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Abstract

The purpose of this dissertation is to analyze various bargaining situations by using

game theory. As with Nash’s seminal papers, we provide non-cooperative foundations for

axiomatic bargaining solutions. That is, we provide bargaining processes and analyze the

relationship between negotiators’ equilibrium payoffs and axiomatic bargaining solutions.

In Chapter 1, we introduce Nash’s seminal papers, Nash (1950) and Nash (1953),

which initiate the analysis of non-cooperative foundations for axiomatic bargaining so-

lutions. Also, we provide a brief summary of the studies in this dissertation.

In Chapter 2, we provide a bargaining process which is a generalization of the

alternating-offers process in Rubinstein (1982) and analyze the relationship between

its equilibrium payoffs and the asymmetric Nash bargaining solution (ANBS). In our

process, the proposer in each period is decided stochastically and the probability to be

a proposer depends on the history of proposers. In the bilateral model, there is a unique

subgame perfect equilibrium (SPE). In the n-player model, although SPE may not be

unique, an SPE similar to the SPE in the bilateral model exists. We show that, under

these equilibria, the negotiators’ SPE payoffs coincide with the ANBS weighted by the

ratio of opportunities to be a proposer.

In Chapter 3, we consider how the Nash bargaining solution (NBS) can be achieved

and how disagreement can be avoided under the simultaneous-offers process analyzed

in Chatterjee and Samuelson (1990). In the simultaneous-offers process, all agreements

on the Pareto frontier of the feasible utility set can be achieved and disagreement may

occur in equilibria. To avoid disagreement, an arbitrator is often introduced into bar-

gaining. However, if the arbitrator is biased, the NBS is never achieved in equilibrium.

Thus, we consider introducing a mediator to avoid disagreement without eliminating

the achievability of the NBS in equilibrium. In our model with a mediator, we obtain

the following results. First, disagreement is not supported as a stationary SPE (SSPE)

outcome. Second, even if a mediator is biased, the NBS is always one of the SSPE

agreements. Finally, if a mediator is fair, negotiators always reach an agreement with

the NBS in SSPE. Thus, by introducing a mediator, negotiators can avoid disagreement

without eliminating the achievability of the NBS. Also, the NBS is always achieved under

a process with a fair mediator.

In Chapter 4, we consider situations where negotiators have claims on a profit but

the profit is not sufficient to cover the totality of these claims. Such situations are called

claims problems and axiomatic solutions are called rules. As a central rule, we consider

the constrained equal awards (CEA) rule. The CEA rule corresponds to the NBS in a

special class of bargaining problems. Previous papers consider processes where claimants

achieve the division of a profit chosen by the CEA rule. However, these processes are

not “procedurally fair” or “multilateral.” That is, claimants are not treated equally or

some claimant is not involved in the negotiation at some stage. If at least one of the two

features is missing, some claimant feels unfair and does not want to participate in the

negotiation. Thus, we propose a process which is procedurally fair and multilateral. We

show that, as a unique SPE division, the division chosen by the CEA rule is achieved

under our process.

Chapter 5 is the concluding chapter of this dissertation. We summarize the results

of our studies. Also, we discuss several remaining issues and future work.
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Chapter 1

Introduction

A bargaining problem is a situation where individuals or firms decide how to divide

a profit which can be made by their cooperation. For example, price negotiation in

commodity trading, wage negotiation in labor disputes, or negotiation in interna-

tional conflicts can be considered as bargaining problems. The purpose of this dis-

sertation is to analyze various bargaining situations by using game theory. There are

two approaches for analyzing bargaining problems. One is the axiomatic approach

and the other is the strategic approach. These approaches were both initiated by

Nash’s studies. We first introduce the outlines of these studies.

Nash (1950) is the first paper which analyzes bargaining problems by the ax-

iomatic approach. He defines a two-person bargaining problem as a pair (S, d). A

compact and convex set S ⊂ R2 denotes a set of utilities which negotiators can

achieve by their cooperation, and a point d ∈ S denotes the negotiators’ utilities

when disagreement occurs. Under this setting, Nash (1950) defines a bargaining

solution as a function assigning, for each bargaining problem (S, d), a pair of the

negotiators’ utilities in S. A bargaining solution specifies some agreement for each

bargaining problem. In the axiomatic approach, a reasonable agreement for each

bargaining situation is analyzed by finding bargaining solutions satisfying a number

of desirable properties which the solutions should satisfy.

Nash (1950) considers the following four axioms: Invariance to equivalent utility

representations, Symmetry, Pareto efficiency, and Independence of irrelevant alter-

natives.1 He proves that there is a unique bargaining solution satisfying the above

four axioms. Nowadays, this solution is called the Nash bargaining solution (NBS).

Since the NBS satisfies several desirable properties, we can consider the NBS to be

a reasonable agreement for each bargaining problem.

The axiomatic approach is a powerful tool to find a reasonable agreement such

1For the definitions of these axioms, for example, see Osborne and Rubinstein (1990).
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as the NBS. However, the underlying bargaining process is not modeled explicitly,

and therefore, it is not known how the negotiators achieve such an agreement. In

order to know how a reasonable agreement is achieved, Nash also considers another

approach for analyzing bargaining problem. In the study of Nash (1953), he provides

a non-cooperative game which represents a process of bargaining and analyzes what

agreement is achieved through negotiators’ strategic behavior. Such an approach is

called the strategic approach.

Nash (1953) considers a process of two-person bargaining as the following non-

cooperative game. In his bargaining process, both negotiators simultaneously de-

mand their utility levels. If their demands are compatible, the negotiators reach

an agreement. Otherwise, disagreement occurs. This game is called the Nash de-

mand game. In this game, Nash (1953) derives a refinement of Nash equilibrium

which is robust to the negotiators’ uncertainty in the feasible utility set. He proves

that the negotiators’ equilibrium payoffs coincides with the NBS as the possibility

of uncertainty converges to zero. This result implies that a reasonable agreement

is achieved when the negotiators behave strategically in the process of the Nash

demand game. Through Nash (1953)’s research, we can know how a reasonable

agreement is achieved.

The study of Nash (1950) analyzes what a reasonable bargaining agreement is

under the concept of a cooperative game. On the other hand, the study of Nash

(1953) analyzes how a reasonable agreement is achieved under the concept of a non-

cooperative game. Nash’s contribution is to connect a cooperative game with a non-

cooperative game. Following Nash’s seminal papers, several bargaining solutions

and processes have been provided, and many papers have tried to connect these

processes with these solutions. This line of research is known today as the Nash

program.2

This dissertation also follows this line of research. That is, we provide bargaining

processes and analyze the relationship between negotiators’ equilibrium payoffs and

bargaining solutions. In the following, we provide a brief summary of the studies in

this dissertation with this context in mind.

In Chapter 2, we provide a bargaining process which is a generalization of the

alternating-offers process in Rubinstein (1982) and analyze the relationship between

its equilibrium payoffs and the generalized NBS. This chapter is based on Hanato

(2020).

Rubinstein (1982) is one of the most important research papers regarding the

Nash program. The bargaining model of Rubinstein (1982) incorporates a process

2For a comprehensive survey on the Nash program, see Serrano (2005) and Serrano (2020).
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of renegotiation in contrast to the Nash demand game. In his model, bargaining

is conducted between two negotiators each of whom takes turns offering a proposal

to the opponent negotiator. If the proposal is accepted, the negotiators reach an

agreement. Otherwise, a proposer is changed and they renegotiate at the next

period. In this model, by the study of Binmore et al. (1986), it is known that the

unique subgame perfect equilibrium (SPE) payoffs coincide with the NBS when the

negotiators are sufficiently patient.

However, in real situations, negotiation may not be conducted exactly in the

process of alternating-offers. For example, in price negotiation, if some negotiator is

more aggressive, such a negotiator may offer proposals more frequently. Therefore,

we consider a bargaining process where each negotiator may not take turns offering

a proposal. In our study, we provide a process where the proposer in each period

is decided stochastically. We suppose that the probability to be a proposer depends

on the history of proposers.

The negotiators divide a profit of size 1 as in the model of Rubinstein (1982).

We derive an SPE and analyze how its SPE payoffs are related to our process in the

bilateral model and the n-player model. In the bilateral model, there is a unique

SPE. In the n-player model, although SPE may not be unique, an SPE similar to the

SPE in the bilateral model exists. We show that, under these equilibria, if the ratio of

the negotiators’ opportunities to be a proposer converges as the bargaining proceeds

to later periods, the negotiators divide the profit according to this convergent ratio

when they are sufficiently patient.

In our model, the negotiators’ SPE payoffs coincides with the asymmetric NBS

(ANBS) weighted by the convergent values of opportunities to be a proposer. The

ANBS is a generalization of the NBS and the weights of the ANBS reflect negotiators’

bargaining power. Thus, the opportunities to be a proposer can be considered as

the negotiators’ bargaining power. By our results, we can know that the ANBS

is achieved when bargaining is conducted under the process where opportunities of

proposals are asymmetric between negotiators.

In Chapter 3, we consider how the NBS is achieved in the simultaneous-offers

process analyzed in Chatterjee and Samuelson (1990). This chapter is based on

Hanato (2019).

Chatterjee and Samuelson (1990) consider a simultaneous-offers process which is

a generalization of the Nash demand game in the sense that it incorporates a process

of renegotiation similar to the Rubinstein (1982). In their model, two negotiators

simultaneously propose their demands at each period. If their demands are compat-

ible, the negotiators reach an agreement. Otherwise, they renegotiate. For example,

such a simultaneous-offers process appears in negotiation of international conflicts.
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In these situations, nations decide demands in advance and simultaneously reveal

them on the negotiation table.

Chatterjee and Samuelson (1990) show that all agreements on the Pareto frontier

of the feasible utility set can be achieved as well as disagreement may occur in

equilibrium. The problem with this result is that an unreasonable agreement or an

inefficient outcome may arise in equilibrium. Therefore, it is worth considering how

a reasonable agreement such as the NBS can be achieved, and how disagreement

can be avoided under the simultaneous-offers process.

One way to avoid disagreement is to introduce an arbitrator into bargaining. The

role of an arbitrator is to impose some agreement when negotiators cannot reach an

agreement. However, some studies that incorporate an arbitrator imply that, if the

arbitrator is biased, a reasonable agreement is never achieved in equilibrium.

Thus, in our study, we consider introducing a mediator to avoid disagreement

without eliminating the achievability of a reasonable agreement in equilibrium.

Whereas an arbitrator imposes an agreement, a mediator has no such power and

can only give advice to the negotiators. In contrast to bargaining with an arbitra-

tor, negotiators have the right to reject the mediator’s advice.

We analyze a simultaneous-offers bargaining model with such a mediator. Under

a stationary SPE (SSPE) which is a refinement of an SPE, we obtain the following

results. First, disagreement is not supported as an SSPE outcome. Second, even if

a mediator is biased, the NBS is always one of the SSPE agreements. Finally, if a

mediator is fair, negotiators always reach an agreement with the NBS in SSPE. These

results imply that, by introducing a mediator, negotiators can avoid disagreement

without eliminating the achievability of a reasonable agreement. Also, we can see

that the NBS is achieved under the simultaneous-offers process with a fair mediator.

Chapter 4 is based on Hagiwara and Hanato (2021). We consider bargaining

situations where negotiators (claimants) have claims on a profit. For example, when

a firm goes bankrupt and its liquidation value has to be allocated, creditors have

claims on it. Also, when an estate is allocated, heirs have claims on it. Especially,

we consider the situation where the liquidation value or the estate is not sufficient

to cover the totality of the claims. Such a problem is known as a claims problem.

Although claims problems have been mainly analyzed by the axiomatic approach,

some recent papers have analyzed the problems by using the strategic approach and

connected a bargaining process with a solution. We also follow these studies.

An axiomatic solution of claims problems is called a division rule or simply a

rule. As a central rule for claims problems, we consider the constrained equal awards

rule (CEA rule). It is known that the division of a profit chosen by the CEA rule

corresponds to the NBS in a special class of bargaining problems.
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Li and Ju (2016) and Tsay and Yeh (2019) consider processes where claimants

achieve the division chosen by the CEA rule. However, these processes are not

“procedurally fair” or “multilateral.” If a game is not procedurally fair, claimants

are not treated equally. For example, only one claimant has the power to select a

division in Li and Ju (2016). In addition, if a game is not multilateral, some claimant

is not involved in the negotiation at some stage. Such a situation occurs in Tsay

and Yeh (2019). If at least one of the two features is missing, the negotiation might

not be initiated since some claimant feels unfair and does not want to participate in

the negotiation.

Thus, we propose a process which is procedurally fair and multilateral. Our

process resembles the simultaneous-offers process in the sense that in each period,

all negotiators simultaneously make proposals and they can try again in the next

period if they do not reach an agreement. We show that, as a unique SPE division,

the division chosen by the CEA rule is achieved under our procedurally fair and

multilateral process.

Chapter 5 is the concluding chapter of this dissertation. We summarize the

results of our studies. Also, we discuss several remaining issues and future work.
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Chapter 2

Equilibrium Payoffs and

Proposal Ratios in Bargaining

Models1

2.1 Introduction

In this chapter, we consider a basic non-cooperative bargaining problem in which

negotiators divide a pie of size 1. We analyze the model which is a generalization of

the model of Rubinstein (1982) from the viewpoint of the process of how a proposer

is decided in each period. We consider a process where the proposer in each period

is decided stochastically and a probability to be a proposer depends on the history

of proposers. In this model, we derive the subgame perfect equilibrium (SPE) and

analyze the relationship between its SPE payoffs and a bargaining solution.

Recent research on non-cooperative bargaining models based on Rubinstein (1982)

has used one of the following tools in deciding the proposer in each period: alter-

nating offers, constant probabilities across periods, or a Markov process (where a

probability to be a proposer depends on the previous proposer). Alternating offers

and constant probabilities across periods can be considered as a special case of a

Markov process. For example, alternating offers is used in Rubinstein (1982), Shaked

and Sutton (1984), Chae and Yang (1990), and Kultti and Vartiainen (2010), con-

stant probabilities process is used in Fershtman and Seidmann (1993), Okada (1996),

Kalandrakis (2006), and Laruelle and Valenciano (2008), a Markov process is used

in Kalandrakis (2004), Britz et al. (2010), and Herings and Predtetchinski (2010).

In these processes, negotiators’ probabilities to be a proposer do not depend on

1This chapter is based on Hanato (2020).
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periods. Therefore, they cannot express the bargaining where situations change over

time. However, in reality, bargaining situations may constantly and gradually change

over time. For example, in price negotiation of commodity trading, if some individual

can haggle over the price more tenaciously than the opponent, the opportunity to

be a proposer of such an individual will gradually increase over time. Then, the

probability to be a proposer of this individual will increase over time. Also, for a

business person, there may exist some time periods when she is busier than other

periods. During the busy time periods, it may be difficult for a business person

to prepare a plan of proposal. Then, the probability that such a business person

becomes a proposer may be small. In this situation, the probabilities to be a proposer

depend on the periods rather than the previous proposer.

Such situations cannot be appropriately modeled within the framework of the

aforementioned models since the probabilities to be a proposer in these models

have nothing to do with periods. In contrast to these models, by dispensing the

Markov assumption, we analyze a more flexible model in the sense that a negotiator’s

probability to be a proposer may depend on the history of proposers. That is, a

Markov process is a special case of our process. By considering such a model, we

can analyze more complex situations depending not only on the previous proposers

but also on periods.

Although we consider the process which can depend on the history of proposers

to analyze the situations depending on periods, it does not mean that the process

needs to use the information of all previous proposers. For example, consider a

process in which the probabilities to be a proposer depend on the previous finite

number of proposers and the periods. Such a process is a special case of our process,

but this process cannot be represented by a Markov process since it depends on

periods.

Other related literatures are as follows. Mao (2017) and Mao and Zhang (2017)

analyze the bilateral bargaining models which are not represented by a Markov

process to handle complex situations from the viewpoint of the designer, but their

procedures are deterministic. The model analyzed in this chapter is a generalization

of their model in the sense that we consider a stochastic process. Although Merlo

and Wilson (1995) and Merlo and Wilson (1998) each analyzes an n-player model

where the probability may depend on the history of proposers, the goals of these

studies are to characterize the set of SPE payoffs as a fixed point of a suitable

mapping. Therefore, these papers do not derive the SPE payoffs explicitly so that

one do not know how negotiators actually divide the pie other than the fact that

one such division exists.

In our study, we derive an explicit expression for the SPE payoffs and analyze how

9



negotiators divide the pie in the bilateral model and the n-player model, respectively.

In the bilateral model, we show that there is a unique SPE and show how its SPE

payoffs are related to the probability to be a proposer. In the n-player model,

although we cannot derive the uniqueness of SPE, we can still obtain an SPE which

has the same form as the SPE derived in the bilateral bargaining model. That is, we

can obtain an SPE which does not involve punishments for negotiators who deviate

from the strategy profile (similar to a stationary SPE derived in the models with a

Markov process). Also, we can find that this SPE is a Markov perfect equilibrium

(MPE). Under this MPE, the relationship between negotiators’ MPE payoffs and

the probability to be a proposer has the same relationship as the bilateral model.

In this chapter, we also analyze the case where the discount factor is sufficiently

large. This case is not analyzed in Mao (2017), Mao and Zhang (2017), Merlo and

Wilson (1995), and Merlo and Wilson (1998). In the bilateral model, we show that

if the ratio of opportunities to be a proposer during some periods converges to some

value in the long run, then negotiators divide the pie according to the ratio of this

convergent value (we use the word “the proposal ratio” instead of the word “the ratio

of opportunities to be a proposer” in the following). In reality, even if individuals

propose the divisions freely in the beginning, the negotiation often calm down and

the proposal ratio often stays in some value in the long run. Our result shows that

the pie is divided according to the ratio of this value.

As corollaries, we can derive the result for models with alternating offers, con-

stant probabilities across periods, and a Markov process. The main consequence of

this result is that the process used in our model has less regularity than a Markov

process, we can derive the same result as in the model that uses a Markov process.

That is, the result that negotiators divide the pie according to the ratio of the con-

vergent value is “robust” to departures from an exact Markov process. However, in

contrast to the result as shown in Britz et al. (2010)’s Markov process model where

all negotiators propose the same division in all states in a stationary SPE, under

the SPE which we derive, the negotiators propose the divisions depending on the

current state.

We also find the relationship between the SPE payoffs and asymmetric Nash

bargaining solution (ANBS). The relationship between SPE payoffs and the ANBS

is recently analyzed in Laruelle and Valenciano (2008), Kultti and Vartiainen (2010),

and Britz et al. (2010). These papers analyze such a relationship in different bar-

gaining processes. The processes of Laruelle and Valenciano (2008), Kultti and

Vartiainen (2010), and Britz et al. (2010) are constant probabilities across periods,

alternating offers, and a Markov process, respectively.

In our research, we analyze the relationship between the SPE payoffs and the

10



ANBS in a more flexible process than the processes in the aforementioned papers.

Our research is actually not a generalization of these papers since these papers

analyze such a relationship with a more general utility space than ours. However,

finding a relationship between the SPE payoffs and the ANBS in our complex process

clarifies how a bargaining procedure affects the bargaining outcome as “bargaining

power.” As a result of this analysis, we show that the limit of the SPE payoffs

coincides with the ANBS weighted by the convergent values of the proposal ratio.

In the n-player model, all results about the limit payoffs in the bilateral model

are also derived under the MPE which has the same form as the SPE derived in the

bilateral model.

This chapter is organized as follows. In section 2.2, we define the bilateral

bargaining model. In section 2.3, we show that there exists a unique SPE in the

game defined in section 2.2 and how its SPE payoffs are related to the process of

proposer. In section 2.4, we consider the case where the discount factor is sufficiently

large in the bilateral model. In this section, we show that if the proposal ratio during

some periods converges to some value in the long run, then negotiators divide the

pie according to the ratio of this convergent value. In section 2.5, we analyze the

relationship between the SPE payoffs and the ANBS. In section 2.6, we analyze the

n-player model. In section 2.7, we conclude our study. Although some results in

this chapter are based on the author’s master thesis, there are additional discussions.

Especially, the discussions about the relationship between the SPE payoffs and the

ANBS are new results. For ease of understanding these additional discussions, this

chapter contains the results in the author’s master thesis.

2.2 The bilateral model

We consider the game in which two negotiators 1 and 2 divide a pie of size 1. We

define N = {1, 2} as the set of negotiators and δ ∈ (0, 1) as the common discount

factor. Also, let S = { (x1, x2) | x1 + x2 = 1, x1, x2 ≥ 0} as the set of divisions. The

game proceeds as follows.

At period t ∈ {1, 2, . . . }, nature selects one negotiator as a proposer. When

negotiator i ∈ N is selected as a proposer, then she proposes some division x ∈ S.

After it, the responder j(̸= i) responds with Yes or No. If the responder negotiator j

accepts the opponent’s proposal, then the game ends and negotiator i receives δt−1xi

and negotiator j receives δt−1xj . Conversely, if negotiator j rejects the opponent’s

proposal, the game continues to the next period t+1 and repeat the above process.

In this model, we assume that a probability to be a proposer depends on the

history of proposers. By such a model, we can consider the process depending not

11



Figure 2.1: Subgame Γ(π) corresponding to a history of proposers π

only on the previous proposers but also on periods.

Since
∪

t∈NN t−1 denotes the set of histories of proposers (N0 = ∅), the prob-

ability that a proposer is chosen in the next period is represented by the function

P :
∪

t∈NN t−1 → {(P 1, P 2) | P 1+P 2 = 1, P 1, P 2 ≥ 0} where P i denotes negotiator

i’s probability.

Histories are divided into three types Ha
t , H

b
t , and Hc

t where Ha
t = (N × S ×

{No})t−1 denotes the set of histories at the beginning of period t (Ha
1 = ∅), Hb

t =

Ha
t ×N denotes the set of histories after nature’s selection, and Hc

t = Hb
t ×S denotes

the set of histories after the proposer’s offer. Let o(hat ) ∈ N t−1 be the history of

proposers in hat ∈ Ha
t . Then, negotiator i is selected as a proposer with probability

P i(o(hat )) after h
a
t ∈ Ha

t .

Consider two histories gat , h
a
t ∈ Ha

t such that o(gat ) = o(hat ) ∈ N t−1. Since

P (o(gat )) = P (o(hat )), the subgames corresponding to gat and hat coincide. Therefore,

subgames corresponding to Ha
t can be characterized by N t−1. Now, we define Γ(π)

as the subgame corresponding to π ∈
∪

t∈NN t−1. The original game is represented

by Γ(∅). See Figure 2.1.

2.3 Uniqueness of SPE

We examine an SPE of this model. In this section, we prove the uniqueness of SPE.

First, we prepare some notation. Let πr ∈ N r be an order of proposers during r

periods and let πr(k) be k-th proposer of the order πr. Let πs
r = (πr(1), . . . , πr(s))

be the proposers of the order πr from the first proposer to s-th proposer. Let

πrπs be an order of proposers in which πs follows πr. Then, we define Π(π, πr) =

12



Figure 2.2: Extracted tree of three periods after a history of proposers π

P πr(1)(π) · · ·P πr(r)(ππr−1
r ).

To see the meaning of Π(π, πr), we extract edges of nature’s action from the

original game tree. Figure 2.2 represents the tree of three periods after the history

of proposers π. For example, if π3 = (1, 2, 2), Π(π, π3) = P 1(π)P 2(π, 1)P 2(π, 1, 2).

Generally, Π(π, πr) is the probability that the order πr occurs on condition that

the history of proposers π occurred. Since the sum of the probabilities of all orders

of length r (on condition that π occurred) equals 1,
∑

πr∈Nr Π(π, πr) = 1 for all

π ∈
∪

t∈NN t−1 and for all r ∈ N.
Also, by the definition of Π(π, πr), for all π ∈

∪
t∈NN t−1, πr ∈ N r, and i ∈ N ,

P i(π)Π((π, i), πr) = Π(π, (i, πr)). (2.1)

Then, we define pit(π) as follows.

pit(π) =
∑

πt−1∈Nt−1

Π(π, πt−1)P
i(ππt−1)

where Π(π, ∅) = 1. Π(π, πt−1)P
i(πt−1) roughly represents the probability that the

history of proposers (πt−1, i) ∈ N t occurs on condition that the history of proposers

π occurred. Therefore, since pit(π) is the sum of these probabilities for all orders

πt−1 ∈ N t−1, pit(π) can be considered as negotiator i’s probability to be a proposer

at period t of the subgame Γ(π). By its definition, pit(π) + pjt (π) = 1.

Then, the following Lemma 2.3.1 holds. The meaning of Lemma 2.3.1 is that

negotiator i’s probability to be a proposer at period t + 1 of the subgame Γ(π) is

equal to the sum of negotiator i’s probabilities at period t of the subgame Γ(π, i) and

Γ(π, j) where the probabilities are weighted by the probabilities that the subgame

13



Γ(π) proceeds to the subgame Γ(π, i) and Γ(π, j), respectively.

Lemma 2.3.1. For all π ∈
∪

t∈NN t−1 and t ∈ N,

P i(π) · pit(π, i) + P j(π) · pit(π, j) = pit+1(π)

where j ̸= i.

Proof. By the definition of pit(π) and (2.1),

P i(π) · pit(π, i) + P j(π) · pit(π, j)

=
∑

πt−1∈Nt−1

P i(π)Π((π, i), πt−1)P
i(π, i, πt−1) +

∑
πt−1∈Nt−1

P j(π)Π((π, j), πt−1)P
i(π, j, πt−1)

=
∑

πt−1∈Nt−1

Π(π, (i, πt−1))P
i(π, i, πt−1) +

∑
πt−1∈Nt−1

Π(π, (j, πt−1))P
i(π, j, πt−1).

The first term of the last equation can be considered as the sum of the orders of

length t which starts from i, and the second term can be considered as the sum of

the orders of length t which starts from j. Therefore, for all i′ ∈ N ,∑
πt−1∈Nt−1

Π(π, (i′, πt−1))P
i(π, i′, πt−1) =

∑
πt∈Nt,πt(1)=i′

Π(π, πt)P
i(ππt).

Then,

P i(π) · pit(π, i) + P j(π) · pit(π, j)

=
∑

πt∈Nt,πt(1)=i

Π(π, πt)P
i(ππt) +

∑
πt∈Nt,πt(1)=j

Π(π, πt)P
i(ππt)

=
∑

πt∈Nt

Π(π, πt)P
i(ππt)

=pit+1(π).

By using the value pit(π), for all π ∈
∪

t∈NN t−1 and i ∈ N , we also define

fi(π) =

∑∞
r=1 δ

r−1pir(π)∑∞
s=1 δ

s−1
.

Since pit(π) + pjt (π) = 1, fi(π) + fj(π) = 1 holds. Also, the following lemma

about fi(π) holds.
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Lemma 2.3.2. For all π ∈
∪∞

t=1N
t−1 and i ∈ N ,

fi(π) = P i(π) (1− δfj(π, i)) + P j(π)δfi(π, j)

where j ̸= i.

Proof. By the definition of fi(π), the first term of the right hand side can be trans-

formed as follows.

