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Abstract

This thesis is concerned with a mathematical analysis of nonlinear system
describing a motion of compressible viscoelastic fluid. We investigate the
large time behavior of solutions around a motionless state or parallel flows.
We first estabilish the LP decay estimates of solutions for 1 < p < oo, pro-
vided that the initial data is sufficiently close to the motionless state in the
whole space. In addition, we clarify the diffusion wave phenomena caused by
the sound waves and the elastic shear waves. We next show that if the ini-
tial perturbation is sufficiently small, the parallel low and the time-periodic
parallel flow are asymptotically stable, provided that the Reynolds and the
Mach numbers are small and the propagation speed of the shear wave is large.
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Chapter 1

Introduction

In this thesis, we consider the compressible viscoelastic system

Op + div(pv) =0,
p(Ow +v - Vv) — vAv — (v + 1V )Vdive 4+ Vp(p) = B2div(pF 'F) + pg,

OF +v-VF = (Vu)F.
(1.1)
Here the superscript |- stands for the transposition; p = p(z,t), v = T (v!(z,1),
v (x,t),v3(x,t)), and F = (F7*(z,t))1<jr<3 are the unknown density, veloc-
ity field, and deformation tensor, respectively, at the time t > 0 and x € §;
p = p(p) is the given pressure ; v and v/ are the viscosity coefficients satisfying

v>0,2v+3V > 0;

g is an given external force; § > 0 is the strength of the elasticity. We assume
that p/(1) > 0, and we denote v = /p/(1). If we set 5 = 0, the system (1.1)
settles into the compressible Navier-Stokes equation:

{ Oyp + div(pv) =0,

1.2
p(Oww +v-Vov) —vAv — (v + vV )Vdive + Vp(p) = pg. (12)

The system (1.1) is considered in a domain D C R?® with two cases; a
whole space D = R3 or an infinite layer D = Q:
Q={r=(,23); 2 = (x1,22) ER* 0 < 23 < 1}.
under the initial condition

(p,v, F)|t=0 = (po, vo, Fo). (1.3)



We also impose the following conditions

diV(poTF()) = 0, (14)
podetFo = 1, (15)

3 . .
> (0, Ft — Fy0,, F') =0, jk.1=1,2,3. (1.6)

—_

m

According to [11, Appendix A] and [28, Proposition 1], the conditions (1.5)
and (1.6) are invariant for ¢ > 0:

pdetF =1, (1.7)

3
> (F™M,, F* — Fm0, ') =0, jk1=1,23. (1.8)

m

—_

Here the constraint (1.7) stands for the compressibility of fluid and the con-
straint (1.8) originates in a certain symmetric property of the first order
derivatives of F' in the Lagrangian coordinates. Furthermore, it is proved in
[13, Appendix A] and [14, Appendix A] that the constraints (1.7) and (1.8)
imply that the condition (1.6) is invariant for ¢ > 0:

div(p'F) = 0. (1.9)

In the case of the infinite layer D = (), we impose the non-slip boundary
condition for v;

U|x3:0,1 =0. (110)
As for g, we consider the following two cases;

g = 91(333775)@17 €1 = T(17070)7 gl(oat) = gl(lat) = 0. (111)

9= g*(z3,t)er, ¢°(0,t) = g*(1,t) = 0. (1.12)

Here g' is a given smooth function of (x3,t) converging to gl = gl (z3) # 0
as t goes to infinity; ¢? is a T-periodic function of time ¢, where 7' > 0 is
a constant. Under a suitable condition on g with (1.11), we see that there
exists a parallel flow @, = (p, 9, F') of the problem (1.1)—(1.6) and (1.10) with
the following properties:

p=1, v="=0"(zs3,t)e;, F = (V(r—1le)) ™.



Here 9! (23,1 fo (w3,
If g is assumed to have the form (1.12), the system (1.1) with (1.7)-

(1.10) has a T-periodic solution ur = (pr, v, Frr) satisfying the following
properties:

~1
_ _ _ — — -1
pr =1, vp = vp(w3,t)er, Fr = Fp(ws,t) = <V($ —r ($3>t)€1)> :
Here 9} is a T-periodic function with respect to ¢ satisfying
3#/_1% = 1_’%

In the case of the whole space D = R3, we assume that ¢ = 0 and
(p,v, F) — (1,0,1) as |z| — oo. Here I is the 3 x 3 identity matrix.

The purpose of this thesis is to study the stability of the motionless state
(1,0,1) in the case of the whole space D = R3  and the stability of the
parallel flows %, and %r in the case of the infinite layer D = Q2.

The system (1.1) is derived by a motion of viscous compressible fluid
under the effect of elastic body whose corresponding energy functional is
given by W(F) = i 5| F|?, called the Hookean linear elasticity. Moreover,
we can classify the System (1.1) in a quasilinear parabolic-hyperbolic system
since the system (1.1) is a composite system of the compressible Navier-
Stokes equations and a first order hyperbolic system for F. We refer to
[6, 22, 32] for more physical details.

We first recall the works about the case § = 0. The large time behavior of
the solutions around (p,v) = (1,0) has been studied so far. Matsumura and
Nishida [24] showed the global existence of the solutions of the problem (1.2)—
(1.3) provided that the initial perturbation is sufficiently small in H3 N L,
and derived the decay estimate:

V4 (@), m(@)llz> < CL+ 67372, k=0,1,
where (¢, m) = (p — 1, pv). Hoff and Zumbrun [8] established the following
LP (1 < p < o0) decay estimates in R, n > 2:

C(1+1t)” <
C(l+1t)” ( 1), 2 <p< oo,

w\s w\s

(&), m(@) r < {

where L(t) =log(1+t) when n = 2, and L(t) = 1 when n > 3. Furthermore,
the authors of [8] derived the following asymptotic property:

[0~ (07 (o)) = w00

8



for 2 < p < oo. Here P(§) = I — %, ¢ € R™. According to [19], the
solution of the linearized system is expressed as the sum of two terms, one
is the incompressible part given by F ! (e‘”‘5|2t75(§)m0) which solves the
heat equation, and the other is the convolution of the heat kernel and the
fundamental solution of the wave equation, called the diffusion wave. The
authors of [8] found that the hyperbolic aspect of the sound waves plays a
role of the spreading effect of the wave equation, and the decay rate of the
solution becomes slower than the heat kernel when 1 < p < 2. On the other
hand, if 2 < p < oo, the compressible part of the solution (¢(t), m(t)) —

(O,J’:_1 (e"’|5|2t75(§)m0>> tends to O faster than the heat kernel. See also

[20] for the linearized problem. As for the mathematical study of the stability
of parallel flows, Kagei [17] studied the stability of stationary parallel flow,
and Brezina and Kagei [2] and Brezina [1] investigated the stability of time-
periodic parallel flow.

We next review the related works in the case > 0. The local in time
existence of the strong solutions of the system (1.1) with (1.3) in the whole
space was shown by Hu and Wang [10]. The global in time existence of
the strong solutions of the system (1.1) with (1.3) was proved by Hu and
Wang [11], Qian and Zhang [28], and Hu and Wu [12], provided that the
initial perturbation (pg — 1,vq, Fy — I) is sufficiently small. Hu and Wu [12]
also showed that if the initial perturbation (py — 1,vq, Fo — I) belongs to
L'(R3) N H?*(R?), the LP decay estimates hold for the case 2 < p < 6:

lu(t)llr < O(L+1)72075), (1.13)

Here u(t) = (¢, w,G) = (p — 1,v, F — I). Li, Wei and Yao [21, 34] extended
the above result to the case 2 < p < oo, and obtained the decay estimates in

L? of higher order derivatives:
IVE(p(t) = Lo(t), F(t) = D)2 < C(L+1)747%, k=0,1,...,N -1,
(1.14)

provided that uy = (pg — 1, v, Fy — I) belongs to HY, N > 3, and is small
in L' N H3. This follows from the diffusive aspect of the system (1.1). We
also refer to [9, 23, 35] in recent progresses.

The main difficulty arises in the fact that the constraints (1.7)—(1.9) are
nonlinear. To bypass the difficulty, Hu and Wu [12] found that the behavior
of G is controlled by its skew-symmetric part G — "G due to the constraint



(1.8). This property leads to the global in time existence theorem. The
authors of [12] next used the Helmholtz decomposition of w and the skew-
symmetric part of G' to derive the decay estimates (1.13) with 2 < p < 6
and (1.14) with N = 2. However, the decay rates in (1.13) reflect only the
parabolic aspect of the system (1.1); it would be desirable to establish decay
estimates which reflect the hyperbolic aspect of the system (1.1), which might
give the optimal decay rates.

As for the mathematical study of the stability of parallel flows of vis-
coelastic fluids, the incompressible case was studied by [4]. It was shown
in [4] that the parallel flow is exponentially stable. To the best knowledge
of the author, there are no results for the stabilty analysis of parallel flows
of compressible viscoelastic fluids. Comparing to the case around the mo-
tionless state (1,0, 1), it is expected that the dynamics of solutions around
parallel flows seems to be more complicated since the additional hyperbolic
aspect arises from the advection term.

In Chapter 3 we consider the initial problem in the whole space D = R3.
In view of the results in [8], it is expected that the system (1.1) has the
diffusion wave phenomena affected by the sound wave and the elastic shear
wave. In fact, let us consider the linearized system around (1,0, [):

Ou+ Lu = 0. (1.15)

Here L is the linearized operator given by

0 div 0
L= 7V —vA - pVdiv —3%div
0 -V 0

We then see that the solenoidal part of the velocity w, = F (75(5 ) satisfies
the following linear symmetric parabolic-hyperbolic system:

8t1g5 — vAwg — Bdivés =0,
0;Gy — BVws =0,

where G, = AF _1(75(6 )é), while the complimentary part w. = w — w, solves
the following strongly damped wave equation:

O*w, — (B* + ) Aw, — (v + D)0 Aw, = 0.

In view of [30], the solution of the linearized system (1.15) behaves different
to the case § = 0 ([8, 20]) by the additional hyperbolic aspect arising from
the elastic shear wave. As a result, the principal part of the linearized system
(1.15) can be regarded as a system of the strongly damped wave equation.

10



We shall show that if the initial perturbation uy = (py — 1, vo, Fy — I)
is sufficiently small in L' N H?3, then the global strong solution satisfies the
following L? decay estimate

1(p(t) = L), F(t) — Dl < €1+ 207272078 1< p< oo, t >0,

This result improves the L? estimates (1.13) obtained in [12, 21] for p > 2.

We give an outline of the proof of the main result of Chapter 3. As we
mentioned before, since the constraints (1.7)—(1.9) are nonlinear, straightfor-
ward application of the semigroup theory does not work well. To overcome
this obstacle, we adopt a material coordinate transform which makes the con-
straint (1.9) a linear one. We first introduce a displacement vector ¢ = z—X
as in [29]:

U(x,t) =x — X(x,t).

Here = x(X, t) is the material coordinate defined under the flow map

S o(a(X,0),0),
z(X,0) = X,

and X = X(z,t) denotes the inverse of x. Then we see that F' has the
form F — I = Vi) + h(V4). Here h(Vi)) is a function satisfying h(Vi)) =
O(|V¥|?) for |Vi| < 1. We next make use of the nonlinear transform
Y =1p— (=A)"1divT (Vi) + (1 + ¢)h(V1))). It turns out that the constraint
(1.9) becomes the linear condition ¢+ tr(Vey) = ¢ +divey = 0. Furthermore,
the decay estimate of the L? (1 < p < 0o) norm of u = (¢, w, G) is obtained
from U = (¢, w, V). Consequently, the LP decay estimate can be obtained
by employing the following integral equation

t
U(t) = e 'PU(0) + / e ILN(U)ds,
0
where N(U) = (N1(U),Ny(U),N3(U)) is a nonlinearity satisfying Ny +
trN3 = 0. We decompose U into the low-frequency part U; and the high-
frequency part U,,. We then apply the linearized analysis to U;-part, and a
variant of the Matsumura-Nishida energy method [25] to Us-part to estab-
lish the result in the case 2 < p < o0o. On the other hand, for 1 < p < 2,
we derive the L? estimate of U(t) by employing the results in [20, 30]. Since
the above mentioned nonlinear transform from 4 to ¢ includes the nonlocal
operator (—A)™! the case p = 1 is excluded here. See Remark 3.6 below.

In Chapter 4 we consider the initial boundary problem in D = {z =
(2, 23);2" = (x1,22) € T} Taxr, 0 < 23 < 1}. Here T2x = R/ (i—’r) Z,

11



a; > 0, 7 = 1,2. We first prove that if g has the form with a suitable
condition, the stationary parallel flow wu, exists and satisfies the following
properties:

u<wm<cem(wmm+0(l)+0(;9)

4

— —cok ﬁ —
oDl < Ce (;ww#+om+o ).

_ _ 1 1
IF(0) - Fulfye < oo wwm+0(m)+0(wJ)

where r = mm{y }, QL = B72(=02,) gk, and Fiy = (V(z — ¢l er)) ™
Here (—02,)" is the inverse of —02, with domain D(—02,) = H?(0,1) N
H(0,1).

We then show that if v > 1, v > 1, > 1 and [[0o[7s,) < 1,
then the system (1.1) with (1.3)-(1.6) and (1.10) has a unique global solu-
tion (p, v, F') such that (p,v, F) € C([0,00), H*(D)) and ||(p(t),v(t), F(t)) —
(1,9(t), F(t))|| g2 — 0 exponentially as t — oo, provided that (py — 1,v9 —
g, Fo—Fy) € H*(D) is sufficiently small. As a result, we have ||(p(t), v(t), F(t))—
(1,0, Fso)|lm2 — 0 exponentially as t — co. We thus see that if g., = glei #
0, then the viscoelastic compressible flow converges to the motionless state
with nontrivial deformation F,, due to the elastic force. This is quite in
contrast to the case of the usual viscous compressible fluid where nontriv-
ial flows are in general observed when external forces are nontrivial. In
fact, in the case of the usual viscous compressible fluid, under the action
of goo = gie1 # 0, a parallel flow with non-zero velocity field is stable for
sufficiently small perturbations when v > 1 and v > 1; see [17].

The proof of the main result of Chapter 4 is based on a variant of the
Matsumura-Nishida energy method [26] which gives an appropriate a priori
estimate of exponential decay type. To establish the a priori estimate, we
use the displacement vector 1. It then follows that F'is written in terms of
Y as

F=F—FV(6—30'e)F+h(V—da),
where h satisfies h(V (¥ — ¥l(t)er)) = O(|V (¢ — ¥(t)er)|?) for |[V(¢ —
Y(t)ey)| < 1. By using 1, the problem for the perturbation is reduced to

the one for u(t) = (¢(t),w(t),¢(t)) = (p(t) = 1,v(t) — v(t), ¥(t) — V' (t)es)

12



which takes the following form:

Oy + divw = f1,

dw — vAw — pVdivw + 12V — BA(AC + Kool) = 2,
0 —w + w3a"173’[;()0 = f37

Wlzs=01 =0, (laz=01 =10, (¢, w,()|=0 = (¢o, w0, o)

(1.16)

Here 7 = v + v/ and ¥ = ¥l e;; Koo( is a linear term of ¢ satisfying
1Kol < g%HVCHHl; f7, 7 = 1,2,3 are written in a sum of nonlinear
terms and linear terms with coefficients including ¥ and ' —}, which decay
exponentially in ¢. Applying a variant of the Matsumura-Nishida energy
method given in [29] to (1.17) and estimating the interaction between the
parallel flow and the perturbation, we establish the estimate:

t
||u(t)||§-[2><H2><H3 +/ 6_01(t_8)||u(8)||%IQXH3XH3 ds < Ce_qt||u0||§-[2><H2><H37
0

provided that v > 1,4 > 1, § > 1, and the initial perturbation is sufficiently
small.

We finally mention one remark. When g(z3,t) = gl (z3)e1, gt # 0,
the stationary parallel flow in this thesis is a solution ., = (1,0, Fso(23)),
which represents the motionless state with nontrivial deformation given by
F.. When 8 = 0, we formally obtain the usual compressible Navier-Stokes
equations (1.2). In this case, the system (1.2) has a parallel flow u, =
(1,04(x3)) with vs(z3) # 0; and it was shown by Kagei [17] that the parallel
flow u is stable if ¥ > 1 and v > 1. On the other hand, the main result
of this paper shows that the stationary parallel flow @ in the viscoelastic
compressible fluid is stable if v > 1, v > 1 and § > 1. Namely, the
motionless state ., with nontrivial deformation is stable if 5 > 1, while the
parallel flow with non-zero velocity field is stable if 5 = 0. This leads to an
interesting question what happens when [ decreases; it should occur some
transition to nontrivial flows at some value of 3. We will investigate this
issue in the future work.

In Chapter 5 we extend the analysis of [16] to the case of time-periodic
parallel flows. In contrast to the stationary case in [16], the velocity field is
no more motionless even when [ > 1. We shall show that the time-periodic
parallel flow is exponentially stable under sufficiently small perturbations, if
v, v and 8 are assumed to be sufficiently large compared to g'. We briefly
explain the main result of this paper in a more precise way.

Under a suitable condition on g, there exists a time-periodic parallel low

13



ur = (pr, vy, Fr) of (1.1) satisfying the following properties:

_ 1 1
sup || Fr(t) — Il = O (-) + sup [0 (#) o) = O (‘) |
te[0,T) B t€[0,T 4

We define the periodic cell by D:

D ={z= (2, 03);2' = (v1,33) € I’ T2x, 0 < x5 < 1}.

Here Tz. = R/ (i-f) Z,o;>0,j=1,2

The main result of Chapter 5 of this thesis states that if v > 1, v >
1 and 8 > 1, then the system (1.1) with (1.3)=(1.6) and (1.10) has a
unique global solution (p,v, F') such that (p,v,F) € C([0,00), H*(D)) and
(p(),v(t), F(t)) — (1, 07(t), Fr(t))||g> — 0 exponentially as ¢ — oo under
the small initial perturbation (py — 1, vy — v7(0), Fy — Fp(0)) € H*(D).

The proof of the main result of Chapter 5 is given by a similar argument
of Qian [29] which is based on a variant of the Matsumura-Nishida energy
method [26]. To establish the a priori estimate, we consider the following
problem for the perturbation u(t) = (4(t),w(t),G(t)) = (p(t) — 1,v(t) —
op(t),F(t) — Fr(t)):

( 0yp + V20, @ + divw = f,
dhw + 140y, w — vAw — vVdivw + v*V¢ — [2divG
Hw?dy, 07 )er + v(¢0;,07)er — B2div(GTEr) — B*(GP03,vp)er = fo,
G + 01.0,,G — Vw — (Vw)Ep + w392, By — (Vor)G = fs,
V¢ = —div'G + "Erdiv'G + fy,
( W]eg=01 =0, (¢, w,G)li=0 = (¢0, wo, Go).

(1.17)

Here ¢p = te; and By = Fp — I fi» 7 =1,2,3,4 are nonlinear terms. We
then show the following L? energy estimate of u:

¢
||u<t)H%{2><H2><H3 +/ eicl(tis)Hu(s)”iﬂxmxm ds < Ceiclt”UOH?ﬂxmxH%
0

provided that v > 1,4 > 1, # > 1, and the initial perturbation is sufficiently
small. In Chapter 4, it is assumed that the external force g converges to some
stationary force g, exponentially as t — oo, from which it is expected that
the time dependence of g can be regarded as a simple perturbation of the
stationary force. Indeed, by taking into account the exponential convergence

14



of g, the non-stationary parallel flow « is decomposed into the stationary
solution with zero velocity field and the exponentially decaying part; and the
latter part is treated as a simple perturbation of the former part because of
its exponential decay in time; in particular, the velocity field of the parallel
flow © converges to zero, together with its time derivative 0;v. In contrast to
the situation of Chapter 4, in this thesis, the parallel flow u7 under consid-
eration is time-periodic, and hence, the time fluctuation of the parallel flow
up remains for all ¢. This requires a more detail analysis of the interaction
between the time-periodic parallel low and the perturbation.

This thesis is organized as follows. In Chapter 2, we introduce some
notations which will be used throughout this thesis. In Chapter 3, we consider
the asymptotic behavior of solutions around the motionless state (1,0, 1) in
R? based on [15]. In Chapter 4, we discuss the stabilty of the parallel flow
u, based on [16]. In Chapter 5, we treat the stability of the time-periodic
parallel flow @y based on [7].

15



Chapter 2

Preliminaries

In this chapter, we prepare notations and function spaces which will be used
throughout the thesis.

To consider functlons peI‘IOdlC inz;, j = 1,21in Chapter 4 and Chapter
5, we set

Tor _R/<

For 1 < p < oo, we define LP(D) as the usual Lebesgue space on a
domain D, and its norm is denoted by || - ||zr(py. Similarly, W™P(D)(1 <
p < oo,m € {0} UN) denotes the m-th order L? Sobolev space on D, and its
norm is denoted by | - [|wmspy. We set H™(D) = W™2(D) for an integer
m > 0. For simplicity, we set LF = LP(D) x (L*(D))* x (L*(D))? (resp.
H™ = H™(D) x (H™(D))? x (H™(D))?) when D = H?ZlTil x (0,1) or

D =TR3. H}(D) denotes the completion of C§°(D) in H'(D), where

)Z a; >0,7=1,2.

;i

CyP(D) :=={f € C*| supp(f) : compact in D}.

The inner product of L?(D) is denoted by

(f.9) /f g@)dz, f.g9 € IX(D).

Here the symbol ~ stands for its complex conjugate. The partial derivatives of
a function v in z; (j = 1,2, 3) and ¢ are denoted by 0,,u and d,u, respectively.
A denotes the usual Laplacian with respect to x. For a multiindex a =
(1,0, a3) € ({0} UN)3 and € = T(&,&,&) € R?, we define 92 and £ as
0% = 091022023 and £ = £1€57°€5°, respectively. For a function u and a

1 “x2 T3

nonnegative integer k, V*u stands for V¥u = {0% | |a| = k}.

16



For a scalar valued function p = p(z), we define Vp by its gradient with re-
spect to z. For a vector valued function w = w(z) = " (w'(z), w?(x), w? (1)),
we define divw and (Vw)?* = (9,, w’) as its divergence and Jacobian matrix
with respect to z, respectively. When D = IT;_; T 2n X (0,1), we write m-th
order tangential derivatives of u as 0™u = {0%u | |a] = m,a3 = 0} and we
abbreviate 9 to 0. For a vector field w = T(w!, w? w?) and a function u, we

define V' - w' and A'u as
o 1 2
V' w' = 0,w' + 0p,w

and
Alu =092 u+ 02 u,

respectively. For a 3 x 3-matrix valued function F = F(z) = (F/*(x)),
we define its divergence divF and trace trF as (divEF) = Y25 _, 0, F7* and
trF = Zi:LF *k respectively. For matrix-valued functions F = (FI*);; <3
and G = (G'*)1<; k<3, we denote FVG by

3
(FVG) = (div(G'F) - G(div'F)) = Y~ F"*9, G™*.
k=1

For functions f = f(z) and g = g(x), we denote the convolution of f and
g by fxg:
(fxg)z) = [ flz—y)gly)dy.
R

We denote the Fourier transform of a function f = f(z) by f or Ff:

1

)] Joo T (€ R,

F&) = (FNHE) =

where 7 is the imaginary unit. The Fourier inverse transform is denoted by
FL
—1 1 &z 3
(F7N(x) = —= | [(e™"dE (z e R).
(271') 2 JR3

We recall the Sobolev inequalities.
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Lemma 2.1. The following inequalities hold:
(1) ||U||Loo(071) S C“U”Hl(()’l) for u € Hl(O, 1)
(i) [Julle < Clullg for 2<p <6, ue H".
(iii) ||ullr < Cllullge for 2 < p < oo, u € H>.

To estimate higher derivatives of solutions in Chapter 4 and Chapter 5,
we prepare the following lemmata.

Lemma 2.2. Let Q; € H*(Q) and Q; € H**1(Q) with [,Qdz = 0. If
(u,p) satisfies the Stokes system

divu = @ in €2,
—Au+Vp=Qsin Q,
u=0on {x3=01},
then there ezists a positive constant C' independent of (u,p) such that

HVIHZUHL? + Hvk+1p|’L2 < C([|@illgrer + 1Qall e + [Vl £2).- (2.1)

Lemma 2.3. Let f € H'(D) satisfy the Poincaré type inequality || f||r2(py <
C|IV fllr2(py, and g € L*(0,1). There holds the following inequality

l9.f 220y < Cligl2 IV fllz2(p)-

This can be proved in a similar manner to [4, Lemma 7.6]. So we omit
the proof.

