
論文 / 著書情報
Article / Book Information

題目(和文) 大規模畳み込みニューラルネットワークの階層的なハイブリッド並列
学習

Title(English) Hierarchical Hybrid Parallel Training of Large-Scale Convolutional
Neural Networks

著者(和文) 大山洋介

Author(English) Yosuke Oyama

出典(和文) 学位:博士(理学),
 学位授与機関:東京工業大学,
 報告番号:甲第11892号,
 授与年月日:2021年3月26日,
 学位の種別:課程博士,
 審査員:松岡 聡,増原 英彦,遠藤 敏夫,脇田 建,横田 理央

Citation(English) Degree:Doctor (Science),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第11892号,
 Conferred date:2021/3/26,
 Degree Type:Course doctor,
 Examiner:,,,,

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/

Hierarchical Hybrid Parallel Training of

Large-Scale Convolutional Neural Networks

（大規模畳み込みニューラルネットワークの

階層的なハイブリッド並列学習）

Yosuke Oyama (大山洋介)

oyama.y.aa@m.titech.ac.jp

A Doctoral Thesis Submitted to

School of Computing, Tokyo Institute of Technology

Supervisor: Prof. Satoshi Matsuoka

2021/02/27

Abstract

In the last decades, deep learning technology has attracted substantial research interests. Deep learning

has been empowered by the advance of network architecture and training algorithms, such as the

growth of available data to train deep neural networks, and the increase of the computation capability

of high-performance GPUs and supercomputers. Specifically, many studies successfully have adopted

data-parallelism to distribute their training workloads among dozens and even hundreds of accelerators

due to its simple parallelization design. As the demand for training deep learning models with complex

and massive data increases continuously, these improvements must take place in parallel to keep up

research speed. However, trends in hardware, software, and model architecture for deep learning are

changing rapidly. For example, recent accelerators equip specialized hardware in matrix multiplication

operations that are frequently used in deep learning, but their performance is not fully investigated

for various deep learning workloads. Another change is the emergence of high-resolution, large-scale

models that perform end-to-end learning on scientific data, which cannot be trained with conventional

data-parallel methods. For these reasons, there is a strong demand for a general-purpose method of

accelerating and saving memory for more diverse model architectures, computational precisions, and

large-scale models on multiple levels of parallelism.

In this thesis, we propose acceleration algorithms that maximize the parallel efficiency of CNNs at

two different levels, intra-processor and inter-processor parallelism. For intra-processor optimization,

we present the µ-cuDNN library, which applies loop optimization and adaptively uses different

algorithms and computational precisions for convolution kernels. This library replaces the cuDNN

library transparently to optimize the convolution performance, which is the de-facto standard kernel

library for deep learning frameworks, and thus, our library is widely applicable for such frameworks.

Since convolution is one of the most computationally-intensive parts of deep learning training and

inference, accelerating convolutional computation plays a crucial role in accelerating such jobs in

many fields. Our loop optimization method allows users to select a broader range of convolutional

algorithms without changing computation semantics. We combine the µ-cuDNN library into two

frameworks, Caffe and TensorFlow, and show that it achieves reasonable performance improvements

in several different CNNs; we achieve speedups of 1.60x for AlexNet and 1.30x for ResNet-18 on an

NVIDIA V100 GPU. We also show that µ-cuDNN achieves speedups of up to 4.54x, and 1.60x on

average for DeepBench convolutional layers, and demonstrate that NVIDIA GPU’s single-precision

arithmetic units are still beneficial to accelerate convolution on half-precision float data. These

results indicate that micro-batching can seamlessly increase deep learning performance while using

the same overall memory footprint. Moreover, we propose an interface to use this information for

multi-node training using the property that µ-cuDNN can obtain layer parameters via the cuDNN

interface. Furthermore, we show that the ONNX data format can be combined with our algorithm to

apply the loop optimization algorithm without changing the framework itself. We also discuss

whether µ-cuDNN’s algorithm can be extended to layer types other than convolution and different

memory layouts.

2

For inter-processor optimization, we present an end-to-end hybrid-parallel training approach for

strong-scaling training large-sample 3D CNNs, which applies spatial partitioning. Since data-parallel

training frameworks cannot train large models beyond the memory capability of a single GPU, this

approach enables users to improve the inference accuracy of such CNNs by increasing the input

dimensions. Specifically, we propose various techniques to optimize the performance for better

scalability; we show GPU kernels designed for 2D CNNs can be inefficient, and thus, implementation

of custom kernels for high-dimensional layers are necessary. Moreover, we propose a

spatial-partitioned sample I/O method to mitigate the data read overhead, which is essential to

achieve practical strong scaling, such as spatial-partitioned sample I/O. We demonstrate training on

full-resolution samples for the CosmoFlow network (5123) and the 3D U-Net (2563). Our

performance results show good strong and weak scaling on up to 2048 NVIDIA V100 GPUs; we

achieve 1.77x of speedup on 2048 GPUs over 512 GPUs with the same mini-batch size of 64 for the

CosmoFlow network and achieve 1.42x of speedup on 512 GPUs over 256 GPUs with the same

mini-batch size of 16 for the 3D U-Net. We also propose a performance model for the hybrid-parallel

training framework to demonstrate that its performance is predictable with benchmark results using

a limited number of compute nodes. Besides, we present a significant improvement in prediction

accuracy by using full-resolution data of the CosmoFlow cosmological data.

This thesis provides a means to accelerate the training of CNNs across multiple levels of parallelism

extremely through our proposed approaches. We expect this to discover new scientific knowledge by

training large-scale, high-dimensional, and high-resolution CNNs in highly parallel environments.

Acknowledgment

I want to thank my advisor, Prof. Satoshi Matsuoka, for his continuous advice and suggestions. I

would also thank my co-authors, Tal Ben-Nun, Prof. Torsten Hoefler at ETH Zurich, and Naoya

Maruyama, Nikoli Dryden, Brian Van Essen, and other members of the LBANN development group

at Lawrence Livermore National Laboratory for their dependable support to promote the research.

Finally, I would like to thank all members and staff of our laboratory, my family and friends for their

huge support.

Chapter 4 and any related sections of this thesis cover the contents of our paper “The Case for

Strong Scaling in Deep Learning: Training Large 3D CNNs with Hybrid Parallelism” submitted to

the IEEE Transactions on Parallel & Distributed Systems. I, Yosuke Oyama, is responsible for all of

the contents and the experiments described in this thesis, but other co-authors of the paper are also

involved in implementing and maintaining our source code as a part of the Livermore Big Artificial

Neural Network Toolkit (LBANN) open-source software and its dependent libraries.

This research was supported by JSPS KAKENHI Grant Number JP18J22858, Japan.

In Chapter 3 and any related parts in other chapters:

• The work in Chapter 3 was partially supported by the ETH Zurich Student Summer Research

Fellowship.

• Part of the work in Chapter 3 is conducted as research activities of AIST - Tokyo Tech Real

World Big- Data Computation Open Innovation Laboratory (RWBC-OIL).

In Chapter 4 and any related parts in other chapters:

• Prepared by LLNL under Contract DE-AC52-07NA27344 (LLNL-TH-819967).

• This research was supported by the Exascale Computing Project (17-SC-20-SC).

• Experiments were performed at the Livermore Computing facility.

• This research used resources of the National Energy Research Scientific Computing Center

(NERSC), a U.S. Department of Energy Office of Science User Facility operated under

Contract No. DE-AC02-05CH11231.

1

Publications

Publications submitted as the first author are highlighted with underlines.

Refereed Conference Papers

• Yosuke Oyama, Akihiro Nomura, Ikuro Sato, Hiroki Nishimura, Yukimasa Tamatsu, Satoshi

Matsuoka, “Predicting Statistics of Asynchronous SGD Parameters for a Large-Scale Distributed

Deep Learning System on GPU Supercomputers”, In Proceedings of the 2016 IEEE International

Conference on Big Data (BigData 2016), Washington D.C., Dec. 5-8, 2016.

• Ikuro Sato, Ryo Fujisaki, Yosuke Oyama, Akihiro Nomura, Satoshi Matsuoka,

“Asynchronous, Data-Parallel Deep Convolutional Neural Network Training with Linear

Prediction Model for Parameter Transition”, In Proceedings of the 24th International

Conference on Neural Information Processing (ICONIP 2017), Nov. 14-18, 2017.

• Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, Satoshi Matsuoka, “Accelerating Deep Learning

Frameworks with Micro-batches”, In Proceedings of the 2018 IEEE International Conference on

Cluster Computing (Cluster 2018), Belfast UK, Sep. 10-13, 2018.

• Yosuke Oyama, Naoya Maruyama, Nikoli Dryden, Erin McCarthy, Peter Harrington, Jan

Balewski, Satoshi Matsuoka, Peter Nugent, Brian Van Essen, “The Case for Strong Scaling in

Deep Learning: Training Large 3D CNNs with Hybrid Parallelism”, In IEEE Transactions on

Parallel & Distributed Systems (TPDS), vol. 32, no. 7, pp. 1641-1652, Jul, 2021.

• (To appear) Jens Domke, Emil Vatai, Alexsandr Drozd, Peng Chen, Yosuke Oyama, Lingqi

Zhang, Shweta Salaria, Daichi Mukunoki, Artur Podobas, Mohamed Wahib, Satoshi Matsuoka,

“Matrix Engines for High Performance Computing: A Paragon of Performance or Grasping at

Straws?”, Submitted for International Parallel and Distributed Processing Symposium (IPDPS

2021), 2021.

Reviewed Posters

• Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, Satoshi Matsuoka, “u-cuDNN: Accelerating

Deep Learning Frameworks with Micro-Batches”, In GPU Technology Conference 2019 (GTC

2

3

2019), Silicon Valley, May. 17-21, 2019.

• Yosuke Oyama, Naoya Maruyama, Nikoli Dryden, Peter Harrington, Jan Balewski, Satoshi

Matsuoka, Marc Snir, Peter Nugent, Brian Van Essen, “Toward Training a Large 3D

Cosmological CNN with Hybrid Parallelization”, In 48th International Conference on Parallel

Processing (ICPP 2019), Kyoto, Aug. 5-8, 2019.

Talk

• Yosuke Oyama, Naoya Maruyama, Nikoli Dryden, Peter Harrington, Jan Balewski, Satoshi

Matsuoka, Marc Snir, Peter Nugent, Brian Van Essen, “Toward Training a Large 3D

Cosmological CNN with Hybrid Parallelization”, In The 1st Workshop on Parallel and

Distributed Machine Learning 2019 (PDML’19), in 48th International Conference on Parallel

Processing (ICPP 2019), Kyoto, Aug. 5, 2019.

Unreviewed Papers / Workshop Manuscripts

• Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, Satoshi Matsuoka, “µ-cuDNN: Accelerating

Deep Learning Frameworks with Micro-Batching”, In arXiv e-prints, 2018.

• 土川稔生, 大山洋介, 野村哲弘, 松岡聡, “機械学習による計算機トレースの自動生成”, In 並列/分

散/協調処理に関するサマーワークショップ (SWoPP2018), Jul. 30-Aug. 1, 2018.

• 八島慶汰, 大山洋介, 松岡聡, “深層学習における BatchNormalization使用時の計算時間と精度の

関係性”, In 並列/分散/協調処理に関するサマーワークショップ (SWoPP2018), Jul. 30-Aug. 1,

2018.

• Yosuke Oyama, Naoya Maruyama, Nikoli Dryden, Peter Harrington, Jan Balewski, Satoshi

Matsuoka, Marc Snir, Peter Nugent, Brian Van Essen, “Toward Training a Large 3D

Cosmological CNN with Hybrid Parallelization”, In 並列/分散/協調処理に関するサマーワーク

ショップ (SWoPP2019), Jul. 24-26, 2019.

• 土川稔生, 遠藤敏夫, 大山洋介, 野村哲弘, 近藤正章, 松岡聡, “メモリアクセスデータを用いた機

械学習によるアプリケーションの類型化”, In 並列/分散/協調処理に関するサマーワークショップ

(SWoPP2019), Jul. 24-26, 2019.

• Yosuke Oyama, Naoya Maruyama, Nikoli Dryden, Erin McCarthy, Peter Harrington, Jan

Balewski, Satoshi Matsuoka, Peter Nugent, Brian Van Essen, “The Case for Strong Scaling in

Deep Learning: Training Large 3D CNNs with Hybrid Parallelism”, In arXiv e-prints, 2020.

• Jens Domke, Emil Vatai, Alexsandr Drozd, Peng Chen, Yosuke Oyama, Lingqi Zhang, Shweta

Salaria, Daichi Mukunoki, Artur Podobas, Mohamed Wahib, Satoshi Matsuoka, “Matrix Engines

for High Performance Computing: A Paragon of Performance or Grasping at Straws?”, In arXiv

e-prints, 2020.

4

Unreviewed Posters

• 大山洋介, “大規模並列環境における少精度型を用いたディープラーニングの学習精度の検証”, In

JHPCN：学際大規模情報基盤共同利用・共同研究拠点第 10回シンポジウム, Jul. 12-13, 2018.

• 大山洋介, 野村哲弘, 佐藤育郎, 松岡聡, “大規模並列環境における低精度型を用いたディープラーニ

ングの学習精度の検証”, In 公開シンポジウム「Co-Designによる深層学習基盤」, Nov. 27, 2018.

• Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, Satoshi Matsuoka, “µ-cuDNN: Accelerating

Deep Learning Frameworks with Micro-Batching”, In 公開シンポジウム「Co-Designによる深層

学習基盤」, Nov. 27, 2018.

Article

• “GPUでのディープラーニングをさらに速く、東工大がNVIDIAチップ向けに高速化ライブラリ”,

In 日経 Robotics 2019年 7月号, 2019.

