of phase reduction
theory12–14 and invoking averaging approximation, these
equations can be transformed to

d

dt
hAðtÞ ¼ xþ !

XN

i¼1

XN

j¼1

CijðhA + hBÞ;

d

dt
hBðtÞ ¼ xþ !

XN

i¼1

XN

j¼1

CijðhB + hAÞ; (11)

which is also correct up to Oð!Þ, where

Cijð/Þ ¼
1

2p

ð2p

0

dw Qiðwþ /Þ *Hij X
ð0Þ
i ðwþ /Þ;Xð0Þj ðwÞ

h i

(12)

is the phase coupling function between the elements i and j
of the two networks. From Eq. (11), the phase difference
/ ¼ hA + hB between the networks obeys

d

dt
/ðtÞ ¼ !Cað/Þ; (13)

where

Cað/Þ ¼
XN

i¼1

XN

j¼1

Cijð/Þ + Cijð+/Þ
" #

(14)
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is an antisymmetric function of /, i.e., Cað/Þ ¼ +Cað+/Þ.
Thus, by calculating Cað/Þ, we can predict the stable phase
differences between the two networks as the stable fixed
point of the one-dimensional phase equation (13).

III. EXAMPLE

A. A network of coupled FitzHugh-Nagumo elements

As an example, we consider a network of N coupled
FitzHugh-Nagumo elements13,14 with random connections.
The state variable of each element i (i¼ 1, 2,…, N) is two-
dimensional

Xi ¼ ðui; viÞ†; (15)

which obeys

FiðXiÞ ¼ dðaþ vi + buiÞ; vi +
v3

i

3
+ ui þ Ii

$ %†

: (16)

We assume that the parameter Ii of the element can differ
between the elements, so the elements can be either oscilla-
tory or excitable depending on Ii. The other parameters are
assumed to be identical. We also assume that only the v com-
ponent (which is related to the membrane potential of a neu-
ron) can diffuse over the network and the mutual coupling
between elements i and j is given by

GijðXi;XjÞ ¼ Kijð0; vj + viÞ†; (17)

where Kij 2 R is the (i, j) component of an N&N matrix K
representing the coupling network.

In the numerical simulations, we consider N¼ 10
FitzHugh-Nagumo elements. The parameters of the elements
are Ii¼ 0.2 for the elements i¼ 1,…, 7, which exhibit excit-
able dynamics, and Ii¼ 0.8 for the elements i¼ 8,…, 10,

which exhibit self-oscillatory dynamics. The other parame-
ters are d¼ 0.08, a¼ 0.7, and b¼ 0.8. Each component Kij of
the coupling matrix K is randomly and independently drawn
from a uniform distribution [–0.6, 0.6]. The initial conditions
of the elements are taken to be ui¼ 1 and vi¼ 1 for all i. See
Subsection 3 of Appendix for the actual K used in the simu-
lations and a brief description of the qualitative dynamics of
the network. Note that the coupling matrix is not symmetric
and each component can take both positive and negative val-
ues, so some pairs of the elements are mutually attractive
while some other pairs are repulsive with differing coupling
intensities.

With these parameter values, the whole network
exhibits a limit-cycle oscillation in the 20-dimensional state
space of period T ’ 75:73, where each element i ¼ 1;…; 10
repeats its own dynamics periodically. Figure 1 schemati-
cally shows a network of 10 coupled FHN elements and
an example of the limit-cycle oscillation of the whole net-
work, where v components of the FHN elements are
shown. It can be seen that the dynamics of the elements
are different from each other because of the heterogeneity
of the elements and the random network connections
between them, but the whole dynamics exhibits collective
oscillation of period T. We denote this limit-cycle solu-
tion as

X
ð0Þ
i ðhÞ ¼ uð0Þi ðhÞ; v

ð0Þ
i ðhÞ

h i†

ði ¼ 1; 2;…; 10Þ; (18)

as a function of the phase 0 , h < 2p. Figure 2 shows
the dynamics of the u and v components of the elements
i ¼ 1;…; 10 for one period of collective oscillation as a
function of h, showing mutually similar but different oscilla-
tory dynamics. It can be confirmed numerically that this col-
lective oscillation is stable and persists even if perturbed by
weak external disturbances.