Lemma 2.4. [17, LEMMA 8.3.] Let m be a nonnegative integer and 1 <
k < s. Suppose that F(x,t,y) is a smooth function on £ x (0,00) X I, where
I is a compact interval in R. For |a| + 2j = k there hold

1020 [F (. t, f1)] f 12

<{%@ﬁ@MMM4+G( AL+ D AN HID A s [l
= Colt, fu®)[[follo—r + Cu(t, f @H1+m0ﬁm““7@MDﬁmmwmkh

where

(5]
= (Z 107 f2 ()1 375-21) 2,
k=0

(IOl
DA {mVﬁum;+naﬁ@ma4ﬁ7
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Colt, f1(t)) := > sup [000, F (z,t, f1(z,1))],
(B < (), (BD)#(0,0) “

Cy(t, fi(t)) = > sup |020L00F (2, t, f1(x,1))|.

. . Q
(B.)< (), 1<p<|al+j “€

We use the following elementary inequality in Chapter 3. (See e.g., [33,
Lemma 3.1] for the proof.)

Lemma 2.5. If max{a,b} > 1, then the following estimate holds:

t
/ (14t —5)(1+ )" ds < C(1+ ¢)~ "o 4>
0
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Chapter 3

Diffusion wave phenomena and
LP decay estimates of solutions
of compressible viscoelastic
system

In this chapter we consider the compressible viscoelastic system
Op + div(pv) = 0,
{ p(Ow +v - Vo) — vAv — (v + V)Vdive + VP(p) = B2div(pF 'F),
OF +v-VF = (Vou)F

(3.1)
in the whole space R3.
We impose the following initial conditions

(p,v, F)|e=0 = (po, vo, o) (3.2)

diV(pOTF()) = O, podetFO = 1,

3
: : 3.3
S0, B - e, B —0, k=123
m=1

As we mentioned in the beginning of the introduction, the conditions (3.3)
are invariant for ¢t > 0:

pdetF =1, (3.4)

3
> (F™M0,, F* — F"F,, 'Y =0, jk,1=1,2,3. (3.5)

m=1
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div(p'F) = 0. (3.6)

The aim of this chapter is to study the large time behavior of solutions
of the problem (3.1)—(3.3) around a motionless state (p,v, F') = (1,0,1). We
will show that if the initial perturbation ug = (po— 1, vo, Fo — I) is sufficiently
small in L' N H?3, then the global strong solution satisfies the following L?
decay estimate

1(p(t) — 1, 0(t), F(t) — Dl|e < CA+1)2072)300) 1 < p< oo, t>0.

This result improves the decay estimate of the L” norm of the perturbation
u obtained in [12, 21] for p > 2.

This chapter is organized as follows. In Section 3.1 we state the main
result of this paper on the L” decay estimates. In Section 3.2 we reformulate
the problem to prove the main result. In Section 3.3, we give a solution
formula of the linearized problem and establish the LP decay estimates in the
case p > 2. In Section 3.4, we prove the LP decay estimate in the remaining
case 1 < p < 2. In the Appendix 3.A, we derive the solution formula of the
linearized problem.

3.1 Main result of Chapter 3

In this section, we state the main result of this chapter.
We set u(t) = (6(t), w(t), G(t)) = (p(t) — 1,v(t), F(£) — ). Then u(t)
satisfies the following initial value problem
( 0y + divw = ¢y,
Ow — vAw — vVdivw + v2Ve¢ — $2divG = ¢,
0,G — Vw = g3, (3.7)
Vo +div'G = ga,
L uli=o = uo = (¢, wo, Go)-

Here g;,j = 1,2, 3,4, denote the nonlinear terms;

g1 = —div(pw),
g2 = —w-Vw+ %(—VAU) — pVdivw + 4*Ve) — ﬁVQ(qb)
B¢ . 2 T T
Epn ¢d1vG + = ¢d1v(q§G +G G+ oG G),

g3 = —w - VG + VG,
g4 = —dIV(¢TG)7
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where .
Qo) = ¢ /0 P/(1+ sé)ds, VQ = 0(6)Vs

for |¢| < 1.
We recall the L? decay estimates obtained in [21].

Proposition 3.1. ([21]) Let ug € HY, N > 3. There is a positive number e
such that if ug satisfies ||uol| 1+ ||uo|| s < €0, then there exists a unique solu-
tion u(t) € C([0,00); HN) of the problem (3.7), and u(t) = (¢(t), w(t), G(t))

satisfies
t
lu(®) | +/0 (IVo(s)[in—1 + [IVw(s)fn + IVG(s)[[Fn-1)ds < ClluolFy,

IV u()]| 2 < C(1+ )72 (|luo| 1 + ||uol|azv)
fork=0,1,2,...,N—1andt > 0.

We next state the main result of this chapter which reflects an effect of
diffusion waves caused by an elastic aspect of the equations in decay proper-
ties.

Theorem 3.2. (i) Let 2 < p < oco. Assume that ¢y, Go, and F, ' satisfy
Voo —divi(I + Go)~™' =0 and Fy ' = VX, for some vector field Xo. There
is a positive number € such that if ug = (¢, wo, Go) satisfies ||ug||lgs < €
and ug € L', then there exists a unique solution u(t) € C([0,00); H*) of the
problem (3.7), and u(t) = (¢(t), w(t), G(t)) satisfies

u(®)r < C)(A + 1) 2078 72073) (fug| 1 + [[uo]| )

uniformly for t > 0. Here C(p) is a positive constant depending only on p.

(ii) Let 1 < p < 2. Assume that ¢g, Gy, and F,* satisfy Vo — div'(I +
Go)™' = 0 and F;' = VX, for some vector field Xo. There is a positive
number €, such that if ug = (¢o,wo, Go) satisfies ||uol|zs < €, and uy € L',
then there exists a unique solution u(t) € C([0,00); H?) of the problem (3.7),
and u(t) = (o(t), w(t), G(t)) satisfies

_3(1_1)pl(2_
(@)l < O+~ 26 (gl i + lluollzo + ol o)
uniformly for t > 0. Here C'(p) is a positive constant depending only on p.

Remark 3.3. Since % (1 — %) > 0 for 2 < p < oo, Theorem 3.2 (i) implies

that the L” norm of the perturbation u = (¢, w, G) tends to 0 faster than the
heat kernel as ¢ — oo. We thus improve the result in [21]. Furthermore, due
to the elastic force B2div(pF T F), we discover that if 2 < p < oo, then the
decay rate of the LP norm is faster than the result in [8] for the compressible
Navier-Stokes equations.
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3.2 Formulation of the problem

In this section, we rewrite the problem (3.7) into a specific form to prove
Theorem 3.2.

Let x = (X, ) be the material coordinate defined by the solution of the
flow map:

dx
E(X’t) =v(z(X,t),t),
z(X,0) =X,

and we denote its inverse by X = X(z,t). According to [6, 32|, F' is defined
by F = 2% Tt is shown in [29] that its inverse F~! is written as F~!(z,t) =
VX (z,t) if F;! has the form ;' = VX,. We set ¢ = x — X. Then ¢ is a

solution of
atﬂ;—’l]: —U'V@Z,

and satisfies

G = Vi + h(V), (3.8)

where h(VY) = (I — Vi)' — I — V.
We note that (3.8) is equivalent to

Vip=IT—(1+G)™" (3.9)
The following estimates hold for G and V.

Lemma 3.4. Assume that G and ¢ satisfy (3.8). There is a positive number
do such that if |G||gs < min{1,do}, the following inequalities hold:

CHIVElr < [|Gllze < OV lze, 1< p < o0, (3.10)
IV20ll2 < CIVG] 2, (3.11)
IV2¢ll2 < CUIVGIEn + IV?Cl12), (3.12)
IV*l2 < CUIVEm VGl + [IVPGll2). (3.13)

Proof. If |G| < 1, (3.9) implies

Vi =G — i(—@)l. (3.14)
=2
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Let ¢ > 0 be a positive constant such that |G|/~ < ¢||G|gz. I |G|y < 5,
then we have |G| < 9||G||L~ < 9¢||G||p2 < %, and hence

o0 o0 ~ e} 1 -1 1
Sor < re <Y (3) el i
=2 =2 =2
Therefore, we obtain
d (@) < S Gl for 1 <p < oo (3.15)
=2 Lp

Combining (3.14) and (3.15) yields (3.10).
To prove (3.11), we make use of (3.9), (3.10) and the following formula

Op,(F7')==F7'0,,FF', j=1,2,3.
It then follows that
VO, 12 = |05, (1 + G) || 12
=|(I+G)'0,GI + G) |2
< O+ G) Y7o 102, G| 2
< CHanGHLz.

This gives (3.11).
We next consider (3.12). Since

V@xjﬁxkqﬂ = =0y, 0, (I + Gt
=—(I+G)'0,,GI+G)9,,GU+G)"
+ (I +G)10,,0,GI+G)™
-~ I+ G)0,GI+G)'0,,G(I +G)7,
we have the following estimate by using Lemma 2.1

V2|2

<O+ G) e IVGILs + 1+ G) =l VGl 2)
< C(IVGlin + IV*Gllr2).

We thus obtain (3.12). By a similar computation, we have (3.13). This
completes the proof. B
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Based on Lemma 3.4, we consider 1/; instead of G. In terms of U =
(¢, w, V1)), the problem (3.7) is transformed into

¢ +divw = fi,

dw — vAw — DV divw + 2V ¢ — BEAY = fo,

VY — Vw = f, (3.16)
Vo + Vdive = f4,

U|t:0 =Uy = (¢o,w0, v%Uo)-

Here f;,7 = 1,2, 3,4, denote the nonlinear terms;

f1 = 01,
fo = go + BAdivR(VY),

fa==V(w- Vi),
fo=—divi(¢VY + (1 + ¢)h(VY)).

We next introduce ¥ by ¢ = ) — (=A) " divT (¢VY) + (1 + ¢)h(V))),
where (—A)™!' = F1¢|72F, and set ¥ = V. By this transformation,
the nonlinear constraint V¢ + Vdivey) = f4 is transformed into the linear
constraint ¢ + trVi = 0; and the problem (3.16) is rewritten as

0y + divw = Ny,

Oyw — vAw — vVdivw + v2V¢ — [2divl = Nj,

oW — Vw = N, (3.17)
Oo+tr¥ =0, ¥ =V,

U|t:0 =Up = (<Z50,w0,5p0)-

Here N;,j = 1,2, 3, denote the nonlinear terms;
Nl == f17
Ny = fo — B2div’ (¢VY + (1 4 ¢)h(V)),
N3 = —V(w- V) — V(=A)"'Vdiv(éw) — V(=A) "' Vdiv(w - Vi)).
We note that N; and N3 satisfy N; +trN3 = 0. The relations between 1) and

¢ are given as follows.

Lemma 3.5. (i) Let Uy and Uy be the ones as in (3.16) and (3.17), respec-
tiely.  If ¢o and vy satisfy Voo + Vdivyyy = 0, then it holds Uy = Uy =
(¢0, wo, Vo).
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(ii) There is a positive number &y such that the following assertion holds
true. Let
¢ € C([0,00); H?), ¢ € C([0,00); HY).
If |9l c(0,00);13) H 1Y || o (f0,00): 14y < Do, then there uniquely exz'stszz € C([0,00); HY)
such that

9]l c(0,00)1%) < Vo,
b=+ (—A) ' div (VY + (1 + @)h(Vi))). (3.18)

(iii) Let 1 < p < oo. There is a positive number 6, such that if ||| c((o0,00);13) +
VY|l c(o,00):m3) < min{do, 0, }, the following inequalities hold for t > 0:

CoH Ve e < IVE@)lee < ColI V()| 1o, (3.19)
(iv) There is a positive number 6, such that if ||¢||C([O,oo);H3)+||v'(;HC([O,oo);H?’) <
min{dy, 01}, the following inequalities hold fort > 0:
IVP(1) e < CUI(E) ]|z + ||V¢(t)||L°j) (3.20)
+C([Vo@)lm + [V (E)]10)?,
IOl <OV N .
+C([¢)| 2 + [V @) [ 2) [V () |12,
962 < OO+ ROl + IVSOL 100 o
+C([Vo@O)llm + V(O ) V()| 2,
IV (0)ll2 < CIVHOO)2 + CUISE) s + V()] 153)*- (3.23)

Proof. (i) The condition V¢, + Vdivily = 0 leads to ¢V + (1 +
qﬁo)h(V@EO) = 0. Therefore, we have Uy = Us = (¢o, wo, V@Eo).~

(if) We set T'(¢) = ¢ + (=A)'div' (VY + (1 + ¢)h(V)) and B 5 =
{f € C([0,00), HY)| I fllc(0.00). 514y < V0 }. We then see that if C1+/dg < 1,
then I' is a mapping of B, 4 into B, ;. Indeed, since

hVY) =((I — V§) ™ = 1)V,

we see that if [V4)| < 1, then

(Vi) = i(%)’”,

m=2



and hence,

(I=Vy) ' =T=> (Vi)™

m=1

Furthermore, since
O, (1 = V) ™) =(I = Vi)'V, (1 = V) ™,
we have
1(=2)""divTA(VY) |2 < CURVE) | + (V)| 12)
<CY (VD) e+ 1(VE)™122)
m=2
< CIVolie,
and similarly,
IV (=2) " div (V)| 2 < ClIV| 2]V 2.
As for the estimate of the second order derivative of (—A)~!divT h(V4)), since

O, 0, (I = V) ™) =(I = V) 'V, 00 (1 — V) 'V, (1 — Vip) ™!
+ (I = V)V, 0,9 (I — Vi) !
+ (I = V) 'V, b(I — V) 'V, (1 — Vi),

we have

IV2(=2) " div " A(V) |12

< O|IVh(V)l|r2

< O(II = V)™ = Iz IVl 2 + 11 = V) T [Zw IV 22] V2 2)
< CIVPlu V2| 2.

Similarly, one can show that
IV3(=2) 1 div 'A(V) 22 < CUIVY a2 V20 |2 + V201 70),

and

IV4(=2) " div TR(VY) 2 < CVI[Hs.

27



It then follows that if ¢) € B, /55, then

T ()| z74
< C([[ll s + [|(=A) 7 divT (Ve + (1 + @) (V)| 114)
< C(1llas + 16VY + (1 + ¢) (V)| 1)
+C[ VY + (1+ G)h(V) | s
< C(llas + I6las 1Vl ms + (1 + 6lla) IVE1%:)
< Chdyo
< V.

Therefore, I'(¢)) belongs to B, /5.
We next claim that if ’(/N)j € Bs (J =1,2), then

IT(1h1) = D(@2) e ooy sy < CaVoollthr — Pallco,coy i - (3.24)

To show this, we first have

ITW) = Do) -
< 16V = da)lls + 111+ &) (Vi) — h(Tka))
< Clolldn = sl + C(1+ B [B(V5) = BV 5]

As for the second term on the right-hand side, since
h(Vihy) — (Vi)
= ((I = Vi)™ = D)V (ih — 1))
+V (¢ — o) (I = Vi)™t = 1)
+H((I = V)= DV (b — o) (I — Vibo) ™t = 1),

we see that
1R(V41) = (V)| s < C(Vbo + 8o)l|thr — ol s

Therefore, we arrive at (3.24). Taking dy small such that Cov/dy < 1, we
conclude that I' is a contraction map in B, 4. By the contraction mapping

principle, we observe that there exists a unique ¢ € B, 5 such that 1; = F(@
This indicates the unique existence of 1 satisfying (3.18).
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(iii) We assume that [|¢[|c(o.ce)m3) + [1¥]lo(0.00):4) < & with some small
number 0 < § < 1 to be determined later. Since the Riesz operator R;f =

Fi [%f} is bounded from LP to LP for 1 < p < oo, we have

|V (=A)"tdivT (VY + (1 + @)h(V)) |
_ Hf [HT(M L1+ OIS ﬂ

(55
< GplloVe + (1 + (V)1
< G102V el e + IRV 2o + 1]l [ A(V) | v)-

We see from h(Ve) = S2°°_ (Vi)™ that

Lr

IR(V) | r < ClIV| L |V o
This leads to the estimate
IV (=A) " divT (Ve + (14 @) (V)| < Cp(8 + 62|V o

By taking 0 small such that C,(§ + %) < 3, we obtain (3.19).

(iv) We assume that ||d||c(jo,00);m3) + ||Q7E||C([O,oo);H4) < 0 with some small
number 0 < § < 1 to be determined later. It follows from the Sobolev
inequality and the Plancherel theorem that

IV(=A) "L divT (oYY + (1 + ¢)A(VY))| 1
~ ~ T
- | [Frevis v omeintE]
1| T 7 (&7
<C|F | FC(oVY + (1 + ¢)h(V¢)))@
< C(|8VY| 2 + [R(VY)| 2 + [|6h(V) || 112).

oo

H2

Since

1oVl < Clollm + IVl m2) (] L + |V 1)
+C(IVllar + V2| 1),
IRV |2 < CIVO| 2|V L + Cl V2|2,
6h(V) 2 < Clldll a2 (V]| 2 | V] oo + V201 30),

we have
IVl = V1) + V(=A) M div (6V + (1 + ¢)A(VE)) | 1
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< 06+ 8%Vl
+C(loll= + IVel|z=) + CUIVElm + V2 ).

By taking 0 small such that C'(6+6%) < 1, we arrive at (3.20). We can derive
(3.21)—(3.23) as in the proof of (ii). This completes the proof. B

Remark 3.6. Due to the restriction p > 1 in Lemma 3.5 (iii), the decay
estimate of L' norm of u(t) is excluded in Theorem 3.2.

3.3 Proof of Theorem 3.2 (i)

In this section, we prove Theorem 3.2 (i). The global existence and the L?
decay estimates of higher order derivatives are guaranteed by Proposition
3.1. Hence we focus on the derivation of the LP decay estimates except the

case p = 2. In view of Lemmata 3.4-3.5 and the interpolation inequality:
2

2 _
lu()|lr < Hu(t)HZQHu(t)Hi " (2 < p < o), it suffices to obtain the L™
decay estimate of U = (¢, w, V).

The problem (3.17) is written in the form:

8,5U + LU - N,
¢ + divy = 0, (3.25)
Uli=o = Ub,
where
0 div 0 N,
L= ¥V —vA-pVdiv-323div |, N=| N,
0 Y% 0 Ns

Theorem 3.2 (i) is proved by combining Lemma 3.4, Lemma 3.5 and the
following L>° decay estimate of U (t).

Proposition 3.7. There exists a positive number dy such that if ||uol|lLr +
|wollzs < o, then the following inequality

1Tz < C(L+8)"*([uollzr + [luolls)
holds for t > 0.

To prove Proposition 3.7, we first give the following L? decay estimates
for VFU(t).
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Proposition 3.8. There exists a positive number dy such that if ||uo|lzr +
|wollzs < o, then the following inequality

k
2

IV*U )2 < O+ )72 (uollzr + uollme)

holds for k=0,1,2 and t > 0.

Proposition 3.8 follows from Proposition 3.1, Lemma 3.4 and Lemma 3.5.
We next investigate the linearized problem

o,U + LU =0,
¢ + divep = 0, (3.26)
U|t:0 — Uo.

We denote by e~ the semigroup generated by —L. The solution of (3.26)
is written as U(t) = e *2U.

To investigate the large time behavior of U(t) = e Uy, we take the
Fourier transform with respect to . We then obtain

Otf] + [:50 =0,
G+ i€ =0, (3.27)
Uli=o = Us,
where
i€ b
LeU = | i720€ + (v|ePT + 0€T )b — iBPWe
T

We have the following expression of e~tle Us.

Lemma 3.9. If || # 0,5 Y 62+72, the solution of (3.27) is written as

Tv? o v4p
(&) KME ) K2(E) K360\ [ do(€)
pEt) | = [ K2 K20 £2En | [ a©) | 629
(e, 1) K& ) KP(E 1) K1) )\ Y(6)
Here
e _#3(5)6“4(£)t — pa(§)ers !
(€9 p3(8) — pa(é) ’
K12(§7 t) _ Zeus(ﬁ)t _ 6#4(5)15_'_
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ehs ©t _ et &t

== - me

(€ O — pa()er(er ([ 55)
11(8) — p2(§) I35
M3(€)€#3(5)t _ u4(§)e“4(5 ng
3(8) — pa(§) €2

K®(¢,t) =

_|_

K (&,t) =0

K®(,t) =

(€)= — p(g)em@" ( - ﬁ)
M1(§) _M2(§) |§|2
,ug(g)e“‘*(f)t _ M(ﬁ)eug(é)t §T§'
3(8) — pa(§) |§|2’

K&, t)¥(&) and K (&, t)in(§) are defined by

p1(€ ) f12(§) ( €2
em(f — eHalé fo

p3(&) — pa(€) 162"

(9t _ pp2()t T
K3 (&, ) (€) =i - (I ; 5) 0(€) "¢

+

K (&, 1) (&) =i?

) W(€)&

+ 52

Yo (€€,

(€)= () I35
ets@t _ era@t eTe
NGRS

where p; (&), j=1,2,3,4, are given by

_ 2 2| ¢4 2| |2
() = ~1EL I = ATEE.
,Uz(f) _ _V|£|2 - \/V2|£|4 - 462|§|2
2 4 _ 2 2 2
() = — P8 /G OV AT
_ 7 2 _ ~)2( 614 2 2 2
a(€) = (v +)[¢] \/(V+2v> [€1* = 405° +2?)IEP”

The proof of Lemma 3.9 will be given in Appendix 3.A.
The solution U(t) = e~ * Uy is thus given by

Ut) = e Uy = Fle e,
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To study the asymptotic behavior of U(t), we will make use of the fol-
lowing properties of p; (7 =1,2,3,4):
1 (&)? + Ve (&) + B2IEP =0, j = 1,2,

pi(§) ~ =S Il + (=LY Blgl, for Jel < 1, j = 1,2,
2
ia(€) ~ (e ~ el for Je] > 1,

15(6)* 4+ (v 4+ 0) [P (§) + (B2 +)IEP = 0, j = 3,4,

15 (&) N—V;LﬁISIQ+i(—1)j+1\/62+72|§|, for [¢] < 1, j = 3,4,
il e B
ps(§) ~ XD pa(§) ~ — (v + w)Ef, for [¢[ > 1.

We decompose the solution U(t) of the problem (3.25) into its low and
high frequency parts. Let @1, P € C®(R?) be cut-off functions such that

where

We define the operators P; and P,, on L? by
Piu=F Y $10), Pou=F YPpoott) for u € L2.

Lemma 3.10. P; (j = 1,00) have the following properties.
(1) PP+ Py =1.
(ii) 00 P, = P02, |09Pf|lr2 < Coallfllzz for o € ({0} UN)? and f € L.
(ii1) 0% Py = Py0%, |02 Psfllze < C||VO2Poofll12 for a € ({0} UN)3
with |a| =k >0 and f € H*1L.

Lemma 3.10 immediately follows from the definitions of P;, j = 1,00,
and the Plancherel theorem. We omit the proof.
The solution U(t) of (3.25) is decomposed as

U(t) = Ur(t) + Un(t), Ui(t) = PU(), Us(t) = PLU(1).
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It follows that Uy (t) = (¢1(t), wi(t), Vibi(t)) and Use(t) = (Poo(t), Weo(t), Viheo(t))

satisfy the equations

t
Uy (t) = e FUL (0 +/ e~ =9 P N (s)ds,
1() ' 1( ) 0 1 ( ) (3.29)
¢+ divepy = 0,

and

{ 0Uso + LUy = PN, (3.30)

boo + divips, = 0.
We first derive the L™ estimate of the low frequency part Ui (t).

Proposition 3.11. There exists a positive number 6y such that if ||ugl|r1 +
|wollzs < o, then the following inequality

1T )|z < C(L+ ) ([luollzr + lluollms)
holds fort > 0.
To prove Proposition 3.11, we introduce the following lemmata.

Lemma 3.12. Let f € L'. Then, the following estimates hold for j €
{0}UN, a € ({0}UN)? andt >0

, . [t _ on2()t 3 jtlal
olopr | = m@] oy,

| ; uz() _ (O e
opoy -t |1 e /’jgg ﬁ(&)@(f)] <Oty

LOO

. . [t _ ona()t 3 j+lal
e ml(@] oy,

a1 _Ms(f)eu‘*(g) — pa(§)ers®t ] itlal

where N(§) = n(m) with 17 € C*(S5?) and S? = {w € R?||w| = 1}.

Lemma 3.12 directly follows from [20, Theorem3.1].
We give the estimate of ||e U (0)]| 1 as follows.