Contents

1 Introduction 12

1.1 Problem statement . 13

1.2 Proposal and contributions . 14

1.2.1 Proposal 1: Automatic optimization of computational kernels 16

1.2.2 Proposal 2: Training 3D CNNs with hybrid-parallelization 17

1.3 Outline of this thesis . 17

2 Background 19

2.1 Neural networks . 19

2.1.1 Convolutional Neural Networks (CNNs) . 20

2.1.2 Back-propagation and mini-batch Stochastic Gradient Descent 24

2.1.3 Metrics of DNNs . 25

2.2 Training DNNs with HPC . 26

2.2.1 Intra-processor parallelism . 28

2.2.2 Data-parallelism . 28

2.2.3 Model-parallelism . 30

3 Automatic optimization of computational kernels 33

3.1 Motivation and background . 34

3.1.1 cuDNN . 34

3.2 µ-cuDNN and beyond . 37

3.2.1 µ-cuDNN Overview . 37

3.2.2 Performance analysis on cuDNN kernels using DeepBench 41

3.2.3 Micro-batching with mixed-precision . 42

3.2.4 High-level optimization with µ-cuDNN . 47

3.3 Evaluation . 48

5

Contents 6

3.3.1 DeepBench . 49

3.3.2 CNN performance . 50

3.3.3 Case study: Heterogeneous cluster optimization 53

4 Training 3D CNNs with hybrid-parallelization 56

4.1 Motivation . 57

4.1.1 The CosmoFlow network . 58

4.1.2 The 3D U-Net . 60

4.2 Hybrid-Parallel implementation of 3D CNNs . 62

4.2.1 Extending Distconv for 3D CNNs . 63

4.2.2 Kernel optimization . 66

4.2.3 Spatially-partitioned I/O . 67

4.2.4 Performance modeling . 69

4.2.5 Architecture tuning . 72

4.3 Performance evaluation . 78

4.3.1 Evaluation environment . 79

4.3.2 Strong scaling . 79

4.3.3 Weak scaling . 85

4.3.4 CosmoFlow model accuracy improvement with 5123 data cubes 90

5 Related work 96

5.1 Optimizing intra-processor parallelism . 96

5.2 Optimizing inter-processor parallelism . 97

6 Discussion 100

6.1 Automatic optimization of computational kernels . 100

6.1.1 Implications and possible future work . 100

6.2 Training 3D CNNs with hybrid-parallelization . 104

6.2.1 Predicting multi-dimensional partitioning performance 107

6.2.2 Implications . 109

6.2.3 Future work . 110

7 Conclusion 112

A cuDNN performance on DeepBench convolutional layers 113

List of Figures

1.1 Increasing GPU performance and per-GPU memory capacity [49, 54, 55, 56, 57] 15

1.2 An overview of our proposals . 15

2.1 A neuron . 20

2.2 2D convolution . 21

2.3 Convolution algorithms . 22

2.4 The GEMM-based convolution . 23

2.5 Specifications of popular DNNs [46] . 27

2.6 Three parallel strategies for deep neural networks . 29

2.7 Three parallel strategies of model-parallelism on a three-layer 2D CNN 30

3.1 An example code to perform cuDNN convolution . 34

3.2 Per-layer breakdowns of memory consumption and computation time of AlexNeton

P100-SXM2 . 36

3.3 The conceptual execution timeline of µ-cuDNN . 38

3.4 µ-cuDNN software stack . 40

3.5 Overview of µ-cuDNN . 41

3.6 An example code to perform convolution with µ-cuDNN 41

3.7 Convolution performance of DeepBench convolutional layers on V100-SXM2 44

3.8 Convolution performance of a DeepBench’s 5× 5 convolutional layer 46

3.9 Convolution performance of DeepBench’s 20× 5 convolutional layers on V100-SXM2 . . 46

3.10 Convolution performance of DeepBench’s 3× 3 and 7× 7 convolutional layers on V100-

SXM2 . 47

3.11 The µ-cuDNN interface with layer IDs . 48

3.12 Relative speedups of DeepBench’s forward convolution against cuDNN 50

3.13 Benchmark results of forward convolution of AlexNet’s “conv2” layer on P100-SXM2 . . 51

7

List of Figures 8

3.14 Benchmark results of AlexNet on three different GPUs 52

3.15 TensorFlow benchmark results on P100-SXM2 GPU . 53

3.16 Sample code for heterogeneous cluster optimization . 54

3.17 Estimated time of forward-backward passes of ResNet-18 on heterogeneous GPUs 55

4.1 Visualization of one channel of a 1283 CosmoFlow data cube 59

4.2 Visualization of a 5123, 4 “redshift” channels CosmoFlow data sample 61

4.3 Visualization of a 2563 LiTS data sample . 62

4.4 The definition of CosmoFlow’s first convolutional layer on LBANN 64

4.5 The software stack of LBANN with hybrid-parallelism 64

4.6 Overview of Distconv . 65

4.7 Overview of hybrid-parallel training on LBANN and Distconv 66

4.8 Sample-parallel I/O . 68

4.9 Strong scaling of the CosmoFlow network with 5123 input cubes without spatial-parallel

I/O . 69

4.10 Spatially-partitioned data movement on our framework 70

4.11 Inter-GPU communication performance on Lassen . 73

4.12 All-reduce collective performance among GPUs on Lassen 74

4.13 Layer-wise convolution performance of the CosmoFlow network 75

4.14 Our revised CosmoFlow network architecture . 76

4.15 Sierra/Lassen node diagram . 80

4.16 Strong scaling of the CosmoFlow network with 5123 input cubes 81

4.17 Strong scaling of the 3D U-Net with 2563 input cubes 83

4.18 Single-GPU execution timelines for training the CosmoFlow network with the 5123 input

cubes . 84

4.19 Weak scaling of the CosmoFlow network with different spatial partitioning 88

4.20 Weak scaling of the two different 3D CNNs . 89

4.21 The software stack of Horovod with data-parallelism . 90

4.22 The software stack of Mesh-TensorFlow with model-parallelism 90

4.23 TensorFlow’s GPU matrix multiplication (matmul) of two tensors 91

4.24 Timeline of Mesh-TensorFlow with data-parallelism and 4-way partitioning 92

4.25 Training of the CosmoFlow network with different input resolutions 94

4.26 True and predicted cosmological parameters from four different configurations 95

6.1 Speedups of convolutional layers with the NHWC format compared to the NCHW format102

6.2 Making an ONNX convolution node . 102

List of Figures 9

6.3 Combining the µ-cuDNN method with ONNX . 103

6.4 Visualization of AlexNet on the micro-batching technique on V100-SXM2 105

6.5 Relative time to compute ResNet’s batch-normalization layer with cuDNN on V100-SXM2106

6.6 Predicted strong scaling of the CosmoFlow network with multi-dimensional partitioning 108

6.7 Predicted strong scaling of the 3D U-Net with multi-dimensional partitioning 109

A.1 Time to compute DeepBench’s convolution kernels on a K80 GPU 114

A.2 Time to compute DeepBench’s convolution kernels on a P100-SXM2 GPU 115

A.3 Time to compute DeepBench’s convolution kernels on a V100-SXM2 GPU 116

List of Tables

2.1 Specifications of popular DNNs [46] . 26

2.2 Comparison of data-, model-, and hybrid-parallel computation 32

3.1 Supported forward convolution algorithms in cuDNN 7.0.4 36

3.2 Support status of the direct algorithm in cuDNN . 36

3.3 Micro-batch size policies . 40

3.4 The convolutional layers of DeepBench . 43

3.5 Number of convolutional layers in DeepBench . 45

3.6 Available data types in cuDNN’s convolution . 45

3.7 cuDNN runtime parameters of various deep learning frameworks 45

3.8 Evaluation environment . 49

3.9 Evaluation settings . 49

3.10 TensorFlow benchmark results on P100-SXM2 GPU . 53

3.11 GPU specification for heterogeneous cluster optimization 55

4.1 Two different target 3D CNNs . 58

4.2 Comparison of CosmoFlow work . 60

4.3 Comparison of U-Net work . 61

4.4 Statistics of a CosmoFlow data sample . 70

4.5 Comparison of CosmoFlow network variants . 76

4.6 Our revised CosmoFlow network architecture . 77

4.7 The number of operations of CosmoFlow’s convolutional layers with a 1283 cube 78

4.8 Legend specifications of the strong scaling plots . 80

4.9 Achieved performance of CosmoFlow convolution layers compared to the peak

performance of cuDNN . 85

10

List of Tables 11

4.10 The number of kernels/memcpy of Mesh-TensorFlow on the CosmoFlow network in one

training iteration . 91

4.11 Comparison of relative prediction errors . 94

6.1 GPU trace of DeepBench’s 1× 1 convolution layer in different memory formats 101

6.2 The support status of ONNX . 101

6.3 Profiling results of ResNet’s batch-normalization layer 106

Chapter 1

Introduction

In the last decades, a subset of machine learning techniques called Deep Learning (DL) has attracted

substantial research interests, and it became one of the most successful machine learning technologies

on various real-world tasks, including image classification [1, 2, 3, 4], image segmentation [5, 6, 7, 8],

object detection [9, 10, 11], language understanding [12, 13], acoustic models [14, 15, 16], autonomous

driving [17], and medical image analysis [6, 18, 19, 20, 21, 22]. Deep learning is a generic term for

machine learning methods using Deep Neural Network (DNN) models, which are composed of

vast numbers of learnable parameters (e.g., the GPT-3 language model has 175 billion parameters [23])

to imitate given complex non-linear objective functions. The success of the study on deep learning is

supported by the effort from different orthogonal aspects: 1) the advance in network architecture and

training algorithms, 2) the increase of available data that is used to train DNNs, and 3) the increase

of the compute capability of high-performance computers, such as GPUs and supercomputers. To

increase the generalization performance of DNNs in a realistic time, all three of these factors need to

be improved simultaneously. A lot of effort has been made to improve these factors; the number of

papers about deep learning submitted to arXiv [24] and conferences is increasing sharply in the past

decade [25], and the data size of public datasets in various objectives is increasing as well [26]. Since

both advances increase the demand for computing capability for given networks and datasets, 3) is

also crucial to make progress in the deep learning field.

In this thesis, we mainly focus on 3), which significantly affects the speed of deep learning

training and inference. In the High-Performance Computing (HPC) domain, the most powerful

way to accelerate a given computation workload is parallelization, where many computers or

accelerators (such as GPUs) are utilized simultaneously. As we explain in Section 2.2, this basic

principle has also been applied to deep learning. Multiple research report that even a single network

is now able to be trained on thousands of GPUs [27, 28, 29]. A common idea to distribute deep

learning workload is to utilize data-parallelism, where the computation on data (data samples) are

parallelized among accelerators. The typical dataset size used in deep learning is order-of-magnitude

12

Chapter 1. Introduction 13

more extensive than the degree of parallelism (i.e., number of processors) typically available.

Therefore data-parallel training is regarded to be very scalable. Indeed, many studies have achieved

this successful distributed training by exploiting data-parallelism in many machine learning tasks,

such as image classification [27, 28, 29, 30, 31] and so on. And thus, this technique is becoming a

common parallelization technique in applications and industrial domains; many deep learning

frameworks such as PyTorch [32], TensorFlow [33], Chainer [34] support this technique by default.

This trend leads that the computational performance of each framework converges by relying on

highly-optimized bender libraries, such as NVIDIA cuDNN [35] and NCCL [36], just as many HPC

applications exploit BLAS and MPI libraries.

1.1 Problem statement

Nowadays, data-parallel training is known as the easiest way to parallelize deep learning workload due

to its simple structure, just like the bulk synchronous parallel model [37], and thus it has adopted

many existing deep learning frameworks [32, 33, 34, 38, 39, 40, 41, 42, 43, 44]. One of the most

famous examples linking deep learning and HPC is the data-parallel training of 2D CNNs. As in the

example of AlexNet, proposed by Krizhevsky et al. [45] for the ILSVRC image recognition dataset [3],

which was trained using multiple GPUs, CNNs have been associated with high-performance cluster

and supercomputers that can meet their computational demands. Moreover, much prior work report

that the key components of such software to bring good performance is computational kernels on each

layer (such as convolution kernels) and collective communication to synchronize parameter gradients,

both of which are mostly entrusted by bender libraries such as NVIDIA cuDNN and NCCL.

Specifically, in my previous thesis [46], we focused on the following topics that are related to training

of 2D CNNs:

• We proposed a performance model for an asynchronous, data-parallel deep learning framework

for training 2D CNNs [47]. We demonstrated that performance modeling is an effective way to

estimate the node-hour required for training and detect potential hardware bottlenecks only with

small benchmark trials.

• We proposed the basic idea of the µ-cuDNN library [48], a wrapper library for cuDNN, which

performs auto-tuning on convolutional layers. We evaluated how much loop splitting is effective

for cuDNN’s GPU convolution kernels.

• We proposed a low-precision communication technique for synchronizing parameter gradients

(Section 2.1.2) for data-parallel training [47]. We demonstrated that the communication workload

could be reduced by up to a quarter with no accuracy loss.

However, since deep learning is a research area of intense research and development, the interest is

shifting to problems that are more complex and unknown than the data-parallel training

Chapter 1. Introduction 14

of 2D CNNs, both in terms of software and hardware. One of the examples, which is not limited to

deep learning, is that hardware architectures are expected to become more diverse in the future. For

example, the computational performance of GPUs has simply improved in each generation as implied

by Moore’s law (Table 3.8), and this performance is well reflected when the computation of DNNs is

actually performed on different generations of GPUs (as we show in Table 3.14). However, hardware

vendors such as NVIDIA have been specializing their architectures to meet the growing demand for

deep learning, and it is not clear how much of that can be leveraged in real workloads. In fact, in our

thesis, we demonstrate that one of such new features, Tensor Cores [49], are not necessarily applicable

to all types of deep learning workloads (Section 3.3.1). Another critical change in hardware trends is

the end of Moore’s law [50]. In general, one crucial factor in understanding the performance of HPC

applications is to understand the ratio of computation, memory operations, and communication of the

applications as well as those of underlying hardware. As already explained, in the case of conventional

deep learning workloads, one of the best parallelization strategies is to promote data-parallelism by

increasing the number of processors. However, if the computational performance of each processor

slows down, there will be a need to parallelize on a larger scale than can be achieved by data-parallel

training in order to keep up with the increasing model complexity.

Another problem from a non-hardware aspect is that the conventional assumptions about data-

parallel training are broken down by the increasing complexity of deep learning models. Data-parallel

training with mini-batch SGD assumes that at least a single processor can perform the training.

However, models so large that they cannot fit into a single GPU memory, for example, cannot be

practically trained by the method. Since the increase in memory size has not kept pace with the

increase in model size due to manufacturing costs, it is difficult to solve this problem only with hardware

evolution (Figure 1.1). This can be particularly problematic when using high-dimensional data, which

we explain in Chapter 4. In the early 2010s, several model-parallel training implementations were

proposed [45, 51, 52, 53], mainly for networks with fully-connected layers and for CNNs that are

smaller (in terms of spatial width, the number of channels, and the number of layers) than those used

today; we describe further in Section 5.2. However, few of them have actually been implemented in

existing actively-developed frameworks (as we demonstrate in Chapter 4), and therefore, it is unclear

to what extent they work in practice.

For the aforementioned reasons, it is essential to continue to develop efficient parallelization methods

of new hardware architecture and deep learning models at various hardware layers in order to continue

to develop the coupling of deep learning and HPC in the future.

1.2 Proposal and contributions

In this thesis, we broadly propose two optimization methods that exploit two levels of parallelism of

CNNs (Figure 1.2); these methods are independent and can be applied in combination. In particular,

Chapter 1. Introduction 15

6 GB

24 GB
16 GB

32 GB

40 GB

0

5

10

15

20

25

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
FP

32
 [T

Fl
op

/s
]

Year

Tesla K20 Tesla K80 Tesla P100 Tesla V100 Tesla A100

Figure 1.1: Increasing GPU performance and per-GPU memory capacity [49, 54, 55, 56,
57]. A K80 GPU contains two distinct GPU chips, which share 24 GiB of memory. In this paper, we
handle a CNN that requires 100 GiB of memory, which is beyond the memory capacity of the latest
GPU generation.

GPU 1

GPU 2

GPU 3

GPU 4

In
p

u
t

co
n
v
1

co
n
v
2

co
n
v
3

co
n
v
4

P
ro

p
o
sa

l
1

P
ro

p
o
sa

l
2

Figure 1.2: An overview of our proposals. We apply “Proposal 1: Automatic optimization of
computational kernels” to improve per-GPU performance, and “Proposal 2: Training 3D CNNs with
hybrid-parallelization” to improve scalability on multiple GPUs.

research trends in hardware, software, and model architectures change rapidly in the deep learning

research domain; hence we cover such recent research topics as possible. Specifically, we cover low-

precision arithmetic using Tensor Cores [49], acceleration methods that are portable to different deep

learning frameworks, and high-dimensional CNNs that are intended for end-to-end learning of scientific

data. Through these topics, we discuss appropriate parallelization methods for advanced training tasks

and architectures.

Both of our methods use optimization problems and performance models to parallelize deep learning

workloads by taking full advantage of the parallelism of DNNs. This is regarded as an extension of

performance modeling for deep learning frameworks, as proposed in our previous work [47]. Our

proposals allow us to quantitatively show whether any parallelization strategy is suitable for given

network architecture, rather than just providing best-effort parallelization technique for a particular

network. For example, in Section 3.3.1, we evaluate the acceleration of our loop optimization method

for various convolutional layers, and in Section 6.2.1, we discuss the optimal hybrid parallelization

strategy for currently available computational resources.

Chapter 1. Introduction 16

1.2.1 Proposal 1: Automatic optimization of computational kernels

Convolution is one of the most computationally-intensive parts of deep learning training and inference.

Therefore, accelerating convolutional computation plays a key role in accelerating such jobs in many

fields. For GPU-based convolutional computation, NVIDIA’s cuDNN math kernel library is widely

known for its high computational efficiency. However, its performance heavily depends on various

factors such as convolutional layers’ parameters (such as the filter size), the selection of convolution

algorithms, the available free memory size, and the arithmetic precisions. We extend the µ-cuDNN

library, which was initially proposed in my master’s thesis [46], to improve the performance using loop

optimization for various convolutional layers and runtime configurations. Our contributions are as

follows:

• We extend the loop optimization algorithm of the µ-cuDNN library to use algorithms of different

computational precisions. This technique allows us to select a broader range of convolutional

algorithms without degradation of accuracy.

• We combine the µ-cuDNN library in two frameworks, Caffe and TensorFlow, and show that it

achieves reasonable performance improvements in several different CNNs; we achieve speedups

of 1.60x for AlexNet and 1.30x for ResNet-18 on an NVIDIA V100 GPU. We thus demonstrate

that µ-cuDNN speeds up not only cuDNN’s convolutional kernels but also works for end-to-end

learning tasks.

• By using DeepBench’s ∼ 100 convolutional kernels selected from CNNs designed for different

machine learning tasks, we measure its speedup on multiple GPUs and computational precisions.

We show that the adaptive loop optimization algorithm can achieve significant speedups even

in the case of using modern reduced-precision operations (i.e., Tensor Cores); we show that µ-

cuDNN achieves speedups of up to 4.54x, and 1.60x on average for DeepBench convolutional

layers on an NVIDIA V100 GPU.

• Taking advantage of the property that µ-cuDNN can obtain layer parameters via the cuDNN

interface, we propose an interface to use this information for multi-node training. We demonstrate

its practicality by optimizing the performance of data-parallel training on a heterogeneous cluster.

• We discuss possible directions to extend the library to support a wider range of deep learning

frameworks and layer types. Specifically, we show that the ONNX data format allows us to apply

the loop optimization algorithm of µ-cuDNN without any changes to the framework itself. We

also discuss whether µ-cuDNN’s algorithm can be extended to layer types other than convolution

and to layouts other than the usual NCHW data layout.

Chapter 1. Introduction 17

1.2.2 Proposal 2: Training 3D CNNs with hybrid-parallelization

Using deep learning models as surrogate models, which perform end-to-end inference for raw scientific

data, has received much attention in recent years. Although data-parallel training methods are known

to scale up to hundreds of GPUs for training a wide range of deep learning models, in the training of

such surrogate model, the minimum amount of memory required for training tends to be larger than the

amount of memory in one GPU, and therefore, data-parallel training is infeasible. Therefore, we focus

on 3D high-resolution CNNs and train them by using model-parallelism using spatial decomposition.

Our contributions are as follows:

• We present an end-to-end approach for strong-scaling training large-sample 3D CNNs.

Specifically, we propose various methods to optimize computation and I/O performance for

better scalability.

• We extend the LBANN framework [44] to implement our proposed approach. We then

demonstrate training on full-resolution samples for the CosmoFlow network (5123) and the 3D

U-Net (2563); we achieve 1.77x of speedup on 2048 GPUs over 512 GPUs with the same

mini-batch size of 64 for the CosmoFlow network, and achieve 1.42x of speedup on 512 GPUs

over 256 GPUs with the same mini-batch size of 16 for the 3D U-Net. Our performance results

show good strong and weak scaling on up to 2048 GPUs. We provide detailed model-based

performance analyses in order to give a comprehensive understanding of their scaling

efficiencies.

