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Chapter 1

Introduction

1.1 Background

Images are affected by some degradations and noises through an observation process,
e.g., blur, down-sampling, and missing pixel. The noises are caused by an electric cur-
rent, heat, imaging device, and so on, and capturing a noiseless image would be impos-
sible. Therefore, image restoration is a key technique and actively studied such as de-
noising, deblurring, super-resolution, and compressed sensing (CS) reconstruction. Since
the restoration problems assume various degradations and noises, they require a robust
image restoration method.

Most image restoration methods are established based on optimization: a desirable
image is characterized as a solution to some optimization problem, which consists of a
regularization term and a data-fidelity term. The regularization term evaluates apriori
knowledge about underlying properties on images, and the data-fidelity term keeps the
consistency with a given observation. Thanks to the design, these methods get a rea-
sonable result under ill-posed or ill-conditioned scenarios typical in image restoration.
However, since the methods are not enough robust for degradations or noises, the re-
sults have over-smoothing or artifacts. This is caused by (i) not enough utilizing apriori
knowledge on an image, (ii) not full consideration of outlier and modeling error.

Recently, high-resolution images, especially spatial one, is required by many applica-
tion. The resolution of images depends on a sensor in an imaging device, and they have a
trade-off between spatial and spectral resolution. Therefore, estimating higher-resolution
images from observation is an essential task. Besides, since blur removes edge and detail
information in an image, it is limited to restore an edge-preserving image from an only
blur image. For these degradations, one effective approach is using a guide image that
has a different characteristic. This technique is named image fusion and helps to robust
estimation.

Based on the above discussion, we propose novel robust image restoration techniques
via constrained convex optimization. Specifically, we propose a new regularization that
effectively utilizes apriori knowledge on an image. The proposed regularization function
evaluates two types of piecewise-smoothness on images, so it helps high-quality restora-
tion. Then, for some image restoration and fusion problems, we formulate each con-
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strained convex optimization problem considering the sparsity of outlier. The problem
evaluates data-fidelity between an observation and a restored image by hard constraints,
so one can set the hyperparameters with comparative ease. Finally, we solve the restora-
tion problem by iterative proximal splitting methods. In the experiments, we demonstrate
the performance of the proposed methods compared with existing methods for four im-
age restoration and fusion problems: denoising, CS reconstruction, blur and noisy image
fusion, and super-resolution.

1.2 Organization of this paper

The remainder of the paper is organized as follows.

Chapter 1 research background and the aim

Chapter 2 notation and mathematical ingredients

Chapter 3 robust image restoration methods for HS image denoising and CS reconstruc-
tion

Chapter 4 robust image fusion methods for blur and noisy image fusion and super-
resolution

Chapter 5 conclusion of the paper
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Chapter 2

Preliminaries

In this paper, let R be the set of real numbers. We shall use boldface lowercase and
capital to represent vectors and matrices, respectively, and := to define something. We
denote the transpose of a vector/matrix by (·)⊤, and the Euclidean norm (the ℓ2 norm)
of a vector by ∥ · ∥. For notational convenience, we treat an image U ∈ RNv×Nh×B as
a vector u ∈ RNB (N := NvNh is the number of the pixels of each band, and B is the
number of the bands) by stacking its columns on top of one another, i.e., the index of the
component of the ith pixel in kth band is i+(k−1)N (for i = 1, . . . , N and k = 1, . . . , B).

In Tab. 2.1, we show the correspondence between the abbreviations used in this paper.

2.1 Proximal Tools

A function f : RL → (−∞,∞] is called proper lower semicontinuous convex if dom(f) :=
{x ∈ RL| f(x) < ∞} ̸= ∅, lev≤α(f) := {x ∈ RL| f(x) ≤ α} is closed for every α ∈ R, and
f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for every x,y ∈ RL and λ ∈ (0, 1), respectively.
Let Γ0(RL) be the set of all proper lower semicontinuous convex functions on RL.

The proximity operator [16] plays a central role in convex optimization based on prox-
imal splitting. The proximity operator of f ∈ Γ0(RL) with an index γ > 0 is defined
by

proxγf (x) := argmin
y

f(y) +
1

2γ
∥y − x∥2.

We introduce the indicator function of a nonempty closed convex set C ⊂ RL, which
is defined as follows:

ιC(x) :=

{
0, if x ∈ C,
∞, otherwise.

Then, for any γ > 0, its proximity operator is given by

proxγιC (x) = PC(x) := argmin
y∈C

∥x− y∥, (2.1)
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Table 2.1: Correspondence table between the abbreviations

abbreviations formal name

ADMM alternating direction method of multipliers
ASSTV anisotropic spatio-spectral total variation
BCCB block-circulant-with-circulant-blocks
CC cross correlation
CHPAN compressed hyperspectral pansharpening
CNMF coupled non-negative matrix factorization
CS compressed sensing
ERGAS erreur relative globale adimensionnelle de synthèse
GFPCA guided filter principal component analysis
GS gram schmidt
GSA gram schmidt adoptive
HR-HS image hyperspectral image of high spatial and spectral resolution
HS hyperspectral
HSSTV hybrid spatio-spectral total variation
HTV hyperspectral total variation
HySure hyperspectral Stein’s unbiased risk estimator
LLRGTV local low-rank matrix recovery and global spatial-spectral

total variation
LNWTV local spatial neighborhood weighted spectral-spatial

hyperspectral total variation
LR-HS image hyperspectral image of high spectral resolution

but low spatial resolution
LRM low rank modeling
LRMR low-rank matrix recovery
LRTV total variation-regularized low-rank matrix factorization
MS multispectral
MTF-GLP modulation transfer function-generalized Laplacian pyramid
MTF-GLP-HPM modulation transfer function-generalized Laplacian pyramid

with high pass modulation
NRMSE normalized root mean squared error
PAN panchromatic
PCA principal component analysis
PSNR peak signal-to-noise ratio
RMSE the root mean squared error
SAM the spectral angle mapper
SFIM smoothing filter-based intensity modulation
SSAHTV spectral-spatial adaptive hyperspectral total variation
SSIM signal similarity
SSTV spatio-spectral total variation
TV total variation
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where PC(x) is the metric projection onto C.
In this paper, we use proximity operators of multiple functions, and we introduce them

here. The proximity operators of the ℓ1 norm and the mixed ℓ1,2 norm are reduced to
simple soft-thresholding type operations: for γ > 0 and for i = 1, . . . , 4NB, (i) in the case
of the ℓ1 norm,

[proxγ∥·∥1(x)]i = sgn(xi)max {|xi| − γ, 0} , (2.2)

where sgn is the sign function, and (ii) in the case of the mixed ℓ1,2 norm,

[proxγ∥·∥1,2(x)]i = max

1− γ

 3∑
j=0

x2
ĩ+jNB

− 1
2

, 0

xi, (2.3)

where ĩ := ((i− 1) mod NB) + 1.
The proximity operators of the indicator functions of Bv

2,ε := {x ∈ RNB|∥x− v∥ ≤ ε},
B1,η := {x ∈ RNB|∥x∥1 ≤ η}, and [µ, µ]NB. Here, Bv

2,ε is the v-centered ℓ2-ball with
the radius ε, and B1,η is the 0-centered ℓ1-ball with the radius η. In (2.1), the proximity
operator of the indicator functions equate the metric projections onto them. Specifically,
the metric projection to Bv

2,ε is given by

PBv
2,ε
(x) =

{
x, if x ∈ Bv

2,ε,

v + ε(x−v)
∥x−v∥ , otherwise,

(2.4)

that onto B1,η is given by

PB1,η = sgn(x)max(|x| − η, 0), (2.5)

and that onto [µ, µ]NB is given, for i = 1, . . . , NB, by

[P[µ,µ]NB (x)]i = min{max{xi, µ}, µ}. (2.6)

2.2 ADMM

ADMM [1–4] is a popular proximal splitting method, and it can solve convex optimiza-
tion problems of the form:

min
x,z

f(x) + g(z) s.t. z = Gx, (2.7)

where f ∈ Γ0(RL1), g ∈ Γ0(RL2), and G ∈ RL2×L1 . Here, we assume that f is quadratic,
g is proximable, i.e., the proximity operator of g is computable in an efficient manner, and
G is a full-column rank matrix. For arbitrarily chosen z(0),d(0) and a step size γ > 0,
ADMM iterates the following steps: x(n+1) = argmin

x
f(x) + 1

2γ ∥z
(n) −Gx− d(n)∥2,

z(n+1) = proxγg(Gx(n+1) + d(n)),

d(n+1) = d(n) +Gx(n+1) − z(n+1),

(2.8)

The convergence property of ADMM is given as follows.
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Theorem 1 (Convergence of ADMM [3]). Consider Prob. (2.7), and assume that G⊤G
is invertible and that a saddle point of its unaugmented Lagrangian L0(x, z,y) := f(x) +
g(z)−⟨d,Gx−z⟩ exists. A triplet (x̂, ẑ, d̂) is a saddle point of an unaugmented Lagrangian
L0 if and only if L0(x̂, ẑ,d) ≤ L0(x̂, ẑ, d̂) ≤ L0(x, z, d̂), for any (x, z,d) ∈ RL1 × RL2 ×
RL2. Then the sequence (xn)n>0 generated by (2.8) converges to an optimal solution to
Prob. (2.7).

2.3 Primal-Dual Splitting Method

A primal-dual splitting method [17] is a popular splitting method like ADMM, and it
can solve convex optimization problems of the form:

min
x

g(x) + h(Lx) (2.9)

where, g ∈ Γ0(RL1) and h ∈ Γ0(RL2 are proximable functions, and L ∈ RL2×L1 is a linear
operator. For arbitrarily chosen y(0) and step sizes γ1, γ2 > 0, the primal-dual splitting
method iterates the following steps:⌊

x(n+1) := proxγ1g(x
(n) − γ1(x

(n) + L⊤y(n))),

y(n+1) := proxγ2h∗(y(n) + γ2L(2x
(n+1) − x(n))).

(2.10)

Here, h∗ is the convex conjugate function of h, and the proximity operator can be com-
puted, in [18, Theorem 14.3 (ii)] as follows:

proxγh∗(x) = x− γ prox 1
γ
h

(
x

γ

)
. (2.11)

For the convergence of (2.10), the step sizes γ1 and γ2 satisfy γ1γ2∥L∥2op ≤ 1, where ∥ · ∥op
is the operator norm.
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Chapter 3

Image Restoration

3.1 Hyperspectral Image Denoising

A hyperspectral (HS) image has 1D spectral information, including invisible light and
narrow wavelength interval, in addition to 2D spatial information and thus can visualize
unseen intrinsic characteristics of scene objects and environmental lighting. This makes
HS imaging a key technique in many applications in various fields, e.g., earth observation,
agriculture, and medical and biological imaging [19–21]. Observed HS images are often
affected by noise because of the small amount of light in narrow wavelength and/or sensor
failure. Thus, we need some robust methods for restoring desirable HS images from such
degraded observations.

Most HS image restoration methods are based on optimization, which consists of a
regularization term and a data-fidelity term. The regularization term evaluates apriori
knowledge on HS images, and plays an essential role for robust HS image restoration.
Regularization techniques for HS image restoration are roughly classified into two groups:
total variation (TV)-based approach and low-rank modeling (LRM)-based one. TV mod-
els the total absolute magnitude of local differences to exploit the piecewise-smooth struc-
tures of an image. Many TV-based approaches [6,7,9,22] have been proposed for HS image
restoration. Besides, LRM-based approaches [5,23] exploit the underlying low-rank struc-
ture in the spectral direction of an HS image. A popular example is the so-called Low-rank
matrix recovery (LRMR) [5].

Many recent methods [9,12,13,24–32] combine TV-based and LRM-based approaches,
and in general, they perform better than approaches using either regularization. This is
because TV-based approaches model the spatial structure of an HS image, whereas LRM-
based approaches the spectral one. Naturally, the methods have to handle multiple regu-
larization terms and a data-fidelity term(s) simultaneously in one objective function. So
the methods must carefully control the hyperparameter(s) balancing these terms. Specif-
ically, such hyperparameters are interdependent, which means that a suitable value of a
hyperparameter varies depending on the multiple regularization terms used and the noise
intensities on a given observation. Hence, the hyperparameter settings in such combined
approaches are often troublesome tasks. Tab. 3.1 summarizes the features of the methods
reviewed in this section.
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Table 3.1: The feature of existing methods for HS image restoration.

Methods
Feature Spatial

Correlation
Spectral

Correlation
Convexity Hyperparameters

HTV [6] ⃝ × convex interdependent
SSAHTV [6] ⃝ △ convex interdependent
SSTV [7] △ ⃝ convex interdependent

ASSTV [22] ⃝ ⃝ convex interdependent
LRM [5,23] × ⃝ nonconvex independent

LNWTV + LRM [9,24] ⃝ ⃝ convex interdependent
HTV + LRM [12] ⃝ ⃝ nonconvex interdependent

HTV + LRM [25,26] ⃝ ⃝ convex interdependent
ASSTV + LRM [27,32] ⃝ ⃝ nonconvex interdependent
SSTV + LRM [13,28,29] ⃝ ⃝ convex interdependent
SSTV + LRM [30,31] ⃝ ⃝ nonconvex interdependent

proposed ⃝ ⃝ convex independent

Based on the above discussion, we propose a new constrained convex optimization ap-
proach to HS image restoration. Our proposed method restores a desirable HS image by
solving a convex optimization problem involving a new TV-based regularization and hard
constraints on data-fidelity. The regularization, named Hybrid Spatio-Spectral Total Vari-
ation (HSSTV), is designed to evaluate two types of local differences: direct local spatial
differences and local spatio-spectral differences in a unified manner to effectively exploit
both the underlying spatial and spectral structures of an HS image. Thanks to this design,
HSSTV has a strong noise and artifact removal ability while avoiding oversmoothing and
spectral distortion without combining LRM. Moreover, the constrained-type data-fidelity
in the proposed method enables us to translate interdependent hyperparameters to the
upper bounds of the degree of data-fidelity that can be determined based only on the
noise intensity. As a result, the proposed method has no interdependent hyperparameter.
We also develop an efficient algorithm for solving the optimization problem based on the
well-known alternating direction method of multipliers (ADMM) [1,3, 4].

3.1.1 Related Works

We elaborate on existing HS image denoising methods based on optimization.

TV-Based Methods

The methods proposed in [6, 7, 22] restore a desirable HS image by solving a convex
optimization problem involving TV-based regularization. Let ū ∈ RNB be the desirable
HS image, and the authors assume that an observation v ∈ RNB is modeled as follows:

v = ū+ s+ n,

where n and s are an additive white Gaussian noise and a sparse noise, respectively. Here,
the sparse noise corrupts only a few pixels in the HS image but heavily, e.g., impulse noise,
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salt-and-pepper noise, and line noise. The observation and the restoration problem of the
methods are given by the following forms:

min
u,s

∥v − u− s∥2 + λ1RTV(u) + λ2∥s∥1, (3.1)

where RTV is a regularization function based on TV, and λ1 and λ2 are hyperparame-
ters. Here, The first and third terms evaluate data-fidelity on Gaussian and sparse noise,
respectively. The hyperparameters λ1 and λ2 represent the priorities of each term. If
we can choose suitable values of the hyperparameters, then this formulation yields high-
quality restoration. However, the hyperparameters are interdependent, which means that
suitable values of the hyperparameters vary depending on the used TV-based regulariza-
tion term and the noise intensities on a given observation. Therefore, the settings of the
hyperparameters are an essential but troublesome task.

In the following, we explain each TV. Let D = (D⊤
v D

⊤
h )

⊤ ∈ R2NB×NB be spatial
differences operator with Dv and Dh being vertical and horizontal differences operator,
respectively, and spectral differences operator are Db ∈ RNB×NB. In [6, 7, 22], HTV,
ASSTV, and SSTV are defined as follows:

HTV(u) := ∥Du∥TV, (3.2)

ASSTV(u) := τv∥Dvu∥1 + τh∥Dhu∥1 + τb∥Dbu∥1, (3.3)

SSTV(u) := ∥DDbu∥1, (3.4)

where ∥ · ∥TV is a TV norm, which takes the ℓ2 norm of spacial difference vectors for all
band and then summing up for all spatial pixels, and τv, τh, and τb are the weight of
the vertical, horizontal, and spectral differences. HTV evaluates direct spatial piecewise-
smoothness and can be seen as a generalization of the standard color TV [33]. HTV
does not consider spectral correlation, resulting in spatial oversmoothing. To consider
the spectral correlation, the authors of [6] proposed SSAHTV. SSAHTV is a weighted
HTV, and the weight is determined by spectral information. However, since SSAHTV
does not directly evaluate spectral correlation, it still causes spatial oversmoothing. AS-
STV evaluates direct spatial and spectral piecewise-smoothness (Fig. 3.1, blue line). The
weights τv, τh, and τb in (3.3) balance the smoothness of vertical, horizontal, and spectral
differences, respectively. Owing to the definition, ASSTV can evaluate spatial and spec-
tral correlation, but it produces spectral oversmoothing even if we carefully adjust τv, τh,
and τb. SSTV evaluate apriori knowledge on HS images using spatio-spectral piecewise-
smoothness. It is derived by calculating spatial differences through spectral differences
(Fig. 3.1, yellow line). SSTV can restore a desirable HS image without any weight, but
it produces noise-like artifacts, especially when a given observation is contaminated by
heavy noise and/or degradation.