Lemma 3.13. [t holds the following estimate:

le™ U1 (0) |z < C(1+ t)7[Juol| 1.
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Lemma 3.13 is a direct consequence of Lemma 3.12.

For simplicity, we set ||ugl|x = ||uol|zr + ||uo|| 3. We have the estimate of
fg ==L PN (5)]| oo ds.

Lemma 3.14. There exists a positive number &y such that if ||uo|lx < do,
then the following inequality

t
/ e~ 9L PN (5)||poeds < C(1 + 1) 72 ||uol| 2 (3.31)
0

holds for t > 0.

Proof. We first consider F ! [gﬁ (E)K(E,t — s)Ny(€, s)
and F1 [ KRBt — 5)Ny(€, s ] Since

£,

e F(V(ow))(&, s),

Nie,s) = <I—|§€—|§) F(Vw- V)€ s) +

we have

K23(€7t - S)NS(ga S)
e (O _ cuma(©)(-2) < e

11(€) — p2(€) TE
L era©)(t=s) _ ora(©)t=s) ¢T¢

Ns(f) - /M(f) |§‘2
K3(&,t — s)Ns(€, s)

B py (€)er2@=s) o (€)1 (€)(E=s) B 5T_§ w0 )
_ e (1-38) 7Vt viie )

— i

) F(V(w-VO)ESE  (332)

+if3 F(V(gw))(€, 5)E,

TR g Ve
(3.33)
We see from Lemma 3.12, (3.32) and (3.33) that
|7 [ar@k €t - 9)Mae )| a0
<O +t—8) 21+ 8) ?||luollx, j=1,2,3.
Since
INL(s)llzr < Clluls)llz2lIVuls)lze < C(1+ 5)7[luollx, (3.35)
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IN2() |20 < Clluls) || 2l Vuls) [l < O+ 5) 7 [luol|x, (3.36)
we see from Lemma 3.12 that
|7 [er© 6t - sNee )] | )
<O+t —8) 21+ 8)2||luollx, 5=1,2,3, k=1,2.
It follows from (3.34) and (3.37) that
le™ PN (5) || e < C(1 4t = 5)72(1 + 8) 7 [luo |-

By employing Lemma 2.5 with @ = b = 2, we have (3.31). This completes
the proof. B

Proof of Proposition 3.11. Taking L* norm of the first equation of
(3.29), we have

t
UL ()| < [l T1(0)]| +/ le™ =L PN (s)]| = ds. (3.38)
0

Together with (3.38), Lemma 3.13 and Lemma 3.14, then yields
1T ()]l < C1+ 1) [luo] 2 (3.39)

This completes the proof of Proposition 3.11. H
We next consider the high frequency part Us(t).

Proposition 3.15. There exists a positive number 6y such that if ||ugl| 1 +
|wollzs < o, then the following inequality

1Uso(2)

| oo < C(1+8)"2(JJuollpr + [|uollas)
holds fort > 0.
Proof. We set Q;OO = oo@/;, @oo = V?/:oo and Uoo = (Poo, Weo, VlEm)-

Since
HLPOOHLDo < CHLPOOHHQ
< |[Wsclpr2 + | P V(=A) M divT ¢V + (1 + ¢)h(V)) |2
< | VVs|lr2 4+ C| VPV (=A) T div T (¢Vh + (1 + ¢)h(VE)) ||
< || V*ollz2 + C(1 + )% |Jug v,

we have ||Uso(t)|| e < || V2U ()22 + C(1 + t)2||ug||x. We thus estimate
s In substitution for 1.
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We next consider ||Us||z~ instead of ||Usl||z~. By applying Py to the
problem (3.16), we obtain

Orhoo + divites = f1 00, ( )
Doy — VAW — PV AIVIee + 12V boo — B2diviWa = foo, (3.41)
OWno — Vos = f3,00, (3.42)
oo + divise = fic0, (3.43)
Uoo|t:o = Poo(¢07w07 @0),

where fioo = Poofjs j = 1,2,3, and fioo = —Pa(—A)"!divf,. We define
E[Uy] and D[U,] by

EUs] = IV2Usl72 + 1 > (05 wee, 02%cc),

|af=2

D[Ux] = Y WV wa| 47| divOgwee |[F2+e1y? |05 docl[Fater 52105 W[ 2],

lal=2

Here ¢; is a positive constant to be determined later.

We establish the following energy estimate of E[Us].

Proposition 3.16. The following estimate holds:

%E[Um] + D[U.] < C1\N. (3.44)
Here
N = 37 (721002 Froes 0260) | 4 (02 Fr 050050 )| + B21(02 oo, 050ic)|

=2

1| (85 Faoo, 07 tho0)| + e1(95 (= A) M div f o0, O wes)|
012/ (VO8 Froos 05 000)] + 1?1108 Frocllf )

Proof. We take the inner product of 92(3.40) with 0%¢., to obtain
1d
2dt

We take the inner product of 9%(3.41) with 0%w., to obtain

1d
__304002 VaamQ ~d-8a002
S 08w + IV + 7 divOR w32 16)

TV O% P, 0%Wa0) — BA(AiVO Wy, 0%We0) = (O a0, O Wos ).

107 Gooll7> — (VOF Poo, O wec) = (05 1,00, O Pc)- (3.45)
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We take the inner product of 9%(3.42) with 92¥,, to obtain

1d ~ - .
L o+ @O O20) = (O o000, (34T)
It then follows from 72 x (3.45) + (3.46) + 32 x (3.47) that
1d, , ]
—— (P10 bos iz + 05w |72 + B2 05Wso|72) + D05 wee
0100l 0 s+ P + D]

< V202 frio00 05 Poo)| 4 (D2 Faro0, 05 weo) | + B0 f,000 05 W) |
Here D°[0%w..] is given by
D°[0%wy] = V|| VOWeo |72 + D||divOwe |72

We next derive the dissipative estimate of ||0%W.||z2. By substituting
(3.43) to (3.41), we have

OsWoo — VAW, — DV iV — BQAJJOO — 72Vdiv1/~)oo = fooo— 72Vf4’oo. (3.49)
We take the inner product of 9%(3.49) with 9%t to obtain
(0:0%Wec, 0900) — V(AD2Wog, 000s0) — D(VAIVOWeo, 02
~ (A0 oo, O00) = YAV O e, O o) (3.50)
= (02 faoe 030000) = 72 (VO i, 0 c).
The first term on the left-hand side of (3.50) is written as
(005w, 07 vec)

_ _%(agw, O0e) + (0Wac, 05 1hcc)
d

— — (000, 00) — 05wl — (95(=2) 7 div fy e, D00

By integration by parts, the fourth term and fifth term of (3.50) are written as
(A0 s, 07 thoc) = (VO[] and —(VAivORtss, Ofthec) = [[divO; Pse] |7,
respectively. It then follows from (3.50) that

d ~ ~ . ae
_&<a§woo’a§w00) + ﬁQHVa:?wOOH%2 + ’YQHdW@x%oH%2

= V(A0 Weo, 0%1s0) + (VAivE Wes, D%1ss ) + ||0%Woo]| 2

(02 fa00, 0200) + (02(—A) iV f3,00, 00 We0) — Y2 (VO fio, 020cc).
(3.51)
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By integration by parts and the inequality ||0%weol|r2 < [|[VOSWeo |12 follow-
ing from Lemma 3.10 (iii), we have

V(A Wos, 01e0) + D(VAIVO Weo, D%1hse) + |00 w22
= —u(vaawm, Vs ) + (divO%wes, diva1hss ) + [|0%wso |22
~ 1 . 2 W 72 ] o
< (g + 3+ 3 ) DEwad + VOBl + v

It then follows from (3.51) that
d tel a7 a7 s

v o2 . N o 3.52
< (Gt Tt ) DI 410 fos 03] (3:52)
(02 (=) i fy e, O 00)| + 77 (VO Fre, 05000)]

Adding (3.48) to < x (3.52) and using [| 09|22 < 2(||div e |[2a+]|0% Fioel2),

we have

1d
2dt

% 2 c ~
+ (1 - ( Frot )) DU wac] + 108 0ucl 32 + 152102 e
< Y)(05 fr.00, 05 ¢oo)| + (05 fa00: 05 Woo) | + B2((02 f3,00, 05Ws0) |
+261[(0 fa,00, 0500 )| + 201 (02 (= A) 7' div f3,00, 05 W0 )|

+201'72|(vagf4,00a 82[7]}00” + 01'72||agf4,00”2L2'

— (71105 0ccll2 + 105 wec |72 + B21105¥ec|[F2 — 261(0 o, O3 t0cc))

(3.53)

We take ¢; > 0 small so that 1 — ¢ (% + 7% + %) > 1 and A1 |Us(D)]1%2 <

E[U.](t) < dyD[UL](t) for some positive numbers dy, dy > 0. By summing
(3.53) for |a| = 2, we obtain (3.44). This completes the proof. W
We next estimate N/ (¢).

Proposition 3.17. The following estimate holds uniformly in t > 0
N(t) < CodoD[Us)(t) + Co(1 + )~ |uol|%- (3.54)

Proposition 3.17 can be shown by using Lemma 2.1, Proposition 3.8, and
integration by parts. We omit the proof.
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Proof of Proposition 3.15 (continued). By taking &y so that
C1C50y < 3, it follows from (3.44) and (3.54) that

d -~ 1 ~
— — < -4 2. .
B0+ 5Bl < €1+ 0ol (3.55)

Therefore, we see from Lemma 2.5 with a = b =4 and (3.55) that

E[ﬁoo](t) < e_CtE[UOO](O) + C/ e_c(t_s)(l + 5) " *ds||ug |3

0
< O+ ) W0l +C [ (4 1= 971+ 5) sl
<cten il
Since [|Uno(t)]|20 < CE[Us](t) + C(1 4 )*||ug||%, we finally arrive at
Ul < C0 0ol

This completes the proof of Proposition 3.15. B
Proof of Proposition 3.7. Proposition 3.7 immediately follows from
Proposition 3.11 and Proposition 3.15. This completes the proof. l

3.4 Proof of Theorem 3.2 (ii

In this section, we give a proof of Theorem 3.2 (ii). In view of Lemmata
3.4-3.5, it suffices to obtain the following LP decay estimate of U = (¢, w, ¥)
to prove Theorem 3.2 (ii).

Proposition 3.18. There exists a positive number 6y such that if ||ugl| 1 +
l|wollzs < o, then the following inequality

_3(1_1 1(2__
1O < Co)(1+ )20 2GD (g 11 + ol 1o + o] a5)
holds for 1 <p <2 andt > 0.

Proposition 3.18 is a direct consequence of the L? estimates of U;(t) and
Us(t) which will be established below in Proposition 3.19 and Proposition
3.25, respectively.

We first consider the low frequency part Ui (t).

Proposition 3.19. There exists a positive number &y such that if ||uo||x < do,
then it holds the following estimate:

0L < C(1+£)2072) 2G|y 4.
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2
Since ||U1(t)||zr < |UL(8)]172 [|UL(t )HL2 , 1 < p <2, it is enough to show
the case p =1 only:

UL (8)]|r < C(1 + )2 [|ug| - (3.56)
To show (3.56), we introduce the following lemma.

Lemma 3.20. Let f € L'. Then, the following estimates hold for j > 0,
a € ({0}UN)? and t > 0:

i ep“l (ﬁ)t — eMQ (E)t

T ]| IRy
L It
. I 2(§)t _ 1(&)t 1 jila
T “1(5)‘“:1(5) — Zzgeu @(5)} L scasns =
o [eml@_ an©t e
w07 ) |, e
‘ r Ha(§)t _ w3 (8)t +la
opop - [l e 5@&@] <o+
L Lt
) i p(§t _ pa(é ) T T
oeF! (“1(5)2 e ZE ;6 et t) %@(5) .
<O+t
r ps(€)t _ pa ()t
8728&}-_1 (M3(£)€ ,LL4(§)€ . —1/§|2t) 5 g
w s ) ],

<C(1+1)7 "

Lemma 3.20 is obtained in [20, pp.216] and [30, pp.216] directly.
We have the estimate of || *2U;(0)]| 1.

Lemma 3.21. The following estimate holds for t > 0:
le” Uy (0l < C(L+ )2 [luo] 2.

Proof. The L' estimates of F e () KINE ) do(E)] ( = 1,2,3), and
F o1 (O K™(E, t)ip(€)] immediately follow from Lemma 3.20:

1F 21 (E) KIHE o)l < CA+ )2 dollrr, j=1,2,3,  (3.57)
1F 1 (€) K 2(€, £)ao(€)][| 1 < C(L + )2 Jwo]| 1. (3.58)

Since

Ml(g)eul( o ug(ﬁ)e“?(@t
Ml(g) - N2(§)
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(e O — py(§)er= O e, ) €'¢
(e ) gt
p13(€)ers Ot — 11, (&)era @)t e ) 5 £
(g ) gl
f(33 ![} _ Ml(ﬁ)em(f)t - M2(§)6u1(€)t¢
(&£ n@ - mE ©
(1 (§)em O — pp(€)erO —V|£I2t> £y
(e ) fgpote
et (Ot _ op2(é)t S
V@ @ ®
f13(€)er3 Ot — 11, (&)er @t B —u|£|2t) gT_g .
+< s(€) — a(©) ) el
(O _ gt
V%
A O —m®
we see from Lemma 3.20 that
1F Y @1(€) K2(€, )i ()]l 1 < C(L + t)3]|wol| 1, (3.59)
1F 21 (E) K (&, 1)06(E)] |11 < CL+ )2 ][ 11 (3.60)

It remains to estimate ]-":1[¢1(§)Af(23(§, )% and ,7:*1[@1({)}%32(@ t)ay).
We write (‘F‘_l[@l (€>K23(€a t)WO])ja ] - ]-7 27 37 and (‘7—-_1[@1 (5)K32<£7 t)wl)])jk7
1, k=1,2,3, as

(F 21 (&) K*(€, )Y’

3

3
23 £ UGFNE) — B2 (K Ly * BF)(E)

k= k=1

+ﬁ§]ﬁwﬁﬂwW%@x

k=1

(F e K2 (€, t)i)

3
:(}Cg*wo Z’Cl*ﬁgm*wo +ZK2*5]M*U}0 (),
=1 =1

where

6“1 (g)t — 6#2 (E)t

(&) — pa(é)
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’Clzfil

b= B —m© WQ} ’

a — . gé_ —a .
Lk =F ! Zfzé—‘f@ & ,a>0, 7,k 1=1,2,3.

Here f1;(€), j =1,2,3,4, are denoted by

ui(§) = =€ + is(6), 5= 1.2,

v+ - .
ni(§) = — 1 €17 + (8), j = 3,4
The estimates of K; and /ICy follow from Lemma 3.20. As for IC’S, we use the
following L' estimate of L{;, shown by Fujigaki and Miyakawa [5, pp.525-

526].

Lemma 3.22. Let a > 0 and j, k,l = 1,2,3. Then, the following inequality
holds fort > 0: 1
L7550 < Cat™2.

By using Lemma 3.20, Lemma 3.22 and the Young inequality, we obtain

1F @ () KB (&, )0 ()] < C((1+ )% +72)[[% || 1, (3.61)
1F @0 () K (&, )io ()] < C((1+1)7 +172)|wol| - (3.62)
We next show the following uniform bounds with respect to 0 <t < 1:
1F @1 (&) K (&, )0 ()] || < C[Wol|ur, t >0, (3.63)
1F 2 p1(€) K*2(€, )00 ()] 11 < Cllwoll e, t > 0. (3.64)

To derive (3.63) and (3.64), we prepare the following lemma proved in [31].

Lemma 3.23. ([31]) Let « = N + 0 — 3, where N > 0 is an integer and
0<o<1. Let f be a function such that

fe xR’ —{0}),
O f € LNR?), |n| < N,
0L F(©)] < Cylé]*, ¢ £ 0.

Then, we have

IFHFO) )| < C, ( max Cn) 2| 7371l 2 £ 0.

[n|<N+2
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By Taylor’s formula we have

MO — el €6, tep [ iteriensrg G
eﬂ(f) 22(5) |§T2l 1(5)256 zlﬁt/o BIEIF(EDst ] |€l|c21 o1(6)

for [¢] < 24, where f(jé]) = /1 — Zsl¢P.
It then follows from the above formula that

p1(§) w2 y
‘%@&>;@i$%®NSW$Wmmm7§

We next use Lemma 3.23 with (a, N,o) = (1,3,1) and calculate in a
similar argument as in [20, pp.228-229] to obtain

H}_ [e‘“( — e é)tg gkgl(p
() — pa(8) [ 7

Similarly, we can prove

H]:_l |:6H3( LR ITINS
13(§) — pa(§) [€J2

We thus arrive at (3.63) and (3.64).
By (3.61)—(3.64), we have

<C,0<t<l.
Ll

©

<C, 0<t<l.

Ll

w(©)

1F 21 (E) K2, )8 (€)] || 12 < C(1+ )2 ||Wo|[ 11, T >0, (3.65)
1F 21 (€)K€, g (€)]]| 1 < C(1+1)2 [Jwo] 2, ¢ > 0. (3.66)

We see from (3.57)—(3.60), (3.65) and (3.66) that
le UL (0) ]| 1 < C(1 + )2 |Juo]| -

This completes the proof of Lemma 3.21. B
We next estimate f(f |e=t=9L P N (5)]|z1ds.

Lemma 3.24. There exists a positive number &y such that if ||uo|lx < do,
then the following estimate holds:

t
/ le=LP N (s)||1ds < C(141)2 ||ug||x, t > 0.
0
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Proof. We obtain the following estimate in a similar argument as in the
proof of Lemma 3.14 by using (3.32), (3.33), (3.35), (3.36) and Lemma 3.20

|7 [ r et = 9me )] | | 567)
<C(+t—s) 21+ 8)2|ugllx, j k=1,2,3.

By using Lemma 2.5 with a = b = 2, we have

/71+t—sr%1+sﬁds

< (1+t)g/t(1+t—s)_2(1—|—5)_2d5 (3.68)

< C(1+1)2.

We then see from (3.67) and (3.68) that
t
/ le= 9L P N () || ids < C(1 + )2 ||uo]|x, t > 0.
0

This completes the proof. l
Proof of Proposition 3.19. Taking L' norm of the first equation of
(3.29), we obtain

t
1L (B)lzr < le” T1(0)]| e +/ le™ = E PN (s)| a1 ds.
0

This completes the proof. l
We next consider the high frequency part U..

Proposition 3.25. There exists a positive number 6, such that if ||uo||x < 0p,
then it holds the following estimate fort > 0:

U ()l2r < €1+ )" 207542 G ) (flug | 1o + [Juol)-

In order to prove Proposition 3.25, we prepare the following lemma.

Lemma 3.26. Let 1 < p < o0 and f € LP. Then, the following estimates
hold fort > 0:

et (€t _ op2(8)t

C —ct R . _
1 (8) — pa(§) <Ce | fllr 5+ |al =1,

Lp

otocr | 6ul6)
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< Ce™ | fllze,

Lr

Fl [M1<§>6”2(€ — pa(§)em )

MGE <£§ Pel)] @1

, L et3(O)t _ em(f) . t |
N [ug@ (g P <f>} < Ce|fllue, j+1al =1,
L
1 [13(8e @ — p(€)er© } et
d [ 13(8) — pa(§) Pel€)1(8) L < Ce™ | fllLe-

Lemma 3.26 directly follows from [30, Theorem 4.1]. We first consider
le™"Uso (0)1] -

Lemma 3.27. The following estimate holds for t > 0:
le ™ Uss (0) || 2» < Ce™|Jug]| o- (3.69)

Proof. The estimate (3.69) can be shown by using Lemma 3.5, Lemma
3.26 and the L? boundedness of the Riesz operator. This completes the proof.
[ |

We next estimate f(f e~ =L P N(s)| zrds.

Lemma 3.28. There exists a positive number §, such that if ||uol|x < 6y,
then the following estimate holds:

t
/ le= L PN (s) [ ds < O+ 1) 2070736 ||, > 0.
0

Proof. We obtain the following estimate in a similar argument as in the
proof of Lemma 3.27:

< Ce™ I[N (s) | o,

F ol R t = 5)Ni(é, 5)]

| O (&t - 5)Nu(es)] | 570)
j=123 k=12

In view of Lemma 2.1 and the L? boundedness of the Riesz operator, we have

INk(s)llo < CIU ()|} < C(L+ 1) 2 |fuol, k=1,2,3. (3.71)

By employing Lemma 2.5 with a = b = %, we have

w

t
/ e =) (14 5) 2ds < C(1+1t)"2

0
<C(1+1) % (3.72)

— o1+ 1) :0-5)+a(G-1),
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Together with (3.70)—(3.72) yields
¢ 3 1 1(2
/ le 9PN (s) | vds < C(1+5) 307043670 g .
0

This completes the proof. B
Proof of Proposition 3.25. By taking L” norm of the first equation of
(3.30), we have

t
|Use ()]0 < [l€F U~ (0)|| 0 +/ e~ 9L P N ()| Lrds. (3.73)
0

Combining Lemma 3.27, Lemma 3.28 and (3.73), we arrive at

Uno(®)|2r < C(1+ ) 207531 (fug | 1o + [Juo ), ¢ > 0.

This completes the proof of Proposition 3.25. B

Appendix 3.A Proof of Lemma 3.9

In this appendix, we derive the solution formula (3.28).
Proof of Lemma 3.9. We write (3.27) as

O+ i - b =0, (3.A.1)

O + V€2 + DETEW + i€ — iBAWE =0, (3.A.2)
QW — i € =0, (3.A.3)

G+i-Pp =0 ¥ =1i) ¢ (3.A.4)

(b, 0, 9)|1—o = (o, W0, D), o + i€ - Uy = 0. (3.A.5)

Setting w; = dyw, we see from (3.A.2)—(3.A.4) that
o (v —o, (© _ (o ) . 3.A.6
t(wt)-i—fl(f)( t) ) (wt)to (wt,O ( )

Here 0 I
A) = (52|£|21+72§T§ VPl +D€Tf)

ST

47



and
o = =760 — (VIELPT + €T E)ibo + i6° o€ (3.A.7)

To solve (3.28), we first investigate the characteristic equation of —A(&). Let
T be a 3 x 3 orthogonal matrix and set

(1)

A(TE) =TAE)'T.

We choose T' so that T¢ = re;, where r = €] and e; = "(1,0,0). Using this
T, we have

We see that

det(pls + A(€)) = det(T (uls + A€)TT)
= det(uls + A(T¢))

_ pul —1I

= det ( ﬁ27,21_|_,yg7,2€1‘r61 (u+ m”2)[—|— ir2e, e, >
= (W +vrip+ Bt + (v + D)+ (B2 4 977
= (= 11(6))* (1 — p2(6))* (1 — p3(€)) (1 — a(E)).

Therefore, the eigenvalues of —A(§) are given by p;(€), j = 1,2,3,4. We
note that

1 (§)pa() = B2IE1 (&) + pa(§) = —v|¢)?, (3.A.8)
13(E)pa(€) = (B2 + V7)€, (&) + pa(é) = —(v + 9)[€)>. (3.A.9)

By using (3.A.8) and (3.A.9), the eigenprojections for j;(§) of —A(§) are
written by

£ £¢
SRRTE BT (1- WQ e |
p1(8) — p2(8) —p1(§)p2() (I - |§§_|§> m(¢) <I B ’i—é)
' 11(€) (1—5—5 _(1_%
() = —=———x 5 ‘ |
pa(€) — pa(§) 111(€) a2 (&) (I — %) —p12(§) (I — i—é)
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3 3

1a(§) 15 =
_ 1 €2 I35
3(6) = ———x T e |
ps(€) —pa(§) | 5 £ 5 3
e )ﬁTf €€
_ 1 €[? I35
4(§) = T T
1O 1O om©is —m©g

The solution semigroup et is then expressed as
o~ tA©)

= MO (&) + er2 O, (€) + et T4 (€) 4 e O, (€)

L (6)6”2 — (& )em(ﬁ ([ B fT_f) et (Ot _ opa(&)t ([ B 57—_5)
_ pa(§) — pa() €12 1 (€) — pa(8) o €17
et (Ot _ ou2(8)t §T€> m({)e‘“(g)t — #2(5)6;@ Ot ( §T€>
_ I — I —
e = (1~ i GRS e
p3(€)er @ — puy(§)ers Ot €T¢ ets(Of — el gT¢
. O & P i@ m P
(O (5) 3O _ ena(Ot €T 1 (€)ers (Ot — M(g)em(s)t £T¢
p3(€) — pa(€) [€]7 p3(§) — pa(§) €17
It then follows that w(&,t) is written as
. B u1<€)€u2(f)t _ M2(€)eu1(§)t ( 57—5)
YT g ey e
et (Ot _ op2(&)t B 5T_5> .
" /‘1(6) - NQ(&) ( |€|2 wtﬂ(&) (3A10)

pi3(€)er+ Ot — 1 (€)era @t £T¢

13(8) — pa(§) €[?
et3(O)t _ opa(€)t 57—5 .

