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Abstract

One of the most important notions in modern particle physics is spontaneous symmetry

breaking. The idea is that the underlying symmetries of nature are not manifest at the

ground state, but the Lagrangians themselves are invariant. The cosmological history of

spontaneous symmetry breaking provides us with rich information of underlying physics.

Since the very early universe is filled with thermal plasma, the thermal effect plays an

important role. When the temperature of the Universe is sufficiently higher than a certain

scale of a symmetry breaking, a broken symmetry is restored. As the temperature decreases

due to the cosmic expansion, cosmological phase transitions associated with rearrangement

of the ground state take place.

If cosmological phase transitions are of first order, they proceed via nucleations of bubbles.

They expand and eventually coalesce with each other until they fill the Universe. During

this process, stochastic gravitational wave backgrounds are generated by bubble collisions,

sound waves and turbulence of thermal plasma. Generated gravitational wave backgrounds

are good target of future-planned experiments such as LISA, DECIGO and BBO.

Unfortunately, within the SM framework, the electroweak phase transition associated

with electroweak symmetry breaking is not of first order confirmed by lattice studies, and

hence, there is no production of the gravitational wave background. However, many theo-

ries beyond the Standard Model of particles physics have been proposed based on various

motivations, e.g. naturalness of the electroweak symmetry breaking, origins of dark matter,

neutrino masses and baryon asymmetry, and so on. In general, cosmological phase transi-

tions realized in such theories can be of the first order, and thus, we can test these theories

by the detection of gravitational wave backgrounds.

In this thesis, we consider two models of physics beyond the Standard Model of par-

ticle physics. One is the twin Higgs models which are motivated for solving the little

hierarchy problem. The another model is the minimal scotogenic model where origins of

dark matter and neutrino masses are simultaneously addressed. We study these models at

finite-temperature and discuss cosmological phase transitions as well as their implications

on electroweak baryogenesis and production of gravitational wave backgrounds.

In the twin Higgs models, it is shown that the expectation value of the Standard Model

Higgs field at the critical temperature of the electroweak phase transition is much smaller

than the critical temperature, which indicates two important facts: (i) the electroweak phase
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transition cannot be analyzed perturbatively (ii) the electroweak baryogenesis is hardly re-

alized in the typical realizations of twin Higgs models. We also analyze the phase transition

associated with the global symmetry breaking, through which the Standard Model Higgs is

identified with one of the pseudo-Nambu-Goldstone bosons in terms of its linear realization,

with and without supersymmetry. For this phase transition, we show that, only in the super-

symmetric case, there are still some parameter spaces, in which the perturbative approach

is validated and the phase transition is of the first order. However, gravitational wave back-

grounds, generated by the first-order phase transition, is impossible to be detected by LISA,

DECIGO, BBO and ultimate-DECIGO in the linear realization and in the decoupling limit.

The detection of the stochastic gravitational wave background with the feature of first order

phase transition, therefore, will give strong constraints on twin Higgs models.

In the scotogenic model, there are two dark matter candidates: an electromagnetically

neutral scalar component of an additional scalar SU(2)W doublet (the scalar dark matter

scenario), and a right-handed neutrino (the fermion dark matter scenario). The scalar dark

matter scenario is similar to the inert scalar doublet extension of the Standard Model where

a strong first-order electroweak phase transition favors a portion of the low mass regime of

dark matter which is disfavored by the latest direct detection constraints. In the fermion

dark matter scenario, we obtain a parameter space that favors strong first-order electroweak

phase transition as the restriction on mass ordering within inert scalar doublet that can

be relaxed. While the fermion dark matter remains safe from stringent direct detection

constraints, the newly allowed low mass regime of the charged scalar can leave tantalizing

signatures in collider experiments and induce charged lepton flavor violation processes within

the reach of future experiments. We obtain such new parameter space satisfying dark matter

relics, a strong first-order electroweak phase transition with detectable gravitational waves,

light neutrino mass and other relevant constraints.
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Chapter 1

Introduction

Results from collider experiments, including the discovery of the Standard Model-like Higgs

boson at the Large Hadron Collider (LHC) experiments, strongly indicate that the Standard

Model (SM) of particle physics can explain phenomenologies around and below the elec-

troweak scale. In spite of this fact, SM would not be a theory of everything because it has

some difficulties. For example, dark matter (DM), a matter and anti-matter asymmetry, tiny

but non-zero neutrino masses and naturalness of the electroweak symmetry breaking remain

as unsolved problems. For this reason, several physics beyond the SM has been proposed so

far.

In physics beyond the SM, the thermal history of the very early Universe can differ from

the standard one. When the temperature of the Universe was the order of the electroweak

scale, the electroweak phase transition associated with the electroweak symmetry breaking is

expected to occur. Within the SM framework, the electroweak phase transition is known to

be crossover [1, 2, 3] confirmed by lattice studies. However, in physics beyond the SM, since

the Higgs sector is significantly different from the SM, it is non-trivial whether the electroweak

phase transition is of first order, or not. Furthermore, physics beyond the SM usually has

additional spontaneous symmetry breaking different from the ordinary electroweak symmetry

breaking. Hence cosmological phase transitions associated with such additional symmetry

breaking can be of first order.

If cosmological phase transitions including the ordinary electroweak phase transition are

of first order, they proceed via nucleations of bubbles. After nucleations of bubbles, they

expand and eventually coalesce with each other leading to the completion of phase tran-
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sitions. During this process, gravitational wave (GW) signals are generated from bubble

collisions [4, 5, 6, 7, 8], sound waves [9, 10, 11, 12], and turbulence of the plasma [13, 14, 15,

16, 17, 18]. The typical peak frequencies of GW signals generated by the first order phase

transition associated with the electroweak symmetry breaking are around O(10−3 ∼ 10) Hz,

which are good targets of space-based interferometers such as LISA, [14], DECIGO [19] and

BBO [20]. Therefore, if first-order cosmological phase transitions take place in physics be-

yond the SM, they can be tested by these astrophysical observations. Moreover, if the SM

Higgs vacuum expectation value (VEV) at the critical temperature is larger than the critical

temperature, inside the bubble, the electroweak phase transition is called strong first order

and the sphaleron decoupling condition is satisfied. (See Sec. 3.3.3 for the definitions of a

first order phase transition and a strong first order phase transition.) The strong first-order

electroweak phase transition accommodates electroweak baryogenesis [21, 22], so that the

present baryon asymmetry of the Universe can be explained. In this thesis, we explore the

possibility of GW production generated by cosmological first-order phase transitions and

realization of the strong first-order electroweak phase transition in physics beyond the SM.

Naturalness of the electroweak symmetry breaking has been a good guideline to explore

physics beyond the SM. Popular scenarios of physics beyond the SM include supersymme-

try (SUSY) and composite Higgs, which are still promising solutions to the (large) hierar-

chy problem, since they remove the sensitivity of the weak scale to quadratically divergent

quantum effects from physics at high energy scales such as the Planck scale and the grand

unification scale. However, the discovery of the SM-like Higgs boson and nothing else at the

LHC poses a problem for naturalness. No new colored particles predicted in these popular

scenarios have been observed so far at the LHC, which already leads to fine-tuning in the

Higgs potential at sub-percent level. Although we do not know whether nature takes thought

for this little hierarchy problem or not, it is interesting to pursue possibilities to ameliorate

this fine-tuning and to explore their implications for particle phenomenology and cosmology.

The twin Higgs mechanism [23] is an attractive idea to provide a solution to the little

hierarchy problem without introducing new colored states. There are several variations to

realize this idea, but every twin Higgs model starts with the assumption that the SM Higgs

field can be considered as one of the pseudo-Nambu-Goldstone bosons (pNGBs) arising

from spontaneous breaking of a global symmetry G, such as U(4) symmetry, that contains

SU(2)A × SU(2)B symmetry in its subgroups, to a smaller group H, such as U(3). Here
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SU(2)A and the mirror (or twin) SU(2)B are gauged and interchanged under a (approximate)

Z2 symmetry. The SU(2)A gauge symmetry is identified with the SU(2)W symmetry in the

SM and spontaneously broken by the vacuum expectation value (VEV) of the Higgs field.

By introducing a SU(3)!C mirror color symmetry and mirror fermions that are charged under

SU(3)!C × SU(2)B, quadratic divergence to the Higgs potential coming from the SM colored

particles (and SU(2)W gauge bosons) are canceled by the mirror colored particles (and SU(2)B

gauge bosons).

We find that in the non-supersymmetric twin Higgs models, thermal potential around

both the electroweak and global symmetry breaking cannot be analyzed perturbatively, which

suggests that both phase transitions are unlikely to be first order and hence we can expect

for neither the electroweak baryogenesis nor the generation of GW signals. Even in the

case with supersymmetric UV completion, by limiting ourselves to the linear realization

and the decoupling limit where only the mirror scalar top quarks are added to the non-

supersymmetric model, we find that the electroweak symmetry breaking cannot still be

analyzed perturbatively and the conclusion is still robust. For the global symmetry breaking,

however, we show that, with an appropriate parameter choice, the phase transition associated

with it can be of first order and the generated GW signals are generated, but unfortunately,

it is too small to be detected by future planed experiments such as BBO, DECIGO and

ultimate-DECIGO.

The scotogenic model, proposed by Ma in 2006 [24], is also one of promising candidates of

physics beyond the SM. This model simultaneously gives solutions to origins of tiny neutrino

masses and DM. In spite of significant experimental evidences confirming the non-vanishing

yet tiny neutrino masses and the presence of a mysterious, non-luminous, non-baryonic form

of matter, dubbed as DM [25], its origin remains unaddressed in the SM. While the latest

experimental constraints on light neutrino parameters can be obtained from recent global

fits [26, 27], the present DM abundance is quantified in terms of density parameter ΩDM and

h = 0.705±0.013 as [28]: ΩDMh
2 = 0.120±0.001 at 68% CL. The possibility of scalar DM in

this model has been already studied in several works including [29, 30, 31, 32, 33, 34, 35, 36,

37, 38, 39, 40, 41, 42, 43], whereas that of thermal or non-thermal fermion DM has also been

studied [44, 45]. The model can also account for the observed baryon asymmetry through

successful leptogenesis in variety of different ways [46, 43, 47, 48, 49, 45, 50]. While the

observational evidences suggesting the presence of DM are purely based on its gravitational
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interactions, most of the particle DM models (including the scotogenic model) adopt a weak

portal (but much stronger than gravitational coupling) between DM and the visible matter

or the SM particles. If DM is of thermal nature, like in the weakly interacting massive

particle (WIMP) paradigm, then such couplings between the SM particles and DM can be

as large as the electroweak couplings. Hence such DM can leave imprint on direct search

experiments. However, none of the direct detection experiments such as LUX [51], PandaX-

II [52, 53] and Xenon1T [54, 55] have reported any positive signal yet, giving more and more

stringent upper bounds on interactions between DM and nucleons.

Several works have studied such interplay of DM and first-order electroweak phase tran-

sition, specially in the presence of additional scalar doublet DM like we have in the present

model [56, 57, 58, 59, 60, 61, 62]. While scalar doublet DM extension of the SM, popularly

known as inert doublet model (IDM) allows a large parameter space supporting a first-order

electroweak phase transition, most of this parameter space corresponds to sub-dominant DM

[59] leaving a narrow window in low mass DM regime where both DM relic and strong first-

order electroweak phase transition criteria can be simultaneously satisfied [57]. On the other

hand, this low mass regime becomes increasingly in tension with direct search experiments

as well as the collider constraints on invisible decay rate of the SM-like Higgs, where the

former remains much more stringent. In fact, we show that the parameter space of scalar

DM which satisfies strong first order electroweak phase transition is in reality disfavored by

Xenon1T data of 2018. Extending IDM to scotogenic model not only addresses the origin of

tiny neutrino masses, but also enlarges the parameter space that can simultaneously produce

the observed DM relic density as well as the strong first-order electroweak phase transition.

We discuss possibilities of both scalar and fermion DM in this model and constrain the

parameter space from DM relic, strong first-order electroweak phase transition as well as

light neutrino masses while incorporating relevant experimental and theoretical bounds. We

then study the possibility of generating GW from the strong first-order electroweak phase

transition and discuss the possibility of its detection in future experiments.
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1.1 Organization

This thesis is organized as follows.

Chapter 2 is a review part of the SM of particle physics and its beyond. In Sec. 2.1, we

construct the SM Lagrangian density based on the gauge principle and rernormalizability

and summarize several features of the SM. In Sec. 2.2, we discuss three difficulties of the SM,

which are naturalness of the SM Higgs mass parameter, origins of DM and the non-zero but

tiny neutrino masses. In Sec. 2.3 is a review of twin Higgs models, which give the attractive

solution to the little hierarchy problem. In particular, we study the dynamics of the EWSB at

zero-temperature. In Sec. 2.4, we introduce minimal scotogenic model, which simultaneously

addresses origins of the DM and neutrino masses. Several collider and precision constraints

on this model are also summarized.

Chapter 3 is a review part of physics in the early Universe. In Sec. 3.1, we review

a dynamics of an expanding Universe by solving the Friedmann equation. It will turn

out that the Universe was filled by hot plasma, and hence, the standard thermodynamics

plays a key role to understand physics occurred in the early Universe. We also clarify

a local equilibrium condition based on the Boltzmann equation. In Sec. 3.2, we explain

the standard freeze-out DM production mechanism. The annihilation cross section in the

presence of the coannihilation is also presented. In Sec. 3.3, we compute the zero-temperature

effective potential as well as finite temperature effective potential and discuss a resummation

calculation and higher-order corrections from non-Abelian gauge fields. In Sec. 3.4, order

of cosmological phase transitions is discussed. A calculation method of bounce action and

formulae of GW signals produced by first-order phase transitions are shown.

Chapter 4 is based on my original work [63]. In Sec. 4.1, we explain motivation to con-

sider cosmological phase transitions in twin Higgs models and outline of calculation method.

In Sec. 2.3, we explain the thermal history realized in twin Higgs models and explain as-

sumptions of two-step phase transition. In Sec. 4.3, we study twin Higgs models with and

without SUSY at non-zero temperature and examine how the electroweak symmetry break-

ing proceeds. In Sec. 4.4, we examine how the global symmetry breaking proceeds and show

that in supersymmetric twin Higgs models the first order phase transition can be realized

for appropriate parameter choices but the resultant gravitational wave background is un-

detectable at planned gravitational wave detectors. Sec. 4.5 is devoted to our concluding
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remarks and comments of twin Higgs models.

Chapter 5 is based on my original work [64]. In Sec. 5.1, we explain motivation to consider

cosmogical phase transition realized in minimal scotogenic model. In Sec. 5.2, we explain the

thermal history realized in minimal scotogenic model and explicitly show several physical

quantities, which are necessarily to compute the thermal effective potential. In Sec. 5.3,

we discuss our results both of scalar and fermion dark matter scenarios. We investigate

parameter space leading to the strong first-order electroweak phase transition and explicitly

derive GW signals. In the parameter search, we impose phenomenological constraints such as

the dark matter direct detection constraints and the charged lepton flavor violation processes.

We finally conclude in Sec. 5.4.

Finally, conclusion of this thesis is devoted to the Chapter 6.
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Chapter 2

Physics beyond the Standard Model

This chapter is a review part related to physics beyond the SM. We first review the SM

Lagrangian density and explain its basic features. After the review, we summarize three

difficulties of the SM, which are the naturalness of the Higgs mass parameter, a generation

of non-zero neutrino masses and the DM. To address these difficulties, we introduce physics

beyond the SM. In particular, we first consider twin Higgs models to ameliorate a fine-tuning

to the SM Higgs mass parameter. Second, we introduce minimal scotogenic model, which

simultaneously gives solutions to origins of the DM and neutrino masses.

2.1 Standard Model of Particle Physics

In this section, we review SM of particle physics. We construct the SM Lagrangian density

allowed by gauge symmetry and renormalizability with given matter content. Here, renor-

malizability implies that all operators appearing the Lagrangian density should have mass

dimensions smaller than four.

The SM gauge symmetries are SU(3)C × SU(2)W × U(1)Y. Under these gauge symme-

tries, charge assignments of the SM leptons, quarks and Higgs are listed in Table. 2.1. In the

table, νnL, enL(R), unL(R) and dnL(R) are the left-handed neutrinos, the left (right)-handed

charged leptons, the left (right)-handed up-type quarks and the left (right)-handed down-

type quarks, respectively. Here, all fermion fields are Dirac fermions. The suffix n represents
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SM particles SU(3)C SU(2)W T3 Y QEM

GA
µ 8 1 − − −

W I
µ 1 3 − − −

Bµ 1 1 − − −

Ln =

!

"νnL

enL

#

$ 1 2
+1/2

−1/2
−1/2

0

−1

enR 1 1 0 −1 −1

Qn =

!

"unL

dnL

#

$ 3 2
+1/2

−1/2
+1/6

+2/3

−1/3

unR 3 1 0 +2/3 +2/3

dnR 3 1 0 −1/3 −1/3

HSM =

!

"φ+

φ0

#

$ 1 2
+1/2

−1/2
+1/2

+1

0

(νnR 1 1 0 0 0)

Table 2.1: Matter content of the SM particles, and these dimensions of representations and

charge assignments are listed. T3, Y and QEM are the SU(2)W isospin, the weak hypercharge

and the electromagnetic charge. The right-handed neutrinos νnR are not introduced in the

SM, but we show its charge assignment for later convenience.

the number of generations and runs 1 to 3. Concretely, these fields are given by

n = 1 : ν1L ≡ νeL, e1L(R) ≡ eL(R), u1L(R) ≡ uL(R), d1L(R) ≡ dL(R),

n = 2 : ν2L ≡ νµL, e2L(R) ≡ µL(R), u2L(R) ≡ cL(R), d2L(R) ≡ sL(R), (2.1)

n = 3 : ν3L ≡ ντL, e3L(R) ≡ τL(R), u3L(R) ≡ tL(R), d3L(R) ≡ bL(R).

In the above expressions, νe,µ,τL is the left-handed electron, mu, τ -neutrinos. eL(R), µL(R)

and τL(R) are the left (right)-handed electron, muon and tauon, respectively. uL(R), cL(R)

and tL(R) are the left (right)-handed up, charm and top quarks, respectively. dL(R), sL(R)

and bL(R) are the left (right)-handed down, strange and bottom quarks, respectively.

Note that the right-handed neutrinos νnR are absent in the SM because these existences

have not yet been proved, but we show these charge assignment for later convenience. (We

will discuss the right-handed neutrinos in Sec. 2.2.2.) T3, Y and QEM denote the SU(2)W
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isospin, the weak hypercharge and the electromagnetic charges, respectively. We define the

SM Higgs, the left-haded quark and lepton SU(2)W doublets as follows.

HSM =

!

"φ+

φ0

#

$ , Qn =

!

"unL

dnL

#

$ , Ln =

!

"νnL

enL

#

$ . (2.2)

The SM Lagrangian density, LSM, can be schematically decomposed into following pieces:

LSM = LSM
gauge boson + LSM

fermion + LSM
Higgs. (2.3)

where LSM
gauge bosons, LSM

Yukawa and LSM
Higgs are the Lagrangian densities of the SM gauge boson

sector, the SM fermion sector and the SM Higgs sector. These precise expressions will be

given in the following subsubsections.

The SM gauge sector

The Lagrangian density of the gauge bosons sector is given by

LSM
gauge boson = −1

4
Tr

%
GA

µνG
Aµν

&
− 1

4
Tr

%
W I

µνW
Iµν

&
− 1

4
BµνB

µν , (2.4)

where GA
µν , W

B
µν and Bµν are field strength of the SU(3)C, SU(2)W and U(1)Y gauge bosons

defined by

GA
µν ≡ ∂µG

A
ν − ∂νG

A
µ + g3fABCG

B
µG

C
ν ,

W I
µν ≡ ∂µW

I
ν − ∂νW

I
µ + g2εIJKW

J
µW

K
ν , (2.5)

Bµν ≡ ∂µBν − ∂νBµ.

In these expressions, GA
µ ≡ Gµλ

A/2 (λA: Gell-Mann matrices with A = 1, 2, · · · , 8), W I
µ ≡

Wµσ
I/2 (σI : Pauli matrices with I = 1, 2, 3) and Bµ are the SU(3)C SU(2)W and U(1)Y

gauge fields, respectively. g3, g2 are gauge couplings of SU(3)C and SU(2)W gauge symme-

tries. fABC and εIJK are the structure constants of SU(3)C and SU(2)W, respectively. Traces

of first and second terms of Eq. (2.4) are taken over the matrices of λA and σI , respectively.

LSM
gauge bosons is the canonically normalized kinetic terms for SU(3)C × SU(2)W × U(1)Y gauge

bosons and includes the self-interaction of non-Abelian gauge fields. We have omitted La-

grangian densities of the Faddeev-Popov ghosts for SU(3)C × SU(2)W.
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The SM fermion sector

The Lagrangian density of the SM fermion sector LSM
fermion can be further decomposed into

following pieces:

LSM
fermion = LSM

fermion gauge + LSM
Yukawa. (2.6)

The first term includes the kinetic terms of the SM fermions and couplings between the SM

fermion and gauge fields, while the second term gives the Yukawa coupling between the SM

Higgs and the SM fermions.

LSM
fermion gauge is explicitly given by

LSM
fermion gauge = iL̄n /DLn + iēnR /DenR + iQ̄n /DQn + iūnR /DunR + id̄nR /DdnR, (2.7)

/D ≡ γµDµ,

where γµ are the gamma matrices. They are 4× 4 matrices and are given by

γµ =

!

" 0 σµ

σ̄µ 0

#

$ . (2.8)

Here, σµ ≡ (1,σ) and σ̄ = (1,−σ), where 1 is the 2× 2 unit matrix and σ ≡ (σ1, σ2, σ3) is

the Pauli matrices. For fermion field Ψ, we define the Dirac adjoint as Ψ̄ ≡ Ψ†γ0. Dµ is the

covariant derivative of SU(3)C × SU(2)W × U(1)Y defined by

DµΨSM ≡
'
∂µ − ig3T

A
3 G

A
µ − ig2T

I
2W

I
µ − ig1Y Bµ/2

(
ΨSM. (2.9)

In the above expression, ΨSM is the SM (Dirac) fermion field. The SM quarks belong to

the fundamental representation of SU(3)C, while the SM lepton is singlet under the SU(3)C.

It follows that TA
3 = λA/2 for the SM (left and right-handed) quarks and TA

3 = 0 for the

SM (left and eight-handed) leptons. Since SU(2)W gauge boson couples to the left-handed

fermions (and the SM Higgs), T I
2 = σI/2 for the left-handed SM quarks and leptons, and

T I
2 = 0 for the SM right-handed quarks and leptons. g1 and Y are the U(1)Y gauge coupling

and its weak hypercharge of the SM fermions, which can be explicitly seen from Table. 2.1.

Note that all gauge interactions are diagonal for generations of the SM quarks and the SM

leptons.

Next, the Lagrangian density of Yukawa couplings between the SM Higgs and the fermions,

LSM
Yukawa, are given by

LSM
Yukawa = −

)
Y e
mnL̄mHSMenR + Y d

mnQ̄mHSMdmR + Y u
mnQ̄mH̃SMunR + h.c.

*
. (2.10)

12



In this expression, Y e
mn, Y d

mn and Y u
mn are Yukawa couplings, which are in general complex

and non-diagonal. H̃SM is defined by

H̃SM ≡

!

" (φ0)
∗

− (φ+)
∗

#

$ . (2.11)

H̃ is transformed 2 under the SU(2)W and its weak hypercharge is Y = −1/2, and hence,

Yukawa coupling between the SM Higgs and the up-type quarks corresponding to the third

term of Eq. (2.10) is allowed.

We can confirm that LSM
fermion is invariant under the following U(1) transformations:

U(1)B : qL,R → eiθB/3qL,R, (2.12)

U(1)Le : (eL,R, νeL) → eiθLe (eL,R, νeL), (2.13)

U(1)Lµ : (µL,R, νµL) → eiθLµ (µL,R, νµL), (2.14)

U(1)Lτ : (τL,R, ντL) → eiθLτ (τL,R, ντL). (2.15)

In these expressions, qL,R denotes the all SM quark fields. θB,Le,Lµ and θθLτ
are (global)

parameters for each transformations. According to the Noether’s theorem, there exists global

conserved charges associated with above transformations. In particular, global conserved

charge associated with U(1)B is the baryon number B and is given by

B =
1

3

'
Nq − N̄q

(
, (2.16)

where Nq and N̄q are the quark and anti-quark numbers of all types, respectively. Here,

the normalization of baryon number is defined in such a way that a baryon number of the

proton which consists of two up-quarks and one down-quark is unity. On one hand, global

conserved charges associated with U(1)Le , U(1)Lµ and U(1)Lτ are the lepton numbers for

each generations and are given by

Le = Ne +Nνe −
'
N̄e + N̄νe

(
,

Lµ = Nµ +Nνµ −
'
N̄µ + N̄νµ

(
, (2.17)

Lτ = Nτ +Nντ −
'
N̄τ + N̄ντ

(
.

Here, Ne,µ,τ , Nνe,µ,τ are numbers of electron, muon, tauon and electron, mu, tau-neutrinos,

and N̄e,µ,τ , N̄νe,µ,τ are numbers of these anti-particles.
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It should be noted that we do not impose any principles to make the SM Lagrangian

invariant under these symmetries. Indeed, we construct the SM Lagrangian by imposing

gauge principles and renormalizability. Hence such global symmetries are accidental. This

implies that these global charges characterize the SM and violations of these symmetries

are direct signals of deviations from the SM. For this reason, it is worthwhile to study

consequences of these global symmetries. First of all, baryon number conservation ensures

the stability of the lightest particles having non-zero baryon numbers because decay of such

a particle needs to break the baryon number. The lightest particle having non-zero baryon

numbers is the proton. Therefore, if the baryon number conservation is exact, the life-time

of the proton is infinite. The proton decay has not yet been observed, and an experimental

limit on the proton life-time τproton is

τproton > 1033 years. (2.18)

This bound puts stringent constraint on the grand unification scale, which we will be impor-

tant for discussion in Sec. 2.2.1.

Second, lepton number conservations in each generations imply that there is no process

changing the lepton flavor. Therefore, charged lepton flavor violation processes such as

µ → e+ γ, (2.19)

µ → e+ e+ e, (2.20)

µ+ Ti → e+ Ti, (Ti : Titanium) (2.21)

are forbidden because these processes obviously violate Le and Lµ conservations. γ is the

photon field. Present bounds of branching ratios (BR) of above processes are summarized

as follows:

• BR(µ → e+ γ) < 4.2× 10−13[65],

• BR(µ → e+ e+ e) < 1.0× 10−12 [66],

• BR(µ+ Ti → e + Ti) < 4.3× 10−12 [67].

While the future sensitivity of the first two processes are around one order of magnitude

lower than the present branching ratios, the µ to e conversion (Ti) sensitivity is supposed to

increase by six order of magnitudes [68]. New physics leading to the charged lepton flavor
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violation are therefore stringently constrained. In fact, minimal scotogenic model, which will

be introduced in Sec. 2.4, is constrained by these experiments.

We have discussed lepton number conservations within the SM framework and argued

that the charged flavor violation processes are absolutely forbidden. However, as we will

discuss in Sec. 2.2.2 that lepton numbers defined by Eq. (2.17) is in reality violated by a

presence of neutrino mixings. Hence the charged lepton flavor violation processes can be

occurred via the neutrino mixings. Although, these processes occur at one-loop level and

significantly suppressed by the tiny neutrino mass. For example, an explicit calculation

showed BR(µ → eγ) < 10−54 [69], which is many order magnitude smaller than the current

constraint. Thus, charged lepton flavor violation processes caused by neutrino oscillations

are negligible amount and we can safely neglect it.

The SM Higgs sector

The Lagrangian density of the SM Higgs sector is given by

LSM
Higgs = DµH

†
SMD

µHSM − VSM (|HSM|) . (2.22)

The covariant derivative in the above expression is given by Dµ ≡ ∂µ−ig2σ
IW I

µ/2−ig1Bµ/2.

The SM Higgs potential VSM(|HSM|) is given by

VSM(|HSM|) = λSM

+
|HSM|2 −

v2SM
2

,2

. (2.23)

where vSM ≃ 246GeV and the self-coupling λSM ≃ 0.131. Since this potential has a min-

imum at HSM = vSM, which is different from the origin, the SM Higgs obtain the vacuum

expectation value (VEV). The SM Higgs is charged under the SU(2)W × U(1)Y and hence

the gauge symmetry is spontaneously broken. After this symmetry breaking, it is convenient

to parameterize HSM field as follows:

HSM =

!

" 0

vSM√
2
+

h0
SM(x)√

2

#

$ . (2.24)

Here, h0
SM(x) is a real scalar field, whose mass is given by mh =

√
2λSMvSM ≃ 125GeV.

Let us next see a consequence of the symmetry breaking associated with the Higgs con-

densate HSM = vSM. We first put expression Eq. (2.24) into the first term of Eq. (2.22) and
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neglect the term involving h0
SM(x). Then the quadratic terms for SU(2)W × U(1)Y gauge

bosons corresponding to the mass terms are given by following matrix form:

(W 1
µ , W 2

µ , W 3
µ , Bµ)

!