P i(π) (1− δfj(π, i)) =
P i(π)∑∞
s=1 δ

s−1

( ∞∑
r=1

δr−1 − δ

∞∑
r=1

δr−1pjr(π, i)

)

=
P i(π)∑∞
s=1 δ

s−1

(
1 +

∞∑
r=1

δr
[
1− pjr(π, i)

])

=
1∑∞

s=1 δ
s−1

(
P i(π) +

∞∑
r=1

δrP i(π)pir(π, i)

)
.

Also, the second term can be transformed as follows.

P j(π)δfi(π, j) =
P j(π)∑∞
s=1 δ

s−1
δ

∞∑
r=1

δr−1pir(π, j)

=
1∑∞

s=1 δ
s−1

∞∑
r=1

δrP j(π)pir(π, j).

Therefore, by summarizing the above two values,

P i(π) (1− δfj(π, i)) + P j(π)δfi(π, j)

=
1∑∞

s=1 δ
s−1

(
P i(π) +

∞∑
r=1

δrP i(π)pir(π, i)

)
+

1∑∞
s=1 δ

s−1

∞∑
r=1

δrP j(π)pir(π, j)

=
1∑∞

s=1 δ
s−1

(
P i(π) +

∞∑
r=1

δrpir+1(π)

)

=

∑∞
r=1 δ

r−1pir(π)∑∞
s=1 δ

s−1

=fi(π)

where we use Lemma 2.1 in the second equation. Thus, Lemma 2.3.2 holds.

We prove the existence of an SPE by using the above lemma.
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Theorem 2.3.1. Consider the following pair of strategies σ = (σ1, σ2). Negotiator

i ∈ N proposes the division of the pie (1− δfj(o(h
a
t ), i), δfj(o(h

a
t ), i)) to negotiator

j(̸= i) at the history (hat , i) ∈ Hb
t . On the other hand, negotiator i accepts negotiator

j’s proposal x if xi ≥ δfi(o(h
a
t ), j) and rejects if xi < δfi(o(h

a
t ), j) at the history

(hat , j, x) ∈ Hc
t . Then, σ = (σ1, σ2) is an SPE of the game.

Proof. Since the game is an infinite horizon discounted multi-stage game with ob-

served actions, we can apply the one-shot deviation principle to prove Theorem 2.3.1.

That is, σ is an SPE if there is no player who can become better off by deviating

from σ for just one period (see Fudenberg and Tirole (1991)).

First, consider the history (hat , i) ∈ Hb
t . If σi and σj are played after (hat , i),

negotiator i receives δt−1 (1− δfj(o(h
a
t ), i)).

Suppose that negotiator i one-shot deviates from σi and proposes another divi-

sion x = (1− xj , xj) which satisfies xj > δfj(o(h
a
t ), i). Then, negotiator j accepts it

under σj and negotiator i receives δt−1(1−xj). However, δ
t−1(1−xj) is smaller than

δt−1(1 − δfj(o(h
a
t ), i)). Thus, negotiator i cannot improve her payoff by proposing

the division x = (xi, xj) satisfying xj > δfj(o(h
a
t ), i) after the history (hat , i).

Next, suppose that negotiator i one-shot deviates from σi and proposes another

division x = (1−xj , xj) which satisfies xj < δfj(o(h
a
t ), i). Then, negotiator j rejects

the offer under σj and the game continues to the step after the history (hat , i, x,No) ∈
Ha

t+1. After the history (hat , i, x,No), negotiator i is selected as a proposer with

probability P i(o(hat ), i) and receives δt (1− δfj(o(h
a
t ), i, i)) under σi and σj . On

the other hand, negotiator i is selected as a responder with probability P j(o(hat ), i)

and receives δt+1fi(o(h
a
t ), i, j) under σi and σj . Therefore, negotiator i receives

P i(o(hat ), i)δ
t (1− δfj(o(h

a
t ), i, i))+P j(o(hat ), i)δ

t+1fi(o(h
a
t ), i, j) = δtfi(o(h

a
t ), i) (by

Lemma 2.3.2) after the history (hat , i, x,No) under σi and σj .

Now, since

δt−1 (1− δfj(o(h
a
t ), i))− δtfi(o(h

a
t ), i)

=δt−1 [1− δ(fj(o(h
a
t ), i) + fi(o(h

a
t ), i))]

=δt−1(1− δ)

>0,

we can see

δt−1(1− δfj(o(h
a
t ), i)) > δtfi(o(h

a
t ), i).

Therefore, negotiator i cannot improve her payoff by proposing the division x =

(xi, xj) satisfying xj < δfj(o(h
a
t ), i) after the history (hat , i).
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Subsequently, we consider the subgame after the history (hat , j, x) ∈ Hc
t . If

negotiator i accepts the offer, she receives δt−1xi. On the other hand, if she rejects

the offer, the game continues to the step after the history (hat , j, x,No) ∈ Ha
t+1.

Then, negotiator i receives δt(1 − δfj(o(h
a
t ), j, i)) with probability P i(o(hat ), j) and

receives δt+1fi(o(h
a
t ), j, j) with probability P j(o(hat ), j) under σi and σj . Therefore,

negotiator i receives P i(o(hat ), j)δ
t(1− δfj(o(h

a
t ), j, i))

+ P j(o(hat ), j)δ
t+1fi(o(h

a
t ), j, j) = δtfi(o(h

a
t ), j) (by Lemma 2.3.2) after the history

(hat , j, x,No) under σi and σj .

Consider the case xi ≥ δfi(o(h
a
t ), j). Suppose that negotiator i one-shot deviates

from σi and rejects the offer x. Then, the game continues to the step after the history

(hat , j, x,No) and negotiator i receives δtfi(o(h
a
t ), j) under σi and σj . In this case,

we can confirm that negotiator i cannot improve her payoff by deviating from σi

since δt−1xi ≥ δtfi(o(h
a
t ), j).

Consider the case xi < δfi(o(h
a
t ), j). Suppose that negotiator i one-shot deviates

from σi and accepts the offer x. Then, negotiator i receives δt−1xi. However, she can

receive larger payoff δtfi(o(h
a
t ), j) under σi and σj . Therefore, negotiator i cannot

improve her payoff by deviating from σi.

Consequently, Theorem 2.3.1 holds since there is no profitable one-shot deviation.

We can find that this SPE is also an MPE, that is, an SPE in which negotiators’

strategies depend only on the history of proposers and the current proposal (do not

depend on the previous proposals).

When the SPE given in Theorem 2.3.1 is played, negotiators 1 and 2 receive

f1(∅) and f2(∅) (by Lemma 2.3.2), respectively. We prove that the payoffs which

are obtained in the SPE given in Theorem 2.3.1 are the unique SPE payoffs of the

game.

Let Mi(πt) and mi(πt) be the supremum and the infimum respectively of nego-

tiator i’s SPE payoffs of the game Γ(πt) in which all payoffs are multiplied by 1/δt.

We have already confirmed that there is an SPE in the game. Therefore, for all

i ∈ N and for all π ∈
∪∞

t=1N
t−1, Mi(π) and mi(π) are well-defined. We derive two

inequalities involving the supremum and the infimum of SPE payoffs.

Lemma 2.3.3. For all i ∈ N , for all t ∈ {1, 2, . . . }, and for all hat ∈ Ha
t , the

following inequalities hold.

Mi(πt−1) ≤ P i(πt−1) + δ
[
P j(πt−1)Mi(πt−1, j)− P i(πt−1)mj(πt−1, i)

]
, (2.2)

mi(πt−1) ≥ P i(πt−1) + δ
[
P j(πt−1)mi(πt−1, j)− P i(πt−1)Mj(πt−1, i)

]
(2.3)
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where πt−1 = o(hat ).

Proof. Let G(hat , i) be the subgame after the history (hat , i) ∈ Hb
t in which all payoffs

are multiplied by 1/δt. Fix i ∈ N and hat ∈ Ha
t . First, we prove (2.2). Consider

the game G(hat , i). When negotiator i proposes the division x which satisfies xj <

δmj(πt−1, i) at the first period of G(hat , i), negotiator j rejects this proposal in all

SPEs since negotiator j can receives a payoff of at least δmj(πt−1, i) at the next

period or later. Thus, if negotiator i’s proposal is accepted at the first period in

SPE, negotiator i’s payoff is not larger than 1− δmj(πt−1, i). Also, negotiator i can

receive a payoff of at most δMi(πt−1, i) at the next period or later. SinceMi(πt−1, i)+

mj(πt−1, i) ≤ 1 by the definitions of Mi(πt−1, i) and mi(πt−1, i), δMi(πt−1, i) ≤
δ(1−mj(πt−1, i)) < 1− δmj(πt−1, i). Therefore, negotiator i can receive a payoff of

at most 1− δmj(πt−1, i) in the game G(hat , i).

Next, consider the game G(hat , j) (j ̸= i). Let M∗
i (h

a
t , j) be the supremum

of negotiator i’s SPE payoffs in the game G(hat , j). Now, we show M∗
i (h

a
t , j) ≤

δMi(πt−1, j). SupposeM
∗
i (h

a
t , j) > δMi(πt−1, j). Then, there is an SPE σ′ = (σ′

i, σ
′
j)

in which negotiator j proposes the division (x′i, 1− x′i) satisfying δMi(πt−1, j)

< x′i ≤ M∗
i (h

a
t , j) and negotiator i accepts it at the first period of G(hat , j) since

negotiator i cannot achieve a payoff larger than δMi(πt−1, j) at the next period

or later in all SPEs. Therefore, under σ′, negotiator j obtains 1 − x′i. However,

negotiator j can improve her payoff by proposing the division (x∗i , 1 − x∗i ) where

x∗i satisfies x′i > x∗i > δMi(πt−1, j). This proposal is also accepted by negotiator

i who follows the strategy σ′
i since negotiator i must accept all divisions satisfying

xi > δMi(πt−1, j) in all SPEs. Then, negotiator j receives a payoff 1−x∗i (> 1−x′i).

Therefore, for negotiator j, proposing the division (x′i, 1− x′i) is not a best response

to σ′
i. This contradicts to the fact that σ′ is an SPE of the game G(hat , j). Therefore,

M∗
i (h

a
t , j) ≤ δMi(πt−1, j) holds, that is, negotiator i can receive a payoff of at most

δMi(πt−1, j) in the game G(hat , j).

Finally, consider the game Γ(πt−1) in which all payoffs are multiplied by 1/δt−1.

This game moves to the subgame G(hat , i) with probability P i(πt−1) and the game

G(hat , j) with probability P j(πt−1). Therefore, from the above discussion, we can

see

Mi(πt−1) ≤ P i(πt−1) (1− δmj(πt−1, i)) + P j(πt−1)δMi(πt−1, j).

This inequality coincides with (2.2).

Next, we prove (2.3). First, consider the game G(hat , i). Let m∗
i (h

a
t , i) be the

infimum of negotiator i’s SPE payoffs in the game G(hat , i). We show m∗
i (h

a
t , i) ≥

1 − δMj(πt−1, i). Suppose m∗
i (h

a
t , i) < 1 − δMj(πt−1, i). Then, there is an SPE
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σ′′ = (σ′′
i , σ

′′
j ) in which negotiator i obtains some payoff x′′i satisfying m∗

i (h
a
t , i) ≤

x′′i < 1 − δMj(πt−1, i). However, negotiator i can improve her payoff by proposing

the division (x∗∗i , 1− x∗∗i ) at the first period of G(hat , i) where x∗∗i satisfies 1− x′′i >

1 − x∗∗i > δMj(πt−1, i). This proposal is accepted by negotiator j who follows the

strategy σ′′
i since negotiator j must accept all divisions satisfying xj > δMj(πt−1, i)

in all SPEs. Then, negotiator i receives a payoff x∗∗i (> x′′i ). Therefore, σ′′
i is not

a best response to σ′′
j . This contradicts to the fact that σ′′ is an SPE of the game

G(hat , i). Therefore, m∗
i (h

a
t , i) ≥ 1 − δMj(πt−1, i) holds, that is, negotiator i can

receive a payoff of at least 1− δMj(πt−1, i) in the game G(hat , i).

Next, consider the game G(hat , j). For all SPEs, if negotiator j proposes the

division x which satisfies xi < δmi(πt−1, j) at the first period of G(hat , j), negotiator

i rejects this proposal since she can receive a payoff of at least δmi(πt−1, j) at the

next period or later. Therefore, for all SPEs, negotiator i can obtain a payoff of at

least δmi(πt−1, j) in the game G(hat , j).

Finally, consider the game Γ(πt−1) in which all payoffs are multiplied by 1/δt−1.

This game moves to the subgameG(hat , i) with probability P i(πt−1) and the subgame

G(hat , j) with probability P j(πt−1). Therefore, from the above discussion, we can

see

mi(πt−1) ≥ P i(πt−1) (1− δMj(πt−1, i)) + P j(πt−1)δmi(πt−1, j).

This inequality coincides with (2.3).

Before proving the uniqueness of SPE payoffs, we provide an alternative form of

fi(π). For all r ∈ {1, 2, . . . }, π ∈
∪∞

t=1N
t−1, and i ∈ N , we define

qir(π) =
∑

πr−1∈Nr−1

Π(π, πr−1)P
i(ππr−1)P

j(ππr−1, i)

where Π(π, ∅) = 1 and j ̸= i.

By using this value, we transform fi(π) into the form which is not a fractional

expression.

Lemma 2.3.4. For all π ∈
∪∞

t=1N
t−1 and i ∈ N ,

fi(π) = P i(π) +

∞∑
r=1

δr
(
qjr(π)− qir(π)

)
.

Proof. Before transforming fi(π), we prove

pir+1(π)− pir(π) = qjr(π)− qir(π). (2.4)
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First, we transform pir+1(π) as follows.

pir+1(π)

=
∑

πr−1∈Nr−1

Π(π, πr−1)P
i(ππr−1)P

i(ππr−1, i) +
∑

πr−1∈Nr−1

Π(π, πr−1)P
j(ππr−1)P

i(ππr−1, j)

=
∑

πr−1∈Nr−1

Π(π, πr−1)P
i(ππr−1)P

i(ππr−1, i) + qjr(π)

where, in the first equation, we use the fact that the set of the orders of length r,

N r, can be divided into two sets of the orders in which the last proposers are i and

j, respectively.

Therefore, (2.4) can be proved as follows.

pir+1(π)− pir(π)

=

 ∑
πr−1∈Nr−1

Π(π, πr−1)P
i(ππr−1)P

i(ππr−1, i) + qjr(π)

−
∑

πr−1∈Nr−1

Π(π, πr−1)P
i(ππr−1)

=qjr(π)−
∑

πr−1∈Nr−1

Π(π, πr−1)P
i(ππr−1)P

j(ππr−1, i)

=qjr(π)− qir(π).

Then, fi(π) can be transformed as follows.

fi(π) =(1− δ)

∞∑
r=1

δr−1pir(π)

=
∞∑
r=1

δr−1pir(π)−
∞∑
r=1

δrpir(π)

=P i(π) +

∞∑
r=1

δrpir+1(π)−
∞∑
r=1

δrpir(π)

=P i(π) +
∞∑
r=1

δr(qjr(π)− qir(π))

where we use (2.4) in the last equation.

By using Lemma 2.3.3 and 2.3.4, we prove the uniqueness of SPE payoffs.

Theorem 2.3.2. For all t ∈ {0, 1, . . . } and π ∈ N t, (f1(π), f2(π)) are the unique

SPE payoffs of the game Γ(π) in which all payoffs are multiplied by 1/δt. Especially,

(f1(∅), f2(∅)) are the unique SPE payoffs of the original game.
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Proof. First, we prove that for all i ∈ N and m ∈ {1, 2, . . . },

Mi(π) ≤P i(π) +

m∑
r=1

δr
(
qjr(π)− qir(π)

)
+ δm+1αi

m(π) (2.5)

and

mi(π) ≥P i(π) +

m∑
r=1

δr
(
qjr(π)− qir(π)

)
+ δm+1βi

m(π) (2.6)

where

αi
m(π) =

∑
πm∈Nm

Π(π, πm)
[
P j(ππm)Mi(ππm, j)− P i(ππm)mj(ππm, i)

]
and

βi
m(π) =

∑
πm∈Nm

Π(π, πm)
[
P j(ππm)mi(ππm, j)− P i(ππm)Mj(ππm, i)

]
.

We prove (2.5) and (2.6) by mathematical induction. The case of m = 1 is easily

proved by using Lemma 2.3.3 few times. Now, suppose that (2.5) and (2.6) hold for

m = k. Here, we only show the inequality (2.5). (2.6) is proved similarly.

To prove that (2.5) holds for m = k + 1, it is sufficient to prove

αi
k(π) ≤

(
qjk+1(π)− qik+1(π)

)
+ δαi

k+1(π). (2.7)

By using Lemma 2.3.3, (2.7) is proved as follows.

αi
k(π) =

∑
πk∈Nk

Π(π, πk)
[
P j(ππk)Mi(ππk, j)− P i(ππk)mj(ππk, i)

]
≤
(
qjk+1(π)− qik+1(π)

)
+ δ

∑
πk∈Nk

Π(π, πk)P
j(ππk)

[
P j(ππk, j)Mi(ππk, j, j)− P i(ππk, j)mj(ππk, j, i)

]
− δ

∑
πk∈Nk

Π(π, πk)P
i(ππk)

[
P i(ππk, i)mj(ππk, i, i)− P j(ππk, i)Mi(ππk, i, j)

]
=
(
qjk+1(π)− qik+1(π)

)
+ δ

∑
πk+1∈Nk+1

πk+1(k+1)=j

Π(π, πk+1)
[
P j(ππk+1)Mi(ππk+1, j)− P i(ππk+1)mj(ππk+1, i)

]
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− δ
∑

πk+1∈Nk+1

πk+1(k+1)=i

Π(π, πk+1)
[
P i(ππk+1)mj(ππk+1, i)− P j(ππk+1)Mi(ππk+1, j)

]

=
(
qjk+1(π)− qik+1(π)

)
+ δ

∑
πk+1∈Nk+1

Π(π, πk+1)
[
P j(ππk+1)Mi(ππk+1, j)− P i(ππk+1)mj(ππk+1, i)

]
=
(
qjk+1(π)− qik+1(π)

)
+ δαi

k+1(π)

where we use Lemma 2.3.3 in the inequality.

Now, we can see that (2.5) (and (2.6)) holds for m = k + 1. Therefore, for all

i ∈ N and m ∈ {1, 2, . . . },

Mi(π) ≤ P i(π) +
m∑
r=1

δr
(
qjr(π)− qir(π)

)
+ δm+1αi

m(π)

and

mi(π) ≥ P i(π) +

m∑
r=1

δr
(
qjr(π)− qir(π)

)
+ δm+1βi

m(π)

hold.

Next, we consider taking the limit as m → ∞ in (2.5). Focus on the third

term of the right hand side in (2.5). Since 0 ≤ P i(ππm), P j(ππm) ≤ 1 and 0 ≤
Mi(ππm, j),mj(ππm, i) ≤ 1 by their definitions,

−1 ≤ P j(ππm)Mi(ππm, j)− P i(ππm)mj(ππm, i) ≤ 1.

Therefore, by the definition of αi
m(π),

−δm+1 =− δm+1
∑

πm∈Nm

Π(π, πm) ≤ δm+1αi
m(π) ≤δm+1

∑
πm∈Nm

Π(π, πm) = δm+1

where we use the fact
∑

πm∈Nm Π(π, πm) = 1.

Thus, by taking the limit of both sides of the inequality,

lim
m→∞

δm+1αi
m(π) = 0.

As a result, by taking the limit in (2.5) and by Lemma 2.3.4,

Mi(π) ≤P i(π) +

∞∑
r=1

δr
(
qjr(π)− qir(π)

)
+ lim

m→∞
δm+1αi

m(π)

=fi(π).
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Similarly,

mi(π) ≥ fi(π)

holds. Thus, since Mi(π) ≥ mi(π),

Mi(π) = mi(π) = fi(π)

holds. This equation means that for all t ∈ {0, 1, . . . } and π ∈ N t, (f1(π), f2(π))

are the unique SPE payoffs of the game Γ(π) in which all payoffs are multiplied by

1/δt.

By Theorem 2.3.2, we can also find that the SPE σ = (σ1, σ2) given in Theorem

2.3.1 is the unique SPE of the game.

Theorem 2.3.3. The SPE σ = (σ1, σ2) given in Theorem 2.3.1 is the unique SPE

of the game.

Proof. Fix the history (hat , j, x) ∈ Hc
t . When negotiator i rejects the proposal,

by Theorem 2.3.2, she obtains δtfi(o(h
a
t ), j) at the next period or later in all SPEs.

Therefore, in all SPEs, negotiator i accepts negotiator j’s proposal x if xi > δfi(o(h
a
t ), j)

and rejects if xi < δfi(o(h
a
t ), j).

Now, suppose that negotiator i rejects j’s proposal x if xi = δfi(o(h
a
t ), j)) in some

SPE. Since 1 − δfj(o(h
a
t ), j) > δfi(o(h

a
t ), j), there exists some proposal x∗ which

satisfies 1− δfj(o(h
a
t ), j) > x∗i > δfi(o(h

a
t ), j). If negotiator j proposes the division

x∗, negotiator i accepts it in the SPE. Then, negotiator j obtains δt−1(1 − x∗i )(>

δtfj(o(h
a
t ), j)). Therefore, after (h

a
t , j) ∈ Hb

t , it is better for negotiator j to propose

the division x∗ which is accepted by negotiator i than to propose some division which

is rejected by negotiator i. Thus, in this SPE, negotiator j proposes some division

which is accepted by negotiator i after (hat , j) ∈ Hb
t . However, negotiator j’s best

response does not exist after (hat , j) since negotiator i accepts the proposal x′ if and

only if x′i > δfi(o(h
a
t ), j). This is a contradiction. Hence, negotiator i accepts j’s

proposal x if xi = δfi(o(h
a
t ), j)) in all SPEs.

By the above discussion, negotiator i accepts negotiator j’s proposal x if xi ≥
δfi(o(h

a
t ), j) and rejects if xi < δfi(o(h

a
t ), j) at the history (hat , j, x) ∈ Hc

t in

all SPEs. Then, since δt−1(1 − δfi(o(h
a
t ), j) > δtfj(o(h

a
t ), j), negotiator j’s best

response at the history (hat , j) ∈ Hb
t is only proposing the division of the pie

(1 − δfi(o(h
a
t ), j), δfi(o(h

a
t ), j)) which is accepted by negotiator i. Therefore, the

SPE given in Theorem 2.3.1 is the unique SPE of the game.

Finally, we provide an interpretation of the unique SPE payoff fi(∅). We can

consider pit(∅) as negotiator i’s probability to be a proposer at period t in the original
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game. Thus, by the first form of fi(∅), we can view each component game at period

t involving negotiators dividing a pie of size δt−1 according to the proposal ratio at

period t, p1t (∅) : p2t (∅). Then, δt−1pit(∅) is the value that negotiator i can obtain at

period t. The numerator of fi(∅) is the sum of these values and the denominator

denotes the value of whole game. Therefore, the negotiator with more chances to be

a proposer can obtain a higher payoff.

2.4 The limit of the SPE payoffs

Although it is generally difficult to examine the limit of the SPE payoffs in our model,

if the process has some property during a time period of a certain length (which a

Markov process satisfies), we can give a simple expression of the limit of the SPE

payoffs. In this section, remember that pit(∅) denotes negotiator i’s probability to

be a proposer at period t in the original game.

Theorem 2.4.1. If there exists some k ∈ N such that limm→∞
∑mk

t=(m−1)k+1 p
i
t(∅)

converges to some value Vi (limm→∞
∑mk

t=(m−1)k+1 p
j
t (∅) converges to Vj where Vi +

Vj = k), then limδ↑1 fi(∅) = Vi
k and limδ↑1 fj(∅) =

Vj

k .

Since pit(∅) is negotiator i’s probability to be a proposer at period t,
∑mk

t=(m−1)k+1 p
i
t(∅)

is the sum of these probabilities during the periods (m − 1)k + 1, . . . ,mk. Theo-

rem 2.4.1 means that if the proposal ratio during a time period of a certain length

converges to some value, then negotiators divide the pie according to this ratio.

Proof. By assumption, for all ϵ > 0, there exists some N∗(ϵ) ∈ N such that

Vi − ϵ ≤
mk∑

t=(m−1)k+1

pit(∅) ≤ Vi + ϵ

for m ≥ N∗(ϵ). Therefore, for m ≥ N∗(ϵ),

δmk−1(Vi − ϵ) ≤
mk∑

t=(m−1)k+1

δt−1pit(∅) ≤ δ(m−1)k(Vi + ϵ). (2.8)

We define

L(δ) =A(δ) +

∑∞
m=N∗(ϵ) δ

mk−1(Vi − ϵ)∑∞
t=1 δ

t−1
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and

R(δ) =A(δ) +

∑∞
m=N∗(ϵ) δ

(m−1)k(Vi + ϵ)∑∞
t=1 δ

t−1

where

A(δ) =

∑(N∗(ϵ)−1)k
t=1 δt−1pit(∅)∑∞

t=1 δ
t−1

.

By the definitions of L(δ), R(δ), and (2.8),

L(δ) ≤ fi(∅) ≤ R(δ) (2.9)

holds since

fi(∅) =A(δ) +

∑∞
m=N∗(ϵ)

∑mk
t=(m−1)k+1 δ

t−1pit(∅)∑∞
t=1 δ

t−1
.

Now, L(δ) can be transformed as follows.

L(δ) =A(δ) +

∑∞
m=N∗(ϵ) δ

mk−1(Vi − ϵ)∑∞
t=1 δ

t−1
= A(δ) +

(Vi − ϵ) δ
N∗(ϵ)k−1

1−δk∑k
t=1 δ

t−1

1−δk

=A(δ) +
(Vi − ϵ)δN

∗(ϵ)k−1∑k
t=1 δ

t−1
.

Similarly, R(δ) can be transformed as follows.

R(δ) =A(δ) +

∑∞
m=N∗(ϵ) δ

(m−1)k(Vi + ϵ)∑∞
t=1 δ

t−1
= A(δ) +

(Vi + ϵ) δ
(N∗(ϵ)−1)k

1−δk∑k
t=1 δ

t−1

1−δk

=A(δ) +
(Vi + ϵ)δ(N

∗(ϵ)−1)k∑k
t=1 δ

t−1
.

Thus, limδ↑1 L(δ) =
Vi−ϵ
k and limδ↑1R(δ) = Vi+ϵ

k since limδ↑1A(δ) = 0.
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Hence, by (2.9),

Vi − ϵ

k

= lim
δ↑1

L(δ) = lim inf
δ↑1

L(δ)

≤ lim inf
δ↑1

fi(∅) ≤ lim sup
δ↑1

fi(∅)

≤ lim sup
δ↑1

R(δ) = lim
δ↑1

R(δ)

=
Vi + ϵ

k
.

(2.10)

Since (2.10) holds for all ϵ > 0,

lim
δ↑1

fi(∅) = lim inf
δ↑1

fi(∅) = lim sup
δ↑1

fi(∅) =
Vi

k
.

Thus,

lim
δ↑1

fj(∅) = 1− lim
δ↑1

fi(∅) =
k − Vi

k
=

Vj

k
.