LRM-Based Method

LRMR [5] is one of the popular LRM-based methods for HS image restoration, which
evaluates the low rankness of an HS image in the spectral direction. To preserve the
local details, LRMR restores a desirable HS image through patch-wise processing. Each

9



HSSTVHSSTV

SSTVSSTV

ASSTVASSTV

direct vertical
difference 

direct horizontal
difference 

direct spectral
difference 

vertical-spectral
difference 

horizontal-spectral
difference 

Figure 3.1: Calculation of local differences in SSTV, ASSTV, and our HSSTV. SSTV
evaluates the ℓ1 norm of spatio-spectral differences (yellow line). ASSTV evaluates the
ℓ1 norm of direct spatial and spectral differences (blue line). HSSTV evaluates the mixed
ℓ1,p norm of direct spatial and spatio-spectral differences (red line).

patch is a local cube of the size of q × q × B, and LRMR handles it as a matrix of size
q2×B obtained by lexicographically arranging the spatial vectors in the patch cube in the
row direction. The observation model is expressed like Section 3.1.1, and the restoration
problem is formulated as follows:

min
Ui,j ,Si,j

∥Vi,j −Ui,j − Si,j∥2F s.t. rank(Ui,j) ≤ r, card(Si,j) ≤ k, (3.5)

where Ui,j , Vi,j , and Si,j represent the patches of a restored HS image, an observation,
and a sparse noise, respectively, which are centered at (i,j) pixel. Then, the ∥ · ∥F is a
Frobenius norm, rank(·) represents a rank function, and card(·) is a cardinality function.
The method evaluates the low rankness of the estimated HS image and sparsity of the
sparse noise by limiting the number of the rank of Ui,j and the cardinality of Si,j using
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r and k, respectively. Thanks to the design, LRMR achieves high-quality restoration for
especially spectral information. Meanwhile, since LRMR does not fully consider spatial
correlation, the result by LRMR tends to have spatial artifacts when an observation is
corrupted by heavy noise and/or degradation. Besides, the rank and cardinality functions
are nonconvex, and so it is a troublesome task to seek the global optimal solution of
Prob. (3.5).

Combined Method

The methods [9,12,13,24–32,34] combine TV-based and LRM-based approaches. Since
they can evaluate multiple types of apriori knowledge, i.e., piecewise-smoothness and
low rankness, they can restore a more desirable HS image than the approaches only
using TV-based or LRM-based regularization. Some methods [9, 13, 24–26, 28, 29, 32]
approximate the rank and cardinality functions by their convex surrogates. As a result,
the restoration problems are convex and can be solved by optimization methods based on
proximal splitting.

However, the methods have to handle multiple regularization terms and/or a data-
fidelity term(s) simultaneously in one objective function; they require to carefully control
the hyperparameters balancing these terms. Since the hyperparameters rely on both the
regularizations and the noise intensity on an observation, i.e., the hyperparameters are
interdependent, the hyperparameter settings are often troublesome tasks.

3.1.2 Proposed method

Hybrid Spatio-Spectral Total Variation

First, we propose a new regularization technique for HS image restoration, named
HSSTV. HSSTV simultaneously handles both direct local spatial differences and local
spatio-spectral differences of an HS image. Then, HSSTV is defined by

HSSTV(u) := ∥Aωu∥1,p with Aω :=

(
DDb

ωD

)
, (3.6)

where ∥ · ∥1,p is the mixed ℓ1,p norm, and ω ≥ 0. We assume p = 1 or 2, i.e., the ℓ1
norm (∥ · ∥1,1 = ∥ · ∥1) or the mixed ℓ1,2 norm, respectively. We would like to mention
that we can also see ℓ1-HSSTV (p = 1) as anisotropic HSSTV and ℓ1,2-HSSTV (p = 2)
as isotropic HSSTV.

In (3.6), DDbu and Du correspond to local spatio-spectral and direct local spatial
differences, respectively, as shown in Fig. 3.1 (red lines). The weight ω adjusts the
relative importance of direct spatial piecewise-smoothness to spatio-spectral piecewise-
smoothness. HSSTV evaluates two kinds of smoothness by taking the ℓp norm (p = 1
or 2) of these differences associated with each pixel and then summing up for all pixels,
i.e., calculating the ℓ1 norm. Thus, it can be defined via the mixed ℓ1,p norm. When we
set ω = 0 and p = 1, HSSTV recovers SSTV as (3.4), meaning that HSSTV can be seen
as a generalization of SSTV.
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observation SSTV ℓ1-HSSTV ℓ1,2-HSSTV

Figure 3.2: Restored HS images from an observation contaminated by similar noise in
adjacent bands (the upper half area) and random noise (the lower half).

As reviewed in Section 3.1.1, since SSTV only evaluates spatio-spectral piecewise-
smoothness, it cannot remove similar noise in adjacent bands. The direct spatial dif-
ferences in HSSTV help to remove such noise. Fig. 3.2 is restored HS images from an
observation contaminated by similar noise in adjacent bands (the upper half area) and
random noise (the lower half area). One can see that large noise remains in the upper
half area of the result by SSTV. In contrast, HSSTV effectively removes all noise. How-
ever, since minimizing the direct spatial differences strongly promotes spatial piecewise-
smoothness, HSSTV produces spatial oversmoothing when the weight ω is large. Thus,
the weight ω should be set to less than one, as demonstrated in Sec. 3.1.3.

HS Image Denoising by HSSTV

We consider restoring a desirable HS image ū ∈ RNB from an observation v ∈ RM (M ≤
NB) contaminated by a Gaussian-sparse mixed noise. The observation model is given by
the following form:

v = ū+ n+ s, (3.7)

where n ∈ RM is Gaussian noise with the standard deviation σ, and s ∈ RM is a sparse
noise.

Based on the above model, we formulate HS image restoration using HSSTV as the
following optimization problem:

min
u,s

HSSTV(u) s.t.

 u+ s ∈ Bv
2,ε := {x ∈ RM |∥v − x∥ ≤ ε},

s ∈ B1,η := {x ∈ RM |∥x∥1 ≤ η},
u ∈ [µu, µu]

NB,
(3.8)

where Bv
2,ε is a v-centered ℓ2-norm ball with the radius ε > 0, B1,η is a 0-centered ℓ1-

norm ball with the radius η > 0, and [µu, µu]
NB is a dynamic range of an HS image.

Here, µu and µu are the minimum and maximum value of HS images, and µu < µu.
This method simultaneously estimates the desirable HS image u and the sparse noise s
for noise-robust restoration. The first and second constraints measure data fidelities to
the observation v and the sparse noise s, respectively. As mentioned in [8, 10, 12, 27, 35–
42], such a constraint-type data-fidelity enables us to translate the hyperparameter(s)
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balancing between regularization and data-fidelity like λ1 and λ2 in (3.1) to the upper
bound of the degree of data-fidelity ε and η that can be set in a much easier manner.

Since all constraints are closed convex sets and HSSTV is a convex function, Prob. (3.8)
is a constrained convex optimization problem. In this paper, we adopt ADMM (see
Sec. 2.2) for solving the problem. In what follows, we reformulate Prob. (3.8) into
Prob. (2.7).

We remove the hard constraints from Prob. (3.8) by using the indicator functions of
the constraints. Prob. (3.8) can be rewritten as

min
u,s

∥Aωu∥1,p + ιBv
2,ε
(u+ s) + ιB1,η(s) + ι[µu,µu]NB (u). (3.9)

Note that from the definition of the indicator function, Prob. (3.9) is exactly equal to
Prob. (3.8). By letting

f :RNB → R2 : u 7→ (0, 0), (3.10)

g :R5NB+2M → R ∪ {∞} : (z1, z2, z3, z4) 7→
∥z1∥1,p + ιBv

2,ε
(z2) + ιB1,ε(z3) + ι[µu,µu]NB (z4), (3.11)

G :RNB → R5NB+2M : u 7→ (Aωu,u+ s, s,u). (3.12)

Prob. (3.9) is reduced to Prob. (2.7). The resulting algorithm based on ADMM is sum-
marized in Alg. 1.

Algorithm 1: ADMM method for Prob. (3.8)

input : z
(0)
1 , z

(0)
2 , z

(0)
3 , z

(0)
4 , d

(0)
1 , d

(0)
2 , d

(0)
3 , d

(0)
4

1 while A stopping criterion is not satisfied do

2 (u(n+1), s(n+1)) =

argmin
u,s

1
2γ

(∥z(n)
1 −Aωu−d(n)

1 ∥2+∥z
(n)
2 −(u+s)−d(n)

2 ∥2+∥z
(n)
3 −s−d

(n)
3 ∥2+∥z

(n)
4 −u−d

(n)
4 ∥2);

3 z
(n+1)
1 = proxγ∥·∥1,p(Aωu

(n+1) + d
(n)
1 );

4 z
(n+1)
2 = proxγιBv

2,ε

(u(n+1) + s(n+1) + d
(n)
2 );

5 z
(n+1)
3 = proxγιB1,η

(s(n+1) + d
(n)
3 );

6 z
(n+1)
4 = proxγι

[µu,µu]NB
(u(n+1) + d

(n)
4 );

7 d
(n+1)
1 = d

(n)
1 +Aωu

(n+1) − z
(n+1)
1 ;

8 d
(n+1)
2 = d

(n)
2 + u(n+1) + s(n+1) − z

(n+1)
2 ;

9 d
(n+1)
3 = d

(n)
3 + s(n+1) − z

(n+1)
3 ;

10 d
(n+1)
4 = d

(n)
4 + u(n+1) − z

(n+1)
4 ;

11 n← n+ 1;

The update of u and s in Alg. 1 comes down to the following forms:

u(n+1) =

(
A⊤

ωAω +
3

2
I

)−1

RHS,

RHS = A⊤
ω (z

(n)
1 − d

(n)
1 ) +

1

2
(z

(n)
2 − d

(n)
2 )− 1

2
(z

(n)
3 − d

(n)
3 ) + (z

(n)
4 − d

(n)
4 ),
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s(n+1) =
1

2
(z

(n)
2 − u(n+1) − d

(n)
2 + z

(n)
3 − d

(n)
3 ),

Since the update of u and s in Alg. 1 is strictly-convex quadratic minimization, one can
obtain these updated forms by differentiating it.

For the update of z1, the proximity operators are reduced to simple soft-thresholding
type operations described in Sec. 2.1. The updates of z2, z3, and z4 use the proximity
operators of the indicator functions of each set, i.e., (2.4), (2.5), and (2.6), respectively.

3.1.3 Experimets

We demonstrate the advantages of the proposed method over three noise type: Gaussian
noise, Gaussian-sparse mixed noise, and real noise. All the experiments were conducted
by MATLAB 2018a.

To quantitatively evaluate restoration performance, we used the peak signal-to-noise
ratio (PSNR) [dB] index and the structural similarity (SSIM) [43] index between a ground-
truth ū and a restored HS image u. PSNR is defined by 10 log10(MAX2

I /MSE), where
MAXI is the max value of the dynamic range of HS images, and MSE is the mean square
error between ground-truth and restored HS images. The higher PSNR is, the more similar
the two images are. SSIM is an image quality assessment index based on the human vision
system, which is defined as follows:

SSIM(u, ū) =
1

P

P∑
i=1

(2µuiµūi + C1)(2σuiūi + C2)

(µ2
ui

+ µ2
ūi

+ C1)(σ2
ui

+ σ2
ūi

+ C2)
,

where ui and ūi are the ith pixel-centered local patches of a restored HS image and a
ground-truth HS image, respectively, P is the number of patches, µui and µūi is the aver-
age values of the local patches of the restored and ground-truth HS images, respectively,
σui and σūi represent the variances of ui and ūi, respectively, and σuiūi denotes the co-
variance between ui and ūi. Moreover, C1 and C2 are two constants, which avoid the
numerical instability when either µ2

ui
+ µ2

ūi
or σ2

ui
+ σ2

ūi
is very close to zero. SSIM gives

a normalized score between zero and one, where the maximum value means that u equals
to ū.

Gaussian noise removal

First, we conducted on Gaussian noise removal experiments. In these experiments, we
generate a noisy observation based on (3.7) with s = 0 and restore a desirable HS image
u. We use 13 HS images taken from the SpecTIR [44], MultiSpec [45] and GIC [46] as
test images, where their dynamic range were normalized into [0, 1]. Here, the proposed
denoising method assumes that the observation is contaminated by Gaussian and sparse
noise, and then we improved the problem and the algorithm for Gaussian noise removal.
Specifically, we formulate a Gaussian noise removal problem as follows:

min
u

HSSTV(u) s.t.

[
u ∈ Bv

2,ε,

u ∈ [µu, µu]
NB,
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Table 3.2: PSNR[dB] of the results on Gaussian noise removal experiments.
σ HTV SSTV ASSTV BM4D Proposed (p = 1) Proposed (p = 2)

Beltsville 0.05 32.19 35.64 31.99 37.01 36.41 36.19
n = 256 0.1 29.33 31.11 28.58 33.39 33.15 32.79
m = 256 0.2 26.92 26.03 25.36 30.03 30.23 29.80
b = 32 0.3 25.79 22.81 23.90 28.04 28.68 28.30

Suwannee 0.05 33.03 37.28 33.34 38.05 38.69 38.73
n = 256 0.1 30.04 31.88 30.44 34.56 35.17 35.19
m = 256 0.2 27.32 27.54 27.83 31.53 31.94 32.01
b = 32 0.3 25.88 25.03 26.42 29.79 30.21 30.30
DC 0.05 30.06 35.56 30.87 36.16 35.96 35.57

n = 256 0.1 26.87 30.93 27.65 31.88 32.16 31.74
m = 256 0.2 24.29 25.86 24.92 28.27 28.72 28.33
b = 32 0.3 23.05 22.63 23.52 26.43 26.93 26.57
Cuprite 0.05 34.32 37.64 33.40 39.10 39.58 39.56
n = 256 0.1 31.62 31.97 30.34 35.65 36.29 36.26
m = 256 0.2 29.31 27.22 27.41 32.39 33.32 33.32
b = 32 0.3 28.13 24.50 25.71 30.60 31.75 31.77
Reno 0.05 32.01 36.76 32.25 37.46 37.65 37.43

n = 256 0.1 28.98 31.79 29.23 33.44 34.07 33.83
m = 256 0.2 26.50 26.57 26.78 29.91 30.83 30.65
b = 32 0.3 25.19 24.47 25.54 28.12 29.15 29.03

Botswana 0.05 31.35 35.32 30.98 36.01 35.73 35.65
n = 256 0.1 28.27 31.17 27.62 32.33 32.46 32.30
m = 256 0.2 25.59 26.37 24.66 28.94 29.43 29.26
b = 32 0.3 24.26 23.21 23.12 27.07 27.81 27.67

IndianPines 0.05 33.13 33.70 32.75 34.59 34.34 34.03
n = 145 0.1 31.46 30.67 30.40 32.17 32.41 32.05
m = 145 0.2 30.22 26.38 28.28 30.19 30.95 30.67
b = 32 0.3 29.67 24.25 26.79 29.04 30.26 30.07
KSC 0.05 33.89 37.67 34.29 39.36 39.44 39.41

n = 256 0.1 31.21 32.08 31.40 35.30 36.15 36.09
m = 256 0.2 28.96 27.41 28.86 31.86 33.14 33.10
b = 32 0.3 27.82 25.21 27.52 30.10 31.59 31.54

PaviaLeft 0.05 31.23 37.66 32.07 38.09 38.23 37.98
n = 216 0.1 27.97 32.55 28.78 33.87 34.39 34.22
m = 216 0.2 25.23 28.36 26.04 29.92 30.83 30.71
b = 32 0.3 23.93 25.48 24.69 27.78 28.94 28.83

PaviaRight 0.05 31.90 37.62 33.00 38.77 38.63 38.38
n = 256 0.1 28.58 32.25 29.61 34.60 34.94 34.69
m = 256 0.2 25.73 28.59 26.71 30.53 31.43 31.21
b = 32 0.3 24.33 25.76 25.26 28.34 29.50 29.31
PaviaU 0.05 32.16 37.65 33.18 38.96 38.81 38.60
n = 256 0.1 28.90 32.77 29.88 34.89 35.20 35.01
m = 256 0.2 26.07 28.60 27.06 30.86 31.74 31.61
b = 32 0.3 24.65 25.62 25.63 28.74 29.82 29.71
Salinas 0.05 35.93 37.61 35.34 40.27 40.42 40.44
n = 217 0.1 33.05 31.93 32.37 36.89 37.30 37.36
m = 217 0.2 30.56 26.58 29.62 33.61 34.31 34.43
b = 32 0.3 29.16 24.09 28.15 31.73 32.63 32.80
SalinaA 0.05 36.17 37.54 34.05 39.60 39.92 39.81
n = 83 0.1 33.15 32.25 30.20 35.73 36.72 36.46
m = 86 0.2 29.93 26.63 26.20 31.83 33.64 33.30
b = 32 0.3 28.15 23.65 24.11 29.61 31.96 31.63
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Table 3.3: SSIM of the results on Gaussian noise removal experiments.
σ HTV SSTV ASSTV BM4D Proposed (p = 1) Proposed (p = 2)

0.05 0.8370 0.9076 0.8602 0.9355 0.9305 0.9262
Beltsville 0.1 0.7483 0.7724 0.7772 0.8737 0.8668 0.8562

0.2 0.6583 0.5230 0.6811 0.7833 0.7798 0.7630
0.3 0.6150 0.3709 0.6216 0.7170 0.7239 0.7080
0.05 0.8723 0.9521 0.8937 0.9563 0.9648 0.9657

Suwannee 0.1 0.7959 0.8646 0.8263 0.9104 0.9276 0.9285
0.2 0.7091 0.6772 0.7512 0.8406 0.8668 0.8672
0.3 0.6565 0.5401 0.7058 0.7866 0.8209 0.8211
0.05 0.8584 0.9486 0.8929 0.9635 0.9633 0.9586

DC 0.1 0.7307 0.8679 0.7866 0.9140 0.9156 0.9065
0.2 0.5772 0.6927 0.6417 0.8184 0.8255 0.8131
0.3 0.4941 0.5456 0.5541 0.7335 0.7501 0.7377
0.05 0.8742 0.9412 0.8870 0.9538 0.9602 0.9618

Cuprite 0.1 0.8095 0.8354 0.8284 0.9081 0.9226 0.9243
0.2 0.7489 0.6115 0.7699 0.8342 0.8653 0.8665
0.3 0.7200 0.4609 0.7391 0.7798 0.8244 0.8258
0.05 0.8604 0.9527 0.8859 0.9599 0.9649 0.9638