• We propose a performance model for the hybrid-parallel training framework to demonstrate that

its performance is predictable with benchmark results using the limited number of compute

nodes.

• We demonstrate a significant improvement in prediction accuracy by using full-resolution data.

The CosmoFlow model trained with 5123 samples realizes ten times lower mean squared error

than when trained with 1283 samples, which was the largest size reported previously.

1.3 Outline of this thesis

This thesis is organized as follows:

Chapter 2: Background

In this chapter, we first briefly summarize the background theory of deep learning. Note that the

main focus of this thesis is the acceleration of computation on deep neural networks, and thus we

mostly explain it from its computational aspects. We then explain various ways to parallelize training

Chapter 1. Introduction 18

of DNNs, from the same perspective. We also introduce some prior work to try to accelerate deep

learning by exploiting its data-parallelism, model-parallelism, and the combinations of them.

Chapter 3: Automatic optimization of computational kernels

In this chapter, we propose µ-cuDNN, a library to perform auto-tuning on convolutional layers of

DNNs. We briefly introduce its methodology presented in my master’s thesis [46], and then extend its

exploration space for optimization based on observations of the DeepBench [58]. We demonstrate that

µ-cuDNN squeezes more speedups from the state-of-the-art kernel library cuDNN on various layers

and precision configurations.

Chapter 4: Training 3D CNNs with hybrid-parallelization

In this chapter, we propose hybrid-parallel training of 3D CNNs by applying spatial partitioning on

hundreds of GPUs. We use the CosmoFlow [59] 3D CNN and the 3D U-Net [18] as two motivative

examples. We propose various optimization techniques to alleviate the overhead of the model-parallel

scheme, including asynchronous halo exchange and model-parallel I/O. We demonstrate that our

software achieves order-of-magnitude improvement on its generalization performance by increase the

input size by up to 256 times, which cannot be done only with data-parallelism and nor any other

frameworks.

Chapter 5: Related work

In this chapter, we compare prior studies about optimizing the computational efficiency of deep learning

frameworks with our proposed methods. Specifically, we explain that our methods solve new types of

performance issues of deep learning workloads, loop optimization of convolution by combining multiple

convolution algorithms and precisions, and hybrid-parallel training of high-resolution 3D CNNs on a

GPU supercomputer, which have not been studied before.

Chapter 6: Discussion

In this chapter, we discuss the future prospects of our methods proposed in Chapter 3 and Chapter 4.

We mainly discuss implications to the research community, applicability to other studies, and possible

future work. For µ-cuDNN work, we further explain and demonstrate how our algorithm can be

generalized for other types of layers and software.

Chapter 7: Conclusion

In this chapter, we discuss future possibilities for extending our work to more general network and

software architectures.

Chapter 2

Background

Deep Learning (DL) is a subset of machine learning algorithms that uses mathematical models called

Deep Neural Networks (DNNs). In this chapter, we briefly explain the fundamental algorithms

of DNNs, and various techniques to train these models on one or more computers. We introduce

the minimum amount of knowledge to understand the contents of this thesis, but more supplemental

details about the basics are found in my master’s thesis [46].

2.1 Neural networks

Neural Networks (NNs) are types of mathematical functions. As implied in their names, these

structures resemble animal brains, which are composed of many neurons to represent complex

functions. In the simplest type of the networks, Multi-Layer Perceptron (MLP), given an input

vector x0 ∈ RN0 , its output y = xL ∈ RNL is computed as follows:

y = xL = σ(WL−1xL−1 + bL−1) (2.1)

y = σ(WL−1σ(WL−2xL−2 + bL−2) + bL−1) (2.2)

y = σ(WL−1σ(W0 . . . σ(Wx0 + b0) . . . + bL−2) + bL−1), (2.3)

where Wl ∈ RNl+1×Nl is a weight matrix, bl ∈ RNl is a bias vector (which is optional), and σ is

an activation function, which applies nonlinearity to each input element. One of many functions is

used as the activation function, such as the sigmoid function, tanh, ReLU [60], PReLU [61], and leaky

ReLU [62]. The computation of each xl (layer) is regarded as a batch computation of each neuron

19

Chapter 2. Background 20

σ x
(n)
l

x
(0)
l−1

x
(1)
l−1
...

x
(Nn−1)
l−1

W
(n,0)
l−1

W
(n,1)
l−1

W
(n,Nn−1)
l−1

Figure 2.1: A neuron.

(Figure 2.1):

x
(n)
l = σ

Nn−1∑
m=0

W
(n,m)
l−1 x

(m)
l−1 + b

(n)
l−1

 . (2.4)

From a computational point of view, the computation of an MLP is regarded as a set of matrix-

vector multiplications and lightweight element-wise (memory-intensive) operations. Moreover, as we

explain Section 2.2.1, the forward computation of such networks is practically batched with more than

one input data, by replacing each xl with a matrix, each column of which represents (intermediate)

data for one distinct input data. Therefore, the computation of MLPs is typically performed with

General Matrix-Matrix multiplications (GEMMs), and this technique is also used in back-propagation

steps (Section 2.1.2).

Deep Neural Networks (DNNs) are a subset of NNs which has multiple layers. Many papers have

demonstrated that the more NNs have, the better accuracy is generally achieved [15, 23, 63, 64, 65, 66].

On the other hand, it also leads networks difficult to converge due to several reasons, including gradient

vanishing [67] and so on. Also, from the computational point of view, deeper models consume more

memory to store hidden activations and error signals, which causes out-of-memory problems (Section

2.2.2).

2.1.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a subset of NNs where convolution is performed on all or

some layers instead of multiply-add of Equation 2.3 (Figure 2.2):

yn,c′,h′,w′ = σ

(∑
c,v,u

wc′,c,v,u xn,c,py+syh′+v,px+sxw′+u

)
, (2.5)

where

• X = (xn,c,h,w) is the input tensor,

• Y = (yn,c′,h′,w′) is the output tensor,

Chapter 2. Background 21

X

W

H

C

Y

W ′

H ′

C ′

W

U

V

C

Figure 2.2: 2D convolution.

• W = (wc′,c,v,u) (in which each subscript iterates over 1 to its upper case) is the weight tensor,

• sx, sy ∈ N are strides, and

• px, py ∈ Z are paddings.

The strides and the paddings are used to reduce or adjust the output dimensions.

The number of spatial dimensions of a CNN depends on its target dataset. 2D layers are used for

image classification [45, 63, 64, 65, 66, 68], image segmentation [5, 6, 7, 8], object detection [9, 10, 11],

and even for acoustic models [14, 15, 16], and CNNs with higher-dimensions are possible for multi-

dimensional data; we use two examples of 3D CNNs, the CosmoFlow network and the 3D U-Net, in

Chapter 4.

A convolutional layer is regarded as a particular type of MLP layer where most weights are

disconnected, and non-zero connections share their weights with other connections. In contrast to

convolutional layers, each layer of MLPs is also called fully-connected layers. In CNNs, it is

common that layers other than convolutional layers are combined to reduce the output dimensions;

many CNNs have one or fully-connected layers at the end. Some networks also equip pooling layers

to reduce the spatial dimensions (and their computational cost) while increasing the number of

channels as activations are propagated, assuming that it preserves the information of input data. On

the contrary, some networks that have to propagate the spatial feature of input data at the end may

lack fully-connected layers.

Convolution algorithms

The Convolution operation is regarded as one of the most time-consuming, compute-intensive

operations in DNNs. In general, computation on convolutional layers is believed to be dominant in

typical training and inference workload due to their high degree of arithmetic operations; we actually

Chapter 2. Background 22

GEMM-based

X W Y

X ′ W Y

im2col

· =

FFT-based

X W Y

Frequency domain

X̂ Ŵ Ŷ

F F F−1

◦ =

Winograd

X W Y

Winograd domain

X̃ W̃ Ỹ

BT G AT

◦ =

Direct

X W Y∗ =

: Workspace

Figure 2.3: Convolution algorithms.

demonstrate how convolution occupies the computational time of CNNs in Chapter 3 and Chapter 4.

Thus, many equivalent algorithms have been proposed to compute convolutional layers efficiently

(Figure 2.3):

• GEMM-based convolution, or “im2col” convolution, is a straightforward implementation of

convolution using GEneral Matrix Multiplication (GEMM) that is defined in the BLAS

interface [69]. The algorithm is two-fold; An im2col (image-to-column) kernel copies input

elements to an intermediate workspace so that the following GEMM is equivalent to

convolution (Figure 2.4). The advantage of the algorithm is that it can exploit the nice

computational efficiency of BLAS libraries to perform matrix multiplication. However, the

downside is 1) it requires a sizeable extra memory footprint to pass the reshaped input tensor

to GEMM, and 2) the copy part and the compute part cannot be overlapped as it relies on an

external BLAS library.

• Winograd’s algorithm [70, 71] is an algorithm to perform convolution with a smaller number

of multiplications than the original algorithm. For example, convolution on X = [x0, x1, x2, x3]

Chapter 2. Background 23

GEMM

im2col

W

Xcol

Y

W
X

Y

a0

b0

d0
e0

a1

b1

d1
e1

b0
c0

e0

f0

b1
c1

e1

f1

d0
e0

g0

h0

d1
e1

g1

h1

e0

f0

h0

i0
e1

f1

h1

i1

α0 β0 γ0 δ0 α1 β1 γ1 δ1
ϵ0 ζ0 η0 θ0 ϵ1 ζ1 η1 θ1
ι0 κ0 λ0 µ0 ι1 κ1 λ1 µ1

a0 b0 c0 d0
a1 b1 c1 d1
a2 b2 c2 d2

α0 β0

γ0 δ0

ϵ0 ζ0
η0 θ0

ι0 κ0

λ0 µ0

a0 b0 c0

d0 e0 f0
g0 h0 i0

a0 b0
c0 d0

⋆0
⋆1
⋆2

Figure 2.4: The GEMM-based convolution.

and W = [w0, w1, w2] is computed with four multiplications as follows:

Y = X ∗W =

x0 x1 x2

x1 x2 x3



w0

w1

w2

 (2.6)

⇔ Y = AT[(GW)⊙ (BTX)] (2.7)

AT =

1 1 1 0

0 1 −1 −1

 ∈ Rm×(m+r−1)

G =


1 0 0

1
2

1
2

1
2

1
2 − 1

2
1
2

0 0 1

 ∈ R(m+r−1)×r

BT =


1 0 −1 0

0 1 1 0

0 −1 1 0

0 1 0 −1

 ∈ R(m+r−1)×(m+r−1)



, (2.8)

where A,B,G are constant matrices that are determined by the layer’s architecture. This

algorithm is decomposed into 1) matrix multiplications to transform the input data and

weights into the Winograd domain, 2) element-wise multiplication on the two data, and 3) a

matrix multiplication to restore the output from the Winograd domain. The advantage of

Chapter 2. Background 24

Winograd’s algorithm is that it reduces the arithmetic complexity of convolutional layers,

although it requires a decent-sized workspace [71].

• FFT-based convolution [72, 73, 74, 75, 76] performs convolution as element-wise multiplication

on the frequency domain. In this algorithm, both the input data and weights are transformed into

the frequency domain by performing Fast Fourier Transformation (FFT), and then element-wise

multiplication is performed to the two transformed data, and Inverse FFT (IFFT) is applied to

get the output data that is equivalent to the output of the layer. It is regarded as a special case of

the Winograd algorithm with particular complex transform matrices; Equation 2.8 is equivalent

to

AT =
1

4

1 −1 1 −1

1 −i −1 i

 , G =


1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i

 , BT =


1 1 1

−1 −i 1

1 −1 1

−1 i 1

 . (2.9)

It has been demonstrated that FFT-based convolution is efficient on layers with large filter sizes

[73, 76]. Still, this algorithm also has the same memory footprint problem as the GEMM-based

algorithm.

2.1.2 Back-propagation and mini-batch Stochastic Gradient Descent

Back-propagation is an algorithm to compute parameter gradients of each activation. In the

algorithm, parameter gradients are obtained by computing gradients with respect to the input data

and the parameters of each layer in the reversed order of the original computation (which is also

called forward-propagation). Back-propagation of a fully-connected layer requires two GEMMs, each

of which is for computing gradients with respect to input and parameters, and a similar rule is

applied to convolutional layers (where two convolutions are needed).

Back-propagation is combined with Stochastic Gradient Descent (SGD) to optimize DNNs’

parameters iteratively in most cases:

W (t+1) = W (t) − η(t)
N∑

n=1

∇L
(
xn;W (t)

)
, (2.10)

where W t are the network parameters at step t, η(t) is the learning rate at step t, N is the mini-

batch size, L is the loss function, and xn is the n-th sample randomly selected from the dataset. A

wide variety of alternatives to the original SGD algorithm have been proposed, such as AdaGrad [77],

ADADELTA [78], Adam [79], and so on.

In the computational perspective, “training” usually refers to a computational workload that is

composed of 1) forward propagation, 2) back-propagation, and 3) weight update explained in Equation

Chapter 2. Background 25

2.10. Although 1) and 2) cannot be overlapped since 2) requires error signals of the final layer, there

are various scheduling methods for 2) and 3) in terms of better computational throughput or less

memory consumption, and so on (Section 5.2). Similarly, “inference,” where unknown samples are

inferred by using a trained DNN, usually refers to forward-propagation.

2.1.3 Metrics of DNNs

There are a variety of metrics to summarize the characteristics of DNNs:

• The number of parameters is the number of trainable weight values of the network. On a

fully-connected layer, the number of parameters is O(N2L), where N is the number of neurons

of each layer, and on a 2D convolutional layer, it is O(K2C2L) where K is the filter size, and

C is the number of channels. Note that it is not necessarily constant throughout the network

but typically increases as it gets close to the output layer. The reversed principle is applied to

the spatial width (W) due to convolutional layers without padding and pooling layers. Since K

and C are typically independent of the input data size but so is N , MLPs tend to have more

parameters than CNNs that are designed for exactly the same objective dataset.

• The number of FLOPs (floating-point operations) of a DNN per data sample represents the

computational cost of the network. It is O(N2L) on MLPs and O(K2C2W 2L) on 2D CNNs,

where W is the spatial dimension size. And thus, typical CNNs requires more FLOPs to compute

each data sample.

• The number of neurons of a DNN defines how it requires a memory footprint to store activations

and error signals. It is O(NL) on MLPs and O(CW 2L) on 2D CNNs. CNNs tend to consume

more memory than MLPs as it is square of the input dimension size. A huge memory footprint

may cause a runtime error of deep learning frameworks on GPUs because conventional GPU

software architecture (such as NVIDIA CUDA [80]) prohibits the total memory consumption from

exceeding the physical GPU memory size. As we explain in Section 5.2, various techniques have

been proposed to mitigate the memory pressure, such as offloading [81, 82, 83], recomputation

[83, 84, 85], efficient memory management [86], using NVIDIA GPUs’ Unified Memory [82], and

the use of model-parallelism which we introduce in Section 2.2.

• The accuracy, loss, or generalization performance represents how networks can predict proper

outputs from unseen input data. The way a network is evaluated is defined by its objective

function, such as softmax cross-entropy loss for classification tasks [45], or general error functions

for other types of tasks. Thus, this metric is used only for comparing the potential of networks

on the same task.

• The mini-batch size (N in Equation 2.10) defines the update frequency of model parameters.

Typically, a DNN is trained for a fixed number of epochs (how many times each sample is used

Chapter 2. Background 26

Table 2.1: Specifications of popular DNNs [46]. We report place and accuracy for the annual
ILSVRC classification task [3] if it is officially submitted to the competition. Note that the accuracy
can be those of the ensemble of the networks.

Network Year-Place Number of Weights [106]
ILSVRC-2012
Classification

Top-5 Accuracy [%]
28x28-1000-10 [1] 1998 0.8 -
LeNet [1] 1998 0.07 -
AlexNet [45, 88] 2012-1st 64.0 15.3
GoogLeNet [64] 2014-1st 15.2 6.67

VGG [63] 2014-2nd
175.1

7.32
(VGG-19)

NiN [68] 2014 11.3 -

ResNet [65] 2015-1st
103.1

3.57
(ResNet-152)

in Equation 2.10), and hence the number of FLOPs itself is almost invariant to the mini-batch

size. However, this size strongly correlates to the computational efficiency because it defines how

much parallelism is available and how much inter-processor communication is required, as we

discuss further in Chapter 3 and Chapter 4. Besides, it also affects the quality of convergence;

several papers on different machine learning tasks have reported that an inappropriately large

mini-batch size results in a degradation in inference accuracy [27, 28, 29, 30]. Keskar et al. [87]

reported that this is because large batches decrease the stochasticity of parameter updates, and

thus, parameters tend to be stuck in local minima. Therefore, the mini-batch size should be

treated carefully to evaluate the performance of DNNs.

An important observation is that, although such metrics correlate with each other, it is not

necessarily true that they have a positive correlation (Table 2.1, Figure 2.5). This is mainly because

1) more efficient network architecture is found (regardless theoretically of heuristically) year by year,

2) more compute- and memory-intensive networks become trainable in a reasonable time by

hardware performance advances. Therefore, there are many factors involved in the performance of

DNNs, and it should be carefully evaluated.