We have shown that if the proposal ratio during a time period of a certain length

converges to some value, then negotiators divide the pie according to the ratio of

this value. One interpretation of the condition “there exists some k ∈ N such that

limm→∞
∑mk

t=(m−1)k+1 p
i
t(∅) converges to some value Vi” is that, in reality, even if

individuals propose the divisions freely in the beginning, the negotiation often calm

down and the ratio of frequencies of proposal during a time period of a certain length

often stays in some value in the long run.

Then, the number k in Theorem 2.4.1 can be considered as the length of this

time period. That is, after the negotiation calm down, the ratio of individuals’

opportunities to be a proposer are Vi : Vj during these periods. Theorem 2.4.1

represents that individuals divide the pie with the ratio Vi : Vj under this situation.

From Theorem 2.4.1, we obtain some corollaries.

Corollary 2.4.1. If there exists some k ∈ N such that limm→∞
∑m+k

t=m+1 p
i
t(∅) con-

verges to some value Vi (limm→∞
∑m+k

t=m+1 p
j
t (∅) converges to Vj where Vi +Vj = k),

then limδ↑1 fi(∅) = Vi
k and limδ↑1 fj(∅) =

Vj

k .

Proof. If the sequence {
∑m+k

t=m+1 p
i
t(∅)}m∈N converges to Vi, then the subsequence

{
∑mk

t=(m−1)k+1 p
i
t(∅)}m∈N converges to Vi. Therefore, by Theorem 2.4.1, limδ↑1 fi(∅) =

Vi
k and limδ↑1 fj(∅) =

Vj

k .
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Corollary 2.4.1 means that if the proposal ratio during k consecutive periods

converges to Vi : Vj , then negotiators divide the pie according to this ratio. To

help one understand, we give an example which is a generalization of the alternat-

ing offers process used in Rubinstein (1982) where p12(m−1)+1(∅) = 1, p12m(∅) = 0,

p22(m−1)+1(∅) = 0, and p22m(∅) = 1 for all m ∈ N.

Example 2.4.1. Suppose that limm→∞ pi2(m−1)+1(∅) converges to V 1
i and limm→∞ pi2m(∅)

converges to V 2
i (limm→∞ pj2(m−1)+1(∅) converges to V 1

j where V 1
i + V 1

j = 1 and

limm→∞ pj2m(∅) converges to V 2
j where V 2

i +V 2
j = 1), then limδ↑1 fi(∅) =

V 1
i +V 2

i
2 and

limδ↑1 fj(∅) =
V 1
j +V 2

j

2 .

In this example, the proposal ratio during 2 consecutive periods converges to

(V 1
i +V 2

i ) : (V
1
j +V 2

j ). Therefore, negotiators divide the pie according to this ratio.

In Rubinstein’s alternating offers model, this ratio is 1 : 1.

Proof. For all ϵ > 0, there exists some N∗(ϵ) ∈ N such that

V 1
i − ϵ

2
< pi2(m−1)+1(∅) < V 1

i +
ϵ

2

for m ≥ N∗(ϵ). Also, there exists some N∗∗(ϵ) ∈ N such that

V 2
i − ϵ

2
< pi2m(∅) < V 2

i +
ϵ

2

for m ≥ N∗∗(ϵ).

Therefore,

V 1
i + V 2

i − ϵ <

m+2∑
t=m+1

pit(∅) < V 1
i + V 2

i + ϵ

for m ≥ max{2N∗(ϵ), 2N∗∗(ϵ)}.
Thus,

lim
m→∞

m+2∑
t=m+1

pit(∅) = V 1
i + V 2

i .

Hence, by Corollary 2.4.1,

lim
δ↑1

fi(∅) =
V 1
i + V 2

i

2

and

lim
δ↑1

fj(∅) =
V 1
j + V 2

j

2
.
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The following Corollary 2.4.2 is also obtained by Theorem 2.4.1.

Corollary 2.4.2. If limt→∞ pit(∅) converges to some value Vi (limt→∞ pjt (∅) con-

verges to Vj where Vi + Vj = 1), then limδ↑1 fi(∅) = Vi and limδ↑1 fj(∅) = Vj.

Proof. This is the case of k = 1.

This corollary implies that the SPE payoff is equal to negotiator’s probability to

be a proposer in the limit.

A Markov process is used in Kalandrakis (2004), Britz et al. (2010), and Herings

and Predtetchinski (2010) where a negotiator’s probability to be a proposer in each

period depends on the identity of the proposer in the last period. We prove that if

negotiator’s probability depends on the previous l periods, then this process satisfies

the condition of Corollary 2.4.2.

Proposition 2.4.1. Suppose that for all i ∈ N and π ∈
∪∞

t=l+1N
t−1, P i(π) > 0

and P i(π) depends on the previous l periods (for π ∈
∪l

t=1N
t−1, P i(π) can take

arbitrary values). Then, limt→∞ pit(∅) exists.

Proof.
∪∞

t=l+1N
t−1 can be divided into 2l states which are characterized by the

history of proposers during previous l periods (i1, . . . , il) ∈ N l (where il denotes the

proposer in the last period). We define the set of these states as Θ = {θ1, . . . , θ2l}.
Then, for all π, π′ ∈ θm (m ∈ {1, . . . , 2l}), P i(π) = P i(π′) by assumption. Therefore,

for all π ∈ θm, P i(π) can be expressed as a constant value P i(θm) > 0.

Now, define Qt−1(θ) =
∑

πt−1∈Nt−1,πt−1∈θ Π(∅, πt−1) and

Qt−1(Θ) = (Qt−1(θ1), . . . , Qt−1(θ2l)). Let θ
′ be the state corresponding to (i1, . . . , il) ∈

N l. Also, let θ′′ be the state corresponding to (1, i1, . . . , il−1) and θ′′′ be the state

corresponding to (2, i1, . . . , il−1). Then,

Qt(θ
′) = P il(θ′′)Qt−1(θ

′′) + P il(θ′′′)Qt−1(θ
′′′). (2.11)

Therefore, we can express

Qt(Θ) = Qt−1(Θ)A

where A is the transition matrix satisfying (2.11). Under this setting, since

pit(∅) =
∑

πt−1∈Nt−1

Π(∅, πt−1)P
i(πt−1)
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=
∑
θ∈Θ

P i(θ)
∑

πt−1∈Nt−1,πt−1∈θ

Π(∅, πt−1)

=
∑
θ∈Θ

P i(θ)Qt−1(θ)

for t ≥ l+1, we can prove Proposition 2.4.1 by showing the limt→∞Qt(Θ)
(
= limt→∞Ql(Θ)At−l

)
exists. It is sufficient to show that A is ergodic. We show that all entries of Al are

positive, that is, show that we can arrive at any state from any state in l steps with

positive probability.

Let θm be the state corresponding to (m1, . . . ,ml) ∈ N l and θm′ be the state

corresponding to (m′
1, . . . ,m

′
l) ∈ N l. We can arrive at the state θ1 corresponding to

(m2, . . . ,ml,m
′
1) ∈ N l from θm in 1 step with probability Pm′

1(θm) > 0 (since for all

π ∈
∪∞

t=l+1N
t−1, P i(π) > 0). Also, we can arrive at the state θ2 corresponding to

(m3, . . . ,ml,m
′
1,m

′
2) ∈ N l from θm in 2 steps with probability Pm′

1(θm)Pm′
2(θ1) >

0. Similarly, we can arrive at the state θm′ from θm in l steps with probability

Pm′
1(θm)Pm′

2(θ1) · · ·Pm′
l(θl−1) > 0. Since θm and θm′ can be taken arbitrarily, we

can arrive at any state from any state in l steps with positive probability. Therefore,

A is ergodic.

By Proposition 2.4.1, we can see that a Markov process satisfies the condition of

Corollary 2.4.2 and negotiators divide the pie according to the proposal ratio in the

limit. A special case of Proposition 2.4.1 is as follows.

Example 2.4.2. Let P i(i) > 0 and P i(j) > 0 be constant values (j ̸= i). Suppose

that P i(πt) = P i(i) when πt(t) = i and P i(πt) = P i(j) when πt(t) = j (P i(∅) and

P j(∅) can take arbitrary values). Then, limδ↑1 fi(∅) = P i(j)
P i(j)+P j(i)

.

Proof. First of all, we derive the recurrence relation of pit(∅).

pit+1(∅) =
∑

πt∈Nt,πt(t)=i

Π(∅, πt)P i(i) +
∑

πt∈Nt,πt(t)=j

Π(∅, πt)P i(j)

=P i(i)
∑

πt−1∈Nt−1

Π(∅, πt−1)P
i(πt−1) + P i(j)

∑
πt−1∈Nt−1

Π(∅, πt−1)P
j(πt−1)

=P i(i) · pit(∅) + P i(j) · pjt (∅)

=P i(i) · pit(∅) + P i(j) · (1− pit(∅))

=
(
P i(i)− P i(j)

)
pit(∅) + P i(j).

Therefore, the following relationship between pit+1(∅) and pit(∅) holds.

pit+1(∅)−
P i(j)

1 + P i(j)− P i(i)
=
(
P i(i)− P i(j)

)(
pit(∅)−

P i(j)

1 + P i(j)− P i(i)

)
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⇒ pit+1(∅)−
P i(j)

P i(j) + P j(i)
=
(
P i(i)− P i(j)

)(
pit(∅)−

P i(j)

P i(j) + P j(i)

)
.

Thus, the probability pit+1(∅) can be calculated as follows.

pit+1(∅) =
P i(j)

P i(j) + P j(i)
+
(
P i(i)− P i(j)

)t(
P i(∅)− P i(j)

P i(j) + P j(i)

)
.

Since −1 < P i(i)− P i(j) < 1,

lim
t→∞

pit+1(∅) =
P i(j)

P i(j) + P j(i)
.

By Corollary 2.4.2, we obtain

lim
δ↑1

fi(∅) =
P i(j)

P i(j) + P j(i)
.

A Markov process satisfies the condition of Corollary 2.4.2 and negotiators divide

the pie according to the proposal ratio in the limit. The main consequence of

Theorem 2.4.1 is that although the process used in Theorem 2.4.1 has less regularity

than a Markov process, we can derive the same result as in the model that uses a

Markov process. That is, the result that negotiators divide the pie according to the

proposal ratio in the limit is “robust” to departures from an exact Markov process.

Actually, even if we assume an extra condition “there exists some k ∈ N such

that limm→∞
∑mk

t=(m−1)k+1 p
i
t(∅) converges to some value Vi” in Theorem 2.4.1 for the

analysis of the limit payoffs, this condition is more general than assuming a Markov

process in which probabilities depend on the previous finite number of proposers.

In fact, if negotiators’ probabilities to be a proposer depend on the periods and

the probabilities converge to some values in the limit, it satisfies our condition but

it cannot be represented by a Markov process with finite memory. Also, when

we arbitrarily consider a deterministic process in which each negotiator proposes

just once during 2 periods, all of such processes satisfy our condition, but in these

processes, there exists a process which is not represented by a Markov process.2

2Let A be the order 1 → 2 where negotiator 1 proposes first and negotiator 2 proposes sec-
ond. Also, let B be the order 2 → 1. Now, for example, consider the deterministic process
ABBAAABBBB · · · . In this process, the proposal ratio during 2 periods is 1 : 1. Therefore,
this process satisfies the condition in Theorem 2.4.1. However, for all k ∈ N, this process is not
represented by a Markov process in which probabilities depend on the previous k periods. Although
this process is a very extreme example, even if we set A and B arbitrarily, such orders satisfy our
condition. This fact implies that Theorem 2.4.1 can analyze not only simple situations which are
represented by a Markov process but also more complex situations.
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Therefore, our condition is more general than assuming a Markov process and we

can still consider many complex situations.

If a Markov process is ergodic, the limiting distribution coincides with the unique

stationary distribution. Therefore, in the models with a Markov process, the pro-

posal ratio during one period in the limit coincides with the unique stationary dis-

tribution of the Markov process. Our condition in Theorem 2.4.1 generalizes this

property. That is, by viewing k periods in the condition of Theorem 2.4.1 as a single

unit, we can consider that the process which satisfies our condition has “a limiting

distribution” and “a stationary distribution” of the unit. Then, the proposal ratio

during the unit converges to “the stationary distribution” and this ratio coincides

with the ratio of the limit SPE payoffs.

In a Markov process, a set of states B is called an absorbing set if we cannot reach

a state outside of B with a positive probability from any state in B. In the models

with a Markov process, the condition that there is no absorbing set is often assumed.

In contrast to it, in our model, even if we consider a process with absorbing sets,

we can calculate the limit of the SPE payoffs if this process satisfies the condition

of Theorem 2.4.1.

As a simple example, consider the process where alternating offers which starts

from negotiator 1 occurs with probability 1/2 and the deterministic process where

negotiator 2 always becomes a proposer occurs with probability 1/2. That is, nature

selects these two deterministic processes with equal probabilities at the first period.

This process can be represented by a Markov process which depends on the previous

2 periods. In this process, there are mainly three states (1, 2), (2, 1), and (2, 2) where

(1, 2), (2, 1), and (2, 2) denote the proposers in the previous 2 periods, respectively.

After nature selects alternating offers, the transition probabilities from (1, 2) to

(2, 1) and from (2, 1) to (1, 2) are 1, respectively. Conversely, after nature selects the

deterministic process where negotiator 2 always becomes a proposer, the transition

probability from (2, 2) to (2, 2) is 1. Then, this process has two absorbing sets

{(1, 2), (2, 1)} and {(2, 2)}. However, we can calculate the limit of the SPE payoffs.

Since p12(m−1)+1(∅) = 1/2 and p12m(∅) = 0 for all m ∈ N, limδ↑ f1(∅) = 1/4 and

limδ↑ f2(∅) = 3/4 by Example 2.4.1. Thus, even if the process has absorbing sets, we

can calculate the limit of the SPE payoffs when the process satisfies the condition

of Theorem 2.4.1.

Finally, we mention an interpretation of the proposals offered in the unique SPE

σ = (σ1, σ2) given in Theorem 2.3.1 when the discount factor is sufficiently large.

The following proposition is derived from Theorem 2.3.1.

Proposition 2.4.2. Suppose that, for all π ∈
∪

t∈NN t−1, there exists some k(π) ∈
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N such that limm→∞
∑mk(π)

t=(m−1)k(π)+1 p
i
t(π) converges to some value Vi(π) (thus,

limm→∞
∑mk(π)

t=(m−1)k(π)+1 p
j
t (π) converges to Vj(π) where Vi(π) + Vj(π) = k(π)).

Then, when δ ↑ 1, negotiator i proposes the division
(
Vi(π,i)
k(π,i) ,

Vj(π,i)
k(π,i)

)
in the unique

SPE given in Theorem 2.3.1 if she is selected as a proposer after the history of

proposer π.3

Proof. By assumption, as with Theorem 2.4.1,

lim
δ↑1

fi(π, i) =
Vi(π, i)

k(π, i)
and lim

δ↑1
fj(π, i) =

Vj(π, i)

k(π, i)
.

Negotiator i proposes the division (1 − δfj(π, i), δfj(π, i)) in the unique SPE if

she is selected as a proposer after the history of proposer π. These values converge

to (limδ↑1 fi(π, i), limδ↑1 fj(π, i)) when δ ↑ 1. Therefore, Proposition 2.4.2 holds.

Vi(π, i) : Vj(π, i) denotes the limit of the proposal ratio in the subgame Γ(π, i).

Thus, Proposition 2.4.2 implies that, when negotiator i is selected as a proposer

after π, she proposes a division according to the limit of the proposal ratio after the

current state (π, i).

In the model with a Markov process, if there is no absorbing set, all proposers

propose the same division in all states in a stationary SPE when the discount factor

is sufficiently large (see Britz et al. (2010)). In contrast, in our model, negotiators’

proposals depend on the current state. Therefore, negotiators’ proposals may change

over time. Then, they propose a division according to the limit of the proposal ratio

after the current state.

2.5 The relationship between the SPE payoffs and the

ANBS in the bilateral model

In this section, we mention the relationship between the unique SPE payoffs and

the ANBS. Finding the relationship between the unique SPE payoffs and the ANBS

in our complex process clarifies how a bargaining procedure affects the bargaining

outcome as “bargaining power.” As a result, we show that the limit of the unique

SPE payoffs coincides with the ANBS weighted by the convergent values of the

proposal ratio.

3In Proposition 2.4.2, we have to assume the condition of convergence for all π ∈
∪

t∈N N
t−1. If

this condition does not hold, after some history, the limit of the division which is proposed in the
unique SPE may not exist. Even if we assume such a condition, we can still consider the process
where negotiators’ probabilities to be a proposer depends on the periods and the probabilities
converge to some values in the limit. Therefore, this condition is more general than assuming a
Markov process.
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For a utility space S′, the asymmetric Nash bargaining solution with weights w

is defined as follows.

Definition 2.5.1. The asymmetric Nash bargaining product with weights w, Φw :

S′ → R, is defined by

Φw(x) = Πi∈N (xi)
wi

where w = (w1, w2) is a vector of nonnegative weights.

The asymmetric Nash bargaining solution (ANBS) with weights w, xA = (xA1 , x
A
2 ) ∈

S′, is the unique maximizer of the function Φw.

The weights w of the ANBS denotes “the bargaining power” of the negotiators.

In our research, we consider the case S′ = {(x1, x2) | x1 + x2 ≤ 1, x1, x2 ≥ 0}.
For the limit of the unique SPE payoffs (fi(∅), fj(∅)) and the ANBS, the following

relationship holds.

Theorem 2.5.1. Suppose that there exists some k ∈ N such that limm→∞
∑mk

t=(m−1)k+1 p
i
t(∅)

converges to some value Vi (limm→∞
∑mk

t=(m−1)k+1 p
j
t (∅) converges to Vj where Vi +

Vj = k). Then, the ANBS with weights V = (Vi, Vj) is (Vi
k ,

Vj

k ). Therefore, the

unique SPE payoffs (fi(∅), fj(∅)) converge to the ANBS with weights V = (Vi, Vj)

when δ ↑ 1.

Proof. Notice that ΦV (x) = Πi∈N (xi)
Vi = Πi:Vi>0(xi)

Vi . Let x′ ∈ S′ be the value

that, for some i ∈ N such that Vi > 0, x′i = 0. Then, ΦV (x
′) = 0. Therefore, x′ does

not maximize the asymmetric Nash bargaining product. Thus, for i ∈ N such that

Vi > 0, xAi > 0. Conversely, let x′′ ∈ S′ be the value that, for some i ∈ N such that

Vi = 0, x′′i > 0. Then, ΦV (x
′′) can be improved by reallocating the value x′′i > 0

to the other negotiator j such that Vj > 0. Therefore, for i ∈ N such that Vi = 0,

xAi = 0.

Hence, it is sufficient to solve the following maximization problem to derive the

ANBS.

maximize
∑

i:Vi>0

Vi lnxi,

subject to
∑

i:Vi>0

xi = 1.
(2.12)

Define

L(x, λ) =
∑

i:Vi>0

Vi lnxi + λ

1−
∑

i:Vi>0

xi


where λ is a Lagrange multiplier.
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The solution of (2.12) can be derived by solving

∂L

∂xi
=

Vi

xi
− λ = 0, for i such that Vi > 0,

∂L

∂λ
= 1−

∑
i:Vi>0

xi = 0. (2.13)

Then, we obtain

Vi

xi
=

Vj

xj
for i and j such that Vi, Vj > 0. (2.14)

By combining (2.13), (2.14), and the fact that
∑

i∈N Vi = k, we find that the

solution of (2.12) is xi =
Vi
k for all i such that Vi > 0. Since xAi = 0 for i such that

Vi = 0, the ANBS with weights V is (V1
k , V2

k ). Therefore, Theorem 2.5.1 holds.

Theorem 2.5.1 shows the relationship between the limit of the unique SPE payoffs

and the ANBS. This proposition implies that when we consider the probability to be

a proposer in the limit as “the bargaining power,” the unique SPE payoffs converge

to the ANBS when δ ↑ 1.

2.6 The n-player model

In this section, we consider the n-player model (n > 2). Although SPE (and SPE

payoffs) may not be unique in the n-player model if δ is large (see Merlo and Wilson

(1995)), we can still obtain an MPE which has the same form as the SPE derived

in the bilateral model. That is, we can obtain an MPE in which there are no

punishments for negotiators who deviate from the strategy profile. When we consider

the process which depends only on the previous proposer and consider the proposer

as the current state (that is, a Markov process), this MPE boils down to a stationary

SPE (an SPE in which negotiators’ strategies depend only on the current state and

the current proposal). Under this MPE, we obtain the results which correspond

to Theorem 2.4.1, Proposition 2.4.1, Proposition 2.4.2, and Theorem 2.5.1 in the

n-player model.

2.6.1 The model

We consider the game in which n negotiators divide a pie of size 1. We redefine

N = {1, 2, . . . , n} as the set of negotiators and δ ∈ (0, 1) as the common discount

factor. Also, let S = { (x1, x2, . . . , xn) |
∑

i∈N xi = 1, xi ≥ 0} as the set of divisions

of the pie. As with the bilateral model, we assume that a probability to be a proposer
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depends on the history of proposers. Since
∪

t∈NN t−1 denotes the set of histories

of proposers (N0 = ∅), the probability that a proposer is chosen in the next period

is represented by the function P :
∪

t∈NN t−1 → {(P 1, P 2, . . . , Pn) |
∑

i∈N P i =

1, P i ≥ 0} where P i denotes negotiator i’s probability. The game proceeds as

follows.

At period t ∈ {1, 2, . . . }, nature selects one negotiator as a proposer. The nego-

tiator who is selected as a proposer proposes some division x ∈ S. After it, all other

negotiators respond with Yes or No sequentially (the order of responders does not

affect our results). If all responders accept the proposal, then the game ends and

negotiator i ∈ N receives δt−1xi. Conversely, if some responder rejects the proposal,

the game continues to the next period t+ 1 and repeat the above process.

2.6.2 MPE

We use the same notation as the bilateral model. That is, πr ∈ N r denotes an

order of proposers during r periods and πr(k) denotes k-th proposer of the order πr.

πs
r = (πr(1), . . . , πr(s)) denotes the proposers of the order πr from the first proposer

to s-th proposer. πrπs denotes an order of proposers in which πs follows πr.

We redefine Π(π, πr) = P πr(1)(π)P πr(2)(ππ1
r ) · · ·P πr(r)(ππr−1

r ) for all π ∈
∪

t∈NN t−1

and πr ∈ N r. Then,
∑

πr∈Nr Π(π, πr) = 1.

Also, we redefine

pit(π) =
∑

πt−1∈Nt−1

Π(π, πt−1)P
i(ππt−1)

and

fi(π) =

∑∞
r=1 δ

r−1pir(π)∑∞
s=1 δ

s−1

for all i ∈ N and π ∈
∪

t∈NN t−1 (As with the bilateral model, pit(π) denotes nego-

tiator i’s probability to be a proposer at period t of the subgame which starts after

the history of proposers π). Then,
∑

i∈N pit(π) = 1 and
∑

i∈N fi(π) = 1.

As with Lemma 2.3.1, the following lemma holds.

Lemma 2.6.1. For all i ∈ N , π ∈
∪

t∈NN t−1, and t ∈ N,∑
j∈N

P j(π)pit(π, j) = pit+1(π).

Proof. The proof is the same as Lemma 2.3.1.

Also, the following lemma holds.
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Lemma 2.6.2. For all π ∈
∪∞

t=1N
t−1 and i ∈ N ,

fi(π) = P i(π)

1−
∑
j ̸=i

δfj(π, i)

+
∑
j ̸=i

P j(π)δfi(π, j).

Proof. By the definition of fi(π), the first term of the right hand side can be trans-

formed as follows.

P i(π)

1−
∑
j ̸=i

δfj(π, i)

 =
P i(π)∑∞
s=1 δ

s−1

 ∞∑
r=1

δr−1 −
∑
j ̸=i

δ

∞∑
r=1

δr−1pjr(π, i)


=

P i(π)∑∞
s=1 δ

s−1

1 +

∞∑
r=1

δr

1−∑
j ̸=i

pjr(π, i)


=

1∑∞
s=1 δ

s−1

(
P i(π) +

∞∑
r=1

δrP i(π)pir(π, i)

)
.

Also, the second term can be transformed as follows.

∑
j ̸=i

P j(π)δfi(π, j) =
∑
j ̸=i

P j(π)δ

∑∞
r=1 δ

r−1pir(π, j)∑∞
s=1 δ

s−1

=
1∑∞

s=1 δ
s−1

∞∑
r=1

δr
∑
j ̸=i

P j(π)pir(π, j).

Therefore, by summarizing the above two values,

P i(π)

1−
∑
j ̸=i

δfj(π, i)

+
∑
j ̸=i

P j(π)δfi(π, j)

=
1∑∞

s=1 δ
s−1

(
P i(π) +

∞∑
r=1

δrP i(π)pir(π, i)

)
+

1∑∞
s=1 δ

s−1

∞∑
r=1

δr
∑
j ̸=i

P j(π)pir(π, j)

=
1∑∞

s=1 δ
s−1

(
P i(π) +

∞∑
r=1

δrpir+1(π)

)

=

∑∞
r=1 δ

r−1pir(π)∑∞
s=1 δ

s−1

=fi(π)

where we use Lemma 2.6.1 in the second equation. Thus, Lemma 2.6.2 holds.
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By using Lemma 2.6.2, we can see that there exists the following MPE in the

n-player model.

Theorem 2.6.1. Consider the following strategies σ = (σ1, . . . , σn). After the his-

tory of proposers π ∈
∪∞

t=1N
t−1, if negotiator i ∈ N becomes a proposer, she pro-

poses the division x∗ ∈ S where x∗j = δfj(π, i) for j ̸= i and x∗i = 1−δ
∑

j ̸=i fj(π, i).

Conversely, when negotiator i becomes a responder, she accepts negotiator j’s pro-

posal x ∈ S if xi ≥ δfi(π, j) and rejects if xi < δfi(π, j). Then, σ = (σ1, . . . , σn) is

an MPE of the n-player model.

Proof. We apply the one-shot deviation principle. Consider the path after the his-

tory of proposers πt−1 ∈ N t−1.

First, consider the case that negotiator i is selected as a proposer after πt−1. If σ

is played, negotiator i receives δt−1(1− δ
∑

j ̸=i fj(πt−1, i)). Suppose that negotiator

i one-shot deviates from σi and proposes another division x which satisfies xj ≥
δfj(πt−1, i) for all j ̸= i and xj′ > δfj′(πt−1, i) for some j′ ̸= i. Then, all responders

accept it under σ and negotiator i receives δt−1(1 −
∑

j ̸=i xj). However, δt−1(1 −∑
j ̸=i xj) is smaller than δt−1(1 − δ

∑
j ̸=i fj(πt−1, i)). Thus, negotiator i cannot

improve her payoff by proposing the division x.

Next, suppose that negotiator i one-shot deviates from σi and proposes another

division x′ which satisfies x′j∗ < δfj(πt−1, i) for some j∗ ̸= i. Then, negotiator

j∗ rejects the offer under σj∗ and the game continues to the next period. Then,

the history of proposers is (πt−1, i). After this history, negotiator i is selected as a

proposer with probability P i(πt−1, i) and receives δt(1− δ
∑

j ̸=i fj(πt−1, i, i)) under

σ. On the other hand, negotiator j ̸= i is selected as a proposer with probability

P j(πt−1, i) and negotiator i receives δt+1fi(πt−1, i, j) under σ. Therefore, negotiator

i receives P i(πt−1, i)δ
t(1−δ

∑
j ̸=i fj(πt−1, i, i))+

∑
j ̸=i P

j(πt−1, i)δ
t+1fi(πt−1, i, j) =

δtfi(πt−1, i) (by Lemma 2.6.2) under σ.