Reno 0.1 0.7560 0.8635 0.7973 0.9083 0.9220 0.9193
0.2 0.6503 0.6919 0.6935 0.8177 0.8452 0.8419
0.3 0.5973 0.5588 0.6368 0.7469 0.7848 0.7821
0.05 0.8495 0.9371 0.8592 0.9357 0.9468 0.9477

Botswana 0.1 0.7528 0.8629 0.7668 0.8721 0.9020 0.9048
0.2 0.6405 0.6996 0.6578 0.7802 0.8313 0.8349
0.3 0.5765 0.5574 0.5920 0.7117 0.7765 0.7806
0.05 0.8292 0.8414 0.8520 0.8829 0.8758 0.8635

IndianPines 0.1 0.7752 0.6903 0.7838 0.8122 0.8164 0.7989
0.2 0.7414 0.4407 0.7441 0.7445 0.7673 0.7554
0.3 0.7306 0.3198 0.7280 0.6994 0.7464 0.7401
0.05 0.8879 0.9361 0.9035 0.9651 0.9690 0.9691

KSC 0.1 0.8180 0.8185 0.8396 0.9162 0.9367 0.9358
0.2 0.7508 0.6337 0.7727 0.8346 0.8799 0.8786
0.3 0.7171 0.4786 0.7352 0.7757 0.8384 0.8369
0.05 0.8612 0.9699 0.8855 0.9683 0.9720 0.9705

PaviaLeft 0.1 0.7354 0.9169 0.7776 0.9203 0.9346 0.9316
0.2 0.5714 0.7877 0.6317 0.8224 0.8589 0.8537
0.3 0.4782 0.6546 0.5415 0.7343 0.7900 0.7834
0.05 0.8625 0.9617 0.8894 0.9653 0.9703 0.9692

PaviaRight 0.1 0.7484 0.8911 0.7904 0.9175 0.9351 0.9321
0.2 0.6065 0.7355 0.6605 0.8163 0.8659 0.8592
0.3 0.5252 0.5927 0.5804 0.7256 0.8038 0.7942
0.05 0.8719 0.9602 0.8943 0.9649 0.9690 0.9675

PaviaU 0.1 0.7784 0.8879 0.8133 0.9226 0.9336 0.9300
0.2 0.6585 0.7220 0.7059 0.8378 0.8693 0.8647
0.3 0.5858 0.5759 0.6386 0.7682 0.8154 0.8107
0.05 0.9202 0.9246 0.9297 0.9615 0.9638 0.9647

Salinas 0.1 0.8837 0.7949 0.8951 0.9332 0.9405 0.9423
0.2 0.8480 0.5415 0.8578 0.8882 0.9092 0.9121
0.3 0.8293 0.4067 0.8382 0.8486 0.8868 0.8908
0.05 0.9231 0.9364 0.9252 0.9580 0.9670 0.9688

SalinaA 0.1 0.8915 0.8238 0.8821 0.9164 0.9416 0.9443
0.2 0.8509 0.5880 0.8255 0.8416 0.9049 0.9068
0.3 0.8242 0.4288 0.7932 0.7837 0.8782 0.8797
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Suwannee 20.01, 0.2747 30.04, 0.7959 31.88, 0.8646 30.44, 0.8263

ground-truth observation HTV SSTV ASSTV

34.56, 0.9104 35.13, 0.9276 35.19, 0.9285

BM4D proposed

(p = 1)

proposed

(p = 2)

DC 13.98, 0.1787 24.29, 0.5772 25.86, 0.6927 24.92, 0.6417

ground-truth observation HTV SSTV ASSTV

28.27, 0.8184 28.72, 0.8255 28.33, 0.8131

BM4D proposed

(p = 1)

proposed

(p = 2)

Figure 3.3: Resulting HS images with their PSNR[dB] (left) and SSIM (right) in the
Gaussian denoising experiment (top: Suwannee, σ = 0.1, bottom: DC, σ = 0.2).
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σ = 0.05

σ = 0.1

σ = 0.2

σ = 0.3
PSNR[dB] SSIM

Figure 3.4: PSNR[dB] or SSIM versus ω in (3.6) in the Gaussian denoising experiment.
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(a) Bandwise PSNR (b) Bandwise SSIM

(c) Spatial response (d) Spectral response

Figure 3.5: Bandwise PSNR[dB] and SSIM and spatial and spectral responses in the
Gaussian denoising experiment (Suwannee).

and solve it by ADMM.
We compared the proposed method with HTV [6], SSTV [7] and ASSTV [8]. For a fair

comparison, we replaced HSSTV in Prob. (3.8) with HTV, SSTV or ASSTV, and solved
the problem by ADMM. We also compare HSSTV with BM4D [47], which is known to be
a state-of-the-art denoising method for 3D signals. Note that BM4D and a recent CNN-
based HS image denoising method [48] cannot be represented as explicit regularization
functions and are fully customized to denoising tasks. In contrast, our HSSTV can be
used as a building block in various HS image restoration methods based on optimization.
In addition, BM4D is a nonlocal method, and thus, it has several limitations. Meanwhile,
CNN-based methods strongly depend on what training data are used, which means that
they cannot adapt to a wide range of noise intensity. Thus, the design concepts of these
methods are different from TVs, and the comparison of HSSTV and BM4D is just a
reference. We also remark that we do not compare HSSTV with LRM-based techniques.
This is because our focus is to evaluate the potential of local TV regularization techniques
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including HTV, SSTV, ASSTV, and our HSSTV.
The radius ε in Prob. (3.8) was set to

√
NBσ2. In the ASSTV case, we set the weights

τv = τh = τb = 1. In the BM4D case, we used the program code distributed by the authors
of [47]. We set the max iteration number, the stepsize γ and the stopping criterion of
ADMM to 5000, 0.1 and ∥u(n) − u(n+1)∥ < 0.01, respectively.

In Tab. 3.2 and 3.3, we show PSNR and SSIM of the denoised HS images by each
method for various σ and HS images, respectively. The balancing weight ω in HSSTV
is set to 0.08 for the ℓ1-norm case and 0.06 for the ℓ1,2-norm case. For all HS images, σ
and quality measures, HSSTV outperforms HTV, SSTV, and ASSTV. In addition, even
though HSSTV does not utilize nonlocal information, the denoising ability is better than
BM4D for most cases. We also found that SSTV does not work well when σ is large. On
the other hand, HSSTV is effective for a wide range of noise intensity. This would be
because HSSTV evaluates direct spatial piecewise smoothness.

Fig. 3.3 shows the resulting images on Suwannee (σ = 0.1, top) and DC (σ = 0.2,
bottom) with their PSNR (left) and SSIM (right). Here, we depict these HS images as
RGB images, where R, G and B are 8th, 16th, and 32rd bands of HS images. In Fig. 3.3,
we show both the results and the magnified image of the small range, because one can more
see the advantage of the results by the proposed method. One can see that the results by
HTV and ASSTV lose spacial details, and noise remains in the results by SSTV. In the case
of σ = 0.1, BM4D can restore a high quality HS image, but it produces spectral artifacts
in the case of σ = 0.2. This means that BM4D cannot preserve spectral information when
an observed image is heavily contaminated by noise. In contrast, HSSTV can restore HS
images preserving both details and spectral information without artifacts.

Fig. 3.4 plots PSNR or SSIM of the results by HSSTV versus various ω changed from
0.01 to 0.2, where the values of PSNR and SSIM are averaged over the 13 HS images.
One can see that ω ∈ [0.05, 0.1] is a good choice in most cases.

Fig. 3.5 plots bandwise PSNR and SSIM (left) and spatial and spectral responses (right)
of the denoised Suwannee HS image, where σ = 0.1. The graphs regarding bandwise
PSNR and SSIM show that HSSTV achieves higher-quality restoration than HTV, SSTV,
and ASSTV for all bands and BM4D for most bands. The graph (c) plots the spatial
response of the 243rd row of the 30th band. In the same way, the graph (d) plots the
spectral response of the 243rd row and 107th col. We can see that the spatial response
of the results by HTV and ASSTV are too smooth compared with the true one. On
the other hand, there exist undesirable variations in the spatial response of the result by
SSTV. In contrast, BM4D and HSSTV restore similar responses to the true one. In the
graph (d), one can see that (i) the shape of the spectral responses of the results by HTV
and SSTV are similar to the that of true one, but the mean values are larger than the true
one, (ii) the spectral response of the results by ASSTV and BM4D are too smooth and
different from the true one, and (iii) HSSTV can restore a spectral response very similar
to the true one.
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Salinas 17.06, 0.1908 32.59, 0.8997 32.66, 0.9003 35.86, 0.9015 32.83, 0.9163
ground-truth observation HTV SSAHTV SSTV ASSTV

31.82, 0.8270 36.74, 0.9509 34.57, 0.9305 37.60, 0.9561 37.65, 0.9564
LRMR LRTV LLRGTV proposed

(p = 1)

proposed

(p = 2)

PaviaU 15.39, 0.1877 25.24, 0.6776 25.29, 0.6785 30.21, 0.8444 27.42, 0.7678
ground-truth observation HTV SSAHTV SSTV ASSTV

29.43, 0.8103 28.90, 0.8627 29.18, 0.8655 31.04, 0.8935 30.80, 0.8855
LRMR LRTV LLRGTV proposed

(p = 1)

proposed

(p = 2)

Figure 3.6: Resulting HS images with their PSNR[dB] (left) and SSIM (right) in the mixed
noise removal experiment (top: Salinas, the noise level (i), bottom: PaviaU, the noise level
(ii)).
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(a) band-wise PSNR (b) band-wise SSIM

(c) Spatial response (d) Spectral response

Figure 3.7: Band-wise PSNR[dB] and SSIM and spatial and spectral responses in the
mixed noise removal experiment (Suwannee).
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Table 3.4: Parameter settings for ASSTV, LRMR, LRTV, and the proposed method.

Parameters
Noise Level (i) (σ, sp, lv = lh)

= (0.05, 0.04, 0.04)
(ii) (0.1, 0.05, 0.05)

ASSTV
τv = τh 1

τb 3 2

LRMR
r 3
k sp + lv + lh − lvlh (the rate of sparse noise)

LRTV
r 2
τ 0.005 0.008

LLRGTV
r 2
λ 0.1
τ 0.01

proposed ω 0.04

Mixed noise removal

We conducted on the simulation experiments for Gaussian-sparse mixed noise removal.
In the experiments, we used 13 HS images as like Gaussian noise removal experiment.
The observed HS images included an additive white Gaussian noise n with the standard
deviation σ and sparse noise s, which is equal to (3.7). We assumed that sparse noise
consists of salt-and-pepper noise and vertical and horizontal line noise, with these noise
ratio in all pixels being sp, lv, and lh, respectively. We generated noisy HS images by
adding two types of mixed noise to ground-truth HS images: (i) (σ, sp, lv = lh) =
(0.05, 0.04, 0.04), (ii) (0.1, 0.05, 0.05).

The proposed method was compared with HTV [6], SSAHTV [6], SSTV [7], and AS-
STV [8]. For a fair comparison, we replaced HSSTV in Prob. (3.8) with HTV, SSAHTV,
SSTV, or ASSTV and solved the problem by ADMM. We also compared our proposed
method with LRMR [5], TV-regularized low-rank matrix factorization (LRTV) [12], and lo-
cal low-rank matrix recovery and global spatial-spectral TV (LLRGTV) [27]. We did not
compare our proposed method with recent CNN-based HS image denoising methods [48].
The CNN-based methods cannot be represented as explicit regularization functions and
are fully customized to denoising tasks. In contrast, our proposed method can be used as
a building block in various HS image restoration methods based on optimization. Mean-
while, CNN-based methods strongly depend on what training data are used, which means
that they cannot adapt to a wide range of noise intensity. Thus, the design concepts of
these methods are different from TVs and LRM-based approaches.

We set ε and η in Prob. (3.8) as 0.83
√

NB(1− (sp(1− lv − lh) + lv + lh − lvlh))σ2 and
NB(0.45sp+(lv+lh)vave−lvlhvave), respectively, where vave is the average of the observed
image. Tab. 3.4 shows the parameters settings for ASSTV, LRMR, LRTV, LLRGTV, and
the proposed method. We set these parameters to achieve the best performance for each
method. We set the max iteration number, the stepsize γ, and the stopping criterion of
ADMM to 10000, 0.05, and ∥u(n) − u(n+1)∥ < 0.01, respectively.
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Table 3.5: PSNR[dB] (top) and SSIM (bottom) in mixed noise removal experiments.

HS image
Noise
Level

HTV SSAHTV SSTV ASSTV LRMR LRTV LLRGTV
Proposed
(p = 1)

Proposed
(p = 2)

(i) 29.43 29.47 33.66 27.16 30.91 35.32 33.61 34.25 34.16
Beltsville (ii) 26.40 26.43 28.42 24.60 27.13 31.22 28.51 29.79 29.62

(i) 30.14 30.18 34.59 32.60 30.30 36.20 33.35 35.15 36.01
Suwannee (ii) 26.70 26.74 29.55 28.71 26.90 31.95 28.50 31.08 31.22

(i) 26.46 26.51 33.03 28.80 31.71 34.78 33.50 33.36 33.08
DC (ii) 23.84 23.88 27.71 25.25 27.35 29.53 28.14 28.57 28.32

(i) 31.67 31.68 34.42 29.14 30.16 28.39 32.67 34.96 36.20
Cuprite (ii) 28.20 28.21 29.86 26.57 27.32 27.94 27.99 31.63 31.73

(i) 28.53 28.57 34.37 30.49 32.21 37.06 34.95 35.11 34.96
Reno (ii) 25.56 25.61 28.11 26.95 28.47 31.00 27.99 29.83 29.72

(i) 27.98 28.05 33.32 26.47 31.62 29.00 32.02 33.61 33.53
Botswana (ii) 25.21 25.25 28.55 24.01 28.31 27.33 28.08 29.39 29.35

PSNR (i) 31.05 31.06 31.45 29.07 28.96 26.16 29.74 31.90 31.80
IndianPines (ii) 28.57 28.57 27.82 26.72 25.14 29.82 26.70 29.26 29.18

(i) 30.17 30.25 34.74 31.64 33.74 35.74 34.75 36.39 36.33
KSC (ii) 28.03 28.06 29.23 28.62 30.19 30.22 29.53 31.82 31.72

(i) 27.62 27.70 35.57 30.91 33.01 36.49 34.75 35.98 35.81
PaviaLeft (ii) 24.74 24.78 29.93 26.71 29.46 29.02 29.22 30.47 30.24

(i) 26.93 27.35 34.54 31.13 33.33 35.82 34.17 35.68 35.23
PaviaRight (ii) 24.90 25.16 30.70 27.23 29.82 29.08 29.24 31.59 31.39

(i) 27.92 28.04 35.52 31.65 33.00 36.72 34.59 36.31 36.17
PaviaU (ii) 25.24 25.29 30.21 27.42 29.43 28.90 29.17 31.04 30.80

(i) 32.59 32.64 35.86 32.83 31.82 36.74 34.36 37.60 37.65
Salinas (ii) 28.88 28.91 28.19 28.99 28.02 32.73 29.09 32.01 32.12

(i) 32.54 32.65 35.29 28.12 31.18 28.49 34.07 36.27 36.23
SalinaA (ii) 28.69 28.80 29.67 25.19 27.67 26.10 27.87 31.68 31.64

(i) 0.7902 0.7904 0.8856 0.8111 0.8583 0.9372 0.9278 0.9132 0.9085
Beltsville (ii) 0.6954 0.6959 0.7057 0.7177 0.7083 0.8568 0.8248 0.8186 0.8088

(i) 0.8406 0.8410 0.9353 0.9052 0.8689 0.9502 0.9431 0.9559 0.9555
Suwannee (ii) 0.7542 0.7552 0.8146 0.8226 0.7470 0.8930 0.8622 0.9125 0.9158

(i) 0.7622 0.7633 0.9274 0.8676 0.9248 0.9613 0.9548 0.9442 0.9394
DC (ii) 0.6189 0.6201 0.8092 0.7211 0.8214 0.8810 0.8722 0.8611 0.8533

(i) 0.8550 0.8552 0.9179 0.8632 0.8495 0.9396 0.9411 0.9459 0.9426
Cuprite (ii) 0.7849 0.7852 0.7717 0.7953 0.7098 0.8814 0.8524 0.9031 0.9058

(i) 0.7818 0.7819 0.9322 0.8832 0.9012 0.9589 0.9523 0.9531 0.9515
Reno (ii) 0.6640 0.6645 0.8045 0.7539 0.7905 0.8816 0.8640 0.8679 0.8635

(i) 0.7896 0.7900 0.9202 0.8199 0.9068 0.9282 0.9384 0.9343 0.9344
Botswana (ii) 0.6810 0.6820 0.8175 0.7095 0.8201 0.8564 0.8756 0.8745 0.8765

(i) 0.8118 0.8120 0.8015 0.7671 0.7593 0.8190 0.8224 0.8335 0.8243
SSIM IndianPines (ii) 0.7713 0.7713 0.6229 0.7303 0.7893 0.7939 0.7433 0.7785 0.7689

(i) 0.8271 0.8278 0.9116 0.8922 0.8890 0.9385 0.9322 0.9542 0.9532
KSC (ii) 0.7598 0.7602 0.7885 0.8064 0.7529 0.8427 0.8216 0.8809 0.8747

(i) 0.7752 0.7770 0.9593 0.8828 0.9359 0.9612 0.9601 0.9661 0.9645
PaviaLeft (ii) 0.6102 0.6116 0.8755 0.7267 0.8565 0.8791 0.8882 0.8898 0.8815

(i) 0.7769 0.7772 0.9494 0.8862 0.9256 0.9540 0.9470 0.9616 0.9598
PaviaRight (ii) 0.6474 0.6471 0.8635 0.7493 0.8261 0.8507 0.8551 0.9086 0.9006

(i) 0.7973 0.7986 0.9452 0.8891 0.9124 0.9540 0.9493 0.9622 0.9610
PaviaU (ii) 0.6776 0.6785 0.8444 0.7678 0.8103 0.8627 0.8649 0.8935 0.8855

(i) 0.8997 0.9002 0.9015 0.9163 0.8270 0.9509 0.9285 0.9561 0.9564
Salinas (ii) 0.8570 0.8575 0.7117 0.8732 0.6670 0.9225 0.8333 0.9223 0.9240

(i) 0.9129 0.9137 0.9134 0.8468 0.8632 0.9384 0.9513 0.9448 0.9416
SalinaA (ii) 0.8793 0.8803 0.7789 0.8110 0.7266 0.8951 0.8549 0.9197 0.9195
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noise level (i) noise level (ii)

Figure 3.8: PSNR[dB] (top) or SSIM (bottom) versus ω in (3.6) in the mixed noise
removal experiment.