-----"

g22
v2SM
4

0 0 0

0 g22
v2SM
4

0 0

0 0 g22
v2SM
4

−g2g1
v2SM
4

0 0 −g2g1
v2SM
4

g21
v2SM
4

#

.....$

!

-----"

W 1µ

W 2µ

W 3µ

Bµ

#

.....$
. (2.25)

We can easily see from the above expression that mass terms for (W 3
µ , Bµ) are not diagonal-

ized. It is possible to diagonalize mass terms by the following orthogonal transformation:

!

"Zµ

Aµ

#

$ =

!

"cos θW − sin θW

sin θW cos θW

#

$

!

"W 3
µ

Bµ

#

$ , (2.26)

where θW is the weak mixing angle defined by

tan θW =
g1
g2
. (2.27)

Also, W 1,2
µ fields are often parameterized by W±

µ fields defined by

W±
µ =

1√
2

'
W 1

µ ± iW 2
µ

(
. (2.28)

In the basis (W+
µ ,W−

µ , Zµ, Aµ), the mass matrix is explicitly given by

(W+
µ , W−

µ , Zµ, Aµ)

!

-----"

g22
v2SM
4

0 0 0

0 g22
v2SM
4

0 0

0 0 (g21 + g22)
v2SM
4

0

0 0 0 0

#

.....$

!

-----"

W+µ

W−µ

Zµ

Aµ

#

.....$
. (2.29)

It is apparent that three gauge bosons, Zµ, becomes massive, while the gauge boson Aµ,

which is given by the linear combination of W 3
µ and Bµ, is still massless after the symmetry

breaking. The massless gauge boson Aµ is photon associated with unbroken U(1) gauge

symmetry, which is identified with the electromagentic gauge symmetry U(1)EM. Hence the

electroweak symmetry SU(2)W × U(1)Y is spontaneously broken to U(1)EM by the Higgs

condensation. This phenomenology is called the electroweak symmetry breaking (EWSB).

Let us next discuss the fermion sector with the SM Higgs condensation. Putting expres-

sion Eq. (2.24) into the Yukawa couplings given by Eq (2.10) and neglecting a terms, which
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Figure 2.1: Results from ATLAS and CMS collaboration [70] is shown. The vertical axis

indicates the couplings with the SM Higgs boson, while the horizontal axis is the observed

mass spectra of the SM particles.

are proportional to h0
SM(x), we obtain

LSM
Yukawa = −

'
M e

mnēLmeRn +Mu
mnūLmuRn +Md

mnd̄mLdnR + h.c.
(
, (2.30)

M e
mn ≡ Y e

mn

vSM√
2
, Mu(d)

mn ≡ Y u(d)
mn

vSM√
2
, (2.31)

where M e,u,d
mn ≡ Y e,u,d

mn vSM/
√
2. We can easily see that the charged leptons, up-type and

down-type quarks obtain their masses through the SM Higgs condensation. Similar to the

discussion of mass terms for SU(2)W × U(1)Y gauge bosons, we can make M e,u,d
mn as a diag-

onalized matrix by acting unitary transformations to the quark and lepton fields. However,

the left-handed neutrinos are still massless after the EWSB. This fact is not consistent with

the observation of the neutrino oscillations, which we shall discuss in Sec. 2.2.2.

We have seen that SM particles except the left-handed neutrinos and gluon obtain their

masses through the SM Higgs condensation. Since their masses are proportional to vSM

times coupling constants with the SM Higgs, observed mass spectra should maintain this

proportionality as long as the SM is valid. Fig. 2.1 shows the observed mass spectra of
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SM particles confirmed by the ATLAS and CMS collaborations [70]. As is easily seen from

this figure, the observed mass spectra indicates that coupling constants of the SM particles

proportional to these masses. Therefore, this result strongly supports the validity of the

EWSB within the SM framework. At 2012, the SM Higgs boson h0
SM(x) was finally observed

at the LHC, and thus, the SM elegantly explains phenomena around the electroweak scale.

2.2 Difficulties of the Standard Model

In this section, we discuss some difficulties of the SM. In particular, we consider the natural-

ness of the SM Higgs mass parameter, the DM and non-zero neutrino masses and mixings.

In Sec. 2.2.1, we define the measure of the tuning of the physical parameter and show that

the SM Higgs mass parameter must be fine-tuned if there is no new physics around the TeV

scale. In Sec. 2.2.2, we show that the left-handed neutrino can obtain mass by introducing

the right-handed neutrinos, and summarize current constraints on neutrino masses and its

mixings. In Sec. 2.2.3, we explain some evidences of the DM and summarize conditions of

the DM.

2.2.1 Naturalness

In this subsection, we discuss the theoretical problem of the SM so-called the hierarchy

problem. To give a precise statement of the hierarchy problem, we need to explain a notion

of the naturalness.

Let us first give a definition of the measure of the tuning, The definition is given by [71]

∆(pi) ≡
////
∂ logO(pi)

∂ log pi

////
−1

, (2.32)

where pi are the model parameters and O(pi) are observables. In this measure, smaller

∆(pi) means that larger fine-tuning is required. Thus ∆(pi) should not be too small for the

naturalness, say, at least all the measures should satisfy ∆(pi) > O(10−1). If a measure in

the model is too small, ∆(pi) ≤ O(10−1), we conclude the model is unnatural.

It is widely known that the SM Higgs mass parameter requires the fine-tuning against

radiative corrections if an energy scale of new physics is much larger than the electroweak

scale. To see this, let us decompose the SM Higgs bare mass, mh bare into the renormalized
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mass and its radiative correction (counterterm) as follows.

m2
h bare = m2

h + δm2
h. (2.33)

In this expression, mh and δmh are the renormalized (observed) Higgs mass and the radia-

tive correction. The SM Higgs boson mass receives one-loop quadratically divergent mass

corrections from the top quark, SU(2)W gauge bosons and Higgs itself through the quartic

coupling as

δm2
h = −3y2t

4π2
Λ2

UV +
9g22
32π2

Λ2
UV +

λSM

4π2
Λ2

UV. (2.34)

Here, we have regularized the momentum integration by inserting the hard cut-off, ΛUV.

Then, we discuss the degree of the tuning to obtain the observed Higgs mass against quantum

corrections given by Eq. (2.34). According to the definition of the tuning measure Eq. (2.32),

we obtain

∆(δm2
h) =

////
∂ logm2

h

∂ log δm2
h

////
−1

=
m2

h

δm2
h

. (2.35)

Thus, ∆(δm2
h) < 0.1 corresponds to the cut-off scale

ΛUV ≥ 1.5TeV. (2.36)

Therefore, if the SM is valid up to higher than the energy scale ΛUV ∼ O(1) TeV, the SM

Higgs mass parameter requires unnatural fine-tuning.

The Large Hierarchy Problem

The cut-off scale ΛUV represents an energy scale of new physics instead of the SM. At least,

we expect that quantum gravity effects becomes important at the Planck scale, and hence,

the SM Lagrangian density does not give correct description of physics around that scale.

Since all parameters in the SM Lagrangian density do not have Landau poles, they are well-

defined up to the Planck scale. Hence, for simplicity, let us first assume that the SM is valid

up to the Planck scale, that is, there is no new physics between the electroweak scale and

the Planck scale, which is sometime called the great desert. In this case, the cut-off scale is
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identified with the Planck scale ΛUV = MPl ∼ 1019 GeV and the SM Higgs mass parameter

must be fine-tuned with the degree of

∆(δm2
h) ∼ 10−34, ΛUV ∼ 1019 GeV. (2.37)

This fact tells us that the SM Higgs mass parameter is extremely fine-tuned at the Planck

scale otherwise the observed Higgs mass cannot be realized.

An another popular candidate of new physics is the grand unification theory. We shall

here discuss a particular energy scale of the grand unification theory and required tuning to

the SM Higgs mass parameter at that scale. In the SM, as was seen in the previous section,

the baryon as well as the lepton numbers are classically conserved at the renormalizable level,

and thus, the proton is stable. However, in that theory, the quark and the lepton generally

belong to the same representation under the unified gauge symmetry, which usually explicitly

breaks the baryon number. Hence it is widely believed that the proton decay occurs in the

that theory. Therefore, a measurement of a life-time of the proton puts a stringent constraint

on the energy scale of the grand unification theory. From Eq. (2.18), the energy scale of the

grand unification theory is roughly expected to be MGUT ∼ 1015 GeV. Assuming the SM is

valid up to this scale ΛUV = MGUT, the SM Higgs mass parameter must be fine-tuned with

the degree of

∆(δm2
h) ∼ 10−26, ΛUV = MGUT. (2.38)

It is milder than the required tuning given by Eq. (2.37), but fine-tuning is still needed.

We have learned from above arguments that the SM Higgs mass parameter must be

fine-tuned if there is no new physics between the electroweak and the Planck (or the grand

unification scale). These fine-tuning problems are obviously caused by the ”large” hierarchy

between these scales. Therefore, this problem is called by the large hierarchy problem. This

fact strongly suggests an existence of physics beyond the SM. For instance, in the supersym-

metric extension of the SM, quadratic divergent mass corrections Eq. (2.34) to the SM Higgs

mass are canceled by the supersymmetric partner. Hence if the supersymmetry exists not far

above the cut-off scale given by Eq. (2.36), the large hierarchy problem can be addressed. For

this reason, the supersymmetric extension of the SM is regarded as a promising candidate

for physics beyond the SM and many people believed its existence at the electroweak scale.
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The Little Hierarchy Problem

In particular, supersymmetric partners of the top quark called the scalar top quark

plays an essential role to address the little hierarchy problem. This is because the most

dominant contribution to the quadratic divergent mass correction to the SM Higgs mass

parameter Eq. (2.34) comes from the top quark, which can be canceled by the scalar top

quark correction. The scalar top quark is colored and (electromagnetically) charged state,

and hence, it is easy to produce by the LHC experiments as long as its mass is within reach

of the energy scale of it. Therefore, the scalar top quark is a good target of the collider

experiments. Note that the scalar top quark mass should be around the electroweak scale to

ameliorate the fine-tuning because cancellation mechanism does not take place for an energy

scale lower than the scalar top quark mass.

However, current experiments have not yet observed any direct signals of these new

colored particles and puts stringent constraints on ΛUV. Moreover, precision measurements

of the SM also gives bounds on ΛUV, which is order of TeV scale [72]. Thus, supersymmetry

is very difficult to ameliorate the fine-tuning up to ΛUV given by Eq. (2.36). Since this

fine-tuning problem related to the ”little” hierarchy between the electroweak scale and the

TeV scale, which is much smaller than the large hierarchy, it is called the little hierarchy

problem. It should be emphasized that if supersymmetry exists an energy scale just above

the TeV scale which is not within reach of present collider experiments, the large hierarchy

problem between the TeV scale and the Planck (or the grand unification) scale can be

addressed. However, to solve the little hierarchy problem, we need physics beyond the SM,

which must be consistent with the current collider experiments. Twin Higgs models are

promising theories such beyond the SM and we shall explain its mechanism in Sec. 2.3. We

will also explain the essential reason why these models can provide the solution to the little

hierarchy problem.

2.2.2 Neutrino masses

As we saw in Sec. 2.1 and Eq. (2.30), the left-handed neutrinos are still massless after the

EWSB. Also, there is no neutrino flavor changing process because of the lepton number

conservations Eq. (2.17). However, observations of neutrino oscillations imply that there

are non-zero neutrino masses and these mixings. In this subsection, we first show that the
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left-handed neutrinos can obtain their mass by introducing right-handed neutrinos into the

SM. After that, we summarize some constraints on neutrino masses and these mixings from

observations of neutrino oscillations.

Let us introduce the right-handed neutrinos, νnR, into the SM Lagrangian. Its charge

assignment and dimensions of gauge group representation were already listed in Table 2.1.

Since νnR are singlet under all SM gauge group, following Majorana mass terms and addi-

tional Yukawa couplings between the SM Higgs and leptons are allowed:

LνR = ν̄nR/∂νnR +
1

2
(MνR)mn (ν̄

c
nRνmR + h.c.)−

)
Y ν
mnL̄nH̃SMνnR + h.c.

*
, (2.39)

/∂ ≡ γµ∂µ.

Here, MνR and Y ν
mn are 3 × 3 Majorana mass and the Yukawa coupling matrices, respec-

tively. νc
nR is the charge conjugation of νnR. After the EWSB, the second term of the above

expression gives a Dirac mass term for the neutrinos by the Higgs condensation, which is

similar to the quark sector.

Let us here study the consequence of non-zero neutrino masses. As we discussed in

the previous subsection, the lepton sector of the SM Lagrangian Eq. (2.10) possesses three

independent conserved lepton numbers given by Eq. (2.17). The second term explicitly breaks

the global U(1)Le , U(1)Lµ and U(1)Lτ , but does not break the U(1)L symmetry defined by

the transformation of phase rotation with respect to all lepton fields. This fact implies that

the lepton flavor can be broken via the neutrino masses, and in the massless limit, the lepton

flavor is absolutely recovered. Furthermore, the presence of the Majorana mass terms breaks

not only U(1)Le , U(1)Lµ and U(1)Lτ , but also breaks the U(1)L symmetry. Therefore, in the

presence of the neutrino mass terms, the lepton flavor violation processes can be allowed.

We took into account this fact when we discuss the charged lepton flavor violation in Sec. 2.

Constraints on the neutrino mixing parameters

Generally, in the basis where electroweak gauge interactions SU(2)W × U(1)Y are diagonal

with respect to generations of leptons called the flavor basis, the lepton mass matrix becomes

non-diagonal, which implies that neutrino flavors can be changed via the mass matrix (or

via the non-diagonal Yukawa couplings). In the basis where the mass matrix is diagonal, the

electroweak gauge interaction SU(2)W × U(1)Y becomes non-diagonal, and hence, neutrino

flavors can be changed by the gauge interaction. Of course, physics does not depend on the
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basis. Both basis should lead to the same result, but it is convenient to work in the mass

basis because observational constraints on neutrino masses and mixings are given in this

basis.

Neutrinos in the mass basis νi where i = 1, 2, 3 is related to the flavor basis νn (n = e, µ, τ)

via the unitary matrix:

νn = Uniνi. (2.40)

Here, the 3×3 unitary matrix Uin is the mixing matrix of the neutrino sector, which is called

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. Parameterization of the PMNS matrix

is explicitly given by

U =

!

--"

c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

#

..$UMaj, (2.41)

where cij = cos θij, sij = sin θij and δ is the leptonic Dirac CP phase. The diagonal matrix

UMaj = diag(1, eiξ1 , eiξ2) contains the undetermined Majorana CP phases ξ1, ξ2. Observations

of neutrino oscillation gives constraints on each components of PMNS matrix Eq. (2.41),

which are explicitly given by [26, 27]

|U | =

!

--"

0.79− 0.88 0.47− 0.61 < 0.18

0.19− 0.53 0, 42− 0.73 0.58− 0.82

0.20− 0.53 0.44− 0.74 0.56− 0.81

#

..$ , (2.42)

with 3σ confidence level. Current constraints on the mixing angles are given by [26, 27]

0.82 ≲ sin2 2θ12 ≲ 0.89, (2.43)

sin2 2θ13 ≲ 0.19, (2.44)

0.92 ≲ sin2 2θ23. (2.45)

Constraints on mass squared differences are given by

7.7× 10−5eV2 ≲ m2
ν2
−m2

ν1
≲ 8.4× 10−5eV2, (2.46)

1.9× 10−3eV2 ≲ m2
ν3
−m2

ν2
≲ 3.0× 10−3eV2, (2.47)

23



where mν1,2 and mν3 are masses of neutrinos in mass eigenstates ν1,2 and ν3 and we have

assumed that mν1 < mν2 < mν3 . Furthermore, there is upper bound on the sum of neutrino

masses [28]

30

i=1

mνi ≤ 0.11 eV, (2.48)

from cosmological observations. When we consider new physics, which generate the non-zero

neutrino masses, all constraints must be satisfied. All constraints listed in this section are

important when we consider minimal scotogenic model, which will be discussed in Sec. 2.4.

2.2.3 Dark Matter

In this subsection, we discuss the basic properties of the DM except its production mecha-

nism. Since a calculation of the relic abundance of the DM strongly depends on its production

mechanism, we will discuss it in Sec. 3.2 after reviewing the standard cosmology.

DM is the one of dominant gravitationally attractive component of our Universe. The

existence of the DM was first pointed out by Zwicky [73] more than eighty years before.

He carefully analyzed movement of Coma clusters, which consists of around 1000 galaxies,

and concluded that there must be a large amount of non-luminous matter inside the cluster.

Recently, several astronomical and cosmological observations make great progress, and there

are a lot of evidences of the DM. For example, observations of galactic rotation curves [74],

gravitational lensing events [75] and cosmic microwave background [28] can be well described

by the DM. In spite of this fact, we do not know what the DM consists of.

At least, we know that the DM should satisfy following conditions.

• (i) The DM must be non-luminous. In other word, it does not (or very weakly couples)

to the photon.

• (ii) Since the galaxy is almost comprised by the DM, it must be stable (or its life-time

must be longer than the age of the present Universe).

• (iii) The DM should be non-relativistic and massive otherwise it exceeds the escape

velocity of the clumping baryons, and hence, it becomes inconsistent with the structure

formation.
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• (iv) The relic abundance of the DM must be consistent with observed value: ΩDMh
2 =

0.120± 0.001 (68% confidence level). (ΩDM and h will be defined in Sec. 3.1.1.)

It is natural to consider whether there is a DM candidate within the SM framework,

or not, and we would like to discuss it here. Physically, condition (ii) can be regarded as

a consequence of (approximate) symmetries because it guarantees the stability of particles.

As we discussed in Sec. 2.1, the SM possesses accidental global symmetries, and as a result,

the proton, and the charged leptons and the neutrinos, are stable. Among them, the proton

and the charged leptons cannot be DM candidates because they conflict with the condition

(i), while νe,µ and ντ satisfy it. However, with constraints given in the previous subsection,

it turned out that they cannot satisfy conditions (iii) and (iv) [76]. (Roughly speaking,

massive neutrinos are too light to comprise the DM in the present Universe.) Therefore,

unfortunately, there is no DM candidates within the SM framework. This fact also strongly

suggests new physics beyond the SM and conditions listed above is a good guideline to build

a model, which explains the DM. We will argue that, in minimal scotogenic model, there are

(elementary particle) DM candidates, which satisfy all above conditions. 1

2.3 Twin Higgs models

The main purpose of this section is to review twin Higgs models motivated by the little

hierarchy problem discussed in Sec. 2.2.1. In Sec. 2.3.1, we briefly explain basic setup and its

mechanism. In Sec. 2.3.2, we review the twin Higgs mechanism, which provides a solution to

the little hierarchy problem [23, 78]. The Higgs mass formulae are also presented. We then

discuss the degree of fine-tuning to realize the adequate EWSB in this scenario. In Sec. 2.3.3,

we consider supersymmetric extension of the twin Higgs models to simultaneously address

the little and the large hierarchy problems.
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Figure 2.2: The matter content of the Mirror twin Higgs models (the left panel) and of

the Fraternal Twin Higgs models (the right panel) are shown.

2.3.1 Overview of Twin Higgs Models

First of all, we would like to explain the essential reason why the twin Higgs models provide

the solution to the little hierarchy problem different from the supersymmetry. It was dis-

cussed in Sec. 2.2.1 that supersymmetry is very difficult to provide the solution to it because

the scalar top quark, which is necessarily to cancel the quadratic divergence, is colored state.

However, as we will see, in twin Higgs models, the top quark partner called ”twin top quark”

is surprisingly uncolored and is electromagnetically neutral states. Hence it is very difficult

to produce the collider experiments and hence constraints on the mass of the twin top quark

is much milder than one of the scalar top. Thanks to this fact, the little hierarchy problem

can be addressed without conflicting present collider and precision constraints.

Next, we would like to concretely explain the framework of the twin Higgs models. The

original realization of the twin Higgs idea, which is now called the Mirror twin Higgs model

[23], has a mirror copy of all the SM particle content related to the Z2 symmetry. On the

other hand, the Fraternal (minimal) twin Higgs model [78] has a smaller twin particle content,

that is, twin W bosons, twin gluons and twin fermions corresponding to the third generation.

Other twin particles are not required since the corresponding SM particles give less important

contributions to the Higgs potential. The matter content of the Mirror twin Higgs model and

the Fraternal twin Higgs model are shown in Fig. 2.2. The SM particles and twin particles

1Note that primordial black hole is also attractive DM candidate, which does not require any modifications

to the SM Lagrangian density. Also, E. Witten showed that there is a possibility that the DM can be produced

within the SM framework if QCD chiral phase transition is of first order and some certain conditions are

satisfied [77]. We do not discuss such possibilities in this thesis.
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interact with each other only through Higgs mixing given by |HSM|2| 1HSM|2. Hence the most

significant constraint on this model is SM precision tests rather than the direct detection in

comparison to the supersymmetry. In particular, Higgs coupling measurements give most

stringent constraint on this model.

In any case, due to the Z2 symmetry, the quadratic terms of the Higgs potential acci-

dentally preserve the original global symmetry G and the pNGBs associated with G → H
breaking are protected from radiative corrections, allowing the natural EWSB. Since every

twin partner is not charged under the SM gauge group, this mechanism realizes the so-called

neutral naturalness2 and enables the model to evade stringent LHC bounds. In this mech-

anism, there still remains the large hierarchy problem, that is, the hierarchy between the

global G → H breaking scale, expected to be up to 5-10 TeV, and the Planck scale (or

the grand unification scale). It is expected to be addressed by the UV completion such as

supersymmetry [80, 81, 82, 83, 84, 85, 86] or composite Higgs [87, 88, 89, 90, 91].

2.3.2 The non-supersymmetric twin Higgs

The twin Higgs mechanism and setup

In the twin Higgs mechanism, the SM Higgs field is identified with pNGBs arising from

spontaneous breaking of an approximate U(4) symmetry (though it is explicitly broken by

the Yukawa and gauge couplings).3 Let us consider a linear realization of the mechanism

and write a U(4) symmetric potential of a complex scalar field Htwin with the fundamental

representation,

V (H) = −m2H†
twinHtwin + λ

)
H†

twinHtwin

*2

, (2.49)

where λ > 0 is required from the stability of the potential. This potential drives the scalar

field H to obtain a nonzero VEV, f ≡ 〈|Htwin|〉 = m/
√
2λ. Then, the global U(4) symmetry

is broken down to U(3) yielding 7 NGBs. The U(4) symmetry contains the subgroups

SU(2)A × SU(2)B and the scalar field can be decomposed as Htwin = (HA, HB), where HA

transforms as a doublet of SU(2)A while HB does as a doublet of SU(2)B. HA is identified

2 Another known realization of neutral naturalness is Folded SUSY [79].
3Here, we confine a global group G to U(4) symmetry as a concrete realization. However, our conclusion

is still robust even for a generic gauge group G as long as we consider a Mexican-hat type potential given

by (2.49).
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with the SM Higgs doublet, HSM, and the SU(2)A symmetry is regarded as the ordinary

SU(2)W gauge symmetry. The SU(2)B symmetry is gauged and becomes the twin SU(2)"W.

Then, the 6 pNGBs are eaten by the gauge bosons after the symmetry breakings while

the remaining one is the observed SM-like Higgs boson hSM, which is parameterized as

Eq. (2.24). A physical heavy exotic Higgs 1h, corresponding to the radial direction, has the

mass m!h =
√
2λf from Higgs mechanism. SU(2)A and the twin SU(2)B are interchanged

under a Z2 symmetry. In the Fraternal twin Higgs model [78], only the Z2 partners of the

third generation of quarks and leptons and the partners of gluons (twin gluons) as well as

the twin SU(2)"W gauge bosons are introduced. The twin Higgs doublet HB has a Yukawa

coupling similar to the SM top Yukawa coupling.

The two scalar doublets HA and HB receive quadratically divergent corrections from the

top and twin top quarks respectively as well as corrections from the SU(2)A and SU(2)B

gauge bosons at one loop. In addition, they receive corrections from the gluons and twin

gluons at two-loop level. The quadratically divergent part of their potential is given by

V ⊃
+
−3y2t
8π2

+
9g22
64π2

− y2t g
2
3

8π4

,
Λ2

UV|HA|2 +
+
−31y2t
8π2

+
91g22
64π2

− 1y2t 1g23
8π4

,
Λ2

UV|HB|2, (2.50)

where g2, 1g2 are the SU(2)W and SU(2)"W gauge couplings, yt and 1yt are the top and the

twin top couplings, g3, 1g3 are the SU(3)C and SU(3)!C gauge couplings and ΛUV is a cutoff

scale. The exact Z2 symmetry leads to 1yt = yt, 1g2 = g2, 1g3 = g3 which guarantee that the

quadratically divergent part of the potential respects the full U(4) symmetry. Then, the NG

nature of the Higgs field is not explicitly broken by the quadratically divergent corrections,

addressing the little hierarchy problem. However, the SM Higgs would be exactly massless

and inconsistent with our Universe if the U(4) and Z2 symmetries are exact. Thus we need

small breakings of these symmetries.

Let us consider the breaking of the U(4) and the Z2 symmetries to give the appropri-

ate effective Higgs potential. First of all, the gauged SU(2)A × SU(2)B group has already

broken the U(4) symmetry explicitly. In addition to the quadratically divergent corrections,

this generates logarithmically divergent contributions to the quartic couplings of the form

(|HA|4 + |HB|4), which do not respect the U(4) symmetry and then contribute to the Higgs

boson mass. The explicit Z2 symmetry breaking is also needed otherwise the hierarchy,

v2A ≪ f 2, is not fulfilled, which is required to satisfy the constraint from the Higgs coupling

measurement. We do not specify a mechanism to generate this breaking in this thesis, but

28



just encapsulate the breaking effect in the quadratic and quartic terms of HA. The effective

potential of the scalar field H we consider here is then summarized as

V twin = λ

+
|HA|2 + |HB|2 −

f 2

2

,2

+ κ1

'
|HA|4 + |HB|4

(
+ σ1f

2|HA|2 + ρ1|HA|4. (2.51)

The first term is the U(4) conserving term coming from the original potential Eq. (2.49)

rewritten in terms of HA and HB and the corrections in Eq. (2.50), which determines the

U(4) symmetry breaking scale f . The second term that breaks the U(4) symmetry includes

the gauge (and top Yukawa) contributions in the Coleman-Weinberg potential. Thus κ1 will

be of order g42/16π
2 log (ΛUV/g2f). The third and fourth terms are the Z2 breaking terms.

The third term is induced, e.g., by the quadratic corrections with Z2-breaking part in the

gauge and matter sector. ρ1 in the fourth term includes the contribution of the one-loop

Coleman-Weinberg potential. In the Fraternal twin Higgs model, the fourth term could arise

from the Z2 breaking effect such as the absence of the U(1)Y gauge symmetry in the twin

sector. However, this effect is of order g41/16π
2, where g1 is the U(1)Y gauge coupling constant

and tiny. In summary, we take λ, f,κ1, σ1 and ρ1 to be the model parameters and require

σ1, κ1, ρ1 < λ so that the second, third and the forth terms in Eq. (2.51) are regarded as

perturbations to the first term.

The Lagrangian densities of the Mirror and Fraternal Twin Higgs models

Here, based on the previous discussion, let us concretely write down the Lagrangian densities

of the twin Higgs models. The Lagrangian density of twin Higgs models, Ltwin, can be

decomposed into following forms:

Ltwin = LSM
gauge boson + Ltwin

gauge boson + LSM
fermion + Ltwin

fermion + Ltwin
Higgs, (2.52)

where LSM
gauge boson and LSM

fermion are the Lagrangian densities of the gauge boson and fermion

sectors, which were already defined by Eq. (2.4) and Eq. (2.6), respectively. We shall explic-

itly show concrete expressions of Lagrangian densities Ltwin
gauge boson, Ltwin

fermion and Ltwin
Higgs in the

following.
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Ltwin
gauge boson is the Lagrangian density of twin gauge bosons:

Ltwin
gauge boson =

2
33334

33335

−1
4
Tr

6
1GA
µν

1GAµν
7
− 1

4
Tr

6
8W I

µν
8W Iµν

7
− 1

4
1Bµν

1Bµν (The Mirror twin Higgs model)

−1
4
Tr

6
1GA
µν

1GAµν
7
− 1

4
Tr

6
8W I

µν
8W Iµν

7
(The Fraternal twin Higgs model)

.

(2.53)

In the above expressions, 1GA
µν , 8W I

µν and 1Bµν are the field strengths of SU(3)!C, SU(2)"W

and U(1)!Y, respectively. Definitions of these field strengths are given by Eq. (2.5) with

replacements of GA
µ → 1GA

µ , W I
µ → 8W I

µ and Bµ → 1Bµ, and g3 → 1g3 and g2 → 1g2. Here,

1GA
µ , 8W I

µ and 1Bµ are the twin gluon, the twin SU(2)B gauge boson and the U(1)!Y gauge

boson, respectively. As we stated in the previous subsection, the U(1)!Y gauge boson, which

is the twin U(1)Y partner is absent in the Fraternal model. We have omitted the Lagrangian

densities of Faddeev-Popov ghosts of SU(3)!C × SU(2)"W.