FIG. 2. Dynamics of u and v compo-
nents of coupled FHN elements for one
period of oscillation. Each figure shows

uð0Þi ðhÞ (blue dashed) and vð0Þi ðhÞ (red
solid) of ith element (i ¼ 1; 2;…; 10)
in the steadily oscillating state.
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B. Phase sensitivity functions

The Jacobian matrices of Fi and Gij are given by

JiðhÞ ¼
+db d

+1 1+ fvð0Þi ðhÞg
2

 !

; (19)

Mij ¼ Kij
0 0

0 +1

 !

; Nij ¼ Kij
0 0

0 1

 !

; (20)

for i 6¼ j, and Mij ¼ 0; Nij ¼ 0 when i¼ j. By numerically
solving the adjoint equations (7) with these Jacobian matri-
ces, we obtain the phase sensitivity functions

QiðhÞ ¼ Qu
i ðhÞ; Qv

i ðhÞ
" #† ði ¼ 1; 2;…; 10Þ (21)

as their 2p-periodic solutions.
Figure 3 shows the phase sensitivity functions QiðhÞ of

all elements i ¼ 1; 2;…; 10. The phase sensitivity functions
are different from element to element, again reflecting the
heterogeneity and random coupling of the elements. In this
particular example, the phase sensitivity function of the 10th
element, which exhibits qualitatively different dynamics
from other elements in Fig. 2 due to relatively strong cou-
pling, has considerably larger amplitudes than those of the
other elements.

C. Synchronization between a pair
of FitzHugh-Nagumo networks

We now analyze phase synchronization between a pair
of symmetrically coupled identical networks described by
Eq. (9) with N¼ 10 FitzHugh-Nagumo elements. Each net-
work is as described in Secs. III A and III B, and the inter-
network coupling is assumed to be

HijðXA
i ;X

B
j Þ ¼ Ci;jð0; vB

j + vA
i Þ

†; (22)

where again only the v components are coupled between the
networks A and B, and the matrix Ci;j 2 RN&N determines if
the elements i in network A and j in network B are con-
nected. The small parameter determining the intensity of
mutual coupling is fixed at !¼ 0.005.

As an example, we consider two types of the inter-
network coupling matrices Ci,j,

Case 1 : C8;8 ¼ 1; Ci;j ¼ 0 ðotherwiseÞ; (23)

Case 2 : C2;10 ¼ C5;7 ¼ 1; Ci;j ¼ 0 ðotherwiseÞ: (24)

For each case, the antisymmetric part Cað/Þ of the phase
coupling function is shown in Figs. 4(a) and 4(b). From Eq.
(13) for the phase difference /, we can identify the stable
phase differences between the networks as the zero-crossing
points of Cað/Þ with negative slopes. Depending on Ci,j, it is
predicted that the two networks undergo in-phase synchroni-
zation with zero phase difference (Case 1), or converge to
either of four stable phase differences (Case 2) depending on
the initial condition.

To confirm the prediction of the reduced phase equation,
we numerically calculate the evolution of the phase differ-
ences between the two FHN networks by direct numerical
simulations and compare them with those obtained from the
reduced phase equations in Figs. 4(c) and 4(d). From the fig-
ures, we see that the two networks indeed synchronize at the
stable phase differences predicted by the phase equations, as
illustrated in Fig. 5.

IV. DISCUSSION

We have formulated a phase reduction framework for a
network of coupled dynamical networks exhibiting collective
oscillations. Although we have treated only a simple