2.2 Training DNNs with HPC

The HPC technologies are inseparable from the deep learning domain advances, as a tremendous

amount of computation is required to train DNNs. For example, Krizhevsky et al. [45] took several

days to train a single model on two NVIDIA GTX 580 GPUs. Similarly, it is common that the training

of one model takes several hours to days [15, 45, 90, 91]. This problem becomes more troublesome

when one tries to tune their model to improve its convergence because no or less theoretical estimation

of resulting accuracy can be made before running actual training. For this reason, researchers have

Chapter 2. Background 27

0 40 80 120

0
10

20
30

40

of Parameters [106]

#
of

N
eu

ro
n

s
[1

0
6
]

0 40 80 120

0
10

20
30

40

of Parameters [106]

F
or

w
ar

d
F

L
O

P
s

[1
0
9
]

0 10 20 30 40

0
10

20
30

40

of Neurons [106]

F
or

w
ar

d
F

L
O

P
s

[1
0
9
]

0 40 80 120

0
5

10
15

of Parameters [106]

T
op

-5
E

rr
or

[%
]

0 10 20 30 40

0
5

10
15

of Neurons [106]

T
op

-5
E

rr
or

[%
]

0 10 20 30 40

0
5

10
15

Forward FLOPs [109]

T
op

-5
E

rr
or

[%
]

784-1000-10
LeNet
AlexNet
GoogLeNet
NIN
VGG-16
VGG-19
ResNet-50
ResNet-152

Figure 2.5: Specifications of popular DNNs [46]. We estimate “Forward FLOPs” as the number
of multiplication and addition of convolutional layers and fully-connected layers. We estimate “# of
Parameters” and “# of Neurons” from the variable sizes of the networks defined in Chainer [34] 3.2.0
and a third-party script [89].

Chapter 2. Background 28

to devote much node-hour to optimize their networks, regardless of manually or automatically, by

using auto-tuning methods [92]. Therefore, it is essential to utilize efficient hardware (such as GPUs

and supercomputers) and efficient software (techniques derived from the HPC domain) to accelerate

research on DNNs.

The parallelism that is available in a DNN is classified into two different levels: intra-processor

parallelism, which is available on each computing processor, and data-, model-, and hybrid-

parallelism, which define how the network is partitioned among processors. Although the latter

group is not necessarily considered when more than one processor is used (for example, batched

computation of fully-connected layers with GEMM on a GPU is a kind of both data-parallelism and

model-parallelism because each core computes a part of the model in parallel), we only use the group

to discuss inter-node parallelism for simplicity.

2.2.1 Intra-processor parallelism

The most straightforward way to exploit parallelism on one computing node to compute DNNs is to

utilize multi-core processors. For example, on fully-connected layers, the computation (GEMM) is

naturally parallelized by using multi-threaded or GPU-based BLAS libraries, such as cuBLAS [93],

OpenBLAS [94], Intel MKL [95] and so on. For other types of layers, many math libraries or kernel

libraries designed for deep learning workloads can be used, such as cuDNN [35] and oneDNN [96].

Such libraries typically cover common layer types such as convolutional layers, pooling layers, various

activation functions, and batch-normalization layers. Alternatively, such computation can be

implemented by using parallel programming models such as CUDA [80] and OpenMP [97]. In fact,

many deep learning frameworks adopt such programming models to implement computation kernels

that are not supported by any of their underlying kernel libraries.

As explained in Section 2.1, a common technique to improve parallel computation efficiency is to

batch the computation by computing multiple samples simultaneously because the computation of one

sample does not necessarily keep processors busy. It also reduces memory access to parameter tensors,

which are repeatedly used for each data sample. Almost all deep learning frameworks and libraries

adopt this methodology. Note that this batch does not necessarily equal the mini-batch size, as this

technique is combined with data-parallelism explained in Section 2.2.2.

2.2.2 Data-parallelism

Data-parallel training distributes the computation of different data samples (∇L
(
xn;W (t)

)
of

Equation 2.10) among processors. This can be done by 1) performing forward- and backward-

computations of different samples on processors simultaneously, and 2) synchronizing parameter

gradients among the processors before the parameters are updated. For the synchronization,

all-reduce collective communication is typically used, as shown in Figure 2.6. The advantages of

Chapter 2. Background 29

Layer

GPU

Forward data movement

Backward data movement
Backward grad. movement

Data-parallel (N = 2)

Allreduce

Input Conv. FC

Model-parallel
(spatial partitioning, N = 1)

Input Conv. FC

Hybrid-parallel (N = 2)
Input Conv. FC

Figure 2.6: Three parallel strategies for deep neural networks. “Data-parallel” and “Hybrid-
parallel” compute a mini-batch of two samples (and). “Model-parallel” splits the spatial
dimension of one sample () into two GPUs. Data movement within a single process is typically
cheap.

data-parallel training than single-processor training are as follows:

• The mini-batch size, or the number of samples of a dataset, is more than one hundred or even

thousands in most cases, which makes hundreds of GPUs can be utilized at the same time

[27, 28, 29]. Furthermore, since the complexity of all-reduce is O(N logP), where N is the

message size and P is the number of processes [98], this scheme enjoys its good scalability until

at least such number of GPUs.

• No load-imbalance is expected as the exact same amount of workload is assigned to each

processor.

• It is easily implemented only by updating underlying data readers to make data samples read by

each processor don’t overlap with each other and inserting all-reduce collectives. In fact, multiple

software and libraries such as FireCaffe [99] and Horovod [100] adopt this methodology to extend

single-processor or single-node deep learning frameworks to support data-parallelism.

Due to the reasons above, data-parallelism is considered the most popular way to do distributed

training. In fact, it is implemented in almost all popular deep learning frameworks.

On the contrary, there are several problems and barriers to use this parallelism in practice:

• The number of processors cannot be larger than the mini-batch size. Considering that too large

mini-batch sizes are not undesirable for better convergence, as we mentioned in Section 2.1.3,

this limits parallelization on extremely large-scale environments.

Chapter 2. Background 30

conv 1

W

H

C conv 2 conv 3

(a) Spatial partitioning

conv 1

W

H

C conv 2 conv 3

(b) Channel/filter partitioning

conv 1

W

H

C conv 2 conv 3

(c) Layer pipelining

Figure 2.7: Three parallel strategies of model-parallelism on a three-layer 2D CNN. The
computation on each color is assigned to one of three GPUs. “C” is the channel dimension and “H”
and “W” and the spatial dimensions, respectively.

• Each processor must be capable of computing at least one sample. This limitation raises an issue

when a large network (in terms of the number of neurons, i.e., the memory footprint) as memory

overflow may happen. Since a sample is the undividable parallelism unit, this problem cannot

be solved by adjusting the number of processors.

2.2.3 Model-parallelism

Model-parallelism is parallelism available inside a model; we introduce prior implementations that

support model-parallelism in Section 5.2. Unlike data-parallelism, which explicitly defines how the

computation is partitioned among processes, model-parallelism is a more general concept that a single

model is computed on multiple processors.

Model-parallel training includes the following methods:

• Spatial partitioning (Figure 2.7a): Each layer is partitioned in one or more spatial dimensions

among processes. This method assumes that the target network has large spatial dimensions

enough to be parallelized among multiple processors, which implies that multi-dimensional CNNs

are suitable to be applied. This method is associated with multi-node stencil applications where

a domain is partitioned among processors [101]. As in stencil computations, halo exchange is

required to compute each layer that exchanges marginal regions of adjacent processes. The

advantage of this method is that a good surface (communication) to volume (computation) ratio

Chapter 2. Background 31

is expected, which efficiently hide the communication overhead. Meanwhile, all the processes have

to perform all-reduce to synchronize their own copies of layer parameters, just as in data-parallel

training.

• Channel (filter) partitioning (Figure 2.7b): Each layer is partitioned in the channel

dimension among processes. While this method resembles spatial partitioning, it requires

all-to-all communication instead of halo exchanges so that each process receives all channels of

the previous layer to compute its own channels.

• Layer pipelining (Figure 2.7c): Computation of each layer is distributed among processors. In

the forward passes, each process receives the activation of its previous layer, compute the layer’s

activation, and then sends it to the next process. Similar computation and communication are

performed in the backward passes as well. The benefit of this method is that layer parameters

reside in a single process, whose movement cost may be much less than that of activation and

error signals. This is usually used for networks that have a large number of layers.

The common merit of model-parallelism is that it can distribute the computational and memory

pressure among processors. For computation, it can theoretically use an arbitrarily large number of

processes, which is infeasible only with data-parallelism, as we explained in Section 2.2.2. For memory

pressure, it is capable of handling huge networks whose intermediate data (such as activation and

error signals) does not fit into a single processor’s memory. Therefore, model-parallelism offers the

opportunity to increase both scalability and network performance.

Model-parallelism has a high degree of freedom because 1) multiple methods can be combined at

the same time, 2) different methods can be applied to different parts of the target network, and 3)

it can be combined with data-parallelism (which is called hybrid-parallelism). For example, when

spatial partitioning is applied to a CNN, its fully-connected layers at the end are typically left because

the number of parameters is much more than the number of activations. However, as explained above,

the network placement should be carefully designed to minimize the inter-processor communication

overhead and not cause memory overflow. And thus, several studies proposed methods to predict the

optimal way to parallelize given networks, including performance models [102, 103, 104].

Table 2.2 shows the pros and cons of the three types of parallelism. The strong advantage of data-

parallelism is its nice scalability that is derived from its simple design, while it relies on the assumption

that 1) the target network fits in single GPU’s memory, and 2) the mini-batch size is larger than the

number of available GPUs. Meanwhile, model-parallelism works even when these assumptions do not

hold, but it is not trivial how the network should be distributed among processors. Hybrid-parallelism

is believed to enjoy the pros of both parallelisms, while the distribution problem still remains.

Chapter 2. Background 32

Table 2.2: Comparison of data-, model-, and hybrid-parallel computation. We assume
spatial partitioning on multi-dimensional CNNs for model- and hybrid-parallelism. “?” means that it
is the user’s responsibility to achieve good performance.

Data Model Hybrid
What to parallelize Samples Layers Samples & layers
Available parallelism O(N) O(Wn) O(NWn)

GPU memory pressure 7 3 3
Influence on accuracy 7 3 3

Weak scaling 3 N/A 3
Strong scaling 3 3 3
Load balance 3 ? ?

Chapter 3

Automatic optimization of

computational kernels

As we explained in Chapter 2, since the training of DNNs is compute-bound, it is essential to

optimize the computational performance of each accelerator for DNNs as well as parallelization

methods on multiple nodes. For this reason, many of today’s DL frameworks are built on top of

computational kernel libraries for deep learning, just as many HPC applications rely on BLAS

libraries for linear algebra operations. However, we have found in my master’s thesis [46] that, these

uses assume that the underlying libraries always deliver the optimal computational performance, and

in practice, such frameworks often achieve only considerably less performance than the peak

performance. Specifically, we have shown that such frameworks are indifferent about the choice of

algorithms on compute-intensive convolutional layers, and very slow algorithms such as

GEMM-based algorithms can be chosen. Therefore, we propose µ-cuDNN, a wrapper library for the

NVIDIA cuDNN deep learning kernel library on NVIDIA GPUs, to mitigate this inefficiency by

performing auto-tuning of convolution algorithms transparently. In this chapter, we discuss further

the possibility of our auto-tuning algorithm by 1) extending µ-cuDNN to consider convolution

algorithms using different precisions as a part of algorithm choices to apply to our splitting

technique, and 2) proposing a µ-cuDNN interface for optimizing the performance of data-parallel

training on multiple GPUs using the performance information collected by the library.

This chapter is organized as follows; In Section 3.1, we introduce the methodology of the cuDNN

library. In Section 3.2, we propose the aforementioned µ-cuDNN algorithm. Specifically, we conduct

a convolution performance benchmark using DeepBench [58] to examine the further possibility of

extending the proposed algorithm. In Section 3.3, we evaluate the performance of our library from

different aspects, including a per-layer benchmark and CNN performance benchmarks. We also

demonstrate that the interface of the library can be used for high-level load-balance optimization on

33

Chapter 3. Automatic optimization of computational kernels 34

Figure 3.1: An example code to perform cuDNN convolution. # is one of Forward,
BackwardData, or BackwardFilter.

1 cudnnHandle_t cudnn;
2 cudnnCreate (&cudnn);
3
4 // Input , output , weights , and convolution descriptors
5 auto xDesc ,yDesc ,wDesc ,convDesc = ...;
6
7 auto algo = cudnnGetConvolution#Algorithm(cudnn , xDesc , WS_LIMIT , ...);
8 size_t wsSize = cudnnGetConvolution#WorkspaceSize(cudnn , xDesc , algo , ...);
9 void *ws;

10 cudaMalloc (&ws , wsSize);
11
12 // Training loop
13 while(true) {
14 cudnnConvolution #(cudnn , xDesc , ws , ...);
15 }

a heterogeneous GPU cluster. Further discussion about the future work is found in Chapter 6.1.

3.1 Motivation and background

In this section, we explain an overview of the cuDNN kernel library, our target library to perform

auto-tuning. Since cuDNN is used for many deep learning frameworks [32, 33, 34, 35, 38, 39, 41, 42,

44], accelerating techniques on cuDNN is widely applicable to such frameworks independently from

framework-specific optimization possibilities.

3.1.1 cuDNN

cuDNN is a math kernel library designed for computing DNNs on NVIDIA GPUs [35]. It implements

GPU kernels for various types of DNN layers, including convolutional layers, pooling layers, recurrent

layers, and so on. Just as NCCL has been adopted by many applications as a highly-optimized collective

communication library for GPUs, cuDNN has been adopted by many deep learning frameworks.

In particular, for the implementation of convolutional layers, cuDNN implements different

equivalent convolutional algorithms, such as GEMM-based algorithms, FFT-based algorithms, and

Winograd’s algorithm. Users specify one of these algorithms when the actual convolution kernel

(cudnnConvolution# where # is either of Forward, BackwardData, or BackwardFilter) is called. At

the same time, the users must provide a workspace (a GPU array) whose size should be equals to or

more than the requirements cuDNN requests. Although it is not strictly mentioned in its document

how this workspace is used during convolution, this workspace is used by convolution algorithms to

store their non-persistent intermediate data, such as input, output, and weight tensors in the

Winograd domain, the frequency domain, or in the im2col form. In fact, as we show in Section 3.2.2,

the workspace size is determined by layer architecture and algorithm types. Typical usage of cuDNN

for computing a convolutional layer is as follows (Figure 3.1):

Chapter 3. Automatic optimization of computational kernels 35

1. The framework calls cudnnFindConvolution#Algorithm to get a list of available convolution

algorithm for the layer. Note that while cuDNN equips various convolution algorithms, each

algorithm is not necessarily available depending on the architecture of the layer (Figure 3.1).

2. The framework then chooses the fastest convolution algorithm whose workspace requirement is

equal or less than the available memory for workspace. This memory is size may be set by users

[34, 38, 39, 44], or the free memory size when the training begins [33].

3. When computing that layer, it executes the cuDNN kernel using the algorithm ID obtained in

the previous step and the pre-allocated workspace.

The algorithm is guaranteed to provide the fastest algorithm for a single convolutional layer with

a single cuDNN kernel call for the available GPU memory size. However, there are several practical

problems with this algorithm:

• Users do not know the exact workspace size required by each layer and algorithm, and thus they

may use an inappropriate size limit. In particular, since the performance of each algorithm and

the required workspace size depends on the architecture of the layers and training configurations

(e.g., mini-batch size), it is difficult to manually provide the optimal size limit for multiple layers

at the same time. This can result in a slower algorithm being used, while, in fact, a more efficient

algorithm can be used by setting a larger workspace size.

• It is expected that the optimal algorithms will always be used when the workspace size is

sufficiently large, but in typical frameworks, it is common that GPU memory is used to the

limit. This is because multiple samples of a typical CNN can be trained on a single GPU’s

memory, so the batch size is set to use up all the memory to increase the computational

efficiency (Section 2). Such a scenario is common except in extremely parallel training, so this

problem arises even if the framework efficiently uses free memory as a workspace. As we show

in Chapter 4, even when performing hybrid-parallel training of a large model that cannot fit on

a single GPU, the number of model partitions is minimized (i.e., GPU memory is used to the

limit) to increase the computational efficiency of each GPU.

Figure 3.2 illustrates the performance issue on the AlexNet [45] convolutional neural network. As

shown in the figure, when the workspace size is set to 512 MiB, faster algorithms (FFT and FFT TILING)

are used, which were not available when the workspace size was 64 MiB, resulting in about ∼ 1.4x of

speedup for overall network computation time. At the same time, however, the workspace size used

(shown in blue) consumes as much memory as the amount of memory needed to compute the network

(shown in red and green), which unrealistic in actual training.

∗Not implemented as of cuDNN 7.1.2.
†input width− 2× stride
‡256 if either of the filter sizes is one, or 32 otherwise
§The numbers of input/output filters should be multiples of 8, and all of the tensors should be aligned with 128 bits

if the filters use the NHWC format.

Chapter 3. Automatic optimization of computational kernels 36

Table 3.1: Supported forward convolution algorithms in cuDNN 7.0.4. “TCs” is whether
Tensor Cores [49] can be used. Note that the DIRECT convolution algorithm is defined but not
implemented (Figure 3.2), but for convolutional layers with 1×1 filters, it is equivalent to GEMM-based
convolution in principle.

Algorithm Input Kernel Stride Dilation Group TCs
IMPLICIT GEMM

IMPLICIT PRECOMP GEMM 1 ✓
GEMM 1 1
DIRECT ∗ N/A
FFT ≤ 256 † > Padding 1 1 1
FFT TILING ≤ 32, 256 ‡ 1 1 1
WINOGRAD 3 1 1 1
WINOGRAD NONFUSED 3, 5 1 1 1 ✓ §

Table 3.2: Support status of the direct algorithm in cuDNN.