Now, since

δt−1

1− δ
∑
j ̸=i

fj(πt−1, i)

− δtfi(πt−1, i)

=δt−1

1− δ
∑
j′∈N

fj′(πt−1, i)


=δt−1(1− δ)

>0,
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we can see

δt−1

1− δ
∑
j ̸=i

fj(πt−1, i)

 > δtfi(πt−1, i).

Therefore, negotiator i cannot improve her payoff by proposing the division x′.

Subsequently, consider the case that negotiator j∗∗ ̸= i is selected as a proposer

after πt−1 and she proposes the division x′′ ∈ S. If negotiator i accepts the offer, she

receives δt−1x′′i . On the other hand, if she rejects the offer, the game continues to

the next period. Then, negotiator i receives δt(1−δ
∑

j ̸=i fj(πt−1, j
∗∗, i)) with prob-

ability P i(πt−1, j
∗∗) and receives δt+1fi(πt−1, j

∗∗, j) with probability P j(πt−1, j
∗∗)

for j ̸= i under σ. Therefore, if negotiator i rejects negotiator j∗∗’s proposal x′′, she

receives P i(πt−1, j
∗∗)δt(1− δ

∑
j ̸=i fj(πt−1, j

∗∗, i)) +∑
j ̸=i P

j(πt−1, j
∗∗)δt+1fi(πt−1, j

∗∗, j) = δtfi(πt−1, j
∗∗) (by Lemma 2.6.2) under σ.

Consider the case x′′i ≥ δfi(πt−1, j
∗∗). Suppose that negotiator i one-shot devi-

ates from σi and rejects the offer x′′. Then, the game continues to the next period and

negotiator i receives δtfi(πt−1, j
∗∗) under σ. In this case, we can confirm that nego-

tiator i cannot improve her payoff by deviating from σi since δ
t−1x′′i ≥ δtfi(πt−1, j

∗∗).

Consider the case x′′i < δfi(πt−1, j
∗∗). Suppose that negotiator i one-shot devi-

ates from σi and accepts the offer x′′. Then, negotiator i receives δt−1x′′i . However,

she can receive larger payoff δtfi(πt−1, j
∗∗) under σ. Therefore, negotiator i cannot

improve her payoff by deviating from σi.

Consequently, Theorem 2.6.1 holds since there is no profitable one-shot deviation.

Therefore, we can obtain an MPE which has the same form as the SPE derived

in the bilateral model. That is, we can obtain an MPE in which there are no

punishments for negotiators who deviate from the strategy profile. When we consider

the process which depends only on the previous proposer and consider the proposer

as the current state (that is, a Markov process), the MPE given in Theorem 2.6.1

boils down to a stationary SPE (negotiators’ strategies depend only on the current

state and the current proposal).

2.6.3 The limit of the MPE payoffs

If the MPE σ = (σ1, . . . , σn) given in Theorem 2.6.1 is played, negotiator i ∈ N

receives the payoff fi(∅). Under this MPE, we obtain the results which correspond

to Theorem 2.4.1, Proposition 2.4.1, and Proposition 2.4.2 in the n-player model.
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Theorem 2.6.2. If there exists some k ∈ N such that

{(
∑mk

t=(m−1)k+1 p
1
t (∅), . . . ,

∑mk
t=(m−1)k+1 p

n
t (∅))}m∈N converges to some values (V1, . . . , Vn),

then limδ↑1 fi(∅) = Vi
k for all i ∈ N .

Proof. The proof is the same as Theorem 2.4.1.

Corollary 2.6.1. If there exists some k ∈ N such that

{(
∑m+k

t=m+1 p
1
t (∅), . . . ,

∑m+k
t=m+1 p

n
t (∅))}m∈N converges to some values (V1, . . . , Vn), then

limδ↑1 fi(∅) = Vi
k for all i ∈ N .

Corollary 2.6.2. If {(p1t (∅), . . . , pnt (∅))}t∈N converges to some values (V1, . . . , Vn),

then limδ↑1 fi(∅) = Vi for all i ∈ N .

Therefore, negotiators divide the pie according to the proposal ratio under the

MPE given in Theorem 2.6.1.

If negotiators’ probabilities to be a proposer depend on the previous l periods (a

Markov process), this process satisfies the condition of Corollary 2.6.2.

Proposition 2.6.1. Suppose that for all i ∈ N and π ∈
∪∞

t=l+1N
t−1, P i(π) > 0

and P i(π) depends only on the previous l periods (for π ∈
∪l

t=1N
t−1, P i(π) can

take arbitrary values). Then, {(p1t (∅), . . . , pnt (∅))}t∈N converges.

Proof.
∪∞

t=l+1N
t−1 can be divided into nl states which are characterized by the

history of proposers during previous l periods. The rest of the proof is the same as

Proposition 2.4.1.

We can also obtain the result corresponding to Proposition 2.4.2.

Proposition 2.6.2. Suppose that, for all π ∈
∪

t∈NN t−1, there exists some k(π) ∈ N
such that {

∑mk(π)
t=(m−1)k(π)+1 p

1
t (π), . . . ,

∑mk(π)
t=(m−1)k(π)+1 p

n
t (π)} converges to some value

V (π) = (V1(π), . . . , Vn(π)). Then, when δ ↑ 1, negotiator i proposes the division(
V1(π,i)
k(π,i) , . . . ,

Vn(π,i)
k(π,i)

)
in the MPE given in Theorem 2.6.1 if she is selected as a pro-

poser after the history of proposer π.

Proof. The proof is the same as Proposition 2.4.2.

That is, when negotiator i is selected as a proposer after π, she proposes a

division according to the limit of the proposal ratio after the current state (π, i).

Therefore, negotiators’ proposals depend on the current state and may change over

time.

Hence, in the n-player model, under the MPE σ = (σ1, . . . , σn) given in Theorem

2.6.1, we obtain the same results as the bilateral model.
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2.6.4 The relationship between the MPE payoffs and the ANBS

Finally, we mention the relationship between the MPE payoffs given in Theorem

2.6.1 and the ANBS as with the bilateral model. For a n-dimensional utility space

S′, the asymmetric Nash bargaining solution with weights w is defined as follows.

Definition 2.6.1. The asymmetric Nash bargaining product with weights w, Φw :

S′ → R, is defined by

Φw(x) = Πi∈N (xi)
wi

where w = (w1, . . . , wn) is a vector of nonnegative weights.

The asymmetric Nash bargaining solution (ANBS) with weights w, xA = (xA1 , . . . , x
A
n ) ∈

S′, is the unique maximizer of the function Φw.

We consider the case S′ = {(x1, . . . , xn) |
∑

i∈N xi ≤ 1, xi ≥ 0}. Under the MPE

given in Theorem 2.6.1, the following result corresponding to Theorem 2.5.1 holds

in the n-player model.

Theorem 2.6.3. Suppose that there exists some k ∈ N such that the sequence

{
∑mk

t=(m−1)k+1 p
i
t(∅), . . . ,

∑mk
t=(m−1)k+1 p

i
t(∅)} converges to some value V = (V1, . . . , Vn).

Then, the ANBS with weights V = (V1, . . . , Vn) is (
V1
k , . . . , Vn

k ). Therefore, the MPE

payoffs (f1(∅), . . . , fn(∅)) which are obtained under the MPE given in Theorem 2.6.1

converge to the ANBS with weights V = (V1, . . . , Vn) when δ ↑ 1.

Proof. The proof is the same as Theorem 2.5.1.

Therefore, under the MPE given in Theorem 2.6.1, the MPE payoffs converge to

the ANBS weighted by the limit of the proposal ratio.

2.7 Conclusion

We analyzed the model which is a generalization of the model of Rubinstein (1982)

from the viewpoint of the process of how a proposer is decided in each period. In

our model, a negotiator’s probability to be a proposer depends on the history of

proposers and negotiators divide a pie of size 1. By considering such a model, we

can analyze the situations depending not only on the previous proposers but also on

periods.

In the bilateral bargaining model, we derived the unique SPE and analyzed how

its SPE payoffs are related to the process. We saw each component game at period

t involving negotiators dividing a pie of size δt−1 according to the proposal ratio at

period t in the unique SPE payoffs. Therefore, the negotiator with more chances to

be a proposer can obtain a higher payoff.
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In the case δ ↑ 1, we showed that if the proposal ratio converges to some value,

then negotiators divide the pie according to this convergent value. The main conse-

quence of Theorem 2.4.1 is that although the process used in Theorem 2.4.1 has less

regularity than a Markov process, we can derive the same result as in the model that

uses a Markov process. However, in contrast to the model with a Markov process

where all negotiators propose the same division in all states in a stationary SPE,

under the SPE which we derive, the negotiators propose the divisions depending on

the current state. Also, we analyzed the relationship between the SPE payoffs and

the ANBS. As a result, we showed that the limit of the SPE payoffs coincides with

the ANBS weighted by the convergent values of the proposal ratio.

In the n-player model, we showed that there exists an MPE which has the same

form as the unique SPE in the bilateral model in the sense that there are no pun-

ishments for negotiators who deviate from the strategy profile. Under this MPE, we

showed that the same results as the bilateral model hold.
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Chapter 3

Simultaneous-Offers Bargaining

with a Mediator1

3.1 Introduction

In non-cooperative bargaining models, if negotiators cannot reach an agreement, the

bargaining breaks down (disagreement). Especially, in the standard simultaneous-

offers bargaining model, disagreement is supported as an equilibrium outcome.2

However, in the sense that disagreement is unprofitable, such an outcome is unde-

sirable. In reality, to avoid such disagreement, an arbitrator is often introduced into

bargaining. The role of an arbitrator is to impose some agreement as a final bar-

gaining outcome when negotiators cannot reach an agreement by themselves. For

example, such an arbitrator is used to resolve conflicts in public-sector and to deter-

mine the salaries of major league baseball players. When an arbitrator is introduced

into the bargaining, disagreement vanishes since the arbitrator forces negotiators to

reach an agreement.3

Crawford (1979), Yildiz (2011), and Rong (2012) analyze the bargaining models

with such an arbitrator. Crawford (1979) analyzes the simultaneous-offers bar-

gaining model with an arbitrator, and Yildiz (2011) and Rong (2012) analyze the

alternating-offers bargaining models with an arbitrator.4 The games of these models

proceed as follows. First, negotiators propose their demands simultaneously or al-

ternately. If they can reach an agreement, then the bargaining ends. In contrast, if

they cannot reach an agreement by themselves, the game proceeds to the arbitration

1This chapter is based on Hanato (2019).
2The standard simultaneous-offers bargaining is analyzed in Chatterjee and Samuelson (1990)

as a generalization of the Nash demand game (Nash (1953)).
3More detailed roles of such an arbitrator are discussed in Crawford (1985).
4The model of Rong (2012) is a generalization of the model of Yildiz (2011).
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process and the arbitrator decides a final bargaining outcome.

In these models, since the arbitrators have the authority to decide a final out-

come, the equilibrium outcomes strongly depend on what agreement the arbitrator

wishes to impose (especially, when the discount factor is sufficiently large). There-

fore, a sufficiently “reasonable” agreement for negotiators which seems to be desir-

able as a bargaining outcome (e.g. Nash bargaining solution (NBS) (Nash (1950)))

can be achieved in equilibrium if and only if the arbitrator is sufficiently fair. How-

ever, in real situations, it is observed that arbitrators are often biased and impose

an agreement which seems to be unfair (for example, see Eylon et al. (2000) and

Burger and Walters (2005)). Therefore, when an arbitrator is introduced, a reason-

able agreement is eliminated from equilibrium if the arbitrator is biased. Actually,

in the models of Crawford (1979) and Rong (2012), this is observed.

Given these facts, in our study, we consider introducing a mediator rather than

an arbitrator to avoid disagreement without eliminating the achievability of a rea-

sonable agreement in equilibrium. Whereas an arbitrator imposes an agreement, a

mediator facilitates the reaching of an agreement by negotiators.5 That is, a media-

tor can give advice but cannot impose an agreement. In contrast to the bargaining

with an arbitrator, negotiators have the right to reject the mediator’s advice. In this

sense, a mediator has weaker authority than an arbitrator. Such a mediator is also

often introduced into bargaining situations, but the role of a mediator in bargaining

is not sufficiently analyzed. In this study, we focus on such a mediator.

In our bargaining model with a mediator, the game proceeds as follows. First,

the negotiators simultaneously propose their demands. If these demands are com-

patible, the bargaining ends. If they are incompatible, the bargaining proceeds to

the mediation process. In the mediation process, the mediator proposes a plan of

an agreement. Then, what plan the mediator proposes depends on what kind of

agreement the mediator considers to be ideal (appropriate) as an agreement of the

concerned bargaining. After the mediator proposes a plan, the negotiators decide

whether to accept the mediator’s proposal or reject it. If both negotiators accept

it, the bargaining ends with the mediator’s plan. If some negotiator rejects it, the

bargaining proceeds to the next step where the negotiators propose their demands

again and the above process is repeated. Note that, in contrast to the aforemen-

tioned models with an arbitrator, which has finite periods, this model has infinite

periods.

In our model, we assume that what kind of agreement the mediator considers to

be ideal (appropriate) is known to both negotiators. We justify this assumption by

5This definition is by Muthoo (1999).
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the following reasons. In reality, there are often cases that, as a reference point of the

bargaining, a mediator reveals the agreement which she considers to be appropriate.

The mediator’s main purpose is talking with negotiators for reaching an agreement.

Therefore, there seems to be no valid reasons to conceal her ideas. Then, in order to

facilitate the discussion, the mediator may tell her idea of an appropriate agreement

(however, the mediator’s idea may be biased even if she believes herself to be fair,

as arbitrators in the research of Eylon et al. (2000) are biased by various inevitable

factors even if they believe themselves to be fair). On the other hand, even if a

mediator does not reveal her ideal agreement, negotiators may be able to know what

agreement the mediator intends to propose by searching the cases of the bargaining

which the mediator handled in the past. That is, by the mediator’s behavior in

the past bargaining cases, negotiators can know approximate mediator’s preference.

In our model, by the above reasons, we (approximately) assume that what kind

of agreement the mediator considers to be ideal (appropriate) is known to both

negotiators.

By analyzing this model, we obtain the following desirable results where the NBS

plays an important role as a reasonable agreement. First, we find that, although

a mediator cannot impose an agreement, disagreement is not supported as an out-

come of stationary subgame perfect equilibrium (SSPE). This result implies that a

mediator can resolve conflicts as with an arbitrator. Second, although the set of

SSPE agreements is biased towards the mediator’s ideal agreement, the reasonable

agreement in the sense of the NBS is always one of the SSPE agreements even if

the mediator is biased. Therefore, the reasonable agreement is always achievable

in SSPE (in contrast to models with an arbitrator). Additionally, we find that an

agreement having such a property is only the NBS. Finally, we show that, conversely,

if a mediator is fair in the sense that she wishes to achieve the NBS, the NBS is the

unique SSPE agreement when the discount factor is sufficiently large. That is, the

negotiators always reach an agreement with the NBS in SSPE. Thus, we find that

the fair mediator facilitates the reaching of the reasonable agreement.

In addition to these desirable results, introducing a mediator instead of an arbi-

trator has another advantage. In reality, to call an arbitrator into bargaining often

requires considerable effort since it may need legal processes. For example, the ar-

bitration in labor dispute often needs it. Also, in reality, there are some bargaining

situations where it is difficult to introduce an arbitrator due to negotiators’ strong

power. For example, in conflicts between nations, since nations have strong power,

they may deviate from imposed decision forcibly after negotiation ends. Therefore,

to impose an agreement surely, the introduced arbitrator needs to have sufficiently

strong power, but it is difficult to find such an arbitrator. In contrast to these

44



difficulties, since a mediator is merely an adviser, introducing it is easier than an

arbitrator. That is, a mediator can resolve conflicts as with an arbitrator, but in-

troducing it does not require much effort. This is another advantage of introducing

a mediator.

In the remaining of this section, we introduce other related literatures. Although

the role of a mediator in bargaining situations is not sufficiently analyzed, there are

a few papers which analyze the bargaining with a mediator (e.g. Wilson (2001) and

Jarque et al. (2003)). In most of these papers, a mediator is introduced as a system

of the game. That is, a mediator does not make decision and does not have utility.

However, since a mediator may have bias, it is natural to consider a mediator as a

player of the game rather than a system. Therefore, in our model, we introduce a

mediator as a player.

Camiña and Porteiro (2009) introduce a mediator as a player and analyze peace

negotiations. In their alternating-offers bargaining model, the roles of the mediator

are deciding which negotiator proposes first or deciding whether to submit an offer

received from a negotiator to the other negotiator. Therefore, their mediator does

not give advice about what agreement negotiators should reach. In contrast to

their model, we consider the model where the mediator can propose a plan of an

agreement to negotiators.

A mediator also appears in the literatures of mechanism design such as Myerson

(1983), Myerson and Satterthwaite (1983), and Myerson (1986). Under these liter-

atures, a mediator is introduced as a tool to exchange private information among

players and a tool to suggest players’ next actions for coordinating outcomes of the

game.

Manzini and Mariotti (2001) and Manzini and Mariotti (2004) analyze alternating-

offers bargaining models with an arbitrator. In these models, the arbitrator imposes

an agreement if and only if both negotiators consent to proceed to the arbitration

process. Our model and these models are quite different, but they are similar in

the sense that the consent from both negotiators is necessary before the mediator’s

proposal or the arbitrator’s decision is implemented.

Manzini and Ponsat́ı (2005), Manzini and Ponsati (2006), and Ponsat́ı (2004)

analyze the bargaining with a stakeholder. A stakeholder is a third party who is

interested in the resolution of the conflict and receives benefits when negotiators

reach an agreement. For example, in conflicts in public-sector, the government can

be considered as a stakeholder. In this situation, since the government wishes to

improve social welfare, it makes effort to resolve the conflicts for its benefit. In

our model, the mediator can also be considered as such a stakeholder. The most

different point between the above existing literatures and our model is that, whereas
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the stakeholders in the above literatures are not interested in what agreement the

negotiators reach, the mediator of our model is interested in it. At this point, our

model can be applied to many bargaining situations such as the bargaining in public

sector where the government is interested in how negotiators reach an agreement.

This chapter is organized as follows. In section 3.2, we define a simultaneous-

offers bargaining model with a mediator. In section 3.3, we derive SSPEs of our

model and analyze properties of the NBS as an SSPE agreement. In section 3.4, we

compare our model with a model without a mediator and a model with an arbitrator.

In this section, we analyze how the mediator affects the bargaining outcomes. In

section 3.5, we conclude our study.

3.2 The model

We consider a bargaining model with three players, negotiators 1, 2, and the medi-

ator. Let S ⊂ R2
+ be the feasible utility space for the negotiators. We assume that

d = (0, 0) is an element of S, and there exists some (x, y) ∈ S such that (x, y) ≫ d.6

Furthermore, we impose some assumptions on the set S as the same as existing

literatures. That is, we assume that the set S is convex, compact, and strictly com-

prehensive.7 Also, we define u : S → R+ as the mediator’s utility function. The

mediator is interested in what agreement the negotiators reach. Here, we assume

u(x, y) ≥ 0 for all (x, y) ∈ S.

Additionally, we define x = max{x | (x, y) ∈ S}, y = max{y | (x, y) ∈ S}, and
the function f : [0, x] → [0, y] as f(x) = max{y | (x, y) ∈ S}. Since S is compact,

these definitions are well-defined. By the assumptions of S, we can confirm that the

function f is concave, strictly decreasing, and continuous. Then, f(0) = y, f(x) = 0,

and f has the inverse function f−1 : [0, y] → [0, x] represented by f−1(y) = max{x |
(x, y) ∈ S} (f−1 is also concave, strictly decreasing, and continuous). Also, we define

p(x) = (x, f(x)) for x ∈ [0, x]. Then, the Pareto frontier of S can be represented as

∂S = {p(x) | x ∈ [0, x]}. These are depicted in Figure 3.1.

Now, we describe the game. Let δ ∈ (0, 1) be the common discount factor. The

game starts from period 1 and proceeds as follows. At odd period t, the negotiators

1 and 2 simultaneously propose their demands x ∈ [0, x] and y ∈ [0, y], respectively.

If (x, y) ∈ S, that is, if the negotiators’ demands are compatible, the game ends and

negotiators 1, 2, and the mediator receive δt−1x, δt−1y, and δt−1u(x, y), respectively.

6(x, y) ≫ (x′, y′) denotes x > x′ and y > y′.
7(x, y) ⩾ (x′, y′) denotes x ≥ x′ and y ≥ y′. The set S is comprehensive if (x′′, y′′) ⩾ (x′, y′) ⩾

(0, 0) and (x′′, y′′) ∈ S imply (x′, y′) ∈ S. The set S is strictly comprehensive if S is comprehensive
and, for all (x, y) ∈ S such that (x′, y′) ⩾ (x, y) and (x′, y′) ̸= (x, y) for some (x′, y′) ∈ S, there
exists some (x′′, y′′) ∈ S such that (x′′, y′′) ≫ (x, y).
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Figure 3.1: Feasible utility space S for the negotiators

If (x, y) /∈ S, that is, if the negotiators’ demands are incompatible, the game proceeds

to the next period t+1. At even period t+1, the mediator proposes some p(z) ∈ ∂S

such that z ∈ [f−1(y), x] or chooses pass. Now, notice that, when z ∈ [f−1(y), x],

z ≤ x and f(x) ≤ y hold (see Figure 3.2). That is, when the mediator gives advice,

she recommends the negotiators to concede. In our model, we assume that the

mediator can say nothing (pass) if she considers that the negotiators can reach an

appropriate agreement by themselves.

If the mediator chooses pass, then the game proceeds to period t + 2. If the

mediator proposes some p(z), then the negotiators simultaneously decide whether

to accept the mediator’s proposal or reject it. If both negotiators accept it, the

game ends and negotiators 1, 2, and the mediator receive δtz, δtf(z), and δtu(p(z)),

respectively. If some negotiator rejects it, the game proceeds to the next period t+2.

At period t+2 or later, the process at period t is repeated at every odd period and

the process at period t + 1 is repeated at every even period. This game continues

until some agreement is reached. If the negotiation continues permanently in some

strategy profile, then negotiator 1, 2, and the mediator receive payoffs of zero. The

game tree is depicted in Figure 3.3.

In this study, we suppose that the mediator’s utility function is single-peaked on

∂S. That is, we suppose that the mediator considers some agreement on ∂S as the

ideal agreement of the bargaining, and suppose that the mediator’s utility decreases

as the distance from her ideal agreement increases.
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Figure 3.2: Feasible mediator’s proposals

Figure 3.3: Game tree
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Formally, we impose the following assumption on the mediator’s utility function.

Assumption 3.2.1. With respect to the mediator’s utility function u, there exists

some α ∈ [0, x] such that,

1. for x, x′ ∈ [0, x] such that x < x′ ≤ α, u(p(x)) < u(p(x′)) and

2. for x, x′ ∈ [0, x] such that x > x′ ≥ α, u(p(x)) < u(p(x′)).

In this assumption, the mediator’s ideal agreement is p(α) ∈ ∂S. The mediator

favors negotiator 1 when α is close to x and favors negotiator 2 when α is close

to zero. As mentioned in section 3.1, we assume that the mediator’s preference is

known to both negotiators.

As a solution concept of the above model, we use a stationary subgame perfect

equilibrium (SSPE), that is, use a subgame perfect equilibrium (SPE) in which,

1. each negotiator’s demand at every odd period is always the same value,

2. the mediator’s proposal at every even period depends only on the negotiators’

demands at the previous odd period, and

3. for each negotiator, whether she accepts the mediator’s proposal or rejects it

depends only on the negotiators’ demands at the previous odd period and the

mediator’s proposal at the current period.

Then, we assume that, when some negotiator responses to the mediator’s proposal,

she accepts it if the mediator’s proposal is not less profitable than rejecting it. Thus,

if accepting the mediator’s proposal and rejecting it are indifferent, the negotiator

accepts the mediator’s proposal.

3.3 SSPE outcomes

In this section, we derive SSPE outcomes of our model. Before proceeding to the

analysis of SSPE, we prepare additional notation. When the curve y = f(x) is scaled

down by δ in the direction of y, we obtain y = δf(x). In contrast, when y = f(x)

is scaled down by δ in the direction of x, we obtain y = f(xδ ). Let xR(δ) be the

solution of f(x) = δf(δx). Then, the unique intersection of the curves y = δf(x)

and y = f(xδ ) is (δx
R(δ), f(xR(δ))). Now, notice that p(xR(δ)) = (xR(δ), f(xR(δ)))

and p(δxR(δ)) = (δxR(δ), f(δxR(δ))) are the negotiators’ offers proposed in the SPE

of the Rubinstein’s alternating-offers bargaining (Rubinstein (1982)) with the utility

space S.
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Figure 3.4: y = δf(x) and y = f(xδ )

Also, notice that

δf(x) < f(
x

δ
) when x ∈ [0, δxR(δ)), (3.1)

δf(x) > f(
x

δ
) when x ∈ (δxR(δ), δx], (3.2)

δf−1(y) < f−1(
y

δ
) when y ∈ [0, f(xR(δ))), and (3.3)

δf−1(y) > f−1(
y

δ
) when y ∈ (f(xR(δ)), δy]. (3.4)

The equation δf(x) = f(xδ ) holds if and only if x = δxR(δ) and the equation

δf−1(y) = f−1(yδ ) holds if and only if y = f(xR(δ)). These are depicted in Figure

3.4. In this chapter, we may use xR instead of xR(δ) when we fix the value of δ.

Bargaining outcomes of our model can be divided into the following three cases.

1. The negotiators reach an agreement with some (x, y) ∈ S at some odd period

t by themselves. This outcome is denoted by ((x, y), t) where t is odd.

2. The mediator’s proposal p(z) ∈ ∂S is accepted at some even period t. This

outcome is denoted by (p(z), t) where t is even.

3. The negotiators never reach an agreement (disagreement).

In the following subsections, we sequentially analyze each case and derive SSPE

outcomes. In this study, we use the one-shot deviation principle to derive SSPEs.

That is, we use the fact that a stationary strategy profile σ is an SSPE if and only if

there is no player who can become better off by deviating from σ for just one period
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Figure 3.5: SSPE agreement at period 1 when α ∈ [0, δxR)

(for example, see Fudenberg and Tirole (1991)). Also, we analyze properties of an

agreement with the NBS in our model.

3.3.1 Agreements at odd periods

In this subsection, we derive SSPE outcomes such that the negotiators reach an

agreement at odd periods. By the definition of SSPE, in such SSPE outcomes, the

negotiators reach an agreement at period 1. Regarding such SSPE outcomes, we

obtain the following theorem.