FIG. 3. Phase sensitivity functions of
the network of FHN elements. Each
figure shows Qu

i ðhÞ (blue dashed) and
Qv

i ðhÞ & 5 (red solid) of the ith element
(i ¼ 1; 2;…; 10), where Qv

i ðhÞ is multi-
plied by 5 for visual clarity.
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example of two identical networks of neural oscillators, the
theory is general and can be applied to analyzing, control-
ling, and designing networks of dynamical elements exhibit-
ing collective oscillations. Several interesting directions
would be optimization of injection locking of the collective
oscillation of a network,27–32 optimization of mutual cou-
pling between the networks for synchronization,33–35 and
design of network structures that lead to desirable phase
response properties. Because the theory does not require
homogeneity of the dynamical elements or smallness of the
coupling of the network, the theory can be tested by real
experimental systems, such as the system of coupled electro-
chemical oscillators developed by John L. Hudson.
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APPENDIX: DERIVATION OF ADJOINT EQUATIONS
AND DETAILS OF NUMERICAL SIMULATIONS

1. Derivation of adjoint equations

We here derive the adjoint equations for the phase sensi-
tivity functions by generalizing the argument in Ref. 26. We
assume that the network possesses a stable limit-cycle solu-
tion X

ð0Þ
i ðtÞ of period T in the ð

PN
i¼1 miÞ-dimensional state

space, and initial states of the network around this limit cycle
are exponentially attracted to this limit cycle. We first define
a phase function of the network

h ¼ HðX1;X2;…;XNÞ : Rm1 & Rm2 & * * * & RmN ! 0; 2pÞ;½
(A1)

which increases with a constant frequency x ¼ 2p=T in the
whole basin of attraction of the limit cycle. That is, we
require that

d

dt
hðtÞ ¼

XN

i¼1

@H
@Xi
* dXi

dt

¼
XN

i¼1

@H
@Xi
* FiðXiÞ þ

XN

j¼1

GijðXi;XjÞ

0

@

1

A ¼ x; (A2)

where @H=@Xi represents the gradient of H with respect to
the variable Xi. If the network is perturbed as in Eq. (3), the
phase obeys

d

dt
hðtÞ ¼

XN

i¼1

@H
@Xi
* FiðXiÞ þ

XN

j¼1

GijðXi;XjÞ þ !piðtÞ

0

@

1

A

¼ xþ !
XN

i¼1

@H
@Xi
* piðtÞ; ðA3Þ

which is not yet closed in h because the gradient terms depend
on all Xi. To close the equation, we consider the case that the
perturbation is sufficiently small, that is, 0 < !) 1, and the
state of the network stays in the vicinity of the limit cycle

XiðtÞ ¼ X
ð0Þ
i hðtÞ½ ( þ Oð!Þ: (A4)

Then, the gradient term can be approximated on the limit-
cycle solution as

QiðhÞ ¼
@H
@Xi

&&&
fXi¼Xð0Þi ðhÞgi¼1;2;…;N

; (A5)

and we can obtain an approximate phase equation that is
closed in h as

d

dt
hðtÞ ¼ xþ !

XN

i¼1

Qi hðtÞ½ ( * piðtÞ þ Oð!2Þ: (A6)

We call QiðhÞ the phase sensitivity function of element i.
It is of course difficult to explicitly obtain the phase

function H for general networks, but we can derive a set of
equations (adjoint equations) that determine QiðhÞ by
extending the elegant derivation by Brown, Moehlis, and
Holmes.15 Suppose a network state on the limit cycle,
fXð0Þ1 ðhÞ; …; X

ð0Þ
N ðhÞg, and another network state close to it,

fX1 ¼ X
ð0Þ
1 ðhÞ þ !y1; …; XN ¼ X

ð0Þ
N ðhÞ þ !yNg, where !yi

2 Rmi ði ¼ 1;…;NÞ represent small variations. We represent
the phase of the first state as

h ¼ H X
ð0Þ
1 ðhÞ; …; X

ð0Þ
N ðhÞ

h i
; (A7)

and that of the second state as

h0 ¼ HðX1; …; XNÞ ¼ HðXð0Þ1 ðhÞ þ !y1; …; X
ð0Þ
N ðhÞ þ !yNÞ:

(A8)

By the definition of the phase function, the difference
DhðtÞ ¼ h0ðtÞ + hðtÞ remains constant when the perturbation
is absent, because both h(t) and h0ðtÞ increase with the same
frequency x. When the variations are sufficiently small, the
difference between these two phases can be represented as