P el® = pal®) Jep o)

wo(€)

+
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Substituting (3.A.7) into (3.A.10) leads to

Ze,us(f)t — eHa(®)t

N PG A
(€O — piy(€)er e (1 5%) o(€)

1106 — i (€) g
+u3(§)e“3 — /~L4E ger@r e |€|2 Wo(€) (3.A.11)
e“l &)t - euz (1t £T¢
i - )( |§|2>
6“3 6“4 (&)t §
&) — (@) | e

We see from (3.A.1), (3.A.3), (3.A.5) and (3.A.11) that

t

A&, 1) = go(&) —i& - | W(E s)ds

Bt &
N fi5(€) e+ O — 1, (&)ers©t ~? (50(5) - 32 T§¢O(§)§
13(&) — pa(§) B2 + 42 B2+q% ¢
em )t eM(s)t A
M3 (g)eM(f)t - M(g)eus(s)t e @t
BTG R B 3 s SR

b(e.0) = n(©) + ([ ot s1as)

<¢o<£>§Tf £&y (5))

BZ_FFZE) (£|)§’2 ‘ﬂi :
”i(&)(_Zf(s)@(IT |€5|§) o(6)'¢

e g

a® te@)\ié lt)'¢ T
LB (66
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ua(€)t _ u3(€)t 2 R T 52 §T§ .
ey (‘59 SO + 0
eul _ euz(ﬁt (] §T€>
@ U7 e

6“3( — ek (&)t é’Tg

O @ e e
2(§)t _ (€ T .
4 Ml(é)eﬂ ( ) /~L2E ;6 ([ _ %) %<§>

M3(f)€“4 M4( )euaf @

RN (3 S S R T FR O

This completes the proof. l
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Chapter 4

Global existence of solutions of
the compressible viscoelastic
fluid around a parallel flow

In this chapter, we consider the stability of parallel flows of the compressible
viscoelastic system

Op + div(pv) =0, (4.1)

p(Ow +v - Vo) — pAv — (p + ) Vdive + VP(p) = adiv(pF 'F) + pg,
(4.2)
O,F +v-VF = VuF, (4.3)

in an infinite layer ; = R? x (0,1):
O ={r=(2,23); 2= (21,m) €R? 0<a3<I}.

Here p = p(x,t), v = v(x,t) and F = F(z,t) are the unknown density, the
velocity field and the deformation tensor, respectively, at the time t > 0
and position z € Q; ; P = P(p) is the pressure; p and p/ are the viscosity
coefficients satisfying p > 0 and %,u + 1/ > 0; a > 0 is the constant called
the speed of propagation of shear wave; ¢ is an external force which has the
form

9= "(g"(23,1),0,0), g'(0,%) = ¢'(l,1) =0, (4.4)

where ¢! is a given smooth function of (x3,t) converging to gl = gl (z3) # 0
as t goes to infinity. Here and in what follows - stands for the transposition.
We assume that P is a smooth function of p and satisfies

P'(ps) >0
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for a given positive number p,.
X denotes the material coordinate; and x = x(X,t) is a solution of the
flow map defined as

dz
n =v(z(X,t),t),
z(X,0)=X

When ¢ has the form of (4.4) and is suitably smooth, the system (4.1)-
(4.3) has a solution representing a parallel flow, more precisely, a solution
of the form @ = T(p, 9, F) with p = p, and ¥ = v'(x3,t)e;, where e; =
7(1,0,0) € R3.

In this chapter we show that the parallel flow @ is exponentially stable
under sufficiently small perturbations, if u, P'(p,) and « are sufficiently large
compared to g'. We briefly present the main result of this chapter in a more
precise way. We introduce the following non-dimensional variables:

1 -V 1 1 .
T = — t: —t D = — 0 — — F —= F
z l Y l ) v VU7 p p*p7 Y
L5 1 pellg'llo<?

The system (4.1)—(4.3) is then rewritten into the following dimensionless one
on the layer ; = R? x (0,1):

0:p + diva(pv) = 0, (4.

(@
~

P00 + 0 - Viad) — vAD — (v + V) Vadived + Vi P(p) = B2dive(pFF) + pg,
(4.6)
OF +1-ViF = V;0F. (4.7)
Here v, v/, v and 3 are the non-dimensional parameters defined as
L n i _PG) , va
PV PV’ Vo 1728

We note that Re = % and Ma = % are the Reynolds number and the Mach
number. We also assume that

V/
— <1

for some positive constant 1 > 0. We consider the system (4.5)—(4.7) under
the non-slip boundary condition

0|yg=01 =0 (4.8)
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and the initial condition
Plizo = po, Vim0 = V0, Flizo = Fp. (4.9)
We also impose the periodic boundary condition in Z’:
- 27
p, 0, F': ——periodic in Z;, j =1,2.
Q;

In what follows we abbreviate Z, ¢, p, 7, F,and § as z, t, p, v, F,and g,
respectively.

Under a suitable condition on g, we see that there exists a parallel flow
(p, v, F) of (4.5)—(4.7) with the following properties:

=1, v =0 (xs, t)ey, F=(V(z—1le))™

- —CcoKk 1 1
o0l < oo (Il +0 () +0 (=3) ).

4
1
|raw<t>\|%fssce-w(ﬁ Il + 0 +0 (1)),

* 1 1
”F() F ||H4<O —COI-it(—HU0||H5+O(B4>+O( 64)>

where k = mm{l/ }, Y (z3,1) fo (z3,5)ds, ¥t = B72(=02) gL,
and F, = (V(z — ¢ier)) ™. Here (=02,)7" is the inverse of —9?, with
domain D(—82,) = H*(0,1) N Hy (0, 1).

We introduce the displacement vector ¢ as in [29]:

Y(x,t) =x — X(z,t),
It then follows that F'is written in terms of v as
F=F+FV(y—de))) F+h(V(—1'er))),
where h satisfies h(V (1) — ' (t)er)) = O(|V (¢ —p*(t)e1))|?). By using ¢, the

problem for the perturbation is reduced to the one for u(t) = (¢(t), w(t), ((t)) =
(p(t) — 1,v(t) — o(t),¥(t) — ¥ (t)e1)) which takes the following form:

b |

O + divw = f1,

dyw — vAw — vVdivw + ¥?Vo — B2 (Al + K () = f2,
¢ — w + w30y, e = f3,

Was=01 =0, Claz=01 =10, (&, w,()|e=0 = (¢, wo, Go)-

(4.10)
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Here 7 = v + v/ and ¥y = ¥l e;; Koo( is a linear term of ¢ satisfying
1Koz < 52HV§||H1; f7, 7 = 1,2,3 are written in a sum of nonlinear
terms and linear terms with coefficients including v,! — ! which decay
exponentially in ¢.

This chapter is organized as follows. In Section 4.2 we show the existence
of the parallel flow and then state the main result of this chapter on the
stability of the parallel low. In Section 4.3 we establish the a priori estimate
which ensures the global existence of the perturbation and its exponential
decay as t — oo. In the Appendix 4.A, we give a proof of the existence of
the parallel flow and its estimates.

4.1 Main result of Chapter 4

In this section, we first show the existence of the parallel low. We then state
the main result of this chapter on the stability of the parallel flow.
We impose the following conditions for pg, Fy:

div(po 'Fy) = 0, (4.11)
podetFy = 1. (4.12)
It then follows from (4.5) that these quantities are conserved:
div(p'F) =0, (4.13)
pdetF’ = 1. (4.14)

We next show the existence of a parallel flow (p, 9, F) of (4.5)—(4.7), as
in [4], satisfying

p = ﬁ(w?n ) 16|t:0 =1,
0 =0 (x3,t)er, 0']pam01 =0, U'|1=0 = Tp,
F = F(x3,t), Flimo = 1.
Let z(X,t) = "(z}(X, ¢ 23(X,t)) be the flow map given by

= (a*(X, 1), 1),

This yields

(X, t) = X+</Ot v (3, )ds) er.
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We set
Y (xs,t) = /tvl(zrg, s)ds. (4.15)
0

By using the flow map z(X,t), deformation tensor F is written by

0X 0Xk ) 1<jr<s

It is easy to see that

_ aitg _1
0
1

F=V(z+d'e)=(V(z— "@161))_1 -

o O =
O = O

We set p = 1. Inserting (p, v, F) into (4.6), we see that and 1! satisfies

OGPt = BN —vd 20 = g, (416)
1/_}1('%‘37 0) = 07 atzzl(xfi? 0) = 1_)1(‘%37 0) .
We also assume the compatibility conditions for g':
Y0,t) =¢'(1,t) =0, t >0,
9'(0,t) = g*(1,1) (4.17)

02,9'(0,t) = 02,9"(1,t) =0, t > 0.
The existence of the parallel flow is now stated as follows.

Proposition 4.1. Let kK = min {1/, %2}, Assume that g* € H} ([0, 00); H*(0,1))

satisfies the compatibility conditions (4.17), and that g%, € H3(0,1). If g* sat-
isfies e 9,9t € L?((0,00); H3(0,1)) for some positive constant cqy, then the
following assertions hold.

If (p, 0, F)|=0 = (1,%0,1) and vy € H?(0,1), then there exist a parallel
flow (p,v, F) of (4.5)-(4.7) that has the following properties:

Wp=1

(ii) There exists ' = 1 (x3,t) € R such that

Pisg =0, F=V(z+dle) = (V(z—dler)) ", o' =o',
(iii) v € CY([0,00); H3(0,1)).
(iv) There hold the following estimates uniformly for t > 0:

12" () 75 0,1

—CoK bt 1 1 COR
< Ce o (HUOH%F”(O,I) + ;Hgl(O)H?{l(oJ) + WH@ 0 tatglu??(o,oo;ﬂl(o,l))) )
(4.18)

56



100" (8] %3 0.1y

— ok 4 _ 1 coR
< Ce s (ZlBon, + 15 O + 100 oo )
(4.19)

19 () = il Frs o

1
S Cefcomt <ﬁ“@0|

1 1 e
bron + 52l O + 5l 0 B moony ) -

(4.20)
Here 9L satisfies ) )
_626§3wio = gioa ¢io|x3:0,1 = 07
F(xs,t) = Fuol(ws) = V(z +her) = (Ve —dle))
and the following estimate
71 ¢
[¥aollm501) < @Hgooﬂm(o,l)- (4.21)

The proof of Proposition 4.1 will be given in the Appendix 4.A.

We next consider the stability of the parallel flow 4 = (1,9, F'). We will
show that under some assumptions on v, v, and 3, the perturbation of u
exists globally in time and decay exponentially as ¢ — co. To this end, we
first state the local time existence of the solution of the problem (4.5)—(4.9).
By a similar argument to that in [18, 29, 36], one can prove the following
local existence of solutions.

Proposition 4.2. If (pg, vy, Fy) € H*(Q) satisfies vg € HY(Q), (4.11)(4.12)
and pg > %, then there exists positive numbers T and C' such that the following
assertion holds. The problem (4.5)—(4.9) has a unique solution (p,v, F) €
C((0, T}, HA()) satisfying 0ip, O,F € C(0,T]; 1), v € L2([0,T}; (),
ow € C([0,T]; L*(2)) N L*([0, T); HY(Q)) and

1(p(t), v(t), F ()|l a2 < Cli(po, vo, Fo)l| >
for0<t<T.
As for the global existence, we have the following result.

Theorem 4.3. Under the assumptions of the Propositions 4.1 and 4.2, there
" : IRy s

are positive numbers vy, Yo and Po such that if v > vy, ;1 > vy and g B3,

then the following assertion holds. There is a positive number ey such that
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if (po,vo, Fo) € H*(Q) and vy € H°(0,1) satisfies ||(po — 1,00 — vo, Fo —
F0)||]2LIQ(Q) + H170||§{5(0’1) < €, Jo(po — 1)dz = 0, then there exists a unique

global solution (p,v, F) € C([0,00); H*(Q)) of the problem (4.5)-(4.9), and
the perturbation U(t) = (p(t) — 1,v(t) — v(t), F(t) — F(t)) satisfies

t
U ()17 +/0 e~ NU ()| ds < Ce || Usl7

fort > 0.

4.2 A priori estimate

Theorem 4.3 is proved by combining Proposition 4.2 and the following a
priori estimate.

Proposition 4.4. There exist positive numbers vy, Yo and [y such that if
v >, #2”, > 42 and 5—; > 32, then the following assertion holds. Let T
be an arbitrarily given positive number. Then there exists a positive constant
d such that if ||U0HH5 o1 t E(t) < 6 uniformly for t € [0,T), it holds the
following estimate:

B+ /0 L eer(t=9) P(s)ds < © (MtE(O) + /0 LR (5)ds )

uniformly for t € [0,T], where C is a positive constant independent of T
Here E(t) and D(t) are some quantities equivalent to

U172 + 10.U )72

and
U ()12 3 a2 + 1000 (E) 172 111w 12

respectivity; R(t) is a function satisfying

- 1 1 \/; 7\ = - % - ~
R(t) <C (; + 7 + N + B) D(t) + (E(t)2 + E(t))D(t)

uniformly for t € [0, T] with a positive constant C' independent of T' .

By a standard argument, one can show that Propositions 4.2 and 4.4

imply Theorem 4.3 if ||Up|| = + HUOHH5 (0.1) is small enough and v > 1y, +2, >
2

5 52 > (33 for some positive constants vg, Yo and [p.
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To prove Proposition 4.4, we introduce the displacement vector and write
the perturbation equation by using the displacement vector in place of F.
We denote the displacement vector by v:

U(x,t) =x — X(x,t).
We see that 1 satisfies
oY —v=—v-V,
Ul {zs=0,13 = 0.

See [29]. We also note that F' has its inverse F~! for ¢ > 0 by (4.14), and
F~!is written as 5x
G=F1=".
Ox
We assume that G and X satisfy

G(z,0) = VX(x,0) for x € D,
(4.22)
X =zon {x3=0,1} for t > 0.
Lemma 4.5. If G = F~! satisfies the condition (4.22), then
G=VX (4.23)

forxe D andt > 0.

Proof. A direct computation shows that G is a solution of the following
transport equation:

0G+v-VG+ GVv =0. (4.24)

We also see that VX satisfies the same equation as G. By (4.22), G and
VX have the same initial value, and therefore, the uniqueness of solutions
of (4.24) implies that G = VX. This completes the proof. B

In terms of ¥, we see from (4.23) that F is written as

F=I-VY) ' =T1+Vy+h(Vy).

Here
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It then follows that (p, v,1) satisfies

Op + div(pv) =0,

VY e VPT(P) = B3(AY + N(VY)) + g,

8tv+v-Vv—zAv—
p p

atl/J_fU: —v - Vi,
(I — Vy)Vp = pVdivy — div(p'h),
'U|003:0,1 =0, ¢|w3:0,1 =0, (P»Ua¢)|t:o = (pOa U(),’Qbo),
where
N(Vy) = div(h(Vy)) + (V) V (Vi)
+H(VP)V (V) + (M(VY))V(VY) + (h(V))V (h(V1))).
Weset p=1+¢, v=10+w and ¢ = ¢p'e; + (. Since

F — F = FV(F + W (VQ).

with
ht = h(FV()F,
[h'| = O(IV¢[?) for V(| < 1,
we see that u = (¢, w,() is a solution of the following initial boundary
problem:

0y + divw = 1, ( )
Ow — vAw — Vdivw + 12Vé — B2(AC + KooC) = f2, (4.26)
¢ — w4 wdp, e = f°, (4.27)
Vo = —Vdiv¢ + MooC + 4, (4.28)
Wg=01 = 0, (laz=01 =10, (¢, w,()|i=0 = (do, w0, o)- (4.29)
Here 7 = v + 1/, oo = YL e1; Kool and M, are given by
Kool = div(E V(¢ + ExV( + ELV(EL)

+ (FoV(F)VEy + EV(F VL),
Mool = —div (Ex V¢ 4 VCEy + ExV(Ey) + T Exdiv (FyVCFL),
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and f/, j = 1,2,3,4, denote the sum of nonlinear terms and linear terms
with coefficients including v, ¥ezp = ¥ — Yoo;

P =fi+ A
fII/ = __1ax1¢7 f]1\7 = —dIV(¢w>,

f2 — T(f2’17f2’2;f2’3) — ff + f]2\7’
f[2, = _nga??gl_) - ﬁlamw - w3(9$317 - 62K€1PC’

f]2V = —w- -YVw+ %(—Aw + ¢a§3fa) — %Vdivw
72¢ 72 272
—1+¢V¢— 1+¢VQ(¢)+5 h*,

=T 12 0% = fi+ S

fi = —w0pyery — 00, C, fR = —w -V,
fr="TU0 2 ) = S+

fL = MG, fy =—"Fdiv(¢(FVCF) + (1+ ¢)ht),

where

Eoozpoo_lzv(d_)éoel)v E‘ea:p:F‘_F’oo:V(_1 61)7

exp

Q) - | P11 s9)ds, VQ = 0(6)V6 for [0] < 1
h? = FVh' + (FV(F)V(FV(F + h') + h'V(F + FVCEF + hY),
KeppC = div(Eey)V(F o + F NV By + EerpVCEeyy)
+(EVCF)VE ey + (FaoV{Eerp + EoryVCFo + EoryV(Eery)V Es
4+ EeuyV(EVCE) 4 FoV(FsxNVCFE sy + EezyV(Fs + EeypV(Eesp),
My = —TF v (EeppV(Fy + FuV(Eeyy
+FEezpV(Eep) + "Eeppdiv (FVCE).

Since pg = 1+ ¢p and Fy = I+ V(o +h(V (), we see from (4.11), (4.12), and
the fact [, (po — 1)dz = 0 that the following relations hold:

(I + V¢ +h(VE)) Voo = —(1+ ¢p)(Vdivey + div(T(h(V())),  (4.30)
(14 ) det(I + V¢ + h(VE)) = 1, (4.31)

/ dodx = 0. (4.32)
D
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We then have the following a priori estimate for the perturbation u =
(¢, w, ().

Proposition 4.6. Under the assumption of Proposition 4.4, the following
assertion holds. There exists a positive constant 6 with 6 < 1 such that if
||170||?{5(071) + E(t) < 0 uniformly for t € [0,T], then it holds the following
estimate:

E(t) + /0 t e 1= D(s)ds < C <e‘cltE(O) + /0 t e‘cl(t_s)R(s)ds> (4.33)

uniformly for t € [0,T] with a positive constant C independent of T'. Here
E(t) and D(t) are equivalent to

1w 2w + 10172 L2
and

lu) 2w roxars + 10|22 i

respectivity; R(t) is a function satisfying

NI

R(t) < C (1 ML 1) D) + (E(®)* + E@)D(®)

v B> B8 B
uniformly for t € [0, T] with a positive constant C' independent of T' .

Proposition 4.4 immediately follows from Proposition 4.6. In the remain-
ing of this chapter, we will give a proof of Proposition 4.6.

4.3 Proof of Proposition 4.6

In this section, we prove Proposition 4.6 by a variant of the Matsumura-
Nishida energy method ([26]). The argument is based on the one by Qian
[29], where a variant of Matsumura-Nishida energy method for viscoelastic
compressible system was given.

Let T be an given positive number. Throughout this section, we assume
that u(t) = (é(t),w(t),((t)) is a solution of (4.25)—(4.32) on [0, T].
Proposition 4.7. Let j and k be nonnegative integers satisfying 0 < 2j+k <
2. Then it holds the estimate:

1d

2dt

+1|| VO 0 w3 + 7||dive) 0Fw]|2

(V7 O || + 1070 w22 + B2V O] ¢ l72)

< B (|(Ka0"¢, 010" w)| + [(V (8] 0wy ), VOLO*Q)]) + N,
(4.34)
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where
NL = 2|(D]0" 1, 8]8% )| + |(810* f2, 0] 0%w)| + B2|(D] D" 12, D] 9*C)).

Proof. We consider the case j = k = 0 only. The other cases can be
treated similarly. We take the inner product of (4.25) with ¢ to obtain

Lol + (@ive, 0) = (71,9).

By integration by parts, we have (divw, ¢) = —(w, V@), and therefore,

S lol = (0, 96) = (£1,9) (1.35)

We take the inner product of (4.26) with w to obtain

1d
2dt

+7 (V¢, U}) - 62(AC7 U)) - 62(KOOC7 ’LU) = (f27 w)
By integration by parts, we obtain

1d
w|5. + v||Vw|5: + ol|divw|| 72
5 gelelis + Vw3 + odive)3 )

+'7 (V¢7 ’LU) - 62<A<’ U)) - BZ(KOOCa U}) = (f27 w)
We take the inner product of (4.27) with —A( to obtain
_(atC7 AC) + ("LU, Ag) - (wgaxaqzooa AC) = _<f37 AC)

By integration by parts, we have

—|lw||2s — v(Aw, w) — #(Vdivw, w)

and ) B
_(wgamswom AC) = (V(wgamww)? VC)
We thus obtain
LIV + (0, AQ) + (VD) VO = (75 A0, (437)

It then follows from % x (4.35) + (4.36) + 32 x (4.37) that

1d
2dt

= 3 (KoC,w) — (V(0*05,10), V) (4.38)
21 0) + (f2w) — B2(f3, AQ).
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This yields (4.34) for J = k = 0. The case 1 < 25 + k < 2 can be proved
similarly by applying 8/0* to (4.25), (4.26) and (4.27). This completes the
proof. W

Proposition 4.8. Let k be a nonnegative integer satisfying 0 < k < 2. Then
it holds the estimate:
d

& w00+ 2 vorci + Lot
dt ’ 2 R ’

v ko 112 v ok 2
< 1+2—52 Vo w||L2+W||d1Va wl|za

2| (MaoO%C, 0FC)| + B2](KsoO*C, OFC)| + (05130, thoo, OFw)| + N2,
(4.39)

where

Ni =10 2,01 + (9", 0% w)| ++*|(9" f*,8*¢)].

Proof. We consider the case k = 0 only. We take the inner product of
(4.26) with ¢ to obtain

(atwv C) - V(va C) - D<levw7 C)
+72<v¢a C) - BQ(AC7 C) - 62(Koo€a C) = (f27 C)
The first term on the left-hand side of (4.40) is written as

(4.40)

d
(atwa C) = E(wa C) - (U}, atC)
By integration by parts, the fifth term of (4.40) is written as —(A(, () =
IVC||3,. Tt then follows from (4.40) that

d _ 2 2 2
w0~ (.00 + FIVCIE + (V6,0 )
= v(Aw, () + 7(Vdivw, ¢) + B*(Kx(,¢) + (2, C)-
We take the inner product of (4.27) with w to obtain
(w,0iC) = [wllzz — (W thoe, w) + (f*,w). (4.42)

By (4.41) + (4.42), we obtain

d
7 (@, Q)+ BV +77(V9, Q)
= v(Aw, Q)p(Vdivw, ¢) + |lwl|2. (4.43)

+02(Koo(, ) = (w0 to, w) + (%, C) + (%, w).