Theorem 3.3.1. The outcome (p(x), 1) is supported as an SSPE outcome if and

only if

1. x ∈ [δα, xR(δ)] when α ∈ [0, δxR(δ)) (see Figure 3.5),

2. x ∈ [δα, f−1(δf(α))] when α ∈ [δxR(δ), xR(δ)] (see Figure 3.6), and

3. x ∈ [δxR(δ), f−1(δf(α))] when α ∈ (xR(δ), x] (see Figure 3.7).

For all (x, y) ∈ S\∂S, the outcome ((x, y), 1) is not supported as an SSPE outcome.

(In the SSPE, negotiators 1 and 2 demand x and f(x), respectively, and the mediator

follows the strategy described in Lemma 3.3.2.)

Since δα ≤ δxR(δ) holds when α ∈ [0, xR(δ)] and xR(δ) ≤ f−1(δf(α)) holds when

α ∈ [δxR(δ), x], an agreement on ∂SR = {p(x) | x ∈ [δxR(δ), xR(δ)]} is supported

as an SSPE agreement for any α ∈ [0, x]. Now, notice that p(δxR(δ)) and p(xR(δ))
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Figure 3.6: SSPE agreement at period 1 when α ∈ [δxR, xR]

Figure 3.7: SSPE agreement at period 1 when α ∈ (δxR, x]

52



are the negotiators’ SPE offers in the Rubinstein’s alternating-offers model. Since

it is well-known that the NBS of the bargaining problem (S, d) lies on ∂SR (for

example, see Osborne and Rubinstein (1994)), we can find that, for all α ∈ [0, x],

the outcome that the negotiators reach an agreement with the NBS at period 1 is

always supported as an SSPE outcome.

For the rest of this subsection, we prove Theorem 3.3.1. First of all, we prove

that, for all (x, y) ∈ S\∂S, the outcome ((x, y), 1) is not supported as an SSPE

outcome. That is, if the negotiators reach an agreement by themselves in some

SSPE, they always reach an agreement on ∂S.

Lemma 3.3.1. For all (x, y) ∈ S\∂S, the outcome ((x, y), 1) is not supported as an

SSPE outcome.

Proof. Suppose that there exists an SSPE such that the negotiators reach an agree-

ment (x, y) ∈ S\∂S at period 1. Then, by the assumption on S, negotiators 1 and

2 can improve their payoffs by deviating from the SSPE and proposing f−1(y)(> x)

and f(x)(> y), respectively. This is a contradiction. Thus, ((x, y), 1) is not sup-

ported as an SSPE outcome.

Therefore, for deriving SSPE agreement at odd periods, it is sufficient to focus

on an agreement on ∂S. Next, we describe the mediator’s strategy in the SSPEs

where negotiators 1 and 2 demand some x and f(x) at odd periods, respectively.

Lemma 3.3.2. Suppose that, in some SSPE σ, negotiators 1 and 2 demand x and

f(x) at odd periods, respectively, and reach an agreement with p(x) ∈ ∂S. Then, in

the path after negotiators 1 and 2 demand x′ and y′, respectively (where (x′, y′) /∈ S),

the mediator chooses the following action at even periods under σ. Now, we define

A(x, x′, y′) = [f−1(y′), x′] ∩ [δx, f−1(δf(x))] (see Figure 3.8).

1. When α ∈ A(x, x′, y′), the mediator proposes p(α) ∈ ∂S (it is accepted by both

negotiators).

2. When A(x, x′, y′) ̸= ∅, α < minA(x, x′, y′), and minA(x, x′, y′) ≤ x, the me-

diator proposes p(minA(x, x′, y′)) ∈ ∂S (it is accepted by both negotiators).

3. When A(x, x′, y′) ̸= ∅, α < minA(x, x′, y′), and minA(x, x′, y′) > x, the me-

diator proposes p(minA(x, x′, y′)) ∈ ∂S if u(p(minA(x, x′, y′))) > δu(p(x))

(it is accepted by both negotiators), and chooses pass (or offers some pro-

posal rejected by some negotiator) if u(p(minA(x, x′, y′))) < δu(p(x)). If

u(p(minA(x, x′, y′))) = δu(p(x)), the mediator proposes p(minA(x, x′, y′)) or

chooses pass (or offers some proposal rejected by some negotiator).
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Figure 3.8: Example of A(x, x′, y′)

4. When A(x, x′, y′) ̸= ∅, α > maxA(x, x′, y′), and maxA(x, x′, y′) ≥ x, the

mediator proposes p(maxA(x, x′, y′)) ∈ ∂S (it is accepted by both negotiators).

5. When A(x, x′, y′) ̸= ∅, α > maxA(x, x′, y′), and maxA(x, x′, y′) < x, the me-

diator proposes p(maxA(x, x′, y′)) ∈ ∂S if u(p(maxA(x, x′, y′))) > δu(p(x))

(it is accepted by both negotiators), and chooses pass (or offers some pro-

posal rejected by some negotiator) if u(p(maxA(x, x′, y′))) < δu(p(x)). If

u(p(maxA(x, x′, y′))) = δu(p(x)), the mediator proposes p(maxA(x, x′, y′)) or

chooses pass (or offers some proposal rejected by some negotiator).

6. When A(x, x′, y′) = ∅, the mediator proposes some p(z) ∈ ∂S satisfying z ∈
[f−1(y′), x′] (it is rejected by some negotiator) or chooses pass.

Proof. Without loss of generality, in the following proofs, we consider that the ne-

gotiators propose their demands at period t and the mediator proposes at period

t + 1. First of all, notice the following facts. By rejecting the mediator’s proposal,

negotiators 1 and 2 obtain payoffs δt+1x and δt+1f(x) at period t+ 2, respectively,

under σ. Therefore, under σ, in the path after x′ and y′ are demanded by the ne-

gotiators, the mediator’s proposal p(z) ∈ ∂S is accepted by both negotiators if and

only if z ∈ A(x, x′, y′). Also, notice that, under σ, the mediator obtains δt+1u(p(x))

at period t + 2 by choosing pass (or by offering some proposal rejected by some

negotiator) at period t+ 1. By the above facts, we prove each case.

1. When α ∈ A(x, x′, y′), the mediator’s ideal agreement p(α) is accepted by

both negotiators. Then, the mediator can obtain δtu(p(α)) (≥ δtu(p(x)) >
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δt+1u(p(x)) by Assumption 3.2.1). Therefore, proposing p(α) ∈ ∂S is a best

response to σ.

2. When A(x, x′, y′) ̸= ∅, α < minA(x, x′, y′), and minA(x, x′, y′) ≤ x, the most

profitable proposal for the mediator in p(A(x, x′, y′)) is p(minA(x, x′, y′))).8

Then, she obtains δtu(p(minA(x, x′, y′))) (≥ δtu(p(x)) > δt+1u(p(x)) by As-

sumption 3.2.1). Therefore, proposing p(minA(x, x′, y′))) ∈ ∂S is a best re-

sponse to σ.

3. When A(x, x′, y′) ̸= ∅, α < minA(x, x′, y′), and minA(x, x′, y′) > x, the most

profitable proposal for the mediator in p(A(x, x′, y′)) is p(minA(x, x′, y′))).

Then, she obtains δtu(p(minA(x, x′, y′))). Therefore, under σ, the medi-

ator proposes p(minA(x, x′, y′)) ∈ ∂S if u(p(minA(x, x′, y′))) > δu(p(x)),

and chooses pass (or offers some proposal rejected by some negotiator) if

u(p(minA(x, x′, y′))) < δu(p(x)). If u(p(minA(x, x′, y′))) = δu(p(x)), the me-

diator proposes p(minA(x, x′, y′)) or chooses pass (or offers some proposal

rejected by some negotiator).

4. Since the proof of this case is analogous to the case 2, we omit it.

5. Since the proof of this case is analogous to the case 3, we omit it.

6. When A(x, x′, y′) = ∅, the mediator’s proposal p(z) such that z ∈ [f−1(y′), x′]

is rejected by some negotiator under σ. Then, by proposing some p(z) or

choosing pass, the mediator obtains δt+1u(p(x)). Therefore, proposing some

p(z) satisfying z ∈ [f−1(y′), x′] and choosing pass are best responses to σ.

By using Lemma 3.3.2, we derive all SSPE agreements at period 1. The analysis

is divided into three cases, that is, when α ∈ [0, δxR), when α ∈ [δxR, xR], and when

α ∈ (xR, x]. First, when α ∈ [0, δxR), we obtain the following result.

Lemma 3.3.3. When α ∈ [0, δxR), the outcome (p(x), 1) is supported as an SSPE

outcome if and only if x ∈ [δα, xR] (see Figure 3.5). In the SSPE, negotiators 1 and

2 demand x and f(x), respectively, and the mediator follows the strategy described

in Lemma 3.3.2.

Proof. By Lemma 3.3.1, it is sufficient to consider the case where the negotiators

reach an agreement on ∂S. We sequentially analyze five cases with respect to the

value of x. Without loss of generality, we consider that the negotiators propose their

demands at period t and the mediator proposes at period t+ 1.

8For a function p and a set A, we define p(A) = {p(a) | a ∈ A}.
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1. Suppose that, in some SSPE σ, negotiators 1 and 2 demand x and f(x) such

that x ∈ [0, δα), respectively. Consider the case that negotiator 1 deviates

from σ and demands f−1(δf(x)) (notice that f−1(δf(x)) > x by the facts that

f(x) > δf(x) and f−1 is strictly decreasing). Then, the game proceeds to the

next period and the mediator proposes some p(z) such that z ∈ [x, f−1(δf(x))]

or chooses pass. Now, A(x, f−1(δf(x)), f(x)) = [x, f−1(δf(x))]∩[δx, f−1(δf(x))] =

[x, f−1(δf(x))] ( ̸= ∅).

If α ≤ f−1(δf(x)), since x < δα < α, the mediator proposes p(α) by

the case 1 of Lemma 3.3.2, and negotiator 1 obtains δtα (> δt−1x). If α >

f−1(δf(x)), the mediator proposes p(f−1(δf(x))) by the case 4 of Lemma

3.3.2, and negotiator 1 obtains δtf−1(δf(x)). Now, since x < δα < δxR and

δf(δxR) = f(xR), we find δf(x) > δf(δxR) = f(xR). Thus, by the inequality

(3.4), we obtain δf−1(δf(x)) > x, that is, δtf−1(δf(x)) > δt−1x.

Therefore, negotiator 1 can improve her payoff by deviating from σ and

demanding f−1(δf(x)). This is a contradiction. Thus, the outcome (p(x), 1)

such that x ∈ [0, δα) is not supported as an SSPE outcome.

2. Suppose that, in some SSPE σ, negotiators 1 and 2 demand x and f(x) such

that x ∈ [δα, α), respectively. Then, the mediator’s proposals in σ are de-

scribed in Lemma 3.3.2.

Suppose that negotiator 1 deviates from σ and demands x∗ such that x∗ < x.

Then, negotiator 1 obtains δt−1x∗ (< δt−1x). Therefore, she cannot improve

her payoff by demanding x∗ (< x). Also, suppose that negotiator 2 deviates

from σ and demands y∗ such that y∗ < f(x). Then, negotiator 2 obtains δt−1y∗

(< δt−1f(x)). Therefore, she also cannot improve her payoffs by demanding

y∗ (< f(x)).

Next, suppose that negotiator 1 deviates from σ and demands x∗∗ such

that x∗∗ > x. Then, the game proceeds to the next period and the medi-

ator proposes some p(z) such that z ∈ [x, x∗∗] or chooses pass. Since x <

f−1(δf(x)), A(x, x∗∗, f(x)) can be transformed as A(x, x∗∗, f(x)) = [x, x∗∗] ∩
[δx, f−1(δf(x))] = [x,min{x∗∗, f−1(δf(x))}] ( ̸= ∅). If α ≤ min{x∗∗, f−1(δf(x))},
since x < α, the mediator proposes p(α) by the case 1 of Lemma 3.3.2, and

negotiator 1 obtains δtα (≤ δt−1x). If α > min{x∗∗, f−1(δf(x))}, the mediator

proposes p(min{x∗∗, f−1(δf(x))}) by the case 4 of Lemma 3.3.2, and negotia-

tor 1 obtains δtmin{x∗∗, f−1(δf(x))} (< δtα ≤ δt−1x). Therefore, negotiator

1 cannot improve her payoff by demanding x∗∗ (> x).

Also, suppose that negotiator 2 deviates from σ and demands y∗∗ such
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that y∗∗ > f(x). Then, the game proceeds to the next period and the

mediator proposes some p(z) such that z ∈ [f−1(y∗∗), x] or chooses pass.

Now, since x < f−1(δf(x)), A(x, x, y∗∗) = [f−1(y∗∗), x] ∩ [δx, f−1(δf(x))] =

[max{f−1(y∗∗), δx}, x] ( ̸= ∅). Therefore, since x < α, the mediator pro-

poses p(x) by the case 4 of Lemma 3.3.2, and negotiator 2 obtains δtf(x)

(< δt−1f(x)). Thus, negotiator 2 cannot improve her payoff by demanding y∗∗

(> f(x)).

Consequently, we can find that the SSPE σ is consistent. Therefore, the

outcome (p(x), 1) such that x ∈ [δα, α) is supported as an SSPE outcome.

3. Suppose that, in some SSPE σ, negotiators 1 and 2 demand x and f(x) such

that x ∈ [α, f−1(δf(α))], respectively. Then, the mediator’s proposals in σ are

described in Lemma 3.3.2. By the same way as the case 2, we can find that

negotiator 1 cannot improve her payoff by deviating from σ and demanding

x∗ (< x). Also, negotiator 2 cannot improve her payoff by demanding y∗

(< f(x)).

Suppose that negotiator 1 deviates from σ and demands x∗∗ such that

x∗∗ > x. Then, the game proceeds to the next period and the mediator pro-

poses some p(z) such that z ∈ [x, x∗∗] or chooses pass. Since x < f−1(δf(x)),

A(x, x∗∗, f(x)) can be transformed asA(x, x∗∗, f(x)) = [x, x∗∗]∩[δx, f−1(δf(x))] =

[x,min{x∗∗, f−1(δf(x))}] ( ̸= ∅). Then, since x ≥ α, the mediator proposes

p(x) by the case 2 (or 1) of Lemma 3.3.2, and negotiator 1 obtains δtx

(< δt−1x). Thus, negotiator 1 cannot improve her payoff by demanding x∗∗

(> x).

Also, suppose that negotiator 2 deviates from σ and demands y∗∗ such that

y∗∗ > f(x). Then, the game proceeds to the next period and the media-

tor proposes some p(z) such that z ∈ [f−1(y∗∗), x] or chooses pass. Now,

A(x, x, y∗∗) = [f−1(y∗∗), x] ∩ [δx, f−1(δf(x))] = [max{f−1(y∗∗), δx}, x] ( ̸= ∅).

If α ≥ max{f−1(y∗∗), δx}, since α ≤ x, the mediator proposes p(α) by the

case 1 of Lemma 3.3.2, and negotiator 2 obtains δtf(α). Since x ≤ f−1(δf(α)),

we obtain δf(α) ≤ f(x), that is, δtf(α) ≤ δt−1f(x). If α < max{f−1(y∗∗), δx},
the mediator proposes p(max{f−1(y∗∗), δx}) by the case 2 of Lemma 3.3.2.

Then, negotiator 2 obtains δtf(max{f−1(y∗∗), δx}) (< δtf(α)). Since x ≤
f−1(δf(α)), we obtain δf(α) ≤ f(x). Therefore, δtf(max{f−1(y∗∗), δx}) <

δtf(α) ≤ δt−1f(x) holds. By the above discussion, negotiator 2 cannot improve

her payoff by demanding y∗∗ (> f(x)).

Consequently, we can find that the SSPE σ is consistent. Therefore, the
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outcome (p(x), 1) such that x ∈ [α, f−1(δf(α))] is supported as an SSPE out-

come.

4. Suppose that in some SSPE σ, negotiators 1 and 2 demand x and f(x) such

that x ∈ (f−1(δf(α)), xR], respectively. Then, the mediator’s proposals in σ

are described in Lemma 3.3.2. By the same way as the case 2, we can find that

negotiator 1 cannot improve her payoff by deviating from σ and demanding

x∗ (< x). Also, negotiator 2 cannot improve her payoff by demanding y∗

(< f(x)).

Suppose that negotiator 1 deviates from σ and demands x∗∗ such that x∗∗ >

x. Then, the game proceeds to the next period and the mediator proposes some

p(z) such that z ∈ [x, x∗∗] or chooses pass. Now, A(x, x∗∗, f(x)) can be trans-

formed asA(x, x∗∗, f(x)) = [x, x∗∗]∩[δx, f−1(δf(x))] = [x,min{x∗∗, f−1(δf(x))}]
( ̸= ∅). Since α < f−1(δf(α)), we obtain x > f−1(δf(α)) > α. Therefore, the

mediator proposes p(x) by the case 2 of Lemma 3.3.2. Then, negotiator 1

obtains δtx (< δt−1x). Thus, negotiator 1 cannot improve her payoff by de-

manding x∗∗ (> x).

Next, suppose that negotiator 2 deviates from σ and demands y∗∗ such

that y∗∗ > f(x). Then, the game proceeds to the next period and the me-

diator proposes some p(z) such that z ∈ [f−1(y∗∗), x] or chooses pass. Now,

A(x, x, y∗∗) = [f−1(y∗∗), x] ∩ [δx, f−1(δf(x))] = [max{f−1(y∗∗), δx}, x] ( ̸= ∅).

Since α < δxR, we obtain δf(α) > δf(δxR) = f(xR). By the inequality

(3.4), δf−1(δf(α)) > α holds. Then, since x > f−1(δf(α)), we obtain δx >

δf−1(δf(α)) > α. Therefore, since α < δx ≤ max{f−1(y∗∗), δx}, the mediator

proposes p(max{f−1(y∗∗), δx}) by the case 2 of Lemma 3.3.2, and negotiator 2

obtains δtf(max{f−1(y∗∗), δx}). Since δx ≤ δxR, δf(δx) ≤ f(x) holds by the

inequality (3.1). Then, we obtain δf(max{f−1(y∗∗), δx}) ≤ δf(δx) ≤ f(x),

that is, δtf(max{f−1(y∗∗), δx}) ≤ δt−1f(x). Therefore, negotiator 2 cannot

improve her payoff by demanding y∗∗ (> f(x)).

Consequently, we can find that the SSPE σ is consistent. Therefore, the

outcome (p(x), 1) such that x ∈ (f−1(δf(α)), xR] is supported as an SSPE

outcome.

5. Suppose that, in some SSPE σ, negotiators 1 and 2 demand x and f(x) such

that x ∈ (xR, x], respectively. Consider the case that negotiator 2 devi-

ates from σ and demands f(δx). Then, the game proceeds to the next pe-

riod and the mediator proposes some p(z) such that z ∈ [δx, x] or chooses

pass. Now, A(x, x, f(δx)) can be transformed as A(x, x, f(δx)) = [δx, x] ∩
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[δx, f−1(δf(x))] = [δx, x] ( ̸= ∅). Since α < δxR < δx, the mediator proposes

p(δx) by the case 2 of Lemma 3.3.2. Therefore, negotiator 2 obtains δtf(δx).

Since δx > δxR, we obtain δf(δx) > f(x) by the inequality (3.2). Then,

δtf(δx) > δt−1f(x). Therefore, negotiator 2 can improve her payoff by deviat-

ing from σ. This is a contradiction. Consequently, the outcome (p(x), 1) such

that x ∈ (xR, x] is not supported as an SSPE outcome.

Roughly, Lemma 3.3.3 can be explained as follows. Consider the case where

negotiators 1 and 2 demand x and f(x), respectively, in some stationary strategy

σ. When the negotiators deviate from σ, we can easily confirm that each negotiator

cannot improve her payoff by proposing some demand smaller than the demand

under σ. Therefore, it is sufficient to consider the case where the negotiators propose

larger demands. Then, the game proceeds to the next period.

First, consider the case x < α. In this case, even if negotiator 2 deviates

from σ and proposes larger demand, the mediator proposes p(x) at the next pe-

riod. Therefore, negotiator 2 cannot improve her payoff by deviating from σ.

Conversely, consider the case where negotiator 1 deviates from σ and proposes

sufficiently large demand x∗. Then, the game proceeds to the next period and

maxA(x, x∗, f(x)) = f−1(δf(x)). Here, notice that the mediator’s proposal which

gives negotiator 1 a utility larger than f−1(δf(x)) is rejected by negotiator 2. There-

fore, the mediator proposes p(min{f−1(δf(x)), α}) (notice that minA(x, x∗, f(x)) =

x < α). When x ∈ [0, δα), reaching an agreement with the mediator’s proposal

p(min{f−1(δf(x)), α}) at the next period is more profitable for negotiator 1 than

reaching an agreement with p(x) at the current period. Therefore, negotiator 1 de-

viates from σ, that is, σ is not an SSPE. When x ∈ [δα, α), it is converse. Therefore,

negotiator 1 does not deviate from σ, that is, σ is an SSPE.

The case x ≥ α is similarly explained. In this case, negotiator 1 cannot improve

her payoff by deviating from σ and proposing larger demands. When negotiator 2

deviates from σ and proposes sufficiently large demand y∗, the game proceeds to the

next period and minA(x, x, y∗) = δx. Then, the mediator proposes p(max{δx, α}) at
the next period (notice that maxA(x, x, y∗) = x ≥ α). When x ∈ [α, xR], negotiator

2 does not deviate from σ, that is, σ is an SSPE. When x ∈ (xR, x], negotiator 2

deviates from σ, that is, σ is not an SSPE.

In the following, we analyze the cases of α ∈ [δxR, xR] and α ∈ (xR, x]. Although

the regions of SSPE agreements in these cases are different from the case of α ∈
[0, δxR), the above discussion is similarly applied to these cases. Now, we analyze

the case of α ∈ [δxR, xR].
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Lemma 3.3.4. When α ∈ [δxR, xR], the outcome (p(x), 1) is supported as an SSPE

outcome if and only if x ∈ [δα, f−1(δf(α))] (see Figure 3.6). In the SSPE, negotia-

tors 1 and 2 demand x and f(x), respectively, and the mediator follows the strategy

described in Lemma 3.3.2.

Proof. Without loss of generality, in the following proofs, we consider that the ne-

gotiators propose their demands at period t and the mediator proposes at period

t+ 1.

1. Suppose that, in some SSPE σ, negotiators 1 and 2 demand x and f(x) such

that x ∈ [0, δα), respectively. Consider the case that negotiator 1 deviates from

σ and demands f−1(δf(x)). By the same proof in the case 1 of Lemma 3.3.3,

we can find that the outcome (p(x), 1) such that x ∈ [0, δα) is not supported

as an SSPE outcome.

2. Suppose that, in some SSPE σ, negotiators 1 and 2 demand x and f(x) such

that x ∈ [δα, α), respectively. Then, the mediator’s proposals in σ are de-

scribed in Lemma 3.3.2. By the same proof in the case 2 of Lemma 3.3.3, we

can find that the outcome (p(x), 1) such that x ∈ [δα, α) is supported as an

SSPE outcome.

3. Suppose that, in some SSPE σ, negotiators 1 and 2 demand x and f(x) such

that x ∈ [α, f−1(δf(α))], respectively. Then, the mediator’s proposals in σ are

described in Lemma 3.3.2. By the same proof in the case 3 of Lemma 3.3.3, we

can find that the outcome (p(x), 1) such that x ∈ [α, f−1(δf(α))] is supported

as an SSPE outcome.

4. Suppose that, in some SSPE σ, negotiators 1 and 2 demand x and f(x)

such that x ∈ (f−1(δf(α)), x], respectively. Consider the case that nego-

tiator 2 deviates from σ and demands f(δx). Then, the game proceeds to

the next period and the mediator proposes some p(z) such that z ∈ [δx, x] or

chooses pass. Now, A(x, x, δx) can be transformed as A(x, x, δx) = [δx, x] ∩
[δx, f−1(δf(x))] = [δx, x] ( ̸= ∅).

If α ≥ δx, since α < f−1(δf(α)) < x, the mediator proposes p(α) by the

case 1 of Lemma 3.3.2, and negotiator 2 obtains δtf(α). Since f−1(δf(α)) < x,

we obtain δtf(α) > δt−1f(x). If α < δx, the mediator proposes p(δx) by the

case 2 of Lemma 3.3.2, and negotiator 2 obtains δtf(δx). Since δx > α ≥ δxR,

we obtain δf(δx) > f(x) by the inequality (3.2). Thus, δtf(δx) > δt−1f(x).

Therefore, negotiator 2 can improve her payoff by deviating from σ and

demanding f(δx). This is a contradiction. Thus, the outcome (p(x), 1) such
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that x ∈ (f−1(δf(α)), x] is not supported as an SSPE outcome.

Finally, we analyze the case of α ∈ (xR, x].

Lemma 3.3.5. When α ∈ (xR, x], the outcome (p(x), 1) is supported as an SSPE

outcome if and only if x ∈ [δxR, f−1(δf(α))] (see Figure 3.7). In the SSPE, negotia-

tors 1 and 2 demand x and f(x), respectively, and the mediator follows the strategy

described in Lemma 3.3.2.

Proof. By exchanging the roles of negotiators 1 and 2 in Lemma 3.3.3, we can prove

Lemma 3.3.5.

Consequently, by summarizing Lemma 3.3.1, 3.3.3, 3.3.4, and 3.3.5, we obtain

Theorem 3.3.1.

3.3.2 Agreements at even periods

Next, we derive SSPE outcomes such that the mediator’s proposal is accepted at

even periods. By the definition of SSPE, in such SSPE outcomes, the mediator’s

proposal is accepted at period 2. In this SSPE, an agreement is delayed. Regarding

such SSPE outcomes, we obtain the following theorem.

Theorem 3.3.2. The outcome (p(x), 2) is supported as an SSPE outcome if and

only if x = α. (In the SSPE, negotiators 1 and 2 propose some x′ ∈ [f−1(δf(α)), x]

and y′ ∈ [f(δα), y], respectively, and the mediator follows the strategy described in

Lemma 3.3.6. See Figure 3.9.)

The SSPE of Theorem 3.3.2 can be interpreted as follows. In this SSPE, since the

negotiators’ demands are incompatible, they cannot reach an agreement by them-

selves. Thus, the mediator proposes a plan of an agreement to facilitate the reaching

of an agreement. If some negotiator rejects the mediator’s proposal, the negotiation

breaks down and they cannot make a profit. Then, since accepting the mediator’s

proposal is better than disagreement for both negotiators, they decide to accept the

mediator’s proposal.

In the following, we prove Theorem 3.3.2. We first describe the mediator’s strat-

egy in the SSPE such that the mediator’s proposal is accepted at even periods.

Lemma 3.3.6. Suppose that the mediator’s proposal p(x) is accepted at even periods

in some SSPE σ. Then, in the path after negotiators 1 and 2 demand x′ and y′,

respectively (where (x′, y′) /∈ S), the mediator chooses the following action at even

periods under σ. Now, we define B(x, x′, y′) = [f−1(y′), x′] ∩ [δ2x, f−1(δ2f(x))].
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Figure 3.9: SSPE agreement at period 2

1. When α ∈ B(x, x′, y′), the mediator proposes p(α) ∈ ∂S (it is accepted by both

negotiators).

2. When B(x, x′, y′) ̸= ∅, α < minB(x, x′, y′), and minB(x, x′, y′) ≤ x, the

mediator proposes p(minB(x, x′, y′)) ∈ ∂S (it is accepted by both negotiators).