Version Status
1 cudnnConvolutionFwdAlgo t does not exist
2 GEMM algorithms and DIRECT is defined, but unclear whether it is actually implemented
3,4 FFT algorithms are added, and it is mentioned that DIRECT is not implemented
5,6,7 Winograd’s algorithms are added

M
em

or
y

[M
iB

]

0

200

400

600

800

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
conv fc

(8 MiB)
conv fc
(64 MiB)

conv fc
(512 MiB)

Data
Weights
Workspace

0

100

200

300

400

T
im

e
[m

s]

IMPLICIT PRECOMP GEMM

FFT

FFT TILING

WINOGRAD

(Total time)

Figure 3.2: Per-layer breakdowns of memory consumption and computation time of
AlexNeton P100-SXM2. We show the sum of forward and backward pass time. The bars and
the points show the per-layer memory consumption and the time, respectively. We use three different
workspace sizes (8, 64, 512 MiB), and a mini-batch of 256.

Chapter 3. Automatic optimization of computational kernels 37

3.2 µ-cuDNN and beyond

µ-cuDNN is a wrapper library for cuDNN to improve the convolution performance transparently. In

this section, we first introduce an overview of µ-cuDNN proposed in my master’s thesis [46], and then

extend its functionality as follows:

• We evaluate the convolution performance using Tensor Cores available in V100 GPUs and show

that there is room for optimization in several aspects similar to the problem found in our µ-

cuDNN work. We extend the algorithm to use mixed-precision kernels without compromising

precision.

• We introduce an interface to µ-cuDNN to collect performance metrics of convolutional layers

without interfering in DL frameworks. We demonstrate that this function can be used for high-

level performance optimization, such as optimizing workload on a heterogeneous cluster.

3.2.1 µ-cuDNN Overview

µ-cuDNN takes layers’ architecture and workspace size via the equivalent interface to cuDNN and

provides optimal computational performance for the given workspace size by dividing the computation

internally using the cuDNN computational kernels. Its basic algorithm does not change the workspace

size itself (that managed by the framework) but internally decomposes convolution into sub-problems,

thus making it possible to use a limited workspace to utilize efficient algorithms. Since it performs

optimization transparently, it is theoretically applicable to all frameworks that employ cuDNN.

µ-cuDNN takes advantage of the property that the outer-most loop of convolution can be split

(Algorithm 1). As shown in the code, the actual computation line (line 8) does not have dependency

between itself on different n. This implies that a common loop optimization, loop splitting, can

be applied to the loop (Algorithm 2). On the pseudo-code, this splitting is not expected to improve

computational performance because it does not change the access pattern of each array. However,

if we apply this loop division to convolution by cuDNN, we can expect another effect; The cuDNN

computation is performed on a per-loop basis, which reduces the workspace size required for each

loop. This makes it feasible to use faster algorithms that require a larger workspace. We illustrate our

methodology in Figure 3.3; it intercepts cuDNN API calls on convolutional layers to internally split

the outer loop of convolution so that faster algorithms are used, while it leaves other cuDNN calls.

We refer to applying loop splitting to the mini-batch loop as micro-batching and split mini-batch as

micro-batches.

Auto-tuning of micro-batch sizes

In this chapter, we mainly focus on the Workspace Reuse (WR) algorithm, one of the two different

optimization algorithms of µ-cuDNN, and we refer to WR as the µ-cuDNN algorithm unless it is

Chapter 3. Automatic optimization of computational kernels 38

Algorithm 1 Pseudo-code of two-dimensional convolution.

1: for(n = 0; n < N ; n++) // Mini-batch loop
2: for(k = 0; k < K; k++) // Output channel loop
3: for(h = 0; h < H; h++) // Height loop
4: for(w = 0; w < W ; w++) // Width loop
5: for(c = 0; c < C; c++) // Input channel loop
6: for(v = 0; v < V ; v++) // Kernel width loop
7: for(u = 0; u < U ; u++) // Kernel height loop
8: Y[n, k, h, w] += W[k, c, v, u]×X[n, c, h+ v, w + u];

Algorithm 2 A loop-split code equivalent to Figure 1.

1: for(n = 0; n < N1; n++) // Micro-batch loop 1
2: for(k = 0; k < K; k++) // Output channel loop
3: for(h = 0; h < H; h++) // Height loop
4: for(w = 0; w < W ; w++) // Width loop
5: for(c = 0; c < C; c++) // Input channel loop
6: for(v = 0; v < V ; v++) // Kernel width loop
7: for(u = 0; u < U ; u++) // Kernel height loop
8: Y[n, k, h, w] += W[k, c, v, u]×X[n, c, h+ v, w + u];

9: for(n = N1; n < N ; n++) // Micro-batch loop 2
10: for(k = 0; k < K; k++) // Output channel loop
11: for(h = 0; h < H; h++) // Height loop
12: for(w = 0; w < W ; w++) // Width loop
13: for(c = 0; c < C; c++) // Input channel loop
14: for(v = 0; v < V ; v++) // Kernel width loop
15: for(u = 0; u < U ; u++) // Kernel height loop
16: Y[n, k, h, w] += W[k, c, v, u]×X[n, c, h+ v, w + u];

Time

conv1
N = 256

relu1
N = 256

pool1
N = 256

conv2
N = 256

conv1
N = 128

conv1
N = 128

relu1
N = 256

pool1
N = 256

conv2
N = 64

cuDNN

µ-cuDNN

Using GEMM-based convolution

Using FFT-based convolution

Figure 3.3: The conceptual execution timeline of µ-cuDNN. N represents the mini-batch size.

Chapter 3. Automatic optimization of computational kernels 39

Algorithm 3 µ-cuDNN’s optimization algorithm.

1: for n = 1 to N do
2: n̂µ ← arg min

nµ=1,2,...,n
{Tµ(nµ) + T (n− nµ)}

3: T (n)← Tµ(n̂µ) + T (n− n̂µ)
4: c(n)← {cµ(n̂µ)}+ c(n− n̂µ)
5: end for
6: return c(N) // Configuration; a list of (algorithm ID, batch size)

explicitly mentioned. This is because the other algorithm, WD, assumes all convolution kernels share

a single workspace to allow themselves to be invoked simultaneously, while WR does not make that

assumption and is applicable to a broader range of applications. WR optimizes the computation time

of convolution layers by splitting a mini-batch into a set of batches. In this algorithm, we use Dynamic

Programming (DP) to minimize time.

The object of the algorithm is to minimize the time to compute a given convolutional layer with

a mini-batch size of N , T (N). By dividing the mini-batch N into one or more batches, T (N) is

formulated as follows:

T (N) = min

 Tµ(N),

minn=1,2,...,N−1 T (n) + T (N − n)

 , (3.1)

where Tµ(n) is cuDNN’s convolution time with a batch size of n. This time is obtained by

benchmarking cuDNN inside µ-cuDNN before performing the optimization. Note that it is infeasible

to benchmark Tµ(n) in advance of optimization with all possible layer architecture due to its

extremely large exploration space (such as the number of input/output channels, spatial input

dimensions, the mini-batch size, the filter size, the filter stride, and etc.); instead, we run cuDNN

kernels online to take a minimum amount of time for benchmarking. Since each cuDNN call is

performed inside the µ-cuDNN and guaranteed not to be executed in parallel, we assume that each

kernel has access to the full workspace size specified by users via the cuDNN interface. In this model,

we don’t consider any cost to split a batch because this can be done by calling cuDNN’s convolution

by applying different offsets to the input and output pointers.

Since n is an integer and T (n) only refers T (n′) where n′ < n, this problem can be solved by DP.

We show the pseudo-code of the algorithm in (Algorithm 3), where cµ(n) is a pair of a convolution

algorithm ID and a batch size that is computed by the algorithm. The output of the algorithm is a

list of such pairs, which we call a configuration. For example, if the output is

c(256) = {(FFT, 100), (FFT, 100), (GEMM, 56)}, µ-cuDNN computes 100 samples of the first two groups

with the FFT-based algorithm and the remaining 56 samples with GEMM.

We propose different micro-batch size granularities to evaluate the tradeoff between the

optimization overhead and the acceleration obtained by the optimization algorithm. Since our

Chapter 3. Automatic optimization of computational kernels 40

Table 3.3: Micro-batch size policies.

Micro-batch size(s) # of benchmark calls
all {1, 2, 3, · · · , N} O(N)
powerOfTwo {20, 21, 22, · · · , N} O(logN)
undivided {N} O(1)

User code

DL Framework

µ-cuDNN

cuDNN

NVIDIA GPU

µ-cuDNN

Python etc.

C/C++

C

CUDA

Python

(N)FS

File-based DB

1.

2. 3.

Figure 3.4: µ-cuDNN software stack. Users can obtain performance metrics via 1. to 3., as
described in Section 3.2.4.

optimization needs actually to call cuDNN kernels to obtain Tµ(n), and the benchmark for each

batch size has to run all the (potentially slow) available algorithms, it involves the overhead of an

order of the mini-batch size. However, since the algorithm allows using a subset of {1, 2, · · · , N} as

available micro-batch sizes if only there is a combination of batch sizes equal to the mini-batch size,

we can reduce the overhead by using such a subset instead of all positive integers up to the

mini-batch size. Users must specify either of the policies to µ-cuDNN by setting an environment

variable; Note that environment variables can be easily propagated to other computes nodes by using

the job scheduler and MPI runtime functions, so this feature can be used in multi-node training too.

An essential point about powerOfTwo is that several convolution algorithms, including those of

cuDNN, prefer input and output widths of two [105], which are feasible with the policy. Note that

undivided is used for debugging purposes only.

Implementation details

Figure 3.4 shows the software stack of a deep learning framework using µ-cuDNN. Since the C language

is used for the cuDNN interface, and many frameworks are implemented in C or C++, µ-cuDNN is

inserted between these and being compiled as part of the framework. Users usually use Python to

build DNN models on top of a framework, and thus µ-cuDNN is used transparently.

Figure 3.5 shows the workflow of µ-cuDNN. When the framework tries to retrieve the algorithm

for each layer, µ-cuDNN intercepts the architecture information and workspace limit of the layer and

then calculates the optimal micro-batch combinations by invoking its optimizer internally. After that,

µ-cuDNN returns the workspace size and a dummy algorithm ID, but this ID is ignored when cuDNN

Chapter 3. Automatic optimization of computational kernels 41

ILP Optimizer

Dynamic
Programming

Optimizer

UcudnnConvolution*

DL Framework µ-cuDNN

for(i = 1..L) {
cudnnGetConvolution*Algorithm(· · ·);
cudaMalloc(&ws[i], · · ·);

}
// Training loop
for(· · ·) {
for(i = 1..L)
cudnnConvolution*(· · · , ws[i], · · ·);

}

Metadata

WS size (WR)
Zero WS size (WD)

Metadata
WS (WR)

In-memory

optimization

result cache

Workspace (WR)

w
s
[
1
]

M
Workspace (WD)

w
s
[
1
]

w
s
[
2
]

..
.

M

Figure 3.5: Overview of µ-cuDNN. µ-cuDNN optimizes micro-batch sizes and internally calls
cuDNN functions, with either a per-layer workspace (WR) or a part of a global workspace (WD) of
a size limit M .

Figure 3.6: An example code to perform convolution with µ-cuDNN. µ-cuDNN is enabled by
replacing the cudnnHandle t handle type with UcudnnHandle t.

1 // --- u-cuDNN header file ---
2 cudnnStatus_t cudnnGetConvolution#Algorithm(UcudnnHandle_t cudnn , ...) {
3 return UcudnnGetConvolution#Algorithm(cudnn , ...);
4 }
5 // ---------------------------
6
7 UcudnnHandle t cudnn;
8 cudnnCreate (&cudnn);
9

10 // Input , output , weights , and convolution descriptors
11 auto xDesc ,yDesc ,wDesc ,convDesc = ...;
12
13 auto algo = cudnnGetConvolution#Algorithm(cudnn , xDesc , WS_LIMIT , ...);
14 size_t wsSize = cudnnGetConvolution#WorkspaceSize(cudnn , xDesc , algo , ...);
15 void *ws;
16 cudaMalloc (&ws , wsSize);
17
18 // Training loop
19 while(true) {
20 cudnnConvolution #(cudnn , xDesc , ws , ...);
21 }

is called at the time of training but performs convolution using its internal cached configuration.

Figure 3.6 shows an example code to replace cuDNN with µ-cuDNN. µ-cuDNN defines its handle

type (UcudnnHandle t) and overloads a part of cuDNN functions that are related to convolutional

layers with it to intercept the control flow. Users can introduce µ-cuDNN to their deep learning

framework by replacing cuDNN’s handle type with that of µ-cuDNN. For other cuDNN functions,

µ-cuDNN implements a cast function between their handle types to just call the cuDNN functions

with a µ-cuDNN handle.

3.2.2 Performance analysis on cuDNN kernels using DeepBench

In this section, we investigate the convolution performance of NVIDIA GPUs from various aspects.

We use the DeepBench benchmark suite [58] to test convolutional layers from a wide variety of CNNs

for different tasks, such as ResNet [65] and Deep Speech [14]. We investigate the computational

performance of various algorithms, layer architectures, and computational precisions. We show that

µ-cuDNN’s algorithm can be used for more general optimization than just optimizing on a limited

Chapter 3. Automatic optimization of computational kernels 42

workspace size.

DeepBench

DeepBench is a set of benchmarks that collects various computational and communication kernels that

appeared in DNNs. While many other benchmarks [106, 107, 108] are based on the computational

performance of particular networks and the time to train such networks, DeepBench encompasses

various layer-wise computational kernels and communication patterns of DNNs. This is because the

computational performance of a network depends on various factors, such as how frameworks execute

their internal computational graphs. On the other hand, per-kernel evaluation can accurately assess

the computational performance of individual accelerators used for deep learning. For this reason,

DeepBench is suitable for evaluating what properties of layers a kernel library for deep learning, such

as cuDNN, performs efficiently.

Table 3.4 shows the list of convolutional layers of DeepBench. We summarize the characteristics

of each layer on a task by task basis in Table 3.5. As shown in the tables, DeepBench encompasses

convolutional layers designed for different tasks and even includes uncommon layers with anisotropic

filter sizes. Since in the master’s thesis, we have only used one or two types of CNNS for our evaluation,

and thus, its performance in general cases has not been assessed, we use this benchmark in this thesis.

In this section, we only feature some of the DeepBench kernels exhibiting characteristic behavior for

cuDNN. We show all experimental results using all DeepBench convolutional layers on three different

GPUs in Appendix A.

Figure 3.7a shows an example where µ-cuDNN works well even for a GPU with Tensor Cores [49].

In cuDNN, not all algorithms are necessarily available for all computational accuracies; in these layers,

only IMPLICIT PRECOMP GEMM and WINOGRAD NONFUSED support Tensor Cores, and comparing Figure

3.7a and Figure 3.7b, we can see that we cannot use them if the workspace limit is less than 64 MiB.

On the other hand, µ-cuDNN can use these algorithms with more than half of the 64 MiB workspace,

in the same principle as described in Section 3.3. This result implies that µ-cuDNN’s assumption

that the division of workspace usage results in faster convolution still holds on such GPUs using the

specialized units.

3.2.3 Micro-batching with mixed-precision

In this section, we investigate cuDNN’s convolution performance with different numerical precisions.