Dh ¼ H X
ð0Þ
1 ðhÞ þ !y1;…;Xð0ÞN ðhÞ þ !yN

h i

+H X
ð0Þ
1 ðhÞ;…;Xð0ÞN ðhÞ

h i

¼ H X
ð0Þ
1 ðhÞ;…;Xð0ÞN ðhÞ

h i
þ !
XN

i¼1

@H
@Xi

&&&
fXi¼X

ð0Þ
i ðhÞg

* yi

þ Oð!2Þ +H X
ð0Þ
1 ðhÞ;…;Xð0ÞN ðhÞ

h i

¼ !
XN

i¼1

@H
@Xi

&&&
fXi¼X

ð0Þ
i ðhÞg

* yi þ Oð!2Þ

¼ !
XN

i¼1

QiðhÞ * yi þ Oð!2Þ; (A9)

where we assumed that the phase function can be expanded
in Taylor series. Thus, the phase difference should satisfy

d

dt
DhðtÞ ¼ !

XN

i¼1

dQiðhÞ
dt
* yi þ QiðhÞ *

dyi

dt

' (
¼ 0 (A10)

at the first order approximation in !.
Now, from Eq. (1), the variations yiðtÞ obey linearized

equations

d

dt
yiðtÞ ¼ Ji hðtÞ½ (yiðtÞ þ

XN

j¼1

Mij hðtÞ½ (yiðtÞ þ
XN

j¼1

Nij hðtÞ½ (yjðtÞ

(A11)

for i ¼ 1; 2;…;N, where

JiðhÞ ¼
@FiðXÞ
@X

&&&
X¼X

ð0Þ
i ðhÞ
2 Rmi&mi ; (A12)

MijðhÞ ¼
@GijðX;YÞ

@X

&&&
X¼Xð0Þi ðhÞ;Y¼Xð0Þj ðhÞ

2 Rmi&mi (A13)
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and

NijðhÞ ¼
@GijðX;YÞ

@Y

&&&
X¼X

ð0Þ
i ðhÞ;Y¼X

ð0Þ
j ðhÞ
2 Rmi&mj (A14)

are the Jacobian matrices of Fi and Gij. Note that Ji and Mij

are mi & mi square matrices, while Nij is generally a non-
square matrix, and Nii and Mii are zero matrices because
Gii ¼ 0 for all i. Plugging Eq. (A11) into Eq. (A10), we
obtain

0 ¼
XN

i¼1

dQiðhÞ
dt
* yi þ QiðhÞ * JiðhÞyi þ

XN

j¼1

MijðhÞyi

2

4

0

@

þ
XN

j¼1

NijðhÞyj

3

5

1

A

¼
XN

i¼1

x
dQiðhÞ

dh
* yi þ JiðhÞ†QiðhÞ * yi

 

þ
XN

j¼1

M†
ijQiðhÞ * yi þ

XN

j¼1

N†
ijðhÞQiðhÞ * yj

!

; (A15)

where † indicates matrix transpose and dh=dt ¼ x is used.
By rewriting the last term as

XN

i¼1

XN

j¼1

N†
ijðhÞQiðhÞ * yj ¼

XN

i¼1

XN

j¼1

N†
jiðhÞQjðhÞ * yi; (A16)

we can further transform Eq. (15) as

XN

i¼1

x
dQiðhÞ

dh
þ JiðhÞ†QiðhÞ þ

XN

j¼1

M†
ijðhÞQiðhÞ

0

@

þ
XN

j¼1

N†
jiðhÞQjðhÞ

!

* yi ¼ 0: (A17)

Because this equation should hold for arbitrary yi, the phase
sensitivity function QiðhÞ should satisfy the following set of
adjoint equations:

x
dQiðhÞ

dh
þ JiðhÞ†QiðhÞ þ

XN

j¼1

M†
ijðhÞQiðhÞ

þ
XN

j¼1

N†
jiðhÞQjðhÞ ¼ 0 (A18)

for i ¼ 1; 2;…;N. Finally, the normalization condition for
QiðhÞ is obtained by differentiating Eq. (A7) as

dh
dt
¼
XN

i¼1

@H
@Xi

&&&
fXi¼Xð0Þi ðhÞg

* dX
ð0Þ
i ðhÞ
dt

¼
XN

i¼1

QiðhÞ *
dX
ð0Þ
i ðhÞ
dt

¼ x (A19)

or

XN

i¼1

QiðhÞ *
dXð0Þi ðhÞ

dh
¼ 1: (A20)