3. When B(x, x′, y′) ̸= ∅, α < minB(x, x′, y′), and minB(x, x′, y′) > x, the me-

diator proposes p(minB(x, x′, y′)) ∈ ∂S if u(p(minB(x, x′, y′))) > δ2u(p(x))

(it is accepted by both negotiators), and chooses pass (or offers some pro-

posal rejected by some negotiator) if u(p(minB(x, x′, y′))) < δ2u(p(x)). If

u(p(minB(x, x′, y′))) = δ2u(p(x)), the mediator proposes p(minB(x, x′, y′))

or chooses pass (or offers some proposal rejected by some negotiator).

4. When B(x, x′, y′) ̸= ∅, α > maxB(x, x′, y′), and maxB(x, x′, y′) ≥ x, the

mediator proposes p(maxB(x, x′, y′)) ∈ ∂S (it is accepted by both negotiators).

5. When B(x, x′, y′) ̸= ∅, α > maxB(x, x′, y′), and maxB(x, x′, y′) < x, the me-

diator proposes p(maxB(x, x′, y′)) ∈ ∂S if u(p(maxB(x, x′, y′))) > δ2u(p(x))

(it is accepted by both negotiators), and chooses pass (or offers some pro-

posal rejected by some negotiator) if u(p(maxB(x, x′, y′))) < δ2u(p(x)). If

u(p(maxB(x, x′, y′))) = δ2u(p(x)), the mediator proposes p(maxB(x, x′, y′))

or chooses pass (or offers some proposal rejected by some negotiator).

6. When B(x, x′, y′) = ∅, the mediator proposes some p(z) ∈ ∂S satisfying z ∈
[f−1(y′), x′] (it is rejected by some negotiator) or chooses pass.
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Proof. The proof is analogous to Lemma 3.3.2.

By using Lemma 3.3.6, we prove Theorem 3.3.2.

Proof of Theorem 3.3.2

Proof. Suppose that σ is the SSPE such that negotiators 1 and 2 demand x′ and y′

((x′, y′) /∈ S), respectively, and the mediator’s proposal p(x) is accepted after x′ and

y′ are demanded. Without loss of generality, in the following proofs, we consider

that the negotiators propose their demands at period t and the mediator proposes

at period t+ 1.

1. Suppose x = α. Since the mediator’s proposal p(α) is accepted under σ,

α ∈ B(α, x′, y′) must hold by Lemma 3.3.6. Then, f−1(y′) ≤ α ≤ x′, that is,

x′ ≥ α and y′ ≥ f(α) must hold.

Now, suppose x′ ∈ [α, f−1(δf(α))). Consider the case that negotiator 2

deviates from σ and demands f(x′). Then, negotiator 2 obtains δt−1f(x′)

(> δtf(α)). Therefore, negotiator 2 can improve her payoff by deviating from

σ and demanding f(x′). Also, suppose y′ ∈ [f(α), f(δα)). Consider the case

that negotiator 1 deviates from σ and demands f−1(y′). Then, negotiator 1

obtains δt−1f−1(y′) (> δtα). Therefore, negotiator 1 can improve her payoff

by deviating from σ and demanding f−1(y′). Thus, x′ and y′ must satisfy

x′ ∈ [f−1(δf(α)), x] and y′ ∈ [f(δα), y], respectively.

(a) We prove that negotiator 1 cannot improve her payoff by deviating from

σ when x′ ∈ [f−1(δf(α)), x] and y′ ∈ (f(δ2α), y].

Consider the case that negotiator 1 deviates from σ and demands

x∗ ∈ [0, f−1(y′)]. Then, since (x∗, y′) ∈ S, negotiator 1 obtains δt−1x∗.

Also, since x∗ ≤ f−1(y′) < δ2α < δα, we obtain δt−1x∗ < δtα. There-

fore, negotiator 1 cannot improve her payoff by deviating from σ and

demanding x∗.

Consider the case that negotiator 1 deviates from σ and demands

x∗∗ ∈ (f−1(y′), δ2α). Then, the game proceeds to the next period and

the mediator proposes some p(z) such that z ∈ [f−1(y′), x∗∗] or chooses

pass. Now, since x∗∗ ∈ (f−1(y′), δ2α), B(α, x∗∗, y′) = [f−1(y′), x∗∗] ∩
[δ2α, f−1(δ2f(α))] = ∅. Therefore, the mediator’s proposal is not ac-

cepted and the game proceeds to the next period. Then, negotiator 1

obtains δt+2α at period t + 3 under σ. Since δt+2α < δtα, negotiator 1

cannot improve her payoff by deviating from σ and demanding x∗∗.
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Consider the case that negotiator 1 deviates from σ and demands

x∗∗∗ ∈ [δ2α, x]. Then, the game proceeds to the next period and the

mediator proposes some p(z) such that z ∈ [f−1(y′), x∗∗∗] or chooses

pass. Now, since x∗∗∗ ∈ [δ2α, x] and y′ ∈ (f(δ2α), y], B(α, x∗∗∗, y′) =

[f−1(y′), x∗∗∗]∩[δ2α, f−1(δ2f(α))] = [δ2α,min{x∗∗∗, f−1(δ2f(α))}] ( ̸= ∅).
If α ≤ min{x∗∗∗, f−1(δ2f(α))}, the mediator proposes p(α) by the case 1

of Lemma 3.3.6, and negotiator 1 obtains δtα. If α > min{x∗∗∗, f−1(δ2f(α))},
the mediator proposes p(min{x∗∗∗, f−1(δ2f(α))}) or chooses pass by the

case 5 of Lemma 3.3.6. Then, negotiator 1 obtains δtmin{x∗∗∗, f−1(δ2f(α))}
at period t+1 or δt+2α at period t+3. Now, δtmin{x∗∗∗, f−1(δ2f(α))} <

δtα and δt+2α < δtα hold. Therefore, negotiator 1 cannot improve her

payoff by deviating from σ and demanding x∗∗∗.

By the above discussion, we can find that negotiator 1 cannot im-

prove her payoff by deviating from σ when x′ ∈ [f−1(δf(α)), x] and

y′ ∈ (f(δ2α), y].

(b) We prove that negotiator 1 cannot improve her payoff by deviating from

σ when x′ ∈ [f−1(δf(α)), x] and y′ ∈ [f(δα), f(δ2α)].

Consider the case that negotiator 1 deviates from σ and demands x∗ ∈
[0, f−1(y′)]. Then, since (x∗, y′) ∈ S, negotiator 1 obtains δt−1x∗. Also,

since x∗ ≤ f−1(y′) ≤ δα, we obtain δt−1x∗ ≤ δtα. Therefore, negotiator

1 cannot improve her payoff by deviating from σ and demanding x∗.

Consider the case that negotiator 1 deviates from σ and demands

x∗∗ ∈ (f−1(y′), x]. Then, the game proceeds to the next period and

the mediator proposes some p(z) such that z ∈ [f−1(y′), x∗∗] or chooses

pass. Now, since y′ ∈ [f(δα), f(δ2α)], we obtain f(δ2α) ≥ y′ ≥ f(δα) >

δ2f(α). Therefore, B(α, x∗∗, y′) = [f−1(y′), x∗∗] ∩ [δ2α, f−1(δ2f(α))] =

[f−1(y′),min{x∗∗, f−1(δ2f(α))}] ( ̸= ∅). If α ≤ min{x∗∗, f−1(δ2f(α))},
since f−1(y′) ≤ δα < α, the mediator proposes p(α) by the case 1 of

Lemma 3.3.6, and negotiator 1 obtains δtα. If α > min{x∗∗, f−1(δ2f(α))},
the mediator proposes p(min{x∗∗, f−1(δ2f(α))}) or chooses pass by the

case 5 of Lemma 3.3.6. Then, negotiator 1 obtains δtmin{x∗∗, f−1(δ2f(α))}
at period t+1 or δt+2α at period t+3. Now, δtmin{x∗∗, f−1(δ2f(α))} <

δtα and δt+2α < δtα hold. Therefore, negotiator 1 cannot improve her

payoff by deviating from σ and demanding x∗∗.

By the above discussion, we can find that negotiator 1 cannot im-

prove her payoff by deviating from σ when x′ ∈ [f−1(δf(α)), x] and

y′ ∈ [f(δα), f(δ2α)].
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Summarizing (a) and (b), we can find that negotiator 1 cannot improve

her payoff by deviating from σ when x′ ∈ [f−1(δf(α)), x] and y′ ∈ [f(δα), y].

By exchanging the roles of negotiators 1 and 2 in the above proofs, we can

also prove that negotiator 2 cannot improve her payoff by deviating from σ

when x′ ∈ [f−1(δf(α)), x] and y′ ∈ [f(δα), y]. Therefore, the strategy profile

where negotiators 1 and 2 propose x′ and y′ such that x′ ∈ [f−1(δf(α)), x] and

y′ ∈ [f(δα), y], respectively, and the mediator follows the strategy described

in Lemma 3.3.6 is an SSPE. Under this SSPE, after x′ and y′ are demanded

by the negotiators, the mediator proposes p(α) and it is accepted.

2. Suppose x ∈ [0, α). That is, in the SSPE σ, the mediator’s proposal p(x) such

that x < α is accepted. Then, x ∈ B(x, x′, y′) must hold. Now, we prove x =

maxB(x, x′, y′). Suppose x < maxB(x, x′, y′). Then, if α > maxB(x, x′, y′),

the mediator proposes p(maxB(x, x′, y′)) under σ by the case 4 of Lemma

3.3.6. If α ≤ maxB(x, x′, y′), since α > x ≥ minB(x, x′, y′), the media-

tor proposes p(α) under σ by the case 1 of Lemma 3.3.6. This contradicts

to the fact that the mediator proposes p(x) such that x < maxB(x, x′, y′)

and x < α under σ. Therefore, x must satisfy x = maxB(x, x′, y′) (< α).

Then, since B(x, x′, y′) = [f−1(y′), x′] ∩ [δ2x, f−1(δ2f(x))] and δ2x < x (=

maxB(x, x′, y′)) < f−1(δ2f(x)), x′ must satisfy x′ = maxB(x, x′, y′) = x.

Consider the case that negotiator 1 deviates from σ and demands f−1(δ2f(x))

(> x = x′). Then, the game proceeds to the next period and the mediator

proposes some p(z) such that z ∈ [f−1(y′), f−1(δ2f(x))] or chooses pass. Now,

B(x, f−1(δ2f(x)), y′) can be transformed asB(x, f−1(δ2f(x)), y′) = [f−1(y′), f−1(δ2f(x))]∩
[δ2x, f−1(δ2f(x))] = [max{f−1(y′), δ2x}, f−1(δ2f(x))] ( ̸= ∅).

If α ≤ f−1(δ2f(x)), since f−1(y′) < x′ = x < α and δ2x < x < α hold, the

mediator proposes p(α) by the case 1 of Lemma 3.3.6, and negotiator 1 obtains

δtα (> δtx). If α > f−1(δ2f(x)), the mediator proposes p(f−1(δ2f(x))) by the

case 4 of Lemma 3.3.6, and negotiator 1 obtains δtf−1(δ2f(x)) (> δtx). There-

fore, negotiator 1 can improve her payoff by deviating from σ and demanding

f−1(δ2f(x)). This is a contradiction. Thus, the outcome (p(x), 2) such that

x ∈ [0, α) is not supported as an SSPE outcome.

3. Suppose x ∈ (α, x]. By the proof analogous to the case 2, we can find that the

outcome (p(x), 2) such that x ∈ (α, x] is not supported as an SSPE outcome.
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3.3.3 Disagreement

In this subsection, we analyze disagreement and obtain the following theorem.

Theorem 3.3.3. Disagreement is not supported as an SSPE outcome.

Proof. Suppose that disagreement occurs in some SSPE σ. Then, negotiators 1, 2,

and the mediator obtain payoffs of zero. Since disagreement occurs, in the SSPE σ,

negotiators 1 and 2 propose x′ and y′ such that (x′, y′) /∈ S, respectively. After x′

and y′ are demanded, the mediator proposes some p(z) such that z ∈ [f−1(y′), x′]

or chooses pass. Then, there exists some z′ ∈ [f−1(y′), x′] such that z′ > 0 and

f(z′) > 0. Therefore, the proposal p(z′) is accepted by the negotiators. Now,

u(p(z′)) > 0 by u(0, f(0)) ≥ 0, u(x, f(x)) ≥ 0, and Assumption 3.2.1. Thus, the

mediator can obtain a payoff larger than zero by deviating from σ and proposing

p(z′). This is a contradiction. Hence, disagreement is not supported as an SSPE

outcome.

Theorem 3.3.3 implies that the mediator can resolve conflict. As the same as

Theorem 3.3.2, this result is caused by the fact that accepting the mediator’s pro-

posal is better than disagreement for both negotiators.

3.3.4 Agreement with the NBS

Now, we derived all SSPE outcomes. In this subsection, we analyze properties of

an agreement with the NBS by using the aforementioned results. Let p(xN ) =

(xN , f(xN )) be the NBS of the bargaining problem (S, d). In subsection 3.3.1, we

saw that an agreement with the NBS at period 1 is always supported as an SSPE

outcome. Now, we can derive a stronger result that an agreement with the NBS at

period 1 is the “unique” outcome which is supported as an SSPE outcome for all

δ ∈ (0, 1) and for all α ∈ [0, x]. To derive this result, first, we show the following

proposition by Theorem 3.3.1.

Proposition 3.3.1. An agreement with the NBS is the unique agreement which is

supported as an SSPE agreement at period 1 for all δ ∈ (0, 1) and for all α ∈ [0, x].

Proof. First, notice that, since p(δxR(δ)) and p(xR(δ)) are the negotiators’ SPE of-

fers in the Rubinstein’s alternating-offers model, limδ↑1 δx
R(δ) = xN and limδ↑1 x

R(δ) =

xN hold (for example, see Binmore et al. (1986) and Osborne and Rubinstein (1994)).

Suppose α < xN . Since limδ↑1 δx
R(δ) = xN , there exists some δ′ such that

α < δxR(δ) holds for all δ ∈ (δ′, 1). Then, by the case α ∈ [0, δxR(δ)) of Theorem

3.3.1, for δ ∈ (δ′, 1), an agreement with p(x) is an SSPE agreement if and only
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if x ∈ [δα, xR(δ)]. Now, since limδ↑1 x
R(δ) = xN , for x > xN , there exists some

δ∗ ∈ (δ′, 1) such that x > xR(δ∗). Therefore, an agreement with p(x) such that

x > xN is not supported as an SSPE agreement for some α ∈ [0, xN ) and δ∗ ∈ (δ′, 1).

This implies that, if p(x) is supported as an SSPE agreement at period 1 for all

δ ∈ (0, 1) and α ∈ [0, x], x must satisfy x ≤ xN . Conversely, suppose α > xN . By

the proof analogous to the case of α < xN , we can prove that, if p(x) is supported

as an SSPE agreement at period 1 for all δ ∈ (0, 1) and α ∈ [0, x], x must satisfy

x ≥ xN (by the case α ∈ (xR(δ), x] of Theorem 3.3.1). Therefore, if p(x) is supported

as an SSPE agreement at period 1 for all δ ∈ (0, 1) and α ∈ [0, x], x must satisfy

x = xN . Then, since p(xN ) is an SSPE agreement at period 1 for all δ ∈ (0, 1) and

α ∈ [0, x], we obtain Proposition 3.3.1.

By Theorem 3.3.2, we can see that there is no agreement which is supported as

an SSPE agreement at period 2 for all α ∈ [0, x]. Therefore, by combining Theorem

3.3.2, 3.3.3, and Proposition 3.3.1, we immediately obtain the following result.

Theorem 3.3.4. The outcome (p(xN ), 1) is the unique outcome which is supported

as an SSPE outcome for all δ ∈ (0, 1) and for all α ∈ [0, x].

Even if the mediator is biased, the NBS can always be achieved in SSPE. Now,

the question is: Is there any other agreement which can always be achieved in

SSPE? The result of Theorem 3.3.4 denies the existence of such an agreement. That

is, an agreement other than the NBS may be eliminated from SSPE agreement. In

contrast, the reasonable agreement in the sense of the NBS is the unique agreement

which is always supported as an SSPE agreement.

Next, we consider the case where δ approaches to one. First, as a corollary

of Theorem 3.3.1, 3.3.2, and 3.3.3, we obtain the following result. Notice that

limδ↑1 δα = limδ↑1 f
−1(δf(α)) = α and limδ↑1 δx

R(δ) = limδ↑1 x
R(δ) = xN .

Corollary 3.3.1. The outcome (p(x), 1) is supported as an SSPE outcome under

δ ↑ 1 if and only if

1. x ∈ [α, xN ] when α ∈ [0, xN ),

2. x = xN when α = xN , and

3. x ∈ [xN , α] when α ∈ (xN , x].

The outcome (p(x), 2) is supported as an SSPE outcome under δ ↑ 1 if and only if

x = α. Also, disagreement is not supported as an SSPE outcome.
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Figure 3.10: SSPE agreement when δ ↑ 1

This result shows that, when δ approaches to one, an agreement with p(x) is an

SSPE agreement if and only if p(x) lies between the NBS p(xN ) and the mediator’s

ideal agreement p(α) (see Figure 3.10). That is, as the mediator’s ideal agreement

approaches to the NBS, the set of SSPE agreements shrinks. Therefore, when the

mediator is sufficiently fair, the agreement achieved in SSPE is sufficiently close to

the NBS. Especially, when the mediator wishes to achieve the NBS, we obtain the

following desirable result.

Theorem 3.3.5. When p(α) = p(xN ), SSPE outcomes under δ ↑ 1 are (p(xN ), 1)

and (p(xN ), 2). Therefore, when δ ↑ 1, the NBS is the unique agreement achieved in

SSPEs.

This result shows that, when the mediator wishes to achieve the NBS, the rea-

sonable agreement (the NBS) is “surely” achieved in SSPEs under δ ↑ 1. That is,

the fair mediator facilitates the reaching of the reasonable agreement.

3.4 Comparison with simultaneous-offers bargaining with-

out a mediator and with an arbitrator

In this section, we compare the simultaneous-offers bargaining model with a mediator

(defined in section 3.2) with bargaining models without a mediator and with an

arbitrator. By comparison, we analyze how a mediator affects bargaining outcomes.

In the following subsections, we use the same notation as section 3.2.
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3.4.1 Comparison with a model without a mediator

First, we compare the model with a mediator with a model without a mediator. The

model without a mediator is as follows. The game starts from period 1. At period t,

negotiators 1 and 2 simultaneously propose their demands x ∈ [0, x] and y ∈ [0, y],

respectively. If (x, y) ∈ S, then the game ends and negotiators 1 and 2 receive δt−1x

and δt−1y, respectively. If (x, y) /∈ S, the game proceeds to the next period t + 1

and repeat the above process. The game continues until an agreement is reached.

We derive SSPE outcomes of this model, that is, derive outcomes induced by the

SPE such that each negotiator’s demand is always the same value. We obtain the

following result.

Proposition 3.4.1. In the model without a mediator, for all x ∈ [0, x], an agreement

with p(x) is supported as an SSPE outcome (see Figure 3.11) and disagreement is

supported as an SSPE outcome.

Proof. Without loss of generality, in the following proof, we consider that the nego-

tiators propose their demands at period t.

Consider the stationary strategy profile σ(x) where negotiators 1 and 2 demand x

and f(x), respectively. Then, negotiators 1 and 2 receive payoffs δt−1x and δt−1f(x),

respectively. If negotiator 1 deviates from σ(x) and demands x∗ such that x∗ < x,

she obtains δt−1x∗ (< δt−1x). If negotiator 1 deviates from σ(x) and demands

x∗∗ such that x∗∗ > x, she obtains δtx (< δt−1x) at the next period. Therefore,

negotiator 1 cannot improve her payoff by deviating from σ(x). Also, negotiator 2

cannot improve her payoff by deviating from σ(x). Consequently, for all x ∈ [0, x],

an agreement with p(x) is supported as an SSPE outcome.

Next, consider the stationary strategy profile σd where negotiators 1 and 2 de-

mand x and f(0), respectively. Then, disagreement occurs and each negotiator re-

ceives a payoff of zero. Even if negotiator 1 deviates from σd and demands x∗ ∈ [0, x),

she obtains a payoff of zero. Therefore, negotiator 1 cannot improve her payoff by

deviating from σd. Also, negotiator 2 cannot improve her payoff by deviating from

σd. Consequently, disagreement is supported as an SSPE outcome.

Disagreement is supported as an SSPE outcome in the model without a mediator,

but it does not appear as an SSPE outcome in the model with a mediator. These

results imply that the mediator has the power to resolve conflict. Also, in the model

without a mediator, since all agreements on the Pareto frontier ∂S can be achieved

as an SSPE agreement, an unfair agreement may be achieved. In contrast to it, in

the model with a mediator, when the mediator is sufficiently fair, the agreement

achieved in SSPE is sufficiently close to the reasonable agreement (the NBS).
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Figure 3.11: SSPE agreement in the model without a mediator

3.4.2 Comparison with a model with an arbitrator

Next, we compare the model with a mediator with a model with an arbitrator. The

role of an arbitrator is to impose some agreement when negotiators cannot reach an

agreement by themselves. The model with an arbitrator defined in this subsection

has finite periods as with the models of Crawford (1979) and Rong (2012). This is

in contrast to the model with a mediator in section 3.2, which has infinite periods.

In this sense, the model with a mediator in section 3.2 and the model with an

arbitrator in this subsection are not very comparable. Therefore, in order to clarify

what factors cause differences in equilibrium outcomes of these models, we also

define a two-period model with a mediator and compare equilibrium outcomes in

the infinite-period model with a mediator, a two-period model with an arbitrator,

and a two-period model with a mediator.

First, we define a two-period model with an arbitrator. The model is as follows.

At period 1, negotiators 1 and 2 simultaneously propose their demands x ∈ [0, x]

and y ∈ [0, y], respectively. If (x, y) ∈ S, then the game ends and negotiators 1 and 2

receive x and y, respectively. If (x, y) /∈ S, the game proceeds to period 2. At period

2, the arbitrator imposes some p(z) such that z ∈ [f−1(y), x] as an outcome of the

bargaining. When the arbitrator imposes p(z), negotiators 1, 2, and the arbitrator

receive δz, δf(z), and δu(p(z)), respectively, where u : S → R+ is the arbitrator’s

utility function satisfying Assumption 3.2.1. In this model, since SSPE cannot be

defined, we derive SPE. Then, we obtain the following result.

Proposition 3.4.2. Consider the two-period model with an arbitrator. The outcome

that the negotiators reach an agreement with p(x) ∈ ∂S at period 1 is supported as
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an SPE outcome if and only if x ∈ [δα, f−1(δf(α))]. Also, the outcome that the

arbitrator imposes p(x) ∈ ∂S at period 2 is supported as an SPE outcome if and

only if x = α. (In the SPE where the arbitrator imposes p(α) ∈ ∂S at period 2,

negotiators 1 and 2 propose x′ ∈ [f−1(δf(α)), x] and y′ ∈ [f(δα), y], respectively.

See Figure 3.12.)

Proof. First, notice that, in all SPEs, if negotiators 1 and 2 demand x′ and y′ such

that (x′, y′) /∈ S, respectively, the arbitrator imposes p(x′) if α > max[f−1(y′), x′]

(= x′), imposes p(f−1(y′)) if α < min[f−1(y′), x′] (= f−1(y′)), and imposes p(α) if

α ∈ [f−1(y′), x′].

Suppose that, in some SPE σ1, the negotiators reach an agreement with p(x)

at period 1 (as with Lemma 3.3.1, it is sufficient to consider the case where the

negotiators reach an agreement on ∂S). Then, negotiators 1 and 2 receive x and

f(x), respectively. If x < δα, since negotiator 1 obtains δα by deviating from

σ1 and demanding α, she can improve her payoff. Similarly, if x > f−1(δf(α)),

negotiator 2 can improve her payoff by demanding f(α). Therefore, x must satisfy

x ∈ [δα, f−1(δf(α))].

When x ∈ [δα, α], consider the case where negotiator 1 deviates from σ1. Then,

she obtains x∗ by demanding x∗ ∈ [0, x) and obtains δmin{x∗∗, α} by demanding

x∗∗ ∈ (x, x]. Since x∗ < x and δmin{x∗∗, α} ≤ δα ≤ x, negotiator 1 cannot improve

her payoff by deviating from σ1. Also, when x ∈ [δα, α], consider the case where

negotiator 2 deviates from σ1. Then, she obtains y∗ by demanding y∗ ∈ [0, f(x))

and obtains δf(x) by demanding y∗∗ ∈ (f(x), y]. Since y∗ < f(x) and δf(x) < f(x),

negotiator 2 cannot improve her payoff by deviating from σ1. Therefore, the outcome

that the negotiators reach an agreement with p(x) such that x ∈ [δα, α] at period 1

is supported as an SPE outcome. Similarly, the outcome that the negotiators reach

an agreement with p(x) such that x ∈ (α, f−1(δf(α)] at period 1 is supported as an

SPE outcome.

Next, suppose that, in some SPE σ2, the arbitrator imposes p(x) at period 2

after negotiators 1 and 2 demand x′ and y′ ((x′, y′) /∈ S), respectively. Then, x

must satisfy x = x′ if α > max[f−1(y′), x′] (= x′), x must satisfy x = f−1(y′) if

α < min[f−1(y′), x′] (= f−1(y′)), and x must satisfy x = α if α ∈ [f−1(y′), x′]. If

α > x′, since negotiator 1 obtains δα (> δx′) by deviating from σ2 and demanding α,

she can improve her payoff. If α < f−1(y′), since negotiator 2 obtains δf(α) (> δy′)

by deviating from σ2 and demanding f(α), she can improve her payoff. Therefore,

α ∈ [f−1(y′), x′], that is, x′ ≥ α and y′ ≥ f(α) must hold, and x must satisfy x = α.

Then, under σ2, negotiators 1 and 2 receive δα and δf(α), respectively.

If y′ ∈ [f(α), f(δα)), since negotiator 1 obtains f−1(y′) (> δα) by deviating from

71



Figure 3.12: SPE agreement in the two-period models with an arbitrator and with
a mediator

σ2 and demanding f−1(y′), she can improve her payoff. If x′ ∈ [α, f−1(δf(α))), since

negotiator 2 obtains f(x′) (> δf(α)) by deviating from σ2 and demanding f(x′), she

can improve her payoff. Therefore, x′ must satisfy x′ ∈ [f−1(δf(α)), x] and y′ must

satisfy y′ ∈ [f(δα), y].

Finally, we prove that, when x′ ∈ [f−1(δf(α)), x] and y′ ∈ [f(δα), y], each ne-

gotiator cannot improve her payoff by deviating from σ2. Consider the case where

negotiator 1 deviates from σ2. Then, she obtains x∗ by demanding x∗ ∈ [0, f−1(y′)]

and obtains δmin{x∗∗, α} by demanding x∗∗ ∈ (f−1(y′), x]. Since x∗ ≤ f−1(y′) ≤ δα

and δmin{x∗∗, α} ≤ δα, negotiator 1 cannot improve her payoff by deviating from

σ2. Similarly, negotiator 2 cannot improve her payoff by deviating from σ2. There-

fore, it is consistent to the fact that σ2 is an SPE. Thus, we obtain Proposition

3.4.2.