Ltwin
fermion is the Lagrangian density of the twin partner of the fermion sector. Due to the

twin Z2 symmetry, fermion content and fermions charge assignments of the twin sector are

almost same as the SM Lagrangian. Similar to the LSM
fermion, we further decompose Ltwin

fermion

into following pieces:

Ltwin
fermin = Ltwin

fermion gauge + Ltwin
Yukawa. (2.54)

The first term includes the kinetic terms of the twin fermions and couplings between the twin

fermion and twin gauge fields, while the second term gives the Yukawa coupling between the

HB Higgs and the twin fermions. Ltwin
fermion gauge is explicitly given by

Ltwin
fermion gauge =2

33334

33335

i1Ln
/1D1Ln + i1enR /1D1enR + i 1Qn

/1D 1Qn + i1unR
/1D1unR + i1dnR /1D 1dnR. (The Mirror twin Higgs model)

i1L3
/1D1L3 + i1e3R /1D1e3R + i 1Q3

/1D 1Q3 + i1u3R
/1D1u3R + i1d3R /1D 1d3R. (The Fraternal twin Higgs model)

,

(2.55)

/1D ≡ γµ 1Dµ.

In the above expression, 1ΨSM represents the twin partner of the SM field denoted by ΨSM,

which was defined in Sec. 2. The definition of the covariant derivative with respect to the
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twin gauge symmetries SU(3)!C × SU(2)"W(×U(1)!Y),
1Dµ, is defined by

1Dµ
1ΨSM ≡

2
34

35

)
∂µ − i1g3 1TA

3 GA
µ − i1g2 1T I

2
8W I

µ − i1g11Y 1Bµ

*
1ΨSM (The Mirror twin Higgs model)

)
∂µ − i1g3 1TA

3 GA
µ − i1g2 1T I

2
8W I

µ

*
1ΨSM (The Fraternal twin Higgs model)

,

(2.56)

Here, 1TA
3 = λA/2 (λA is the Gell-Mann matrices A = 1, 2, · · · , 8) for the twin quarks and

1TA
3 = 0 for the twin leptons. Since SU(2)B gauge boson couples to the left-handed twin

fermions (and the HB Higgs), 1T I
2 = σI/2 for the left-handed twin quarks and the twin

leptons, and 1T I
2 = 0 for the twin right-handed quarks and leptons. 1g1 and 1Y are the U(1)!Y

gauge coupling and its twin hypercharge of the twin fermions. Note that twin fermions are

singlet under all SM gauge group. As we stated in the previous section, in the Fraternal twin

Higgs model, only third generation of the quark and lepton are introduced. The Lagrangian

density of the twin Yukawa sector Ltwin
Yukawa is explicitly given by

Ltwin
Yukawa =2

33334

33335

−
)
1Y e
mn

1̄LmHB1enR + 1Y d
mn

1̄QmHB
1dRm + 1Y u

mn
1̄QmH̃B1uRn + h.c.

*
. (The Mirror twin Higgs model)

−
)
1Y e
33
1̄L3HB1e3R + 1Y d

33
1̄Q3HB

1dR3 + 1Y u
33
1̄Q3H̃B1uR3 + h.c.

*
. (The Fraternal twin Higgs model)

,

(2.57)

In the above expression, 1Y e
mn, 1Y d

mn and 1Y u
mn are 3× 3 Yukawa coupling matrices of the twin

leptons, the twin down-type quarks and the twin up-type quarks, respectively. The definition

H̃B is same as H̃A. Again, it should be emphasized that, in the Fraternal twin Higgs models,

only third generation of twin fermions are introduced.

Let us finally show the Lagrangian density of the Higgs sector.

Ltwin
Higgs = (DµHA)

† (DµHA) +
)
1DµHB

*† ) 1DµHB

*
− V twin. (2.58)

The first term of the above expression is completely same as the gauge coupling and the

kinetic term of the SM Higgs boson. For the second term, the covariant derivative is given

by 1Dµ ≡ ∂µ− i1g2σI8W I
µ/2− i1g1 1Bµ/2 for the Mirror twin Higgs and 1Dµ ≡ ∂µ− i1g2σI8W I

µ/2 for

the Fraternal twin Higgs model. The tree-level Higgs potential V twin is given by Eq. (2.51).
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The electroweak symmetry breaking in the twin Higgs Models

At energies well below the symmetry breaking scale f , we can integrate out the Higgs field

HB, which enables us to work with an effective field theory of the SM Higgs field HA. The

effective potential of the SM Higgs field can be obtained by setting HB as

|HB|2 =
f 2

2
− |HA|2. (2.59)

Using this relation, V twin can be calculated as

Veff(HA) = −(κ1 − σ1)f
2|HA|2 + (2κ1 + ρ1)|HA|4. (2.60)

This potential coincides with the SM Higgs potential when the parameters κ1, σ1 are iden-

tified with

2κ1 + ρ1 = λSM,
κ1 − σ1

2κ1 + ρ1
=

v2A
f 2

, (2.61)

where λSM ∼ 1
8
is the SM Higgs self-coupling, vA = 246GeV is the VEV of the SM Higgs

field. As denoted above, to satisfy the constraint from the Higgs coupling measurement, the

VEV of the Standard Model Higgs field is required to be satisfactorily small compared to

the U(4) symmetry breaking scale, that is, v2A ≪ f 2.

Let us discuss the electroweak symmetry breaking conditions (vA ≃ 246GeV and mh ≃
125GeV) in the twin Higgs models precisely with the potential (2.51). By expressing the

potential (2.51) in terms of the two physical modes φA and φB with HA ≡ (0,φA/
√
2) and

HB ≡ (0,φB/
√
2) and requiring the minimization conditions, ∂V/∂φA = ∂V/∂φB = 0, we

find the potential minimum given by

v2A = λf 2 −σ1 + κ1(1− σ1

λ
)

λρ1 + κ1(2λ+ ρ1 + κ1)
. (2.62)

Evaluating the mass matrix ∂V/∂φi∂φj(i, j = A,B) around the potential minimum, we

obtain the mass eigenvalues of the system, that is, the SM Higgs boson h and the heavy

exotic (global symmetry breaking) Higgs 1h as [83, 84]

m2
!h,h = ρ1v

2
A + f 2(λ+ κ1)

)
1±

√
1− A

*
,

A ≡ 2
v2A
f 2

λρ1 + κ1(4λ+ ρ1 + 2κ1)

(λ+ κ1)2
− v4A

f 4

4λρ1 + ρ21 + κ1(8λ+ 4ρ1 + 4κ1)

(λ+ κ1)2
,

(2.63)
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Figure 2.3: The (yellow) region that satisfies λ > ρ1, κ1 and σ1 > 0 is shown for vA ≃ 246

GeV, mh ≃ 125GeV, and vA/f = 0.223 (left) and 0.123 (right). The regions above the blue,

green and red curves satisfy with the constraints λ > ρ1, λ > κ1 and σ1 > 0, respectively.

where the plus sign in front of
√
1− A corresponds to m2

!h and the negative sign corresponds

to m2
h. With v2A/f

2 ≪ 1, the SM Higgs mass is approximately given by

m2
h ≃ 2

κ2
1 + 2κ1λ+ κ1ρ1 + λρ1

κ1 + λ
v2A . (2.64)

Since we have five parameters f, λ, σ1, κ1 and ρ1, after imposing the EWSB conditions

vA ≃ 246 GeV (2.62) and mh ≃ 125GeV (2.63), the system is now described by three

parameters. As noted above, we impose the conditions λ > σ1,κ1, ρ1 to keep the philosophy

of the twin Higgs models. Fig. 2.3 shows the parameter space that satisfies these conditions

for vA/f = 0.223 (f = 1.1 TeV) and 0.123 (f = 2 TeV). We also confirmed that the

condition λ > σ1 is always satisfied. Note that the parameters λ, κ1 and ρ1 cannot take

arbitrary small values because tiny λ, κ1 and ρ1 cannot realize the SM-like Higgs mass. In

fact, we can see from Fig. 2.3 that the smallest values of λ, κ1 and ρ1 are roughly given by

λ ≃ κ1 ≃ ρ1 ≃ 0.05. This bound will play important roles when we analyze the dynamics of

a phase transition as we will see in Sec. 4.4. The smallest values of λ, κ1, ρ1 are not sensitive

to the breaking scale vA/f and SM-like Higgs mass mh ≃ 125GeV. σ1 > 0 guarantees our

assumption of the two-step phase transition as we will see later.

Let us finally examine the fine-tuning in this effective potential. In our effective potential,
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the set of the observable and parameter that gives the smallest measure is the following one,

∆σ1 ≡
////
∂ log (v2A/f

2)

∂ log σ1

////
−1

=
2
v2A
f2

1− 2
v2A
f2

≃ 2v2A
f 2

. (2.65)

In this calculation, we simply assume the soft breaking scenario, σ1 ≫ ρ1, which means that

the twin Z2 symmetry is only broken by the soft term σ1f
2.4 In order to solve the little

hierarchy problem in twin Higgs models, ∆σ1 should not take an arbitrary small value. Thus,

the symmetry breaking scale f is bounded from above in light of naturalness. In other words,

we cannot take the breaking scale f as large as the Planck scale (or the grand unification

scale). Hence the twin Higgs mechanism cannot provide the solution to the large hierarchy

problem, that is, the hierarchy between the breaking scale f and the Planck scale.

2.3.3 Supersymmetric twin Higgs models

To address the large hierarchy problem in the twin Higgs scenario, SUSY can provide an

attractive solution. Parallel to the case of the ordinary Minimal Supersymmetric Standard

Model (MSSM), where Higgs chiral multiplets consist of a pair of doublets, supersymmetric

twin Higgs models generally contain four Higgs doublets,

Hu =

!

"HA
u

HB
u

#

$ , Hd =

!

"HA
d

HB
d

#

$ . (2.66)

The chiral multiplets Hu, Hd are fundamental under the U(4) symmetry and the U(4) multi-

plets are decomposed into the visible sector fields HA
u , H

A
d and the twin sector fields HB

u , H
B
d

under the subgroups SU(2)A × SU(2)B. The superpotential contains an extended version of

the ordinary µ-term, W ⊃ µ(HA
u H

A
d +HB

u H
B
d ). Including soft SUSY breaking mass terms,

the quadratic part of the U(4) symmetric potential in supersymmetric twin Higgs models is

given by

VU(4) ⊃
'
9m2

Hu
+ µ2

( '
|HA

u |2 + |HB
u |2

(
+
'
9m2

Hd
+ µ2

( '
|HA

d |2 + |HB
d |2

(

− b
'
HA

u H
A
d +HB

u H
B
d + h.c.

(
.

(2.67)

The quartic part of the U(4) symmetric potential is model dependent. The first term of

(2.51) contains the quartic term |HA|2|HB|2. However, SUSY forbids this type of couplings

4For the hard breaking scenario, ρ1 ≫ σ1, see Ref. [83].
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without further modification of the Higgs sector. There are several proposals to obtain Higgs

couplings with twin Higgs fields. Refs. [80, 81, 82, 83] have introduced a massive singlet chiral

superfield S with a superpotential SHuHd. The effective theory after integrating out this

singlet contains the quartic term |HuHd|2. Ref. [84] has considered an additional contribution

to the D-term potential from a new U(1) gauge symmetry, under which both the Higgs and

the twin Higgs fields are charged. In our analysis, we do not go into the details of a specific

supersymmetric twin Higgs model, instead, we simply assume the existence of an appropriate

U(4) symmetric quartic term and try to extract general features of a supersymmetric twin

Higgs scenario.

We next consider possible sources of the breaking of the U(4) and the Z2 symmetries

in this scenario. In the non-supersymmetric minimal model, the U(4) symmetry breaking

arises only from quantum corrections or from some explicit breaking terms. On the other

hand, supersymmetric models have the D-term potential,

VD =
g21 + g22

8

'
|HA

u |2 − |HA
d |2

(2
+

1g22
8

'
|HB

u |2 − |HB
d |2

(2
, (2.68)

which breaks the U(4) and the Z2 symmetries. Here we have assumed the minimal realization

of the twin Higgs mechanism, where the twin partner of U(1)Y is not introduced. Unfortu-

nately, the size of the Z2 breaking in the above D-term potential is insufficient to realize the

required hierarchy between the electroweak breaking scale, vA, and the U(4) breaking scale,

f . Then, we simply assume the following Z2 breaking soft mass terms,

Vsoft = ∆9m2
Hu

|HA
u |2 +∆9m2

Hd
|HA

d |2. (2.69)

In order to make the discussion independent of the form of quartic couplings, we take the

decoupling limit of the SUSY heavy Higgses and match the theory to the non-supersymmetric

twin Higgs potential. In the decoupling limit, the four Higgs doublets can be written as

follows in terms of HA and HB in the non-supersymmetric twin Higgs model,

HA
u = HA sin βA, HB

u = HB sin βB,

HA
d = H†

A cos βA, HB
d = H†

B cos βB.

(2.70)

Here, tan βA = vAu /v
A
d and tan βB = vBu /v

B
d with vA,B

u,d ≡ 〈HA,B
u,d 〉/

√
2. Thanks to the approxi-

mate Z2 symmetry, they are almost equal, tan βA ≃ tan βB. In the rest of the discussion, we

simply assume βA = βB = β and 1g2 = g2. Note that by taking the decoupling limit (2.70),
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the structure of the Higgs potential is essentially the same as that of the potential given by

(2.51) discussed in the previous subsection. When we require that the supersymmetric twin

Higgs potential is matched with Eq. (2.51), we obtain the following relations,

−λf 2 = 9m2
Hu

sin2 β + 9m2
Hd

cos2 β + µ2 − b sin 2β,

σ1f
2 = (σ + δσ)f 2 = ∆9m2

Hu
sin2 β +∆9m2

Hd
cos2 β + δσf 2,

κ1 = κ+ δκ =
g22
8
cos2 2β + δκ,

ρ1 = ρ+ δρ =
g21
8
cos2 2β + δρ,

(2.71)

where δσ, δκ and δρ represent the radiative corrections. With these expressions, we can

evaluate the SM-like Higgs mass from (2.63). Note that it is difficult to realize the SM-like

Higgs mass only with the quartic couplings in the D-term potential, κ =
g22
8
cos2 2β and ρ =

g21
8
cos2 2β. We simply assume that there is an additional contribution or a radiative correction

to κ and ρ to realize the SM-like Higgs mass. As mentioned in the previous subsection, we

impose the EWSB conditions and the conditions λ > σ1, κ1, ρ1 to consider the general

feature of SUSY twin Higgs models. In any case, after integrating out all supersymmetric

partners, the effective Lagrangian density becomes the one given in the previous subsection.

2.4 Minimal Scotogenic Model

As we saw in the previous Sec. 2.2.3 and Sec. 2.2.2, to explain the DM and non-zero neutrino

masses, we need physics beyond the SM. The scotogenic model [92] is one of the promising

candidate for physics beyond the SM, which simultaneously explains the origin of neutrino

masses and the DM.

The minimal scotogenic model is an extension of the SM with three right-handed neu-

trinos νnR and one SU(2)W-doublet scalar field S ( called inert scalar doublet ). Assuming

that νnR and S particles are odd under discrete Z2 symmetry, while the SM fields remain

Z2-even such that

νnR → −νnR, S → −S, ASM → ASM , (2.72)

whereASM represents the SM particles. The total Lagrangian density of this model, Lscotogenic,
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can be schematically decomposed into following form:

Lscotogenic = LSM
fermion + LSM

gauge bosons + Lscotogenic
scalar + Lscotogenic

lepton . (2.73)

In this expression, LSM
fermion and LSM

gauge bosons are the SM Lagrangian defined by Eq (2.7) and

Eq. (2.4), respectively.

Lscotogenic
scalar is the Lagrangian density of the scalar sector of this model and is explicitly

given by

Lscotogenic
scalar = DµS

†DµS +DµH
†
SMD

µHSM − V scotogenic
tree (S,HSM). (2.74)

The charge assignment of S is completely same as the SM Higgs doublet. Hence, the covariant

derivative appearing above is defined by Dµ ≡ ∂µ − ig2σ
IW I

µ/2 − ig1Bµ/2. The tree level

scalar potential of the model, V scotogenic
tree , is given by

V scotogenic
tree =VSM(HSM) +m2

1|S|2 + λ1|HSM|2|S|2 + λ2(H
†
SMS)

'
S†HSM

(

+

:
λ3

)
H†

SMS
*2

+ h.c.

;
+ λS|S|2. (2.75)

where VSM(HSM) is defined by Eq. (2.23). The unbroken Z2 symmetry prevents the S to

acquire any VEV, that is, m2
1 > 0 otherwise Z2 symmetry is spontaneously broken.

The Lagrangian density of the lepton sector Lscotogenic
lepton is given by

Lscotogenic
lepton = ν̄nR/∂νnR +

1

2
(MνR)nm (ν̄c

nRνmR + h.c.) +
)
Y S
nm L̄nS̃νmR + h.c.

*
. (2.76)

where (MνR)nm and Y S
nm are the Majorana mass and Yukawa coupling with the inert scalar

doublet matrices, respectively. Compared to the expression Eq. (2.39), the Y ν
mn term is absent

since it is forbidden by the Z2 symmetry Eq. (2.72), and hence, the left-handed neutrinos

are massless (because S does not develop VEV) at classical level.

To compute mass spectrums of HSM and S fields, let us parametrise those fields as follows.

HSM =

!

" 0

hSM√
2

#

$ , S =

!

"S+

S0

#

$ . (2.77)

For S+ and S0 fields, we have following mass terms:

m2
± = m2

1 +
1

2
λ1h

2
SM, M2

S0
=

!

-"
m2

1 +
1

2
(λ1 + λ2 + 2λ3)h

2
SM, 0

0, m2
1 +

1

2
(λ1 + λ2 − 2λ3)h

2
SM

#

.$ . (2.78)
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Using S0 = (H + iA)/
√
2 we obtain the physical masses as

n± = 2 : m2
± = m2

1 +
1

2
λ1h

2
SM,

nH = 1 : m2
H = m2

1 +
1

2
(λ1 + λ2 + 2λ3)h

2
SM,

nA = 1 : m2
A = m2

1 +
1

2
(λ1 + λ2 − 2λ3)h

2
SM, (2.79)

where mH (mA) and m± are the masses of CP-even (odd) component and the charged

component of the inert scalar doublet, respectively, and n±, nH and nA represent degrees of

freedom of each fields. Present masses are obtained by hSM = vSM.

2.4.1 Generation of Neutrino masses in Scotogenic Model

Let us here consider the generation of the neutrino masses in minimal scotogenic model. Due

to the Z2 symmetry, we saw that the left-handed neturinos are classically massless. However,

non-zero masses can be radiatively generated at one-loop level given by [24, 93]

(MνR)nm =
0

k

Y S
nkY

S
mkMk

32π2

+
m2

H

m2
H −M2

k

ln
m2

H

M2
k

− m2
A

m2
A −M2

k

ln
m2

A

M2
k

,

≡
0

k

Y S
nkY

S
mkMk

32π2

%
Lk(m

2
H)− Lk(m

2
A)
&
, (2.80)

where Mk is the mass eigenvalue of the mass eigenstate νkR in the internal line and the

indices n,m = 1, 2, 3 run over the three neutrino generations as well as three copies of νnR.

The function Lk(m
2) is defined as

Lk(m
2) =

m2

m2 −M2
k

ln
m2

M2
k

. (2.81)

It is important to ensure that the choice of Yukawa couplings as well as other parameters

involved in light neutrino mass are consistent with the current constraints summerized in

Sec. 2.2.2. In order to incorporate these constraints on model parameters, it is often useful

to rewrite the neutrino mass formula given in equation (2.80) in a form resembling the type-I

seesaw formula:

MνR = Y SΛ−1(Y S)T , (2.82)
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where we have introduced the diagonal matrix Λ with elements

Λi =
2π2

λ3

ζi
Mi

v2
, (2.83)

and ζi =

+
M2

i

8(m2
H −m2

A)

%
Li(m

2
H)− Li(m

2
A)
&,−1

. (2.84)

The light neutrino mass matrix (2.82) which is complex symmetric, can be diagonalized by

the PMNS matrix U , 5 defined by Eq. (2.41). The diagonal light neutrino mass matrix is

therefore,

Dν ≡ U †MνRU
∗ = diag(mν1 ,mν2 ,mν3) . (2.85)

Since the inputs from neutrino data are only in terms of the mass squared differences and

mixing angles, it would be useful for our purpose to express the Yukawa couplings in terms

of light neutrino parameters. This is possible through the Casas-Ibarra (CI) parametrisation

[94] extended to radiative seesaw model [68] which allows us to write the Yukawa coupling

matrix satisfying the neutrino data as

Y S = UD1/2
ν R†Λ1/2 , (2.86)

where R is an arbitrary complex orthogonal matrix satisfying RRT = 1.

2.4.2 Dark Matter in Scotogenic Model

The lightest Z2 odd particle, if electromagnetically neutral, can be the DM candidate in the

model because condition (i) listed in Sec. 2.2.3 is satisfied. Also, decay of new particles S

and νnR are forbidden by the Z2 symmetry, and thus, condition (ii) is also satisfied. We have

seen that S particles have two electromagnetically neutral components, which are H and A

particles. In this thesis, we only consider the case H is lighter than A if H is lighter than the

right-handed neturinos. (The scenario, where A is the DM candidate, can be obtained by

the simple replacement of λ3 → −λ3.) We shall call this scenario as scalar DM scenario. We

can also consider the case where the lightest right handed-neutrino ν1R is the DM candidate,

which is called the fermion DM scenario. The dark matter production mechanism for both

scalar and fermion DM candidates will be explained in Sec. 2.4.2.

5Usually, the leptonic mixing matrix is given in terms of the charged lepton diagonalising matrix (Ul)

and light neutrino diagonalising matrix Uν as U = U†
l Uν . In the simple case where the charged lepton mass

matrix is diagonal which is true in our model, we can have Ul = 1. Therefore we can write U = Uν .
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2.4.3 Constraints on Model Parameters in Scotogenic Model

Precision measurements at LEP experiment forbids additional decay channels of the SM

gauge bosons. For example, it strongly constrains the decay channel Z → HA requiringmH+

mA > mZ . Additionally, LEP precision data also rule out the region mH < 80 GeV,mA <

100 GeV,mA−mH > 8GeV [95]. We take the lower bound on charged scalar mass m± > 90

GeV. If mH,A < mh/2, the LHC bound on invisible Higgs decay comes into play [96] which

can constrain the SM Higgs coupling with H,A namely λ1 + λ2 ± 2λ3 to as small as 10−4,

which however remains weaker than DM direct detection bounds in this mass regime (See

e.g. [97].).

The LHC experiment can also put bounds on the scalar masses in the model, though in

a model dependent way. Depending upon the mass spectrum of its components, the heavier

ones can decay into the lighter ones and a gauge boson, which finally decays into a pair

of leptons or quarks. Therefore, we can have either pure leptonic final states plus missing

transverse energy (MET), hadronic final states plus MET or a mixture of both. The MET

corresponds to DM or light neutrinos. In several earlier works [98, 37, 99], the possibility of

opposite sign dileptons plus MET was discussed. In [100], the possibility of dijet plus MET

was investigated with the finding that inert scalar masses up to 400 GeV can be probed

at high luminosity LHC. In another work [101], tri-lepton plus MET final states was also

discussed whereas mono-jet signatures have been studied by the authors of [102, 103]. The

enhancement in dilepton plus MET signal in the presence of additional vector like singlet

charged leptons was also discussed in [104]. Exotic signatures like displaced vertex and

disappearing or long-lived charged track for compressed mass spectrum of inert scalars and

singlet fermion DM was studied recently by the authors of [105].

In addition to the collider or direct search constraints, there exists theoretical constraints

also. For instance, the scalar potential of the model should be bounded from below in any

field direction. This criteria leads to the following co-positivity conditions. [106, 107, 38, 108]:

λS > 0, λ1 + 2
<

λSMλS > 0, λ1 + λ2 −
|λ3|
2

+ 2
<

λSMλS > 0. (2.87)

The last condition comes from unitarity of the S-matrix elements [109, 110]. The coupling

constants appeared in above expressions are evaluated at the electroweak scale, vSM. Also, in

order to avoid perturbative breakdown, all dimensionless couplings like quartic couplings (λi),
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Yukawa couplings (Y S
ij ), gauge couplings (gi) should obey the the perturbativity conditions:

|λi| < 4π, |Yij| <
√
4π, gi <

√
4π, (2.88)

where indices run over appropriate numbers according to the Lagrangian.

2.4.4 Charged Lepton Flavor Violation in Scotogenic Model

We can easily see that Lscotogenic
lepton explicitly breaks the global U(1)Le,µ,τ symmetries, and hence,

charged lepton flavor violations cannot be avoided in this model. Since the couplings, masses

involved in this process are the same as the ones that generate light neutrino masses and

play a role in DM relic abundance, we can no longer choose them arbitrarily. The branching

fraction for µ → e+ γ that follows from this one-loop contribution can be written as [111],

Br(µ → e+ γ) =
3(4π)3αem

4G2
F

|AD|2Br(µ → e+ νµ + ν̄e). (2.89)

Where αem is the electromagnetic fine structure constant, e is the electromagnetic coupling

and GF is the Fermi constant. AD is the dipole form factor given by

AD =
30

i=1

Y ∗
ieYiµ

2(4π)2
1

m2
±

+
1− 6ξi + 3ξ2i + 2ξ3i − 6ξ2i logξi

6(1− ξi)4

,
. (2.90)

Here the parameter ξi’s are defined as ξi ≡ M2
Ni
/m2

±. The MEG experiment provides the

most stringent upper limit on the branching ratio Br(µ → e + γ) < 4.2 × 10−13 [65]. For

analytical expressions of other flavour violating processes can be seen in Ref. [111]. Current

constraints of charged lepton flavor violation processes were summarized in Sec. 2 and we

will take account this constraint in Sec 5.3.2.
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Chapter 3

The Early Universe

This chapter is a review part related to the early Universe. In the past, our Universe is

dense so that interactions between the SM particles sufficiently occur to maintain thermal

equilibrium. Due to the cosmic expansion, the temperature of the Universe cools down,

which leads to the interesting phenomena in the early Universe such as the dark matter

production and cosmological phase transitions. As we will see that the DM relic abundance

can be calculated by solving the Boltzmann equation on the expanding Universe. We study

the dynamics of cosmological phase transitions by computing the effective potential on the

thermal background for generic scalar field. We also discuss higher-order corrections from

non-Abelian gauge field at finite-temperature field theory. Based on the thermal effective

potential at one-loop order with high-temperature expansion, order of a phase transition

will be clarified. Finally, formulae of GW signals generated by cosmological first-oder phase

transitions are summarized.

3.1 Cosmic Expansion and Thermodynamics

In this subsection, we review standard history of the expanding Universe. In Sec. 3.1.1, we

review standard cosmology. We derive the Friedmann equation and explain the expanding

Universe. In Sec. 3.1.2, we summarize basic properties of the standard thermodynamics to

understand the early Universe surrouding by the thermal plasma. In Sec. 3.1.3, we discuss

thermal (chemical) equilibrium condition in the expanding Universe. We also calculate the

change of the number density of particles by considering the Boltzmann equation with taking
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into account cosmic expasion.

3.1.1 Expanding Universe

Our Universe is known to be approximately homogeneous and isotropic. Under this symme-

tries, the metric of our Universe can be written as

ds2 = −dt2 + a(t)2dx2, (3.1)

where t, a(t) and x = (x, y, z) are cosmic time, the scale factor and the three dimensional

Cartesian coordinates, respectively. We have assumed spatially flat Universe, which is con-

sistent with the present observation. A dynamics of the Universe is governed by the Einstein

equation given by

Rµν −
1

2
gµνR + gµνΛ = 8πGTµν , (3.2)

where gµν , Rµν , R, Λ and Tµν are the metric given by Eq. (3.1), Ricci tensor, Ricci scalar,

the cosmological constant and the energy-momentum tensor, respectively. (0, 0) component

of the above equation is given by

H2 =
8πG

3
ρ. (3.3)

In this expression, T00 = ρ is the energy density of the Universe and H is called Hubble

parameter defined by

H ≡ ȧ

a
, (3.4)

where dot represets the time derivative. The inverse of the Hubble parameter, H−1, represents

the characteristic time scale of the cosmic expansion and it roughly gives the age of the

Universe. The value of the present Hubble parameter denoted by H0 is given by [28] 1

H0 = (70.5± 1.3)
km

sec×Mpc
(3.5)

This quantity is conventionally parameterized as follows:

H0 = h× 100
km

sec×Mpc
, h ≡ 0.705± 0.013. (3.6)

1The unit Mpc is often used in the context of the astrophysics. Note that 1Mpc ≃ 3.1× 1024 cm.
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In order to realize homogenous and isotropic metric Eq. (3.1), the energy-momentum

tensor Tµν , which is the right-hand side of the Einstein equation Eq. (3.2), should possess

same symmetries. This implies that Tµν should be diagonal and all spatial components should

be equal. The simplest example, which satisfies this condition, is the energy momentum-

tensor of the perfect fluid. It is given by

Tµν = diag(ρ, p, p, p), (3.7)

where p is the pressure of the perfect fluid. µ = 0 component of the conservation of the

energy momentum tensor ∇µT
µν = 0, where ∇µ is the covariant derivative with respect to

gµν , leads to the following relation

ρ̇+ 3H(ρ+ p) = 0. (3.8)

For given equation of state: ρ = wp, where the value of w depends on species of matter, the

energy density evolves as

ρ ∝ a−3(1+w). (3.9)

Here, we have assumed that w does not depend on cosmic time t. By using the Friedmann

equation Eq. (3.3), dependence of the energy density and the scale factor in terms of cosmic

time are summarized as follows:

Radiation domination : w =
1

3
, ρ ∝ a(t)−4, a(t) ∝ t

1
2 ,

Matter domination : w = 0, ρ ∝ a(t)−3, a(t) ∝ t
2
3 , (3.10)

Vacuum domination : w = −1, ρ ∝ const, a(t) ∝ eHt.