In cuDNN, users can separately specify the data type for holding the input, output, and weight tensors

(or their derivatives) and the data type used for the operation (Table 3.6). The configuration for using

only the half or float data type is called TRUE HALF or FLOAT, respectively, but using half for data store

and float for computation is also a valid combination called PSEUDO HALF. One of the advantages of

using PSEUDO HALF is that convolution algorithms for single-precision that have been implemented in

Chapter 3. Automatic optimization of computational kernels 43

Table 3.4: The convolutional layers of DeepBench.

id source W H Cin N Cout kernelw kernelh padw padh stridew strideh
1 DeepSpeech 700 161 1 4 32 20 5 0 0 2 2
2 DeepSpeech 700 161 1 8 32 20 5 0 0 2 2
3 DeepSpeech 700 161 1 16 32 20 5 0 0 2 2
4 DeepSpeech 700 161 1 32 32 20 5 0 0 2 2
5 DeepSpeech 341 79 32 4 32 10 5 0 0 2 2
6 DeepSpeech 341 79 32 8 32 10 5 0 0 2 2
7 DeepSpeech 341 79 32 16 32 10 5 0 0 2 2
8 DeepSpeech 341 79 32 32 32 10 5 0 0 2 2
9 OCR 480 48 1 16 16 3 3 1 1 1 1
10 OCR 240 24 16 16 32 3 3 1 1 1 1
11 OCR 120 12 32 16 64 3 3 1 1 1 1
12 OCR 60 6 64 16 128 3 3 1 1 1 1
13 Face Recognition 108 108 3 8 64 3 3 1 1 2 2
14 Face Recognition 54 54 64 8 64 3 3 1 1 1 1
15 Face Recognition 27 27 128 8 128 3 3 1 1 1 1
16 Face Recognition 14 14 128 8 256 3 3 1 1 1 1
17 Face Recognition 7 7 256 8 512 3 3 1 1 1 1
18 Vision 224 224 3 8 64 3 3 1 1 1 1
19 Vision 112 112 64 8 128 3 3 1 1 1 1
20 Vision 56 56 128 8 256 3 3 1 1 1 1
21 Vision 28 28 256 8 512 3 3 1 1 1 1
22 Vision 14 14 512 8 512 3 3 1 1 1 1
23 Vision 7 7 512 8 512 3 3 1 1 1 1
24 Vision 224 224 3 16 64 3 3 1 1 1 1
25 Vision 112 112 64 16 128 3 3 1 1 1 1
26 Vision 56 56 128 16 256 3 3 1 1 1 1
27 Vision 28 28 256 16 512 3 3 1 1 1 1
28 Vision 14 14 512 16 512 3 3 1 1 1 1
29 Vision 7 7 512 16 512 3 3 1 1 1 1
30 Vision 224 224 3 16 64 7 7 3 3 2 2
31 Vision 28 28 192 16 32 5 5 2 2 1 1
32 Vision 28 28 192 16 64 1 1 0 0 1 1
33 Vision 14 14 512 16 48 5 5 2 2 1 1
34 Vision 14 14 512 16 192 1 1 0 0 1 1
35 Vision 7 7 832 16 256 1 1 0 0 1 1
36 Vision 7 7 832 16 128 5 5 2 2 1 1
37 Face Recognition 56 56 64 8 64 3 3 1 1 1 1
38 Face Recognition 56 56 64 8 256 1 1 0 0 2 2
39 Face Recognition 28 28 128 8 128 3 3 1 1 1 1
40 Face Recognition 28 28 128 8 512 1 1 0 0 2 2
41 Face Recognition 14 14 256 8 256 1 1 0 0 1 1
42 Face Recognition 14 14 256 8 256 3 3 1 1 1 1
43 Face Recognition 14 14 256 8 1024 1 1 0 0 2 2
44 Face Recognition 7 7 512 8 512 1 1 0 0 1 1
45 Face Recognition 7 7 2048 8 512 1 1 3 3 2 2
46 Face Recognition 56 56 64 16 64 3 3 1 1 1 1
47 Face Recognition 56 56 64 16 256 1 1 0 0 2 2
48 Face Recognition 28 28 128 16 128 3 3 1 1 1 1
49 Face Recognition 28 28 128 16 512 1 1 0 0 2 2
50 Face Recognition 14 14 256 16 256 1 1 0 0 1 1
51 Face Recognition 14 14 256 16 256 3 3 1 1 1 1
52 Face Recognition 14 14 256 16 1024 1 1 0 0 2 2
53 Face Recognition 7 7 512 16 512 1 1 0 0 1 1
54 Face Recognition 7 7 2048 16 512 1 1 3 3 2 2
55 Speaker ID 700 161 1 16 64 5 5 1 1 2 2
56 Speaker ID 350 80 64 16 64 3 3 1 1 1 1
57 Speaker ID 350 80 64 16 128 5 5 1 1 2 2
58 Speaker ID 175 40 128 16 128 3 3 1 1 1 1
59 Speaker ID 175 40 128 16 256 5 5 1 1 2 2
60 Speaker ID 84 20 256 16 256 3 3 1 1 1 1
61 Speaker ID 84 20 256 16 512 5 5 1 1 2 2
62 Speaker ID 42 10 512 16 512 3 3 1 1 1 1
63 Resnet 112 112 64 8 64 1 1 0 0 1 1
64 Resnet 56 56 64 8 256 1 1 0 0 1 1
65 Resnet 56 56 256 8 64 1 1 0 0 1 1
66 Resnet 56 56 256 8 128 1 1 0 0 2 2
67 Resnet 28 28 128 8 512 1 1 0 0 1 1
68 Resnet 28 28 512 8 128 1 1 0 0 1 1
69 Resnet 28 28 512 8 256 1 1 0 0 2 2
70 Resnet 14 14 256 8 1024 1 1 0 0 1 1
71 Resnet 28 28 512 8 1024 1 1 0 0 2 2
72 Resnet 14 14 1024 8 256 1 1 0 0 1 1
73 Resnet 14 14 256 8 1024 1 1 0 0 1 1
74 Resnet 14 14 1024 8 512 1 1 0 0 2 2
75 Resnet 7 7 512 8 512 3 3 1 1 1 1
76 Resnet 7 7 512 8 2048 1 1 0 0 1 1
77 Resnet 14 14 1024 8 2048 1 1 0 0 2 2
78 Resnet 7 7 2048 8 512 1 1 0 0 1 1
79 Resnet 112 112 64 16 64 1 1 0 0 1 1
80 Resnet 56 56 64 16 256 1 1 0 0 1 1
81 Resnet 56 56 256 16 64 1 1 0 0 1 1
82 Resnet 56 56 256 16 128 1 1 0 0 2 2
83 Resnet 28 28 128 16 512 1 1 0 0 1 1
84 Resnet 28 28 512 16 128 1 1 0 0 1 1
85 Resnet 28 28 512 16 256 1 1 0 0 2 2
86 Resnet 14 14 256 16 1024 1 1 0 0 1 1
87 Resnet 28 28 512 16 1024 1 1 0 0 2 2
88 Resnet 14 14 1024 16 256 1 1 0 0 1 1
89 Resnet 14 14 256 16 1024 1 1 0 0 1 1
90 Resnet 14 14 1024 16 512 1 1 0 0 2 2
91 Resnet 7 7 512 16 512 3 3 1 1 1 1
92 Resnet 7 7 512 16 2048 1 1 0 0 1 1
93 Resnet 14 14 1024 16 2048 1 1 0 0 2 2
94 Resnet 7 7 2048 16 512 1 1 0 0 1 1

Chapter 3. Automatic optimization of computational kernels 44

T
im

e
no

rm
al

iz
ed

 b
y

IM
P

LI
C

IT
_G

E
M

M

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

0
32

64
96

12
8

16
0

19
2

W
or

ks
pa

ce
 s

iz
e

[M
iB

]

8
(D

ee
pS

pe
ec

h,
 1

0x
5)

20
 (

V
is

io
n,

 3
x3

)

87
 (

R
es

ne
t,

1x
1)

IMPLICIT_GEMM
IMPLICIT_PRECOMP_GEMM
GEMM
DIRECT
FFT
FFT_TILING
WINOGRAD
WINOGRAD_NONFUSED
u−cuDNN
(FP16)
(FP16 with Tensor Cores)
(PSEUDO_HALF)

(a) 64 MiB workspace

T
im

e
no

rm
al

iz
ed

 b
y

IM
P

LI
C

IT
_G

E
M

M

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

0
10

24
20

48
30

72
40

96
51

20
61

44

W
or

ks
pa

ce
 s

iz
e

[M
iB

]

8
(D

ee
pS

pe
ec

h,
 1

0x
5)

20
 (

V
is

io
n,

 3
x3

)

87
 (

R
es

ne
t,

1x
1)

IMPLICIT_GEMM
IMPLICIT_PRECOMP_GEMM
GEMM
DIRECT
FFT
FFT_TILING
WINOGRAD
WINOGRAD_NONFUSED
u−cuDNN
(FP16)
(FP16 with Tensor Cores)
(PSEUDO_HALF)

(b) 2048 MiB workspace

Figure 3.7: Convolution performance of DeepBench convolutional layers on V100-SXM2.
Time and required workspace sizes are shown as bars and points, respectively. Time is normalized by
the time of the single-precision IMPLICIT GEMM algorithm. Each label shows its ID number, original
task, and filter size listed in Table 3.5. For bars where their normalized time exceeds the vertical axis,
we omit the top ends and show the time in the text. We show a cross on each bar that uses the
PSEUDO HALF configuration. We omit a µ-cuDNN bar when it fails to find a faster configuration than
other existing algorithms.

Chapter 3. Automatic optimization of computational kernels 45

Table 3.5: Number of convolutional layers in DeepBench.

Network type Kernel size Batch size # of layers
DeepSpeech 10× 5, 20× 5 4, 8, 16, 32 8
OCR 3× 3 16 4
Face Recognition 1× 1, 3× 3 8, 16 23
Vision 1× 1, 3× 3, 5× 5, 7× 7 8, 16 19
Speaker ID 3× 3, 5× 5 16 8
ResNet 1× 1, 3× 3 8, 16 32

Table 3.6: Available data types in cuDNN’s convolution.

Configuration Tensors’ Data Type Compute Type Algorithms
TRUE HALF HALF HALF GEMM, Winograd
PSEUDO HALF HALF FLOAT GEMM, Winograd, FFT
FLOAT FLOAT FLOAT GEMM, Winograd, FFT

cuDNN can be used. Frameworks rarely switch between these configurations adaptively, and generally,

only one of them is used at a time (Table 3.7).

We found several cases where PSEUDO HALF is competitive or even faster than other configurations

with a sufficient workspace limit (Figure 3.8, Figure 3.9, Figure 3.10). There are several interesting

observations, as follows:

• Figure 3.8 is a typical case that PSEUDO HALF works better by using an algorithm not implemented

in TRUE HALF (regardless of whether Tensor Cores are available or not.) However, even if an

algorithm is implemented in both configurations, there are cases where PSEUDO HALF works better

(Figure 3.10). Note that the source code of cuDNN is not publicly available, so each algorithm’s

details, such as blocking sizes, are not necessarily identical for different data type configurations.

• We can get additional performance gains by using PSEUDO HALF not only for uncommon filter

sizes that may not be very well optimized (Figure 3.9), but also for common filters such as 3× 3

(Figure 3.10).

• Since the workspace limit is set large enough in all cases, incorporating PSEUDO HALF’s algorithms

as choices would allow µ-cuDNN to make performance improvements that cannot be solved by

just increasing the workspace limit.

Table 3.7: cuDNN runtime parameters of various deep learning frameworks.

Framework Version cudnnConvolutionMode t cudnnTensorFormat t
Compute type for
HALF Tensors

Caffe 1.0 CROSS CORRELATION TENSOR NCHW N/A
Caffe2 v0.8.1 CROSS CORRELATION TENSOR N[HWC,CHW] TRUE HALF

TensorFlow v1.7.0 CROSS CORRELATION TENSOR NCHW[VECT C] {TRUE,PSEUDO} HALF
Chainer (CuPy) v2.5.0 CROSS CORRELATION TENSOR NCHW PSEUDO HALF

Chapter 3. Automatic optimization of computational kernels 46

T
im

e
no

rm
al

iz
ed

 b
y

IM
P

LI
C

IT
_G

E
M

M

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

0
10

24
20

48
30

72
40

96
51

20
61

44

W
or

ks
pa

ce
 s

iz
e

[M
iB

]

31
 (

V
is

io
n,

 5
x5

)

IMPLICIT_GEMM
IMPLICIT_PRECOMP_GEMM
GEMM
DIRECT
FFT
FFT_TILING
WINOGRAD
WINOGRAD_NONFUSED
u−cuDNN
(FP16)
(FP16 with Tensor Cores)
(PSEUDO_HALF)

(a) P100-SXM2
T

im
e

no
rm

al
iz

ed
 b

y
IM

P
LI

C
IT

_G
E

M
M

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

0
10

24
20

48
30

72
40

96
51

20
61

44

W
or

ks
pa

ce
 s

iz
e

[M
iB

]

31
 (

V
is

io
n,

 5
x5

)

IMPLICIT_GEMM
IMPLICIT_PRECOMP_GEMM
GEMM
DIRECT
FFT
FFT_TILING
WINOGRAD
WINOGRAD_NONFUSED
u−cuDNN
(FP16)
(FP16 with Tensor Cores)
(PSEUDO_HALF)

(b) V100-SXM2

Figure 3.8: Convolution performance of a DeepBench’s 5× 5 convolutional layer. We use a
workspace size of 2 GiB.

T
im

e
no

rm
al

iz
ed

 b
y

IM
P

LI
C

IT
_G

E
M

M

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

0
10

24
20

48
30

72
40

96
51

20
61

44

W
or

ks
pa

ce
 s

iz
e

[M
iB

]

1
(D

ee
pS

pe
ec

h,
 2

0x
5)

2
(D

ee
pS

pe
ec

h,
 2

0x
5)

3
(D

ee
pS

pe
ec

h,
 2

0x
5)

4
(D

ee
pS

pe
ec

h,
 2

0x
5)

IMPLICIT_GEMM
IMPLICIT_PRECOMP_GEMM
GEMM
DIRECT
FFT
FFT_TILING
WINOGRAD
WINOGRAD_NONFUSED
u−cuDNN
(FP16)
(FP16 with Tensor Cores)
(PSEUDO_HALF)

Figure 3.9: Convolution performance of DeepBench’s 20× 5 convolutional layers on V100-
SXM2. We use a workspace size of 2 GiB.

Chapter 3. Automatic optimization of computational kernels 47

T
im

e
no

rm
al

iz
ed

 b
y

IM
P

LI
C

IT
_G

E
M

M

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
96

4.
16

4.
50

4.
51

3.
46

4.
03

0
10

24
20

48
30

72
40

96
51

20
61

44

W
or

ks
pa

ce
 s

iz
e

[M
iB

]

18
 (

V
is

io
n,

 3
x3

)

24
 (

V
is

io
n,

 3
x3

)

30
 (

V
is

io
n,

 7
x7

)

IMPLICIT_GEMM
IMPLICIT_PRECOMP_GEMM
GEMM
DIRECT
FFT
FFT_TILING
WINOGRAD
WINOGRAD_NONFUSED
u−cuDNN
(FP16)
(FP16 with Tensor Cores)
(PSEUDO_HALF)

Figure 3.10: Convolution performance of DeepBench’s 3× 3 and 7× 7 convolutional layers
on V100-SXM2. We use a workspace size of 2 GiB.

Therefore, we extend µ-cuDNN so that when TRUE HALF is specified by users µ-cuDNN ignores it

but uses both the TRUE HALF and PSEUDO HALF algorithms instead. This change is conservative because

this feature does not implicitly degrade calculation precision. Besides, if FLOAT is specified, we use

FLOAT as before because using half-precision arithmetic may cause unexpected calculation errors and

rounding.

3.2.4 High-level optimization with µ-cuDNN

In this section, we introduce µ-cuDNN’s Python interface. Since the convolutional layers’ parameters

(such as the kernel shape and input and output tensor shapes) are passed through µ-cuDNN, the

interface can simplify the analysis and optimization of convolutional layers, regardless of the underlying

deep learning framework. Indeed, since almost all deep learning frameworks exploit cuDNN, this

interface provides widely-applicable utilities to end-users. This feature is similar to the cuDNN’s API

logging feature, but cuDNN only records the order and arguments of its function calls and is intended

to be used for debugging, so users cannot use it for performance evaluation.

In this interface, µ-cuDNN first transparently stores benchmark results, coupled with layer

parameters, in an SQLite file-based database (1. and 2. of Figure 3.4). This database contains a

table of performance metrics of the cuDNN’s benchmarking functions for specific GPUs, a table of

layer IDs, and corresponding layer parameters. Then, the Python interface loads the results from the

Chapter 3. Automatic optimization of computational kernels 48

Figure 3.11: The µ-cuDNN interface with layer IDs.

1 UcudnnHandle t cudnn;
2 cudnnCreate (&cudnn);
3
4 // Input , output , weights , and convolution descriptors
5 auto xDesc ,yDesc ,wDesc ,convDesc = ...;
6
7 auto algo = cudnnGetConvolution#Algorithm(cudnn , ..., layer id);
8 size_t wsSize = cudnnGetConvolution#WorkspaceSize(cudnn , ..., layer id);
9 void *ws;

10 cudaMalloc (&ws , wsSize);
11
12 // Training loop
13 while(true) {
14 cudnnConvolution #(cudnn , xDesc , ws , ..., layer id);
15 }

database, without involving the framework itself (3.). This scheme decouples framework-specific

codes from the analysis process itself. This file-based caching is also beneficial to eliminate repetition

of benchmarking for the optimization scheme described in Section 3.2.1.

One concern when extracting network parameters from the information passed through the cuDNN

interface is that it does not provide unique identifiers for layers, such as its names. To solve this

problem, µ-cuDNN requires an extra “layer ID” argument to be passed to the µ-cuDNN functions

(Figure 3.11). This requirement can easily be fulfilled in most frameworks, as frameworks usually keep

internal layer identifiers internally, as shown in the figure.

3.3 Evaluation

We evaluate the performance of µ-cuDNN on three different GPU architectures, NVIDIA Tesla K80

[55], P100-SXM2 [56], and V100-SXM2 [49] on the TSUBAME-KFC/DL, TSUBAME 3.0

supercomputers, and an NVIDIA DGX-1, respectively (Table 3.8). We also use a Tesla K20Xm and

GTX 750Ti on TSUBAME-KFC/DL for our heterogeneous cluster optimization case-study (Section

3.3.3). Note that a K80 GPU contains two distinct GK210 chips, and we show performance results of

a single GK210 as “K80”. We use cuDNN 6.0 and 7.1.2 if available. The full hardware/software

specifications on the three supercomputers are shown in Table 3.8.

Table 3.9 summarizes the experimental configurations we used. Throughout our evaluation,

unless explicitly mentioned, we use the single-precision floating-point format and store tensors in the

(N,H,C,W) storage order, which is the most common configuration in deep learning applications.