Proposition 3.4.2 shows that the SPE outcomes in the model with an arbitrator

strongly depend on what agreement the arbitrator wishes to impose. Especially,

when δ ↑ 1, p(α) is the unique SPE agreement. That is, the arbitrator’s ideal

agreement is achieved in SPEs. This result is caused by the fact that the arbitrator

has the authority to decide a final bargaining outcome. Therefore, if the arbitrator is

biased, the NBS is eliminated from SPE agreement. Although the way of arbitration

in the models of Crawford (1979) and Rong (2012) is different from the above model

(they use the final-offer arbitration), a reasonable agreement is similarly eliminated

from equilibrium (especially when the discount factor is sufficiently large).

Next, we define a two-period model with a mediator. This model is the same as
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the model with an arbitrator, except that an arbitrator is replaced with a mediator.

The model is as follows. At period 1, negotiators 1 and 2 simultaneously propose

their demands x ∈ [0, x] and y ∈ [0, y], respectively. If (x, y) ∈ S, then the game

ends and negotiators 1 and 2 receive x and y, respectively. If (x, y) /∈ S, the game

proceeds to period 2. At period 2, the mediator proposes some p(z) ∈ ∂S such

that z ∈ [f−1(y), x] or chooses pass. If the mediator chooses pass, then the game

ends with the outcome of disagreement and negotiators 1, 2, and the mediator

receive payoffs of zero. If the mediator proposes some p(z), then the negotiators

simultaneously decide whether to accept the mediator’s proposal or reject it. If

both negotiators accept it, the game ends and negotiators 1, 2, and the mediator

receive δz, δf(z), and δu(p(z)), respectively, where u : S → R+ is the mediator’s

utility function satisfying Assumption 3.2.1. If some negotiator rejects it, the game

ends with the outcome of disagreement and negotiators 1, 2, and the mediator receive

payoffs of zero. We assume that, when some negotiator responses to the mediator’s

proposal, she accepts it if the mediator’s proposal is not less profitable than rejecting

it. We derive SPE as with the two-period model with an arbitrator. Then, we obtain

the following result.

Proposition 3.4.3. Consider the two-period model with a mediator. The outcome

that the negotiators reach an agreement with p(x) ∈ ∂S at period 1 is supported as an

SPE outcome if and only if x ∈ [δα, f−1(δf(α))]. The outcome that the mediator’s

proposal p(x) ∈ ∂S is accepted at period 2 is supported as an SPE outcome if and

only if x = α. Also, disagreement is not supported as an SPE outcome. (In the SPE

where the mediator’s proposal p(α) ∈ ∂S is accepted at period 2, negotiators 1 and

2 propose x′ ∈ [f−1(δf(α)), x] and y′ ∈ [f(δα), y], respectively. See Figure 3.12.)

Proof. First of all, we prove that, in all SPEs, any mediator’s proposal is accepted

at period 2 by both negotiators. Suppose that negotiators 1 and 2 demand x′ and

y′ such that (x′, y′) /∈ S, respectively, at period 1, and the mediator proposes p(z′)

such that z′ ∈ [f−1(y′), x′] at period 2. Then, notice that, if some negotiator rejects

the mediator’s proposal, negotiators 1 and 2 receive payoffs of zero. Therefore, since

z′ ≥ 0 and f(z′) ≥ 0 hold, both negotiators accept the mediator’s proposal in SPE.

Thus, in all SPEs, any mediator’s proposal is accepted by both negotiators.

Next, we prove that, in all SPEs, the mediator never chooses pass. Suppose that

negotiators 1 and 2 demand x′ and y′ such that (x′, y′) /∈ S, respectively, at period

1. Then, there exists some z′ ∈ [f−1(y′), x′] such that u(p(z′)) > 0 by u(0, f(0)) ≥ 0,

u(x, f(x)) ≥ 0, and Assumption 3.2.1. In all SPEs, if the mediator proposes p(z′),

this proposal is accepted by both negotiators and the mediator receives a payoff

larger than zero. Since the mediator receives a payoff of zero by choosing pass,
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proposing p(z′) is more profitable for the mediator than choosing pass. Therefore,

in all SPEs, the mediator never chooses pass.

By the above discussions, we can see that disagreement is not supported as an

SPE outcome. Also, since any mediator’s proposal is accepted by both negotiators,

we can see that, in all SPEs, if negotiators 1 and 2 demand x′ and y′ such that

(x′, y′) /∈ S, respectively, the mediator proposes p(x′) if α > max[f−1(y′), x′] (= x′),

proposes p(f−1(y′)) if α < min[f−1(y′), x′] (= f−1(y′)), and proposes p(α) if α ∈
[f−1(y′), x′]. This SPE strategy is the same as the SPE strategy of the arbitrator

in the two-period model with an arbitrator. The rest of the proof is the same as

Proposition 3.4.2. Thus, we obtain Proposition 3.4.3.

By Proposition 3.4.3, we can confirm that the SPE outcomes of the two-period

model with an arbitrator and the two-period model with a mediator coincide. The

reason is explained as follows. In the two-period model with a mediator, since

the negotiation breaks down if the negotiators reject the mediator’s proposal, the

negotiators need to accept the proposal to make profits. Therefore, any mediator’s

proposal at period 2 is accepted. This implies that the mediator in the two-period

model with a mediator behaves as if she had the authority to decide a final bargaining

outcome. That is, in this model, the mediator plays the same role as the arbitrator

in the two-period model with an arbitrator. Thus, the SPE outcomes of the above

two models coincide. Consequently, we can see that simply replacing an arbitrator

with a mediator does not change the SPE outcomes.

Now, we compare the result in the infinite-period model with a mediator and the

results in the above two-period models with an arbitrator and a mediator. In both

two-period models, the SPE outcomes strongly depend on what the arbitrator’s or

the mediator’s ideal agreement is. Therefore, if the arbitrator or the mediator is

biased, the NBS is eliminated from SPE agreement. In contrast to it, in the infinite-

period model with a mediator, even if the mediator is biased, the NBS can always be

achieved in SSPE. To see why this difference occurs, consider the following situation.

Suppose that, in all three models, the mediator and the arbitrator favor negotiator

2. Then, suppose f−1(δf(α)) < xN . This is simply α < xN when δ ↑ 1. Also, in all

three models, consider the case where negotiators 1 and 2 demand xN and f(xN ),

respectively. Now, notice that, when f−1(δf(α)) < xN , the NBS is eliminated from

SPE agreement in the two-period models with an arbitrator and a mediator (see

Figure 3.12), but it is supported as an SSPE agreement in the infinite-period model

with a mediator.

In the two-period models with an arbitrator and a mediator, if negotiator 2

deviates from demanding f(xN ) and demands sufficiently large value, the game
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proceeds to the next period and the arbitrator’s or the mediator’s ideal agreement

p(α) is achieved at period 2. Since the arbitrator and the mediator favor negotiator

2, reaching an agreement with p(α) at period 2 is more profitable for negotiator 2

than reaching an agreement with the NBS at period 1. Therefore, negotiator 2 has

incentive to deviate and the NBS is eliminated from equilibrium agreement.

In contrast, in the infinite-period model with a mediator, even if negotiator 2

deviates from demanding f(xN ) and demands sufficiently large value, the mediator

does not propose her ideal agreement p(α) since this proposal is rejected by ne-

gotiator 1. Negotiator 1 rejects the mediator’s proposal p(α) because she has the

opportunity to continue the negotiation with negotiator 2 even if she rejects the

mediator’s proposal and can reach an agreement with the NBS at the next period,

which is a more profitable agreement for negotiator 1 than an agreement with p(α).

Such an opportunity to continue the negotiation after rejecting the mediator’s pro-

posal is a characteristic of the infinite-period model with a mediator. This implies

that the mediator does not have the authority to decide a finial bargaining outcome.

Then, since the mediator knows that the proposal p(α) is rejected by negotiator

1, she proposes some agreement close to the NBS. For negotiator 2, accepting this

proposal at period 2 is less profitable than reaching an agreement with the NBS

at period 1. Therefore, negotiator 2 does not deviate from demanding f(xN ) and

the negotiators reach an agreement with the NBS at period 1. The case where the

mediator and the arbitrator favor negotiator 1 is similarly explained.

By the above discussions, we can see that, in the infinite-period model with a

mediator, the negotiators’ right to reject the mediator’s proposal and the opportu-

nity to continue the negotiation work as deterrents to an unfair proposal by a biased

mediator. Therefore, the NBS can be achieved as an equilibrium agreement even if

the mediator is biased. The different results of the model with a mediator in section

3.2 and the model with an arbitrator in this subsection are caused by these factors.

3.5 Conclusion

We considered introducing a mediator into bargaining instead of an arbitrator. An

advantage of introducing a mediator is that it is easier than introducing an arbitrator

since a mediator is merely an adviser. In this study, we analyzed the simultaneous-

offers bargaining with a mediator and showed that the following desirable properties

appear by introducing a mediator.

First, we found that disagreement is not supported as an SSPE outcome. This

result implies that a mediator can resolve conflicts as with an arbitrator. Second,

although the set of SSPE agreements is biased towards the mediator’s ideal agree-
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ment, the reasonable agreement in the sense of the NBS is always one of the SSPE

agreements even if the mediator is biased. An agreement having such a property

is only the NBS. Therefore, in contrast to the bargaining with an arbitrator, the

reasonable agreement is always achievable in equilibrium. Finally, if the mediator is

fair in the sense that she wishes to achieve the NBS, the NBS is the unique SSPE

agreement when the discount factor is sufficiently large. That is, the negotiators al-

ways reach an agreement with the NBS in SSPE. This implies that the fair mediator

facilitates the reaching of the reasonable agreement.
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Chapter 4

A Strategic Justification of the

Constrained Equal Awards Rule

through a Procedurally Fair

Multilateral Bargaining Game1

4.1 Introduction

In this chapter, we consider situations where negotiators (claimants) have claims on

a profit. For example, when a firm goes bankrupt and its liquidation value has to

be allocated, creditors have claims on it. Also, when an estate is allocated, heirs

have claims on it. Especially, we consider the situations where the endowment (the

liquidation value or the estate) is not sufficient to cover the totality of the claims.

Then, how is the endowment allocated? Such a problem is known as a claims

problem.2

An axiomatic solution of claims problems is called a “rule.”A rule is a single-

valued mapping that associates, with each claims problem, an allocation of the

endowment satisfying non-negativity, claims boundedness, and efficiency. We call

such an allocation an “awards vector.” As a central rule for claims problems, we

consider the so-called constrained equal awards (CEA) rule. The CEA rule satisfies a

number of desirable properties, and the rule has been characterized in multiple ways,

reviewed in Thomson (2019).3 Our purpose is to develop a strategic justification of

the CEA rule.

1This chapter is based on Hagiwara and Hanato (2021).
2For a comprehensive survey on claims problems, see Thomson (2019).
3See, for example, Theorem 6.4 at pp 144 of Thomson (2019), which is due to Dagan (1996).
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Nash (1953) initiates the study of strategic justifications of axiomatic solutions

for bargaining problems through non-cooperative game. Specifically, he provides a

strategic justification for the Nash bargaining solution (Nash (1950)) through the

“Nash demand game.” This line of research is known as the Nash program. The

CEA rule corresponds to the Nash bargaining solution in a special class of bargaining

problems (discussed in Remark 4.5.1). In this sense, we follow the original work of

Nash (1953) as a part.

We provide the following game: At each period t, each claimant proposes a pair

consisting of an awards vector and a permutation. If some awards vector is proposed

by more than one claimant, then the awards vector which receives the highest number

of votes is chosen as temporary awards vector.4 The components of this temporary

awards vector are subject to the composition of the reported permutations, and the

game ends.5 If no two claimants propose the same awards vector, the game proceeds

to the period t + 1 and we repeat the above process. The formal definition of the

above game is proposed in section 4.4.

Our game is “procedurally fair” (claimants are treated equally) and “multilat-

eral” (all claimants negotiate simultaneously). If a game is not procedurally fair,

claimants are not treated equally. For example, only one claimant has the power

to select a division in Li and Ju (2016). In addition, if a game is not multilateral,

some claimant is not involved in the negotiation at some stage. Such a situation

occurs in Tsay and Yeh (2019). If at least one of the two features is missing, the

negotiation might not be initiated since some claimant feels unfair and does not

want to participate in the negotiation. For detailed discussion, see section 4.2.

Our game resembles the simultaneous-offers bargaining game analyzed in Chat-

terjee and Samuelson (1990) in the sense that in each period, all agents simultane-

ously make proposals and if they do reach an agreement, they can try again in the

next period.6 In the games proposed by Li and Ju (2016) and Tsay and Yeh (2019),

most claimants do not have the opportunity to renegotiate (see section 4.2), but in

our game, all claimants do.

We show that for each claims problem, the awards vector chosen by the CEA

rule achieved at period 1 is supported as an SPE outcome of the game associated

4When at least two awards vectors receive the highest number of votes, we use a tie-breaking.
See section 4.4.

5The permutation idea is proposed in Thomson (2005) for the allocation of a social endowment
of infinitely divisible resources and exploited by Doğan (2016), Hagiwara (2019), and others. Note
that Chang and Hu (2008), Hayashi and Sakai (2009), Tsay and Yeh (2019), and Moreno-Ternero
et al. (2020) apply the idea of letting each agent report a permutation as a strategy into their games
to exchange the order of claimants not for exchanging an allocation.

6Note that, although Chatterjee and Samuelson (1990) consider the case of only two agents,
our game is applicable to any number of agents.
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with the problem (Proposition 4.5.1). In addition, for each claims problem, any SPE

outcome of the game associated with the problem is the awards vector chosen by

the CEA rule achieved at period 1 (Proposition 4.5.2). By Proposition 4.5.1 and

4.5.2, for each claims problem, the awards vector chosen by the CEA rule achieved

at period 1 is the unique SPE outcome of the game associated with the problem

(Theorem 4.5.1). If we change from the notion of subgame perfect equilibrium to

the notion of Nash equilibrium, our result holds by the same way as in the proofs of

Proposition 4.5.1 and 4.5.2 (Corollary 4.5.1).

Our results have two applications, one to bargaining problems and one to coali-

tional problems. For bargaining problems, the CEA rule corresponds to the Nash

bargaining solution (Dagan and Volij (1993)). For coalitional problems, the CEA

rule corresponds to the Dutta-Ray solution (Dutta and Ray (1989)). From these

correspondences, our Theorem 4.5.1 and Corollary 4.5.1 imply that our game pro-

vides a strategic justification of the Nash bargaining solution and of the Dutta-Ray

solution. For detailed discussions of these applications, see Remark 4.5.1 and 4.5.2.

This chapter is organized as follows. In section 4.2, we introduce related liter-

ature of our study. In section 4.3, we introduce the model of claims problems and

define the CEA rule. In section 4.4, we provide our procedurally fair multilateral

bargaining game. In section 4.5, we show that, for each claims problem, the awards

vector chosen by the CEA rule achieved at period 1 is the unique SPE outcome of

our game associated with the problem. This result holds even if we change from the

notion of subgame perfect equilibrium to the notion of Nash equilibrium.

4.2 Related literature

Strategic justifications of the CEA rule for claims problems have been derived by Li

and Ju (2016) and Tsay and Yeh (2019).7,8

Li and Ju (2016) propose the following n-stage game, where n is the number of

claimants. Claimants are numbered in the reverse order of their claims. In Stage 1,

the agent whose claim is the largest, claimant n, divides the endowment as proposal.

7For another strategic justification of the CEA rule, see Chun (1989). He considers a game
where each agent reports a rule, while in each of the games of Li and Ju (2016), Tsay and Yeh
(2019), and this study, an allocation is reported. Since each agent considers how to select allocations
for all claims problems in Chun’s game, it may be hard to use this game for real people compared
to Li and Ju (2016), Tsay and Yeh (2019), and this study. Then, we compare our game with Li
and Ju (2016) and Tsay and Yeh (2019).

8Strategic justifications of other rules have been also studied. For the family of f -just rules, see
Dagan et al. (1997) and Chang and Hu (2008). For the constrained equal losses rule, see Li and Ju
(2016) and Tsay and Yeh (2019). For the Talmud rule, see Li and Ju (2016), Tsay and Yeh (2019),
and Moreno-Ternero et al. (2020). For the proportional rule, see Tsay and Yeh (2019).
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In Stage k ∈ {2, . . . , n}, claimant k−1 chooses a component of the proposal as their

payoffs.9 Claimant n is given the power to make the division, although agents

with lower claims are only given priority to choose early on in the game but not

the power to make the division. Therefore, claimants are not treated equally. In

addition, at each stage of their game, only two claimants negotiate, so that the game

is bilateral even in the case of more than two claimants. Furthermore, any claimant

who negotiated with claimant n at a stage of their game cannot negotiate anymore.

Tsay and Yeh (2019) propose the following three-stage game for the CEA rule.

In Stage 1, each claimant announces a pair consisting of an awards vector and

a permutation. The composition of the reported permutations selects a claimant

as coordinator. If all claimants, except for the coordinator, announce the same

awards vector, then this awards vector is the proposal; otherwise, the awards vector

announced by the coordinator is the proposal. In Stage 2, the coordinator either

accepts or rejects the proposal. If he accepts it, the proposal is the outcome. If

he rejects it, he selects one claimant to negotiate for the two claimants in Stage

310; all the others receive their awards as specified in Stage 1. That is, in Stage

1, all claimants are given the opt-in of choosing the temporary awards vector, but

in Stage 2, only the coordinator is given the power to reject a component of the

proposal and to choose a claimant to negotiate the final awards for only the two

claimants in Stage 3.11 Therefore, only two claimants negotiate in Stage 3 of their

game, so that the game is not multilateral in all stages. Moreover, in their game,

only the coordinator and the claimant selected by the coordinator at Stage 2 have

the opportunity to renegotiate.

By contrast, in our game, all claimants are treated equally; they negotiate mul-

tilaterally; and they all have opportunities to renegotiate.

4.3 The model

Let N = {1, . . . , n} be the set of agents with n ≥ 2. Each agent i ∈ N has a

claim on a resource, ci ∈ R+. Claimants are numbered so that c1 ≤ · · · ≤ cn. Let

9This bilateral negotiation procedure is similar to the games of Chae and Yang (1988) and Sonn
(1992).

10For the bilateral negotiation game for the CEA rule, see Tsay and Yeh (2019). They incorporate
the axioms of rules, mainly bilateral consistency and converse consistency, into the corresponding
games, as suggested by Krishna and Serrano (1996). The other researches of this line in claims
problems are Dagan et al. (1997), Chang and Hu (2008), and Moreno-Ternero et al. (2020). Note
that Tsay and Yeh (2019) and Moreno-Ternero et al. (2020) use non-cooperative bargaining proce-
dures to solve bilateral negotiations, while Dagan et al. (1997) and Chang and Hu (2008) resolve
bilateral negotiations by applying predetermined rules without claimants’ strategic actions.

11Note that each claimant has an equal chance of becoming coordinators at the first stage of the
game of Tsay and Yeh (2019).
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Figure 4.1: Examples of the constrained equal awards rule.

c ≡ (c1, . . . , cn) be a claims vector. There is an endowment E of the resource. The

endowment is insufficient to honor the totality of the claims. Using RN
+ for the

cross-product of n copies of R+ indexed by the members of N , a claims problem is

a pair (c, E) ∈ RN
+ ×R++ such that E ≤

∑
i∈N ci. Let CN denote the domain of all

claims problems.

An awards vector for the claims problem (c, E) ∈ CN is a vector a ≡ (a1, . . . , an) ∈
RN
+ (i.e., non-negativity) such that, for each i ∈ N , ai ≤ ci (i.e., claims boundedness)

and
∑

i∈N ai = E (i.e., efficiency). Let A(c, E) = {a ∈ Rn
+ | for each i ∈ N, ai ≤

ci and
∑

i∈N ai = E} be the set of awards vectors of the problem (c, E) ∈ CN . A

division rule, or simply a rule, is a single-valued mapping which associates, with

each problem (c, E) ∈ CN , an awards vector a ∈ A(c, E).

The following is central to our study:12

Constrained equal awards rule, CEA: For each (c, E) ∈ CN and each i ∈ N ,

CEAi(c, E) ≡ min{ci, λ}, where λ ∈ R+ is chosen so as to satisfy efficiency.

In the two cases regarding the endowment when there are only three claimants,

Figure 4.1 illustrates how allocates the endowment E1 such that λ1 ≡ E1
3 < c1 and

E2 such that c1 < λ2 ≡ E2−c1
2 < c2.

4.4 The game for a strategic justification of the CEA

rule

We first provide an informal description of our game in words, and then we define

the game mathematically.

12For other important rules for claims problems, see, for example, Ch.2 of Thomson (2019).
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At each period t, each claimant proposes a pair consisting of an awards vector and

a permutation. If some awards vector is proposed by more than one claimant, then

the awards vector which receives the highest number of votes is chosen as temporary

awards vector. If at least two awards vectors receive the highest number of votes,

then the awards vector proposed by the claimant who has the lowest index among the

claimants who announce one of these awards vectors is chosen as temporary awards

vector. The components of this awards vector are subject to the composition of

the reported permutations, and the game ends. Note that independently of the

permutations reported by the other claimants and independently of the order of

permutations for the composition, each claimant can assign any component of the

temporary awards vector to himself by proposing an appropriate permutation. A

claimant’s payoff is the discounted present value of the minimum of his claim or his

component of the resulting allocation adjusted so as to satisfy claims boundedness.

If no two claimants propose the same awards vector, the game proceeds to the period

t+ 1 and we repeat the above process. If the claimants cannot reach an agreement

permanently, then negotiation breaks down and each claimant obtains a payoff of

zero.

To define the game formally, let us introduce some notation. A permutation

π : N → N is a one-to-one function from N to N . Let Π be the set of permutations.

Let δ ∈ (0, 1) be the claimants’ common discount factor.

Let (c, E) ∈ CN be given. The game Γ(c, E) is as follows:

1. At period t, each claimant i proposes a pair (ai, πi) ∈ A(c, E)×Π.

2. If for some a ∈ A(c, E), |{i ∈ N | ai = a}| ≥ 2, we select aî, where î =

min{i′ ∈ N | ai′ ∈ arg max
a∈A

|{i ∈ N | ai = a}|}.

The components of the awards vector aî are subject to the composition π∗ ≡
πn ◦ · · · ◦ π1, and the game ends. Let aîπ∗ = (aîπ∗(1), . . . , a

î
π∗(n)). The payoff of

claimant i is δt−1min{ci, aîπ∗(i)}.

3. If for each a ∈ A, |{i ∈ N | ai = a}| ≤ 1, then the game proceeds to the next

period t+ 1 and we repeat the above process.

If the claimants cannot reach an agreement permanently, disagreement occurs

and then each claimant obtains a payoff of zero.

Regarding our game, there are the following two remarks.

Remark 4.4.1. (Tie-breaking). We use a tie-breaking when at least two awards
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vectors receive the highest number of votes. Our results hold no matter what tie-

breaking is used. One may say that this game does not treat claimants equally.

To resolve this problem for procedural fairness, let each claimant additionally

report another permutation π̃i ∈ Π and according to the composition of these per-

mutations π∗∗ ≡ π̃n ◦ · · · ◦ π̃1, a claimant who chooses one awards vector in those

receiving the highest number of votes is selected as tie-breaker. Then, the awards

vector reported by the tie-breaker is selected as temporary awards vector. In this

modified game, independently of the permutations reported by the other claimants

and independently of the order of the permutations for the composition, any claimant

reporting one awards vector among those receiving the highest number of votes can

be the tie-breaker by proposing an appropriate permutation. Therefore, this mod-

ified game is procedurally fair. Since the proofs of Proposition 4.5.1 and 4.5.2 are

simpler, we propose those in this study.

Remark 4.4.2. (Inefficient allocations). In our game, some final allocation after

exchange may not satisfy efficiency. Chang and Hu (2008) also use inefficient allo-

cations in their game. In their game, each claimant reports a pair of consisting of

an awards vector and a permutation. At the first stage, if some claimant reports a

different awards vector from the awards vectors announced by the other claimants,

then the coordinator, who is the first claimant selected by the composition of the

reported permutations, gets a negative value and the other claimants get nothing.

In their game, inefficient allocations have an important role to have Nash equilib-

ria of their game, but in our game, these are just selected so as to satisfy claims

boundedness.

4.5 Results

We first provide two propositions (Proposition 4.5.1 and 4.5.2) and then from these

two results, we have our main result (Theorem 4.5.1).

In the following, we derive an SPE outcome of Γ(c, E). The outcome that aπ is

achieved at period t is denoted by [aπ, t], where aπ = (aπ(1), . . . , aπ(n)).

Proposition 4.5.1. For each (c, E) ∈ CN , [CEA(c, E), 1] is supported as an SPE

outcome of Γ(c, E).

Proof. Let σ∗ ≡ (σ∗
1, . . . , σ

∗
n) be the strategy profile in which each claimant i ∈ N

always proposes (CEA(c, E), πid), where πid is the identity permutation i.e., for

each j ∈ N , πid(j) = j. The outcome under σ∗ is [CEA(c, E), 1]. Then, claimant

i’s payoff is CEAi(c, E) (≤ ci). We prove that σ∗ is an SPE of Γ(c, E).
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We use the one-shot deviation principle: a strategy profile σ is an SPE if and

only if no claimant gains by deviating from σ in a single action (for example, see

Fudenberg and Tirole (1991)). Fix a pair consisting of i ∈ N and a positive integer t

arbitrarily. Suppose that claimant i deviates from σ∗
i in a single action and proposes

some (ai, πi) ̸= (CEA(c, E), πid) at period t. First, we consider the case E <∑
i∈N ci. The proof is divided into two cases, n ≥ 3 and n = 2.

Case n ≥ 3. For each (ai, πi), arg max
a∈A

|{i′ ∈ N | ai′ = a}| = {CEA(c, E)}. If claimant i

proposes (ai, πi), then since πid◦· · ·◦πi◦· · ·πid = πi, he obtains CEAπi(i)(c, E).

Thus, to see that he cannot gain by deviating from σ∗
i , we prove that for each

πi ∈ Π, min{ci, CEAπi(i)(c, E)} ≤ CEAi(c, E). It suffices to prove that for

each j ∈ N , min{ci, CEAj(c, E)} ≤ CEAi(c, E).

By the definition of CEA, for each j ∈ N , CEAj(c, E) = min{cj , λ}, where
λ ∈ R+ is chosen so as to satisfy

∑
j∈N CEAj(c, E) = E. If CEAi(c, E) = ci,

then we immediately obtain that for each j ∈ N , min{ci, CEAj(c, E)} ≤
CEAi(c, E)(= ci). If CEAi(c, E) < ci, then λ = CEAi(c, E)(< ci). Since λ <

ci, we have that for each j ∈ N , min{ci, CEAj(c, E)} = min{ci,min{cj , λ}} =

min{cj , λ} ≤ λ = CEAi(c, E). Therefore, claimant i cannot gain by deviating

from σ∗
i .