In Tab. 3.5, we show the PSNR and SSIM of the denoised HS images by each method
for two types of noise intensity and HS images. For HTV, SSAHTV, SSTV, ASSTV,
and LRMR, the proposed method outperforms the existing methods. Besides, one can
see that the PSNR and SSIM of the results by the proposed method are higher than
those by LLRGTV for most situations. Meanwhile, LRTV outperforms the proposed
method in some cases. This would be because LRTV combines TV-based and LRM-
based regularization techniques. We would like to mention that the proposed method
outperforms LRTV in over half of the situations, even though it uses only TV-based
regularization.

Fig. 3.6 shows the resulting images on Salinas (the noise level (i), top) and PaviaU
(the noise level (ii), bottom), with their PSNR (left) and SSIM (right). Here, we depicted
these HS images as RGB images (R = 8th, G = 16th, and B = 32nd bands). One can see
that the results by HTV, SSAHTV, and ASSTV lose spatial details, and noise remains
in the results by SSTV, LRMR, and LLRGTV. Besides, since the restored images by
SSTV and LRTV lose color with large noise intensity, SSTV and LRTV change spectral
variation. In contrast, the proposed method can restore HS images preserving both details
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PSNR vs α

SSIM vs α

PSNR vs β

SSIM vs β

DC KSC

Figure 3.9: PSNR[dB] or SSIM versus α or β on the mixed noise removal experiment
(the noise level (ii), left: DC, right: KSC).
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and spectral information without artifacts.
Fig. 3.7 plots band-wise PSNR and SSIM (top), and spatial and spectral responses

(bottom) of the denoised Suwannee HS image in the case of the noise level (ii). The
graphs regarding band-wise PSNR and SSIM show that the proposed method achieves
higher-quality restoration than HTV, SSAHTV, and SSTV for all bands and ASSTV and
LRMR for most bands. Besides, even though the proposed method only utilizes HSSTV,
the results by the proposed method outperform those by LRTV for some bands of the
SSIM case and those by LLRGTV for many bands. Graph (c) plots the spatial response
of the 243rd row of the 30th band. Similarly, graph (d) plots the spectral response of the
243rd row and 107th col. We can see that the spatial response of the results by HTV
and SSAHTV is too smooth compared with the ground-truth one. On the other hand,
there exist undesirable variations in the spatial response of the results by SSTV, LRMR,
and LLRGTV. In contrast, ASSTV, LRTV, and the proposed method restore similar
responses to the ground-truth one. In graph (d), one can see that (i) HTV, SSAHTV,
and LRMR produce spectral artifacts, (ii) the shape of the spectral responses of the results
by SSTV is similar to that of the ground-truth one, but the mean value is larger than
the ground-truth one, (iii) the spectral response of the results by ASSTV is too smooth
and different from the ground-truth one, and (iv) LRTV, LLRGTV, and the proposed
method can restore a spectral response very similar to the ground-truth one.

To search the suitable ω in (3.6), we changed ω between 0.01 and 0.2 at 0.01 intervals.
Fig. 3.8 plots PSNR or SSIM of the results by the proposed method versus various ω.
Here, the values of PSNR and SSIM are averaged over the 13 HS images. One can see
that ω ∈ [0.03, 0.07] is a good choice. The results show that the suitable ω in the mixed
noise removal experiments is a little smaller than that in the Gaussian noise removal
experiments, and the proposed method can achieve high quality denoising regardless of
noise type if one set ω ∈ [0.05, 0.07]. ASSTV and LRTV require adjusting the weight
τb and the hyperparameter τ newly for difference noise intensity, respectively, but the
suitable parameter ω in HSSTV is noise-robust.

To verify the sensitivity of the parameter ε and η in Prob. (3.8), we conducted ad-
ditional mixed noise removal experiments, where we examined various values of ε and
η. Specifically, we set ε = 0.83α

√
NB(1− (sp(1− lv − lh) + lv + lh − lvlh))σ2 and η =

βNB(0.45sp+(lv+ lh)vave− lvlhvave), which are hand-optimized values of the parameters
and changed α and β from 0.9 to 1.1 at 0.02 interval (the DC and the KSC images and
the noise level (ii)). Fig. 3.9 plots PSNR or SSIM of the results by HTV, SSAHTV,
SSTV, ASSTV, and the proposed method versus α or β. For HTV, SSAHTV, ASSTV,
and the proposed method, the graphs show that the suitable values of α and β do not
vary significantly for both image, so the parameters ε and η are independent of both a
regularization technique and an observed image. In the SSTV cases, the shapes of the
plots are different between KSC and DC. This is because in the DC case, SSTV converges
for all parameter settings, while in the case of KSC, it does not converge when α, β > 1.
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observation HTV SSAHTV SSTV ASSTV

LRMR LRTV LLRGTV proposed (p = 1) proposed (p = 2)

Figure 3.10: The denoising results on the real noise removal experiments.

Real Noise Removal

We illustrated the performance of the proposed method for real noise removal. In the
experiments, we restore a desirable HS image from an observation with real noise by the
proposed mixed noise removal method. We selected noisy 16 bands from Suwannee and
used it as a real observed HS image v. To maximize the performance of each method,
we searched for suitable values of σ, sp, lv, and lh. We also compared the proposed
method with HTV, SSAHTV, SSTV, ASSTV, LRMR, LRTV, and LLRGTV. We set the
parameter ε = 3.1893 and η = 31893 for all TVs. Besides, the parameters τv, τh, and τb
in ASSTV are set as 1, 1, 3, respectively, r and k in LRMR are set as 3 and 0.1204,
respectively, r and tau in LRTV are set as 2 and 0.008, and r, λ, and τ in LLRGTV are
set as 2, 0.1 and 0.01.

Fig. 3.10 shows the results, where the HS images are depicted as RGB images (R =
2nd, G = 6th, and B = 13rd bands). The results by HTV and SSAHTV have spatial over-
smoothing, and SSTV, ASSTV, LRMR, and LLRGTV produce spatial artifacts. Besides,
one can see that the results by LRMR and LRTV have spectral artifacts. On the other
hand, the proposed method can restore a detail-preserved HS image without artifacts.

3.2 Compressed Sensing Reconstruction

Multichannel images with the large number of bands have high-resolution 1D spectral
and 2D spatial information, i.e., HS or multispectral (MS) images. The imaging requires
a 2D spectral sensor for capturing 1D spatial information, and thus it is impossible to
capture the images in real-time. To resolve the above problem, CS reconstruction plays
a very important role [49–51]. The CS theory said that a high-dimensional signal can
be reconstructed from a much fewer number of random observations by leveraging the
sparsity of the signal, and so one-shot multichannel imaging based on CS is actively
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studied [52, 53]. Therefore, the CS theory requires a robust reconstruction method to
noise and outliers.

In this section, we focus on CS methods for an HS image. This is because HS images
have the huge number of bands in multichannel image, and CS is essential technique
for real-time HS imaging. CS reconstruction can be considered as the one of the image
restoration method, and most CS methods are based on optimization. The reconstruction
problems mainly consists of a regularization and a data-fidelity terms. As like with the
denoising methods, the regularization techniques play an important role for the improve-
ment of the CS performance. Besides, many CS methods for HS images [54–57] assume
that observation is contaminated by only Gaussian noise, but optical systems often cause
the other type of noise and/or outliers.

Based on the above discussion, we propose a new robust CS method to noise and
outliers. Specifically, the method estimates a desirable HS image by solving optimization
problem, which evaluates noise and outliers by multiple constraints and utilizes HSSTV
as regularization. To efficiently solving the problem, we also provide an iterative solver
based on a primal-dual splitting method [17]. In the experiments, we illustrate the utility
of the proposed framework.

3.2.1 CS Reconstruction under Gaussian Noise Situation

Problem Formulation

Consider to restore an clean HS image ū ∈ RNB from an observation v ∈ RM , which
is cast as inverse problems of the form:

v = Φū+ n, (3.13)

where Φ ∈ RM×NB (M ≤ NB) is a sensing matrix, e.g., random sampling, n is an
additive white Gaussian noise with the standard deviation σ.

Based on the above model, we newly formulate compressed HS image reconstruction
as the following convex optimization problem:

min
u

HSSTV(u) s.t.

[
Φu ∈ Bv

2,ε := {x ∈ RM |∥x− v∥ ≤ ε},
u ∈ [µu, µu]

NB.
(3.14)

The first term in (3.14) is a regularization function for HS image restoration. HSSTV si-
multaneously evaluates spatio-spectral piecewise-smoothness and direct spatial piecewise-
smoothness, and we explain HSSTV in Sec. 3.1.2. The first constraint in (3.14) serve as
data-fidelity regarding Gaussian noise to the observation v, and Bv

2,ε is the v-centered
ℓ2-norm ball with the radius ε. The second constraint in (3.14) is the dynamic range of
u (µu < µu).
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Algorithm 2: ADMM method for Prob. (3.14)

input : z
(0)
1 , z

(0)
2 , z

(0)
3 , d

(0)
1 , d

(0)
2 , d

(0)
3

1 while A stopping criterion is not satisfied do

2 u(n+1) = argmin
u

1
2γ

(∥z(n)
1 −Aωu− d

(n)
1 ∥2 + ∥z

(n)
2 −Φu− d

(n)
2 ∥2 + ∥z

(n)
3 − u− d

(n)
3 ∥2);

3 z
(n+1)
1 = proxγ∥·∥1,p(Aωu

(n+1) + d
(n)
1 );

4 z
(n+1)
2 = proxγιBv

2,ε

(Φu(n+1) + d
(n)
2 );

5 z
(n+1)
3 = proxγι

[µu,µu]NB
(u(n+1) + d

(n)
3 );

6 d
(n+1)
1 = d

(n)
1 +Aωu

(n+1) − z
(n+1)
1 ;

7 d
(n+1)
2 = d

(n)
2 +Φu(n+1) − z

(n+1)
2 ;

8 d
(n+1)
3 = d

(n)
3 + u(n+1) − z

(n+1)
3 ;

9 n← n+ 1;

Optimization

We solve Sec. (3.14) by ADMM. To solve it ADMM, we reformulate Prob. (3.14) into
Prob. (2.7) like Sec. 3.1.2. By letting

f : RNB → R : u 7→ 0, (3.15)

g : R5NB+M → R ∪ {∞} : (z1, z2, z3) 7→ ∥z1∥1,p + ιBv
2,ε
(z2) + ι[µu,µu]NB (z3), (3.16)

G : RNB → R5NB+M : u 7→ (Aωu,Φu,u). (3.17)

Prob. (3.14) is reduced to Prob. (2.7). The resulting algorithm based on ADMM is
summarized in Alg. 2.

The update of u in Alg. 2 comes down to the following forms:

u(n+1) =
(
A⊤

ωAω +Φ⊤Φ+ I
)−1

RHS,

RHS =A⊤
ω (z

(n)
1 − d

(n)
1 ) +Φ⊤(z

(n)
2 − d

(n)
2 ) + (z

(n)
3 − d

(n)
3 ) (3.18)

Since the update of u in Alg. 2 is strictly-convex quadratic minimization, one can obtain
these updated forms by differentiating it.

Here, we should consider the structure of Φ because it affects the matrix inversion
in (3.18). If Φ is a block-circulant-with-circulant-blocks (BCCB) matrix [58], we can
leverage 3DFFT to efficiently solve the inversion in Step 2 with the difference operators
having a periodic boundary, i.e., A⊤

ωAω +Φ⊤Φ + I can be diagonalized by the 3DFFT
matrix and its inverse. If Φ is a semiorthogonal matrix, i.e., ΦΦ⊤ = αI (α > 0), we leave
it to the update of z2, which means that we replace ιBv

2,ε
by ιBv

2,ε
◦ Φ in (3.16) and Φu

by u in (3.17). This is because the proximity operator of ιBv
2,ε

◦ Φ, in this case, can be

computed by using [18, Table 1.1-x] as follows:

proxγιBv
2,ε

◦Φ(x) = x+ α−1Φ⊤(PBv
2,ε
(Φx)−Φx).
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If Φ is a sparse matrix, we offer to use a preconditioned conjugate gradient method [59] for
approximately solving the inversion or to apply primal-dual splitting methods [17,60,61]
instead of ADMM. Here, primal-dual splitting methods require no matrix inversion but
in general their convergence speed is slower than ADMM. Otherwise, randomized image
restoration methods using stochastic proximal splitting algorithms [62–65] might be useful
for reducing the computational cost.

For the update of z1, the proximity operators are reduced to simple soft-thresholding
type operations described in Sec. 2.1. The updates of z2 and z3 use the proximity opera-
tors of the indicator functions of each set, i.e., (2.4) and (2.6), respectively.

Experiments

We experimented on CS reconstruction under Gaussian noise situation. In this exper-
iment, we generate an observation based on (3.13) and reconstruct a desirable HS image
from it. For test HS images, we took 13 HS images as like the Gaussian noise removal
experiment. We assume that Φ ∈ RM×NB in (3.13) is a random sampling matrix with
the sampling rate m (0 < m < 1 and M = mNB). Here, since Φ is a semiorthogonal
matrix, we can efficiently solve the problem, as explained in the optimization section. We
set the standard deviation of Gaussian noise σ as 0.1 and the sampling rate m of Φ as
0.2 or 0.4.

The proposed method was compared with HTV, SSAHTV, SSTV, and ASSTV. For fair
comparison, we replaced HSSTV in Prob. (3.14) with the TVs and solved the problem
by ADMM. In the ASSTV case, we set the parameters (τv, τh, τb) = (1, 1, 0.5), which
experimentally achieves the best performance. We set the hyperparameter ε =

√
mNBσ2

in (3.14), and ω in (3.6) is set to 0.08/0.06 in the ℓ1/ℓ1,2-HSSTV case, respectively.
Tab. 3.6 shows PSNR and SSIM of the reconstructed HS images. For all m and HS

images, both PSNR and SSIM of the proposed method results are almost higher than
that by HTV, SSAHTV, SSTV, and ASSTV.

Fig. 3.11 is the reconstructed results on KSC and Reno with the random sampling
ratio m = 0.4 and 0.2, respectively. Here, the HS images are depicted as RGB images (R
= 8th, G = 16th, and B = 32nd bands). One can see that (i) HTV and SSAHTV cause
spatial oversmoothing, (ii) SSTV produces artifacts and spectral distortion, appearing
different from the color of the ground-truth HS images, and (iii) the results by ASSTV
have spatial oversmoothing and spectral distortion. On the other hand, the proposed
method reconstructs meaningful details without both artifacts and spectral distortion.

Fig. 3.12 plots band-wise PSNR or SSIM (left) and spatial and spectral responses
(right) (Suwannee, m = 0.2). According to band-wise PSNR and SSIM, one can see
that the proposed method achieves higher-quality reconstruction for all bands than HTV,
SSAHTV, SSTV, and ASSTV. Graphs (c) and (d) plot the spatial and spectral responses
of the same position in the denoising experiments. Graph (c) shows that (i) the spatial
response of the results by HTV, SSAHTV, and ASSTV are oversmoothing, (ii) SSTV pro-
duces undesirable variation, and (iii) the spatial response reconstructed by the proposed
method is similar to the ground-truth one. In graph (d), HTV and SSAHTV generate
undesirable variation, and ASSTV causes oversmoothing. Thanks to the evaluation of
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Table 3.6: PSNR[dB] (top) and SSIM (bottom) in the CS reconstruction experiment
under Gaussian noise situation.