64



We take the inner product of (4.28) with ¢ to obtain
(V6. Q) = (Vdive, Q) + (Mo, Q) + (14, 0)-
By integration by parts, we have (Vdiv(, () = —||div(||3,. We thus obtain
(Vo,¢) + [divellz: = (Mxg, ¢) + (f*,€)- (4.44)

By (4.43) — 7* x (4.44), we have
d
3w o)+ BIVCIIT 4+ 2(Idive]| 7.
= v(Aw, () + v(Vdivw, ¢) + [Jw||2,
+8%(KooG; €) + 72 (MooC, €) = (wP0iy Yoo, w)
+(f27 g) + (fgv w) - 72(f47 C)

By integration by parts, we have

(4.45)

1/2

25°
2

5(Vdivw, ¢) = —i(divw, dive) < %HdiVCH%z +

2
v(Aw, () = —v(Vw, V() < 7|WC||%2 + 55 IVl

~2
v .
2—’72 Hle’UJ”%z
It then follows from (4.45) that

d ? 2 V2
< w0+ IV + a3
V2 9 72 9
< {1+ 2 [Vwl|z. + 2_,)/2||dlvaL2
B2 (Kool O + 7P/ (MooC, O + | (w0 0y Yoo, w))|
HZ O+, w) + 7101
This proves (4.39) for k = 0. The case 0 < k < 2 can be proved similarly by
applying 0% to (4.26), (4.27) and (4.28). This completes the proof. B

(4.46)

Proposition 4.9. Let k be a nonnegative integers satisfying 0 < k < 1.
Then it holds the estimate:

1d,
2 dt :
—29%(0F ¢, divo*w) + 232(VOF¢, VoFw)) + §||atakw||§2 (4.47)
< BV wZ: + 42| divo w7
62 (|(K0"C, 8,0%w)| + |(V(0Fw - Viba ), VO*w)|) + NE,

V[V w(t) 7> + #lldivotw(t)]|Z
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where
N} = 107 divdtw)] + 01 + 57 (V9 12, Vtw)]

Proof. We consider the case k = 0. We take the inner product of (4.25)
with —divw to obtain

— (04, divw) — ||divw]|2. = —(f*, divw).
Since
. d . .
— (09, divw) = —E(qﬁ, divw) + (¢, divo,w),
we obtain

d
—&(qﬁ, divw) + (¢, divo,w) = ||divw||2, — (f*, divw). (4.48)
We take the inner product of (4.26) with dw to obtain
|Oww|)32 — v(Aw, Qw) — b(Vdivw, dw)
+74(V9, 0w) — B*(AC, Quw) — B*(Koo(, Quw) = (f, pw).
By integration by parts, we have

_1d

—(Aw, Qw) = (0;Vw, Vw) = 5%

IVwlZa,

1
—(Vdivw, dyw) = (O divw, divw) = §%||divw||%z,

(Vo, yw) = —(¢, divow),
—(A¢, dw) = (V(, 0, Vw).
We thus obtain
1d
2at
—72(¢, divoyw) + 4V, Vow)
= B*(K(, 0w) + (f?, 0w).

v[|Vwl[fz + 7|l divwl[72) + |0:w]|7
(4.49)

We take the inner product of (4.27) with —Aw to obtain
—(0:¢, Aw) + (w0, Aw) — (w - Voo, Aw) = —(f*, Aw).
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By integration by parts, we have

~(0¢, ) = (AVC, V) = (VG V) — (V¢,0Vw),
(w, Aw) = [Vl
—(w - Vihoo, Aw) = (V(w - Voo ), V).

We thus obtain

d
(V6 Vw) = (V€. 0, Vw) (4.50)

= |[Vwl7: = (V(w - Vi), Vu) = (V f?, V).
By 72 x (4.48) + (4.49) + 8% x (4.50), we have

1d
5 WIVwlize + 7 divi||z: = 29%(¢, divw) + 28%(V(, V) + [0

= 8[| Vwlz2 + 7 |ldive]|Z.
—° ((KOOC7 dw) + (V(w - V@w)a Vw))

Y(f1, divw) + (f?, dw) + B*(V f2, V().
(4.51)

This, together with the inequality |(f?, dyw)| < 3||0swl32 + 1] f2||32, proves
(4.47) for k = 0. The case k = 1 can be proved similarly by applying 0 to
(4.25), (4.26) and (4.27). This completes the proof. B

We next estimate x3-derivatives of ¢. We introduce the following quanti-
ties:

=00+ (+w)- Vo, (4.52)
q=vw + BC. (4.53)

Note that
b = —divw — ¢divw. (4.54)

Proposition 4.10. Let k and | be nonnegative integers satisfying [ > 1,0 <
k+1—1<1. Then it holds the estimate:

k9 _5 +7° ko kgl g2
2dt||a C¢||L2 + 2—||8 L Oll7e + bOBQ ||8 L B2
STy HoV Ol + ||VlakHQHLz (4.55)

IV K0 O L2 + V17 M0 72) } + O N,
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Here by > 0 is a constant independent of v, v, v* and 3%, and

1
(B2 4+ (v +7)
v+v
B2 +9°

4 _
Nk,l_

_|_

("9 P23 + 54049 4

10"V (¢dive) |72 + [(0*0%, (7 +w) - V), 0°0,,0)|.

Proof. We consider the case k = 0 and [ = 1 only. We see from the 3rd

equation of (4.26)

Ow® — VAW — 70, diviw + V2 0pyd — BA(ACE + (K0)?) = f27,

which is rewritten by using (4.53) as

—02,¢° — 002w + 7?0y, 0
— _atw?) —|—Alq3 + Damsvl . w/+52(KooC)3 +f2,3.

By applying 0., to (4.54), we have
2w + 0y = —0,, V' - W' — B,y (¢dive).
By (4.56) + 7 x (4.57), we obtain

_a£3q3 + ﬂa’ﬂs‘l‘ﬁ + 726w3¢
- —8,:’[113 + Alqg + 52(KOOC)3 + f2’3 - Da:cs(qbdlvw)

We see from the 3rd equation of (4.28) that
02sC’ + On§ = =00, V' '+ (Moc)* + 47,
By v x (4.57) + 3% x (4.59), we obtain

02,0° + v0ry0 + 520y
= =00, V' ¢ + BH(M()® + B2 1 — vy, (ddivuw).

By (4.58) + (4.60), we obtain

(v + )8y, + (52 +72) 0y &
= 0w + Ng* — 0.,V - ¢ + B*((K()® 4+ (Mo()?)
+ 23+ B2fA3 — (v + D)0y, (pdivw).
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This gives

62+7

Drs &+ = Oy

1 2
— ~(—8tw3 + A/q3 _ axgv/ . q/) . 6

—— (Kol + (MaG)P)

itopay B ps g (sdive)
+ v v+ s '
(4.62)
We take the inner product of (4.62) with 0,,¢ to obtain
2
( x3¢7 mg(b) 6 ::__7 H8$3¢H%2
1 /! ! /
= z/—i—D(_atw + AN — 0,V ¢, 0.,0)
52 ) ” (4.63)
(129 0,0+ L (,0,00) — (0, (0, 0.,0)
By the definition of (ﬁ, we have
(0219 00y0) = |08l + Oy (0 + ) - V6),01,0). (4.64)

2 dt
The right-hand side of (4.63) is estimated as

2
- ﬁ<—atw3 NG = 00V 000) — (K)o (M0, 0010)

(2 0,0) + B (f433x3¢) (Ors (Sdiviv). Oy )

62+7
- 2 v+

10z, 0172 + (10:w?|1 72 + 2V qll7-)

484
T nE )

N 4
(v +2)(8” +77)

(v + ﬂ)(ﬁQ +7?)
(K oClIZ2 + 1 MocCllZ2)

+ 2 D o a2

(4.65)

(L£2122 + BHLFHIZ) +
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It follows from (4.63)—(4.65) that

1d 162+7
e A 1
C
PATY 41 £4112
+(ﬁ2+’7 )(V—l—ﬁ)(Hf HLQ_‘_ﬁ Hf ”L2>
v+u

+052+ 3102 (ediveo)[[72 + C| (0, (7 + w) - V), 00, 0).

(4.66)
We deduce from (4.63) and (4.66) that

v4U
62 + ) Haﬂ?3¢HL2

62_‘_7 1
gO(V Io:0 + 4 7)
B

T )(HKOO(||L2+||( MoQ)|72)

1 ) A1 P2 vV+v
TET AT 2 + B Mze) + B2+

(10cwlZ2 + 1VOqlZ2)

=55 |05 (¢divw) IILQ) .
(4.67)

We thus obtain (4.55) for £ = 0 and [ = 1 by adding (4.66) to by x (4.67)
with by > 0 satisfying byC < }1. The case Il > 1, 0 < k+4+1—1 <1 can be
proved similarly by applying 8'“8!0;1 to (4.62). This completes the proof. B

We next estimate higher order derivatives of w and ¢ and tangential
derivatives of ¢.

Proposition 4.11. It holds the following estimate:
IV204q|| 2 + 7 [[ VOS] | 2

<C (||8t8w||L2 + (v + D106l + 82100l 1 + B[ KooOC |12 + B2 Moo |11

+(v + D)[[o(edive) g + (|2l + B2 e + (Vg z2) -
(4.68)

Proof. By (4.26), (4.52) and (4.53), we have

div(0q) = @y in €,
—Adg+ V(120) = Qs in
dq=0on {z3=0,1},
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where
Q1 = v0d — B20¢ + B* (M) — vO(pdivw) + B2(f*),
Qo = —0,0w — DV — DV (pdivw) + B2 Ko0C + 0f>.

We apply Lemma 2.2 with £ = 0 to obtain

IV204ql|z2 + 7?IVOd ]2 < CUIQulIm +11Q2llz2 + Vgl z2).  (4.69)
This completes the proof. l

Proposition 4.12. Let j and [ be nonnegative integers satisfying j = 1,2, | =
0,1. Then it hold the estimates:

105207 |22 < © (IIataig,wjllw +1105,0%all12 + 119,00l 22 +7°1105,00] 12

+02)10%, (KooQ) |22 + ([0, £ 22 + 2105, 0s, (edive) [ 12) ,
(4.70)

and

1052012 < C (VH@iiléHm + 821055 oIl + 1103 Ogll 12

+32)105, (Mool 22 + v (|05 (ddivw) || 22 + 82105, ]| 22)-
(4.71)

Proof. We see from the j-th equation of (4.26) for j = 1,2 that
Ow? — A¢ + 09y, (¢ + ¢divw) + 720, ¢ — B (KC) = f27,
which is rewritten as
O = 0w + N — 20,6 — 10,6 + B (Kol + 27 — 50, (dclivun)

This gives the estimate (4.70). The estimate (4.71) follows from (4.60) di-
rectly. This completes the proof. B

Proposition 4.13. It hold the estimates:
10" 6]l r2 < V¢l + 10" MooCllze + 105 fH |22, k=1,2,  (4.72)

|02, w2 < 0wl 2 + (v + D)|[[VOw| 12 + 7?(|V @l 2
+8%|IV*¢l 2 + B KooCllr2 + 1 £l 2,
1082 < [[Vwl|z2 + (| £l 22, (4.74)

(4.73)
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10:V¢llz2 < [Vwllzz + IV (w - Viboo)llz2 + IV £ 12, (4.75)

1 d k112 52 k112
S IVl + 9

< IV |22 + [(VE(w - Vi), VIO + [(VEF2, VRO k= 2,3,

(4.76)

2v/32

Proof. We see from (4.28) that
O ¢ = OFdiv( + OF (M) + OF (1),

which gives (4.72).
As for (4.73), we see from (4.26) that

—v07 w' = =0’ + vA'w + pddivw — y*0¢ + B2 (A + (KC)') + (f7),
and
—(V—l—D)@igw?’ = — 0w + VA WP+ DV W — 20, 0+ A+ (Koo ()?) + f27,
which gives (4.73).
The estimate (4.74) immediately follows from the equation (4.25).
As for (4.75), we V* to (4.27) to obtain
OVFC = VFiw — VF(w - Vipo) + VFf3 for k=1,2,3, (4.77)

which gives (4.75).
We take the inner product of (4.77) with V*¢ and use w = +¢— %QC from
(4.53) to obtain,

1d
2ai!
(T4, 94C) + (V4w V), 94C) = (VA% V)

2
1943 + 2 vl

This leads to (4.76). This completes the proof. B
We are now in a position to prove Proposition 4.6.

Proof of Proposition 4.6. By using the Poincaré inequality and inte-
gration of parts, we have

C

|(Ko0"C,0"w)| + |(V (0w - Vi), VO* ()| < @Hvakdliz\lva’“wl\%z-
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From (4.34), we obtain
d
th’f +dy D < —||Vak§||L2 + QNO{k, (4.78)
where
k k12 Lok, 2 ? k1|2
Ey = [|0%0l7= + ;H@ wllz: + ;HV@ ClIzz,

v v
Df = ;HVé’ka; + ﬁHdWakaiw

By using the Poincaré inequality and integration by parts, we have

(M0, )| + B C, 0C)| + | (0w - Vi, 0F0)]
2
sc(l 62) VOl + V0wl

From (4.39), we obtain

1d
Td—(ﬁkw,akC) IIW’“C||L2+ ||d1v8’“CHL2
1 V2 C 0
S ( + — 252 3 E) ||V8kw||Lz + — 27 ||d1vc9kw||L2 (479)

1 1
+C (52 ) IVOF¢|3. —I— —N;.
It follows from (4.78) 4 (4.79) that

d 2 1, ..
(E{; + = = ~(0"w a’“g)) + (Dk + —||V8’“C||L2 §||d1v8k§||%2)

dt
1 12 . 2 3
< —2 + — 257 5+ Vo w||L2 + 274||dw8 w||L2
+C( + ! -~ + 1 )HvakCH + 1(N1 + Np).
52 ’y L2 ’y 0,k k
(4.80)
We take v, 7, 7* andﬁQ so that & + b + 5 < %, 4 < and
C (@ + W—Q + v_v?) < W' It then follows
d
B+ Dy < CRY. (4.81)
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Here

o R — (0% w, 0"¢),
Y2
B .
Df = Db+ | VORI + ldivd el

1
B = (N + VD)

We observe that E¥ is equivalent to EY provided that 5 > 1. By using
the Poincaré inequality and integration by parts, we have

|(Ks0¥¢, 0:,0™w)| + |(V(0Fw - Viboo ), VOF )|

C

—(HvakCHHlHat@kaL2 +[IVotwlis)
< 452”5takw||m + 3 (||VCHL2 IVl + 2\|V(9kw||%2-
This, together with (4.47), yields

1d
2dt

+1||8t3kaiz < C(B* + D[V wlli: + Cy*||divo* w7

— (V|| VO w|3s + ||divoFwl||2. — 272(0%9, divo*w) + 28%(VI*¢, Vi w))

+C[IVC17: + O VG + ONR.
(4.82)

Let by be a positive number which will be determined later. We set

9 2 1
TN B Z (V| V* w2, + 7||divo*w| 2
ko= —
2v°(8" ¢, divd*w) + 28°(VI*(, Vo*w)) ,

2 1

2
By —b,”

aka%%

k=0 k=0

3242 & k 1 3
Ry = b ’;Rﬁgm.

By blﬁ X 37 (4.81) + 3, (4.82), we obtain

2
12) Dy + C|0,V¢||3n + CRa. (4.83)

d C 1
—F D — 1+ —
o+ 1oy < bl( +/32+/3

dt
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We take v, 2 and 3% so large that ﬁ <12 <lgpd & <1+l+ﬁ> <2
and then take by so large that Es is equivalent to

5272 2 k 2 . k
e R
k=0 k=0

It then follows

1d
§aE2 + Dy < C||V2C||12q1 + CR,. (4.84)

From (4.68)k—0,=1, we have

152+’V v+

0013 + T

C
< (B2 +2) (v + ) {”ath%? + Vg7

102401122

Sz 102,013 + o

(4.85)

+B (I KsoCll72 + 1McCll72) } + C NG 4.
Since

IVOq|lz: < C(*([Vowl[z> + BYIVOC]IL2).
B Kooz + [MucClIZ2) < CIIVCIIEn,

we see from (4.85) that

1d 152+7
0,0l + 5

- C
(B2 (v+

——— 19x9lz +b0ﬂ2 T 2H8903¢||L2
5 (Hathm + V| Vowl[: +[IVC]IZ
+B4HV<9CHi2 +IVClIZ2) + CNg,

C )
IR ((1 Tvt —52 + 54) Dy + HVQCII%Q) +CNS,.
(4.86)

By (4.72)—1, we obtain

107> < CUVOCIT + Mool + [1/41172)

< (G IVCI + IVOCIE: + IV + 171 ) (asr

Ch
((ﬁi )D2+ 7IIV2Clze + 17 IILQ).
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Furthermore, by (4.54), we obtain

. 1
10¢]17: < C([[VOwl[72 + |0(¢divw)|7.) < C <62D2 + Hf‘?(cbdlvw)HLa) -
(4.88)

We set

E3 = ||6$3¢||%2,

1ﬁ2+7
2 v4+v

1ﬁ+7
2 v+

D3 = IV6l13: + by ||v¢||L2>

B

vV+r

(2 + 2 “awdin)H%g.

Ry = Noy+ 5———Ill2 + boz——3

It then follows from (4.86) + 3242 x (4.87) + by F527 x (4.88) that

d
—E;+D
1 3+ D3 1

1 v
SC((BQMQ)(HD) (erﬁ ﬁ4>
B4+~ (v v v+ U
T (E*E) +ﬁ2(52+v2))D2

1 B2 + ~2
e <(52 A+ B Jjﬂ)) IV*¢||72 + CRs.

From (4.68)x—1,=1, we have

(4.89)

152—1—7 v
Haaxs¢HLz 5 55 1008l + bogzy

C
S ET 0 10) {||8t8w||L2 + |VO2q|2 (4.90)

+ v
!I88x3¢HL2

2dt

+8 (1 K8¢ 72 + | MsoOC172) } + CNY ).
Since

IVo*q|lz. < C(* VO wl[L> + BYIVO*CIL2),
B K0C[72 + 1 M0C|72) < CIVOC|Izn,
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we see from (4.90) that

1524—7 v+ U
3 571000,01 + 500,01 + o2

10:0w]|32 + v*|| Vw32

100,672

< ¢ (
T (B +D)
+||V0<’||%2 + BHIVO*CII7 + IVPCII72) + CNy 4

C

S R DIUET) <(1 trt s 52 54> Dy + HV?’CIILQ) +CN}.
(4.91)

By (4.72)—2, we obtain
10%6117. < CIVO*CIIT + [ MocOClI72 + 10£4172)

1 1
<C (Ey\vaguiz + IVOCliEe + IV7¢lE: + ||8f4|!%2>

<0 (54 5) Dot IVl + 101 )

By (4.54), we obtain

(4.92)

107012 < C(IVPwla + 0% (@divw) %) < C ( o !\82(¢dlvw)lle) .

(4.93)

B

We set
Ey = [|00:,0|72,

152—1—7 v+
2 v+ 5% +

152+7 v
SR ||af 22 JFboﬁ

It then follows from (4.90) + (4.91) + 22 x (4. 92) + byt X (4.93) that

4 =

—IIVOl7z +bozz——5 ||V8¢||L27

+v
Ry= N + ||82(¢d1vw)llm

d
—E4+D4§C<

! (1+ +1 V)
dt FE+Dw+o) e

B+ (v v v+
I (@*@) +62(52+v2))D2

1 B2 4 ~2
+C <(52 +42) (v + D) T By Jjﬂ)) 1V3¢||32 + CRy.
(4.94)
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Let by be a positive number which will be determined later. We set

Es = byFy + 52(E3 + Ey),
D5 = by Dy + 52(D3 + Dy),
Rs = by Ry + 52(33 + Ry).

We see from by x (4.92) + 5% x (4.93) + 52 x (4.95) that

5+ 0 <0 (G (7 + 9 01+ 53)
2

( )

L (BV ﬁy +6Z+V)D2
i n B+~

B+ v+rv)  Bv+7)

) V%I + CRs.
(4.95)

Taking by large enough, we see from (4.95) that

d 3 B+ 42 ) 2 112
—FEs +dsDs < C \Y 1 + CRs.
757+ 4005 = € (L4 Gy g gy IVl +
(4.96)
From (4.68);—0,=2, we have
15 +’Y v+v 92 o2
ol Lol + 5 T RO+ I
< — oV s+ V28 2 (497)
= (B +2)(v+0) {H t w”L | QHL

+B IV + IV (MocC)l[72) } + O NG,

78



From (4.70), we have

1
(8% + 72)(5+ V)

RO

(IV*0qll7> + 71 IVOSIZ2)

(lawl3 + (v + 2210613 + B106]%:
B KoeDC I3 + B Mol + 1V g3

+(v + 2P |0(¢dive) 3+ 213 + B0

1 1 v V2
j(@* B2+ 2w+ ) (1+V+B /32))D5

C 2 v+v
eVl g ealoedive)l

1
NEETOIOET) (L2113 + B4 ).

(4.98)
From (4.100) and (4.98), we have

v+
52_|_ 2

(0. VwlZz + IVECIEn)

16 +7 ||

< oz ¢>|IL2 +3 107, 9117

3 dt Ol + b

( )V )
1 1 v P\ p. 4 ond
(62 (62 + 2 (u+ﬂ)(+”+@+62>) 5T & o

(4.99)

where

v+v ) 9 1
B2 + 2 [o(odive)lli: + (B2 + %) (v +7)

Let b3 be a positive number to be determined later. We set

Noa = Nga+ (L2 7 +BHLF 1 )-

Eg = bsEs + 87|02, 0|72
2(B% + v+D
D¢ = bsDs + — M“ ¢||L2+boﬂ ( )

; e 102,61,
Rs = byRs + 82N,
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We see from bz x (4.96) + (4.99) that

d
EE()‘ + d5Ds
C 4.100
< e T 0wl + IV (4100
+84109]|7. + 8Y0%¢]72) + CRe.
Taking b large enough, we deduce from (4.100) that
d
— FEg + dgD
e + de s
Cp?
=~ B2+ )(V+y)||8ti||Lz (4.101)
32 3%+ 42 2 4112
+C (1+ (42 1 7) + B0+ D) IV=C|l7 + CRe.
By (4.76), we have
2 o2
S SIV2Cln + 19l
3 (4.102)
< ﬁgnv?qum +Z| (VF(w - Vo), VEQ + Y [(VFf2,V50)

k=2
From (4.68), (4.70) and (4.71), we have
IV2q[:
< € (0l + (v + 92100012 + 5106813 + B KO + 5| Mol
71100172 + 8119250172 + B1102,0 1172 + v 10k, 1172 + 21102011
+(v + 02| 0(pdivaw) |3+ (| F2(I5 + 870 +11VOll72)
<C (II@MII%I + (W + 0)200l3: + 841013 + V<3
+74100132 + BH10us 72 + BHI0%, 072 + v2 11020113 + (102,017
+(v + 0| 0(¢divw) |3 + 1217 + B 15 + 1V Oall32)
< CllaVwlze +IV*¢in)

+c(u+1+—2+ +(62+7)<”+5)>D6

g2 p 32
+CO((v + v (|0(pdive) |G + [ F2 170 + B4 50) -
(4.103)
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From (4.102) and (4.103), we have

2dtHV2CHH1 + 2w,

?(H@VU}H% + V¢ II7n)

v
By (4.53), we have

L <512 +%+@ @jL (62+7Vﬁ)4(u+ﬁ)>D6 (4.104)
+Z [(VE(w - Vidoo), VEQ)| + NP,
where -
o=ty 10(ddivew) |3 + ;‘52 1£217 + %zllf‘*llél + kf; (VE£2, V7).

v 1 B3?
vl < € (oIl + Zivrs, ) (4105
We obtain by (4.104) + b4 X (4.105) with some positive constant by

|V2C||H1 + —IIV Cl3n + bag V203

2dt| 32

(H@Nwllm + HV2<HH1>
+C(1 1 (8% +~2 )(V+17)>D6 (4.106)

7ot @ 7L

+ Z (VH(w - Viboo), VEQ) | + N°.

Since -
guvk(www»vkor < SR IVt V0l ( 55+ 35 ) IV,

we see from (4.106) that

B2

2 P o2 Vo2
5 dtnv Gl + 5 VCl + bVl

H@VwHLg +C (@‘F? HVQCHHl (4107)
11 (82 +9*) (v +7) 5
+O(5 +?+@+@+ L5 >D6+N.
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Let b5 be a positive number to be determined later. We set
Er7 = bsEg + 52| V*(]|75,
4
Dr = bsDs + o= [VCl[in + bav || V2w,
R; = bsRg + °N°.

By bs x (4.101) + 32 x (4.107), we have

d
—F d-D
T 7+ a7 Dy

3 2
<C ( T + ~)) 18, Vw2 (4.108)

I (5 443w + )
+C(1+ +E+@+ 3

By taking b5 large enough, we obtain from (4.108)
32

B2+ (v +7)

By 72 x (4.74) + B2 x (4.75), we have

VNN0elLe + B210:VCIZe < CU(B* + 7)) IVwlzz + I 12 + BQHVf(?’Hiz)-)
4.110

) Do+ CRr

d 1
—F;,+d;D; <C
7+ d7 D7 (uﬂ2+(

n ) 10, Vw32 + CR;.  (4.109)

From (4.34),-1 k=0, we obtain

1d
2dt
S 52 (‘(KooatCa atw)‘ + ’(v(atw : V&OO)) vatC)l) + N11707

—(10ll7> + 0wwllz> + B2V CIl7) + v VOwl72 + Plldivosw]z.