Thus, by calculating a 2p-periodic solution to Eq. (7) with
the above normalization condition, we can obtain the phase
sensitivity function QiðhÞ for each element i, characterizing
the effect of tiny perturbations applied to the element i when
the phase of the whole network is h. In actual numerical calcu-
lation, backward integration of Eq. (7) with occasional normal-
ization by Eq. (8) as proposed by Ermentrout14 is useful.

2. Diffusively coupled oscillators on a network

The following reaction-diffusion-type model on a net-
work is often considered in the analysis of coupled oscilla-
tors on networks:

d

dt
XiðtÞ ¼ FiðXiÞ þ D

XN

j¼1

LijXj ði ¼ 1; 2;…;NÞ; (A21)

where Lij is the (i, j) component of N&N Laplacian matrix L
of the network and D is a matrix of diffusion constants. It is
assumed that all elements share the same dimensionality m
and D 2 Rm&m is a square matrix. The network is specified
by an adjacency matrix A 2 RN&N of the network, whose (i,
j) component Aij is 1 when nodes i and j are connected and 0
otherwise (generalization to weighted network is straightfor-
ward), and the Laplacian matrix is defined as

Lij ¼ Aij + kidij; (A22)

where ki ¼
PN

j¼1 Aij is the degree of the network and dij is
the Kronecker’s delta.

The coupling term in this case is given by

GijðXi;XjÞ ¼ DðLijXjÞ; (A23)

so that the Jacobian matrices Mij 2 Rm&m and Nij 2 Rm&m

are given by

Mij ¼ 0; Nij ¼ DLij: (A24)

The adjoint equations in this case are

x
dQiðhÞ

dh
þ JiðhÞ†QiðhÞ þ D†

XN

j¼1

LjiQjðhÞ ¼ 0

ði ¼ 1; 2;…;NÞ; (A25)

where JiðhÞ 2 Rm&m is the Jacobian matrix of FiðXiÞ at
Xi ¼ Xð0Þi ðhÞ.

The above equations can be related to the adjoint partial
differential equation for a spatially continuous reaction-
diffusion system26

@

@t
Xðr; tÞ ¼ FðXðr; tÞ; rÞ þ Dr2Xðr; tÞ (A26)

exhibiting spatio-temporally rhythmic dynamics, where r 2 Rd

represents a position in d-dimensional continuous media,
Xðr; tÞ : Rd & R! Rm is the m-component field variable at
position r and time t, FðX; rÞ 2 Rm describes the reaction
dynamics at r, and D 2 Rm&m is a matrix of diffusion constants.
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The set of adjoint equation (A25) can be interpreted as a
discretized generalization of the adjoint partial differential
equation26 for the phase sensitivity function Qðr; hÞ for a sta-
ble limit-cycle solution Xð0Þðr; hÞ of Eq. (A26)

x
@Qðr; hÞ
@h

þ Jðr; hÞ†Qðr; hÞ þ D†r2Qðr; hÞ ¼ 0; (A27)

where Jðr; hÞ is the Jacobian matrix of FðX; rÞ estimated at
the state X ¼ Xð0Þðr; hÞ and the position r. The normalization
condition Eq. (8) can be also seen as a generalization for the
continuous case

ð

V
dr Qðr; hÞ * @Xð0Þðr; hÞ

@h
¼ 1; (A28)

where V is the considered domain. Formal correspondence
between the adjoint equations for the network and for the
continuous media is apparent, where the index i corresponds
to the position r and the Laplacian matrix Lij corresponds to
the Laplacian operator r2.