In reality, energy density of our Universe is composed of the relativistic matter such as the

photon and the neutrinos, the non-relativistic matter such as baryons and the DM, and the

vacuum energy (or the dark energy). Hence, time evolution of our real Universe is governed

by the Friedmann equation, where all energy densities are included. It is given by

H2 =
8π

3
Gρtot, (3.11)

where ρtot is the total energy density of the Universe defined by ρtot ≡ ρrad + ρmatter + ρΛ. G

is the Newton constant. Here, ρrad, ρmatter and ρΛ are the energy densities of the radiation,
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non-relativistic matter and the vacuum energy. We introduce the critical density ρc, which

is defined by

ρc ≡
3

8πG
H2

0, (3.12)

In other word, ρc is sum of the energy densities of the current Universe, ρc = ρrad,0+ρmatter,0+

ρΛ,0, where ρrad,0, ρmatter,0 and ρΛ,0 are the present energy densities of the radiation, non-

relativistic matter and the vacuum energy. Numerically, ρc = 1.05 × h2 × 10−5 GeV/cm3.

We also introduce cosmological parameters defined by

Ωrad ≡ ρrad,0
ρc

, Ωmatter ≡
ρmatter,0

ρc
, ΩΛ ≡ ρΛ,0

ρc
(3.13)

By definitions,
=

i Ωi = 1. There are several independent observations to determine these

cosmological parameters. Current values are summarized as [28]

Ωrad ≤ 10−4, Ωmatter ≃ 0.27, ΩDM ≃ 0.73. (3.14)

In particular, the present energy density of the non-relativistic component Ωmatter can be

further decomposed into energy densities of baryon and the DM as follows.

Ωmatter = Ωbaryon + ΩDM, (3.15)

where Ωbaryon ≡ ρbaryon/ρc and ΩDM ≡ ρDM/ρc with ρbaryon and ρDM being present energy

densities of the baryon and the DM. These values are summarized as [28]

Ωbaryon ≃ 0.046, ΩDM ≃ 0.23. (3.16)

Strictly speaking, Ωmatter includes the contribution from lepton such as the electron and

the (massive) neutrino. However, these contributions to Ωmatter is vanishingly small and is

negligible amount.

By using cosmological parameters Ωrad, Ωmatter and ΩΛ, the Friedmann equation Eq. (3.11)

becomes

H2 =
8πG

3
ρc

+
Ωrad

)a0
a

*4

+ Ωmatter

)a0
a

*3

+ ΩΛ

,
, (3.17)

where a0 is the scale factor at the present time. We have used Eq. (3.10) to derive the above

equation.
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In the present epoch a(t) = a0, it is obvious that the cosmic expansion is mainly governed

by the non-relativistic matter Ωmatter and the vacuum energy ΩΛ because Ωmatter,ΩΛ ≫ Ωrad.

However, in the past, since the scale factor, a(t), is very small so that the first term of the

right-hand side of the Friedmann equation is dominated. This epoch is called radiation

domination era. As scale factor a(t) grows due to the cosmic expansion, the radiation

component becomes vanishingly small and the second term of the right-hand side of the

Friedmann equation dominates the Universe. This epoch is called the matter domination

era. Eventually, the last term of the right hand-side of the Friedmann equation dominates

the Universe.

In this thesis, we only consider cosmological phenomena occurred in the radiation dom-

ination era, and thus, we only review basic cosmology at this epoch. In this epoch, the

Universe was highly dense so that the SM particles are expected to be in thermal equilib-

rium via these interactions. This fact is strongly supported by the observation of the cosmic

microwave background. Therefore, the standard thermodynamics plays a key role in the

radiation domination era. We will also discuss the thermal equilibrium condition on the ex-

panding Universe in Sec. 3.1.3 and argue that an (elementary) particle DM can be thermally

produced in the early stage of the Universe.

3.1.2 Equilibrium Thermodynamics

In this subsection, we briefly review the standard thermodynamics to understand the basic

feature of the radiation dominated Universe.

A number density, n, an energy density, ρ, and a pressure, p of weakly-interacting gas of

particles are given in terms of its phase space distribution function f(p) as

neq = g

>
d3p

(2π)3
f eq(p), (3.18)

ρ = g

>
d3p

(2π)3
E(p)f eq(p), (3.19)

p = g

>
d3p

(2π)3
|p|2
3E

f eq(p), (3.20)

where p, E(p) =
<

p2 +m2, m and g are the spatial momentum, energy, mass and internal

degrees of freedom of particles, respectively. The phase space distribution f eq(p) is explicitly
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given by

f eq(p) =
1

e
E−µ
T ± 1

, (3.21)

where µ is the chemical potential. In the denominator, +1 corresponds to the Bose-Einstein

spcies and −1 corresponds to the Fermi-Dirac species. In the relativistic limit T ≫ m and

T ≫ µ, ρ, n and p are given by

ρ =

2
34

35

π2

30
gT 4

7
8
π2

30
gT 4

, (3.22)

neq =

2
34

35

ζ(3)
π2 gT 4

3
4
ζ(3)
π2 gT 4

, (3.23)

p =
ρ

3
. (3.24)

Here, ζ(3) ≃ 1.202 is the Riemann zeta function of 3. In the non-relativistic limit m ≫ T ,

n, ρ and p are given by

neq =

+
mT

2π

, 3
2

e−(m−µ)/T , (3.25)

ρ = mn, (3.26)

p = nT. (3.27)

Above expressions are same for Bose and Fermi species. Note that p ≫ ρ in this limit, and

hence the equation of state of the non-relativistic particles is given by p = 0. A total energy

density ρR and a total pressure pR are given by the sum of all species:

ρR ≡
0

i

ni =
0

i

T 4

+
T 4
i

T 4

,
gi
2π2

> ∞

xi

dz

<
z2 − x2

i z
2

ez−yi ± 1
, (3.28)

pR ≡
0

i

ρi =
0

i

T 4

+
T 4
i

T 4

,
gi
6π2

> ∞

xi

dz
(z2 − x2

i )
3
2

ez−yi ± 1
, (3.29)

xi ≡
mi

T
, yi ≡

µi

T
, (3.30)

where i represents the species of particle and Ti is the temperature of ith particle, which can

in principle be different from the photon temperature, T , which is defined as the temperature

of the Universe. 2 From expressions given by Eq. (3.27), it is obvious that contributions from

2For example, after the SM neutrinos decoupling, its temperature is different from the photon tempera-

ture.
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non-relativistic particles are suppressed by the Boltzmann factor and is negligible amount

compared to these from relativistic particles. One can therefore simply neglect contributions

from non-relativistic particles and only take into account relativistic components. Under

this approximation, above expressions are significantly simplified as follows.

ρR ≃ π2

30
g∗T

4, (3.31)

pR ≃ π2

90
g∗T

4 =
ρR
3
. (3.32)

Here, g∗ is called effective number of degrees of freedoms, which is defined by

g∗ ≡
0

i Boson

gi

+
Ti

T

,4

+
0

i Fermion

gi
7

8

+
Ti

T

,4

. (3.33)

The sum runs over only relativistic particles.

The entropy density, s, is also important physical quantity which characterizes the ther-

mal equilibrium system. In the absence of the chemical potential, the entropy density can

be expressed as

s =
ρ+ p

T
. (3.34)

The assumption of the vanishing chemical potential is justified in the next subsection. From

the above expression, the entropy density of relativistic ith particle, si, is given by

s =
4

3

ρi
T

2
34

35

gi
2π2

45
T 3, (boson)

gi
7
8
gi

2π2

45
T 3, (fermion)

(3.35)

Since the non-relativistic contribution to the entropy density is also Boltzmann suppressed

and is vanishingly small, the total entropy density sR is safely approximated as the summa-

tion of the relativistic species:

sR = g∗S
2π2

45
T 3, (3.36)

where gS∗ is the effective number of degrees of freedoms for the entropy density defined by

g∗S ≡
0

i Boson

gi

+
Ti

T

,3

+
0

i Fermion

gi
7

8

+
Ti

T

,3

. (3.37)

The sum runs over only relativistic particles.
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In the radiation dominated Universe, cosmological quantities such as the scale factor

and the Hubble parameter are related to the cosmic temperature, and hence, it is useful to

express these quantities in terms of the cosmic temperature. According to the second law of

the standard thermodynamics, entropy density in any closed system increases, or it remains

constant. For the cosmic expansion, entropy inside the co-moving volume a(t)3 is invariant.

Indeed, one obtains

d

dt

'
a3(t)s

(
= a3(t) (ρ̇+ 3H(ρ+ p)) = 0. (3.38)

In this calculation, we have used the thermodynamical relation ds = dρ/T (in the absence

of the chemical potential) and Eq. (3.34). The last equality comes from Eq. (3.8). Then the

cosmic temperature relates to the scale factor as

T (t) ∝ g
− 1

3
S∗ a

−1. (3.39)

This relation implies that the cosmic temperature inversely decreases by the cosmic ex-

pansion. Furthermore, by putting into the radiation energy density Eq. (3.31) into the

Friedmann equation Eq, (3.3), the Hubble parameter during the radiation domination era

can be expressed in terms of the cosmic temperature as

H(T ) =
T 2

M∗
Pl

. (3.40)

where M∗
Pl is the reduced Planck mass defined by

M∗
Pl =

?
90

8π3g∗
MPl ≃

1

1.66
√
g∗

MPl. (3.41)

3.1.3 Local equilibrium condition

So far, we assumed that the radiation dominated Universe is filled with various species of

interacting particles, which are in thermal equilibrium. However, as we saw in the previous

subsection, the temperature of the Universe cools down due to the cosmic expansion. Hence

it is questionable whether thermal equilibrium is really realized in the past Universe, or not.

In fact, departure of the thermal equilibrium occurs and leads to the interesting phenomena

such as dark matter production and cosmological phase transitions as we will argue in next

section. In this subsection, we discuss a local thermal equilibrium condition in the expanding

Universe.
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Suppose that for a given particle species X, there is a reaction

X + j + · · · → l +m+ · · · . (3.42)

where j, l,m, · · · represent particles species. The characteristic time scale of this process,

τX , is roughly given by

1

τX
=

////
1

nX

dnX

dt

//// . (3.43)

If τX is smaller than the characteristic time scale of the cosmic expansion, τX ≲ H−1, this

process is sufficient to occur, and hence, X couples to the thermal plasma and is soon in

thermal (chemical) equilibrium. In comparison to this, if τX ≳ H−1 is realized, this process

is decoupled from the thermal plasma, and hence, X becomes out-of-thermal equilibrium.

The Boltzmann Equation

Let us here more quantitatively discuss above statement. In the expanding Universe, the

time evolution of the number density of X is governed by the following Boltzmann equation:

dnX

dt
+ 3HnX =

0

j,l,m,···

>
dΠ(2π)4δ(4)

@
0

i

Pi

A

×
6
|M|2(l+m+···→X+j+··· ) flfm(1± fX)(1± fj) · · · (3.44)

− |M|2(X+j+···→l+m+··· ) fXfj(1± fl)(1± fm) · · ·
7
,

(+ : for Boson, − : for Fermion).

In this expression, dΠ is the product of the phase space volume elements defined by

dΠ ≡ dΠX × dΠj × · · ·× dΠl × dΠm × · · · , (3.45)

dΠj ≡ gj
1

(2π)3
d3pj
2Ej

. (3.46)

Here, Pi is the four momentum and fi is the phase space distribution of ith particle.

|M|2(l+m+···→X+j+··· ) and |M|2(X+j+···→l+m+··· ) are the matrix element squared for the pro-

cesses l +m + · · · → X + j + · · · and X + j + · · · → l +m + · · · , which are averaged over

initial and final spins, respectively. The summation
=

j,l,m,··· is taken over all interactions

involving X particle. Physically, the left-hand side of the Boltzmann equation represents

dilution of the number density by the cosmic expansion, while the right-hand side represent
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the change of the number density by interactions with other particles. The above Boltzmann

equations are a coupled set of integral differential equations for the phase space distributions

of all the species present, which is in general impossible to solve these.

Fortunately, we can significantly simplify the complicated Boltzmann equation in the

following way. Firstly, let assume that the interactions are CP (or T ) invariants.3 Under

this assumption, the matrix element squared has following relation

|M|2(l+m+···→X+j+··· ) = |M|2(X+j+···→l+m+··· ) ≡ |M|2 . (3.47)

Secondly, we assume that the kinetic equilibrium is maintained, and the distribution func-

tions are approximated by the Maxwell-Boltzmann distribution. Thus, fj ≃ exp(−(Ej −
µj)/T ), and hence, 1 ± fj ≃ 1. Under these approximations, the Boltzmann equations

Eq. (3.44) can be rewritten as

dnX

dt
+ 3HnX =

0

j,l,m,···

>
dΠ(2π)4 |M|2 δ(4)

@
0

i

Pi

A
[flfm · · ·− fXfj · · · ] . (3.48)

As an illustrate example, let us consider the following 2 → 2 process

X + X̄ ↔ j + j̄. (3.49)

Here, X̄ and j̄ are the anti-particles of X and j. j and j̄ are relativistic (T ≫ mj) and are

assumed to be in the thermal equilibrium. We also assume that this interaction is CP (or T )

invariant and distribution function of j and j̄ are approximated by the Maxwell-Boltzmann

distribution function with zero chemical potential. Then the Boltzmann equation is given

by

dnX

dt
+ 3HnX = −

>
dΠ (2π)4 δ(4)

'
PX + PX̄ + Pj + Pj̄

(
|M|2X+X̄↔j+j̄

%
fXfX̄ − fjfj̄

&
.

(3.50)

From the energy conservation inside the delta function EX + EX̄ = Ej + Ej̄, one obtains

fjfj̄ = e−(Ej+Ej̄)/T = e−(EX+EX̄)/T = fEQ
X fEQ

X̄
, (3.51)

3In reality, CP symmetry is explicitly broken by the Cabbibo-Kobayashi-Masukawa matrix in the quark

sector and PMNS matrix in the lepton sector, but these effects are very small. Hence it is sufficient to our

purpose to assume this assumption.
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since fEQ

X,X̄
≡ e−EX,X̄/T . By introducing a thermally-averaged cross section times velocity of

the process given by Eq. (3.49) defined by

〈σX+X̄→j+j̄|v|〉 ≡
1

(neq
X )2

>
dΠ |M|2X+X̄→j+j̄ (2π)

4δ(4)(PX + PX̄ + Pj + Pj̄)f
eq
X f eq

X̄
, (3.52)

the Boltzmann equation Eq. (3.50) can be then rearranged as following simple form

dnX

dt
+ 3HnX = −〈σX+X̄→j+j̄|v|〉

6
n2
X − (neq

X )2
7
. (3.53)

From this expression, the reaction rate ΓX (or the characteristic time scale defined by

Eq. (3.43)) can be expressed as

ΓX =
1

τX
≃ 〈σX+X̄→j+j̄|v|〉neq

X . (3.54)

At ΓX > H, the particle number changing process by annihilation corresponding to the right-

hand side of the Eq. (3.53), is dominant compared to its dilution by the cosmic expansion,

and thus, nX eventually reach to its equilibrium value nX ≃ neq
X . On the other hand, at

ΓX < H, the right-hand side of Eq. (3.53) becomes negligible compared to its second term

and is decoupled with the thermal plasma. Thus, the number density in co-moving volume

(expanding volume), nXa
3, becomes effectively constant at ΓX = H. The temperature, Tf ,

which satisfies ΓX(Tf ) = H(Tf ) is therefore called freeze-out temperature.

Chemical potentials in the early Universe

Before closing this subsection, let us confirm the validity of the assumption of vanishing

chemical potential for several species µi ≃ 0. When the reaction Eq. (3.42) is in thermal

equilibrium, chemical potentials obey following equation:

µX + µj + · · · = µl + µm + · · · . (3.55)

Here, µJ is the chemical potential of particle species of J = X, j, l,m · · · . The photon

interact with the electron via the inelastic scattering such as

e+ γ ↔ e+ γ + γ. (3.56)

This leads to zero photon chemical potential, µγ = 0. Then, annihilations into photons

X + X̄ ↔ 2γ gives µX + µX̄ = 0. Here, X can be charged leptons and quarks. This implies
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chemical potentials of particles and these anti-particles are same magnitude but opposite

sign. By using this fact, a number density difference between X particle and X̄ can be

expressed as

nX − nX̄ ≃

2
34

35

µXT
2/3 (Bosons)

µXT
2/6 (Fermions)

. (3.57)

To derive above expressions, we have assumed T ≫ mX , µX and used Eq (3.18) and

Eq. (3.21). The above expression tell us that the chemical potential parameterizes the

number density difference between particle and its anti-particle.

Hence if there is a large amount of the particle asymmetry in the early Universe, effects

of chemical potentials are important. It is widely known that a success of the Big Bang

Nucleosynthesis requires the tiny baryon asymmetry nB−nB̄/s ∼ 10−10 (nB and nB̄: baryon

and anti-baryon number densities), and hence, there exists non-zero chemical potential for

baryons, but its value is many order magnitude below of the temperature and is negligible

amount. Since the Universe is electromagnetically neutral, a lepton asymmetry is same order

magnitude of baryon asymmetry. Therefore, the chemical potential of the lepton is also

vanishingly small. For this reason, chemical potentials are safely neglected in the standard

cosmology.

3.2 Thermal Production of the Dark Matter in Scoto-

genic Model

It was discussed in Sec. 2.4 that there are DM candidates in minimal scotogenic model, which

is the lightest Z2 odd particle. In this section, we give a basic formalism to calculate the

relic abundance of the DM.

We here assume that the temperature of the early Universe is high enough to these Z2

odd particles are in thermal equilibrium with the SM particles.4 Then the number density

4Since ν1R is a gauge singlet, there exists the possibility of non-thermal fermion DM also in this model,

as discussed by the authors of Ref. [45]. While the scalar DM can not be a purely non-thermal DM due to

its gauge interactions, it can receive a non-thermal contribution from right handed neutrino decay at late

epochs. This possibility was discussed by [42]. We do not discuss such possibilities in this thesis, as it is

unlikely to give new insights into the correlation between DM parameter space and that of strong first-order
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of the DM particle is given by thermal equilibrium value before the decoupling. As the

temperature of the Universe cools down due to the cosmic expansion, the local thermal

equilibrium condition is not satisfied when ΓDM = H, where ΓDM is the reaction rate of the

DM annihilation into SM particles, DM +DM ↔ SM + SM. Then, as stated in the previous

section around Eq. (3.54), the DM number density becomes constant in co-moving volume

and its thermal relic contributes to the DM energy density of the present Universe. In the

present setup, we can discuss the conditions (iii) and (iv) listed in Sec. 2.2.3. The condition

(iii) is satisfied in this production mechanism because the DM will be decoupled when it is

non-relativistic. To satisfy condition (iv), we need to carefully calculate the relic abundance

of the DM number density by solving Boltzmann equation for given coupling constants λ1,2

and λ3, which were defined in the Lagrangian density of minimal scotogenic model defined

in Sec. 2.4.

The Boltzmann equation of this reaction can be written as

dnDM

dt
+ 3HnDM = −〈σv〉

%
n2
DM − (neq

DM)
2
&
, (3.58)

where nDM and neq
DM are the number density and the thermal equilibrium number density

of DM, respectively. 〈σv〉 is the thermally averaged annihilation cross section, which is

explicitly given by [112]

〈σv〉 =
1

8m4
DMTK

2
2

'
mDM

T

(
∞>

4m2
DM

σ(s− 4m2
DM)

√
s K1

+√
s

T

,
ds , (3.59)

where Ki(x)’s are modified Bessel functions of order i and mDM is the DM mass.

In the presence of coannihilations, the effective cross section at freeze-out can be expressed

as [113]

σeff =
0

i,j

〈σijv〉
gigj
g2eff

(1 +∆i)
3/2(1 +∆j)

3/2e−zf (∆i+∆j) , (3.60)

where ∆i = mi−mDM

mDM
is the relative mass difference between the heavier component i =

(H,A,±, ν1R) of the inert Higgs doublet and the DM.

geff =
0

i

gi(1 +∆i)
3/2e−zf∆i , (3.61)

phase transition.
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is the total effective degrees of freedom, and

〈σijv〉 =
zf

8m2
im

2
jmDMK2

)
mizf
mDM

*
K2

)
mjzf
mDM

*

×
∞>

(mi+mj)2

ds σij

'
s− 2(m2

i +m2
j)
(√

s K1

+√
s zf

mDM

,
, (3.62)

is the modified thermally averaged cross section, compared to equation (3.59). In the above

expressions

zf ≡ mDM

Tf

= ln

+
0.038

g
√
g∗
MPlmDM〈σv〉f

,
, (3.63)

with g being the number of internal degrees of freedom of the DM and the subscript f on

〈σv〉f means that the quantity is evaluated at the freeze-out temperature Tf . For solving

the Boltzmann equations relevant to DM, micrOMEGAs package [114] is used.

3.3 The Effective Potential

We have discussed the local equilibrium condition and decoupling of particles in the early

Universe. In this section, we discuss thermal effects on the generic scalar potential. Then

the idea of the thermal effective potential plays the key role, and hence we briefly review

them at first. We refer papers Refs. [115, 116, 117] for more details. Detailed computations

of one-loop effective potential are summarized in Appendix. 7.1.

3.3.1 Definition of the Thermal Effective Potential

At sufficiently high temperature, the radiation dominated Universe is surrounding by the

thermal plasma. Hence when we compute a scalar potential at that epoch, effects of thermal

fluctuations should be taken into account. The main purpose of this section to introduce field

theory on the thermal background, which is called imaginary time formalism or Matsubara

formalism [118].

On the thermal background, an expectation value of a generic operator Ô is described

by the canonical ensemble:

〈Ô〉 ≡ Tr[ρ̂Ô]

Trρ̂
, (3.64)
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where ρ̂ is the canonical density operator given by

ρ̂ ≡ exp−Ĥ/T . (3.65)

In this expression, Ĥ is a Hamiltonian of a system. We neglect a contribution from chemical

potential since it was discussed in Sec. 3.1.3 that it is vanishingly small in our Universe.

We shall next derive the potential of given scalar field ϕ(x):

ϕ(x) = eiĤtϕ(0,x)e−iĤt. (3.66)

In this expression, the time t ≡ x0 is analytically continued to the complex-plane. In

particular, throughout this thesis, we consider the ”imaginary time” t = −iτ , where τ is the

real valued, and hence, the time t becomes purely imaginary number. The thermal Green

function is defined as the canonical average of the ordered product of the n field operators:

G(c)(x1, · ··, xn) = 〈Tcϕ(x1), · · · ϕ(xn)〉, (3.67)

In this expression, Tc ordering. Its definition is explicitly given by

Tcϕ(x)ϕ(y) = θc(x
0 − y0)ϕ(x)ϕ(y) + θc(y

0 − x0)ϕ(y)ϕ(x). (3.68)

where θc(t) = θ(τ). (θ(x): step function and τ is a real number.) Then, the generating

functional Zβ[J ] in the presence of the exteral source J(x) can be defined as

Zβ[J ] =

B
Tc exp

+
i

>

c

d4xJ(x)ϕ(x)

,C
(3.69)

=
∞0

n=0

in

n!

>

c

d4x1 · · · d4xnJ(x1) · · · J(xn)G
(c)(x1 · · · xn). (3.70)

The connected green function W β[J ] is given by

Zβ[J ] = exp(iW β[J ]). (3.71)

Then the effective action is obtained by the Legendre transformation with respect to W β:

Γβ[φ] = W β[J ]−
>

d4x
δW β[J ]

δJ(x)
J(x). (3.72)

The effective action Γβ[φ] can be explicitly calculated by computing one particle irreducible

diagrams [119]. Here, φ is given by

φ(x) ≡ δW β

δJ(x)
. (3.73)

56



It follows that

δΓβ

δφ(x)
= J(x), (3.74)

and hence, Γβ[ϕ] can be identified with the action on the thermal background in the absence

of the external source. When ϕ(x) possesses a translational invariance, φ(x) = φ, Γβ[φ] can

be expressed as

Γβ[φ] = −
>

d4xV tot
thermal(φ). (3.75)

where V tot
thermal is called thermal effective potential. Then, an expectation value of φ is de-

scribed by the condition

∂V tot
thermal

∂φ
= 0. (3.76)

This implies that the effective potential characterizes locations of vacua for a given theory

(Lagrangian density) including quantum and thermal effects.

Explicit calculations of the thermal effective potential at one-loop order involving scalar,

fermion and gauge bosons are summarized in Appendix. 7.1. In any case, we will see that

the thermal effective potential is characterized by a field dependent mass mi(φ) where suffix

i represent the particle species, which couples to φ. The precise form of mi(φ) is calculated

by given Lagrangian density, but it is usually given by m2
i (φ) = ciφ

2 +M2
i where ci and Mi

is the φ-independent constants. In the following discussion, to discuss general features of the

thermal effective potential for given field dependent masses, we do not specify the concrete

Lagrangian density.

A contribution from bosonic particles can be expressed as

V B
thermal(φ) =

0

i

nBi

T

2

+∞0

nb=−∞

>
d3p

(2π)3
log(ω2

nb
+ ω2

i (φ)), ωnb
= 2πnbT,

ω2
i (φ) = p2 +m2

i (φ), (3.77)

where nBi
and p are the number of degrees of freedom of a bosonic particle species i and

three dimensional momentum, respectively. By using

f(y) ≡
∞0

n=0

y

y2 + n2
= − 1

2y
+

π

2
+ π

e−2πy

1− e−2πy
, (y : constant). (3.78)
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we obtain
∞0

nb=−∞
log

'
ω2
nb

+ ω2
i (φ)

(
=

2

T

+
ωi(φ)

2
+ T log

'
1− e−ωi(φ)/T

(,
. (3.79)

Therefore, V B
thermal can be expressed as

V B
thermal(φ) =

0

i

nBi

>
d3p

(2π)3

+
ωi(φ)

2
+ T log

'
1− e−ωi(φ)/T

(,
. (3.80)

A contribution from fermionic particles is given by

V F
thermal(φ) = −

0

i

nFi

T

2

∞0

nf=−∞

>
d3p

(2π)3
log

'
ω2
n + ω2

i (φ)
(
, ωnf

= (2nf + 1)πT,

ω2
i (φ) = p2 +m2

i (φ), (3.81)

where nFi
is the number of degrees of freedom of a fermionic particle species i. By using

∞0

m=2,4,···

y

y2 +m2
=

∞0

n=1,2,···

y

y2 + 4n2
=

1

2
f
)y
2

*
, (3.82)

∞0

m=1,3,···

y

y2 +m2
= f(y)− 1

2
f
)y
2

*
, (3.83)

we obtain
∞0

nf=−∞
log

'
ω2
nf
+ ω2

i (φ)
(
=

2

T

+
ωi(φ)

2
+ log

'
1 + e−ωi(φ)/T

(,
. (3.84)

Therefore, V F
thermal can be expressed as

V F
thermal = −

0

i

nFi

>
d3p

(2π)3

+
ωi(φ)

2
+ T log

'
1 + e−ωi(φ)/T

(,
. (3.85)

The one-loop total thermal effective potential is then given by V total
thermal = Vtree+V B

thermal+

V F
thermal, where Vtree is the tree-level potential of given Lagrangian density. One should note

that the first terms of Eqs. (3.80) and (3.85) correspond to the zero-temperature corrections,

while the second terms correspond to the finite-temprature corrections. For zero-temperature

corrections, the momentum integration leads to the UV divergence, which is regulated by

imposing suitable renormalization conditions. For thermal corrections corresponding to the

second terms of Eqs. (3.80) and (3.85), the momentum integration larger than the ambient

temperature is exponentially suppressed by the Boltzmann factor, and hence, there is no UV

divergence. Since two contributions are totally different, we will separately consider these

contributions in different subsections.
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3.3.2 The effective potential at zero-temperature

In this subsection, we calculate the zero-temperature contribution of the effective potential

by imposing renormalization conditions. In the following discussion, we consider generic field

dependent mass of particle species i and do not specify the concrete form of the Lagrangian

density.

The zero-temperature effective potential from bosonic and fermionic particles, Vzero(φ),

can be rearranged as follows.