HS image m HTV SSAHTV SSTV ASSTV Proposed (p = 1) Proposed (p = 2)

0.4 27.46 27.49 27.53 26.51 31.15 30.71
Beltsville 0.2 26.23 26.25 24.34 24.12 29.63 29.18

0.4 27.97 28.02 28.49 27.68 32.98 33.04
Suwannee 0.2 26.47 26.50 25.69 25.39 31.37 31.44

0.4 24.69 24.73 27.33 24.71 29.70 29.29
DC 0.2 23.31 23.33 24.16 22.69 27.98 27.59

0.4 29.94 29.96 28.21 28.59 34.36 34.34
Cuprite 0.2 28.77 28.77 25.79 26.38 32.97 32.95

0.4 26.99 27.05 27.82 26.49 31.80 31.61
Reno 0.2 25.57 25.61 25.57 24.52 30.22 30.04

0.4 26.10 26.15 27.81 25.13 30.32 30.15
Botswana 0.2 24.66 24.69 24.79 22.86 28.79 28.63

0.4 30.54 30.55 27.65 29.55 31.36 31.04
PSNR IndianPines 0.2 29.99 29.99 25.11 28.19 30.71 30.46

0.4 29.30 29.33 28.34 28.63 34.10 34.03
KSC 0.2 28.11 28.12 27.00 26.59 32.67 32.60

0.4 25.66 25.69 29.66 25.41 31.96 31.83
PaviaLeft 0.2 24.26 24.27 27.17 23.24 30.20 30.08

0.4 25.83 25.85 29.86 25.61 32.45 32.21
PaviaRight 0.2 24.30 24.30 27.54 23.61 30.56 30.38

0.4 26.49 26.53 30.02 26.38 32.88 32.70
PaviaU 0.2 24.95 24.97 27.35 24.08 31.13 30.96

0.4 31.19 31.24 27.69 30.18 35.43 35.51
Salinas 0.2 29.94 29.98 25.28 28.09 34.05 34.10

0.4 30.67 30.82 27.93 28.19 34.45 34.14
SalinasA 0.2 28.68 28.75 24.15 24.94 32.71 32.36

0.4 0.6829 0.6940 0.6013 0.6836 0.8105 0.7948
Beltsville 0.2 0.6363 0.6493 0.4348 0.6108 0.7604 0.7427

0.4 0.7332 0.7497 0.7377 0.7367 0.8902 0.8909
Suwannee 0.2 0.6810 0.7007 0.5739 0.6633 0.8531 0.8534

0.4 0.6096 0.6242 0.7522 0.6245 0.8577 0.8460
DC 0.2 0.5215 0.5384 0.6120 0.5037 0.7970 0.7846

0.4 0.7665 0.7804 0.6826 0.7652 0.8882 0.8895
Cuprite 0.2 0.7368 0.7525 0.5057 0.7207 0.8568 0.8578

0.4 0.6769 0.6868 0.7414 0.6730 0.8733 0.8705
Reno 0.2 0.6202 0.6326 0.6276 0.5940 0.8263 0.8228

0.4 0.6683 0.6803 0.7551 0.6460 0.8563 0.8598
Botswana 0.2 0.6014 0.6162 0.6225 0.5519 0.8119 0.8163

0.4 0.7497 0.7777 0.5066 0.7617 0.7806 0.7655
SSIM IndianPines 0.2 0.7366 0.7658 0.3488 0.7465 0.7589 0.7491

0.4 0.7660 0.7742 0.6814 0.7544 0.9019 0.9002
KSC 0.2 0.7318 0.7410 0.6008 0.7032 0.8698 0.8679

0.4 0.6082 0.6205 0.8386 0.5932 0.8900 0.8857
PaviaLeft 0.2 0.5103 0.5251 0.7319 0.4434 0.8418 0.8364

0.4 0.6357 0.6423 0.7962 0.6275 0.8937 0.8877
PaviaRight 0.2 0.5502 0.5584 0.6917 0.5069 0.8475 0.8392

0.4 0.6867 0.6956 0.7830 0.6818 0.8950 0.8901
PaviaU 0.2 0.6138 0.6242 0.6623 0.5680 0.8557 0.8508

0.4 0.8577 0.8672 0.6153 0.8566 0.9222 0.9245
Salinas 0.2 0.8404 0.8516 0.4620 0.8302 0.9052 0.9080

0.4 0.8647 0.8871 0.6595 0.8489 0.9178 0.9208
SalinasA 0.2 0.8387 0.8655 0.4810 0.8005 0.8966 0.9002
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KSC 18.78, 0.1267 29.30, 0.7660 29.33, 0.7742 28.34, 0.6814

ground-truth observation HTV SSAHTV SSTV

28.63, 0.7544 34.10, 0.9019 34.03, 0.9002

ASSTV proposed

(p = 1)

proposed

(p = 2)

Reno 14.11, 0.07624 25.57, 0.6202 25.61, 0.6326 25.57, 0.6276

ground-truth observation HTV SSAHTV SSTV

24.52, 0.5940 30.22, 0.8263 30.04, 0.8228

ASSTV proposed

(p = 1)

proposed

(p = 2)

Figure 3.11: Resulting HS images with their PSNR[dB] (left) and SSIM (right) on the CS
reconstruction experiment under Gaussian noise situation (top: KSC, m = 0.4, bottom:
Reno, m = 0.2).
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(a) band-wise PSNR (b) band-wise SSIM

(c) Spatial response (d) Spectral response

Figure 3.12: Band-wise PSNR[dB] and SSIM and spatial and spectral responses on the
CS reconstruction experiment under Gaussian noise situation (Suwannee).

spatio-spectral piecewise-smoothness, SSTV reconstructs a similar spectral response to
the ground-truth one. However, the mean value is larger than the ground-truth value.
The proposed method achieves the most similar reconstruction of spectral response among
all the TVs.

To search the suitable ω in (3.6), we changed ω between 0.01 and 0.2 at 0.01 intervals.
Fig. 3.13 plots PSNR or SSIM of the results by the proposed method versus various ω,
where the values of PSNR and SSIM are averaged over the 13 HS images. One can see
that ω ∈ [0.05, 0.1] is a good choice in most cases. The results show that the suitable
range of ω in CS reconstruction is the same as Gaussian noise removal.
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m = 0.4 m = 0.2

Figure 3.13: PSNR[dB] (top) or SSIM (bottom) versus ω in (3.6) on the CS reconstruction
experiment under Gaussian noise situation.

3.2.2 CS Reconstruction under Mixed Noise Situation

Problem Formulation

To consider to CS reconstruction under mixed noise situation, we model the observation
v ∈ RM as follows:

v = Φū+ n+ s. (3.19)

Based on the above model, we newly formulate compressed HS image reconstruction
considering mixed noise as the following convex optimization problem:

min
u,s

HSSTV(u) s.t.

 Φu+ s ∈ Bv
2,ε := {x ∈ RM |∥x− v∥ ≤ ε},

s ∈ B1,η := {x ∈ RM |∥x∥1 ≤ η},
u ∈ [µu, µu]

NB.
(3.20)

The first term in (3.20) is a regularization function for HS image restoration as defined
in Sec. 3.1.2. The first and second constraints in (3.20) serve as data-fidelity regarding
Gaussian and sparse noise to the observation v, respectively. The first constraint set Bv

2,ε
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Algorithm 3: Primal-dual splitting method for Prob. (3.20)

input : u(0), s(0), y
(0)
1 , y

(0)
2 , y

(0)
3 ,y

(0)
4 , γ1, γ2

1 while A stopping criterion is not satisfied do

2 u(n+1) = u(n) − γ1(A
⊤
ωy1 +Φ⊤y2 + y4);

3 s(n+1) = s(n) − γ1(y2 + y3);

4 y
(n)
1 ← y

(n)
1 + γ2Aω(2u

(n+1) − u(n));

5 y
(n)
2 ← y

(n)
2 + γ2(Φ(2u(n+1) − u(n)) + (2s(n+1) − s(n)));

6 y
(n)
3 ← y

(n)
3 + γ2(2s

(n+1) − s(n));

7 y
(n)
4 ← y

(n)
4 + γ2(2u

(n+1) − u(n));

8 y
(n+1)
1 = y

(n)
1 − γ2 prox 1

γ2
∥·∥1,p

(
y
(n)
1
γ2

)
;

9 y
(n+1)
2 = y

(n)
2 − γ2 prox 1

γ2
ιBv

2,ε

(
y
(n)
2
γ2

)
;

10 y
(n+1)
3 = y

(n)
3 − γ2 prox 1

γ2
ιB1,η

(
y
(n)
3
γ2

)
;

11 y
(n+1)
4 = y

(n)
4 − γ2 prox 1

γ2
[µu,µu]NB

(
y
(n)
4
γ2

)
;

12 n← n+ 1;

is the v-centered ℓ2-norm ball with the radius ε, and the second one is the 0-centered
ℓ1-norm ball with the radius η. The third constraint in (3.20) is the dynamic range of u.

Optimization

In this part, we introduce an algorithm for solving Prob. (3.20). Since the problem is
a highly nonsmooth convex optimization problem, we solve it by an iterative algorithm
based on a primal-dual splitting method [17]. In Sec. 2.3, the primal-dual splitting method
can solve convex optimization problems of the form of Prob. (2.9) by the algorithm (2.10),
and then we reformulate Prob. (3.20) into Prob. (2.9).

We put the constraints in Prob. (3.20) in the objective function by the indicator func-
tions. Then, Prob. (3.20) can be rewritten as follows:

min
u,s

∥Aωu∥1,p + ιBv
2,ε
(Φu+ s) + ιB1,η(s) + ι[µu,µu]NB (u). (3.21)

Note that Prob. (3.21) is equivalent to Prob. (3.20) (there is no approximation) because
of the definition of the indicator function. By letting

g : RNB → R2 : (u, s) 7→ 0,

h : R5NB+2M → R ∪ {∞} : (z1, z2, z3, z4) 7→ ∥z1∥1,p + ιBv
2,ε
(z2) + ιB1,η(z3) + ι[µu,µu]NB (z4),

L : RNB → R5NB+2M : (u, s) 7→ (Aωu,Φu+ s, s,u),

Prob. (3.21) is reduced to Prob. (2.9). The resulting algorithm based on the primal-dual
splitting method is summarized in Alg. 3 with (2.11).

For the update of y1, we use a simple soft-thresholding type operation (2.2) or (2.3).
The update of y2, y3, and y4 can be calculated by (2.4), (2.5), and (2.6), respectively.
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Table 3.7: The four quality measures of the results on CS reconstruction under mixed
noise situation.

methods

quality measures
PSNR[dB] SAM ERGAS Q2n

HTV [6] 23.78 7.477 28.04 0.2294
ℓ2 fidelity SSTV [7] 24.33 5.229 24.65 0.3907

constraint only ASSTV [22] 21.81 10.59 30.36 0.2829
ℓ1-HSSTV 28.72 4.177 16.07 0.5609
ℓ1,2-HSSTV 28.40 4.237 16.97 0.5656

HTV [6] 25.90 4.846 21.24 0.3689
Proposed SSTV [7] 27.27 5.375 18.75 0.5878
(ℓ1 and ℓ2 ASSTV [22] 26.12 6.649 19.30 0.3865

fidelity constraints) ℓ1-HSSTV 30.98 3.609 12.34 0.6726
ℓ1,2-HSSTV 31.03 3.608 12.40 0.6733

ground-truth observation HTV SSTV ASSTV ℓ1-HSSTV ℓ1,2-HSSTV

Figure 3.14: Resulting HS images on CS reconstruction under mixed noise situation
(Reno, top: ℓ2 fidelity constraint only, bottom: proposed).

Experiments

To verify the utility of the proposed framework, we conducted compressed HS recon-
struction experiments under mixed Gaussian-sparse noise contamination. We examined
various regularizations: HTV, SSTV, ASSTV, and our HSSTV.

In the experiments, we artificially generated an observation based on (3.19) and recon-
structed a desirable HS image from it. The sensing matrix Φ in (3.19) is assumed to be
a random-sampling operator of ratio m = 0.2. We assumed that n is an additive white
Gaussian noise with the standard deviation σ = 0.05, and s is a salt-and-peeper noise
of ratio sp = 0.04. For test HS images, we took five HS images from the SpecTIR [44]
and MultiSpec [45], cropped a region of size 256× 256× 32 for each HS image, and nor-
malized their dynamic range into [0, 1]. The radiuses ε and η in Prob. (3.20) were set to√

mNB(1− sp)σ2 and 0.5mNBsp, respectively.
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We reconstruct a desirable HS image by solving Prob. 3.20 replacing HSSTV with HTV,
SSTV, and ASSTV and set the parameters in ASSTV and HSSTV as τb = 4 and ω = 0.04,
respectively. To verify the performance of the proposed framework, we compared our
framework with the method considering only Gaussian noise, i.e., Prob. (3.14). In the
above case, we set ε =

√
rNB((1− sp)σ2 + 0.25sp). To evaluate the quality of restored

HS images, we used four quality measures: PSNR [dB], SAM [14], ERGAS [15], and
Q2n [66]. We set the max iteration number and the stopping criterion of the primal-dual
splitting method to 10000 and ∥u(n) − u(n+1)∥/∥u(n+1)∥ < 1.0× 10−4, respectively.

Tab. 3.7 shows the values of the four quality measures of the results, which is the average
of five HS images. The left of the table represents the results by the method considering
only Gaussian noise, and the right is our framework. For most quality measures, one
can see that considering mixed Gaussian-sparse noise improves reconstruction accuracy.
Besides, HSSTV achieves the highest quality of all the regularizations.

In Fig 3.14, we show the reconstructed HS images (Reno) depicted as RGB images,
where we choose R = 8th, G = 16th, and B = 32nd bands. One can see that our
frameworks with ℓ1/ℓ1,2-HSSTV achieve the best performance.
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Chapter 4

Image Fusion

4.1 Blur and Noisy Image Fusion

Image deblurring, removing blur from a given photograph, has been a fundamental and
longstanding problem in image processing and computer vision. Many image deblurring
methods, e.g., [67–75], are categolized as single image blind deblurring, that is, estimating
both the blur kernel and the latent image from a single blurred image (for more infomation
on single image blind deblurring, see a comprehensive survey [76]). Although single image
blind deblurring assumes the most realistic situation, it is a very challenging task due to
the highly under-costrained nature, so that it often leads to inaccurate estimation of blur
kernels, high sensitivity to noise, and heavy dependence on prior information used.

To overcome the inherent difficulty, blind deblurring methods with a blurred/noisy
image pair have been studied [77–81]. These methods consider such a situation that both
images are captured in low light conditions with different settings. Specifically, the blurred
image is taken with a slow shutter speed and a low ISO setting. With enough light, it has
the correct color and intensity, but it is blurry due to camera shake. On the other hands,
the noisy image is taken with a fast shutter speed and a high ISO setting. It is sharp but
very noisy because of insufficient exposure and high camera gain. In addition, since it has
low contrast, the colors of this image are also partially lost. Under this situation, existing
methods take a two-step approach: first estimating the blur kernel from the image pair
and then restoring a sharp image using the estimated kernel. Essentially, they can yield
a better and much more stable result in their kernel estimation step than single image
deblurring methods, since the difference between the two images is extremely informative
for kernel estimation.

On the other hand, there exists a room for improvement in the image restoration step
of these methods. Specifically, the methods [77–79] estimate the latent image based only
on a given blurred image, i.e., do not exploit the information on a given noisy image in
their image restoration step, so that they are sensitive to the estimation error of the blur
kernel. In addition, if noise in the blurred image is not negligible, restoring a sharp image
from it becomes difficult even when using the true kernel. Meanwhile, the methods [80,81]
exploit the information on both images in their image restoration step. In these methods,
the image restoration problem is formulated as the minimization of a regularization term,
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reflecting prior information on the latent image, plus two data-fidelity terms, keeping
the consistency to a blurred/noisy image pair, where the balance among these terms is
controled by multiple weights. However, the tuning of such multiple weights is a tedious
task because they are interdependent and have no physical meaning. Indeed, suitable
values of them vary depending on the latent image and/or the regularization terms used.

Based on the above discussion, we propose a new image restoration method of using
both a blurred image and a noisy image, which can be integrated into any blind deblur-
ring methods with a blurred/noisy image pair. In our method, the image restoration
problem is formulated as a constrained convex optimization problem: minimizing a (pos-
sibly nonsmooth) regularization function subject to multiple hard constraints. Two of the
hard constraints correspond to data-fidelity to a blurred image and that to a noisy image,
respectively, where the degree of fidelity to each image can be controlled by independent
parameters that are explicitly related to the noise intensity of the image pair. We also
prove the existence of an optimal solution of the problem under reasonable assumptions.
Since our problem formulation properly incorporates the information on a blurred/noisy
image pair, it achieves (i) high quality restoration when the blurred image also contains
noise; and (ii) robustness to the estimation error of the blur kernel. At the same time, the
independence and clear meaning of the parameters thanks to the hard constraints offer
(iii) easy parameter setting.

Through several reformulations, we also provide an efficient algorithm with guaranteed
convergence for solving the constrained convex optimization problem. Our algorithm is
based on ADMM a celebrated optimization method based on proximal splitting.

4.1.1 Problem Formulation

Consider to estimate an unknown latent color image ū ∈ R3N (3 is the number of
color channels) from an observed blurred image vn ∈ R3N and an observed noisy image
vb ∈ R3N . Specifically, following the prior work [80,81] we model them as

vn = Bū+ nn, (4.1)

vb = ū+ nb, (4.2)

where B ∈ R3N×3N is a blur operator estimated in advance, and nn and nb are additive
white Gaussian noises with their standard deviations σn and σb, respectively. The model
assumes that the blurred image vn also contains noise (usually σn < σb), which is a
realistic setting as addressed in [80,82].

Based on the above observation models, we newly formulate a convex optimization
problem with multiple hard constraints for image restoration using a blurred/noisy image
pair as follows:

min
u

R(Ψu) s.t.

 u ∈ [0, 255]3N ,
Bu ∈ Bvn,εn := {x ∈ R3N |∥x− vn∥ ≤ εn},
u ∈ Bvb,εb := {x ∈ R3N |∥x− vb∥ ≤ εb}.

(4.3)

Here, R ◦ Ψ : RN → (−∞,∞] is a regularization function (Ψ ∈ RL×3N ,R ∈ Γ0(RL)).
We assume that the proximity operator of R (NOT R ◦Ψ) can be computed efficiently.
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This assumption is essential in solving the problem by ADMM, as will be explained in
an optimization section. The first constraint set [0, 255]3N ⊂ R3N is the dynamic range
of eight-bit color images. The second and third ones Bvn,εn ,Bvb,εb ⊂ R3N are ℓ2-norm
balls that represent data-fidelity to a blurred image vn and that to a noisy image vb,
respectively, where εn ≥ 0 and εb ≥ 0 are their radiuses determined based on the noise
intensity (noise standard deviations) of vn and vb.

Remark 1 (Design of regularization). TV [83] and its vectorial variants, e.g., [33, 84–87],
are well-known edge-preserving regularizers for images, and they have been used in many
deblurring methods. In this case, R is some norm, e.g., the ℓ1 norm, the mixed ℓ1,2 norm
or the nuclear norm, and Ψ is a discrete gradient operator. The proximity operators of
such norms are computable (see, e.g., [18, 88]). Another well-known example is frame
regularization relying on the sparsity of images in some transformed domain. In this case,
R is the ℓ1 norm, and Ψ is a frame analysis operator, e.g., wavelet [89] and curvelet [90].
More involved regularization, such as nonlocal regularization [91–93], regularization using
learned operators [94, 95] and plug-and-play regularization [96, 97], can also be handled
in our formulation by setting Ψ to the corresponding nonlocal/learned analysis operator.