Case n = 2. If claimant i proposes (ai, πi) such that ai = CEA(c, E) and πi ̸= πid, then

arg max
a∈A

|{i′ ∈ N | ai
′
= a}| = {CEA(c, E)}. Therefore, since πid ◦ πi(=

πi ◦ πid) = πi and πi ̸= πid, claimant i obtains CEAj(c, E), where j ̸= i.

By a similar proof to the case n ≥ 3, we obtain that min{ci, CEAj(c, E)} ≤
CEAi(c, E). Thus, claimant i cannot gain by deviating from σ∗

i if he proposes

(ai, πi) such that ai = CEA(c, E) and πi ̸= πid.

If claimant i proposes (ai, πi) such that ai ̸= CEA(c, E), then for each a ∈
A(c, E), |{i′ ∈ N | ai′ = a}| ≤ 1. Thus, the game proceeds to the next period

t + 1. Since claimant i follows σ∗
i at period t + 1, he obtains CEAi(c, E) at

period t+1. If claimant i does not deviate from σ∗
i , he obtains CEAi(c, E) at

period t. Since CEAi(c, E) ≥ δCEAi(c, E), he cannot gain by deviating from

σ∗
i .

By the above discussion, if
∑

i∈N ci > E, we have that σ∗ is an SPE of Γ(c, E).

In the case
∑

i∈N ci = E, since A(c, E) = {CEA(c, E)}, this case is proved by an

analogous proof to that for n ≥ 3. Therefore, [CEA(c, E), 1] is supported as an SPE

outcome of Γ(c, E).
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The following is the uniqueness part of our strategic justification of the CEA

rule.

Proposition 4.5.2. For each (c, E) ∈ CN , any SPE outcome of Γ(c, E) is [CEA(c, E), 1].

Proof. First, we show that for any b ̸= CEA(c, E) and any period t, [b, t] is not

supported as an SPE outcome of Γ(c, E). Suppose, by contradiction, that there

exists an SPE σ of Γ(c, E) whose outcome is [b, t]. We show that some claimant

gains by deviating from σ. Let λ ∈ Rn
+ be such that

∑
i∈N min{ci, λ} = E. Since

b ̸= CEA(c, E), the proof is divided into the following three cases.

Case 1. For some i∗ ∈ N , bi∗ > ci∗ .

Case 2. For each i ∈ N , bi ≤ ci, and

2-1. for some i∗∗ ∈ N such that ci∗∗ ≤ λ, bi∗∗ < ci∗∗ , or

2-2. for some i∗∗∗ ∈ N such that ci∗∗∗ > λ, bi∗∗∗ ̸= λ.

The above three cases cover all possibilities of b ̸= CEA(c, E). By definition, for

each claims problem, an allocation is selected by CEA if and only if the following

three conditions are satisfied: (1) the selected allocation is efficient; (2) if someone’s

claim is less than or equal to λ, his assignment is equal to his claim; and (3) if

someone’s claim is more than λ, his assignment is equal to λ. Case 1 (resp. Case

2-1, Case 2-2) is that (1) (resp. (2), (3)) is not satisfied. Therefore, Cases 1, 2-1,

and 2-2 are composed of all possibilities that b ̸= CEA(c, E).

We sequentially analyze each case.13

Case 1. Let â be the temporary awards vector before b is achieved by exchange at

period t. For each i ∈ N , let πi
σ be the permutation proposed by claimant i at

period t under σ. That is, for each i ∈ N ,

âπn
σ◦···◦π1

σ(i)
= bi.

We show that for some j ∈ N , bj < âj(≤ cj). Suppose, by contradiction, that

for each i ∈ N , âi ≤ bi. If for some k ∈ N , âk < bk, then E =
∑

i∈N âi <∑
i∈N bi = E, which is a contradiction. Thus, for each i ∈ N , âi = bi(=

âπn
σ◦···◦π1

σ(i)
). However, ci∗ ≥ âi∗ = bi∗ > ci∗ , which is also a contradiction.

Consequently, for some j ∈ N , âj > bj(= âπn
σ◦···◦π1

σ(j)
).

13When
∑

i∈N ci = E, it suffices to consider Case 1 because of the following reason. When∑
i∈N ci = E, if for each i ∈ N , bi ≤ ci, then E =

∑
i∈N bi ≤

∑
i∈N ci = E. This implies that for

each i ∈ N , bi = ci, which contradicts the assumption that b ̸= CEA(c, E).
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Claimant j can assign âj to himself by proposing an appropriate πj (̸= πj
σ).

Since bj < âj(≤ cj), claimant j gains by deviating from σj , which contradicts

the hypothesis that σ is an SPE of Γ(c, E).

Case 2-1. We show that for some j ∈ N , bj > λ. Suppose, by contradiction, that for each

i ∈ N , bi ≤ λ. Since for each i ∈ N , bi ≤ ci, then for each k ∈ N such that

ck ≤ λ, bk ≤ ck = CEAk(c, E). In addition, for each ℓ ∈ N such that cℓ > λ,

bℓ ≤ λ = CEAℓ(c, E). Therefore, for each i ∈ N , bi ≤ CEAi(c, E). Since

bi∗∗ < ci∗∗(= CEAi∗∗(c, E)), we have
∑

i∈N bi <
∑

i∈N CEAi(c, E), which

contradicts the assumption that
∑

i∈N bi =
∑

i∈N CEAi(c, E) = E. Thus, for

some j ∈ N , bj > λ. Claimant i∗∗ can obtain bj by proposing an appropriate

πi∗∗ ( ̸= πi∗∗
σ ). Since bj > λ ≥ ci∗∗ > bi∗∗ , claimant i∗∗ gains by deviating from

σi∗∗ , which contradicts the hypothesis that σ is an SPE of Γ(c, E).

Case 2-2. When bi∗∗∗ < λ, we show that for some j ∈ N , bj > λ. Suppose, by contradic-

tion, that for each i ∈ N , bi ≤ λ. Then, by the same proof as in Case 2-1, we ob-

tain that for each i ∈ N , bi ≤ CEAi(c, E). Since bi∗∗∗ < λ(= CEAi∗∗∗(c, E)),

we have
∑

i∈N bi <
∑

i∈N CEAi(c, E), which contradicts the assumption that∑
i∈N bi =

∑
i∈N CEAi(c, E) = E. Thus, for some j ∈ N , bj > λ.

Claimant i∗∗∗ can obtain bj by proposing an appropriate πi∗∗∗ ( ̸= πi∗∗∗
σ ). Since

bj > λ ≥ ci∗∗∗ > bi∗∗∗ , claimant i∗∗∗ gains by deviating from σi∗∗∗ , which

contradicts the hypothesis that σ is an SPE of Γ(c, E).

When bi∗∗∗ > λ, we show that for some j ∈ N such that cj > λ, bj < λ.

Suppose, by contradiction, that for each i ∈ N such that ci > λ, bi ≥ λ(=

CEAi(c, E)). In the case that for some k ∈ N such that ck ≤ λ, bk < ck, this

is in Case 2-1. Thus, we consider the case where, for each ℓ ∈ N such that

cℓ ≤ λ, bℓ = cℓ(= CEAℓ(c, E)). Since for each i ∈ N such that ci > λ, bi ≥
λ(= CEAi(c, E)) and for each ℓ ∈ N such that cℓ ≤ λ, bℓ = cℓ(= CEAℓ(c, E)),

then for each m ∈ N , bm ≥ CEAm(c, E). Since bi∗∗∗ > λ(= CEAi∗∗∗(c, E)),

we have
∑

i∈N bi >
∑

i∈N CEAi(c, E), which contradicts the assumption that∑
i∈N bi =

∑
i∈N CEAi(c, E) = E. Thus, for some j ∈ N such that cj > λ,

bj < λ.

Claimant j can obtain bi∗∗∗ by proposing an appropriate πj (̸= πj
σ). Since

min{cj , bi∗∗∗} > λ > bj , claimant j gains by deviating from σj , which contra-

dicts the hypothesis that σ is an SPE of Γ(c, E).

By the above discussion, for any b ̸= CEA(c, E) and any period t, [b, t] is not

supported as an SPE outcome of Γ(c, E).
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Next, we show that for any t̃ ̸= 1, [CEA(c, E), t̃] is not supported as an SPE

outcome of Γ(c, E). If
∑

i∈N ci = E, then A(c, E) = {c} = {CEA(c, E)}. Therefore,
each claimant proposes a pair (a, π) ∈ A(c, E)×Π such that a = CEA(c, E) at period

1. This implies that the game ends at period 1. Thus, in the case
∑

i∈N ci = E, for

any t̃ ̸= 1, [CEA(c, E), t̃] is not supported as an SPE outcome of Γ(c, E).

We consider the case
∑

i∈N ci > E. Suppose, by contradiction, that there exists

an SPE σ′ of Γ(c, E) whose outcome is [CEA(c, E), t̃] such that t̃ ̸= 1. Then, for

each i ∈ N , claimant i’s payoff is δt̃−1CEAi(c, E). Let j be the claimant whose claim

is minimal among the claims larger than zero. Since
∑

i∈N ci > E, such a claimant

exists. We show that claimant j can obtain a payoff larger than δt̃−1CEAj(c, E)(> 0)

by deviating from σ′
j .

Let (ak, πk) be claimant k’s proposal at period 1 under σ′, where k ̸= j. Since

under σ′, the game ends at period t̃ ≥ 2, no two claimant propose the same awards

vector at period 1, so that ak ̸= aj , where aj is claimant j’s proposal of an awards

vector at period 1 under σ′. We show that there exists ℓ ∈ N such that akℓ ≥
CEAj(c, E). Suppose that for each i ∈ N , aki < CEAj(c, E). By the definitions of

CEA and claimant j, for each i ∈ N such that ci > 0, CEAj(c, E) ≤ CEAi(c, E).

Then, for each i ∈ N such that ci > 0, aki < CEAi(c, E). In addition, for each i ∈ N

such that ci = 0, aki = CEAi(c, E) = 0. Therefore,
∑

i∈N aki <
∑

i∈N CEAi(c, E),

which contradicts the assumption that
∑

i∈N aki =
∑

i∈N CEAi(c, E) = E. Thus,

there exists ℓ ∈ N such that akℓ ≥ CEAj(c, E).

This implies that claimant j can obtain a payoff of min{cj , akℓ } at period 1 by

deviating from σ′
j and proposing a pair consisting of ak and an appropriate πj ∈ Π,

because, when claimant j changes his proposal regarding an awards vector aj into

ak at period 1, ak becomes the awards vector which receives the highest number of

votes. Since min{cj , akℓ } ≥ CEAj(c, E) > δt̃−1CEAj(c, E) > 0, claimant j gains by

deviating from σ′
j , which contradicts the hypothesis that σ′ is an SPE of Γ(c, E).

Therefore, [CEA(c, E), t̃] such that t ̸= 1 is not supported as an SPE outcome of

Γ(c, E).

Finally, we show that disagreement is not supported as an SPE outcome. The

proof is analogous to the case of [CEA(c, E), t̃] such that t̃ ̸= 1.

If
∑

i∈N ci = E, then the game ends at period 1 as we discussed in the case of

[CEA(c, E), t̃] for t̃ ̸= 1. Thus, if
∑

i∈N ci = E, disagreement is not supported as an

SPE outcome of Γ(c, E).

We consider the case
∑

i∈N ci > E. Suppose, by contradiction, that there exists

an SPE σ′′ of Γ(c, E) whose outcome is disagreement. Then, for each i ∈ N , claimant

i’s payoff is zero. Let j be the claimant whose claim is larger than zero. Since∑
i∈N ci > E, such a claimant exists. We show that claimant j can obtain a payoff
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larger than zero by deviating from σ′′
j .

Let (ak, πk) be claimant k’s proposal at period 1 under σ′′, where k ̸= j. Since

under σ′′, disagreement occurs, then no two claimant propose the same awards vector

at period 1, so that ak ̸= aj , where aj is claimant j’s proposal regarding an awards

vector at period 1 under σ′′.

Since E > 0, there exists ℓ ∈ N such that akℓ > 0. This implies that claimant j

can obtain the payoff of min{cj , akℓ } at period 1 by deviating from σ′′
j and proposing

a pair consisting of ak and an appropriate πj ∈ Π. Since min{cj , akℓ } > 0, claimant

j gains by deviating from σ′′
j , which contradicts the hypothesis that σ′′ is an SPE of

Γ(c, E). Therefore, disagreement is not supported as an SPE outcome of Γ(c, E).

By the above discussions, any SPE outcome of Γ(c, E) is [CEA(c, E), 1].

From Proposition 4.5.1 and 4.5.2, we have the following main result.

Theorem 4.5.1. For each (c, E) ∈ CN , [CEA(c, E), 1] is the unique SPE outcome

of Γ(c, E).

Therefore, the awards vector chosen by the CEA rule is achieved under our

procedurally fair and multilateral process.

We considered the notion of subgame perfect equilibrium for the above results.

Even if we change from this notion to the notion of Nash equilibrium, our result

holds by the same way as in the proofs of Proposition 4.5.1 and 4.5.2.

Corollary 4.5.1. For each (c, E) ∈ CN , [CEA(c, E), 1] is the unique Nash equilib-

rium outcome of Γ(c, E).

By the above result, we can know that, even if the claimants are not rational

enough to implement a subgame perfect equilibrium, they achieve the awards vector

chosen by the CEA rule.

Finally, in the following remarks, we describe relations between the CEA rule

and some solution concept of the cooperative game theory. For this theory to be

applicable, we need first to define a formal way of associating, with each claims prob-

lem, a cooperative problem. Two main classes of such problems have been studied,

bargaining problems (Remark 4.5.1) and coalitional problems (Remark 4.5.2), and

accordingly we establish two kinds of relations.

Remark 4.5.1. A bargaining problem is a pair (B, d), where B is a subset of RN

and d is a point of B. The set B is the feasible set consisting of all utility vectors

attainable by the group N and d is the disagreement point. A bargaining solution is

a function defined on a class of bargaining problems that associates, with each bar-

gaining problem in the class, a unique point in the feasible set of the problem. The
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Nash bargaining solution (Nash (1950)) selects the point maximizing the product of

utility gains from d among all points of B dominating d.

Given a claims problem (c, E) ∈ CN , its associated bargaining problem is the

problem with feasible setB(c, E) = {a ∈ RN
+ | for each i ∈ N, ai ≤ ci and

∑
i∈N ai =

E} and disagreement point d = 0.

For each (c, E) ∈ CN , the outcome chosen by the CEA rule coincides with the

outcome chosen by the Nash bargaining solution when applied to (B(c, E), d) (Dagan

and Vojil (1993)). Therefore, for the bargaining problem associated with a claims

problem, our game provides a strategic justification of the Nash bargaining solution.

Remark 4.5.2. A (transferable utility) coalitional problem is a vector v ≡
(v(S))S⊆N ∈ R2|N |−1, where for each coalition ∅ ̸= S ⊆ N , v(S) ∈ R is the worth

of S. A solution is a mapping that associates, with each such problem v, a point

in RN whose coordinates add up to v(N). The Dutta-Ray solution (Dutta and Ray

(1989)) selects, for each convex coalitional problem, the payoff vector in the core

that is Lorenz-maximal.14

Given a claims problem (c, E) ∈ CN , its associated coalitional problem (O’Neill

(1982)) is the problem v(c, E) ∈ R2|N |−1 defined by setting for each ∅ ̸= S ⊆ N ,

v(c, E)(S) ≡ max{E −
∑

i∈N\S ci, 0}.
For each (c, E) ∈ CN , the outcome chosen by the CEA rule coincides with the

outcome chosen by the Dutta-Ray solution when applied to v(c, E) (see, for example,

Theorem 14.2 at pp 373 of Thomson, 2019). Therefore, for the coalitional problem

associated with a claims problem, our game provides a strategic justification of the

Dutta-Ray solution.

14For the definitions of Lorenz-domination and the Dutta-Ray solution, see Dutta and Ray
(1989).
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Chapter 5

Conclusion

In this chapter, we summarize the results of our studies. Also, we discuss several

remaining issues and future work.

5.1 Summary of this dissertation

This dissertation followed the line of research called the Nash program. We provided

non-cooperative foundations for bargaining solutions that were originally defined

axiomatically.

In Chapter 2, we analyzed the model which is a generalization of the model of

Rubinstein (1982) from the viewpoint of the process of how a proposer is decided in

each period. The negotiator’s probability to be a proposer depends on the history of

proposers and the negotiators divide a pie of size 1. In the bilateral bargaining model,

we found each component game at period t involving negotiators dividing a pie of size

δt−1 according to the proposal ratio at period t in the unique SPE payoffs. The limit

of this SPE payoffs coincides with the ANBS weighted by the convergent values of

opportunities to be a proposer. In the n-player model, we showed that there exists an

MPE which has the same form as the unique SPE in the bilateral model. Under this

MPE, we showed that the same results as the bilateral model hold. By these results,

we can see that the ANBS is achieved when bargaining is conducted under the

process where opportunities of proposals are asymmetric between negotiators. Since

the weights of the ANBS reflect the negotiators’ bargaining power, the opportunities

to be a proposer can be considered as their bargaining power.

In Chapter 3, we introduced a mediator into the simultaneous-offers bargaining

process analyzed in Chatterjee and Samuelson (1990). In our model, we found that

disagreement is not supported as an SSPE outcome. Also, although the set of SSPE

agreements is biased towards the mediator’s ideal agreement, a reasonable agreement
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in the sense of the NBS is always one of the SSPE agreements even if the mediator

is biased. These results imply that, by introducing a mediator, the negotiators can

avoid disagreement without eliminating the achievability of a reasonable agreement.

In addition, if the mediator is fair in the sense that she wishes to achieve the NBS,

the NBS is the unique SSPE agreement when the discount factor is sufficiently large.

By this result, we can see that the NBS is achieved under the simultaneous-offers

process with a fair mediator.

In Chapter 4, we considered claims problems. That is, we considered bargaining

situations where negotiators (claimants) have claims on a profit and the profit is not

sufficient to cover the totality of the claims. As a central rule for claims problems,

we considered the CEA rule. The CEA rule corresponds to the NBS in a special

class of bargaining problems. To develop a strategic justification of the CEA rule,

we proposed a bargaining process which is procedurally fair and multilateral. Our

process resembles the simultaneous-offers process in the sense that in each period, all

negotiators simultaneously make proposals and, if they do not reach an agreement,

they renegotiate in the next period. We showed that, as a unique SPE outcome and

a unique Nash equilibrium outcome, the awards vector chosen by the CEA rule is

achieved under our procedurally fair and multilateral process.

5.2 Remaining issues and future work

In the following, we discuss several remaining issues and future work.

First, we consider the assumption with respect to the negotiators’ utility space

in Chapter 2. In this chapter, we assumed that the negotiators divide a pie of size

1 and each negotiator receives a component of a division as her payoff. Under this

assumption, the limit of the SPE payoffs coincides with the ANBS weighted by the

convergent values of opportunities to be a proposer. On the other hand, with a

more general utility space than our study, Laruelle and Valenciano (2008), Kultti

and Vartiainen (2010), and Britz et al. (2010) show that stationary SPE payoffs

converge to the ANBS under the processes of constant probabilities across periods,

alternating offers, and a Markov process, respectively.

In their models, the crucial property is that all proposers propose the same

division in all states when the discount factor is sufficiently large. However, in our

model, negotiators’ proposals depend on the current state and may change over

time (Proposition 2.4.2 and 2.6.2). Therefore, even if we use the same method

of the aforementioned papers, with a general utility space, we cannot prove the

same relationship between SPE payoffs and the ANBS under our flexible process.

Consequently, under our process with a general utility space, we do not know how
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the SPE payoffs are related to some bargaining solution. We leave analyzing such

relationship with a general utility space as future work.

Second, we consider the assumption of the probability to be a proposer in Chap-

ter 2. In our model, each negotiator’s probability to be a proposer is given exoge-

nously. However, in reality, who becomes a proposer is decided endogenously. From

this viewpoint, Yildirim (2007) and Yildirim (2010) consider n-player models where

each negotiator’s probability to be a proposer depends on her effort to be a pro-

poser. Also, Kambe (2009) and Rachmilevitch (2019) consider two-player models

where both negotiators nominate a negotiator to decide a proposer in each period.

As with these models, it is worth considering how probabilities to be a proposer are

decided endogenously in our process.

Third, we consider the assumption of complete information in the bargaining

model with a mediator in Chapter 3. We assumed that the mediator’s ideal agree-

ment is common knowledge. However, one might think that more realistic case is

that the mediator’s ideal agreement is her private information. We briefly discuss

what may happen under this situation.

We conjecture that, if the mediator’s ideal agreement is her private information,

she obtains larger power, compared with the situation of complete information.

Therefore, in this situation, agreements close to the mediator’s ideal agreement may

tend to be achieved as an equilibrium agreement. However, since negotiators do not

know the mediator’s ideal agreement, in order to deduce the mediator’s preference,

an agreement may tend to be delayed more severely than the situation with complete

information. If this conjecture is true, contrary to the main role of a mediator, the

mediator’s private information may become an obstacle of facilitating the reaching

of an agreement. We leave details of this situation as future work.

We also assumed that the information of negotiators’ utilities is common knowl-

edge. It may be more realistic to consider the situation where the information of

negotiators’ utilities is their private information. Jarque et al. (2003) analyze the

role of a mediator under such a situation. In their model, a mediator is not a player.

Therefore, the mediator does not have any bias. On the other hand, the situation

with a biased mediator has not been analyzed. When a mediator is biased, equilib-

rium agreements may be affected by it. We also leave the analysis of this case as

future work.

Fourth, it is also worth considering the n-negotiator model with a mediator

as a natural extension of the model in Chapter 3. For example, in reality, the

United Nations plays a role as a mediator in conflicts between several nations. In

the n-negotiator model with a mediator, the feasible utility space is extended to

n-dimensional space. Thus, it is expected that deriving equilibria in such a model
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is more difficult than the model in Chapter 3. As far as I know, the n-negotiator

model with a mediator has not been analyzed in the literature of bargaining prob-

lems. On the other hand, as the literature of the mechanism design, some papers

consider n-player models with a mediator where a mediator is introduced as a tool

to exchange private information among players (for example, Myerson (1983) and

Myerson (1986)). The knowledge from these papers may be useful to consider the

n-negotiator model with a mediator in the literature of bargaining problems.

Also, in the model of Chapter 3, we assume that the discount factors have the

same value at odd periods (where negotiators propose demands) and at even periods

(where the mediator gives advice). That is, the negotiation periods by only nego-

tiators and the mediation periods have the same time spans. However, these time

spans may be different in reality. Thus, it may be worth considering the situation

where the negotiation periods by only negotiators and the mediation periods have

different time spans (discount factors).

Fifth, it may be worth considering claims problems with a mediator. Claims

problems contain the situations of bankruptcy and inheritance. In these situations, a

third party is often introduced to resolve conflict. For example, Ashlagi et al. (2012)

analyze such a situation by the strategic approach. In their model, the authority

imposes the division of an estate when there is conflict between negotiators’ claims.

However, the claims problems with a mediator (who can only give advice) has not

been analyzed.

Since each claims problem is associated with some bargaining problem, it seems

to be sufficient to consider only bargaining models with a mediator such as the

models of Chapter 3 and the fourth discussion of this subsection. However, under

the situation where negotiators have some claims, axioms for a reasonable agreement

depends on these claims. Then, a reasonable agreement under a claims problem may

be different from a reasonable agreement under a bargaining problem. Therefore, to

introduce a mediator into not only bargaining problems but also claims problems is

worth considering.

Also, there is a class so-called bargaining problems with claims which enriches

both bargaining problems and claims problems. In bargaining problems with claims,

negotiators have a general utility space rather than divide an endowment, and the

negotiators have claims on the outside of the feasible utility space. For example,

Albizuri et al. (2020), Chun and Thomson (1992), Dietzenbacher and Peters (2020),

and Lombardi and Yoshihara (2010) analyze bargaining problems with claims by

the axiomatic approach. To introduce a mediator into such problems may be also

worth considering.

We leave analyzing such situations as future work. To analyze the situations
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where a mediator is introduced into claims problems and bargaining problems with

claims by the strategic approach, knowledge from our studies in Chapter 3 and 4

may be useful.

Finally, we consider the permutation idea in the strategic approaches of claims

problems. In our model in Chapter 4, we incorporated the permutation idea in

our bargaining process to exchange an allocation. Also, Tsay and Yeh (2019) and

Moreno-Ternero et al. (2020) incorporate the permutation idea to decide a coordi-

nator of bargaining. However, it seems to be difficult for claimants to announce a

permutation of claimants, especially when there are many claimants. In this sense,

it may be unrealistic to incorporate a stage of announcing a permutation in a bar-

gaining process. Therefore, it is worth considering a process of claims problems

which does not depend on the permutation idea.
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Ashlagi, I., E. Karagözoğlu, and B. Klaus (2012). A non-cooperative support for

equal division in estate division problems. Mathematical Social Sciences 63 (3),

228–233.

Binmore, K., A. Rubinstein, and A. Wolinsky (1986). The Nash bargaining solution

in economic modelling. The RAND Journal of Economics 17 (2), 176–188.

Britz, V., P. Herings, and A. Predtetchinski (2010). Non-cooperative support for the

asymmetric Nash bargaining solution. Journal of Economic Theory 145, 1951–

1967.

Burger, J. D. and S. J. Walters (2005). Arbitrator bias and self-interest: Lessons

from the baseball labor market. Journal of Labor Research 26 (2), 267–280.

Camiña, E. and N. Porteiro (2009). The role of mediation in peacemaking and

peacekeeping negotiations. European Economic Review 53 (1), 73–92.

Chae, S. and J.-A. Yang (1988). The unique perfect equilibrium of an n-person

bargaining game. Economics Letters 28 (3), 221–223.

Chae, S. and J.-A. Yang (1990). An n-person bargaining process with alternating

demands. Seoul Journal of Economics 3 (3), 255–261.

Chang, C. and C.-C. Hu (2008). A non-cooperative interpretation of the f -just rules

of bankruptcy problems. Games and Economic Behavior 63 (1), 133–144.

Chatterjee, K. and L. Samuelson (1990). Perfect equilibria in simultaneous-offers

bargaining. International Journal of Game Theory 19 (3), 237–267.

95



Chun, Y. (1989). A noncooperative justification for egalitarian surplus sharing.

Mathematical Social Sciences 17 (3), 245–261.

Chun, Y. and W. Thomson (1992). Bargaining problems with claims. Mathematical

Social Sciences 24 (1), 19–33.

Crawford, V. P. (1979). On compulsory-arbitration schemes. Journal of Political

Economy 87 (1), 131–159.

Crawford, V. P. (1985). The role of arbitration and the theory of incentives. In

A. E. Roth (Ed.), Game-theoretic models of bargaining, pp. 363–390. Cambridge:

Cambridge University Press.

Dagan, N. (1996). New characterizations of old bankruptcy rules. Social Choice and

Welfare 13 (1), 51–59.

Dagan, N., R. Serrano, and O. Volij (1997). A noncooperative view of consistent

bankruptcy rules. Games and Economic Behavior 18 (1), 55–72.

Dagan, N. and O. Volij (1993). The bankruptcy problem: A cooperative bargaining

approach. Mathematical Social Sciences 26 (3), 287–297.

Dietzenbacher, B. and H. Peters (2020). Characterizing NTU-bankruptcy rules using

bargaining axioms. Annals of Operations Research, forthcoming.
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