Vzero(φ) =
0

i

(−)i
ni

2

>
d4p

(2π)4
log

'
p2 +mi(φ)

2
(
, (3.86)

In this expression, ni is the number of degrees of freedom of a particle i, and (−)i gives 1 for

bosons and −1 for fermions.

Let us first insert a hard cut-off ΛUV in the momentum integration to regularize it. The

result is given by

V cut−off
zero (φ) =

0

i

(−)ini

:
1

32π2
Λ2

UVm
2
i (φ) +

m4
i (φ)

64π2

+
log

+
m2

i (φ)

Λ2
UV

,
− 1

2

,;
. (3.87)

Divergences caused by ΛUV → ∞ should be subtracted by counterterms. This expression is

useful when we consider the cut-off dependence for the scalar field φ. For example, quadratic

divergent mass corrections to the SM Higgs mass parameter Eq. (2.34) can be easily computed

when we use the above expression.

Let us next adopt the DR regularization method. In this regularization scheme, the mo-

mentum integration is defined in spacetime dimension, D ≡ 4−2ε, where ε is the infinitesimal

parameter. Then, Eq. (3.86), can be rewritten as

V dim
zero (φ) =

0

i

(−)i
ni

2
µε

>
dDp

(2π)D
log

'
p2 +m2

i (φ)
(
. (3.88)

In this expression, we introduce renormalization scale µ to maintain the mass dimension of

effective potential, dim[Vzero] = 4. By doing the integration of eq. (3.88), we obtain

V dim
zero (φ) =

0

i

(−)ini
mi(φ)

64π2

+
CUV + log

+
m2(φ)

µ2

,
− 3

2
+O(ε)

,
, (3.89)

CUV =
1

ε
− γE + log(4π), (3.90)
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where γE is the Euler constant. At ε → 0, the first term in the above expression contains

divergence, which should be subtracted by the counterterm. By subtracting the UV divergent

part CUV, the zero-temperature effective potential is given by

V DR
zero(φ) =

0

i

(−)Fi
ni

64π2
m4

i (φ)

+
log

+
m2

i (φ)

µ2

,
− 3

2

,
. (3.91)

Note that in the above expression all coupling constants should be evaluated at the scale µ,

otherwise one-loop expansion cannot be justified.

In another famous renormalization scheme with dimensional regularization so-called MS

scheme, Then the zero-temperature effective potential is given by

V MS
zero(φ) =

0

i

(−)Fi
ni

64π2
m4

i (φ)

+
log

+
m2

i (φ)

µ2

,
− Ci

,
. (3.92)

In this expression, Ci is given by

Ci =

2
34

35

3
2
, (for bosons and fermions),

5
6
, (gauge bosons).

(3.93)

3.3.3 The thermal effective potential

In this subsection, we shall calculate the thermal effective potential for given field dependent

masses. We also discuss validity of the one-loop approximation and explain resummation

presriptions, which are important in the finite temperature field theory.

Thermal contributions to the effective potential at one-loop order are given by the second

terms of Eqs. (3.80) and (3.85), which can be rewritten as

Vthermal =
0

i

+
nBiT

4

2π2
JB

:
m2

Bi(φ)

T 2

;
− nFiT

4

2π2
JF

:
m2

Fi(φ)

T 2

;,
, (3.94)

JB(x) =

> ∞

0

dzz2 log
)
1− e−

√
z2+x

*
, (3.95)

JF (x) =

> ∞

0

dzz2 log
)
1 + e−

√
z2+x

*
, (3.96)

where i runs the particle species and the suffixes B and F represent Boson and Fermion

contributions, respectively.
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Figure 3.1: JB(x) (the right panel) and JF (x) (the right panel) functions with (the red dotted

curve) and without (the blue curve) using high-temperature approximations are shown.

At x < 1 corresponding to the high-temperature regime mBi,Fi
(φ)/T < 1, JB,F (x)-

functions can be approximated by

JB(x) ≃ −π4

45
+

π2

12
x− π

6
x

3
2 − x2

32
log

+
x

ab

,
, (3.97)

JF (x) ≃
7π4

360
− π2

24
x− x2

32
log

+
x

af

,
, (3.98)

where

ab = 16π2 exp

:
3

2
− 2γE

;
, af = π2 exp

:
3

2
− 2γE

;
. (3.99)

In this expression, γE ≃ 0.5772 is the Euler constant.

Fig. 3.1 shows the JB,F (x)-functions with and without using high-temperature approx-

imations. It is obvious from this figure that the high-temperature approximation can be

justified for x ≲ 4 for JB(x) and x ≲ 1.5 for JF (x). For larger x, both functions are ex-

ponentially suppressed by the Boltzmann factor ∼ e−
√
x, and hence, the high-temperature

approximation cannot be justified.

Here, we qualitatively discuss general features of JB,F -functions. Concretely, let us con-

sider a following Lagrangian density:

Lexample =
1

2
∂µφ∂

µφ+
1

2
∂µχ∂

µχ− M2

2
χ2 − κ

2
φ2χ2, (3.100)

where φ and χ are scalar fields and M2, κ are the mass of χ fields and the coupling constant

of these particles, respectively. A field dependent mass for φ field is then given by m2(φ) =
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κφ2 + M2. First of all, if κ ≪ 1, this particle very weakly couple to φ, and thus, thermal

corrections as well as the quantum corrections give negligible effect. For M > T , this

contribution is suppressed by the exponential suppression and is negligible amount even if κ

is large. Furthermore, the thermal correction is also suppressed at a large field value κφ2 > T 2

for M2 = 0. These facts imply that thermal corrections are important only when φ strongly

couples to the fields whose masses are not larger than the temperature. This statement

plays an important role when we qualitatively discuss a strength of a phase transition. For

example, if we consider the electroweak scale or TeV scale cosmic temperature, contributions

from particles having masses order of Planck scale or the grand unification scale can be safely

neglected.

Let us next discuss a difference between thermal contributions from bosons and fermions.

It is apparent that the third term of Eq. (3.97) is absent in Eq. (3.98). To consider the

origin of this difference, let us back to the original expressions of V B
thermal and V F

thermal given

by Eq. (3.85) and Eq. (3.80), respectively. We can easily see that bosonic particles contain

Matsubara zero-mode, nb = 0, while fermionic particles do not, due to the different boundary

conditions. The bosonic zero-mode contribution is given by

V B
zero−mode =

0

i

nBi

T

2

>
d3p

(2π)3
log

'
p2 +m2

i (φ)
(
. (3.101)

By taking the derivative with respect to φ, we obtain

dV B
zero−mode

dφ
=

0

i

nBi
Tmi(φ)

dmi(φ)

dφ

>
d3p

(2π)3
1

p2 +m2
i (φ)

=
0

i

nBi
Tmi(φ)

dmi(φ)

dφ

1

2π2

+
ΛUV −mi(φ) arctan

+
ΛUV

mi(φ)

,,
. (3.102)

formi(φ) > 0. In this calculation, we have regularized the divergent integral by setting a hard

cut-off ΛUV. At ΛUV → ∞, the first term is UV-divergent, which is subtracted by the zero-

temperature counterterm, while second term is UV-finite. By dropping the UV-divergent

part and integrating with respect to φ, we obtain

V B
zero−mode = −

0

i

nBi

T

12π
m3

i (φ). (3.103)

This is exactly same to the third term of Eq. (3.97). We therefore find that the third term

Eq. (3.97) comes from the bosonic Matsubara zero-mode, which is absent in the fermion

contribution. Note that this statement is independent from the form of mi(φ).
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Figure 3.2: The Feynman diagram of one-loop thermal self-energy is schematically shown.

External lines correspond to the ith particle which couples to background field φ. In the

blob circle, particles which couple to ith particles must be included.

3.3.4 Higher-order effects and IR-divergence

In this subsection, we consider higher-order effects which are not taken into account in

the previous computation and discuss the validity of the perturbative expansion at finite-

temperature field theory.

In the zero-temperature field theory, higher-loop contributions to the effective potential

are smaller than that of one-loop as long as the coupling constants are sufficiently small.

On the other hand, in the finite-temperature field theory, higher-order corrections are subtle

issues because there is an additional dimensionful parameter, which is the ambient tempera-

ture, T . It is non-trivial whether higher-order corrections are suppressed, or not, even when

coupling constants are small because thermal effects can be large by taking very large T .

To see this, let us compare one-loop thermal self-energy of particle species i which gives

field dependent mass mi(φ) for scalar field φ. The Feynman diagram of one-loop thermal

self-energy is indicated in Fig. 3.2. At high-temperature |k|2 < T 2, the one-loop thermal

self-energy is generally given by Πi(T,k) ∼ aiT
2, where k and ai are an external spatial (3D)

momentum and a numerical value depending on coupling constants.5 Then, if the ratio

ε(i) ≡
+

aiT
2

m2
i (φ)

,
, (3.104)

is larger than unity, we should include higher-order corrections otherwise the effective po-

tential, which is evaluated with the one-loop approximation is not reliable.

Let us more quantitatively discuss above discussion here. Since we know that higher-

order corrections shown in Fig. 3.2 gives the dominant contribution to the mass term, the

5At low-temperature |k|2 > T 2, the thermal contribution is suppressed by the Boltzmann factor which

becomes unimportant.
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Figure 3.3: The ring diagram, which gives dominant contribution to the effective poten-

tial at high-temperature, is schematically shown. Here, external legs corresponding to the

background field φ are omitted.

Feynman diagram shown in Fig. 3.3, which is obtained by the insertion of thermal mass

correction, is important. For bosonic contribution, this diagram can be evaluated as [120]

δV B
thermal(φ) =

0

i

nBi

T

2

+∞0

nb=−∞

>
d3p

(2π)3

∞0

N=1

1

N

+
−Πi(T,k = 0)

ω2
nb

+ ω2
i (φ)

,N

, (3.105)

If the factor Πi(T,k = 0)/(ω2
nb

+ω2
i (φ)) is smaller than the unity, infinite series with respect

to N is convergent and gives small corrections. The denominator of this factor is explicitly

given by (2πnb)
2 + p2 +m2

i (φ). The numerical factor ai is usually smaller than π in weakly

coupled theory such as electroweak theory. This implies that ring diagram contribution is

dominant only when nb = 0 and |p|2 + m2
i (φ) < aiT

2, corresponding to the IR regime.

The naive expansion parameter ε(i) defined in Eq. (3.104) is obtained by setting nb = 0 and

p = 0. For fermionic contributions, there is no Matsubara zero-mode and hence ring diagram

contribution is not divergent.

We have seen that ε(i) > 1 can occur only for Matsubara zero-mode of bosonic particles.

One can possible to relax this perturbative condition ε(i) > 1 by resumming the ring diagrams.

By computing the summation with respect to N in Eq. (3.105) for nb = 0, we obtain

Vring = −
0

i

nBiT

12π

)'
m2

i (φ, T )
( 3

2 −
'
m2

i (φ)
( 3

2

*
, (3.106)

where

m2
i (φ, T ) ≡ m2

i (φ) + aiT
2. (3.107)

This is equivalent to calculate the thermal effective potential by using the dressed propa-

gator, whose mass is given by mi(φ, T ) rather than mi(φ), for nb = 0. This resummation

prescription was proposed by the authors of Ref. [121] (Arnold-Espinosa method).
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An alternative resummation prescription was proposed in Ref. [122] (Parwani method).

In this prescription, the thermal effective potential as well as the zero-temperature effective

potential for bosonic particles are calculated by using m(φ, T ). The difference of these

resummation prescriptions was investigated in Ref. [123].

When non-Abelian gauge fields are involved, we need to take into account another subtle

issue called ”Linde” problem [124]. The longitudinal modes of the gauge bosons receive the

so-called Debye mass mD ∼ gT , where g is the gauge coupling, which can be computed

by perturbative calculation. Therefore, corrections from a ring diagram involving the lon-

gitudinal modes of gauge bosons can be relaxed by the resummation technique outlined

above. However, it was shown in Ref. [124] that the transverse modes of the gauge bosons

receive the so-called magnetic mass mmag ∼ g2T , which cannot be computed by perturbative

calculation.

Then, with a similar discussion given above, the higher loop of non-Abelian gauge bosons

will give the contributions with the powers of g2T/m(φ) [124, 125] and the perturbation

breaks down at high temperature [126],

g2
T

m(φ)
> 1. (3.108)

In this case, even the resummed effective potential is not reliable and the dynamics of phase

transition should be analyzed by a non-perturbative way such as the lattice simulation Since

we expect the parameter a given above is at most unity, we conclude that the resummed

effective potential is valid for

g2T/m(φ) ≃ gT/φ < 1, (3.109)

when m(φ) ≃ gφ. Therefore, the potential shape is not reliable at around φ ≲ gT . Unfortu-

nately, there is no perturbative approach to calculate the effective potential at that regime.

As we will see in sec. 3.4.3, this fact makes us difficult to analyze the order of the phase

transition such as the ordinary electeoweak phase transition in the SM. In particular, in this

thesis, we will consider the case where φ couples to the non-Abelian SU(2) gauge fields.
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3.4 Cosmological Phase Transitions and Gravitational

wave Production

In this section, we discuss order of a phase transition in a simple model. We will see that if

the background field φ couples to the bosonic particles, a potential barrier between a local

and global minima are generated by thermal corrections. A calculation method of a decay

rate of metastable state and formulae of GW signals generated by first order phase transition

are also presented.

3.4.1 Order of phase transitions

In this subsection, we analyze a phase transition dynamics of a simple model including the

electroweak theory.

As a simple example, we start from the background field φ, whose tree-level potential is

given by

Vtree =
λ

4
(φ2 − v2)2. (3.110)

This potential describes a spontaneous (local or global) symmetry breaking with φ being

the order parameter. If we regard above potential as the one of the SM Higgs field HSM =

(0,φ/
√
2)t with φ ≡ hSM, the vacuum expectation value and the quartic coupling are fixed

and are given by v ≡ vSM ≃ 246GeV and λ ≡ λSM ≃ 0.13, respectively.

Also, in the following discussion, we assume that field dependent masses are given by

mi(φ) ≃ ciφ and do not specify concrete form of the Lagrangian density. At the one-loop

order without resummation, by using the high-temperature expansion Eqs. (3.97) and (3.98),

we obtain an approximate expression of the total effective potential as follows.

Vtot(φ, T ) ≃
1

2
M2(T )φ2 − ETφ3 +

λ

4
φ4,

M2(T ) = D(T 2 − T 2
0 ). (3.111)

where numerical constants D, T0, and E depend on ci and number of degrees of freedoms,

which couple to φ. For example, in the electroweak theory where φ becomes the SM Higgs

boson, the field dependent masses will be explicitly given by Eq. (3.125). Here, we have

neglected the zero-temperature correction for simplicity. This simplification does not change
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Figure 3.4: The thermal effective potential given by Eq. (3.111) is indicated for different

temperatures with D = 1, T0 = 1.2, E = 0.15 and λ = 0.1. Definitions of T1 and T2 can be

found in the main text.

following discussion significantly as long as λ is not largely affected against radiative cor-

rections. To capture general features of the shape of the total effective potential, we plot

Vtot(φ, T ) for different temperatures in Fig. 3.4. The value of constants D, T0, E and λ

depend on the underlying physics, but we here treat as fixed parameters to study the shape

of the potential Eq. (3.111) in the figure.

At very high-temperature T > T1 = T0/(1−9E2/8λD)1/2 (the red curve), there is only the

unique minimum at φ = 0 corresponding to the symmetric phase. Therefore, the Universe

is in symmetric phase at this temperature. As the temperature decreases due to the cosmic

expansion, an extra minimum appears at T = T1 (the blue dashed curve), which is separated

by the potential barrier. At TC = T0/(1 − E2/λD)1/2 < T1 (the purple dotted curve), the

two minima are degenerated, where the position of the extra minimum can be expressed as

〈φ(TC)〉
TC

=
2E

λ
. (3.112)

For slightly low-temperature T0 < T ≲ TC , there exists the potential barrier between these

vacua since the curvature of the potential at the origin is positive M2(T ) > 0, but the extra

minimum is energetically favored. The potential barrier eventually disappears at T = T0,

and hence, there is only unique minimaum different from the origin. Note that constant

E comes from third term of JB-function defined in Eq. (3.97), which is the origin of the
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potential barrier.

We shall now discuss the order of the phase transition based on the potnetial Eq. (3.111).

In the presence of the potential barrier E ∕= 0, the expectation value, 〈φ(T )〉, is discontinu-
ously changed at the nucleation temperature Tn when the tunneling takes place, and hence,

a first-order phase transition takes place. The precise definition and the evaluation of the

nucleation temperature Tn will be given in the next subsection. (See Eq. (3.121).) On the

other hand, in the absence of the potential barrier E = 0 in Eq. (3.111), 〈φ(T )〉 can be

expressed as

〈φ(T )〉 =

2
34

35

0 (T > T0)D
−2M2(T )

λ
(T < T0)

. (3.113)

Since the first derivative of the order parameter is discontinuously changed at temperature

at T = T0, this phase transition is of second order.

We have discussed the order of the phase transition based on Eq. (3.111), which is evalu-

ated at one-loop order with high-temperature expansions. Even if we take account effect of

a resummation, above qualitative discussion does not change. However, as we discussed in

the sec. 3.3.4, the thermal effective potential is suffered from corrections from non-Abelian

gauge field at φ ≲ gT . Since perturbative computation cannot be reliable, above discussion

cannot be trusted at that regime. We will consider this issue and how to determine the order

of phase transition with perturbative computation in the next subsection.

3.4.2 Cosmological first-order phase transitions

In this subsection, we give a basic method to calculate the reaction rate of the false vacuum

decay and clarify the nucleation temperature at which bubbles are nucleated.

A first order phase transition occurs as a result of true vacuum bubble nucleations. This

is understood as quantum or thermal tunneling from a false vacuum to a true vacuum that

is separated by a potential barrier. The tunneling rate or the bubble nucleation rate Γ(T )

per unit volume and unit time can be expressed as

Γ(T ) = A(T )e−B, (3.114)

where B is the bounce action and pre-factor A(T ) is obtained by evaluating the fluctuation

around the bounce solution [127], respectively. The bounce action including the finite-
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temperature effect, is given by [128, 129]

B =
S3

T
, (3.115)

where S3(T ) is the bounce action in D = 3 dimension:

S3

T
=

> ∞

0

dr4πr2

@
1

2

+
dφ(r)

dr

,2

+ Vtot(φ(r), T )

A
. (3.116)

In this expression, Vtot(φ, T ) and r are the total effective potential and the radial coordinate

in the three dimensional polar coordinate system, respectively. The total effective potential

depends on concrete form of the Lagrangian density, but we here do not assume its specific

form. By dimensional analysis, A(T ) is roughly given by A(T ) ≈ T 4. We keep this rough

estimate in this thesis because it will turn out that important physical quantities such as

nucleation temperature is less sensitive to A(T ).

S3 can be obtained by constructing O(3) symmetric bounce solution governed by the

following differential equation:

d2φ

dr2
+

2

r

dφ

dr
− ∂Vtot(φ, T )

∂φ
= 0, (3.117)

with boundary conditions

φ(r → ∞) = φFalse,
dφ

dr

////
r=0

= 0. (3.118)

Here, φfalse is the field value of the false vacuum.

The time or the temperature of the phase transition is characterized by the nucleation

time tn or the temperature Tn, defined as a temperature when the nucleation probability

inside one Hubble volume H−3(T ), where H(T ) is the Hubble parameter, becomes unity,
> tn

0

Γ(T )

H3(T )
dt =

> ∞

Tn

dT

T

Γ(T )

H4(T )
= 1. (3.119)

Since the dominant contribution in the integral (3.121) comes from that around t ∼ tn or

T ∼ Tn, it can be approximated as

Γ(Tn)

H4(Tn)
= 1, (3.120)

which can be used to determine Tn. When we consider the electroweak phase transition since

the electroweak symmetry breaking takes place at Tn ∼ O(100) GeV, the bounce action at

the time of bubble nucleation is roughly given by

S3

Tn

= 4 log

+
Tn

H

,
∼ 140. (3.121)
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Figure 3.5: The algorithm of the under/over-shooting method is schematically depicted.

φover, φexact and φover are positions of the initial field values corresponding to under-shooting,

exact and over-shooting solutions, respectively. See main text for detailed discussions.

In this calculation, we have used the Hubble parameter during the radiation domination era

given by Eq. (3.40) with g∗ = O(102). In order to determine the nucleation temperature as

well as the bubble profile accurately, we need to solve the equation of motion (3.117) with

the boundary condition (3.118) numerically.

Let us explain how to solve the bounce equation Eq. (3.117) here. First of all, the

differential equation Eq. (3.117) can be regarded as the equation of motion of the scalar field

φ(r) with r being the time and with the inverted potential −Vtot(φ, T ). Then, the boundary

condition Eq. (3.118) implies that the velocity, dφ/dr, is zero at the initial position φ(r = 0),

and φ must stop for r = ∞ at φfalse. Therefore, if we can find the initial position φexact, which

leads to φ(r → ∞) = φfalse, we obtain the bounce solution. However, since the potential is

inverted, φfalse becomes a saddle point, which implies that the bounce solution is unstable

under a small fluctuation around it. How do we find φexact?

Fortunately, φexact can be numerically obtained by the following algorithm so-called

over/under-shooting method. The basic idea is schematically depicted in Fig. 3.5. From

Eq. (3.117), we can find that there is a friction term, which is proportional to 2/r. Hence

if we take the initial value at φunder < φexact (corresponding to the green colored circle in

Fig. 3.5), φ rolls towards the φfalse, but it cannot reach φfalse due to the friction term. This

solution is called under-shooting solution. On the other hand, if we choose the initial value

as φover > φexact (corresponding to the blue colored circle), φ(r) overcomes φfalse and it even-
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Figure 3.6: The left panel: The shape of the potential barrier Vexample(φ) is shown. The

right panel: Solutions of the differential equation Eq. (3.117) with boundary conditions

φunder = 1.5, (the green dotted curve) φexact = 1.634522715 (the red solid curve) and φover =

1.64 (the blue dashed curve) are shown.

tually oscillates around −φfalse. This solution is called over-shooting solution. As a initial

condition, we choose φi=0
under in such a way that V (φfalse) = V (φi=0

under), φfalse < φi=0
under < φtrue is

satisfied. By increasing the value of φi=0
under with finite difference δφi=0 and solving the differ-

ential equation Eq. (3.117), we will find the threshold field value leading to the over-shooting,

φi=0
over ≈ φexact. Here, index i labels the trial number. The precision of the bounce solution

can be improved by doing same procedure with initial condition φi=1
under = φi=0

over − δφi=0 and

with finite small difference δφi=1 < δφi=0. Constructing a loop calculation with respect to

the trial number i, we can control the precision of the bounce solution.

As an simple example, we consider the scalar potential given by

Vexample(φ) = φ2 − 3

2
φ3 +

1

2
φ4, φ > 0. (3.122)

As can be seen from the left panel of Fig. 3.6, this potential has a local and global minima

at φfalse = 0 and φtrue ≈ 1.604, respectively. The behavior of under-shooting, exact and over-

shooting solutions are shown in the right panel of Fig. 3.6. For φunder = 1.5 and φover = 1.64,

φ oscillates around true minima φtrue and −φtrue at r → 15, respectively. (Here, we take

r = 15 as a cut-off of r → ∞.) For φexact ≈ 1.634522715, φ(r → 15) ≃ 0 is realized

corresponding to the bounce solution.

We shall now consider the validity of perturbative computation of the thermal effective

potential. As we discussed in sec. 3.3.4, at the small field values, including the origin, the
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resummed effective potential or its approximated one (3.111) is not reliable at φ ≲ gT due to

the non-perturbative corrections from non-Abelian gauge fields. However, since the bounce

action is mainly determined by the information of the potential around the broken phase

(φ ∕= 0) rather than the symmetric phase (φ = 0), the non-perturbative corrections can

be neglected if 〈φ(Tn)〉 ≳ gTn is satisfied. Here, 〈φ(Tn)〉 denotes the position of the global

minimum at Tn. Thus, if

〈φ(Tn)〉
Tn

≳ g, (3.123)

is satisfied, we can safely state that the phase transition is of first order. This condition

should be regarded as the order estimation because it depends on the potential height in

reality.

Moreover, we define the phase transition as strong first order if

〈φ(Tn)〉
Tn

> 1, (3.124)

is satisfied. The difference between first order phase transition (gTn/〈φ(Tn)〉 < 1) and strong

first order phase transition (Tn/〈φ(Tn)〉 < 1) is important when we consider electroweak

baryogenesis because the sphaleron decoupling condition is given by Eq. (3.124). On the

other hand, this difference is not important when we discuss the gravitational wave back-

ground generated by first order phase transition. Since a first order phase transition proceeds

through bubble nucleation, the production of gravitational wave background requires a first

order phase transition, not a strong first order phase transition as we will see in sec. 3.4.5

3.4.3 The electroweak phase transition in the SM

In this subsection, we explicitly compute the thermal effective potential within the SM

framework and discuss the validity of the perturbative expansion during the phase transition.

Since the SM Higgs couples to the SU(2)W × U(1)Y gauge bosons and top quark, these

loop corrections must be taken into account. Other quarks, leptons and Higgs self-coupling

of course contribute to the effective potential, but it is negligible amount, and hence, we can

safely neglect it. Field dependent masses and degrees of freedoms of these particles are listed
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below:

W gauge bosons : nW = 6, m2
W =

g22h
2
SM

4
,

Z gauge bosons : nZ = 3, m2
Z = (g21 + g22)

h2
SM

4
, (3.125)

Top quarks : nt = 12, m2
t =

y2t h
2
SM

2
,

Here, nW , nZ and nt are the internal degrees of freedoms of W, Z boson and the top quark,

respectively, while mW , mZ and mt are the field dependent masses for these particles. We

have parameterized the SM Higgs field as

HSM =

!

" 0

hSM/
√
2

#

$ . (3.126)

At one-loop order with the high-temperature approximation, the shape of the Higgs field

can be approximated by Eq. (3.111), where constants D, T0 and E are explicitly given by

D = DSM ≡
+
y2t
4

+
3g22 + g21

32

,
T 2, (3.127)

T 2
0 = T 2

0SM ≡ λSMv
2
SM/DSM, (3.128)

ESM =
2g32 + (g22 + g21)

3
2

16π
. (3.129)

It is obvious that this potential shape indicates the (weakly) first-order electroweak phase

transition in the perturbative analysis since the potential barrier ESM ∕= 0 is generated

by the SU(2)W × U(1)Y gauge bosons. (See Fig. 3.4.) To clarify the order of the phase

transition, let us here consider the perturbative condition 〈hSM(Tn)〉 ≳ g2Tn. We can obtain

an approximate expression of 〈hSM(Tn)〉/Tn by identifying it with 〈hSM(TC)〉/TC, where TC

is the critical temperature at which the two vacua are degenerated with each other. Under

this approximation, as discussed in sec. 3.4.1, we obtain very simple expression:

〈hSM(TC)〉
TC

=
2ESM

λSM

≃ 0.15 ≪ g2. (3.130)

In this calculation, we have used g2 = 0.65, g1 = 0.36 and λSM = 0.131. This result implies

that we cannot reliably estimate the potential shape at around the true vacuum, and thus,

we cannot determine the order of the phase transition by the perturbative calculation.

From (3.130), we can see that a first-order phase transition takes place if the self-coupling

λSM is small enough and the cubic pre-factor ESM is large enough (although these values are

73



fixed in the SM). This is because the parameter ESM determines the height of the barrier

between the origin and the other minimum. Indeed, lattice studies [1, 2, 3] confirmed that

it is actually a crossover transition rather than the first-order phase transition with the

observed Higgs mass mHiggs =
√
2λSMvSM ≃ 125GeV, but it becomes first order in the light

Higgs mass regime mHiggs ≲ 80GeV (corresponding to small λSM).

3.4.4 First-order phase transitions in physics beyond the Standard

Model

When we consider extensions of the SM motivated by several problems such as the elec-

troweak hierarchy problem, dark matter and so on, the electroweak phase transition can be

of first order because additional particles, which couple to the SM-like Higgs, can change

the shape of the effective potential. Then the natural question arises: What kind of models

realize first-order phase transitions? To answer this question, let us consider the method to

make 〈hSM(TC)〉/TC large (because if this quantity is large enough, the electroweak phase

transition becomes first order).

Since E defined in Eq. (3.111) comes from the bosonic loop contribution discussed in

sec. 3.3.3, new bosons strongly coupled to hSM are needed for a strong first order phase

transition. Such new bosons mass must be small compared to the temperature, otherwise its

thermal contribution is Boltzmann suppressed and is negligible amount discussed in sec. 3.4.1.

Indeed, in Chapter 5, we will find that the electroweak phase transition is of (strong first-

order) in the scotogenic model thanks to the additional couplings between the SM-like Higgs

and an additional scalar doublet.

We have focused on the ordinary electroweak phase transition in the beyond standard

model. In such theories, there often exists additional (global or local) spontaneous symmetry

breaking, and hence, there are addition phase transitions associated with these. (For exam-

ple, in twin Higgs models, which will be discussed in Chapter 4, has spontaneous symmetry

breaking of U(4) → U(3).) Assuming the tree-level potential is given by Eq. (4.11), we can

have a similar discussion above. Then, we can increase 〈φ(Tn)〉 by making small λ, which is

the quartic coupling of φ with φ being the new Higgs field different from the ordinary SM

Higgs field.