Remark 2 (Benefits of incorporating data-fidelity as hard constraints). Since εn and εb,
the radiuses of the ℓ2-norm balls in (4.3), are directly related to the noise intensity (noise
standard deviations) of a blurred image and a noisy image, respectively, one can determine
their values with the help of existing noise level estimation methods. More importantly,
these parameters can be determined (almost) independent of the latent image ū and the
regularization functionR◦Ψ. This means that once finding suitable values of εn and εb for
some noise intensity, they can be used for various types of latent images and regularization
functions under the same noise intensity, which makes the setting of parameters on data-
fidelity much easier than existing methods that requires the tuning of interdependent
parameters (see the section of facilitation of parameter setting). Such benefits of hard
constraints have also been addressed, for example, in [10,36,37,39,98–100].

The following statement is on the existence of a solution of Prob. (4.3)

Proposition 1. Assume that the intersection of the constraint sets in (4.3) is nonempty,
i.e.,

S := [0, 255]3N ∩ΦBvn,εn ∩ Bvb,εb ̸= ∅,

and that there exists some x ∈ S such that R(Ψx) < ∞. Then, Prob. (4.3) has at least
one optimal solution, i.e., the function R ◦Ψ has a minimizer over S.

Proof : Since R ◦Ψ ∈ Γ0(R3N ) and S is a bounded closed convex subset of R3N , the
statement is a direct consequence of [101, Proposition 11.14].

4.1.2 Optimization

Since Prob. (4.3) is a highly nonsmooth constrained problem, we need suitable iterative
optimization methods to solve it. In this paper, we adopt ADMM, reviewed in Sec. 2.2. In
what follows, we reformulate Prob. (4.3) into the ADMM-applicable form, i.e., Prob. (2.7).
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First, let us define the indicator functions (see Sec. 2.1) of the closed convex sets
[0, 255]3N , Bvn,εn and Bvb,εb . Then, Prob. (4.3) can be rewritten as

min
u

R(Ψu) + ι[0,255]3N (u) + ιBvn,εn
(Bu) + ιBvb,εb

(u). (4.4)

Second, we replace the input variables of all the terms in (4.4) with auxiliary variables
z1, . . . , z4, and express the relation between the input and the auxiliary variables by linear
equality constraints, yielding

min
u

R(z1) + ι[0,255]3N (z2) + ιBvn,εn
(z3) + ιBvb,εb

(z4)

s.t. z1 = Ψu, z2 = u, z3 = Φu, z4 = u. (4.5)

Third, we define

g(z1, . . . , z4) := R(z1) + ι[0,255]3N (z2) + ιBvn,εn
(z3) + ιBvb,εb

(z4).

Then, the function g becomes proximable thanks to the variable splitting, as long as each
term of g is proximable. Indeed, R is proximable from the assumption, and the other
terms, the three indicator functions, are also proximable because the metric projections
onto the corresponding closed convex sets are available (see Sec. 2.1).

Finally, by letting I be the identity matrix of size 3N × 3N and defining

f(u) := 0 and G :=


Ψ
I
B
I

 , (4.6)

Prob. (4.5) is reduced to Prob. (2.7).
The resulting algorithm based on ADMM is summarized in Alg. 4. Since G in (4.6) is

a full column rank matrix due to I, G⊤G is invertible, so that the convergence of Alg. 4
is guaranteed if a saddle point of g(z)− ⟨d,Gu− z⟩ exists.

Now we discuss the computation of each step of Alg 4. Since the update of u (Step 2) is
strictly-convex quadratic minimization because of the full-column-rankness of G, it boils
down to solving the following matrix inversion:

u(n+1) =(Ψ⊤Ψ+B⊤B+ 2I)−1RHS

RHS :=(Ψ⊤(z
(n)
1 − d

(n)
1 ) + (z

(n)
2 − d

(n)
2 ) +B⊤(z

(n)
3 − d

(n)
3 ) + (z

(n)
4 − d

(n)
4 )).

Here, the above inverse matrix can be efficiently computed as with the CS reconstruction
cases.

For the updates of z1, . . . , z4 (Step 3-6), we need to compute the proximity operators
of each term of g. The proximity operator of R depends on the design of regularization.
As addressed in Remark 1, it is indeed computable for many types of regularization. The
proximity operator of ιBvn

2,εn
, ιBvb

2,εb

, and ι[0,255]3N equal to the metric projection onto each

set given by (2.4) and (2.6).
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Algorithm 4: ADMM method for Prob. (4.3)

input : z
(0)
1 , z

(0)
2 , z

(0)
3 , z

(0)
4 , d

(0)
1 , d

(0)
2 , d

(0)
3 , d

(0)
4 , and γ > 0

1 while A stopping criterion is not satisfied do

2 u(n+1) = argmin
u

1
2γ

(∥z(n)
1 −Ψu(n) − d

(n)
1 ∥2 + ∥z

(n)
2 − u(n) − d

(n)
2 ∥2 + ∥z

(n)
3 −Φu(n) −

d
(n)
3 ∥2 + ∥z

(n)
4 − u(n) − d

(n)
4 ∥2);

3 z
(n+1)
1 = proxγR(Ψu(n+1) + d

(n)
1 );

4 z
(n+1)
2 = proxγι

[0,255]3N
(u(n+1) + d

(n)
2 );

5 z
(n+1)
3 = proxγιBvn,εn

(Φu(n+1) + d
(n)
3 );

6 z
(n+1)
4 = proxγιBvb,εb

(u(n+1) + d
(n)
4 );

7 d
(n+1)
1 = d

(n)
1 +Ψu(n+1) − z

(n+1)
1 ;

8 d
(n+1)
2 = d

(n)
2 + u(n+1) − z

(n+1)
2 ;

9 d
(n+1)
3 = d

(n)
3 +Φu(n+1) − z

(n+1)
3 ;

10 d
(n+1)
4 = d

(n)
4 + u(n+1) − z

(n+1)
4 ;

11 n← n+ 1;

Figure 4.1: Test images

4.1.3 Experiments

We demonstrate the three advantages of the proposed method: (i) high quality restora-
tion when the blurred image also contains noise, (ii) robustness to the estimation error
of the blur kernel, and (iii) easy parameter setting. In the following experiments, we
used 20 color images used as test images, which are taken from the Berkley Segmentation
Database [102] (Fig. 4.1). Then, we generated a pair of an observations based on (4.1)
and (4.2), and estimated a desirable image from them.

We utilized a popular color TV [33] as regularization in our method, which is defined
as follows:

TV(u) := ∥Du∥1,2.

In this case, R := ∥ · ∥1,2 and Ψ := D in Prob. (4.3) The proximity operator of the
mixed ℓ1,2 norm can be computed by (2.3). We set εn and εb in (4.3) to 0.95

√
3Nσ2

n and

0.95
√
3Nσ2

b , respectively.

Experiments results of using both a blurred image and a noisy image are compared
with that of using a blurred image only and that of using a noisy image only. At this
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Figure 4.2: PSNR gain of the proposed method over the single image deblur-
ring/denoising.

time, in the case of using a blurred image only, we solved that optimization problem:

min
u

TV(u) s.t.

{
u ∈ [0, 255]3N ,
Φu ∈ Bvn,εn := {x ∈ R3N |∥x− vn∥ ≤ εn},

and in the case of using a blurred image only, we solved that one:

min
u

TV(u) s.t.

{
u ∈ [0, 255]3N .
u ∈ Bvb,εb := {x ∈ R3N |∥x− vb∥ ≤ εb}.

We adopted PSNR[dB] to evaluate the objective quality of a restored image u, which
is given by

20 · log 103N × 255

∥u− ū∥
.

Basic Performance Evaluation

To evaluate the effectiveness of incorporating multiple hard constraints on data-fidelity
to a blurred/noisy image pair, we compare our method with two single image restoration
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Figure 4.3: Resulting images with their PSNR[dB] in the first experiment (σb/σn = 8).

methods. One is single image deblurring, i.e., solving Prob. (4.3) without the constraint
u ∈ Bvb,εb . The other is single image denoising, i.e., solving Prob. (4.3) without the
constraint Φu ∈ Bvn,εn . As in our method, ADMM was used for both methods.

In this experiment, we generated blurred images as follows: clean test images are
blurred by a horizontal motion blur of 9 pixels and then contaminated by an additive
white Gaussian noise nn in (4.1) with the standard deviation σn = 2. Meanwhile, noisy
images were generated by adding a white Gaussian noise nb in (4.2) to clean test images,
where the standard deviation σb was increased from 4 to 20 by 2.

Fig. 4.2 plots the PSNR gain of our method over the single image deblurring (circle
marker) and the single image denoising (asterisk marker), where PSNR is averaged over
the 20 test images. One can see that for all the ratio of the noise standard deviations
σb/σn, the proposed method outperforms both single image deblurring and denoising
methods. This observation suggests that for a given blurred/noisy image pair, exploiting
information on the noisy image in the image restoration step is very effective when the
blurred image also contains noise.

Fig. 4.3 depicts some resulting images with their PSNR (σb/σn = 8). One can see
that 1. details are lost in the images obtained by the single image deblurring, 2. color
artifact remains in the images obtained by the single image denoising, and 3. Our method
achieves detail-preserving restoration with much less artifact.

We also check the convergence behavior of our algorithm (Alg. 4). For evaluation
of convergence, we define the normalized root mean square error (NRMSE) between the
current estimate u(n) and the optimal solution u⋆ of Prob. (4.3), i.e., NRMSEn := ∥u(n)−
u⋆∥/∥u⋆∥. Since the optimal solution u⋆ is analytically unavailable, it was pre-computed
by Alg. 4 with 100000 iterations. Fig. 4.4 plots the evolution of NRMSEn versus iterations
(left) and the evolution of PSNR versus iterations (right), where the stepsize γ of ADMM
was set to 0.01. These plots suggest that Alg. 4 properly works, and that exploiting
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Figure 4.4: Evolution of NRMSEn versus iterations (left) and the evolution of PSNR[dB]
versus iterations (right) of Alg. 4.

Table 4.1: Results of the experiment using inaccurate blur kernel.
kernel error 0◦ 1◦ 2◦ 3◦ 4◦ 5◦ 6◦ 7◦ 8◦ 9◦ 10◦ spatially-varying

PSNR [dB] 32.97 32.91 32.62 32.29 32.01 31.79 31.61 31.47 31.36 31.26 31.17 30.12

gain over single
2.85 2.88 3.06 3.40 3.81 4.18 4.47 4.70 4.88 5.03 5.15 6.58

image deblurring

the information on a blurred/noisy image pair makes the convergence of ADMM faster
than the single image deblurring/denoising, which is a positive side effect of using a
blurred/noisy image pair.

Robustness to Inaccurate Blur Kernels

To illustrate the robustness of our method to the estimation error of blur kernels, we
conducted the following experiment. First, we generated images blurred by a certain blur
kernel, which we refer to as the true blur kernel, and then in the image restoration step, we
used an inaccurate blur kernel. Specifically, we consider the two cases: motion blur and
spatially-varying blur. In the motion blur case, the true blur kernel was set to a horizontal
motion blur of 9 pixels, and the inaccurate blur kernel was set to a motion blur of 9 pixels
with its angle θ > 0, where we examined θ = 1◦ to 10◦ by 1◦. In the spatially-varying
blur case, the true blur matrix Φ was made from spatially-varying per-pixel kernels, as
visualized in Fig. 4.6, and the inaccurate blur kernel was set to be spatially invariant with
its kernel being the center kernel of the second image from left in Fig. 4.6. For both cases,
the blurred images contain an additive white Gaussian noise with the standard deviation
σn = 2, and the noisy images σb = 16.

Tab. 4.1 shows PSNR of restored images and the PSNR gain over the single image
deblurring, where these valuers are averaged over the 20 test images. One can observe that
for the motion blur case, the PSNR gain over the single image deblurring is proportional
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Figure 4.5: Restored results with their PSNR[dB] by using inaccurate blur kernels in the
motion blur case.

to the angle error, implying the robustness of our method to inaccurate blur kernels
compared with the single image deblurring. For the spartially-varying blur case, the
PSNR gain is also significant.

Fig. 4.5 and Fig. 4.6 depict several resulting images with their PSNR. One can see that
the single image deblurring leads to oversmoothing when the kernel error is large. By
contrast, our method can restore sharp images in such a situation.

Facilitation of Parameter Setting

In the final experiment, we demonstrate that the setting of the parameters on data-
fidelity in our method are much easier than the existing methods using a blurred/noisy
image pair in the restoration step [80, 81]. In the existing methods, image restoration
is performed by minimizing the sum of some specific regularization term and two data-
fidelity terms on a blurred/noisy image pair, which can be expressed as the following
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Figure 4.6: Restored results with their PSNR[dB] by using an inaccurate blur kernel in
the spatially-varying blur case.

Table 4.2: Best values of λ1 and λ2 in the existing formulation (Prob. (4.7)).
image img1 img2 img3 img4 img5 img6 img7 img8 img9 img10

λ1 733 1047 578 603 563 801 916 446 589 645

λ2 8 9 11 7 9 8 7 9 6 7

image img11 img12 img13 img14 img15 img16 img17 img18 img19 img20

λ1 770 895 988 932 905 812 917 678 920 650

λ2 6 8 8 8 7 6 8 8 8 8

optimization problem:

min
u

R(Ψu) +
λ1

2
∥Φu− vn∥2 +

λ2

2
∥u− vb∥2, (4.7)

where λ1, λ2 > 0 control the balance among the three terms.
Tab. 4.2 shows the (hand-optimized) best values of λ1 and λ2 (in terms of PSNR) in

Prob. (4.7) for each test image, where the regularization term was set to the color TV.
For every test image, the noise standard deviations of a blurred/noisy image pair (σn, σb)
were fixed at (2, 16). One can see that the best values of λ1 and λ2 are different for each
test image even though the noise standard deviations are the same for every test image.
This is because λ1 and λ2 depend on the latent image, so that the tuning of them is
very difficult. By contrast, the proposed method achieves almost the same restoration

performance with common parameters εn = 0.95
√
3Nσ2

n and εb = 0.95
√
3Nσ2

b for all the

test images, i.e., the parameter setting is much easier.
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4.2 Hyperspectral Image Fusion for Super-resolution

An HS image has rich spectral information, and HS imaging is a promising research
topic and offers many applications in a wide range of fields [19, 20]. These applications
require an HS image of high spatial and spectral resolution (HR-HS image). However,
since the amount of incident energy is limited, and there are critical tradeoffs between the
spatial resolution and the spectral resolution of HS imaging systems, it is a very difficult
task to capture an HR-HS image.

HS image fusion techniques [103–105] try to resolve this dilemma, and have been ac-
tively studied [106–121]. They estimate an HR-HS image using a pair of an observed
HS image of high spectral resolution but low spatial resolution (LR-HS image) and an
observed guide image of high spatial resolution but low spectral resolution. In general,
the guide image is assumed a panchromatic (PAN) image or an MS image, where a PAN
image has only 2D spatial information, i.e., a grayscale image.

Most recent HS image fusion methods [113–121] utilize apriori knowledge on an HS
image and observed information on an LR-HS image and a guide image, and estimate
HR-HS images by solving optimization problems. Thanks to the setting, they achieve
high-quality fusion. However, since these methods do not consider that a guide image
may also contain noise, they cannot achieve high-quality estimation, when the guide image
is noisy. As a result, the resulting HS images often have artifacts and spectral distortion.

To resolve the above problems, we propose a new robust HS image fusion method,
which considers noisy guide images. The proposed method estimates not only an HR-HS
image but also a clean guide image, leading to high quality and robust estimation. The
method is built upon a convex optimization problem, where its objective function consists
of regularization terms for HS and guide images, respectively, and an edge similarity term
between HS and guide images. Data-fidelity to an LR-HS and a guide image and their
dynamic ranges are evaluated by hard constraints. This problem fully utilizes observed
information and apriori knowledge of an HS and a guide image, so that it can estimate an
HR-HS image without artifacts and spectral distortion even if both observed images are
contaminated by severe noise. To solve the optimization problem, we adopt a primal-dual
splitting method.

4.2.1 Problem Formulation

In hyperspectral image fusion, an LR-HS image vH ∈ R
NB
r and an observed guide

image vg ∈ RM are assumed to be given with the observation model:

vH = SBū+ nH , (4.8)

vg = Rū+ ng, (4.9)

where S ∈ R
NB
r

×NB is a downsampling matrix with a downsampling rate of r (r is divisor
of N), B is a blur matrix, nH and ng are additive white Gaussian noises with standard
deviations σH and σg, respectively, and R ∈ RM×NB is a matrix representing the spectral
response of the observed PAN image (R calculates weighted average along the spectral
direction). In general, since HS images contain more noise than guide images, we assume
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σH > σg. This model says that both the LR-HS image and the observed guide image
contain considerable noise, which is a natural situation in hyperspectral imaging.

Based on the model, we formulate a hyperspectral image fusion problem as a convex
optimization problem. This problem estimates not only an HR-HS image uH ∈ RNB but
also a clean guide image ug ∈ RM , leading to high quality and robust estimation.

min
uH ,ug

HSSTV(uH) + λ∥DuH −DMug∥1,2 + ∥Dug∥1,2

s.t.


SBuH ∈ BvH

2,ε := {x ∈ R
NB
r |∥x− vH∥ ≤ ε},

ug ∈ Bvg

2,η := {x ∈ RN |∥x− vg∥ ≤ η},
uH ∈ [µuH , µuH ]

NB,

ug ∈ [µug , µug ]
M ,

(4.10)

where the parameter λ > 0 is the parameter adjusting evaluation degree of the second
term, and M ∈ RNB×M is a linear operator that replicates the estimated guide image
along the spectral direction so that the number of bands in the guide image is the same
as that in the HS image.

The first and third terms in Prob. (4.10) are regularization functions for HS image and
guide imege restoration, respectively. HSSTV has been shown to be very effective in HS
image restoration, and we describe HSSTV in Sec. 3.1.2. By using HSSTV, the proposed
hyperspectral image fusion method can do robust estimation when the LR-HS image and
the observed guide image contain noise. The regularization for guide image restoration is
vectorial TV.

The second term in Prob. (4.10) evaluates edge similarity between the HR-HS image uH

and the estimated guide image ug, which is originally proposed in [122]. Specifically, we
can assume that the non-zero differences of the HR-HS image are sparse and correspond
to edges, and that their positions should be the same as those of the estimated guide
image. Hence, evaluating their errors by the mixed ℓ1,2 norm is a reasonable approach
for exploiting the spatial information on the estimated guide image.