(4.111)

By using the Poincaré inequality and integration by parts, we have

‘(Kooatc, 8tU))| -+ ](V(@tw . V"Eoo)a Vat ) HV&CHLQ HV@ﬂUHLQ

| < 52
This, together with (4.111), implies that

d
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where

= V0e0|72 + 10|72 + B2 VO3,
Dg = v||Vouw||3: + 7||divoyw||3.,
Rs = N}O

Let bg be a positive number to be determined later. We set
Ey = bsE7 + Es,
Dy = bs D7 + Ex + (V?(|0:0]|72 + 52(|9: V¢ | 72),
Ry = bsRy + Rs + (V| 172 + B2V £2]172).
By bs x (4.109) + £ x (4.110) + (4.112), we have

d
EEQ + dg Dy
, (4.113)
<C’( ! b ) ||8Vw||22+g||8VCH22+C’R
B ) e T AR O
We take bg suitably large to obtain
d
EEQ +dyDg < CRy. (4.114)
Since Dyg(t) > ¢1Ey(t) for some constant ¢; > 0, it follows from (4.114) that
d
&Eg + ClEg + ngg < CRg (4115)
This gives
t ¢
Ey(t) +/ e~ 1= Dy(s)ds < C <e_cltE9(O) —l—/ e_cl(t_s)Rg(s)ds) .
0 0

(4.116)
From (4.73), we have

v? 2 112
(I/ I ﬁ)Q ”81nw”L2
1 4
<0 (sploal + 1900l + 1 7ol
4

? O
b IVl + Kt + o) @)
1 4
<c ((Ej—)atwm +Ivuls+ nwup
el Vel + g TG + Gl )
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Let b; a positive number to be determined later. We set

E = b7E9+( )H 2 wl|72,
D:b7D97
R = brRy.

By b7 x (4.116) 4 (4.117) and taking b; large, we obtain

E(t) + te_cl(t_S)D(s)ds
/0 (4.118)

1 t
< C (e E(0) + —— || 2|3 / —al=IR(s)ds | .
< (B0 + ol PO+ [ et RS
By using Lemmata 2.1 and 2.4 below, we have

1 - 11
el Pl < C (4 5+ BO) B0,

provided that [Jvgl|2 w(0,1) < C” Therefore, there exists a positive constant
d such that if E(t) < 4, then (4 118) yields

t t
E(t) Jr/ e 1) D(s)ds < C (e_cltE(O) +/ e‘cl(t_s)R(s)ds) .
0 0
(4.119)

It remains to estimate R(t).
We see from (4.18)—(4.21) that if there exist a positive constant ¢ inde-

pendent of v, v/, v, and 3 such that

1%
H5(0,1) < 5@,

| Vo]

then the following estimates hold uniformly for ¢ > 0

— C _ C
[Fesp@llmscon < 25 I Fllmon < 25 +1.

52’
C
- 10:0(t) || 30,1 < C.

10| 225 0.1)

Using these estimates, together with Lemmata 2.1 and 2.4, one can obtain

the following estimate for R(t).
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Proposition 4.14. There exists a positive constant 6 with 6 < 1 such that
if HTJOH%E,(O y + E(t) <6, then we have the following estimate:

D=

B2 BB +E@)D(t) (4120

uniformly for t € [0, T] with some positive constant C' independent of T .

R(t) < C (% Loy 1) D(t) + C(E(®)

Proposition 4.6 now follows from (4.119) and Proposition 4.14. This
completes the proof. B

Appendix 4.A Proof of Proposition 4.1.

In this appendix, we give a proof of Proposition 4.1.

Proof of Proposition 4.1. We set p = 1. It suffices to prove the existence
of a solution (', 9%) of (4.15)-(4.16) with the properties in Proposition 4.1.
For simplicity we assume that i—f is not integer.

We set
0 -1
4= ( 2, v, ) |

It follows that the problem (4.15)—(4.16) is written as :

()0 Gl o

To solve (4.A.1), we consider the Fourier-sine expansions;

g,i(t) sin(kms),

WE

Q@k(t) sin(krzs), g' =

[M]¢

,(Zl

>~
Il
b
Il

1 1

WE

Op(t) sin(kmas), U5 = Y Do sin(kmas).

&0
I
g

i

1

T

1

We see from (4.A.1) that (@, 1) satisfies

~

d [y AN Un (0
i) 20 -G G- () e

A 0 —1
A= ( B2k*m? vkir? ) '
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The solution of (4.A.2) is given by
. A . A
(?k(tv = etA<AO ) +/ e(tS)A(AIO )ds. (4.A.3)
() Vok 0 r(s)

—-A 1

E2m? =\ — vk2n?

Since
det(—A — ) = det < B ) = A2 + vE*m\ + B2k R2,

we see that the characteristic roots Ay of —A are given by

—vk?n? £ \/12kint — 432k r2

Ay = .

It is not difficult to see that

B 1
)\+:—§+O ﬁ fOI'k'>>17

A= —vk*r® +0(1) for k> 1,

M = B2k%m% By = Ay — M- = km\/1v2k2n2 — 432

The eigenprojections for Ay of —A are written as
P_—A—A__ 1 -1
LS VD U W U . W W P

p_ AN 1 Ay -1
D VD VD W (P YD WD Wy

t

The solution semigroup e~ A is then expressed as

et =M P+ e P

_ 1 tA 4 —A_ 1 tA_ >\+ —1
EP VY (e ( XA A ) L VS WS

It then follows from (4.A.3) that 1 (t) and 0y(t) are written as

N 6A+t _ 6)\_t ~ t e)\+(t75) _ 6)\_(t75) .
U(t) = PVEw Vo +/0 o Gr(s)ds,

B )\+€>\+t _ )\,€>\7t . t )\+€)\+(t—s) _ )\,eAf(t_S) N q
= IV Dok i VS g (s)ds.
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By integration by parts, we see that (t) and o (t) are rewritten in the
following forms :

. €>\+t _ e>\7t . )\7€>\+t -\ e)\ft .
Vi(t) = Bor + ——3:(0)
A — A — ) A4
1 1( ) /t )\_6)\+(t78) - )\+6)\,(t78)( 1)/( )d o
+——0(t) + g:.) (s)ds,
Ak 0 Ay ) Wk
) A e)\+t _ >\_€)\7t ) e>\+t _ 6)\7t .
() = = dok + —~———35(0)
A — A — A AS)
t e)ur(t—s) _ eA,(t—s) N q o
- [ =

We next introduce the Fourier-sine expansion of gl

gl = Z oo S (kT3).
k=1

We set

700 L n = 700 3
Uy = Hﬂi,m, L= ;% sin(krxs).

It then follows that
202 71 1 71 C. 1
_ﬂ a.ml/)oo = Jo» ||¢oo||H5(0,1) S @HQOOHHS(OJ)

Let us estimate ¢ and 0, by using (4.A.4) and (4.A.5).
(i) If k272 < 257 then

2/82]{:271—2 vk2n2 v
4B°K* =k et > 244 M| < BEm+ukin?, |eM <e Tz T <eil

vkt
It follows that

e)\+t _ 6)\_t C Cent

< e ,
Ay — A | T Bk 4+ vk3n?
MA; - i‘eu < Ce ‘“A; — i*eu < Ce,
+ T A + T A~
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Based on these estimates, we see from (4.A.4) and (4.A.5) that

2

ALt — \_eA-t 2 At At
b (D2 < C + A2 A7) |2
o) < ( | el | S| 18k
t €>\+(t_5) _ e)\,(t—s) 2
+/ at)' (s ds)
1@

—CV A 1 ~
< Ce ¥t (|U0k|2 + e ECy T gi(0)|2>

¢ ' (t=9)|( 5l ’
—cv(t—s ~1\/ d
+B2k27r2 L 2k (/0 € [(9r)"(s)] 3) )

gi(O)P)

2
)\7€>\+t _ )\+€>\7t

AA_(Ap —AD)
1 |2 o 1o FlA_eM(t=9) — )\, er-(t=9)
t _
)\Jr)\, |gk< )1 gk,oo‘ + (/(; 1>\+)\7<)\+ _ )\7)
—cvt ~ 2 ~1 2
< Ce (5%%2 T V2k47r4|1’0k| + Bl 95 (0)] )
2
1 ~1 ~1 2 1 /t —cv(t—s) |/ a1V
il 0) — bl + i ([ @y o

(ii) If 2%2 < k*m? < 4%2 or 4%2 < k272 < 8 then
1%

| Dok |* + ‘

A — A

K%ﬂwmf

2

Ay < C—.
1%

Art ,cﬁt 14 1 v
e <e ' O < ———— < (Cy—,
< '82 = Bkm +vkin? = P2
It follows that
At _ oAt

A — A\

e

]' ! d A t+9()\+7)\ )t
= (&> 14
N — A /0 a6 (¢ ) df

1
/ 6>\t+9(>\+—>\)td9‘
0

1
<t / e(l*@)Re/\_teeRe)\_‘_tde

i 1
<t ( / S eaRetdg 4 / e%ReMde)
0 :

t <6%Re>\7t + 6§Re>\+t>
14 52 1 52
C—evi<(C—r—"-———e°vt
JoR: —  Bkw + vk2n?

=t

IN

IN

88



and

)\+€A+t _ )\,€A’t

N
_ ;/1 i (()\_ +0(}\+ . )\_))ekft-FQ()ur—)\f)t) dg
N ), @
1 1
_ / 6((1_0)>\+6>\+)td¢9+/ ((1 _0))\ + O\ )t@ (1—0)X— +9>\+)td0‘
0 0
< 2 —c— |>\+’ —;— ’)\ |t —c—t < Ce —0—2

By using these estimates, we have

2 1
|m@ﬁsoaﬂﬁ0%m+ “ww)

62]{;2 2 + 2kdas
2

1 t 82
—c-(t=s)|(pLY d
+ 82272 § 2t (/0 € [(Gr)'(s)] 5) ;

Y 1 R T
Ce™®v (52]{;2%24_”2/{;4%4’“@“ +W’9k(o)’

1 cﬁt ~1 ~ 2 c ' —cﬁ(t—s) ~1\/ ’
+ 2 () = Ghol” + 27 e v [(Gr)(s)|ds ) .
BAkAm BAkAm 0

(iii) If k272 > 557 then

432 k*? 52 82
Vit —4p% K > { 1ﬁ2k4 , ALl < Bkmvkin?, M| <e vl et <em v

Y%

2

By combining these estimates, we obtain

e)\+t _ 6)\715 < 1 _cﬁt
e — ] 4 v
Ay — A | T Bkm+ vk2n?
)\+6A+t _ )\_6)\_t < Ce_cﬁyjt )\_€A+t _ )\+6A_t < Ce—cét
Al — A - ’ Al — AL - ’
and hence,
2 1 A1) (2
0O <O (Jiul” + el ik 0)
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2

c ! —cﬁ(t—s) ~A1\/
+m ; e v [(g) (s)|ds |,

and
: : 2 | 1
00) = sl <O (il + O
1 ~1 ~ 2 1 ' fcﬁ—(tfs) ~1\/ ’
+ 219 (t) = Gkool” + S e VN(gg) (s)lds )
BAkA BAkA 0
Since

2

([ememaroms) < ([ emenas) ([ eoeaigyera)

e [T el ) Pas

= ([ warons)
([ et ><>rds)2
e [T el o) Pas,

IN

and

| N

we obtain the following estimates

1 ~1 2
52]{;27_(_2 + 1/2]{5471'4 |gk(0)|

1 1 > CKRS
+ £52k27r2+y2k47r4/0 e1(Gk)' () ds)

. ) L 1 i 1
Wk(t) - ¢oo,k|2 < Ce ' (52]{271.2 + 1/2]{471-4’1)076‘2 + m!ﬂi(o)!

1 1 OOCHS
b o | @ @Ras).

As a result, v'(t) and !(t) — L satisfy

B (8)[2 < Ceert (|@0k|2 +

17 ()15 0.0
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—CcK _ 1 1 cokK
< Ce™ (Hvl(O)H%ﬁ(O,l) + ﬁ”gl(O)H%{?’(O,l) + W“e 0 t8t91||2L2(0,oo;H3(0,1))) )

19" () = ool oy

—ckK I 1 1 cok
< Ce™ (;”U(O)”%ﬁ(o,l) + @”91(0”@13(0,1) + /1_64"6 0 tatgl||%2(0,oo;H3(O,1))) :

The estimate of ||0,0(t)| m3(0,1) can be proved by using the formula

A2 Mt )2 At A e)\+t _ )\,GA’t t A 6A+(t—s) _ )\76)\,(15—5)
~/ 1) = + — ~ + (0 / + ~1 d
Uk( ) )\+ . )\_ U0k+ >\+ I )\_ gk‘( )+ 0 )\+ . )\_ gk(s) S,
with the aid of the estimate

)\ie/\” — MMt

A — M

62
< O K?rleert,
- 1%

This completes the proof of Proposition 4.1. l
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Chapter 5

Stability of time-periodic
parallel flow of compressible
viscoelastic system in an
infinite layer

In this chapter, we investigate the stability of time-periodic flow of the com-
pressible viscoelastic system

Op + div(pv) =0,

p(Ow + v - Vo) — vAv — (v 4 V) Vdive + Vp(p) = B2div(pF 'F) + pg,

OF+v-VF = (Vu)F
(5.1)
in an infinite layer €2

Q={r=(,23); 2 = (x1,72) ER* 0 < 23 < 1}.

Here p = p(x,t), v = " (v!(x,t),v*(z,t),v3(z, 1)), and F = (F*(x,t))1<j k<3
are the unknown density, the velocity field, and the deformation tensor, re-
spectivity, at the time ¢t > 0 and = € Q; p = p(p) is the pressure; v and v/
are the viscosity coefficients satisfying

v>0, 2v+3V > 0;

We also assume that .
v
— <y

for some positive constant 14 > 0. 5 > 0 is the strength of the elasticity. The
pressure p(p) is assumed to be a smooth function of p satisfying p’(1) > 0,
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and we denote v = /p/(1). ¢ is a given external force which has the form
g =g'(z3,t)es, e = '(1,0,0), ¢*(0,t) = ¢g"(1,t) =0, (5.2)

with ¢! being T-periodic function of time ¢, where 7' > 0.
The system is considered under the boundary condition

Ugg=01 =0, (5.3)
and the initial condition
(p, v, F)|i=0 = (po, vo, Fo). (5.4)
We also assume that (pg, Fy) satisfies the following condition
div(po ' Fy) = 0, podetFy = 1.. (5.5)

As mentioned in the beginning of the introduction, the conditions (?7) are
invariant for ¢ > O:

div(p'F) = 0, pdetF = 1.

If g is assumed to have the form (5.2), problem (5.1)~(5.3) has a T-periodic
solution @ = (p, v, F') satisfying the following properties:

p = 17 U= @1<$3,t)€1, F - F(x37t) - (V(I - Izl(xi%t)el))_l
Here " is a function satisfying
(s, t +T) = (a3, t), Opp' =o'

The aim of this chapter is to study the stability of time-periodic parallel flow
U.

Under a suitable condition on g, there exists a time-periodic parallel flow
(p, v, F) of (5.1) satisfying the following properties:

_ 1 _ 1
sup [|F(t) = Il = O <—) + sup [0 (Ol = O (‘) |
t€[0,T] 6] v

t€[0,T]
Here I is the 3 x 3 identity matrix. We define the periodic cell by D:
D ={x = (2, 23);0' = (21, 23) € IT_ T2, 0 < w3 < 1}.
Here a; >0, j =1,2.
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The main result of this chapter states that if v > 1, v > 1, 8> 1,
then (5.1)-(5.5) has a unique global solution (p,v, F') such that (p,v, F') €
C([0, 00), HA(D)) and || (p(t), v(t), F(t)) — (1, 5(8), F(t))||2 — 0 exponen-
tially as ¢ — oo if the initial perturbation (py—1,v9—0o, Fo—Fp) is sufficiently
small in H?(D).

The proof of the main result of this chapter is given by a similar argument
of Qian [29] which is based on the Matsumura-Nishida energy method [26].
To establish the a priori estimate, we consider the following problem for the

perturbation u(t) = (¢(t), w(t), G(t)) = (p(t) — 1,v(t) — v(t), F(t) — F(t)):
( 0yp + 010, ¢ + divw = fi,
ow + 010y, w — vAwW — pVdivw + 12V — f2divG
+ (w0, 0t )er + v(902,0 )er — B2div(GTE) — B2(GB02,0 ey = fo,
,G + 1'0,,G — Vw — (Vw)E + w*®2 F — (V)G = f,
Vo = —div'G + TEdiv'G + f4,
(| Wzs=01 =0, (¢, w,G)|i=0 = (¢o, wo, Go).

(5.6)

Here v = v+ 1/, ¢ = ¢leyand E = F —I; f/, j = 1,2,3,4 are nonlinear
terms. To derive the L? energy estimate of u, we make use of the displacement
vector ¢(x,t) = x — X(x,t). Here, X(z,t) is the inverse of the material
coordinate z(X,t) which is constructed by the flow map:

LX) = o(a(X,1),1), £ 0

z(X,0) =X € Q.
Under the suitable condition for F' and X, F' is written by using 1 as follows
F=F—-FV (w—@zlel)Fth(V(z/}—@/jlel)).
Here h satisfies h(V (¢ — ¥ (t)er)) = O(|V(¥ — ¥ (t)er)|?). Applying a
variant of the Matsumura-Nishida energy method given in [16, 29] to (5.6)

and estimating the interaction between the time-periodic parallel flow and
the perturbation, we obtain the estimate:

t
||u(t)||§-[2><H2><H3 +/ 6_61(t_8)||u(8)||%IQXH3XH3 ds < Ce_qt||u0||§-[2><H2><H37
0

provided that v > 1, v > 1, 8 > 1, and the initial perturbation is sufficiently
small.

94



This chapter is organized as follows. In Section 5.1, we state the existence
of the time-periodic parallel flow and then give the main result the main result
of this chapter. In Sections 5.2 and 5.3, we give a proof of the stability of the
time-periodic parallel flow based on the Matsumura-Nishida energy method
[26]. In Appendix 5.A, we prove the estimates for the time-periodic parallel
flows.

5.1 Main result of Chapter 5

In this section, we first introduce a time-periodic parallel flow, and then give
the main result on this chapter on the stability of the time-periodic parallel
flow.

We introduce the time-periodic parallel flow defined as (p, v, F'), where

p=1, v==0"(zs3,t)e;, F = F(zs3,t) = (V(m — 1/_}1(£E3,t)61))71,

@l(l'g,t—l—T) :@1(x37t)7 w (I’g,t—f—T) 1/) (l’g, )7 at%zl :,Dl'

Here T > 0 is some constant.
We also assume the compatibility conditions for g':

92g'(0,t) =074¢'(1,t) =0, t >0, j=0,1,2. (5.7)
Then the following assertions hold true.

Proposition 5.1. Let Kk = min {V } Assume that g* € H(0,T; H*(0,1))

satisfies the compatibility conditions (5.7). Then there exist a time-periodic
flow (p,v, F) of (5.1) and (¢!, v')satisfies the following estimates:

C

/s 1
sup [|lot(t)]17 < = <1+ )
seo.1] [ ( )||H6(0,1) 34 Hg ||H1 (0,T;H4(0,1))>

C 1
—1 2 112
sup ||v-(t < = (1 + _) q _ 7
te[0.7] 17°( )”H“(O,l) 2 12 I ||H1(0,T,H4(0,1))

1
sup 102" () 2moy < C (1 ; ) 19" 0 zsvc0m-
t€[0,T]

The proof of Proposition 5.1 can be shown as [16]. The detail will be
given Appendix 5.A. B
We next consider the stability of the time-periodic parallel flow (1, v, F).
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We set U(t) = (6(t), w(t), G(t) = (p(t) =1, v(t) = v(t), F(t) - F(t)). Then
U (t) satisfies the following initial-boundary problem

(0 + 0' 0y, ¢ + divw = f1, (5.8)
Ow — vAw — oVdivw + 42V — B2divG + 010, w + (w30, 0" )e;
+u(002,0")er — B2div(GTE) — B*(G*02 4" )er = fa, (5.9)
0,G +v'0,,G — Vw — VwE + w?0,, E — VoG = f3, (5.10)
Vo= —div'G + "Ediv'G + fi, (5.11)
\W]gy=01 = 0, Uli=0 = Uy = (¢o, wo, Go).

Here 7 = v+, E = F — I = V(¢'e;) and f;,j = 1,2,3,4 denote the
nonlinear terms;

fl = _div(¢w)7
~ 2
faz—w~Vw+q€%g—AW+aiWﬁ>_Tgﬁvmw"_5:2V¢
— " v0w) + L2 aiv(GTE) + (02,06
1+ ¢ L+¢ " 1
2
TG G+ HFG+CEF+GG)),

f3 =—w-VG+ VU)G,
f4 = —dIV(QbTG),

where
1
Q) = [ P'(1+50)ds, Y@= 0(0)V6 for [o] < L
0
Now we mention the main result of this chapter about the stability of the
time-periodic parallel flow (1,0, F').

Theorem 5.2. Under the assumption of Proposz'tion2 5.1, thereQare positive
numbers v1, v1, and By > 0 such that if v > v, = > 97, 5—2 > (2, the
following assertion holds. There is a positive number €, such that if Uy =

(¢, wo, Go) satisfies ||Ullmexmexmz < €1,wo € HY(Q), fQ ¢odx = 0, then
there exists a unique solution (¢(t),w(t),G(t)) € C([0,00); H*(D)) of the
problem (5.8)-(5.11), and the perturbation U(t) = (¢(t), w(t), G(t)) satisfies

t
U2 2212 +/ e~ MINU ()| paxrzds < Ce™ UGz prz-
0
fort > 0.
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Theorem 5.2 is shown by combining local in time existence theorem and
a priori estimate.

Proposition 5.3. Let ty > 0 and (¢, w, G)|i=t, = (¢po, wo, Go). If we assume
[¢o| < 3, [y dodz = 0, wy € H(Q),div((1 + ¢o) (Go + F(to))) = 0 and
(14 ¢o)div(Go + F(ty)) = 1, then there are some numbers t;, C independent
on ty such that the solution (¢, w,G) € C([to, t1]; H*> x H* x H?*) of (5.8)~
(5.10) satisfying (¢, w, G)|i=t, = (Po, wo, Go) exists uniquely and the following
assertions hold:

at¢7 atG € C([t(J? tl]? LQ(Q))a

w € L*([to, t1]; H*(Q)), Oow € C([to, t1]; L*(Q)) N L2 ([to, t1]; H'(2)),
1(@(t), w(t), G() |2 x 22 < Cll(@o, wo, Go) || 2w rr2 -
Proposition 5.3 is proved by using Proposition 5.1 in a similar manner to

[18, 29, 36]. We omit it.
We next state the a priori estimate.

Proposition 5.4. There are positive numbers vy, 1, B such that if v > vy,
2> a2 B B2, the following assertion holds:
V+,;_’71; ~2 = M1 9 .

There exists a positive number &y such that if ||uo||gzxmzxmz < do, then

the following inequality holds:

t
E(t) +/ e 1) D(s)ds < Ce M E(0).
0

fort > 0.Here E(t) and D(t) are equivalent to ||[u(t) |32, g2y gz and ||w(t) |2 s 2

respectively.

5.2 Basic estimates

In this section, we establish the basic estimates to show the Proposition 5.4.
We first prepare the notations.

E, = iE{,‘,DO = ZQ:Dé,No = ZQ:NS-
j=0 Jj=0 Jj=0
Here
Ej = 6|l72 + 107wl + 810G 17,
Dj = v| V& wl[7: + 7l|dive w7z,
N3 =P f1, P O)| + (& fo, Pw)| + B f5, G
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Proposition 5.5. There exists vy > 0 such that if v > vy, the following
estimate holds:

d ¢ (v i 2 2 1 p & i (2
%Eo + Dy < ;(; H8J¢|’L2 + \|8x3¢||L2> + C(; + 7); HaJGHL2 + C'Nj.
Proof. We take the inner product of (5.8) with ¢ to obtain

5 6l + (710,,6,0) + (divw, 8) = (11,9,

By integration by parts, we have (v'0,,¢, ¢) = 0, and therefore

ol + (v, 6) = (£, ). (512)

We take the inner product with (5.9) of w to obtain

1d

2% — w32 + @' 0p, w, w) + (W0, v, w)

+ (—vAw — oVdivw, w) + v(¢07, 7", w') + 7*(Vo, w)
- B(div(G'F),w) = B(GPO;, b, w') = (f2,w).
By integration by parts, we have
(0' 0w, w) = 0,

(—vAw — pVdivw, w) = v||Vw||2: + 7||divw]|3e,
and
(Vo,w) = —(divw, ¢).
We thus obtain

1d
2 dt
— 7 (divw, ¢) — B(div(GF), w) — B(G¥0; . w') = (fo,w).  (5.13)

We take the inner product of (5.10) with G to obtain

— w32 + (w30, 0", w') + v|| Vw72 + 7||divw]|72 + V(qbazgﬁl,wl)

NG+ (0., G, O+ (WP, 3, G%) — (VuF, €) — (VG G) = (s, C).