We finally comment on the effect of the ring diagram on the strength of the phase transi-
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tion. In the expression of the ring diagram contribution (3.106), the thermal field dependent

mass mi(φ, T ) is given by Eq. (3.107). After the resummation, if the thermal mass is much

larger than the zero-temperature part, that is, m2
i (φ) ≪ Π at T = TC , (m

2
i )

3
2 behaves like

a constant term ≃ Π
3
2 (TC) which does not give the potential barrier. This effect makes

〈φ(TC)〉 small hence the resummation generally makes the phase transition weaker. For the

same reason, if we consider the case where the field dependent masses of bosonic particles

are given by m2
i (φ) ≃ ciφ

2+M2, where ci and M2 are a φ-independent constants. The phase

transition strength becomes weaker. These facts imply that new bosonic particles coupled

to the SM Higgs should not have φ-independent mass squared term to enhance the strength

of the phase transition.

3.4.5 Gravitational wave signals generated by first-order phase

transitions

The first-order cosmological phase transition proceeds via bubble nucleations. Nucleated

bubbles expand due to the free energy (pressure) difference between the symmetric and

broken phases. They eventually coalesce with each other until they fill the Universe.

Now let us give the expressions of the spectrum of the gravitational background from the

first order phase transition. Since the broken phase is energetically favored, the nucleated

bubbles expand, and collide each other, and finally the whole Universe settles down to the

true vacuum. Since the bubble collisions as well as the plasma bulk motion induced by

the bubble dynamics are highly inhomogeneous and violent process, gravitational waves are

emitted through such processes.

The spectrum of the gravitational wave is determined by the (initial) kinetic energies of

the bubbles and the duration of the phase transition. The former is parameterized by bag

parameter ε in the so-called bag model [130], defined by

ε = ∆Vtot −
T

4

∂∆Vtot

∂V
. (3.131)

In the above expression, ∆Vtot is the total effective potential difference between the false

vacuum and the true vacuum. We parameterize the kinetic energy of bubbles by a dimen-

sionless parameter α representing the ratio between the latent heat density and the radiation
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energy density,

α =
ε

ρrad

////
T=Tn

, (3.132)

where ρrad = g∗π
2T 4

n/30 is defined by Eq. (3.31). The duration of the phase transition is

characterized by the parameter β, defined by

Γ(t) ≃ Γ0e
βt, (3.133)

with Γ0 being a constant. Here, Γ is defined by Eq. (3.114). β is expressed in terms of the

bounce action as

β

H(Tn)
= T

d

dT

+
S3

T

,////
T=Tn

. (3.134)

It has been argued that not only the bubble collision or the scalar field dynamics, but also

the plasma dynamics caused by the bubble dynamics source the GW signals [4, 5, 6, 7, 8].

It is indeed found to be the dominant contribution to the GW signals since due to the

interaction between the scalar field bubble wall and the plasma, the energy originally carried

by bubble walls is quickly taken away to the plasma bulk motion. According to the popular

convention, we further classify it into the sound waves in the plasma described in the linear

regime, which are generated by the bubble motion and generate gravitational waves around

the bubble collision, and the turbulence of plasma bulk motion further developed in the non-

linear regime after the bubble collision. Then the total contribution can be schematically

written as

ΩGWh2 = Ωbubbleh
2 + Ωswh

2 + Ωturh
2 ≃ Ωswh

2 + Ωturh
2, (3.135)

where Ωbubble, Ωsw and Ωtur denote the contributions from the bubble collisions, sound

waves and turbulence of the plasma, respectively. More precisely, ΩA ≡ ρA,0/ρc (A =

bubble, sw, tur) and ρA,0 is the present energy density of A-component. The critical density

ρc is defined by Eq. (3.12). The value of h was defined by Eq. (3.6).

The contribution coming from sound wave of the plasma is estimated in Refs. [15, 131,

11, 132] as

Ωsoundh
2 = 2.65× 10−6 × Hτsound

+
H(Tn)

β

,+
κsoundα

1 + α

,2 +
100

g∗

, 1
3

vw

+
f

fsound

,3

E

FG
7

4 + 3
)

f
fsound

*2

H

IJ

7
2

,

(3.136)
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where κsound and vw are the efficiency factor and the bubble wall velocity, respectively. The

factor H(Tn)τsound represents a suppression factor coming from the short-lasting sound wave

as originally pointed out in Ref. [133] (Also, See e.g. Refs. [134, 135].) and is given by

H(Tn)τsound = min

K
1, (8π)

1
3

+
max{cs, vw}
β/H(Tn)

,+
4

3

1 + α

κsoundα

, 1
2

L
. (3.137)

Here cs is the speed of sound wave in the plasma and fsound is the peak frequency of the GW

signals given by

fsound = 1.9× 10−2mHz× 1

vw

+
β

H(Tn)

,+
Tn

100GeV

,) g∗
100

* 1
6
. (3.138)

We here simply estimate the bubble wall velocity by adopting following formula [136]6:

vw =
1/
√
3 +

<
α2 + 2α/3

1 + α
. (3.139)

With above bubble wall velocity called Jouguet detonations, the efficiency factor, κsound, is

fitted by following formula as found in Ref. [130]:

κsound =

√
α

0.135 +
√
0.98 + α

. (3.140)

The contribution from turbulence plasma is estimated in Refs. [15, 131] as

Ωturh
2 = 3.35× 10−4

+
H(Tn)

β

,+
κturα

1 + α

, 3
2
+
100

g∗

, 1
3

vw

)
f

ftur

*3

)
1 +

)
f

ftur

** 11
3
)
1 + 8πf

H∗

* , (3.141)

where κtur is the efficiency factor of the turbulence. κtur, H0 and the peak frequency, ftur,

are given by

κtur ≃ 0.1κsound, (3.142)

H∗ ≃ 1.65× 10−4mHz×
+

Tn

100GeV

,) g∗
100

* 1
6
, (3.143)

ftur = 2.7× 10−2mHz

+
1

vw

,+
Tn

100GeV

,+
β

H(Tn)

,) g∗
100

* 1
6
. (3.144)

Note that by adopting the formula with the envelope approximation in Ref. [141] the

contributions from bubble collisions turned out to be subdominant in our setup.7 Thus we

safely omitted the contributions from the bubble collisions in our analysis.
6See Refs. [137, 138, 139, 140], however, for the discussion of the bubble wall velocity vw.
7 Recently it is claimed that there might be another contribution from “fluid bubble” in Refs. [142, 143,

144], but it gives a subdominant contribution compared to the sound waves [9, 10, 11].
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Chapter 4

Phase Transitions in Twin Higgs

Models

In this chapter, we investigate how the electroweak symmetry breaking and the global sym-

metry breaking G → H (typically, U(4) → U(3)) proceed in thermal history of the Universe

realized in twin Higgs models. In particular, we address the question whether these phase

transitions can be first order in that framework, or not. If phase transitions are of first

order, we calculate the GW signals and discuss its detectability. This chapter is based on

my original work [63].

4.1 Motivation and Outline

In this section, we explain basic setup and outline to clarify the phase transition dynamics as

well as a calculation method of the GW signals generated by cosmological first-order phase

transition.

Motivation

It was discussed in Sec. 2.3.1 that all new particles in addition to the SM particles introduced

in twin Higgs models are singlet under the SM gauge group. Hence it is difficult to produce

these particles by LHC experiments and this is the essential reason why these models can

provide the solution to the little hierarchy problem. However, this fact implies that these

models are very difficult to be tested or constrained by collider experiments Thus, it is
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interesting if we have other method to test or constrain parameter space of these models.

We have seen in Sec. 3.4.5 that first-order cosmological phase transition produce GW signals,

which will be tested by the future planned experiments. The main purpose of this chapter is

to clarify the dynamics of cosmological phase transitions occurred in these models. Moreover,

if a cosmological phase transition is of first order, we explicitly calculate GW signals and

extract the important information of these models.

Outline

Before going to have a detailed analysis and discussions, we here explain how to analyze the

order of phase transitions and how to calculate the GW signals generated by first-order phase

transition in the twin Higgs models. First of all, the Lagrangian densities of the Mirror and

the Fraternal twin Higgs models are summarized in Sec. 2.3.2. Based on this Lagrangian

densities, one can compute the thermal effective potential of both HA and HB fields by using

the calculation method outlined in Sec. 3.3. Secondly, by studying the shape of the thermal

effective potential for different cosmic temperatures T , we can determine the order of phase

transitions occurred in these models. Concretely, if the computed thermal effective potential

has potential barrier between the symmetric phase and the broken phase, we can calculate

the tunneling rate Γ(T ), which was defined by Eq. (3.114) by solving the bounce equation

as explained in Sec. 3.4.2. Hence we can evaluate the nucleation temperature Tn given by

Eq. (3.121) at which a phase transition takes place. Thirdly, we confirm the validity of

the perturbative calculation of the thermal effective potential given by Eq. (3.123) at Tn.

If this condition is satisfied, the phase transition is of first order, and hence, we expect the

production of the GW signals. Finally, GW signals are derived by using formulae summarized

in Sec. 3.4.5 and then discuss its detectability. It should be emphasized that we can clarify the

dynamics of the phase transition and GW signals produced by a first order phase transition

from the Lagrangian densities summarized in Sec. 2.3.2.

4.2 The Thermal History in Twin Higgs models

The twin Higgs models generally accommodate breakings of the two symmetries as we have

seen in the previous subsection. One of them is the standard electroweak symmetry breaking

and another is the breaking of the U(4) symmetry to the U(3) one, through which the SM
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Higgs field is identified with one of the pNGBs. Let us call the phase transition corresponding

to the latter breaking the U(4)-breaking phase transition. In this chapter, we analyze not only

the electroweak phase transition but also this U(4)-breaking phase transition in cosmology

for completeness. In this section, we study the order of the electroweak phase transition in

twin Higgs models, with and without supersymmetric UV completion.

Here, we would like to discuss the thermal history in the early Universe. Since we take

account of not only the HA field but also the HB field, we consider the following background

fields,

HA =

!

"
0
φA√
2

#

$ , HB =

!

"
0
φB√
2

#

$ . (4.1)

Note that HA is identified with the SM Higgs HA ≡ HSM. At high-temperature, both of

φA and φB fields are trapped at the origin of the potential due to the thermal mass terms

(See red colored curve of Fig. 3.4). When the temperature cools down, another minimum

different from the origin appears. Below the critical temperature, φA and φB fields eventually

roll down or tunnel to the true vacuum, and the U(4) symmetry and its subgroup, the SM

electroweak symmetry, finally break down. However, we do not know how these two phase

transitions proceed. Let us denote the temperatures when φA and φB fields acquire their

VEVs by TA and TB, respectively. In general, there are three possible trajectories of these

two phase transitions, which are schematically described in Fig. 4.1. The red line (1) shows

the trajectory of a two-step phase transition with TB ≫ TA, in which φB field acquires its

VEV first and φA field does later. The blue solid line (2) shows the trajectory of a one-step

phase transition with TA ∼ TB, in which the Higgs field rolls (or tunnels) to the true vacuum

directly. The green dotted line (3) shows the trajectory of another two-step phase transition

with TA ≪ TB, in which φA field acquires its VEV first and φB field does later. In our

analysis, we consider the case with TB ≫ TA and we call the phase transition at which φB

field acquires its VEV, the U(4)-breaking phase transition. Let us consider the condition

under which this case happens. The thermal mass terms for φA and φB fields are given by

m2
A(HA, T )) = (ζAT

2 − (λ− σ1)f
2)|HA|2, (4.2)

m2
B(HB, T ) = (ζBT

2 − λf 2)|HB|2, (4.3)

where ζA and ζB represent the numerical coefficients depending on the coupling constants.

The critical temperatures TA and TB are evaluated by the condition mA(TA) = mB(TB) = 0,
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which yields

TA

TB

=

M
ζB
ζA

?
1− σ1

λ
. (4.4)

Taking into account the twin Z2 symmetry ζA ≃ ζB, we obtain TA/TB ≃
<

1− σ1/λ.

Therefore, σ1 > 0 is a necessary condition to realize TA ≪ TB. The region with σ1 > 0 is

also shown in Fig. 2.3 for this purpose.

HA

HB

vB

vA

��
	�

(3)�

Figure 4.1: This figure shows three possible trajectories of the phase transitions. In this

figure, vA and vB are the vacuum expectation values of the HA and HB fields at the zero

temperature. The black point represents the true vacuum at the zero temperature. We

consider only the path (1).

4.3 The electroweak phase transition

In this section, we shall study the strength of the electroweak phase transition. The thermal

resummed effective potential for both of HA and HB Higgs fields are calculated at the one-

loop order in the same way as Ref. [145], where Arnold-Espinosa prescription was used for the

calculation of ring diagram. We take account of the top, twin top quarks, SU(2)W × U(1)Y

gauge bosons, and SU(2)"W gauge bosons, respectively, because they give dominant contri-

butions to the effective potential. The general expression of the thermal effective potential

is summarized in sec. 3.3.3.

Let us calculate the thermal one-loop resummed effective potential for HA and HB in the

non-supersymmetric case starting from the effective potential (2.51). The number of degrees
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of freedom (d.o.f) and the field dependent masses of SU(2)W × U(1)Y gauge bosons, SU(2)"W

gauge bosons, top quark and twin top quark are given by respectively

nW = 6, m2
W =

g22φ
2
A

4
, (4.5)

nZ = 3, m2
Z = (g21 + g22)

φ2
A

4
, (4.6)

n"W = 9, m2
"W =

1g22φ2
B

4
, (4.7)

nt = 12, m2
t =

y2t φ
2
A

2
, (4.8)

n!t = 12, m2
!t =

1y2t φ2
B

2
. (4.9)

Note that here we considered the Fraternal model where the mirror U(1) gauge fields are

absent, but that we expect that the basic results are unchanged even if we include them since

the U(1) gauge coupling is tiny. With the supersymmetric completions visible and mirror

stops might also contribute, but we do not take account of them by assuming they are

sufficiently heavy through the Higgs φB’s VEV and are suppressed by the Boltzmann factor.

With this assumption, our conclusion is applicable also to the case with the supersymmetric

UV completions as long as new particle masses are not light during the electroweak phase

transition.

The one-loop total effective potential Vtot with DR regularization is explicitly given by

Vtot = Vtree + Vzero + Vthermal, (4.10)

V0(φA, φB) =
λ

4
(φ2

A + φ2
B − f 2)2 +

κ

4
(φ4

A + φ4
B) +

ρ

4
φ4
A +

σ

2
f 2φ2

A, (4.11)

Vzero(φA, φB) = − 3

16π2
m4

t (φA)

+
log

+
m2

t (φA)

µ2

,
− 3

2

,
− 3

16π2
m4

!t (φB)

@
log

@
m2

!t (φB)

µ2

A
− 3

2

A

+
3

32π2
m4

W (φA)

+
log

+
m2

W (φA)

µ2

,
− 3

2

,
+

3

64π2
m4

Z(φA)

+
log

+
m2

Z(φA)

µ2

,
− 3

2

,

+
9

64π2
m4

"W (φB)

@
log

@
m2

"W
(φB)

µ2

A
− 3

2

A
, (4.12)

Vthermal(φA, φB, T ) = − 6

π2
T 4JF

:
m2

t (φA)

T 2

;
− 6

π2
T 4JF

N
m2

!t (φB)

T 2

O

+
3

π2
T 4JB

:
m2

W (φA)

T 2

;
+

3

2π2
T 4JB

:
m2

Z(φA)

T 2

;
+

9

2π2
T 4JB

N
m2

"W
(φB)

T 2

O
.

(4.13)
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See the sec. 3.3.3 for the definition of JB,F -function. Here, κ, ρ and σ are the tree-level

couplings and do not include the contribution of the one-loop zero-temperature corrections.

In addition, we consider the ring diagram contributions denoted by Vring discussed in sec. 3.3.3

to improve the perturbativity. Since the masses of the SU(2)"W gauge bosons originating from

the VEV of the HB field are much larger than thermal corrections to the masses around the

critical temperature, the SU(2)"W ring diagram contributions can be neglected. On the other

hand, the ring diagram contributions coming from SU(2)W × U(1)Y gauge bosons are not

negligible and we need to take them into account. Vring was computed in Ref. [146] and is

given by

Vring = T
0

i=WL, ZL, γL

− ni

12π2

)
(m2

i (φA, T ))
3
2 − (m2

i (φA))
3
2

*
, (4.14)

with

nWL
= 2, m2

WL
(φA, T ) = m2

W (φA) +
11

6
g22T

2, (4.15)

nZL
= 1, m2

ZL
(φA, T ) =

1

2

:
m2

Z(φA) +
11

6
(g22 + g21)T

2 +∆(φA, T )

;
, (4.16)

nγL = 1, m2
γL
(φA, T ) =

1

2

:
m2

Z(φA) +
11

6
(g22 + g21)T

2 −∆(φA, T )

;
, (4.17)

∆ =

M

m4
Z(φA) +

11

3

(g22 − g21)
2

g22 + g21

:
m2

Z +
11

12
(g22 + g21)T

2

;
T 2. (4.18)

The explict calculation of field dependent masses of longitudinal mode for Z-boson and

photon are summerized in Appendix. 7.2. Here, ni represents the number of d.o.f. for each

longitudinal mode. We do not take account of transverse modes of the SU(2)W × U(1)Y

gauge bosons because if it gives the dramatic effect, the perturbative computation of the

thermal effective potential is suffered from Linde problem as discussed in sec. 3.3.4.

In our case, the electroweak phase transition occurs after the U(4)-breaking phase tran-

sition. Therefore, during the electroweak phase transition, φB already obtains a non-zero

VEV, φB(T ) ∕= 0. Then, in the same way as Eq. (2.59), we integrate out the φB(T ) field by

setting

φ2
A(T ) = f 2 − φ2

B(T ). (4.19)

Here, φA(B)(T ) represent the temperature dependent VEVs, respectively. It should be noticed

that, when we take the T = 0 limit, Eq. (4.19) is reduced to Eq. (2.59). The one-loop
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resummed effective potential for h can be written as

V (φA, T ) = V0(φA, f 2 − φ2
A) + VCW(φA, f 2 − φ2

A) + Vthermal(φA, f 2 − φ2
A, T ) + Vring(φA, T ),

(4.20)

where V0, VCW, Vthermal, and Vring are given by Eq. (4.11), (4.12), (4.13), and (4.14), respec-

tively. For the zero temperature part V0 + VCW, we set the renormalization conditions given

by

d

dφ
(V0 + VCW)

////
φ=vA

= 0, (4.21)

d2

dφ2
(V0 + VCW)

////
φ=vA

= 2λSMv2A. (4.22)

Neglecting O(φ6
A) terms, we obtain the following expression,

V0 + VCW = −λSM

2
v2Aφ

2
A +

λSM

4
φ4
A

+
ni

64π2

0

i

+
m4

i (φA)

+
log

+
m2

i (φA)

m2
i (vA)

,
− 3

2

,
+ 2m2

i (vA)m
2
i (φA)

,
, (4.23)

where the suffix i represents only the SM contribution. Now the system is parameterized

only by the U(4)-breaking scale f since the condition (4.19) and renormalization condition

Eqs. (4.21) and (4.22) completely fix the other model parameters, κ1, σ1, ρ1, and λ.

In Ref. [145], it was shown that the one-loop effective potential obtained by use of the

relation Eq. (4.19) exhibits the restoration of the electroweak symmetry at high temperature,

which guarantees the presence of the electroweak phase transition. Here, we try to clarify

the order of the electroweak phase transition. For this purpose, we will first check the

validity of perturbative expansion near the critical temperature. As is seen in sec. 3.3.4, the

perturbative expansion is valid only when the following condition is satisfied,

g22
TC

mW (φA(TC))
∼ g2

TC

φA(TC)
< 1, (4.24)

where TC is the critical temperature of the EWSB. Here the critical temperature TC is defined

so that the electroweak symmetry preserving and breaking vacua are degenerate. φA(TC)

represents the expectation value of φA for a breaking phase at TC .

In Fig. 4.2, the ratio φA(TC)/TC is plotted for each U(4) symmetry breaking scale f . We

have evaluated the one-loop resummed effective potential given in Eq. (4.20) without resort

to the high temperature expansions given by Eqs. (3.97) and (3.98). It is easily seen that the
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Figure 4.2: The ratio φA(TC)/TC for each U(4) symmetry breaking scale f . The blue curve

represents φA(TC)/TC evaluated by use of Eq. (4.20). The dashed red line represents the

same ratio but with only the Standard Model contributions being taken into account.

larger a breaking scale f is, the smaller φA(TC)/TC is. This fact can be easily understood

as follows. The thermal contributions from the twin particles could strengthen the first

order nature of the electroweak symmetry breaking. However, the twin partners acquire

masses proportional to φB(T ) through the Higgs mechanism. Thus, a larger breaking scale f

leads to larger masses of the twin particles, which easily induces thermal decoupling of twin

particles during the electroweak phase transition. This decoupling makes φA(TC)/TC in our

case approach the value in the standard model case. Hence a larger vA/f indeed increases

φA(TC)/TC .

However, the largest value of φA(TC)/TC for f > 2vA required by the constraint of the

Higgs coupling measurement is at most 0.2, which is not large enough to satisfy the criteria

(4.24). Therefore, we conclude that the non-perturbative corrections from SU(2)W cannot

be neglected and the perturbative expansion is not valid near TC . For the correct analysis,

lattice simulations are required. This result has an important implication for the electroweak

baryogenesis because it requires the sphaleron decoupling condition φA(TC)/TC > 1 around

the critical temperature. Our results strongly suggest that this condition is hardly satisfied

in the Fraternal twin Higgs model as long as the condition (4.19) is valid, and we cannot

expect for the implementation of the electroweak baryogenesis. This conclusion remains

unchanged even if we go beyond the Fraternal model, as long as the condition (4.19) and the

assumption of the trajectory of two-step phase transition are adopted. We do not exclude
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the possibility to have the strong first order electroweak phase transition once we relax one

of these assumptions, which is beyond the scope of the present study.

Finally let us comment on some issues on UV completions. We here do not assume

concrete UV physics (SUSY and composite Higgs) in our analysis and analyze the electroweak

phase transition by use of effective field theory for the φA field. As long as its usage is valid,

our result is still robust in supersymmetric and composite twin Higgs models. However,

it was shown in Refs. [147, 148] that the electroweak phase transition can be the strong

first order in the composite Higgs scenario. In the setup adopted in Refs. [147, 148], the

electroweak phase transition and the confinement phase transition, which corresponds to the

U(4)-breaking phase transition in twin Higgs models, occurred simultaneously. In addition,

the SM-like Higgs field couples with an additional scalar field. Thus this approach does not

apply to our consideration.

4.4 The U(4)-breaking phase transition

In this section, we explore the U(4)-breaking phase transition in twin Higgs models with

and without supersymmetric UV completion. For the concrete calculation, we adopt the

Fraternal model, but general features would apply to other models. (See Ref. [149] for general

discussions of gravitational wave productions from a first order phase transition associated

with SU(N) breaking into SU(N− 1) in a hidden sector.) As discussed in Sec. 4.3, we assume

that the U(4)-breaking phase transition occurs first and the electroweak phase transition does

next in the following discussion.

4.4.1 The case of the twin Higgs model without UV completion

Let us first consider the twin Higgs model without any UV completions, in the sense that

no new particles other than the mirror particles to the SM are involved. The U(4)-breaking

phase transition generally depends on UV physics such as SUSY and composite Higgs. How-

ever, if new particles in the UV completion are sufficiently heavy during the phase transition,

we can safely neglect the effect of these particles. We shall study the strength of the U(4)-

breaking phase transition by using the potential (2.51) with this assumption.

In our set up, the Higgs field HA is trapped at the origin of the potential HA = 0 due

to the thermal mass term during the U(4)-breaking phase transition. Thus, we take the
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background fields as

HA =

!

"0

0

#

$ , HB =

!

"
0
φB√
2

#

$ . (4.25)

and calculate the resummed one-loop potential given by Eq. (3.106) for the field HB. We

take account of the twin top and SU(2)"W gauge bosons which give dominant contributions to

the effective potential. On the other hand, a larger quartic coupling λ > 1g22 makes the U(4)-

breaking phase transition weaker φB(TC)/TC < 1g2, and hence, we consider a small quartic

coupling λ < 1g22. Since the quartic coupling λ < 1g22 is smaller than 1g2 and y!t, we neglect the

HA and HB loop contributions to the effective potential in the following discussion.

With the field dependent masses of the twin top and SU(2)"W gauge bosons given by

Eqs. (4.7) and (4.9), The one-loop effective potential Veff is expressed as

Veff = V0 + Vzero + Vthermal, (4.26)

V0(φB) =
λ

4
(φ2

B − f 2)2 +
κ

4
φ4
B = −λ

2
f 2φ2

B +
λ+ κ

4
φ4
B +

λ

4
f 4, (4.27)

Vzero(φB) = − 3

16π2
m4

!t (φB)

@
log

@
m2

!t (φB)

µ2

A
− 3

2

A
+

9

64π2
m4

"W (φB)

@
log

@
m2

"W
(φB)

µ2

A
− 3

2

A
,

(4.28)

Vthermal(φB, T ) = − 6

π2
T 4JF

N
m2

!t (φB)

T 2

O
+

9

2π2
T 4JB

N
m2

"W
(φB)

T 2

O
. (4.29)

In order to find the ring diagram contribution Vring, we need to evaluate the thermal masses

of the SU(2)"W gauge bosons. We here take account of the one-loop self-energy of longitudinal

modes [150]

Π"WL
=

7

6
1g22T 2, (4.30)

in which only one generation (third generation) is included for the Fraternal model. The

transverse modes receive the magnetic masses, but we omit them as is the case of the

electroweak phase transition. We then obtain the ring diagram contribution Vring given by

Vring = − T

4π

+)
m2

"WL
(φB, T )

* 3
2 −

'
m2

"W (φB)
( 3

2

,
, (4.31)

m2
"WL

= m2
"W (φB) + Π"WL

. (4.32)
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When we use the high-temperature expansions given by Eq. (3.97) and Eq. (3.98), the

resummed one-loop effective potential takes the following form:

V = V0 + VCW + VThermal + Vring

=
1

2
M2(T )φ2

B − T

2π

+
1g22φ2

B

4

,3/2

− T

4π

+
1g22φ2

B

4
+ Π"WL

, 3
2

+
λ+ κ1(T )

4
φ4
B, (4.33)

where

M2(T ) = −λf 2 +
1y2t
4
T 2 +

31g22
16

T 2, (4.34)

κ1(T ) = κ− 31y4t
16π2

+
log

+
afT

2

µ2

,
− 3

2

,
+

91g42
256π2

log

++
abT

2

µ2

,
− 3

2

,
. (4.35)

We here analyze the order of the phase transition by using the approach, which is different

from the one explained in Sec. 4.1. Thanks to the twin Z2 symmetry, yt ≃ 1yt and g2 ≃
1g2, the U(4)-breaking phase transition described by the potential (4.33) is similar to the

electroweak phase transition in the SM studied in sec. 3.4.3. As discussed in that section,

lattice simulations indicate that the electroweak phase transition in the SM is of the first

order when mH ≲ 70− 80 GeV (or λSM ≲ 0.04) is satisfied.

Here, let us derive the condition of first-order U(4)-breaking phase transition by utilizing

the lattice results of the electroweak phase transition within the SM framework, in which the

the quartic coupling λSM is treated as a free parameter. One might wonder if the difference

between U(4)-breaking sector and the SM sector prevents us from adopting the results of

the SM to the U(4)-breaking case. But these differences are negligible for our purpose in

the following reasons. First of all, the breaking scale of the U(4)-breaking phase transition,

f , is different from that of the electroweak phase transition, vA. However, the order of the

electroweak phase transition in the SM depends on the parameter λSM/g
2
2 [151], but not vA.

Thus, we have only to identify λ + κ1 in our model with λSM in the SM electroweak phase

transition. Second, there is no U(1)!Y gauge boson in the Fraternal twin Higgs model. Since

the U(1)!Y gauge coupling 1g1 is tiny compared to the SU(2)"W gauge coupling 1g2, we can

neglect this effect safely. Indeed, the original paper [151] also does not include U(1)Y and

they concluded that the error due to this assumption is small enough. Finally, the coefficient

of the thermal mass (4.30) for the Fraternal model1 differs from that of the SU(2)W gauge

bosons in the SM. In the lattice simulation [151], they use the three-dimensional effective

1In the Mirror twin Higgs models the coefficient of the thermal mass is the same to the SM.
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Lagrangian obtained by integrating out all fermions and the longitudinal modes of SU(2)W

gauge bosons [152, 153, 154], which affects the values of the parameters λSM and g2. We

confirmed that this difference gives only 10 percent changes in the parameters of three-

dimensional effective Lagrangian, and hence we can safely neglect it. Therefore, the order of

the U(4)-breaking phase transition can be analyzed by use of the result of the electroweak

phase transition in the SM. We conclude that the U(4)-breaking phase transition is the first

order when λ+ κ1 ≲ 0.04 is satisfied, thanks to yt ≃ y!t and g2 ≃ 1g2.
As discussed in Sec. 2.3.2, the parameters κ1 and λ are bounded below, λ + κ1 ≳ 0.1,

due to the EWSB conditions and the conditions λ > σ1, κ1, ρ1 as we can see from Fig. 2.3.