We use three different deep learning frameworks for evaluations: Caffe [38], its NVIDIA branch

(NVCaffe) [40], and TensorFlow [33]. We use a built-in benchmarking command (Caffe’s “time”

command) or an official benchmarking script (from TensorFlow model repository [109]) to measure

the execution time of forward and backward passes and show the sum of forward and backward

passes together. In the following sections, unless explicitly mentioned, each forward-backward pass is

measured 50 times on both Caffe and TensorFlow[]. For CNNs, we use AlexNet [45], ResNet [65],

Chapter 3. Automatic optimization of computational kernels 49

Table 3.8: Evaluation environment.

TSUBAME-KFC/DL TSUBAME 3.0 NVIDIA DGX-1
CPU

E5-2620 × 2 E5-2680 v4 × 2 E5-2698 v4 × 2
(Intel Xeon)

GPU
(NVIDIA
Tesla)

K80 × 4 P100-SXM2 × 4 V100-SXM2 × 8
- 8.73 SP TFlop/s - 10.6 SP TFlop/s - 15.7 SP TFlop/s
- 24 GiB GDDR5 - 16 GiB HBM2 - 16 GiB HBM2
(480 GiB/s BW) (732 GiB/s BW) (900 GiB/s BW)

SUSE Linux
OS CentOS 7.3.1611 Enterprise Server Ubuntu 16.04.3

12 SP2
CUDA 8.0.61 / 9.1.85 8.0.44 9.0.176
cuDNN 6.0 / 7.1.2 6.0 7.1.2
GLPK 4.63 4.63 N/A

Caffe 1.0 1.0
NVCaffe

v0.16.5 [40]
TensorFlow N/A 1.4.1 N/A

Table 3.9: Evaluation settings.

Workspace Neural
GPU(s)

limit [MiB] Architecture
Micro-benchmark 64 DeepBench K80, P100, V100
Caffe 8, 64, 512 AlexNet, ResNet K80, P100, V100
TensorFlow 64 AlexNet, ResNet, DenseNet P100
Hetero. cluster opt. 64 ResNet K80, K20Xm, 750Ti

and DenseNet [66]. For evaluations on Caffe, we use the AlexNet model defined in Caffe, ResNet-18,

and ResNet-50 from NVCaffe. We modify data prefetching size from 4 to 16 for AlexNet and

ResNet-18 for TSUBAME 3.0 to hide the I/O latency sufficiently. For evaluations on TensorFlow, we

use the definitions in an official benchmarking repository [110]. We also use a DenseNet model

definition for Caffe [111].

As for workspace limit, unless explicitly mentioned, we use 8 MiB and 64 MiB for each layer, which

are the default workspace size limits of Caffe and Caffe2 [39], respectively. Also, we use 512 MiB of

workspace per layer to investigate the case where sufficiently large workspace is provided. To shorten

the benchmarking time, we use several GPUs on the same node with the parallel evaluation function of

µ-cuDNN, as mentioned in Section 3.2.4. Its performance database allows us to automatically collect

metrics for each computational kernel by simply calling cuDNN for different batch sizes in parallel.

Note that this measurement gives the same results as when using a single GPU.

3.3.1 DeepBench

Figure 3.12 shows the speedup of each convolutional layer against cuDNN on three different GPUs. In

this section, we use the latest version of cuDNN (7.1.2), and set the workspace limit to 64 MiB. Also,

Chapter 3. Automatic optimization of computational kernels 50

1

2

3

4

S
p

ee
d

u
p

K80 P100-SXM2 P100-SXM2
(half)

V100-SXM2 V100-SXM2
(half)

V100-SXM2
(Tensor Cores)

1×1
3×3
5×5
7×7
10×5
20×5

Figure 3.12: Relative speedups of DeepBench’s forward convolution against cuDNN. The
whiskers and the points represent minimum/maximum speedups and their means, respectively. We
use 64 MiB workspace size.

we multiply the batch size by 4 from the original size because the batch sizes defined in DeepBench

are generally smaller than the actual sizes used (e.g., its ResNet layers use 8 or 16, while many papers

use 32 [27, 65]), so increasing the batch size allows for more practical performance evaluation.

In Figure 3.12, not only µ-cuDNN accelerates the frequently-used 3 × 3 and 5 × 5 kernels for all

the GPUs, but it also achieves up to 4.54x speedup (1.60x on average) on a V100-SXM2 GPU when

the computation is done with half-precision and Tensor Cores. In such cases, µ-cuDNN adopts the

PSEUDO HALF configuration for 65 kernels (69% of the kernels), and TRUE HALF for the others. This

observation demonstrates that µ-cuDNN successfully avoids new implementations that are potentially

inefficient. Besides, Tensor Core-enabled convolutions tend to consume a large amount of memory

(up to 437.73 MiB, 64.6 MiB on average on V100-SXM2) since GEMM-based convolution is more

efficient but require a large workspace to rearrange the elements of an input tensor. This workspace

requirement is, however, naturally resolved by µ-cuDNN’s loop splitting algorithm. More importantly,

µ-cuDNN can accelerate 3× 3 kernels in half-precision, which are usually adopted in recent CNNs, by

1.16x on P100-SXM2 and 1.73x on V100-SXM2, on average, respectively.

3.3.2 CNN performance

We evaluate the performance of our library by benchmarking various CNNs on two different

frameworks, Caffe and TensorFlow. Since CNN computation involves not only convolution but also

other layers of computation (such as pooling and activation functions) and inter-GPU

communication to gradient synchronization, evaluating deep learning frameworks allow us to assess

how effective the acceleration of µ-cuDNN is in actual training. Note that a part of our experiments

(Figure 3.13, Figure 3.14a, and Figure 3.14b) has been shown in my master’s thesis [46].

Figure 3.13 shows the execution time of forward convolution (cudnnConvolutionForward) of the

“conv2” layer of AlexNet on P100-SXM2. When the workspace size limit is 64 MiB, and the mini-batch

is not divided, the GEMM-based algorithm is selected by cuDNN, requiring only 4.3 KiB for workspace.

Chapter 3. Automatic optimization of computational kernels 51

a

p

u

Time [ms]

0 1 2 3 4 5 6 7

IMPLICIT PRECOMP GEMM

FFT TILING

WINOGRAD NONFUSED32 32 48 48 48 48

32 32 32 32 32 32 32 32

256

Figure 3.13: Benchmark results of forward convolution of AlexNet’s “conv2” layer on P100-
SXM2. We use 64 MiB workspace size and a mini-batch size of 256. Numbers on each rectangle
represent micro-batch sizes.

On the other hand, FFT-based convolution is more efficient, although it requires an excessive amount

of workspace (213 MiB) to store the images and filters in the frequency domain. µ-cuDNN with the

powerOfTwo option successfully enables the use of the FFT-based algorithm within the same workspace

constraint, using 48.9 MiB over micro-batches of size 32. Besides, the all option enables µ-cuDNN to

use Winograd’s convolution algorithm, an algorithm that is especially efficient for small convolution

kernels, achieving 2.33x speedup over undivided in total. Note that in our work, we assume that CNNs

are robust against numerical errors introduced by changing a convolution algorithm, as supported by

previous work [71].

Figure 3.14 shows the timing breakdowns of Caffe on AlexNet on three different GPUs. We only

highlight convolutional layers since the performance of other layer types (e.g., pooling) are not changed

by our library.

One important observation from Figure 3.14 is that the performance improvement of µ-cuDNN over

cuDNN (which is equivalent to undivided) is significant when the moderate amount of workspace is

set by users. For instance, if the workspace size per kernel is 64 MiB, µ-cuDNN with the all option

achieves 1.81x speedup with respect to the entire iteration and 2.10x with respect to convolutions

alone than undivided on K80. This is because µ-cuDNN successfully enables cuDNN to use faster

algorithms, as in Figure 3.13. Also, a similar speedup is achieved on P100-SXM2 (1.40x for the entire

iteration, and 1.63x for convolutions alone) and on V100-SXM2 (1.45x for the entire iteration, and

1.60x for convolutions alone).

On the other hand, when the workspace size is limited to 8 MiB, µ-cuDNN cannot attain any

performance improvement because the workspace is too small to utilize even if WR’s per-layer

workspace allocation scheme is applied. Indeed, on P100-SXM2, only one kernel of all option

increases the workspace’s utilization over undivided. On the contrary, when the workspace size limit

is too large (512 MiB) on K80 and P100-SXM2 GPUs, the performance difference between cuDNN

and µ-cuDNN is negligible. This is because there is no benefit to divide the mini-batch, as the best

algorithms for the layers fit into the workspace constraint. However, this workspace limit consumes a

considerable amount of workspace memory. In contrast, the undivided option consumes 2.87 GiB in

Chapter 3. Automatic optimization of computational kernels 52

u p a u p a u p a

T
im

e
[m

s]

0

200

400

600

800

1000

(8 MiB) (64 MiB) (512 MiB)

etc.
conv5
conv4
conv3
conv2
conv1

(a) K80

u p a u p a u p a

T
im

e
[m

s]

0

50

100

150

200

(8 MiB) (64 MiB) (512 MiB)

(b) P100-SXM2

u p a u p a u p a

T
im

e
[m

s]

0

20

40

60

80

100

120

140

(8 MiB) (64 MiB) (512 MiB)

(c) V100-SXM2

Figure 3.14: Benchmark results of AlexNet on three different GPUs. We use workspace
sizes of 8, 64, and 512 MiB. The labels “u”, “p” and “a” represent undivided, powerOfTwo, and all,
respectively. We use a mini-batch size of 256.

total, all with 64 MiB limit only consumes 0.70 GiB, although with 4% overhead caused by choice of

micro-batch algorithms.

From the viewpoint of the time to optimization, including kernel benchmarking and solving DP,

powerOfTwo considerably outperforms all. In particular, with 64 MiB workspace on P100-SXM2, all

takes 34.16 s, and powerOfTwo takes 3.82 s. This result and Figure 3.14 imply that powerOfTwo is

a reasonable choice to test the computation efficiency of new CNNs quickly. Note that we can reuse

the same benchmarking results for different hyperparameters to save time since the hyperparameters

do not affect the computational performance of the convolution operations; indeed, µ-cuDNN has a

function to reuse already recorded kernel time as we explained in Section 3.2.4. Generally, the overhead

of µ-cuDNN is negligible with respect to the entire training time since the benchmarking pass runs

only once, whereas the forward and backward passes are repeated hundreds of thousands of times.

TensorFlow

Figure 3.15 shows the µ-cuDNN performance of the second version of AlexNet [88], ResNet-50, and

DenseNet-40 on P100-SXM2. We summarize the speedups in Table 3.10. We use a mini-batch size of

256 for AlexNet and DenseNet, and 64 for ResNet-50.

We set the (input dimensions, output dimensions) to (3×224×224, 1000) for AlexNet and ResNet-

50, or (3 × 32 × 32, 10) for DenseNet-40, which are used for training the ILSVRC2012 dataset [3] or

the CIFAR-10 dataset [2] , respectively. We also set k of DenseNet-40, the number of feature maps of

each convolutional layer, to 40 to obtain better computational efficiency.

Since TensorFlow 1.4.1 does not provide any workspace limits to µ-cuDNN via cuDNN’s

benchmarking functions before actual convolutions, we manually provide a workspace limit of 64 MiB

to µ-cuDNN. µ-cuDNN achieves 1.24x speedup for AlexNet, 1.05x for ResNet-50, and 1.11x for

DenseNet. Comparing µ-cuDNN’s speedups on Caffe and TensorFlow for AlexNet on P100-SXM2

Chapter 3. Automatic optimization of computational kernels 53

u p a u p a u p a

T
im

e
[m

s]

0

50

100

150

200

250

(8 MiB) (64 MiB) (512 MiB)

undivided

powerOfTwo

all

(a) AlexNet

u p a u p a u p a

T
im

e
[m

s]

0

200

400

600

800

(8 MiB) (64 MiB) (512 MiB)

(b) DenseNet-40

u p a u p a u p a

T
im

e
[m

s]

0

100

200

300

400

(8 MiB) (64 MiB) (512 MiB)

(c) ResNet-50

Figure 3.15: TensorFlow benchmark results on P100-SXM2 GPU. We use a mini-batch size
of 256 for AlexNet and DenseNet-40, and 64 for ResNet-50.

Table 3.10: TensorFlow benchmark results on P100-SXM2 GPU.

Policy
Time [ms] (Speedup)

AlexNet ResNet-50 DenseNet
undivided 229.0 318.0 639.0
powerOfTwo 186.0 (1.23x) 302.0 (1.05x) 579.0 (1.10x)

all 185.0 (1.24x) 302.0 (1.05x) 574.0 (1.11x)

(Figure 3.14b and Figure 3.15a respectively), we can see that µ-cuDNN reduces almost the same time

(about 50ms) with a 64 MiB workspace. These results prove that µ-cuDNN has good performance

portability between different deep learning frameworks only if the framework depends on cuDNN.

Note that we do not expect the same speedups between Caffe (Figure 3.14) and TensorFlow (Table

3.10); this is because TensorFlow uses different parameters that µ-cuDNN cannot control (such as

padding widths), and a considerable part of the time is spent on non-convolutional computation,

which is implemented differently in each framework.

3.3.3 Case study: Heterogeneous cluster optimization

As a part of the Python interface, we provide a function to minimize training time by assigning

different micro-batch sizes to heterogeneous GPUs (Figure 3.16). The motivation behind this function

is that researchers tend to have access to clusters of heterogeneous accelerators, and highly utilizing

such clusters may speed up training considerably. In Figure 3.16, the function in line 8 provides

an uneven batch size for each GPU so that the time to perform forward and backward passes of

synchronous SGD becomes uniform among GPUs, increasing load balancing among GPUs. Since

gradient synchronization is typically overlapped with computation, especially in large batch training

[28, 29, 31], we omit the extra communication time from the objective, formulating the problem as an

Integer Linear Programming (ILP) problem as follows:

Chapter 3. Automatic optimization of computational kernels 54

Figure 3.16: Sample code for heterogeneous cluster optimization.

1 import ucudnn
2 import framework as f
3
4 mb = 256
5 gpus = ["K80", "K80", "K20Xm"]
6 f.CNN(gpus=gpus , minibatch =[mb, mb , ...]).run_once ()
7 f.CNN(gpus=gpus ,
8 minibatch=ucudnn.best_batch_size(mb, gpus)).run()

min max
g∈G

{∑
n∈B

tg,nxg,n

}
subject to

∑
n∈B

xg,n ≤ 1 (∀g ∈ G)∑
g∈G

∑
n∈B

nxg,n = N

xg,n ∈ {0, 1} (∀g ∈ G,∀n ∈ B),

where G is a set of GPUs, B is a set of available batch sizes for each GPUs, N is the mini-batch size, and

tg,n is time to perform forward and backward passes on GPU g with a batch size of n. µ-cuDNN uses

a micro-batch size of n on GPU g if and only if xg,n = 1. It is reasonable to restrict n to powerOfTwo

to reduce the number of configurations. If
∑

n∈B xg,n = 0 for a given GPU g, the ILP failed to find a

fast configuration with g and it will not participate in training. We use the GLPK ILP solver [112] to

solve the problem.

We demonstrate the µ-cuDNN Python interface by combining three different GPUs from the

TSUBAME-KFC/DL supercomputer: Tesla K20Xm, Tesla K80, and GTX 750Ti (Table 3.11). The

K20Xm and K80 are Kepler generation GPUs, whereas the 750Ti is a Maxwell generation GPU, not

intended for high-performance computing.

We first run Caffe’s “time” command on each node to collect performance metrics to our database.

Since we employ a file-based database, it is easily collected on a Networked File System (NFS). Then,

we use µ-cuDNN’s optimization function in Python, which is explained in Section 3.2.4.

Figure 3.17 shows the estimated time of forward-backward passes of ResNet-18 on heterogeneous

GPUs. By combining two GK210 chips of a K80 GPU and a K20Xm GPU, forward-backward passes

become 2.12x faster than that of a single GK210. When a K20Xm and a K80 are combined, µ-cuDNN

assigns uneven batch sizes, 8 and {12, 12} respectively. In addition, if a user sets even batch sizes

for GPUs, 750Ti and K20Xm for example, the 750Ti will become a bottleneck (168.43 ms vs 83.03

ms), and thus, it will incur a slowdown of 1.37x than µ-cuDNN. Furthermore, a combination of all the

GPUs yields 2.20x speedup against the baseline. Note that the time to perform MPI all-reduce over

MVAPICH2 2.3a with a message size of 1 MiB on 3 nodes takes 2.63 ms, which can be easily hidden by

Chapter 3. Automatic optimization of computational kernels 55

Table 3.11: GPU specification for heterogeneous cluster optimization.

FP32 TFlop/s Memory size [GiB]
Tesla K20Xm 3.95 6
Tesla K80 (GK210 × 2) 8.73 24
GTX 750Ti 1.31 2

T
im

e
[m

s]

0

100

200

300

400

750Ti K20Xm K80 750Ti
K20Xm

750Ti
K80

K20Xm
K80

K80×2
750Ti

K20Xm
K80

750Ti
K80×2

K20Xm
K80×2

750Ti
K20Xm
K80×2

334.1 ms

154.2 ms
130.8 ms 123 ms

107.2 ms
80.5 ms 70.3 ms 70.3 ms 65.9 ms 61.8 ms 59.5 ms

750Ti
K20Xm
K80

32

32 32 11 21 9 23 15 17 16 16 6 10 16 5 13 14 8 12 12 5 7 10 10

Figure 3.17: Estimated time of forward-backward passes of ResNet-18 on heterogeneous
GPUs. Numbers on each bar represent batch sizes. The objective is to minimize a maximum of
GPUs’ time, shown as dashed lines.

the computation. Therefore, this example illustrates the potential speedups by heterogeneous GPUs

for the training of a single CNN.