The first constraint in (4.10) serves as data-fidelity to the LR-HS image vH and is
defined as the vH -centered ℓ2-norm ball with the radius ε > 0. Likewise, the second
constraint in (4.10) plays data-fidelity role to the observed PAN image vg and is defined
as the vg-centered ℓ2-norm ball with the radius η > 0. The third and fourth constraint
in (4.10) represent the dynamic range of a HS image and a guide image, respectively.

4.2.2 Optimization

Since Prob. (4.10) is a convex but highly constrained nonsmooth optimization prob-
lem, we require a suitable iterative algorithm, e.g., an alternating direction method of
multipliers, to solve it. In this paper, we adopt a primal-dual splitting method [17] and
we explain it in Sec. 2.3. To solve Prob. (4.10) by the primal-dual splitting method, we
reformulate Prob. (4.10) into Prob. (2.9).

We put the four constraints in Prob. (4.10) into the objective function. By the indicator
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Algorithm 5: A primal-dual splitting method for Prob. (4.10).

input : u(0), u
(0)
g , y

(0)
1 , y

(0)
2 , y

(0)
3 , y

(0)
4 , y

(0)
5

1 while A stopping criterion is not satisfied do do

2 u(n+1) = proxγ1ι[µuH
,µuH

]NB
(u(n) − γ1(A

⊤
ωy

(n)
1 +D⊤y

(n)
2 +B⊤S⊤y

(n)
4 ));

3 u
(n+1)
g = proxγ1ι[µug ,µug ]N

(u
(n)
g − γ1(−M⊤D⊤y

(n)
2 +D⊤y

(n)
3 + y

(n)
5 ));

4 y
(n)
1 ← y

(n)
1 + γ2Aω(2u

(n+1) − u(n));

5 y
(n)
2 ← y

(n)
2 + γ2(D(2u(n+1) − u(n))−DM(2u

(n+1)
g − u

(n)
g ));

6 y
(n)
3 ← y

(n)
3 + γ2D(2u

(n+1)
g − u

(n)
g );

7 y
(n)
4 ← y

(n)
4 + γ2SB(2u(n+1) − u(n));

8 y
(n)
5 ← y

(n)
5 + γ2(2u

(n+1)
g − u

(n)
g );

9 y
(n+1)
1 = y

(n)
1 − γ2 prox 1

γ2
,∥·∥1,p

(
y
(n)
1
γ2

)
;

10 y
(n+1)
2 = y

(n)
2 − γ2 prox λ

γ2
,∥·∥1,2

(
y
(n)
2
γ2

)
;

11 y
(n+1)
3 = y

(n)
3 − γ2 prox 1

γ2
,∥·∥1,2

(
y
(n)
3
γ2

)
;

12 y
(n+1)
4 = y

(n)
4 − γ2 prox 1

γ2
,Bv

2,ε

(
y
(n)
4
γ2

)
;

13 y
(n+1)
5 = y

(n)
5 − γ2 prox 1

γ2
,Bvg

2,η

(
y
(n)
5
γ2

)
;

14 n← n+ 1;

functions, Prob. (4.10) can be rewritten as

min
uH ,ug

∥AωuH∥1,p + λ∥DuH −DMug∥1,2 + ∥Dug∥1,2 + ιBvH
2,ε

(SBuH) + ιBvg
2,η

(ug)+

ι[µuH
,µuH

]NB (uH) + ι[µug ,µug ]
M (ug). (4.11)

Prob. (4.10) and Prob. (4.11) are equivalent from the definition of the indicator function.
Then, by letting

g :RNB+M → R2 : (uH ,ug) 7→ (ι[µuH
,µuH

]NB (uH), ι[µug ,µug ]
M (ug))

h :R((5+
1
r )B+3)N+M → R ∪ {∞} : (y1,y2,y3,y4,y5) 7→

∥y1∥1,p + λ∥y2∥1,2 + ∥y3∥1,2 + ιBvH
2,ε

(y4) + ιBvg
2,η

(y5),

L :RN(B+1) → R((5+
1
r )B+3)N+M : (uH ,ug) 7→ (AωuH ,DuH −DMug,Dug,SBuH ,ug),

Prob. (4.11) is reduced to Prob. (2.9). Using (2.11), the resulting algorithm for solving
(4.10) is summarized in Alg. 5. Some steps in Alg. 5 require the proximity operators, and
we explain them in Sec 2.1.

4.2.3 Hyperspectral Pansharpening Experiments

In this section, we demonstrate the advantages of the proposed method over existing
HS pansharpening methods. For HS pansharpening, a guide image vg is a PAN image,
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Table 4.3: Quality measures for σg = 0.025 (top), σg = 0.05 (middle), and σ = 0.075
(bottom).

σg method CC SAM RMSE ERGAS
SFIM [112] 0.4528 38.87 1571 23.86

MTF-GLP [110] 0.6920 34.68 974.4 16.05
MTF-GLP-HPM [111] 0.4605 38.89 1576 23.80

GS [108] 0.5946 39.77 1101 20.54
GSA [109] 0.6841 41.71 1083 20.11
PCA [123] 0.5913 39.93 1111 20.72

0.025 GFPCA [107] 0.9019 11.18 462.1 8.045
CNMF [116] 0.8863 15.10 512.1 8.338

Bayesian Naive [113] 0.8498 27.20 602.2 11.07
Bayesian Sparse [114] 0.8526 26.68 594.1 10.95

HySure [115] 0.9273 15.93 402.9 7.017
proposed (p = 1) 0.9515 9.777 322.4 5.672
proposed (p = 2) 0.9516 9.763 322.2 5.666

SFIM 0.4170 39.45 1691 25.32
MTF-GLP 0.6284 35.47 1112 17.76

MTF-GLP-HPM 0.4286 39.54 1680 25.11
GS 0.5108 41.04 1213 22.39
GSA 0.6201 44.77 1303 23.81
PCA 0.5086 41.21 1221 22.53

0.05 GFPCA 0.8813 11.54 500.6 8.762
CNMF 0.7839 16.23 729.0 11.90

Bayesian Naive 0.7782 30.88 800.9 14.26
Bayesian Sparse 0.7830 30.34 785.4 14.03

HySure 0.8704 20.46 557.1 9.714
proposed (p = 1) 0.9409 9.891 344.4 6.135
proposed (p = 2) 0.9410 9.878 344.2 6.130

SFIM 0.4259 39.59 1680 25.63
MTF-GLP 0.5826 36.03 1210 18.92

MTF-GLP-HPM 0.4429 39.57 1643 25.25
GS 0.4310 42.00 1311 24.02
GSA 0.5459 48.48 1601 28.89
PCA 0.4297 42.17 1317 24.13

0.075 GFPCA 0.8694 11.71 520.2 9.138
CNMF 0.6811 17.69 951.5 15.48

Bayesian Naive 0.6920 35.00 1052 18.38
Bayesian Sparse 0.7003 34.35 1023 17.93

HySure 0.7868 25.34 774 13.52
proposed (p = 1) 0.9350 9.919 356.7 6.387
proposed (p = 2) 0.9351 9.907 356.5 6.382
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SAM

RMSE

ERGAS

λ ω

Figure 4.7: Quality measures versus λ in (4.10) (top) / ω in (3.6) (bottom).
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ground-truth observed observed SFIM MTF-GLP MTF-GLP-HPM
HS image PAN image

GS GSA PCA GFPCA CNMF

Bayes Naive Bayes Sparse HySure ℓ1-HSSTV ℓ1,2-HSSTV

Figure 4.8: Resulting HS images on the HS pansharpening experiments (σH = 0.1, σg =
0.05).
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i.e., the number of pixel M = N . In this experiments, we generated a pair of an LR-HS
and an observed PAN image based on (4.8) and (4.9), estimated the HR-HS image from
the pair. We used a Moffett field dataset as the true HR-HS image, which it is clipped
in a region of size 256 × 128 × 176 and normalized its dynamic range into [0, 1], i.e.,
µuH = µug = 0 and µuH = µug = 1 in Prob. (4.10). In (4.8) and (4.9), the downsampling

rate of S was set as r = 4, B was set to a 9× 9 Gaussian blur matrix, and R was set to
an weighted-average matrix with its weights wi (i = 1, . . . , B) were defined by

wi =

{
1, if 1 ≤ i ≤ 41
0, otherwise.

Then, we experimented with three pair of the standard deviations, (σH , σg) = (0.1, 0.025),
(0.1, 0.05), (0.1, 0.075). The above procedures follow Wald’s protocol [124], so that one
can see that it is a standard quality assessment methodology of HS pansharpening.

As compared methods, we utilize 11 existing methods: SFIM [112], MTF-GLP [110],
MTF-GLP-HPM [111], GS [108], GSA [109], PCA [123], GFPCA [107], CNMF [116],
Bayesian Naive [113], Bayesian Sparse [114] and HySure [115]. To set all parameters
of these methods other than HySure, we used setting in a MATLAB toolbox of HS
pansharpening1. For HySure, we set its hyperparameter as λvghi = 0.1σH to enhance
its performance, and other parameters were set in the same way with other methods.
For our method, the parameters ε and η in (4.10) were set to oracle value, i.e., ε =
∥v − SBū∥, η = ∥vg − Rū∥. Moreover, we varied λ ∈ [0.01, 0.1] and ω ∈ [0, 0.1] to
inspect suitable them. We set the stepsizes, the max iteration number and the stopping
criterion of the primal-dual splitting method to γ1 = 0.005, γ2 = 1/1100γ1, 5000 and
∥u(n) − u(n+1)∥/∥u(n)∥ < 1.0× 10−4, respectively.

For the evaluation of the estimation performance, we adopt cross correlation (CC),
the spectral angle mapper (SAM) [14], the root mean squared error (RMSE), and erreur
relative globale adimensionnelle de synthèse (ERGAS) [15] as quality measures, which are
defined as follows: for i = 1, . . . , N and j = 1, . . . , B,

CC(u, ū) =
1

B

B∑
j=1

∑N
i=1(ui+(j−1)N−αu,j)(ūi+(j−1)N−αū,j)√∑N

i=1(ui+(j−1)N−αu,j)2
∑N

i=1(ūi+(j−1)N−αū,j)2
,

SAM(u, ū) =
1

N

N∑
i=1

arccos

(
u⊤
i ūi

∥ui∥∥ūi∥

)
,

RMSE(u, ū) =
∥u− ū∥√

NB
,

ERGAS(u, ū) =
100

r

√√√√√ 1

B

B∑
j=1

∥u∗
j − ū∗

j∥2(
1
p1

⊤u∗
j

)2′
,

respectively, where ui = [ui, ui+N , . . . , ui+(B−1)N ] ∈ RB is the i-th spectral vector of

u, u∗
j = [uN(j−1)+1, uN(j−1)+2, . . . , uN(j−1)+N ] ∈ RN is the j-th spatial one, αu,j =

1http://openremotesensing.net/
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Table 4.4: Quality measures for σg = 0.04 (left) and σg = 0.06 (right) averaged all HS
images.

σm = 0.04 σm = 0.08
PSNR SAM ERGAS Q2n PSNR SAM ERGAS Q2n

MTF-GLP [110] 22.80 10.45 7.557 0.4937 22.28 11.09 7.905 0.4649
CNMF [116] 26.40 9.139 6.104 0.6264 24.25 10.68 7.211 0.5273
HySure [115] 28.65 8.354 7.511 0.6836 27.93 7.676 7.448 0.6550

MAPSMM [120] 24.06 10.39 14.00 0.4973 23.49 11.12 14.53 0.4658
proposed

(HTV, p = 1)
29.79 5.103 4.459 0.7110 28.64 5.277 4.931 0.6790

proposed
(HTV, p = 2)

29.89 5.020 4.386 0.7163 28.70 5.209 4.866 0.6832

proposed
(HSSTV, p = 1)

29.86 5.774 5.062 0.7179 28.56 6.062 5.569 0.6829

proposed
(HSSTV, p = 2)

29.95 5.711 5.006 0.7231 28.64 6.002 5.513 0.6880

∑N
i=1 ui+(j−1)N , αū,j =

∑N
i=1 ūi+(j−1)N and 1 = [1, . . . , 1] ∈ RN . Moreover, the closer CC

is 1 and the smaller SAM, RMSE and ERGAS are, the more alike the estimated HR-HS
image u and the true HR-HS image ū.

Tab. 4.3 shows CC, SAM, RMSE and ERGAS of the HR-HS images estimated by the
existing and proposed methods (p = 1 or 2 in (3.6)) for σg = 0.025, 0.05 and 0.075. For all
the quality measures and all standard deviations, one can see that the proposed method
outperforms all the existing methods.

Fig. 4.7 plots CC, SAM, RMSE and ERGAS of the HR-HS images estimated by the
proposed method versus λ in (4.10) and ω in (3.6), respectively, where we set ω = 0.01
in the λ graphs and λ = 0.03 in the ω graphs. In CC, RMSE and ERGAS case, we found
that λ ∈ [0.02, 0.05] and ω ∈ [0, 0.02] are good choices, and HSSTV almost need not
to evaluate the direct spatial piecewise smoothness of an HS image in this experimental
setting. This is because the second term in Prob. (4.10) can evaluate it not just edge
similarity. For SAM case, λ ∈ [0.06, 0.08] and ω ∈ [0.05, 0.08] are good choices.

Fig. 4.8 is the estimated HR-HS images in the (σH , σg) = (0.1, 0.05) case, which depicts
as RGB images (R = 16th, G = 32nd and B = 64th bands). One can see that the results
estimated by most of the existing methods remain noise in the observed PAN image
and include artifacts. In addition, since the color in the results by GFPCA, CNMF and
HySure is different from that in the original HS image, it shows that these methods
produce spectral distortion. In contrast, the proposed method can estimate the HR-HS
image without noise, artifacts and spectral distortion, and it is most similar to the true
HR-HS image.

4.2.4 Hyperspectral and Multispectral Image Fusion Experiments

We demonstrate the advantages of the proposed method over existing HS and MS fusion
methods. In the experience, first, we generated both LR-HS and MS images using a test
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ground-truth Observed HS image Observed MS image

MTF-GLP CNMF HySure MAPSMM

(19.74, 12.63, 10.32, 0.3373) (22.97, 9.713, 8.825, 0.4808) (24.65, 8.670, 22.40, 0.4339) (21.64, 10.26, 29.24, 0.2890)

Proposed Proposed Proposed Proposed
(HTV, p = 1) (HTV, p = 2) (HSSTV, p = 1) (HSSTV, p = 2)

(25.34, 7.520, 8.349, 0.9072)(25.36,7.500,8.340,0.9100)(24.55, 8.369, 9.480, 0.9020) (24.61, 8.316, 9.462, 0.9058)

Figure 4.9: Resulting HS images with four quality measure (PSNR[dB], SAM, ERGAS,
Q2n) (DC, σg = 0.04).
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HR-HS image based on (4.8) and (4.9), where nH and ng are additive white Gaussian
noises with standard deviation σH and σg, respectively. At this time, we adopted 15
HS images from the SpecTIR [44], MultiSpec [45], GIC [46], a Moffett field dataset and
Chikusei [125] as the test HS image, which are normalized its dynamic range into [0, 1].
In addition, the downsampling rate of S was set as r = 4, the kernel of B was a 9 × 9
Gaussian blur matrix, and R was a partial average matrix, which divides bands of an HS
image into eight parts, and averages it in each group.

Second, we estimated an HR-HS image from the pair by each method. In this exper-
iments, we utilized MTF-GLP [110], CNMF [116], HySure [115] and MAPSMM [120] as
compared methods. Here, with respect to MTF-GLP and MAPSMM, all parameters were
set to the recommended values in a MATLAB toolbox of HS and MS fusion [105]. In the
case of HySure, we decided that its parameter regarding data fidelity λϕ = 0.5(σh + σm),
and for CNMF, the parameter was set to θh = σh and θm = σm for fair comparison. The
other parameters in HySure and CNMF were set to the values of the same toolbox. For
the proposed method, we decided that the parameters ε = ∥vH−SBūH∥, η = ∥vg−Rūg∥,
ω = 0.02, and λ = 0.3. Besides, for verification of the availability of HSSTV regarding
an MS image denoising, we experimented by the method replacing the third term in
Prob. (4.10) with HSSTV, i.e., ∥Dug∥1,2 is replaced HSSTV(ug) with ω = 0.1.

Finally, we evaluated the estimated high HS images based on four standard quality
measures: PSNR[dB], SAM, ERGAS, and Q2n [66]. Note that the higher value of PSNR
and Q2n are, the more similar uh and ūh, and the lower value of SAM and ERGAS are,
the more similar both images. The settings of max iteration number and the stopping

criterion of Alg. 5 were 5000 and ∥u(n)
h − u

(n+1)
h ∥/∥u(n)

h ∥ < 1.0× 10−4, respectively.
Tab. 4.4 shows PSNR[dB], SAM, ERGAS and Q2n of the estimated HS images by the

existing and proposed methods for (σH , σg) = (0.1, 0.04) and (0.1, 0.06). At the time, its
values are the average of the results for all HS images. In Tab. 4.4, one can see that for
all the quality measures and for both noise intensity, the proposed method outperforms
all the existing methods. By comparison between the proposed by HTV and HSSTV,
in the almost PSNR, SAM and ERGAS cases, HTV is higher quality than HSSTV. We
think that since an MS image has weaker spectral correlation than an HS image, it hardly
necessary to evaluate the spatio-spectral piecewise smoothness of an MS image. The other
hands, in Q2n, the result of HSSTV and p = 2 is best. Since Q2n evaluates the structure
information and spectral/spatial distortion, the result of HSSTV have more correct detail
than that of HTV.