Therefore, it cannot satisfy the condition for the first order U(4)-breaking phase transition,

λ+ κ1 ≲ 0.04. We also expect no gravitational wave production because of the absence of a

first order phase transition in the case of twin Higgs models without any UV completions.

The differences in the Fraternal and Mirror models give minor effects and are within the

uncertainties in our estimate. More generally, our conclusion is robust in any models as long

as the tree-level potential is given by Eq. (2.51) and there are no additional light degrees of

freedom so that the thermal masses for twin SU(2)"W gauge bosons do not differ so much.

4.4.2 The case of supersymmetric twin Higgs models

In the previous subsection, we do not consider effects of UV physics such as composite

Higgs and SUSY on the U(4)-breaking phase transition. If other fields strongly couple

to the Higgs field HB, we cannot apply the argument in the previous subsection. Let us

now consider supersymmetric twin Higgs models and explore the order of the U(4)-breaking

phase transition. Especially, since any such models contain twin stops, which are strongly

coupled to the Higgs field HB and possibly light at the restored phase in the absence of the

Higgs VEV, we focus on the effect of light twin stops. This is because, as we discussed in

Sec. 3.4.4, when the HB field strongly couples to the light bosonic particles, the strength of

U(4)-breaking phase transition can be enhanced. Hereafter, we take the decoupling limit,

simply assuming that every supersymmetric partner except for twin stops acquires a large

soft mass and decouples with thermal plasma during the U(4)-breaking phase transition. We

will show that there is some parameter space where the U(4)-breaking phase transition is of

the first order and estimate the gravitational wave amplitude generated through this phase

transition.
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Let us calculate the one-loop resummed effective potential. Since we take the decoupling

limit as explained in section 2.3.3, the background fields are given by

HA
u =

!

"0

0

#

$ , HA
d =

!

"0

0

#

$ , HB
u =

!

"
0

φB√
2
sin β

#

$ , HB
d =

!

"
φB√
2
cos β

0

#

$ . (4.36)

We take account of the left and right-handed twin stops, the twin top quarks and the SU(2)"W

gauge bosons, which give dominant contributions to the effective potential. We neglect the

Higgs loop correction as is the non-supersymmetric case. The tree level potential V0 can be

concretely written as

V0 =
λ

4
(φ2

B − f 2)2 +
κ

4
φ4
B, (4.37)

where the second term includes the D-term contribution, κ ⊃ 1g22 cos2 2β/8. The thermal

one-loop corrections Vzero and Vthermal are evaluated as follows. The field dependent masses

of twin top quarks and SU(2)"W gauge bosons are given by Eqs. (4.9) and (4.7). Those of the

left and right-handed twin stops can be written as

M2
#stop =

!

"9m2
!Q +m2

!t (φB) +
!g22
8
φ2
B cos 2β m!t(φB)X!t

m!t(φB)X!t 9m2
!tR

+m2
!t (φB)

#

$ , X!t ≡ A!t − µ cot β, (4.38)

where 9m2
!Q, 9m2

!tR
and A!t are the twin left, right-handed stop soft mass-squared and the twin

A-term, respectively. The diagonalized masses are given by

n
1(2)
$t = 6, (4.39)

m2
t̃B1,2

(φB) =
(M2

#stop)11 + (M2
#stop)22

2
±

PQQR
@
(M2

#stop)11 − (M2
#stop)22

2

A2

+
)
(M2

#stop)12

*2

,

(4.40)

where n
1(2)
$t and the superscript of M2

#stop represent the number of d.o.f for the left (or right)-

handed twin stop and the component of M2
#stop matrix, respectively. The one-loop effective
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potential is then written as
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(4.41)

Vthermal(φB, T ) = − 6
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In order to calculate the ring diagram contribution Vring, we need to evaluate thermal

masses of the longitudinal mode of the SU(2)"W gauge bosons. As a result of the twin Z2

symmetry, thermal masses of the SU(2)"W gauge bosons can be calculated in the same way

as the case of the minimal supersymmetric standard model [150]. The thermal masses of

the longitudinal mode of the SU(2)"W gauge bosons, the left and right-handed twin stops are

given by

Π"WL
=

51g22
3

T 2, (4.43)

Π!tR =
4

9
1g23T 2 +

1y2t
6

+
1 +

1

sin2 β

,
T 2, (4.44)

Π !Q =
4

9
1g23T 2 +

1y2t
12

+
1 +

1

sin2 β

,
T 2 +

1g22
4
T 2. (4.45)

Then the temperature dependent mass matrix is given by

M2
#stop =

!

"9m2
!Q +m2

!t (φB) +
!g22
8
φ2
B cos 2β + Π !Q m!t(φB)X!t

m!t(φB)X!t 9m2
!tR

+m2
!t (φB) + Π!tR

#

$ , (4.46)

n
1(2)
$t = 6, (4.47)

where n
1(2)
$t represents the number of d.o.f for the left (or right)-handed twin stop. From this
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expression, the ring diagram contributions are calculated as follows.

Vring =− T

4π
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3
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3
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Moreover, in our set up, the twin QCD two-loop contribution is non-negligible compared

to the resummed one-loop effective potential because the large strong coupling 1g3 and the

top Yukawa coupling 1yt are large compared to the other matter couplings.2 In the MSSM,

the sunset diagram, which gives the dominant contribution, is evaluated in Ref. [155]. We

adopt it and calculate the two-loop twin QCD contribution as

V
(2)
thermal = − 1g23

2π2
T 2

@
(m2

t̃B1
(φB))

2 log

@
2m2

t̃B1
(φB)

3T

A
+ (m2

t̃B2
(φB))

2 log

@
2m2

t̃B2
(φB)

3T

AA
.

(4.50)

In this expression, the high-temperature expansion [122] and mass-averaging approxima-

tion [121] are used. According to the discussions in Refs. [156, 157], their usage is justified

for our purpose. It should be noticed that this negative logarithmic dependence of φB in

Eq. (4.50) gives an additional contribution to the potential barrier between the origin and

another minimum. Without taking this contribution into account, we would underestimate

φB(TC)/TC .

As discussed in Sec. 3.4.2, in order to realize the first order phase transition at the

perturbative calculation and gravitational wave production, φB(TC)/TC ≳ 1g2 is required.

This ratio becomes larger for a smaller λ + κ1 (See discussion in Sec. 3.4.4.). As discussed

in Sec. 2.3.2 (see Fig. 2.3), we have the conditions λ > 0.05 and κ1 > 0.05, from the

requirements λ > ρ1,κ1 and mh ≃ 125 GeV. Thus hereafter we take λ ≃ 0.05 and κ1 ≃ 0.05

as the benchmark point. For simplicity we require the quartic coupling κ1 is dominated by

the D-term, κ ≃ (1g22/8) cos2 2β, so that tan β ≃ 10. The value of the twin QCD coupling

2You may wonder that this contribution is sufficiently suppressed by the loop factor. However, since the

twin gluon belongs to the adjoint representation of SU(3)!C, degrees of freedoms of it is n!g = 8, which is

comparable to the loop suppression.
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Figure 4.3: This graph shows φB(TC)/TC and common left, right-handed twin stop soft

masses. We set some physical parameters as λ = 0.05, 1g3 = 1, tan β = 10, X!t = 0 and

vA/f = 0.123.

constant 1g3 can be somewhat different from the value of the visible QCD coupling constant g3

because the exact Z2 symmetry is not necessary from the view point of naturalness [78, 158].

Here we simply set the twin QCD coupling to be 1g3 = 1. The change of the value of 1g3
allowed by naturalness leads to a 10% effect for φB(TC)/TC . In addition, we take X!t = 0

in our evaluation for the following reason. A non-zero X!t tends to induce unwanted color-

breaking vacua. In order to avoid the appearance of such vacua, larger soft masses are

required, which reduces the ratio between the effective mass and the cubic term. Thus, with

a non-zero X!t, φB(TC)/TC will be smaller compared to the case with a vanishing X!t.

Now the ratio φB(TC)/TC is determined by the twin stop soft parameters and the U(4)-

breaking scale f . Figure 4.3 shows the ratio φB(TC)/TC as the function of the left and

right-handed twin stop (common) soft masses |9m2
!Q| = |9m2

!tR
| ≡ M2

#stop for vA/f = 0.123. The

renormalization scale is set to be µ = T . We can see that the ratio φB(TC)/TC takes the

maximal value for the massless limit of the light twin stop M#stop ≃ 0, which is roughly 0.9.

For other choices of the ratio vA/f ≳ 0.1, required from the point of view of naturalness,

we confirmed that φB(TC)/TC ≃ 0.9 > 1g2 for M#stop ≃ 0. Thus, for this parameter choice,

the phase transition is of the first order, which leads to the generation of the gravitational

wave. Note that here we admit the strong violation of the Z2 symmetry in the soft stop

mass, but we assume that the Z2 symmetry is hold for tan β otherwise we cannot have the
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Tn [GeV] φB(Tn)/Tn α β/H(Tn)

682 1 7× 10−3 7× 104

Table 4.1: Parameters Tn, φB(Tn)/Tn, α and β/H(Tn) for the evaluation of the spec-

trum of gravitational wave background with the benchmark point λ = 0.05, 1g3 = 1, κ1 =

0.05, M#stop = 0, X!t = 0, vA/f = 0.123 and tan β = 10.

Mexican-hat type U(4)-breaking potential.

Now let us evaluate the GW signals generated in this model. For this purpose, we

need to estimate the nucleation temperature Tn, α parameter and the duration of the phase

transition β (See Sec. 3.4.5 for the detailed definitions of these parameters). They can

be obtained by solving the bounce equations for the thermal resummed effective potential

V (φB, T ) = V0 + Vzero + Vthermal + Vring + V
(2)
thermal. Table 4.1 shows the values of these

parameters for our benchmark points, λ = 0.05, κ1 = 0.05, 1g3 = 1, tan β = 10, X!t = 0,

and vA/f = 0.123.
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Figure 4.4: The maximal gravitational wave amplitude realized in the twin Higgs model

with light twin stop is shown. Sensitivity curves of future-palned experiments such as LISA,

BBO, DECIGO and ultimate-DECIGO are also shown.

Figure 4.4 shows the GW signal for our benchmark point (see sec. 3.4.5 for the formalism

to calculate it). The most dominant source of the gravitational wave for our benchmark
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point is found to be the sound wave of the plasma bulk motion after the bubble collision,

Ωgwh
2 ≃ Ωswh

2 given by (3.136). The peak frequency is around O(10)Hz and the peak

amplitude of gravitational wave is around O(10−19) due to the large β/H(Tn) ≃ 7 × 104

and small α ≃ 7 × 10−3. We can easily see that it is well below the sensitivities of LISA,

DECIGO, BBO and ultimate-DECIGO.

Note that the Fig. 4.4 is different from the figure found in the original work in Ref. [63].

After the publication of this paper, the suppression on gravitational wave amplitude from

sound waves given by Eq. (3.137), which was not included in our original analysis, was

pointed out. Therefore, in this thesis, we include this suppression factor to improve our

original result although our conclusion is unchanged.

It is nontrivial whether our benchmark point, which gives the maximal ratio φB(TC)/TC ,

gives the maximal amplitude of the GW signals. We numerically confirmed that it is ap-

proximately maximal for our benchmark point. Concretely,

• For λ, κ1 andM#stop, we confirmed that smaller λ+κ1 andM#stop give larger gravitational

wave amplitude. Since we restrict them as λ > 0.05,κ1 > 0.05, and M#stop > 0,3 our

benchmark point gives the maximal amplitude.

• The peak amplitude of GW signals, Ωpeak
GW h2, does not depend on the breaking scale f .

We can write the effective potential as V (φB, T, f, M#stop) = T 4µ(9φ, 9f, SM#stop), where

9φ, 9f and SM#stop are parameters normalized by the temperature, 9φ ≡ φ/T, 9f ≡ f/T

and SM#stop ≡ M#stop/T . One can show that the bounce action S3/T given by (3.116) is

S3/T = S3/T (9φ, 9f, SM#stop), after rescaling the radial coordinate as r′ = r/T . Then

by definitions of α and β parameters given by (3.132) and (3.133), we obtain α =

α(9φ, 9f, SM#stop) and β/H = β/H(9φ, 9f, SM#stop). The peak amplitude of gravitational

wave, Ωpeak
GW h2, only depends on the α and β/H parameters at T = Tn hence we obtain

Ωpeak
GW h2 = Ωpeak

GW h2(9φ, 9f, SM#stop)|T=Tn . The nucleation temperature is roughly given by

Tn ≃ TB ≃ TC , where TB and TC are given in Sec. 4.3 and App. 3.3.3, respectively.

From the expression (4.3), we can easily find f/Tn ≃ f/TB = const. In addition, from

the expression (3.112), the fraction φB(Tn)/Tn ≃ φB(TC)/TC does not depend on the

3Note that when we allow the negative twin stop soft masses, the gravitational wave amplitude would be

larger. In this case, however, we have to take account of the SU(3) !C breaking minimum hence we do not

consider such a scenario in our analysis.
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breaking scale f (the quartic coupling ξ is less sensitive to the change of Tn). Thus,

when we vary the breaking scale f with M#stop = 0, the peak amplitude of gravitational

wave does not change. On the other hand, the peak frequency fsound is proportional

to the nucleation temperature, Tn, hence a smaller f leads to a lower peak frequency

due to the lower nucleation temperature. We numerically confirm this behavior.

• We numerically confirm that a smaller tan β makes the gravitational wave amplitude

larger. However, a smaller tan β leads to a larger up-type Higgs-top Yukawa coupling,

Y!t = y!t/ sin β. Here we impose the perturbative condition of the Yukawa coupling

Y 2
!t /(4π) ≲ 1 at the electroweak scale. This condition gives tan β ≳ 0.28. For tan β =

0.28, the peak amplitude of gravitational wave is larger than that of tan β = 10 by

merely around factor 10.

Note also that the change of the value of the twin QCD coupling constant allowed by

naturalness affects the amplitude of gravitational wave by around factor 10 at most, and

hence this effect does not change our result significantly. Thus, we conclude that, even

if we take the effect of a light twin stop into account, it is almost impossible to generate

gravitational wave background detectable by DECIGO, BBO or ultimate-DECIGO.

Finally, we would like to give some comments. We have assumed that φB acquires the

VEV first and φA does later. In order to verify this assumption, we have calculated the

thermal resummed effective potential V (φA, φB, Tn) for both of the Higgs fields φA and φB

when φB obtains the VEV at T = Tn. We numerically confirmed that the potential minimum

appears only in the φB direction at Tn given in TABLE. 4.1. Therefore, the assumption of

two-step phase transition is validated.

4.5 Summary and Discussion

In this section, we give a summary of results obtained in this chapter and discussions related

to the twin Higgs models.

We have investigated the dynamics of the electroweak phase transition and the phase

transition associated with global U(4) breaking in twin Higgs models with and without su-

persymmetric completion. In Sec. 4.3, we found that the electroweak phase transition in

twin Higgs models cannot be analyzed perturbatively as long as the effective potential is
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given by (2.51) and (4.19). It does not satisfy the condition of a strong first order phase

transition, and hence we cannot expect for the realization of the electroweak baryogenesis

as well as the generation of gravitational wave background. In Sec. 4.4.1, we considered the

U(4)-breaking phase transition in twin Higgs models without any UV completions such as

composite Higgs and SUSY. We confirmed that the U(4)-breaking phase transition is the

first order only when λ + κ1 ≲ 0.04 is satisfied. However, as discussed in Sec. 2.3.3, we

obtained the relation λ+κ1 > 0.1 in order to realize the adequate EWSB and the conditions

λ > σ1, κ1, ρ1. Thus, the U(4)-breaking phase transition cannot be the first order, and

we expect that there is no gravitational wave production. In Sec. 4.4.2, we considered the

U(4)-breaking phase transition with supersymmetric UV completions in the decoupling limit

where only the effect of light twin stops is taken into account. We calculated the resummed

effective potential including the dominant two-loop twin QCD contribution. Then, we con-

firmed that the U(4)-breaking phase transition can be analyzed perturbatively only when

the light twin stop masses with M#soft ≃ 0 are realized. We calculated the largest possible

gravitational wave amplitude within the parameters for which the electroweak symmetry

breaking conditions and the conditions λ > σ1, κ1, ρ1 are satisfied. However, we found that

the gravitational wave amplitude cannot reach the detectable regions by LISA, DECIGO,

BBO and ultimate-DECIGO. We conclude that it is impossible to produce large enough

amplitude of gravitational wave to be detected by DECIGO or BBO in twin Higgs mod-

els, under our assumptions such as taking the decoupling limit, the perturbative conditions

λ > σ1, κ1, ρ1 and the trajectory of two-step phase transition.

If there is an additional field strongly coupled to the Higgs fieldsHA andHB, the dynamics

of the electroweak phase transition and the U(4)-breaking phase transition will be changed

due to the additional contribution to the effective potential. For example, as mentioned in

Sec. 2.3.3, there is a singlet scalar field coupled to the Higgs field HA and HB in F-term twin

Higgs models. If such a singlet scalar field is sufficiently light during the U(4)-breaking phase

transition, the situation might be dramatically changed. We do not consider such specific

cases because we are mostly interested in giving model independent predictions.

Finally, we would like to comment on cosmological phenomena apart from phase transi-

tions here. In the Mirror twin Higgs models, there are light elements such as a twin photon

and twin neutrinos. (See the left panel of Fig. 2.2.) They give sizable contributions to

the radiation energy density, which is strongly disfavored by measurements of Cosmic Mi-
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crowave Background [159] and Big Bang Nucleosynthesis [160]. This issue was studied in

[158, 161, 162, 163]. The effects of twin baryons on the large scale structure and CMB are

also investigated in Ref. [164]. On the contrary, there is a candidate of dark matter in the

Mirror twin Higgs model, which has been investigated in Ref. [165]. The Fraternal twin

Higgs model does not lead to an extra dark radiation component but still accommodates a

dark matter candidate [166, 167, 168, 169].
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Chapter 5

The Electroweak Phase Transition in

the Minimal Scotogenic Model

In this chapter, we study minimal scotogenic model at finite-temperature and clarify the

dynamics of the electroweak phase transition. We also calculate relic abundances of the

scalar and fermion DM and discuss its connection to the GW signals generated by first-order

electroweak phase transition. It will turn out that the electroweak phase transition can be

of strong first-order and produced GW signals can be detected by ultimate-DECIGO.

5.1 Motivation and Outline

Motivation

As explained in Sec. 2.4, the additional SU(2)W scalar doublet and three right-handed neu-

trinos are introduced into minimal scotogenic model. In this model, depending on the size

of masses of these new particles, H or ν1R particles can be DM candidate. A lot of previous

studies [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43] showed that this model

can produce the correct DM relic abundance both the scalar and the fermion DM scenarios.

Furthermore, the left-handed neutrino masses are generated radiatively and thus this model

can simultaneously explain origins of the DM and neutrino masses. Of course, this fact does

not imply that minimal scotogenic model is really realized in nature. To confirm its exis-

tence, we need to test or constrain the model by various observations. The simplest method

is to use collider searches including precision tests. Indeed, as summarized in Sec. 2.4.3 and
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Sec. 2.4.4, there are several collider and precision constraints on this model. In addition to

these constraints, similar to the previous chapter, it is interesting to pursue the possibility of

the detection of GW signals generated by first-order cosmological phase transitions because

it may bring us new information of the model.

A remarkable point of this work is that the phase transition dynamics and resultant GW

signals generated by first-order phase transition are strongly related to the mass spectra of

new particles and the DM relic abundance in the scalar DM scenario and to the charged

flavor violation processes in the fermion DM scenario. Therefore, in future, we can strongly

constrain these model by considering the synergy between the observation of GW signals

and the collider and precision measurements.

Outline

Here, we shall explain basic calculation method to clarify the order of the phase transition

and to estimate the GW signals in minimal scotogenic model. We start with the Lagrangian

density of this model, which was summarized in Sec. 2.4. Then, one can compute the

thermal effective potential for the SM Higgs field, whose calculation method was outlined

in Sec. 3.3. Field dependent masses, needed to compute the thermal effective potential, in

this model will be explicitly listed in next section. Similar to the twin Higgs model, we

study the thermal effective potential at different temperature and estimate the nucleation

temperature Tn. By calculating the tunneling rate, we can estimate GW signals produced

by the first-order phase transition and clarify the parameter space which will be constrained

by the future experiments.

In addition to the dynamics of the phase transition, we also compute the relic abundance

of DM in both of scalar and fermion DM scenarios. The computation method of relic

abundance of the DM was explained in Sec. 3.2. Recall that the Yukawa coupling Y S
mn is

chosen to be consistent with the neutrino oscillation data summarized in Sec. 2.2.2 and other

parameters are also chosen to be consistent with the collider and precision measurements.

In both scalar and fermion DM scenarios, we consider important constraints such as the DM

direct detection constraints and charged lepton flavor violation processes in addition to the

analysis of the phase transition.
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5.2 The First-Order Electroweak Phase Transition in

Minimal Scotogenic Model

Before calculating the thermal effective potential and analyzing the order of the electroweak

phase transition, we would like to discuss thermal history realized in this model.

We assume that the temperature of the Universe is high enough so that the electroweak

symmetry is restored, that is, the SM Higgs VEV is zero at the beginning. In this high-

temperature regime, the additional particles such as S scalar and the right-handed neutrinos

νnR are in thermal plasma with the SM particle. The tree level scalar potential of minimal

scotogenic model V scotogenic
tree Eq. (2.75) consists of two scalar particles, which are the SM Higgs

and the inert scalar S. If there is a possibility that S acquires VEV, there is the associated

phase transition in addition to the ordinary electroweak phase transition. However, as argued

in Sec. 2.4, S does not develop VEV to maintain the Z2 symmetry (otherwise there is no dark

matter candidates in this mode), and hence, we need to only focus on the dynamics of the

SM Higgs field. After the electroweak phase transition in this model, the DM is thermally

produced as explained in Sec. 2.4.2.

To clarify the dynamics of the electroweak phase transition, we shall now calculate the

effective potential of the SM Higgs field. Let us consider contributions coming from inert

scalar doublet, SU(2)W × U(1)Y gauge bosons and top quarks because those couplings are

large compared to other particles. Field dependent masses and degrees of freedoms are then
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listed as

n± = 2 : m2
±(hSM) = m2

1 +
λ1

2
h2
SM + ΠS(T ), (5.1)

nH = 1 : m2
H(hSM) = m2

1 +
1

2
λHh

2
SM + ΠS(T ), (5.2)

nA = 1 : m2
A(hSM) = m2

1 +
1

2
λAh

2
SM + ΠS(T ), (5.3)

nW = 4 : m2
W (hSM) =

g22
4
h2
SM, (5.4)

nZ = 2 : m2
Z(hSM) =

(g21 + g22)

4
h2
SM, (5.5)

nWL
= 2 : m2

WL
(hSM) =

g22
4
h2
SM + ΠW (T ), (5.6)

nZL
= 1 : m2

ZL
(hSM) =

1

2
(m2

Z(hSM) + ΠW (T ) + ΠY (T ) +∆(hSM, T )), (5.7)

nγL = 1 : m2
γL
(hSM) =

1

2
(m2

Z(hSM) + ΠW (T ) + ΠY (T )−∆(hSM, T )), (5.8)

∆2(hSM, T ) ≡
+
g22
4
h2
SM + ΠW (T )− g21

4
h2
SM − ΠY (T )

,2

+ 4g21g
2
1h

4
SM. (5.9)

where λA = λ1 + λ2 − 2λ3 and λH = λ1 + λ2 + 2λ3. Field dependent masses for longitudinal

modes of Z boson and photon can be obtained diagonalizing the matrix given by Eq. (7.75)

in Appendix. 7.2. In these expressions, we use Parwani method to include the resummation

effects, which was discussed Sec. 3.3.4. The total effective pontential is given by sum of the

tree-level Higgs potential, a zero-temperature correction with MS regularization and a finite

temperature correction, where field dependent masses are listed above.

The thermal mass for the inert scalar doublet, ΠS(T ), is calculated in Ref. [60] as

ΠS =

+
1

8
g22 +

1

16
(g21 + g22) +

1

2
λS +

1

12
λ1 +

1

24
λA +

1

24
λH

,
T 2. (5.10)

One should note that the Yukawa coupling between the inert doublet and the neutrino given

by Eq. (2.76) may give an additional contribution to ΠS(T ). However, since the right-

handed neutrino has Majorana mass comparable to the nucleation temperature, this effect

is suppressed due to the Boltzmann suppression in finite-temperature, and hence, we expect

that this contribution will not change our result significantly. We therefore neglect this

contribution in our analysis. The Debye mass of the SU(2)W × U(1)Y gauge bosons can

be estimated by using SM result [120, 170] with adding an additional SU(2)W inert scalar

doublet as

ΠW = 2g22T
2, ΠY = 2g21T

2. (5.11)
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We here qualitatively comment on the strength of the electroweak phase transition. From

Eq. (2.75), we can easily find that the tree-level Higgs potential is completely same as the

SM one. As we described in Sec. 3.4.3, the electroweak phase transition within the SM

framework is of not first order due to the non-perturbative corrections from SU(2)W gauge

bosnos. However, since there is an additional scalar particle, S, which couples to the SM

Higgs, the perturbative requirement 〈hSM(Tn)〉/Tn ≃ 〈hSM(Tn)〉/Tn > g2 can be very easily

satisfied when coupling between the inert scalar doublet and the SM Higgs, λH , λA and λ1 are

sufficiently large. Therefore, in our analysis, we focus on the parameter space leading to the

strong first-order electroweak phase transition 〈hSM(Tn)〉/Tn > 1 to consider the possibility

of the electroweak baryogenesis.

Larger m1 makes the phase transition strength weaker due to the screening effect, which

was discussed in Sec. 3.4.4. For the same reason, since a larger λS corresponds to larger

thermal mass of the inert scalar (See Eq. (5.10)), it makes the phase transition strength

weaker. Therefore the strong first-order electroweak phase transition requires larger λH , λA

and λ1, and smaller m1 and λS. It should be noted that the right-handed neutrinos does

not couple to SM Higgs at tree-level. Hence its effect of the electroweak phase transition is

irrelevant. Quantitative discussions will be presented in Sec. 5.3 for scalar DM and fermion

DM scenarios.

5.3 Results

In this section, we discuss our results obtained after performing a full numerical scan by

incorporating all existing constraints and the criteria for a strong first-order phase transition

〈hSM(Tn)〉/Tn > 1 and the correct DM relic density. In this parameter search, we vary the

parametersm1, λ1, λ2, λ3 and λS. While all four parameters are relevant for the electroweak

phase transition, the last one does not affect the DM relic abundance. We have also imposed

the LEP bounds as well as the perturbative and vacuum stability conditions discussed in

Sec. 2.4.3. The constraints coming from light neutrino masses are incorporated by using

Casas-Ibarra parametrisation discussed in Sec. 2.4.1.
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5.3.1 Scalar dark matter

In this subsection, we show some results in the case of scalar DM scenario. In addition to

collider bounds, the perturbative and the vacuum stability conditions, we impose conditions

λ3 < 0 and λ2 +2λ3 < 0 in order to make CP even component of inert doublet H to be DM

candidate.

We show the data points satisfying the conditions 〈hSM(Tn)〉/Tn > 1 on (m±, mA)-plane

in upper panels of Fig. 5.1. We confirm that all data points leading to the strong first-order

electroweak phase transition is realized by small m1 < 50GeV and large couplings with

the SM-like Higgs boson λH , λA, λ1 ≳ 1. This result is in agreement with the qualitative

discussion presented in Sec. 5.2.

In lower left panel of Fig. 5.1 we show the parameter region on (m±, mA)-plane which

satisfies ΩDMh
2 = 0.120 ± 0.001 with varying DM mass shown as color code. This clearly

shows the two distinct regions of DM (H particle) mass: mH < 80 GeV (low mass regime)

and mH > 550 GeV (high mass regime). While the DM relic satisfying points in low mass

regime remain scattered, there is a linear correlation in high mass regime beyond 550 GeV,

as can be seen from bottom panel plots of Fig. 5.1. This arises because of the fact that,

in order to satisfy correct DM relic in high mass regime mH > 550GeV, the mass splitting

between inert doublet components is required to be small.

In the lower right panel, we also superimpose the points which satisfy the 〈h(Tn)〉/Tn > 1,

showing overlap with parameter space corresponding to low mass DM. We confirm that there

is a parameter regime simultaneously satisfying conditions 〈h(Tn)〉/Tn > 1 and ΩDMh
2 =

0.120± 0.001, specially for low DM mass mH < 80 GeV.