By integration by parts, we have
(@'0,,G,G) =0, (VwF,G) = —(div(G'F),w).
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We thus obtain
1 —

LN + ', )+ (@(ETF), w) ~ (V5G.0) = (3, C).
It follows from % x (5.12) + (5.13) + 32

(5.14)
x (5.14) that

1d
37 —(llolliz + lwlliz + B2IGI32) + vIIVw|7: + 7||divw|7,
_ 3 2 —
—(w 8131) w ) ((/ﬁ@ 7w ) (5.15)

+BAGBER Y w') — w02 GP) + BAVIG, )
+72(f1, @) + (f2,w) + B*(f3, G).
Since ||t ||l ws.x(0,1) = O (%) and ||0*||wa.00(0,1) = O (%) by combining Propo-

sition 5.1 and Lemma 2.1, we obtain

1d
57 (N0l + llwllze + B2 GIL) + vIVellz: + 7ldive |2

< (W0, 0, wh)| + v|(902, 7", wh)]
+ B (GBRY  wh)| + B, G| + B(VIG, G|
+ 22 (1, 0| + [(for w)| + B2 (f3, G|

C  3v ?
<(; >||VwHL2+—H¢I|L2+C( 5>||GHL2

(fo,w)] + 8% (f3, G)|-
It then follows from (5.15) that

+9|(f1,0)| +
We take v > 0 so that V% <t

(7 19117 + lwllz> + B2IGIZ2) + vIIVwlze + Plldive]7.

C 2
< ol +o( 5 ) T

N | —
&l&

v

+22(fr, 9) + [ (o, w)] + B2[(f3, G)].

Hence we obtain

d 52
s+ Dy < St + ¢ (2 + L) ik + ong,
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Similarly we can show that

This completes the proof. Il

2
We next estimate Z 107G||35. Let x = z(X,t) be the material coordi-
=0
nate defined by the solution of the flow map:

dx
E<X’t) =v(z(X,1),t)
z(X,0) = X.

We set 1 = x — X. Then we see that 1) satisfies

{8t¢—1):—'0'v¢
w|x3:(),1 =0.

F is rewritten as F = I + Vi + (V)2 (I — Vip)™'. We set ¢ = ¢ — . We
then see that ( satisfies (|{z,=0,13 = 0 and

B¢ + 00, —w+ w2 Y ey = f, (5.16)
where f5 = —v - V(. By using ¢, G is rewritten as
G=F—-F=V(+EV(+V(E+EVCE +hy, (5.17)
where hy = —(FV()*(I — FV¢)'F.
Lemma 5.6. There are positive numbers By and & such that if 5> > B2, ||V ||g2 <
0o, the following inequality holds:

2 2 2
CTY VT <D NG < CY (VI3
=0 j=0 §=0

Proof. Let 0 be the positive number. We assume that |V(||z2z < dp < 1 and
B > 1. It follows from (5.17) that

1 1
Gl 2 IV €l = (55 + 52 IV laz = CIVClm [Vl

1
> [Vl = € (55 + 5 + 19€0m ) IVC2e

1
7
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1 1
IGlis < 19 12e +C (5 + 57 + 190 ) 1V

We take 5 and dy so that 1 — C’(% + % —{—50> > \/Li We thus have ||G||7, >
I V¢|3.. Similarly we obtain [|G||2. < 2||V(][3.. Similary, we estimate &G
to have

2 2
MG < ¢ IVIC3e.
j=0 j=0

We set

2

2 2
Ey:=) E{,Di:=> D N;:=> N,
§=0

=0 j=0

where
E{ = (0w, 0°C), D{ = 62||Vajg||%z,

We note that Fy + F; and D; are equivalent to Fj and E?:o 107G||32, re-
spectivity under the assumption in Lemma 5.6.

Proposition 5.7. Tl”éere are pgsitive numbers [1,7v1, M, V2,01 > 0 such that
if 82> LY =08 5 > 0P A > v, | VClaz < 6, the following estimate
holds:

d 1 1 1 1 1
—F1+-Dy <<q= 4+ — D
dt 1Jr4 1_{2+C(V+1/B2+y252>} 0

C (= a
+ 5 (1076 + 00,9132 + Mo
j=1

Proof. We take the inner product of (5.9) with ¢
(9w, ¢) — v(Aw, ¢) — #(Vdivw, ¢) +1*(V6,¢) — F(divG, ¢)
+ (0" 05w, Q) + (w8,,0", ¢1) + (02,0, ")
— F(div(GTE),¢) — BAGRR DY) = (fa. )
By integration by parts, we have

—(divG, ¢) = (G, V()
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= HVCH@ + (EV( + V(E + EV(E, V() + (h1, V()
1 1
2T

1 1
> VG| - 5 IVCI3 = SIVEIEs

> V¢l — 0( ) I9CI2 — CIVC eI 9C] 12

and
v(Aw,() + v(Vdivw, ¢)
= —v(Vw, V() — v(divw, div()

v U, .. v, ..
< ZIVwls + 21Vl + 2ldivel3s + 2 il

Ll \CEIAN

v v, ..
= §D8 + §||VC||%2 + §||d1VC||%2-

We thus obtain
@,0) + L IVCI +97(9.0)
< D0+ ZIVCIE: + 2l (5.18)
— (00w, () — (W, 0", ¢') — w(9d2,7", ¢")
+B2(div(GTE), C) + AGPI2 Y, ¢ + (2, ).
It follows from (5.11) that
Vo =—"F)'div'G + fi,
where fy = (TF)"'f,. Since (TF)™! =1 — TE, we have
Vo = —div'G + "Ediv' G + fi. (5.19)
We take the inner product of (5.19) with —C to obtain
—(V¢,¢) = (div' G, ¢) = (TEdiv' G, ¢) — (f4,0). (5.20)
Since G = V(4 EV( + V(E + EV(E + hy, we have
(div' G, ¢) = (div (V(),¢) + (div' (EV( + VCE 4+ EVCE), ¢) + (div ' hy, €).
By integration by parts, we have

(div' (V). ¢) = (Vdiv(, ¢) = —[|div¢]Ze.

102



Hence we see from (5.20) that
—(Vo, Q) + [Idivc][7.
= (divI(EV(+ V(E + EV(E), () — (TEdivT G, () (5.21)
+(divTha, €) = (f1,0).
We take the inner product of (5.16) with w to obtain

(BCw) + (000, G w) — [Jw]2a + (WP G w') = (f5,w).

Since [|wl||2, < LDf, we see from this identity that
1 —1
(atCﬂ“U) S ;Dg - (@18171C7w) - (w38:§3¢ 7w1> + (f57 w) (522)

It follows from (5.18) +~% x (5.21) + (5.22) and 4 (w, () = (8¢, w) + (¢, w)
that

d 2 .
(w,0) + IVCIR + v

< (55 DB+ SIVCIR: + vl - (00n0.0) - (0,7, ¢)
—v($d25', ¢ + FA(div(GTE), ) + B(GP2 0.¢1)
+72(div (EV( + V(E + EV(E), ()
—(TEdivT G, ¢) — (005, ¢, w) — (W29, w')
(2, ©) = (1, ) + (fs,w) +72(div By, ).
(5.23)

We set
Ry = —(0'0p,w,¢) — (w’,,0", (") — v(¢0},0", ¢) + B(div(G E),¢)
+ B(GBR D+ divT (BVC + VCE + EVCE), ()
—(TBdivT G, ¢) — (0'0,,C,w) — (w2 ¥, w'),
Ny = (2,0 = 7*(F1, Q) + (f5,w) + 72 (div e, Q).
Then we see from (5.23) that

d
dt
<(3+5) D8+ ZIVCl + Sldiel3s + R+ N (5.24)

B :
(1,0) + VI3 + 2 divC
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By using the Schwartz inequality, we obtain

2 C
mosfaere (g T+ T oiver S (g + o) o8
C
+ Vel

for any € > 0. This, together with (5.24), yields

d 2 .
2 (w,0) + LIV + 47 dive 2

1 1 1 1
{2+C< Wz 262)}D8

2 2 I/—|—9V

Y Y
+{4ﬁ26+052<ﬁ2 ot gt HIVCIZ:
C
+ 5Vl + 7.
We set
2 2
S V+9V
{4626 + CBQ</82 + 7 + 56> + }HVCHH
and choose € = 3—12 Then we see that
1 4% 42 v+ 9
_ 2 2
= Zweia + o (2 + 5+ 3 + o IVl
We take 32,42, v, 7 so that C’(i2 + Za_z + g—z + ”;%%‘7) < 8, then we have I <
2
TIvC
Thus we obtain
d o 1 0 1 o, C 2 0
Bl + 1D { +C< e 252)}1)0+@||v¢||m +NY.

Similarily, we can show the following estimate for 7 = 1,2:

iEj—i— -D] < { +C< T )}Dg+%||8j¢”ig+1\ff.

dt 4 vp? o 1252
This completes the proof. O
We set
E; = Ey + E,
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v+

2 2 2
+ )
Dy = Do+ Dy 4+ 211 > el
j=1

2
Ny := No+ Ny + Y (107 fall e + |divd T hy22),

j=1
Proposition 5.8. It holds the following estimate:

d 1 1 1
— Dy <C(=+ = 2 . .
et 5D < C(V + 52) 02,0172 + C Ny (5.25)

Proof. We first show that

2 2
| 41|12 1 1 j—1 2 : ji—1T 2
; 18762 < C(@ + E)Dl + o;(naa fall3z + [|divo? h1||L2>.
(5.26)

We see from (5.20) that

By, = =8, (divC) — (divT (EV( + V(E + EVCE))

J

—(divThy) + (f1)?, j=1,2. (5.27)

Therefore we obtain

1092 < [|[VOC| 2 + 2321 |(divT (EV( + V(E + EV(E))|| 2
+[|divT A || g2 + || fal 22

Since
0:,(% 00,0 0 0 2. ¢?
div (EVC) =div | 0,30, 6" 0 0 | =000 | 00,0nC |,
00,000 0 0 O O C*

0 0 0
div' (V(E) = div 0 0 0
Oy 0, Ct 00000, D0 01, C°

0
p— 0 ’
Dy O2,C1 + Oy Dy D0y C2 + Oy (D 00 0 ()
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0 00 0
div' (EV(E) = div 0 00 |= 0 ,
(0,020, C* 0 0 (00202, ¢

we have Z |(divT (EV¢ + VCE 4+ EVCE) Y |2, < —Hvag\|L2 It then fol-

7j=1
lows

0611 < € (1+ 55 IVOCIEs + vl + 1l

Similarily, the following inequahty holds :
1 .
1061132 < C{ (1 + 52) IVOCIE. + 1041 + ivd hull: |

Therefore we obtain

2
Z o0l < €1+ 57) 3 IVOCE

Jj=1

2
+ O (107 fulle + ive? " Thy |22
j=1

<o( 5 BG)DI + OZ(IW Ull3e 4 dived TRy ).

By combining Proposition 5.5 and Proposition 5.6, we have

d

£E0+DO
2
< O 1ol + ol + € (L4 2) S 9l + 0
j=1 Jj=0

C e~ o 11
= S 10l + 10us0l) + € (5 + ) D+ O
j=1
(5.28)

By (5.28) and Proposition 5.7, we obtain

d 1
dt(EO + E1) + Dy + 4D1
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{2+C< V;2 1/2152>}D0+C<%+VL62)D1

+(; + ) <]Zl 10913 + 102,0112: ) + C(No + Vo).

We take v, 5% so that 5+ C(; + ;5 + ;252) < 13, C(5 + 752) < 15, and then
we have

@B+ B+ 116(DO+D>
(5.29)
<c(;+5) (Z 99813 + 19201132 ) + C(No + Vo)

It follows from Z12° x (5.26) + (5.29) that

d 1 B2 +7° = a2
dt(EO+E1)+E(DO+D1)+ V1D ;H@ ol|72

<c(y+ ) (S 107012 + o012
j=1
2 2

( ;2> (+1a)54< 52>}D1

Mo+ N+ D10 ol + v i

j=1

+C{

We take v + 7,2, 3% so that

2
C(%*%) <3 iil Ct@(”%)*ﬁ(”%)}ég—g

. It then follows

d 1 132 4+~°
dt(E0+E1)+ 16D0+§D1+—ﬂ ! ZHaJGbHL?

< (5 + ) 10:0l1

2
+ O{No + N+ (10 a3 + v Th132) ],

Jj=1

This completes the proof. O
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We set ) . )
Ey:=Y E},Dy:=Y» Dj Ny:=> N,
j=0 =0 j=0
where

E} = v| VP w2 + v||divdiw||22 — 2792(87 ¢, divdiw) + 26%( G, VI w),
D% = ||8t8jw||iz,
N := —72(0' fy, divd?w) + (& fo, 0,07 w) + B2(G, VI w).

Proposition 5.9. It holds the following inequality:

d v+ v ’y4(u—|—17)
—E5+ Dy < C||0y,0||%2 + C -
7 3+ s 10250172 + <5g+7 25(42 + 12)
2 1 2
+B—+—+1+ +—+@+6>D2+0Ng.

Proof. We take the inner product of (5.8) with divw to obtain
(010, divw) + (0" 0,, ¢, divw) + || divw||7. = (f1, divw).

Since (8¢, divw) = 4 (¢, divw) — (¢, divdw), we have

d
%(qﬁ, divw) — (¢, divoyw) + (0 0y, ¢, divw) + ||divw]|7. = (f1, divw). (5.30)
We take the inner product of (5.9) with d;w to obtain

0|72 — v(Aw, dw) — v(Vdivw, daw) +v*(Vo, daw) — B (divG, daw)
+ (w0, 0", Q') + (0" 0w, Oyw) + v(¢02,0", dyw’)
— B(div(GTE), w) — BAGBR P, 0w") = (fo, Oyw).
We set
Ry = — (00w, Ow) — (w?0,, 0", Oyw') — V((b@isﬁl,atwl)
+ B2(div(GTE), yw) + BA(GB20, dpw).
By integration by parts, we have

—v(Aw, dyw) — v(Vdivw, dyw) = v(Vw, Vow) + v(divw, divo,w)
_1d

— S S 0lIVwlE + ol divel),
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(V(b, aﬂl)) = —<¢, div@tw), (leG, aﬂﬂ) = —<G, V@tw)
We then obtain

1d
2CM(VHVwIILz + 7l|dive||72) + | Ow]|Z-

(5.31)
—72(¢, divoyw) + B*(G, Vow) = Ry + (fa, Ow).

We take the inner product of (5.10) with Vw to obtain

(G, Vw) — Vw2, + (2'0,,G, Vw)
—I—(wgﬁzsw, O wt) — (VwE, Vw) — (VUG,Vw) = (f3, Vw).

Since (8,G,w) = 4(G, Vw) — (G, VO,w), we have

(0,G,Vw) — ||Vwl|j3, + (v'0,,G, Vw)

o — — 32
T 0uw’) — (VE, Vu) — (VIG, V) = (fy, Vi) 02
It follows from —? x (5.30) + (5.31) + 3% x (5.32) that

1d
S Vw3 + il divils — 2079, divi) +26%(G, V) + |0l

= B|Vw|2e +12ldivw|2s + Ry + (0105, 6, dive)
+B2 (w0, B, Dugut) + B2(010,,G, Vo) — BA(VWE, Vu)

—B*(VUG, Vw) — ¥*(f1, divw) + (f2, w) + B*(f3, V).
(5.33)

We set
Ry = Ry + (3", ¢, divw) — B2 (w?d2 9, D) — B2(0' 0, G, V)
+ B*(VuG, V) + B*(VwE, V).
We then see that (5.33) is rewritten as

1d
g g IVl + vl =270, dv) 26,V + ol

Since v?*||divw|3, + 2| Vw3, < (% + %2) D}, we have

1d
> dt(vuvfwny + D|divefs — 292(6,dive) + 26%(G, V) + w3

<”6; >D°+R2+N°

(5.34)
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By using the Schwartz inequality, Rs is estimated as
1 1 ¢ C
Ro < gloais + (545 + ) i

4 4
4C<H"—>WWH+W®MW+C< B)wwm+wmm>
(5.35)

By combining (5.34) and (5.35), we obtain

1d

1
2dt(lj|lvw”L2 + 7||divel7: — 29(¢, divew) + 26%(G, Vw)) + 519wz

2 1 1
(5 +—+1+ + )DO
74
. (1 + _) 100172 + C|| 04,07
54
+ (145 )IG1E + 19G1) + N5,

Similarily the following estimate holds

%(VHV@U)H%Q + 7||divow||32 — 27*(9¢, divow) + 28*(0G, Vow)) + ||0:0w||3-

4 2
2 v 2 112 B 1 1 )
<c(joolfs + ojooli) +o(S+ Lt L)y
O 1 64 8G 2 aQG 2 Nl
+ (14 5) (10613 +10°G1:) + 3.
We thus obtain
d

—F D
o7 3+ D3

CH* 2 :
< C(J10rgllEz + 19613:) + = D" 176113
j=1

(52+—+1+1+ 1>D0+C<1+B4> iD1+CN:>,

32
+v 1 ‘v +7)
< C|o, 22+(J< v -
= ” 3¢||L ﬁQ_’_,Y (52_’_,}/2)
2 1 2
+5—+—+1+ +—+E+B>D2+C’Ng.
This completes the proof. O
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We estimate 0,,¢. We define b by
¢ =0+ (T+w)-Vo.

We see from (5.8) that ‘ 3
é = —divw + fi, (5.36)

where f; = —¢divw. We next set

1 1 1
= ZEX,D4 = ZDinZL = ZNiv
7=0 j=0 3=0

where
~ 1 1
D3 64D2+ﬁ2—{—"}/2D3
Bf = |07 009|724
B y o
Dy == ||6“6953¢HL2+boﬁz+ 2(||aﬂ¢||;+||(3vam¢>||§2),
. o it
Ni = [( fo, 0" Ouy)| + o ||8Jf1||L2 L2 5 ||a 2
v4U ,
o e gl

Here by > 0 is a constant independent of v, 7, 42, (2, and fg := V—f—% fe —
Ops (U +w) - V), fo:= (f2)? + B2(fa) + (v + D)0u, 1.
Proposition 5.10. It holds the following inequality:
iE4 + Dy < 1D3 + C'Ny.
dt 2
Proof. 1t follows from (5.36) that

1
. C _
> 1976llz: < = Do+ Cllfillz- (537)
and . .
PR’ = =05, — 0py (V' - 0') + Oy, f1. (5.38)

We see from the 3rd equation of (5.9) that
—(v + )92, w* + 7?0, — B?0,,G*
= —0w? + vA'w? + 00,,(V' - w') + 32(0,,G3 + 0,,G*?) (5.39)
— T P + B2y, 0 00, GF + (fa)?
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We see from (5.11) that
Ony® + 05, G3 = —0,, G — 0,,G? — 0,00 00, b+ (f1)°. (5.40)

By (v+7) x (5.38) + (5.39) + 4 x (5.40) to eliminate 97, w* and 9,,G**, we
obtain

(V2 + 82y + (v + 0)Dsy ¢
= —0w® + VAW + D0y, (V' - w') 4 B%(0r, (G* — G'?) + 0,,(G* — G*))
20,00 0, & + 200,00 00, G — T 0P + .
(5.41)

We take the inner product of (5.41) with 0,,¢ to obtain

(7 + B 10us Bl + (v + 2) (026, 02y 0)
= _(atw37 aﬁv3¢) + V(A,w37 a903(25) + ﬂ<8903 (V, : w/)7 aﬁv3¢)

— B2 (Opy b Oy, Oy ) + 2Oy Oy G35, Dy ) — (00 w3, By )

"‘62(811 (G31 - G13> + a:m (G32 - G23)7 813¢) + (f67 ax3¢)
(5.42)

By the definition of ¢, the left hand side of (5.42) is calculated as

(0 + BN0u bl + (v 4 9)(Dec 00,6)
= S+ 2) S0l + (07 + P00
+ (V + D)(aws((ﬁ—l— ’LU) ’ v¢)’ a$3¢)

On the other hand, the right hand side of (5.42) is estimated as

_(atwg’ 8963¢) + V(A/w37 6x3¢) + I;(aﬂcs (v/ ' w/)’ 8x3¢) - 52(8:03E18x1 ¢7 8x3¢)
B2 (Day 0 O, B3, 0y 0) — (00, %, Dy §)
FB2(00y (GBY = G13) 4 0,,(GP2 — G®3),04,0) + (fo, Oy ®)
Cr?

B+ p 4 - )
< T||aa:3¢||m + m”atw 172 + m“vawﬂp
+52 + 2 H6¢H?;2 + B2 4 2 (62 + 1)H6GH%2

+m”vw”%2 + (f6,02,0).
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Hence we obtain

1 _.d B%+
5(” + V)EHazg(?“%z + 5

Cv? C
||V<9U1||L2 5

IVwlize + (fo, 0:9).

4

= m”atw?’ﬂiz

2 ||5¢||L2

C
(8 + DIOGIIZ> +

C
+ —
B2+ v2(52 +7%)

Dividing this inequality by v 4 7, we have

T

th”amquLQ + P a£3¢||%2

_ C
T (P (v+D)

1 ~
+ BI0GIIZ: + 5 [IVellz) + (fo, us),

(10|22 + v VOwl7> + 061172

Similarly, we obtain the following inequality

62+7

H33x3¢llm + 11008172

- C
(B +D)
+ (82 + DIIVOCIIZ2) + (0fs, 00:,0)-

I B
By (v+0)(B82+72) X (5-41), we have

B2+ 7 : V4D
x —axg
V"— 3¢ /824_72 ¢
1
= — 0w + vAw? + 70,,(V' -
N ORI Ve
+62(8x1(G31 _ Gls) + 8902 (G32 _ G23))

—B20py 0 Oy + B0y 0, G — T + )
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Oz 0)
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We thus obtain

T a0l
<C(§i”ﬂ@mmr+( il
( 1) BZ:C;IIV@%UH%Q (5.43)
+(V+f;(;21 )HaGH%Q o 17)(162 +72)<H8¢”%2
*”VM&V*@+ﬂm¢+v%W“§)

It holds the following estimate by adding (5.43)

d
—FE,+ D
o 4+ Dy

1

= (524—7 v+ D) Z

J=0

(0:07wl72 + vV w] L.

1 . . .
+ S IV wlie + 1076l + (8 + DIV ([72) + Na

C 1 v+v 1 ~
< ~( +97) + +—+—+<1+—))D +CN.
T (B +7) Fartvt s B2+ 32)) !
1 -~
§§D3+C’N4
This completes the proof. O]

We estimate 8§3¢. We set Dy := D5 + D,.

Proposition 5.11. It holds the following inequality:

d i 02 52+72 v+v 92 12
0201+ 02, 0l + b5 102,
C v+
< Vw5 + C——— V2ax3'w 2
e G R L

1 1

Br+1 )
100.,G |72 + C V+ﬁ+52+

(B2 +)(v+ D)

o 72) B+ (0ey o 02,6,
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Proof. By applying V+V8 o (5.41), we have

62+7

02,6+ 82¢

1
= ( 8,58 w® + 10y, N'w® + 92 (V' - u')

+52(8m1813(G31 G'3) + 0,,0.4(G*? — G*))

20, (0py ¥ O ) + 20y (Vs © 0y G — Doy (T 0y ?) + Dy ),
(5.44)

We take the inner product of 92, ¢ with (5.44) to obtain

T

SN2 0l + I3+ (@2,(T+w) - V), 32,9)
_ i (—040pyw® +ya AW+ 502 (V- )
201,00, (G — G'3) + 0,0, (G — G*) (5-45)
— 820, (D00 02, 0) + 20, (00,0 01, GF)
— 0 (U 00, 0*) + Oy fo, 02,0).