Fig. 4.9 is the estimated high HS images in the case of (σH , σg) = (0.1, 0.04) and DC.
They are depicted as RGB images, where R, G, and B bands were set to the 30th, 60th
and 90th bands of them in the case of the HS images, and these three bands are set as
(R, G, B) = (2, 4, 6) bands in the MS image. One can see that the results by existing
methods have artifacts and spectral distortion. Specifically, the results using MTF-GLP,
MAPSMM, and CNMF have many artifacts, so that the spatial smoothness of them
are lost. In the HySure case, the result almost does not have artifacts. However, since
the color of the result changes compared with the original HS image, HySure produces
the spectral distortion. In contrast, the proposed methods avoid artifacts and spectral
distortion. In addition, HSSTV preserves more edge than HTV.
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4.2.5 Compressed Hyperspecteral Pansharpening

HS images are usually captured by dispersing the incident light, HS imaging requires
a 2D spectral sensor for 1D spatial information. This means that capturing an HS image
requires much time, and it is impossible to acquire it in one shot. To tackle the above
problem, the concept of CS plays a very essential role [49, 50], and one-shot HS imaging
based on CS is actively studied [52,53].

HS imaging has another dilemma: capturing an HR-HS image itself is a challenging
task described in Sec. 4.2. HS image fusion resolves this dilemma, but existing HS image
fusion techniques [114–116,126–130] do not consider CS-based one-shot imaging scenarios.
Some MS image fusion methods involving the CS model have been proposed in [131–133].
However, since they assume that a given MS image only has 4 channel information (red,
green, blue, and infrared radiation), utilizing the spectral information of MS images would
be less important than that of HS images.

Based on the above discussion, we bridge the gap between the said two approaches for
HS imaging. Specifically, we propose a novel HS imaging methodology, an HS pansharpen-
ing involving the CS model, named compressed HS pansharpening (CHPAN). The concept
enables to generate an HR-HS image from a compressed LR-HS image with the help of a
PAN image. For realistic setting, the concept assumes that both a CS observation and a
PAN image are contaminated by noise. Then, an HR-HS and a clean PAN images are si-
multaneously estimated from the noisy pair. This process is formulated as an optimization
problem involving an effective spatio-spectral regularization [10,11]. After reformulation,
the problem can be efficiently solved by a primal-dual splitting method [17], which is a
proximal splitting algorithm applied to a variety of imaging problems [85,97,134,135].

Proposed Framework

In this methodology, a compressed LR-HS image vCHS ∈ RM is assumed to be given
by vCHS = ΦSBū + nCHS , where Φ ∈ M × rNB(M ≤ rNB) is a compressed sensing
matrix and nCHS is an additive white Gaussian noise with standard deviations σCHS .
We assume a PAN observation p ∈ RN like (4.9) with M = N .

To estimate an HR-HS image u and a clear PAN image q from the above two observa-
tions vCHS and p, we formulate a CHPAN as the following optimization problem:

min
u,q

HSSTV(u) + λ∥Du−DMq∥1,2 + ∥Dq∥1,2

s.t.


ΦSBu ∈ BvCHS

2,ε := {x ∈ RM |∥x− vCHS∥ ≤ ε},
q ∈ Bp

2,η := {x ∈ RN |∥x− p∥ ≤ η},
u ∈ [µu, µu]

NB,

q ∈ [µq, µq]
N ,

(4.12)

where M ∈ RNB×N is a linear operator that replicates a PAN image B times along the
spectral direction. This problem is equals to Prob. (4.10) replacing SBu with ΦSBu in
the first constraint. Therefore, the problem can be solved by Alg. 5 replacing B⊤S⊤ in
the step 2 of with B⊤S⊤Φ⊤ and SB in the step 7 with ΦSB.
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Table 4.5: Performance comparison with four quality measures (left: m = 0.25 (CHPAN
case) and r = 4 (HS pansharpening case); right: m = 0.0625 (CHPAN case) and r = 16
(HS pansharpening case)).

methods
quality measures r = 4 and m = 0.25 r = 16 and m = 0.0625

PSNR SSIM SAM Q2n PSNR SSIM SAM Q2n

HS pansharpening (p = 1) 31.95 0.8526 8.038 0.8417 29.23 0.7606 10.22 0.7616
HS pansharpening (p = 2) 31.97 0.8528 8.014 0.8419 29.24 0.7608 10.20 0.7617

CHPAN (p = 1) 33.12 0.8817 8.284 0.8566 30.24 0.8008 10.77 0.7908
CHPAN (p = 2) 33.14 0.8819 8.259 0.8568 30.25 0.8011 10.75 0.7910

Experiments

We illustrate the utility of the proposed methodology and the estimation method. In
the experiment, we generate a pair of a CS observation and a noisy PAN image from a
true HR-HS image based on the observation model, and estimate an HR-HS image from
the pair.

For the true HR-HS image, we used a Moffett field dataset, where we cropped a region
of size 256 × 128 × 176 and normalized its dynamic range into [0, 1]. The matrix R in
(4.9) was set to an weighted-average matrix, whose weights wi (i = 1, . . . , B) were defined
as wi = 1 for 1 ≤ i ≤ 41 and 0 otherwise. We set the standard deviations σCHS and
σg of additive white Gaussian noises nCHS and ng as 0.1 and 0.04, respectively, and the
sensing matrix Φ is a direct random-sampling matrix, where we examined two sampling
rates m = 0.25 and 0.0625.

We compared the results by CHPAN with that by HS pansharpening. We examined
two downsampling rates of S of HS pansharpening in (4.8), which are r = 4 and 16, and
then the HS pansharpening method with these rates were compared with the CHPAN
method with m = 0.25 and m = 0.0625, respectively. By this setting, the amount of
information in the observed HS image on the HS pansharpening experiment is equal to
that on the CHPAN experiment. Then, B was set to 5 × 5 and 9 × 9 Gaussian blur
matrixes in the case of r = 4 and 16.

The parameters ω in (3.6) and λ in (4.12) are set as 0.01 and 0.1, respectively. For our
CHPAN method, the parameters in (4.12) were set to ε = ∥vCHS−Φū∥ and η = ∥p− p̄∥,
where p̄ is a noise-less PAN image. We set the max iteration number and the stopping
criterion of the primal-dual splitting method to 5000 and ∥u(n) − u(n+1)∥/∥u(n)∥ < 1.0×
10−4, respectively. The parameters in HS pansharpening were also set in the same way.

We use four quality measures: PSNR[dB], SSIM, SAM, and Q2n. The larger the values
of PSNR, SSIM, and Q2n are, the more similar the estimated and true HS images are.
Likewise, the smaller the values of SAM is, the closer the two images are.

Tab. 4.5 shows PSNR[dB], SSIM, SAM, and Q2n of the estimated HS images by HS
pansharpening and CHPAN. For PSNR, SSIM, and Q2n, one can see that the CHPAN
method achieves to estimate better images than the HS pansharpening method. For SAM,
we will discuss later with Fig. 4.11.

Fig. 4.10 depicts the estimated HR-HS images as RGB images, where R, G, and B
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ground-truth HS pansharpening

observation

HS pansharpening

(p = 1)

HS pansharpening

(p = 2)

CHPAN observation CHPAN (p = 1) CHPAN (p = 2)

Figure 4.10: Resulting HS images (m = 0.0625 (CHPAN case) and r = 16 (HS pansharp-
ening case)).
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HS pansharpening (r = 2) HS pansharpening (r = 4)

CHPAN (m = 0.25) CHPAN (m = 0.0625)

Figure 4.11: Spectral response of the results.

bands were set to the 8th, 16th and 32nd bands of them. The figure shows that the
results of the CHPAN method are clearer and closer to the ground-truth than those by
the HS pansharpening method.

In Fig. 4.11, we show the spectral responses of the results in Fig. 4.10. Specially, we
picked the spectral vectors of 58th row of 78th col from the results. One can see that
HS pansharpening changes the spectral variation between the 90 and 100 bands in the
ground-truth. On the other hand, CHPAN results in spectral variation similar to the
original one. As in Tab. 4.5, we found that the value of SAM of the result by CHPAN is
slightly larger than that by HS pansharpening. Here, Tab. 4.5 shows that SAM value by
the result on CHPAN is slightly larger than that on HS pansharpening. SAM evaluates
the similarity of the spectral angles of two HS images. In other words, it ignores the error
(distance) between the spectral values of the two images. This means that even if the
error between two spectral responses is large, SAM is small (smaller is better) as long
as the shapes of the spectral responses of two HS images are similar. As can be seen in
Fig. 4.11, CHPAN estimates a more similar spectral response to the ground-truth than
HS pansharpening, despite the fact that CHPAN is slightly inferior to HS pansharpening
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in terms of SAM.
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Chapter 5

Conclusion

In this paper, we have proposed new robust methods for image restoration and fusion
via constrained convex optimization. In Chap. 1, we have explained the main technique,
image restoration. Images are affected by many types of degradations and noises, so image
restoration methods require robustness. Existing image restoration methods based on
optimization achieve high-quality restoration, but the methods have several problems: not
fully evaluating apriori knowledge on image and not considering outlier and/or modeling
error. To resolve the issue, our proposed methods offer the following merits: (i) the full
evaluation of apriori knowledge on an image by a new regularization technique, (ii) the
evaluation of the sparsity of outlier, and (iii) the effective employment of multiple images
with different characteristics.

In Chap. 2, we have introduced mathematical notation and abbreviation used in this
paper, and then we have explained proximal tools and algorithms solving a convex opti-
mization problem, e.g., ADMM and the primal-dual splitting method.

We have introduced our proposed image restoration and fusion methods in Chap. 3
and Chap. 4, respectively. In Chap. 3, we focus on HS images, because they are easily
affected by degradations and noises. For robust restoration, at first, we have proposed
a new regularization technique, named HSSTV. Our regularization evaluates spatial and
spectral piecewise smoothness on HS images as apriori knowledge. Next, we have formu-
lated constrained optimization problems using HSSTV for HS image denoising and CS
reconstruction. The problems evaluate the sparsity of outliers, so the proposed methods
achieve robust restoration for outliers. Besides, data-fidelity and the sparsity of outlier
are evaluated by hard constraints, leading to intuitive parameter settings. Then, we have
solved them with ADMM after reformulation. In the simulation experiments, we have
illustrated the advantage of the proposed methods over existing methods for several image
restoration problem: Gaussian noise removal, Gaussian-sparse mixed noise removal, and
CS reconstruction. Besides, we have confirmed the performance of the proposed methods
for real noise removal.

The approach (iii) is called image fusion, and we have proposed new robust image
fusion methods for two situations: blur and noisy image fusion and image fusion for
super-resolution. The former estimates a desirable image from a pair of observed blur
and noisy images, and the latter estimates an HR-HS image from an observed LR-HS
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image and a guide image. Our proposed methods assume that all observations have noise
and estimate a desirable image by solving constrained optimization problems. Since our
proposed methods fully utilize information in both observations by evaluating the data-
fidelity and/or the edge similarity between them, the methods achieve high-quality robust
image fusion. We have demonstrated the performance of the proposed methods for image
fusion problems. Besides, the results show that the proposed methods are robust for
modeling error because they can effectively utilize information in both observations.

In the above results and discussion, for image restoration and fusion, one can see that
our proposed methods are robust for noises, degradations, and modeling error. In this
work, we have mainly conducted simulation experiments, and the degradation and sensing
operators are ideally set. Therefore, the performance of the methods should be verified for
a real situation. In the future, we intend to confirm the performance using real datasets,
real estimated operators, and a real imaging system.
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primal-dual hybrid gradient algorithm with arbitrary sampling and imaging appli-
cations,” SIAM J. Optim., vol. 28, no. 4, pp. 2783–2808, 2018.

[64] P. L. Combettes and J.-C. Pesquet, “Stochastic forward-backward and primal-dual
approximation algorithms with application to online image restoration,” in Proc.
Eur. Signal Process. Conf. (EUSIPCO), Aug 2016, pp. 1813–1817.

[65] S. Ono, “Efficient constrained signal reconstruction by randomized epigraphical
projection,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
2019, pp. 4993–4997.

[66] A. Garzelli and F. Nencini, “Hypercomplex quality assessment of
multi/hyperspectral images,” IEEE Geosci. and Remote Sens. Lett., vol. 6,
no. 4, pp. 662–665, 2009.

[67] Qi Shan, Jiaya Jia, and Aseem Agarwala, “High-quality motion deblurring from a
single image,” ACM Transactions on Graphics, vol. 27, no. 3, pp. 73:1–73:10, 2008.

[68] Sunghyun Cho and Seungyong Lee, “Fast motion deblurring,” ACM Transactions
on Graphics, vol. 28, no. 5, pp. 145:1–145:8, 2009.

[69] Jian-Feng Cai, Hui Ji, Chaoqiang Liu, and Zuowei Shen, “Blind motion deblurring
from a single image using sparse approximation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), 2009, pp. 104–111.

[70] Li Xu and Jiaya Jia, “Two-phase kernel estimation for robust motion deblurring,”
in Proc. Eur. Conf. Comput. Vis. (ECCV), 2010, pp. 157–170.

[71] Dilip Krishnan, Terence Tay, and Rob Fergus, “Blind deconvolution using a nor-
malized sparsity measure,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2011, pp. 233–240.

[72] Jian-Feng Cai, Hui Ji, Chaoqiang Liu, and Zuowei Shen, “Framelet-based blind
motion deblurring from a single image,” IEEE Trans. Image Process., vol. 21, no.
2, pp. 562–572, 2012.

[73] Lin Zhong, Sunghyun Cho, Dimitris Metaxas, Sylvain Paris, and Jue Wang, “Han-
dling noise in single image deblurring using directional filters,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2013, pp. 612–619.

[74] Tomer Michaeli and Michal Irani, “Blind deblurring using internal patch recur-
rence,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2014, pp. 783–798.

[75] Daniele Perrone and Paolo Favaro, “A clearer picture of total variation blind decon-
volution,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 6, pp. 1041–1055,
2016.

72



[76] Wei-Sheng Lai, Jia-Bin Huang, Zhe Hu, Narendra Ahuja, and Ming-Hsuan Yang,
“A comparative study for single image blind deblurring,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2016, pp. 1701–1709.

[77] L. Yuan, J. Sun, L. Quan, and H. Y. Shum, “Image deblurring with blurred/noisy
image pairs,” ACM Transactions on Graphics, vol. 26, no. 3, pp. 1:1–1:10, 2007.

[78] S. Lee, H.M. Park, and S.Y. Hwang, “Motion deblurring using edge map with
blurred/noisy image pairs,” Optics Communications, vol. 285, no. 7, pp. 1777–
1786, 2012.

[79] C. Je, H. S. Jeon, C.H. Son, and H.M Park, “Disparity-based space-variant image
deblurring,” Signal Process.: Image Commun., vol. 28, no. 7, pp. 792–808, 2013.

[80] H. Li, Y. Zhang, J. Sun, and D. Gong, “Joint motion deblurring with blurred/noisy
image pair,” in Proc. Int. Conf. Pattern Recognit. (ICPR), 2014, pp. 1020–1024.

[81] C. H. Son and X. P. Zhang, “Layer-based approach for image pair fusion,” IEEE
Trans. Image Process., vol. 25, no. 6, pp. 2866–2881, 2016.

[82] L. Zhong, S. Cho, D. Metaxas, S. Paris, and J. Wang, “Handling noise in single im-
age deblurring using directional filters,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2013, pp. 612–619.

[83] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal
algorithms,” Phys. D, vol. 60, no. 1-4, pp. 259–268, 1992.

[84] B. Goldluecke, E. Strekalovskiy, and D. Cremers, “The natural vectorial total
variation which arises from geometric measure theory,” SIAM J. Imag. Sci., vol. 5,
no. 2, pp. 537–563, 2012.

[85] S. Ono and I. Yamada, “Decorrelated vectorial total variation,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2014.

[86] S. Lefkimmiatis and A. Roussos.and P. Maragos.and M. Unser, “Structure tensor
total variation,” SIAM J. Imag. Sci., vol. 8, no. 2, pp. 1090–1122, 2015.

[87] S. Ono, K. Shirai, and M. Okuda, “Vectorial total variation based on arranged
structure tensor for multichannel image restoration,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), 2016.

[88] S. Ono, “Distributed convex optimization via proximal splitting: A survey on
admm-based approaches,” Journal of The Society of Instrument and Control En-
gineers, vol. 55, no. 11, pp. 954–959, 2016, (in Japanese).

[89] S. Mallat, A wavelet tour of signal processing, Academic Press, 2nd edition, 1999.

[90] E. Candès, L. Demanet, D. L. Donoho, and L. Ying, “Fast discrete curvelet trans-
forms,” SIAM J. Multi. Model. Simul., vol. 5, no. 3, pp. 861–899, 2006.

73



[91] G. Gilboa and S. Osher, “Nonlocal linear image regularization and supervised
segmentation,” Multiscale Model. Simul., vol. 6, no. 2, pp. 595–630, 2007.

[92] A. Danielyan, V. Katkovnik, and K. Egiazarian, “BM3D frames and variational
image deblurring,” IEEE Trans. Image Process., vol. 21, no. 4, pp. 1715–1728,
2012.

[93] G. Chierchia, N. Pustelnik, B. Pesquet-Popescu, and J.-C. Pesquet, “A nonlo-
cal structure tensor-based approach for multicomponent image recovery problems,”
IEEE Trans. Image Process., vol. 23, no. 12, pp. 5531–5544, 2014.

[94] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local sparse models
for image restoration,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), 2009.

[95] D. Zoran and Y. Weiss, “From learning models of natural image patches to whole
image restoration,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), 2011.

[96] S. Sreehari, S. V. Venkatakrishnan, B. Wohlberg, G. T. Buzzard, L. F. Drummy,
J. P. Simmons, and C. A. Bouman, “Plug-and-play priors for bright field electron
tomography and sparse interpolation,” IEEE Trans. Comput. Imag., vol. 2, no. 4,
pp. 408–423, 2016.

[97] S. Ono, “Primal-dual plug-and-play image restoration,” IEEE Signal Process. Lett.,
vol. 24, no. 8, pp. 1108–1112, 2017.

[98] M. V. Afonso, J. M. Bioucas-Dias, and M. AT. Figueiredo, “An augmented la-
grangian approach to the constrained optimization formulation of imaging inverse
problems,” IEEE Trans. Image Process., vol. 20, no. 3, pp. 681–695, 2011.
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