In the large DM mass regime, mH > 550GeV, we need larger values of m1 making

the phase transition strength weaker, and thus, it is impossible to realize φ(Tn)/Tn > 1

with imposing perturbative conditions |λi| < 4π (i = 1, 2, 3). Thus, the low mass DM

region mH < 80GeV is only the allowed region from conditions of realizing strong first-

order electroweak phase transition and the correct DM relic abundance in the scalar DM

scenario of this model. Furthermore, the strong first-order electroweak phase transition

requires a cancellation between a large λ1 ∼ O(1) and λ2 + 2λ3 ∼ O(1) to maintain small

λH = λ1 + λ2 + 2λ3 ∼ O(0.1 ∼ 0.01) for a low DM mass regime, mH < 80GeV.

We show peak amplitudes of total GW signals with sensitivity curves of U-DECIGO,

U-DECIGO-corr, LISA (C1-C4) [132, 171], DECIGO, BBO [172] and Einstein Telescope
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Figure 5.1: Scatter plots on (m±, mA)-plane satisfying 〈h(Tn)〉/Tn > 1 for different scalar

DM mass, mH , (upper left) and the strength of the electroweak phase transition 〈h(Tn)〉/Tn

(upper right) are shown in the case of scalar DM scenario. A parameter regime satisfying

ΩDMh
2 = 0.120±0.001 for different DM mass (lower left) and a combined scatter plot (lower

right) for 〈hSM(Tn)〉/Tn > 1 (red circles) and ΩDMh
2 = 0.120±0.001 (blue triangles) are also

shown.

105



Figure 5.2: Left panel: peak points of GW signals in our model along with sensitivity curves

of U-DECIGO, U-DECIGO-corr, LISAC1∼C4 [132, 171], DECIGO, BBO [172] and Einstein

Telescope (ET) [173]. Scatter plots on (m±,mA)-plane within reach of U-DECIGO with a

correlation analysis (U-DECIGO-corr) [174] for different mH (right panel) are shown in the

case of scalar DM. All data points satisfy correct DM relic density, ΩDMh
2 = 0.120± 0.001.

(ET) [173] in the left panel of Fig. 5.2. It is obvious from the figure that GW signals can

only be detected by U-DECIGO-corr. The corresponding mass spectra of S particles are

shown in (m±,mA)-plane (right panel of Fig. 5.2). In the figure, we assume that H particle

explains 100% of dark matter ΩDMh
2 = 0.120 ± 0.001. We confirm that all data points

satisfying the strong first-order electroweak phase transition give GW signals detected by

U-DECIGO.

The low mass DM region, which we have discussed, is also tightly constrained by direct

detection as well as other collider searches. To confirm the consistency with DM direct

detection constraint, all data points shown is projected into (σSI,mDM)-plane in Fig. 5.3.

Here, σSI is the spin-indepenedent cross section is given by [30]

σSI =
λ2
Hf

2

4π

µ2m2
n

m2
hm

2
DM

, (5.12)

where mn, µ = mnmDM/(mn + mDM) and f ≃ 0.3 are the nucleon mass, the reduced

DM-nucleon mass and the hadronic uncertainties investigated in Refs. [175, 176].

As can be seen from this figure, all data points leading to the first-order electroweak phase
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Figure 5.3: Spin independent DM-nucleon cross section for scalar DM. The red coloured

points satisfy 〈h(Tn)〉/Tn > 1.

transition (the red colored points) and GW signals detected by U-DECIGO are ruled out by

Xenon1T data. The dark matter mass regime, mDM = mH = mh/2, is still allowed thanks

to the Higgs resonance, which enhances the annihilation cross section. However, these green

colored points cannot lead to the first-order electroweak phase transition. This is because,

in order to realize mH ≃ mh/2 with m1 < 50GeV, we need larger λH leading to a large σSI,

which is disfavored by the Xenon1T observation. The stringent direct detection constraints

will disappear in the case of the fermion DM scenario as we will see in the next subsection.

5.3.2 Fermion dark matter

In this subsection, we show the results in fermion DM scenario where ν1R is the lightest

state of the Z2-odd particles. Therefore, conditions λ3 < 0 and λ2 + 2λ3 < 0 imposed in the

previous subsection are not necessary in this subsection.

We show the parameter regime satisfying the condition 〈hSM(Tn)〉/Tn > 1 on (m±, mA)-

plane in upper panel of Fig. 5.4. Since conditions λ3 < 0 and λ2 + 2λ3 < 0 imposed in the

scalar DM scenario, is evaded in the fermion DM scenario, the lighter mass regime for the

charged and the CP-odd component of S can be viable regime. Indeed, compared to the

Fig. 5.2, which is obtained in the scalar DM scenario, we can easily find that the strong

first-order electroweak phase transition can be realized for small m± and mA.

In the lower panels of Fig. 5.4, the parameter space on (m±, mA)-plane satisfying the
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Figure 5.4: Scatter plots on (m±, mA)-plane satisfying 〈hSM(Tn)〉/Tn > 1 for different mH ,

(upper left) and the strength of the electroweak phase transition 〈hSM(Tn)〉/Tn (upper right)

are shown in the case of fermion DM scenario. A parameter regime satisfying ΩDMh
2 =

0.120 ± 0.001 for different mH (lower left) and a combined scatter plot (lower right) for

〈hSM(Tn)〉/Tn > 1 (red circles) and ΩDMh
2 = 0.120± 0.001 (green triangles) are also shown.
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Figure 5.5: Left panel: peak points of GW signals along with sensitivity curves of

U-DECIGO, U-DECIGO-corr, LISAC1∼C4, DECIGO, BBO and ET. Scatter plots on

(m±,mA)-plane within reach of U-DECIGO-corr for different mH (right panel) is shown

in the case of fermion DM scenario. All data points satisfy correct DM relic density,

ΩDMh
2 = 0.120± 0.001.

correct DM relic are shown in which fermion DM mass is shown as a color code. We combine

the figures of left upper panel with the left lower panel and show it in the right lower panel.

As can be seen from this figure, there exists overlap regime satisfying the strong first-order

electroweak phase transition and the correct DM relic.

The points satisfying the fermion DM relic correspond to small λ3 so that the Yukawa

couplings (in Y S
n1 L̄nS̃ν1R) are sizeable enough to enhance fermion DM annihilation and coan-

nihilation channels. This correspondence between small λ3 and large Yukawa arises through

Casas-Ibarra parametrisation discussed in Sec. 2.4.1. We consider lightest neutrino mass 0.1

eV in order to enhance the Yukawa couplings. Small λ3 gives rise to almost degenerate H,A

in this scenario.

We also show peak amplitudes of total GW signals in left panel of Fig. 5.5. The cor-

responding mass spectra of S particle are shown on (m±,mA)-plane in the right panel of

Fig. 5.5. In the figure, we assume that ν1R particle explains 100% of dark mater ΩDMh
2 =

0.120 ± 0.001. On contrary to the scalar DM scenario, a large λH can be allowed because

there is no stringent direct detection constraint in the fermion DM scenario. In fact, there is
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Figure 5.6: Predictions for different charged lepton flavor violation processes for fermion

DM scenario. All points satisfy the DM relic criteria while the red colored points realize the

strong first-order electroweak phase transition.

no tree level direct detection cross section with ν1R particle because it does not couple to the

SM Higgs and SM gauge fields at tree-level. However, such leptophilic fermion DM scenario

can be tightly constrained by experimental bounds on charged lepton flavor violation as we

discuss in the next subsection. We also confirm that all data points satisfying the strong

first-order electroweak phase transition give GW signals detected by U-DECIGO.

We discussed in Sec. 2.4.4 that charged lepton flavor violation processes give stringent

constraints on this model. Here, we would like to consider these constraints. Formulae of

charged lepton flavor violation processes were already summarized in Sec. 2.4.4 We have

used the SPheno 3.1 interface [177] in order to implement the flavor constraints into the

model. For fermion DM model, the predictions for charged lepton flavor violation processes

are shown in figure 5.6. As can be seen from this figure, all the predicted points lie way

below the current experimental bounds. This is due to the fact that fermion singlet DM

relic is mainly governed by its coannihilation with inert doublet components and hence even

relatively smaller Yukawa couplings can give rise to the correct relic. This fact was also
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noted in earlier works [111].

5.4 Summary and Discussion

In this chapter, we investigated the first-order electroweak phase transition and derived

gravitational wave signals realized in minimal scotogenic model, where three right-haded

neutrinos and an additional scalar SU(2)W doublet so-called the inert scalar doublet are

introduced. The new particles are odd under the discrete Z2 symmetry, and hence, they are

stable, which can be (WIMP) DM candidates as long as the lightest particle is electromag-

netically neutral. The left-handed neutrino masses are radiatively generated by the Yukawa

coupling between SM leptons, the right-handed neutrinos and the inert scalar doublet. With

imposing phenomenological and theoretical constraints including the LEP bound, the uni-

tarity and stability of the vacuum condition, we found that the electroweak phase transition

can be of strong first-order when couplings between the SM-like Higgs and the inert scalar

doublet are sufficiently large, in both of scalar and fermion DM scenarios.

In the scalar DM scenario, one of the electromagnetically neutral components of the

inert scalar doublet must be lightest. Under this assumption, we found that generated GW

signals can be detected by U-DECIGO with simultaneously realizing the correct DM relic

ΩDMh
2 = 0120 ± 0.001. However, all parameter points leading to the strong first-order

electroweak phase transition and GW signals detected by ultimate-DECIGO, are ruled out

by the direct detection constraint from Xenon1T experiment.

In the fermion DM scenario, the DM candidate is the lightest right-handed neutrinos,

which is singlet under the SM gauge group. The generated gravitational wave signals can also

be detected by U-DECIGO with simultaneously realizing the correct DM relic. In comparison

to the scalar DM scenario, the direct detection constraint is unimportant in this scenario

because the right-handed neutrinos only couple to SM lepton at tree-level. Although such

a coupling induces charged lepton flavor violation processes, which can be the important

constraints of this scenario. By the detailed analysis, it turned out that parameter regions,

where the strong first-order electroweak phase transition is satisfied and gravitational wave

signals can be detected by U-DECIGO, are still consistent with experimental bounds in this

model.

Finally, we would like to comment on cosmological phenomena apart from the first-order
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electroweak phase transition. Since the lepton number is violated by the Majorana mass term

of the right-handed neutrinos, baryogenesis via thermal leptogenesis is a viable scenario to

explain the origin of matter anti-matter asymmetry in the early Universe. This scenario is

studied in Refs. [46, 43, 47, 48, 49, 45, 50].
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Chapter 6

Conclusion and Discussion

We have discussed the dynamics of cosmological phase transitions by calculating the ther-

mal effective potential in several physics beyond the SM. Within the SM framework, the

electroweak phase transition is of not first order, but the physics beyond the SM can assist

the realization of (strong) first-order electroweak phase transitions. The strong first-order

electroweak phase transition not only provide the GW signals but also accommodates the

electroweak baryogenesis. Moreover, if cosmological phase transitions associated with ad-

ditional spontaneous symmetry breaking in beyond the SM physics are of first order, these

also provide the GW signals which can be tested by future planned experiments.

In Chapter 2, we review the SM of particle physics. The SM Lagrangian density was

constructed based on the gauge principle and allowed by the renormalizability. We reviewed

the dynamics of the EWSB within the SM framework and confirmed that it is in agreement

with the present collider experiments. However, we saw that the SM contains some difficulties

e.g. the naturalness of the SM Higgs mass parameter, origins of the DM and non-zero

neutrino masses and so on. To address these difficulties, new physics beyond the SM would

be needed. In particular, we introduced twin Higgs models and minimal scotogenic model

to solve the little hierarchy problem and to explain origins of the DM and neutrino masses.

We studied these models at zero-temperature and summarize some conditions such as the

correct EWSB as well as collider and precision constraints.

In chapter 3, we reviewed the standard cosmology. We derived Friedmann equation and

explain expanding Universe. In the past, the Universe was so dense and filled by the hot

thermal plasma, and hence, the standard thermodynamics plays an important role to un-
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derstand the dynamics occurred in the early Universe. The local equilibrium condition is

derived based on the Boltzmann equation in the expanding Universe. We saw that the ex-

pansion of the Universe leads to the out-of-equilibrium processes such as DM production

and cosmological phase transitions. The DM is thermally produced, whose precise abun-

dance be rigorously estimated by solving the Boltzmann equation. We also considered the

thermal effect on the generic scalar potential and showed that broken symmetry at the zero-

temperature is restored by the thermal plasma. We found that phase transitions can be

of first-order when a potential barrier, which separates the global and local minima, exists.

Since such a potential barrier is naturally generated by bosonic one-loop thermal corrections,

bosonic particles, which strongly couple to the order parameter, are needed to realize the

first-order phase transitions. Finally, calculation method of the tunneling rate and formulae

of GW signals were summarized.

In chapter 4, we have considered the twin Higgs models at finite-temperature and studied

cosmological phase transitions realized in these models. In this model, mirror copies of the

SM particles are introduced. (See Fig. 2.2 for the detailed matter content and variations of

the model.) In these models, since the SM Higgs is identified with the pNGB arising from

the spontaneous global symmetry U(4) → U(3), there is a cosmological phase transition

associated with it. By the detailed analysis, it was turned out that it is generally difficult

to realize first-order phase transitions in this model without any UV completion under the

assumption of two-step phase transition. With the supersymmetric UV completion, the twin

stop can trigger the first-order phase transition associated with U(4) → U(3) breaking. In

this case, GW signals are generated, but it was turned out that it is very small to be detected

by future planned experiments including DECIGO, BBO and ultimate-DECIGO.

In chapter 5, we have considered minimal scotogenic model and studied the cosmological

electroweak phase transition. In the scotogenic model, three right-handed neutrinos with

TeV scale Majorana masses and an additional SU(2)W scalar doublet are introduced into

SM sector. These new particles possess a discrete Z2 symmetry, and hence, they can be

dark matter candidates. Depending on the DM candidates, the dynamics of the electroweak

phase transition has been studied with assuming that new particle comprises 100% of DM.

By the detailed analysis, it turned out that the electroweak phase transition can be of strong

first-order and provide GW signals, which can be only detected by ultimate-DECIGO. When

the DM candidate is a electromagnetically neutral scalar, the DM direct detection constraint
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is stringent, which rules out parameter points satisfying the strong first-order electroweak

phase transition. When the DM candidate is the lightest right-handed neutrinos, charged

flavor violation processes are important, but the parameter regime leading to the strong

first-order electroweak phase transition and GW signals detected by ultimate-DECIGO, is

still consistent with current experiments on contrary to the scalar DM scenario.

We finally comment on uncertainty on the analysis of the cosmological phase transitions

and GW signals. The resummed effective potential at finite temperature depends on a gauge-

fixing parameter. In our calculation, we adopted the Landau gauge. The effect of gauge

dependence is discussed in, e.g., Ref. [178, 179]. According to Ref. [179], the uncertainty due

to gauge choice is roughly one or two order magnitude for ΩGWh2. The gauge dependence

of the thermal effective potential is discussed by many authors. See. e.g. Refs. [178, 180]

and references therein.

115



Acknowledgement

First of all, I would like to thank to my supervisor Masahide Yamaguchi. He have been

a tremendous mentor for me. It has been an honor to be his Ph.D. student. Beside my

advisor, I would like to thank Nakai Yuichiro for valuable discussion in a wide range of

physics. Without discussion with him, I could not have completed researches. I am also

grateful to Kohei Kamada, Debasish Borah, Devabrat Mahanta, Sin Kyu Kang and Arnab

Dasgupta who are collaborators of researches included in this thesis. I learn a lot from all

collaborators, including research methods. I would like to thank my colleagues, Atsuhisa

Ota, Daisuke Yoshida, Kensuke Akita and Keigo Shimada for a lot of discussions. On a final

note, I thank a lot my parents.

I was supported by JSPS and NRF under the Japan-Korea Basic Scientific Cooperation

Program and would like to thank participants attending the JSPS and NRF conference for

useful comments. I am also supported by JSPS Grants-in-Aid for Research Fellows No.

20J12415.

116



Chapter 7

Appendix

In this appendix, we summarize detailed calculations of the thermal field theory.

7.1 Appendix A: Thermal Field Theory

Here, we explicitly show how to compute the thermal effective potential.

From the definitions Eqs. (3.64) and (3.65), we can obtain following relation:

G+(t− iβ, x) = G−(t,x). (7.1)

This is known to be Kubo-Martin-Schwinger relation. Let us here consider the free scalar

boson. Then the Green function satisifies the following equation

[∂µ∂
µ +m2]Gc(x− y) = −iδc(x− y), (7.2)

where δc(x − y) ≡ δc(−i(x0 − y0))δ(3)(x − y). The scalar field φ(x) can be expanded as

follows, which is same to the zero-temperature calculation:

φ(x) =

>
d3p

(2π)3
<

2ωp

%
a(p)e−ipx + a†(p)eipx

&
, (7.3)

ωp =
<

p2 +m2. (7.4)

The commutation relation at equal time is given by

[φ(x, t), φ̇(y, t)] = iδ(3)(x− y). (7.5)
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From above equation, we can find following relation:

[a(p), a†(k)] = δ(3)(p− k). (7.6)

The Hamiltonian of the free scalar field system Ĥ can be expressed as

Ĥ =

>
d4p

(2π)3
ωpa

†
pap. (7.7)

The number operator N̂ is defined as

N̂ =

>
d3p

(2π)3
a†pap. (7.8)

Then the Hamiltonian Eq. (7.7) can be expressed as follows.

Ĥ ≡ ωpN̂ (7.9)

By introducing the complete set of eigenstate of N̂ in such a way that following equation is

satisfied.

N̂ |n〉 = n|n〉, (7.10)

a|n〉 = |n− 1〉, (7.11)

a†|n〉 = |n+ 1〉, (7.12)
0

n

|n〉〈n| = 1. (7.13)

Then we can obtain

Tr[e−βĤ ] = 〈n|e−βĤ |n〉 (7.14)

=
∞0

n=0

e−βωn (7.15)

=
1

1− e−βω
. (7.16)

and

Tr[e−βĤa†a] =
∞0

n=0

ne−βωn (7.17)

=
e−βω

(1− e−βω)2
. (7.18)

118



By using these equation, we obtain the number density on the thermal background:

〈nB(ω)〉 ≡
Tr[e−βĤa†pak]

Tr[e−βĤ ]
(7.19)

=
1

eβω − 1
δ(3)(p− k). (7.20)

This result simply shows that the number density on the thermal background is given by

the Boltzmann distribution. By using following equation,

〈a(k)a†(p)〉 = [1 + nB(ω)]δ
(3)(p− k), (7.21)

the Green function can be expressed as

G(c)(x− y) =

>
d4p

(2π)4
ρ(p)e−ip(x−y)[θc(x

0 − y0) + nB(ω)], (7.22)

ρ(p) ≡ 2π[θ(p0)− θ(−p0)]δ(p2 +m2). (7.23)

Let us next consider the free Weyl fermion. The Green function is defined as

S
(c)
αβ(x− y) ≡ 〈Tcψα(x)ψ̄β(y)〉 (7.24)

= θc(x
0 − y0)S+

αβ(x− y) + θc(y
0 − x0)S−

αβ(x− y), (7.25)

S+
αβ ≡ 〈ψα(x)ψ̄β(y)〉, (7.26)

S−
αβ(x− y) = S+(y − x). (7.27)

where α and β = 1, 2 are the index of SU(2) spinor. The Kubo-Martin-Schwinger relation

of the fermion is given by

S+
αβ(t− iβ, x) = −S−

αβ(t, x). (7.28)

Compared to the corresponce boson expression Eq. (7.1), there is a negative sign which comes

from the spin static of the fermion. The Green function satisfies the following equation

S
(c)
αβ(x− y) = (i/∂ +m)αβG

(c)(x− y) (7.29)

where G(c)(x − y) is given by Eq. (7.2). The Hamiltonian and the number operators are

given by

Ĥ = ωN̂ , (7.30)

N̂ = b†b 〈N̂〉 = 0 or 1. (7.31)

119



This is same to the zero-temperature case. By introducing the complete set |n〉, we have

Tr[e−βĤ ] =
10

n=0

〈n|e−βĤ |n〉 (7.32)

= 1 + e−βω, (7.33)

and

Tr[e−βĤbb†] = e−βω. (7.34)

Therefore, the number density of free fermion on the thermal background is expressed as

〈nF (ω)〉 =
1

eβω + 1
. (7.35)

This result implies that the number density of fermion on the thermal background is described

by the Fermi distribution function. By using following equation

〈bb†〉 = 1− nF (ω), (7.36)

we can express the two-point Green function as follows.

S(c)(x− y) =

>
d4p

(2π)4
ρ(p)e−ip(x−y)[θc(x

0 − y0)− nF (ω)]. (7.37)

The two-point Green functions of free scalar and fermion Eqs. (7.22) and (7.37) can be

summarized as

G(τ, x) =

>
d4p

(2π)4
ρ(p)eipx[θ(τ) + ηn(p0 = ω)], (7.38)

n(ω) ≡ 1

eβω − η
. (7.39)

where

η =

2
34

35

−1
2

(boson)

1 (Weyl fermion)
, (7.40)

In this calculation, we have used t = iτ . The Fourier transformation of G(τ,x) is given by

G̃(ωn, p) =

> β

0

>
d3xeiωnτ−ip·xG(τ, x). (7.41)
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Very interestingly, from the Kubo-Martin-Schwinger relation Eqs. (7.1) and (7.28), we obtain

following expressions:

ηeiωnβ = 1, (7.42)

ωn =

2
34

35

2πn
β

(Boson)

(2n+1)π
β

(Fermion)
(7.43)

Then the Green functions becomes

G̃(ωn, τ) =

> β

0

dτ

>
d3xeiωnτ−ip·xG(τ, x)

=
1

ω2
n + p2 +m2

. (7.44)

We can then define the propagator as

G(τ,x) ≡ i∆(−iτ,x). (7.45)

Then we can express ∆(x) is given by

∆(x) =
1

β

n=+∞0

n=−∞

>
d3p

(2π)3
e−iωnτ−ip·x −i

p2 +m2 + ω2
n

. (7.46)

This implies that we can compute some physical quantities on the thermal background

by using following Feynman Rules:

Boson propagtor :
1

p2 +m2
, pµ =

+
2πin

β
, p

,
(7.47)

Fermion propagator :
1

/p+m
, pµ =

+
(2n+ 1)iπ

β
, p

,
(7.48)

loop integral :
1

β

n=+∞0

n=−∞

>
d3k

(2π)3
(7.49)

Vertex function : − iβ(2π)3δ(
0

i

ωi)δ
(3)(

0

i

pi) (7.50)

The vertex factor is completely same as the zero-temperature field theory. We can easily

find above expressions that just the integration with respect to time is discretized due to the

Kubo-Martin-Schwinger relation. In the following, we will compute the one-loop thermal

effective potential with above mentioned Feynman Rules.
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Figure 7.1: The one-loop Feynman diagram contributing to the Vthermal is shown. The

external leg corresponds to the background field ϕ.

A scalar field contribution

Let us consider the scalar field contribution, where the tree-level Lagrangian is given by

L =
1

2
∂µφ∂

µφ− V (φ), (7.51)

V (φ) =
1

2
m2φ2 +

λ

4
φ4. (7.52)

The one-loop effective potential can be calculated by computing the Feynman diagram

indicated in Fig. 7.1. With taking into account following factors

propagator :

+
− 1

p2 +m2

,n

, (7.53)

external leg : ϕ2n, (7.54)

vertex : (−3λ)n , (7.55)

symmetric factor :
1

2n
, (7.56)

1

β

n=+∞0

n=−∞

>
d3k

(2π)3
, (7.57)
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Figure 7.2: The one-loop Feynman diagram contributing to the Vthermal is shown. The

internal line corresponds to the fermion field, while the external field corresponds to the

background field ϕ.

for nth diagram, Vthermal of a scalar field contribution is calculated as

V1−loop =
1

β

∞0

n=−∞

∞0

N=1

>
d3p

(2π)3
1

2N

+
− 3λϕ2

p2 +m2

,N

, (7.58)

=
1

β

∞0

n=−∞

∞0

N=1

>
d3p

(2π)3
log

+
1 +

3λϕ2

p2 +m2

,
, (7.59)

=
1

2β

∞0

n=−∞

>
d3p

(2π)3
log(p2 +m2 + 3λϕ2). (7.60)

The momentum p is defined in Eq. (7.47). The extension of the multi-compoent scalar field

system is straightforward.

A fermion contribution

Let us consider the following Lagrangian:

L = iψ̄/∂ − ψ̄MF (ϕ)ψ, (7.61)

where MF (ϕ) ∝ ϕ. This coupling usually comes from a Yukawa coupling. With taking into

account following factors

vertex :
'
M2

F

(n
, (7.62)

symmertric factor : − 1

2n
. (7.63)
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for nth diagram, Vthermal of a fermion contribution is given by

Vthermal = −nF

2β

n=∞0

n=−∞

>
d3p

(2π)3
log(p2 +M2

F ), (7.64)

where

nF =

2
34

35

4 (Dirac fermion)

2 (Weyl fermion)
. (7.65)

Note that Feynman diagrams having odd external legs vanishes because the trace of odd

numbers of gamma matrices or Pauli matrices are zero.

A gauge field contribution

Finally, we consider the contribution from gauge boson. When the background field ϕ is

charged under the gauge symmetry, the covariant derivative term Dµϕ leads to following

Lagrangian:

L = −1

4
Tr(FµνF

µν) +
M(ϕ)2

2
AaµA

bµ. (7.66)

By choosing the Landau gauge, gauge field propagator can be expressed as

Πµ
ν ≡ − 1

p2
∆µ

ν , (7.67)

∆µ
ν ≡ δµν − pµpν

p2
. (7.68)

In this gauge, ∆µ
ν∆

ν
ρ = ∆µ

ρ and pµΠ
µ
ν = 0 are satisfied. With taking into account following

factors

vertex : (−M2(ϕ))n, (7.69)

symmetric factor :
1

2n
, (7.70)

for nth diagram, Vthermal of a gauge bosons contribution is given by

Vthermal =
3

2β

∞0

n=−∞

>
d3p

(2π)3
log(p2 +M2(ϕ)). (7.71)
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Figure 7.3: The one-loop Feynman diagram contributing to the Vthermal is shown. The

internal line corresponds to the gauge bosons, while the external field corresponds to the

background field ϕ.

In this expression, the factor 3 comes from Tr∆, and p is defined in Eq. (7.47). If ϕ is charged

under several gauge symmetries,M(ϕ) becomes non-diagonal matrix. In such case, we should

diagonalize the mass matrix. We will explicitly calculate this in the next Appendix.

If particles appearing inside the loop have additional degrees of freedoms, we should

multiply this factor in the corresponding expressions.

7.2 Appendix B: Field dependent masses for electroweak

gauge bosons

Here, we explicitly calculate the field dependent masses for SU(2)W × U(1)Y gauge bosons.

By taking the background field of the SM-like Higgs as Eq. (2.62), interactions with SM-like

Higgs and gauge bosons are given by

g22
4
W a

µW
bµ

+
0,

hSM√
2

,
σaσb

!

" 0

hSM√
2

#

$+
1

4

+
0,

hSM√
2

,!

"g2W
3
µg1B

µ 0

0 −g2W
3
µg1B

µ

#

$

!

" 0

hSM√
2

#

$

+
g21
4
BµB

µ

+
0,

hSM√
2

,!

" 0

hSM√
2

#

$ . (7.72)
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In the (W 1
µ ,W

2
µ ,W

3
µ , Bµ) basis, above expression can be rewritten as

(W 1
µ , W 2

µ , W 3
µ , Bµ)

!

-----"

g22
h2
SM

4
0 0 0

0 g22
h2
SM

4
0 0

0 0 g22
h2
SM

4
−g2g1

h2
SM

4

0 0 −g2g1
h2
SM

4
g21

h2
SM

4

#

.....$

!

-----"

W 1µ

W 2µ

W 3µ

Bµ

#

.....$
. (7.73)

By acting an orthogonal matrix for (W 3
µ , Bµ), we can diagonalize the mass matrix:

(W 1
µ , W 2

µ , Zµ, Aµ)

!

-----"

g22
h2
SM

4
0 0 0

0 g22
h2
SM

4
0 0

0 0 (g21 + g22)
h2
SM

4
0

0 0 0 0

#

.....$

!

-----"

W 1µ

W 2µ

Zµ

Aµ

#

.....$
. (7.74)

When we consider the resummation effect, we should include the temperature corrections

on the field dependent mass. In that case, the field dependent mass given by Eq. (7.73) is

improved by the following expression:

(W 1
µ , W 2

µ , W 3
µ , Bµ)

!

-----"

g22
h2
SM

4
+ ΠW 0 0 0

0 g22
h2
SM

4
+ ΠW 0 0

0 0 g22
h2
SM

4
+ ΠW −g2g1

h2
SM

4

0 0 −g2g1
h2
SM

4
g21

h2
SM

4
+ ΠB

#

.....$

!

-----"

W 1µ

W 2µ

W 3µ

Bµ

#

.....$
.

(7.75)

By diagonalizing this matrix, we obtain Eqs. (4.18) and (5.9) with given ΠW and ΠB. Note

that the photon becomes massive due to the finite-temperature corrections.
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