3. Coupling matrix and collective dynamics
of the network

The following coupling matrix, whose components are
randomly and independently drawn from a uniform distribu-
tion [–0.6, 0.6], is used throughout numerical simulations.
With this coupling matrix and the parameters of the ele-
ments given in Sec. III A (#1-#7: excitable, #8-#10: oscil-
latory), the network started from a uniform initial
condition, ui¼ 1 and vi¼ 1 for all i ¼ 1; 2;…; 10, con-
verges to a limit-cycle attractor of period T ’ 75:73 in the
20-dimensional state space, which corresponds to the
collectively oscillating state of the network. Despite high-
dimensionality of the network and random coupling
between the elements, this limit-cycle attractor is robust
and the network always converged to this attractor even if
the network was started from 1000 different random initial
conditions (initial values of ui and vi randomly and inde-
pendently chosen from a uniform distribution ½+10; 10().
This particular limit-cycle solution is used for all numeri-
cal simulations in the example.

K ¼

0:000 0:409 +0:176 +0:064 +0:218 0:464 +0:581 0:101 +0:409 +0:140

0:229 0:000 0:480 +0:404 +0:409 0:040 0:125 0:099 +0:276 +0:131

+0:248 0:291 0:000 +0:509 +0:114 0:429 0:530 0:195 0:416 +0:597

+0:045 0:039 0:345 0:000 0:579 +0:232 0:121 0:130 +0:345 0:463

+0:234 +0:418 +0:195 +0:135 0:000 0:304 0:124 0:038 +0:049 0:183

+0:207 0:536 +0:158 0:533 +0:591 0:000 +0:273 +0:571 0:110 +0:354

0:453 +0:529 +0:287 +0:237 0:470 +0:002 0:000 +0:256 0:438 0:211

+0:050 0:552 0:330 +0:148 +0:326 +0:175 +0:240 0:000 0:263 0:079

0:389 +0:131 0:383 0:413 +0:383 0:532 +0:090 0:025 0:000 0:496

0:459 0:314 +0:121 0:226 0:314 +0:114 +0:450 +0:018 +0:333 0:000

0

BBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCA

: (A29)

Detailed characterization of the collective dynamics that
can take place in general networks of randomly coupled
oscillatory and excitable FitzHugh-Nagumo elements is a
difficult task and is not the focus of the present study. Here,
we only briefly describe numerical results for the network of
N¼ 10 FitzHugh-Nagumo elements with the coupling matrix
K whose elements were drawn independently from uni-
formly distributed random variables as described above. The
following qualitative characteristics were common to several
different realizations of the random matrix K with the same
statistics.

First, when the overall coupling intensity of the network
was varied by using cKij in Eq. (17) instead of Kij, where the
parameter c> 0 was used to control the overall coupling
intensity, the network exhibited chaotic dynamics for small c
(roughly c< 0.2 for the above K), stable limit-cycle dynam-
ics for intermediate values of c (0.2< c< 1.4), and a stable
fixed point for large c (c> 1.4). In between the chaotic and
oscillatory regimes, narrow regimes with quasi-periodic
dynamics were also observed. Second, qualitative behavior

of the network did not change largely even if the number of
oscillatory elements was varied between 1 and 9 when c¼ 1.
In a few cases, the network could possess two coexisting
limit-cycle attractors, and the network started from random
initial conditions converged to either of those attractors.
These coexisting limit-cycle attractors had similar but
slightly different periods and individual trajectories of the
elements. In contrast, when all elements of the network were
oscillatory, the collective oscillation was qualitatively differ-
ent from the other cases with excitable elements and the net-
work possessed many coexisting limit-cycle attractors.
These attractors also had similar but slightly different peri-
ods and individual trajectories. Finally, when all the ele-
ments were excitable, no collective oscillation was observed
when the network started from a uniform initial condition.

These numerical results suggest that the collectively
oscillating solution used as an example in the present study
is typical and robust, though, of course, the above is only a
brief numerical survey of the network of randomly coupled
FitzHugh-Nagumo elements used in this study and much
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more detailed analysis is necessary to fully characterize gen-
eral dynamical properties of such networks. Note also that
the phase reduction theory developed in the present study is
applicable to any stable limit-cycle attractor of an arbitrary
network of coupled dynamical elements given by Eq. (1),
provided that the perturbation (e.g., mutual coupling) applied
to the network is sufficiently weak.
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