We have the estimate for the right hand side of (5.45) in a similar manner
to Proposition 5.11

1 2
Loz 03+ 2 02, 0l + (02, (5 + w) - Vi) 02,0
C v+rU o,
< (/32+’72)( )”atvu)HL2 +Cﬂ HV ar:‘su}HL2

AR 2 1 1 3 92
OB )P0 Cle O\ 755+ g ) Pat 10 fe, 00l
This completes the proof. n

We next estimate higher order derivatives of w and G. We set

1
E5 = E2+B2 E3+E4—|—|| (b”%z,
2
+
Dy =D+ 27 7 62 gl
1
N5 = N2+/82 N3+N4+‘<a$3f67 ¢)|7
524"7 2 v+v P
Ds := D5 + — 102 ¢||L2+m”v¢“H1'
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Proposition 5.12. There erxists a positive number 32 > 0 such that if 5* >
(2, then it holds the following inequality:

d
%H@ngllinr H8I3G||L2+b1 V2w,

11
v BT

Proof. We first introduce the following quantity

1 2
< CalVali o (Lt gt o) Dok | (9t Zom.6 ).

q=vw + .
Sincew:%q—%zg, we have
1 2
Vw :—Vq—ﬁ—VC
v
1 2 2 o 2
= ;V — 6—G—|— P (EVC+ V(E + EV(E) + ﬁ—hl

By inserting this to (5.10), we obtain

2
56+ 2 —G= vq — w30, E — 7'0,,G + VWE + ViG

52 32
—(EV(+V(E +EVCE) + I + fs.

(5.46)

By applying 0,, to (5.46) and taking the inner product of 9,,G, it holds the
following identity:

2
2dtnameup+ = 0n G

= (V01y0,00,6) — (O (%0, 51,0, G") — (0,,(010,6), 0,,0)

0y (VW) 0,,C) + (0., (VTG). 0,C) + (0, (EV).0.,6)  (547)

L Fo e
2
+ (3x3f3 + %@Shh ('LSG) .

The right-hand side of (5.47) is estimated by
s 0G5 + -1Vl
62 | 3 |L2 52 qll
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2
+ O(% + % + ; >D5 + ’<ax3f3 + %ax3h17a:v3G) ‘ :

We thus obtain
d 3?
—||3x3G||2Lz + —||3I3G||iz
1 ~ 32
GVl + O+ 5+ o) Dot | (s + Lo 0,6

This completes the proof. O
Proposition 5.13. It holds the following inequality:

2 2\ ~2 2 ~
2 < 2 s (B (v + D)
IVallin < O (82 447+ T + =
v+ v 1 1
52+’Y2 + 62>D5+C||ast||L2
+ C@* | AllE + ||f2||L2 + 2| Fn).

Proof. By simple calculation, we have

+v+

IVallin = IVallz +1IVoqll2 + 1107,4qll7-
< CO(v+ %) Dg + |]8§3q\|iz.

By using ¢ and ¢, it follows from (5.9) that
dw — Aq+ VG + Vo + 00y, w + (w0, 7" ey

(00, T)es - PAiv(GTE) - PGP0 et (54
—32div(EV¢ + V¢E + EV(E)
= OV + fo+ Bdivhy,

which gives
167,41z
< C(l8wwlge + PIVIIZ: + (7! + DIVOlZ2 + 6% 72 + %I!le\%z
+ G122 + 10GIT: + IVCHz + 2211 filld + 1 FallZe + 82 (1AnliZ)

B2+~%)* (v +0) v+ 1 1N =
<C’< 2 42 — —)D
<O +y+ Gttt mattg)Ds
+ 100G l7e + C@ | fillzn + 1 £2ll72 + B2 (1Rl 7).
This completes the proof. O
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We introduce the following quantities to estimate V2@

1 2
B = By + =y 100, Gl
~ 62 9
Dg = D5+ ————||0. ;
6 5 + VD(/BQ n 72) ||a SGHL2

No = Nt = (Bl + LAl + Sl
T () g Ty L T T

+‘(V2 (f3+%2h1) ,V%‘)D.

Proposition 5.14. It holds the following inequality:
(——_ 2 o2 2
#I7l + I

C 1
_?natwniﬁ ||V2w||H1+C< +@+@+1+ )D

14
2
+0(]< (f3 Z ),V2G>' + il
1 2 2
+?ﬂm#+%mﬁw%mm@.

Proof. By applying V2 to (5.46) and taking the inner product of V2G, we
obtain

2
Qﬁwwm + v,

1 . 1 v
237/12, 34112, G2, + — 2, 5.49
_ZJVGM%%KwNVML+wJ®m+5JWMH) (5.49)

52
H(VA(fs + =), V°G).

The estimates of each terms are given as follows
1 2 1 212 1 2 2 1 2
?HG”HQ = —2||V Glize + —z(llanglle +10G|72) + V—52IIGIIL2

v+

<— ||V2G||L2+C(F+E ) Do
v

||V2G||L2+C< 5t )

Since

IVwlE: = V2wl + V2wl + [Vl
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C
< ;DG + V20|72 + (| VPw]|7-.

we need the estimate for ||V*wl||%,, k& = 2,3 to complete the proof. We
mention about the estimate for |[V3¢||7,.

Lemma 5.15. It holds the following inequality:
1
?HVSQ |72

C
—2(!|3ti!!%2 +IV*GIL2)

2

+C( +i+(1+’y )(1+§)

B 32
v+v 1 (B +7)
e e S
_vo ;
+ (VV‘;QV) Hfluip + V—Bszszl —|— Hf4HH1 + thHH2

Proof. 1t follows from the easy calculation that
%HVP’QH%Q = VLBQ(HV%QH%Q +1103,allz2).
We see from (5.27), (5.36) and (5.48) that (0,¢,0:,q) (j = 1,2) satisfies the
following problem
divd,;q = r; in Q,
—ADy,q+7*Vy,¢ = s in Q,
02,4 =0 on {23 = 0,1},
where
= 10,6 — 20,6 — 00,0 0,00, C° — v0u, fi — BV ) + (),
= —0,0,,w — ' 0y, 0p,w — (8y,w*0,, 0" )€1 — DV, 0
(02, $02,5 er + B2iv(D,, GTE) + (0., G0,,0 ey
+52div(EV,,¢ + VO,,(E + EV,,(E)
~ N0y, f1 + Ou, fo + B2divO,, hy.
It follows from Lemma 2.2 that

IV20all3 < O((5 + 7)1+ v+ 9) + 225 4+1)

ﬁ2+2
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- i - % - wp«a
+ C((V + D)\ fillde + L fallis + B fall e + B2l [32)-
We see from (5.48) that
02,q = 0w — Nq+ Vo + Vo + 70y w + (w*0,,7")er — v(¢p2 T )e
— B2div(GTE) — BH(G¥2 ) ey — Bdiv(EV( + V(E + EVCE)
+ 0V fi — fo — f2divh,.
By differentiating in x3 and taking L?-norm to this equation, we have
167,172 < C{llﬁtilliz +V&*alliz + 71V l7 + (7' + DIV 7
+ 5 (IVullt + IVowls) + 1613 )

+ C@ | fullde + 1 follF + 82 [1RnIZ2)
< C(l0Vwll: + [IV*Gl172)

2 2
+O(62+u+52-u
vV+v
4 v+v 1 1
+ (v +1)ﬁ2+72+— B2>D5

+C((v + 0| Aillze + L fellin + B 1a o).

Hence we obtain

1 3 112
V_/Bng C]||L2
?(H&VwHiQ + [[V2G172)

1, 1 i AR (5.50)
+C(5+E+(”@)(“Z>+ VBE+ ) 2>D5
1
ol ol + 503+ S
U

Proof of Proposition 5.14 (continued)
We see from (5.49) and (5.50) that

L e+ 2 v,
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2 1 1 v
2 2 3,112 2 2
< G IVGIE +C (L Vallie + Gl + S5Vl

(e 20) )

2 C C Cv
—||V2GH%2 + —2||V2G||%2 + V—ﬁﬂ\&tvwﬂiz + 3
2

+C<?+@+l+%+<1+gz>(1+ )+%)Dﬁ

(o 50|

Lo e R
el + Al + 7||h1||H2)'

I/—|—V
— 1/l

We take v, 8 so that V—gQ <1<45 5 . Then we obtain

d 2
ZIV2GIE + 7HV2GH%z

C 1

(2 >w>

V—l—l/
1 2
4ol + 2l + 2 thum)

— 1 Fll 7

This completes the proof.

We set
B = v
pr= U Dy Lol + 219Gl
Nr = N (2 + S, w0 + D

1 2 B 2 2
+ ?Hfﬂm + 7Hf4HH1 + 7||h1HH2'

Proposition 5.16. It holds the following inequality:

v 1 v+U
GVl < o ) Dr

32 +52+ 2
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(V+V)

1 1 1
F O R e + sl ol + gl + oIl |

N

-l ,_ B
Proof. 1t follows from FW = 754 WC that

= Vw2

62
1 32

< - 3 22 o 22

< O (gl Vol + 1G5

C c/1 1 vy %
< (5 mUavwli: +19°G1E) + 5 (5 + 5+ (1+ ) (14 )
v+v oy oy 7(6° +1%)
+52+72(5 +77) V32 + 34 >D5
v+ 0)? | 1
G 11l + V—56||f2||§{1 + V—52||f4||12ql
1 1
+—wmm+—ﬂm#}

1 v+v
||8ti||L2 + <62 + ; + m)D?

+

+c{@+”)wmw ol Sl + e
This completes the proof. O]
We set ) . Cv
D, = gD7 + ﬁnvz%w“;.

Proposition 5.17. It holds the following inequality:

1 B4 1 v+
10epll72 < C(;m-i-ﬁ (7 + ) >D7+O’|f1||1:2
64 1 BQ
V2(B2 + 42)2 + V2(B2 1 42)? + (B2 +

Proof. We see from (5.8) that

26|12 < o 72)2)157+O||f3||%2-

10:¢117> < Clldivwl[Z> + [[7"0z, l[7> + [l f1llZ2)

1 vV+r
)Dg + C|| f1l172

1
0G0 e

1 B4 1 v+vrv
§C<ZN@+%P+ ST

122

))m+mmm



Similarly it follows from (5.10) that

10.GlI> < CI[7°0:, Gl L2 + I VwllZ: + [VwE| L,

—1 —
+[w? R, ¢ (172 + IVOGZe + |1 f3]172

1 1 1
< C(— +— + —)D6 + C|| f3][32

v oupt T 22

g 1 52 . )
<c( ) Dz + C ]2
T \(B? 4 42)? * v2(32 + 42)2 * V3(B2 422 ) T + C|| f|72
This completes the proof. B

Proposition 5.18. [t holds the following inequality:

1 (1d
—{——(vgll(‘wlliz +[10awl[Z> + 810G 72)

B2 +~2 L 2dt
+ v||Vouwl||%, + ﬁ||div8tw||iz}
1 v ¢
< (= 12
1 v v C
72 1 62
+ O 09 + g 5102 )|+ =5 (Oufs, DG,

Proof. We obtain the following estimate by similar argument to the proof of
Proposition 5.5

1d .
577 (N0l + 100072 + B10:G L) + v [0V wlze + Pl divow|7:

< V((O4(0'01,6), 0:0)| + (94001 10), Byw)| + |(0s (w*D,,0"), D)

+ 1](9(002,71), 8wt)| + B2|(0,(div(GT E)), )|

+ B2(0,(GBREY), 0" + B2(0,(70, G), 5,G)| + B|(0,(VwE), G|
+ (0w 2 D), G| + B2(0(VTG), 0G|
+921(cf1, 000)] + (Do, Orw)| + B, fs, BG)-

The right-hand side is estimated by
V(000" D0, 6), 040)| + (910" 0y ), Dyw)| + | (w0, 0", D))

+ v|(O(0025Y), )| + B|(Du(div(GTE)), dw))
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+ 820G 0, 8wt + B21(0,(1'0,,G), 0,G)| + B|(9(VwE), §,G)|
+ B2(8,(w02, 0, ,G™)| + B2(8,(VTG), 8,G)|
+ (8 f1,060)| + |(Ocf2, Orw)| + 52 (8, fs, 0, G)]

v C
S (Z + ;) ||V@tw||%2

2 2 2
C(ﬁ j” T )D6+05 +

(12l Z2 + 10.GZ2)
+9%1(0uf1, 0ed)| + (e fo, Ow)| + B[(0:f3, 0G).

We thus obtain

1 1d
g {2 S P10 + 10l + 510,G1)

+ v||vatw||L2 + 7divoawlf3s }

1 v C 9
(Z ’ B2 4 2 + V(B2 + 5 ))HvathL?
v+4v
+0(;, + gr23) D+ S 1001 + 10GI)
2 1 32
+ —ﬁ2 T 72 ’(atfl7at¢)‘ + m’(atf%atW)’ -+ m‘(@tfg,atG)‘
This completes the proof. n

5.3 Proof of Proposition 5.4

We see from (5.25) and Proposition 5.9 that

d 1 1 1
dt<E2+ﬁ21+ 2E31>+32D2+52+72D3
< 2

C( oty >H8x3¢HL

e (Y (L

(B2 + 12)2 B2 A2 AR

+<1+1> AR S L (1+1+1+1>}D
v 3B T D22 B2 42 v o3 B2 2

+C<N2+B i N3>
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If ﬁ';i”Q <1, BQ < 1, then the right-hand side of (5.51) is estimated as

1 1

c(5+5+ 5 el

—|—C{ v+ +( 0% )2 1 n 1
(B2 +12)2 52 4 A2 v 2
+<1+ 1) LA e N (1+1+—1+-1)}D
v ) B2 +172 DB2+A2 " B2+42 v 3 2
+COW+J¢ MQ

<c(+ 5+ g )||a%¢||y+

1D2+C<

1
———N)
64 B2+ ~? 3

and hence,
d 1 1 1
— | E —E> —Dy+ ———D
dt( 2ty ) Tetr et
1 1
<C<_W¥+ﬁ2 )W%MH+CQ%+
It follows from (5.52) and Proposition 5.10 that
d 1
E
dt( 2+ B2+

+d

1
FT?%> (5.52)

.&+J%>+ﬁy+D4

1 1 v+v
) :

_.I_
BZ 52 + ,-)/2 52 + ,},2
1
71?%+m)

1
2
+C(N2+

v+U
B2 42

Moreover by taking v, 7, 52,7 so that C(+ + 52 + BQH 5) < 1, we have

d ( Byt 1 1
AN B4y B2+
By combining (5.53) and Proposition 5.11, we obtain

d 1
—F D
TR + 5

1 -
&+&>2ukumgc@w+ %+M)@m$

C
< 8,V w ﬁ%? ~100,.G]2. 5.54

I/—I—V
52 ||V20w||L2+C'N5

It follows from Prop0s1t10n 5.12 and Proposition 5.13 that

d 2 62 2
%H&WG”LQ + 7||aﬂ€3GHL2
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2 2 2 ~9 ~ 2 2

SC<1 ol +ﬁ +9 v ] +I/+V'1—|—’}/.1—|—’Y
v3? ;2 v(v+ 1) v 32 32 4 2

1 1 1 1 1 1 ~ C

= Ds + —|0,,G|I3

52+V452+V262+V54+V56+Vﬁ8> 5+1/52H 3 ||L2

72 1 1 32
+ O(Zallfle 4 gl + i) + | (0 Z0,0,0,6 )|

+

1 v4D 2 \N- C ,
< — — )
C< * B2 T v + v(v+ D))D5 + v[3? 10, Gl

12 1 2 1 2 /B2
C<V—52||f1||H1 + V—62||f2||L2 + ;||h1||H1> + [ Ows f3 + 78$3h1,8x3G .

(5.55)
By combining (5.54) and (5.55), we have
d 1 C
aile T De s 2, + CNg. |
dt 6+4 6= (52_’_72)(,/_’_5)”8tvw“L + C'Ng (5.56)

We next estimate || V2wl|?,. We see from Proposition 5.13 that if C' (g —> <
%, then

1
i rp!Y e
C op?
< ,/252(52 ) V24|72 + m”@ﬁm
C o
Lp, + S @1 il + 12l + Bl (5.57)

8
It follows from (5.56) and (5.57) that

d 1 1
—Eg+ =Ds+ =5
dt " 8T BB 4 )

C C ~
< 2 L~ 9 2 2 2 2 .
< a1Vl + ONe+ 5+ el + Bl)
(5.58)

Vw7

By coupling Proposition 5.14 and (5.58), we obtain

d (v(p +7 V(B ++%)?

d_( B, +IV2G3: ) + + gD+ g1V ||L2+—||v2G||L2
(52+7 ) 1 2, Ovigs 1o

< 2 T o 2

<C(Gigog +yg)loveli + vl
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+C< +%+§+1+ >D6

+C< V(8% +1°)? [

G N (V2 (s + ), V2G| + ”*”nflum

1 B B
+ ol Bl + Al + Il

Hence we have

d 1 1 Cv
B+ oD < (52 >||ati||L2 = I V3w|% + CONy. (5.59)
We see from Proposition 5.16 and (5.59) that
d 1 Cv .,
£E7+ D7—I—WHV ’LUHL2
<c 1 v+v
<ﬁ2 62 )\|8ti|\L2+C<B2 +W)D7+CN7.

Hence we obtain

d 1
EE7 + 2D7 ~ C(B + F + >H8tiHL2 + CN7 (560)

We next estimate for time derivatives of (¢, w, G). By combining Proposition
5.17 and Proposition 5.18, we have

d 2

1 32
G (Gralools + o —glomlts + 57— g SloGlt:)

+10l72 + 5—|!V3thLz T HdwathLa +[10.Gl 7>

1
<c(s+ 55 )D6+c(||f1||m+m|<atf1,at¢>|
1 2

B
+ m“atf%atw)l + m“@f&@ﬁﬂ + Hf3||%2)~ (5.61)
We see from (5.60) + (5.61) that

d E 2 a a ﬁQ aG )
i (Bt gl o+ ol + o 10G1E:)
+ Dy + 106132 + 12 462 10:Vw||7e + [10:G| 72

2
<C(5 + ) Dot (Mot LAl + 52— (011,00)
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1

+ WKatf%atw)l +

2

05,06 + )

2

= C( ﬁzi’ﬂy )V(ﬁ2ﬁ4
1

+—
B+ 2

|(atf2,atw)| "‘

+42)

Dy +C(Ne+ 1l +
62

62%72’(@‘7‘11, 0,9)|

5105, 0G| + ||f3||§2).

We set

2
7+52+ 2
Dy := D7 + 01072 3

B2

Ey = 7
8 ﬁ2_|_,}/2

1
E 100172 + i s 0wlL + 10.G 1z

Vo2 + 110G

2
BZ+2

|(atf2;atw)| +

Ng := Ny + || fill32 + o——

1
g2+

It then follows

(Oef1,0:0)]

2

B
! B

[(0uf3, 0G| + || f5 |72

d
—F Ds < C' Ng.
o s+ Dg < CNg

We note that there exists a positive number C; > 0 such that Egz < CDxg.

This leads to p
—Fs+ 4

Es + Dg) < CN.
o (Es + Dg) 8,

and hence,
t t
Es(t) + C’1/ e~ =) Dy(s)ds < Ce™ 91t Eg(0) + C/ e~ 19 Ny (s)ds.
0 0

We see from the third equation of (5.9) that

4
X
|2 wp<c( 2w
e IVuld + mwp+wam>;ﬂmm)
4 4
o +’V B+ CE2<06 7
l/

We finally introduce the following quantities
v 2 2
E(t) = 20E8<t) -+ m”@msw(t)HLz
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D(t) :=2CDg(t)
N(t) := 2C'Ng(t).

It then holds the following inequality

t t

E(1) +/ e_cl(t_S)D(s)ds < C’e_cltE(O) +C/ e‘cl(t_S)N(s)ds. (5.62)
0 0

It remains to estimate N(t) to complete the proof. We shall show that

N(t) is estimated in the following way by direct applications of Lemmata
2.1,23 and 24 .

Proposition 5.19. There exists a positive constant 6, > 0 such that if
E(t) <0, then it holds the following estimate

N(t) < C(E@t): + E(t)D(t)  (t>0).

Proposition 5.4 now follows by combining (5.62) and Proposition 5.19.
0J

Appendix 5.A Proof of Proposition 5.1.

In this appendix, we will give a proof of Proposition 5.1.

Proof of Proposition 5.1. We set (p,v, F) = (p,v, F) = (1,9 (23, t)ey,
(V(z - 77/_)1(:E37t)61))_1) in (5.1). Since

Dyt

0 ;

1

F = V(.T + wlel) =

O O =
O = O

p(Bw + v - V) — vAv — (v +V/)Vdive + Vp(p) = (90" — 102, 0" ey,
B2div(pF 'F) + pg = (B°02,9" + g')er,

we see from the 2nd equation of (5.1) that ¢! should satisfy the following
time-periodic problem:

PP — B2 — v, 0P = g, (5.A.1)
30,8 = 1(1,8) = 0, (5.A.2)
1;1<J]3, t+ T) == 1;1(1’3, t) (5A3)

For simplicity we assume that i—f is not integer.
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We set
0 -1
4= ( _628:%3 —1/823 > '
It follows that the problem (5.A.1)—(5.A.3) is written as
1 71 0 /1 t T /1 t

(V) +a(P) = (O, (Ve t Ty (Vi) g

ol ol g' ol (s, t + 1) ol (z3,1)
To solve (5.A.4), we consider the Fourier-sine expansions;

Pl = Zz[z (t) sin(kmxs), Z ) sin(kmas),

k=1 =

gt = Z[} (t) sin(kmxs).

We see from (5.A.4) that (9, 1;) satisfies

i()+4G)- () (m) - () omo

where

The solution of (5.A.5) is given by

(i) = [ () A0

From [16], the solution semigroup et is represented as

i1 A1 A -l
—tA At tA_ +
AV <€ (—)\M >\+)+€ ()\+)\ —)\>)’

—vk?n? £ 12kt — 432k 2
5 .

We note that Ay are the characteristic roots of —A satisfying the following
properties

Ay =

2
A = _6_ +0 (k:2> , Al = —vE*m? +O(1) for k>1,

v
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A = B2k,
It then follows form (5.A.6) that 1y (t) and 9y(t) are written as

R t 6)\+(t—s) _ eA,(t—s) N
Du(t) = / 3L (s)ds,

oo Ap— AL
R t A\ 6)\+(tfs) _ )\_6)\_(1‘,73) A
Op(t) = / + VY Gr(s)ds.

By integration by parts, we see that ¥(t) and @ (t) are rewritten in the
following forms :

A 1 o t /\_e)\_,_(tfs) o >\+6)\_(t78) e
X t €A+(t—s) _ ek,(t—s) 1
o) = [ (1) (s)ds. (5.A.8)
A =

Let us estimate ¢ and 0, by using (5.A.7) and (5.A.8).
We first prepare the following inequalities shown in [16] to estimate (5.A.7)
and (5.A.8):

6/\+t _ e>\7t 1 .
<C —ex 5.A.9
N — A | = Bkrt vkt (5.A.9)
A Apt Y At
‘ 6A+ — Aie < Qe (5.A.10)

Based on (5.A.7) and (5.A.10), we have

7 2 1 ~1 ' ck(t—s)|( A1)/ ’
n(OF < g (l0hO1+ [ @y o)las

—0o0

C ~1 2 C ! ck(t—s)|( A1\ ?
< BAfAn g+ W € (gy,) (s)|ds

—00

¢ ~1 2 c ' ck(t—s) ! ck(t—$) [ A1\/ 2
S Gigin gx()" + Fikin e™Vds e |(9)"(s)["ds

¢ ~1 2 ¢ ! ck(t—s) [ A1\/ 2
< Bkt g @) + T € (9%)"(s)[ds.

—0o0

Hence, we obtain the following estimate for 0 <[ <6

n ¢ — ¢ ' cr(t—s —
105, (O T20,1) < @Haglc32gl(t)|’%2(0,1)+ﬁ_ﬁ4/ e 0,0,,%9" (5)|I720,1)ds

—00
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C C

< —lg" @®)|? + —— sup |0, ()|
54H @) lz0,1) 25 S 1069 () 20,1y
C 1

< @ (1 + ?) Hgl|’§{1(0,T,H4(O,1))'

In the case that % is a positive integer, we can deduce above estimates by
using the following forms with £ = %:
t

. 1 1 a2,
Uy (t) ngi(twrm/ e” v =) (gh) (s)ds

—00

2 t 282 .
/ (t = 5)e 2 9 (G (s)ds,

vk2m?
. ' 282 gy a1y 4 ST TRy
o(t) = — } (t = s)e™ 0 (g,) (s)ds — oy e (9x)'(s)ds.

As a result, 1! (t) satisfies

N C 1
sup ||t (t)])? §_<1+_) 192 ‘
1[0.7] Il )HHG(O,l) 34 2 lg |’H1(0,T,H4(0,1))

Similarly, we obtain the estimate of sup ||171(t)||§{4(071) by using (5.A.8) and
te[0,7

(5.A.9). The estimate of sup ||0,0" ()% (0.1 is immediately proved by using
t€[0,T

(5.63). This completes the proof of Proposition 5.1. B
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