Chapter 4

Training 3D CNNs with

hybrid-parallelization

As we described in Section 2.2, many studies have proposed distributed algorithms for computing

deep neural networks. These algorithms are roughly classified into data-parallel training,

model-parallel training, and the combination of the two other algorithms, hybrid-parallel training.

Although these algorithms do not change the computation’s semantics, several work using

performance modeling [102, 103, 104, 113] have demonstrated that each algorithm’s computational

performance heavily depends on the target network architecture. For instance, it is proved that

convolutional neural networks for image classification tasks can be scaled to thousands of GPUs

[27, 28, 29] only with data-parallelism, due to their high computation-to-communication ratio.

Although this scaling requires increasing the mini-batch size, which affects the generalization

performance of the networks, prior studies have demonstrated that the degradation on the

performance can be mitigated by using advanced techniques such as new learning rate scheduling

[31]. Because of this, the maximum amount of parallelism for such networks has reached the

theoretical upper bound, where their generalization performance does not improve further by

increasing parallelism (i.e., the mini-batch size).

However, this technique cannot necessarily be applied to more complex networks for several

performance reasons. As we explain in Section 4.1, performing end-to-end training for complex

scientific data is recently getting a lot of attention [5, 59, 114, 115, 116, 117]. This idea has great

potential to find in-depth knowledge of scientific data without prior domain knowledge only with a

few amounts of computing resources and time. However, such DNNs can often require more

computational capability than previous conventional networks to process raw scientific data in an

end-to-end fashion. For instance, as we explain in Section 4.2.5, well-known two-dimensional CNNs

such as ResNet can be trained on a data-parallel framework, whereas the CosmoFlow network [59] is

56

Chapter 4. Training 3D CNNs with hybrid-parallelization 57

too huge in terms of memory usage to perform training with such conventional GPU frameworks. In

this case, the network cannot enjoy data-parallelism because even a single replica of the network

cannot reside even on a single GPU.

In this chapter, we choose 3D CNNs as examples of the above surrogate model types, to demonstrate

how we can accelerate training by introducing hybrid-parallelism. Specifically, we focus on spatial

partitioning due to its good affinity with high-dimensional CNNs. As we explained in Section 2.2.3,

spatial partitioning is believed to be preferable for 3D CNNs due to its nice surface-to-volume ratio, and

thus we expect that the training is accelerated without significant overhead. We use the CosmoFlow

network and the 3D U-Net [18] as the target networks, and propose an extension to the LBANN deep

learning framework [44] to fulfill high-performance hybrid-parallel training on a GPU supercomputer.

This chapter is organized as follows; in Section 4.1, we introduce the two 3D networks as our

target applications. Both of the prior work has a common performance issue that the networks have

to be scaled down due to the memory pressure issue than the original spatial resolution. Although

these studies improved the scalability or the computational efficiency for specific models, it is still

unclear that how we can accelerate high-resolution 3D CNNs by exploiting hybrid-parallelism on GPU

supercomputers and the extent how it improves the generalization performance of such networks by

using high-resolution 3D data. In Section 4.2, we explain our effort to accomplish hybrid-parallel

training on the LBANN framework. In Section 4.3, we demonstrate the computational efficiency of

our framework. We also show training results using high-resolution 5123 CosmoFlow data cubes that

are infeasible to use without hybrid-parallel deep learning frameworks.

4.1 Motivation

Recent developments in deep learning techniques have led to substituting conventional scientific

applications and simulations with DNNs, such as climate prediction [115, 116], biomedical image

analysis [6, 18], and electron microscopic analysis [5, 114, 117], and so on. In such an application, a

DNN is trained with the original problem’s input data along with the corresponding ground-truth,

which is computed by the original application. This training results in a DNN that performs the

computation that is equivalent to the original applications without explicitly knowing the underlying

domain-specific knowledge. This technique is also useful when it is unfeasible to compute the exact

solution to a given problem, but only inputs and corresponding ground-truth outputs are known; in

this scenario, the model to predict outputs are called surrogate models. From the computational

point of view, this technique is also capable of reducing the computational requirements, such as the

end-to-end latency, the memory footprint, and possibly the programming cost, to get desired

solutions. Further discussion about the future work is mentioned in Chapter 6.2.

In this section, we introduce two emerging 3D CNNs, the CosmoFlow network and the 3D U-

Net, which are challenging to train on available high-resolution 3D datasets. These networks estimate

Chapter 4. Training 3D CNNs with hybrid-parallelization 58

Table 4.1: Two different target 3D CNNs. We use the LiTS image segmentation dataset for the
3D U-Net.

Network CosmoFlow 3D U-Net
of conv.+deconv. layers 7 18

Objective Regression Segmentation
Dataset CosmoFlow LiTS
Input 4× 5123 1× 2563

Output 4 3× 2563

Min. # of V100 GPUs per sample 8 16

several cosmological parameters concerned with input 3D data or perform segmentation on given 3D

data, respectively. The networks have the domain-agnostic architecture for regression or segmentation,

and indeed, 3D U-Net has been applied to a wide range of medical image analysis problems [19, 20, 21].

However, it is also reported that the problem size, especially the 3D input size, is limited to a smaller

size than that of datasets currently widely available [18, 59]. Table 4.1 summarizes the specifications

of the two networks.

4.1.1 The CosmoFlow network

CosmoFlow [59] is one of such applications that empowers deep learning to estimate cosmological

parameters from the mass distribution of the universe. As explained by Ravanbakhsh et al. [118],

estimating such parameters play a crucial role in the cosmology domain. In the prior work, a seven-

layer CNN (the CosmoFlow network) is trained with a set of 3D data cubes (Figure 4.1) and few

types of corresponding ground-truth cosmological parameters (the CosmoFlow dataset). The name of

the project is derived from the underlying deep learning framework, TensorFlow [33]. Although the

network was originally proposed by Ravanbakhsh et al., we call the network “the CosmoFlow network”

throughout this thesis because the network is known by that name.

The network has a common CNN architecture; it has seven convolutional layers with optional

batch-normalization layers [119] and Leaky ReLU activation [62], two or three average pooling layers

at the initial stage of the network, and three fully-connected layers with dropouts [120] at the end.

The output size of the network is the same to the number of parameters to predict, which is two or

three in the prior work. Mean Absolute Error (MAE) or Mean Squared Error (MSE) is used as the

loss function, and the Adam optimizer [79] is used to train the network.

Each of the input 3D data cubes is a 3D histogram of dark matter distribution; the value of each

voxel (a discrete cell composing a 3D domain) means the number of particles in the sub-domain. The

ground-truth includes cosmological parameters to describe the matter distribution of the universe,

such as the matter density Ωm, the matter power spectrum σ8, and the spectral index Ns.

Since dozens of data samples are required to train the CNN, the authors adopted dark matter N-

body simulation to generate the synthetic dataset. They first ran the simulation with a fixed number

Chapter 4. Training 3D CNNs with hybrid-parallelization 59

Figure 4.1: Visualization of one channel of a 1283 CosmoFlow data cube. We first select voxels
whose values are more than a certain threshold, and then plot a point to each voxel in the logarithmic
scale. The ground-truth parameters of this sample is (Ω̃m, σ̃8, Ñs, H̃0) = (−0.242, 0.145,−0.489, 0.465),
where each parameter is normalized to [−1, 1].

of particles and with different random cosmological parameters in feasible uniform distribution (such

as 0.25 < Ωm < 0.35), to generate multiple possible mass distributions of the universe. Then, each

set of produced particles is histogrammed into a fixed size of 3D voxels, which is suitable to feed to

deep neural networks. However, in the prior work, the 3D histograms are split further into multiple

sub-cubes in advance of the training to make the memory footprint and the computational requirement

of the CNN practically small. When a data cube is split into multiple sub-cubes, each of the sub-cubes

inherits the ground-truth of the original cube. The original work also uses random flipping (23 = 8

ways) and rotating (3! = 6 ways) for data augmentation, which produces 48 different data samples

from one sample in total. We summarize the specifications of the datasets used in the prior work and

our work in Table 4.2.

In this work, we further increase the complexity of the input data by introducing the redshift

parameter (Figure 4.2). Redshift defines how the light that comes from distant galaxies is stretched,

and thus it affects how the universe is observed. While the prior work used redshift z = 0, the

latest CosmoFlow dataset [121] provides four different snapshots for each universe by using different

redshift parameters. These simultaneous snapshots can naturally be fed into a CNN by increasing the

first convolutional layers’ input channels, just like providing RGB images instead of grayscale images

to 2D CNNs. At the same time, the dataset also provides one additional parameter, the Hubble

constant H0 to predict. Therefore, the input and the output size of our work is 4× 512× 512× 512

and 4 respectively, which is much more complex than those of the original work (1 × 64 × 64 × 64

Chapter 4. Training 3D CNNs with hybrid-parallelization 60

Table 4.2: Comparison of CosmoFlow work. “KNL 7250” and “V100” are Intel Xeon Phi
7250 (Knights Landing) on the Cori supercomputer and NVIDIA Tesla V100-SXM2 on the Lassen
supercomputer, respectively. †Each of 500 2563 3D histograms is split into 64 643 sub-cubes, and
augmented into 64×6×8 = 3072 cubes by rotating and mirroring. ‡Each of 12632 2563 3D histograms
is split into 8 1283 sub-cubes. “N/A” is the information not shown in the papers.

Ravanbakhsh et al. [118] Mathuriya et al. [59] This work
of particles 5123 5123 5123

of simulations 500 12,632 10,017
Input size 643 1283 4× 5123

of samples 1,536,000 † 101,056 ‡ 10,017
Total dataset size N/A 1.4 TiB 9.77 TiB
of params. to predict 2 3 4
Batch-norm. layers ✓ ✓
of machines (benchmark)

N/A 8192 × KNL 7250
2048 × V100

of machines (training) 512 × V100

and 2 respectively). We explain in Section 4.2.5 that we also modify the network architecture to get

better computational performance. We report that our modification does not degrade the quality of

convergence, but even improve the original network.

4.1.2 The 3D U-Net

Image segmentation is one type of machine learning tasks in which each pixel of one or multiple

channels is assigned to the ground-truth label. This type of task can be used in a wide range of

real-world applications, including biomedical image analysis [6, 18, 19, 20, 21].

Ronneberger et al. [6] proposed U-Net, a 2D CNN that performs image segmentation. The network

mainly consists of two parts; in the first down-sampling path, a grayscale input image is down-sampled

from 572 × 572 to 28 × 28, 1024 channels by using convolutional layers and max-pooling layers. And

in the following up-sampling path, the resolution of the down-sampled image is restored using up-

convolutional layers (also known as deconvolutional layers) and several convolution blocks with skip

connections from the former path. Finally, the network outputs a segmentation map of the central part

of the image (388 × 388, 2 labels). They demonstrated that the U-Net overcomes other competitive

models on multiple biomedical image segmentation datasets, including a sliding-window based CNN

[114].

Çiçek et al. [18] extends the dimension of each layer of the U-Net to 3D as the 3D U-Net for

volumetric segmentation. The 3D U-Net follows the architecture of the U-Net, but has a smaller

number of blocks and channels; for instance, while U-Net has four convolutional blocks (each of which

has two sequential convolutional layers) in the down-sample and the up-sample paths, the 3D U-

Net has only three blocks, and each of the first convolutional layers has 2x less number of channels.

It is also worth mentioning that the width of each input dimension was shrunk by a factor of four

(5723 → 132× 132× 116), while the authors used 2x down-sampled volumes than the original sample

Chapter 4. Training 3D CNNs with hybrid-parallelization 61

Figure 4.2: Visualization of a 5123, 4 “redshift” channels CosmoFlow data sample. The
region of Figure 4.1 is shown in blue. We use a different threshold and a scaling factor for each channel
for better visibility.

Table 4.3: Comparison of U-Net work. “Titan” and “TitanX” are NVIDIA Titan and TitanX
GPUs, respectively.

Ronneberger et al. [6] Çiçek et al. [18] This work
Input size 1× 5722 3× 132× 132× 116 2563

Output size 2× 3882 3× 44× 44× 28 3× 2563

Dataset ISBI 2012 [5] Microscopic 3D volumes LiTS [22]
of machines Titan TitanX 512 × V100

size. Although it is not explicitly mentioned in the paper, this implies that the model with the full-

resolution data cannot fit into the single NVIDIA TitanX GPU they used, as we illustrate in Section

4.2.5. Table 4.3 summarizes the original U-Net and 3D U-Net work and our work.

The LiTS dataset

The Liver Tumor Segmentation benchmark dataset [22] is a medical volumetric dataset. This dataset

aims to classify each voxel of 131 Computed Tomography (CT) volumes of the human body into one

of the liver, tumors, or other. The dataset contains diverse CT images, each of which consists of a

variable number of 512 × 512 CT image slices, from 42 to 1026. The voxels’ scale also varies from

0.56 mm to 1 mm in axial and 0.45 mm to 6 mm in the z-direction, because different CT scanners

and measurement protocols are used. It also includes varying tumor contrast levels, from 38 mm3 to

349 mm3. Label annotation was performed by human experts. Figure 4.3 visualizes one LiTS data

sample. Although the original U-Net and 3D U-Net has smaller output dimensions than their inputs

Chapter 4. Training 3D CNNs with hybrid-parallelization 62

Figure 4.3: Visualization of a 2563 LiTS data sample. The top row and the bottom row
show input and ground-truth data, respectively. We show seven different 2D cross-sections of different
positions. Black, green and yellow pixels are empty (label 0), liver (label 1), and tumor (label 2) voxels,
respectively.

to infer the central parts of images and volumes, we add paddings to our model to use the same input

and output size because the LiTS dataset provides per-voxel ground-truth labels for all of the voxels.

4.2 Hybrid-Parallel implementation of 3D CNNs

In this section, we introduce our modifications to the LBANN framework [44] to perform hybrid-parallel

(spatial partitioning) training of 3D CNNs on a GPU supercomputer. Initially, the framework did not

support spatial partitioning, and the Distconv extension for the framework has extended the framework

to support spatial partitioning on only 2D CNNs. Hence, we applied the following additional changes

to the framework:

• We extend Distconv to support 3D CNNs. This requires to extend layer kernels, tensor shufflers,

and halo exchanges to 3D.

• We identify inefficient computation and communication kernels that are specific to

high-dimensional networks and thus haven’t appeared in the prior work [104, 122]. We

implement our own optimized kernels or tune the architecture of the target networks to obtain

reasonable computational performance without losing networks’ prediction accuracy.

• We demonstrate the conventional I/O pipeline cannot hide the read latency of 3D datasets due

to their huge per-sample data size. And thus, we introduce model-parallelism not only the

computation but I/O to distribute the workload among all of the processes. In this method,

each process loads its own responsible parts of the 1D-partitioned data samples (hyperslabs)

from the Parallel File System (PFS). We additionally introduce distributed data-space to cache

once loaded hyperslabs in the host memory using the Conduit library [123].

• We propose an empirical performance model to predict the best parallelization strategy for given

network architecture, mini-batch size, and supercomputer specifications. The model digests the

Chapter 4. Training 3D CNNs with hybrid-parallelization 63

benchmark performance of the target supercomputer and then predict the mini-batch time of

a given network. By using this model, we demonstrate that the performance of hybrid-parallel

training is fairly predictable. Thus, it is possible to provide the optimal parallelization strategy

for framework users and researchers without the knowledge of HPC applications.

4.2.1 Extending Distconv for 3D CNNs

The LBANN framework works on one or more CPU or GPU nodes. When it runs on a GPU cluster, it

performs data-parallel training by using MPI where each process is assigned to one GPU. Each process

1. reads its own local batch by using indexes that do not overlap with those of other processes,

2. compute parameter gradients with respect to the local batch without communicating with other

processes (except for batch-normalization layers where all-reduce is required to compute the

average and the variance of each channel),

3. issues asynchronous all-reduce to synchronize gradients once the backward computation of each

layer is done, and

4. updates its local copy of network parameters by using the aggregated gradients.

The prior work, Distconv [104], extends LBANN by the following changes (Figure 4.5);

• it adds a new parallel-strategy property to each layer, which defines the number of processes

for each spatial dimension and the sample dimension to parallelize the layer. Users can set

arbitrary parallel-strategy to each layer (Figure 4.4).

• It inserts appropriately tensor shuffling communications before and after the computation of each

layer to apply user-specified parallel-strategy. It supports multiple communication backends,

including CUDA-aware MPI [124] and Aluminum [125].

• It replaces the implementation of spatial layer types (such as convolutional layers and pooling

layers) to perform the equivalent computation on multiple GPUs by using halo exchanges (Figure

4.6). It first computes on the central part of the layer that does not need halo regions of other

processes and perform halo exchanges on a different CUDA stream at the same time. Once the

communication is done, it enqueues the layer’s computation kernel around the halo to complete

the computation of the layer. This parallelization is done in a similar manner used in parallel

stencil applications on GPU clusters [101].

In this work, we extend Distconv to support 3D networks. Since Distconv initially assumes only

4D tensors (the sample, channel, and two spatial dimensions), we make a significant effort to update

the foundation of the library to support 5D tensors along with the Hydrogen linear algebra backend

[126] and LBANN itself as well. Our extension supports an arbitrary number of dimensions to be

Chapter 4. Training 3D CNNs with hybrid-parallelization 64

Figure 4.4: The definition of CosmoFlow’s first convolutional layer on LBANN. We use 128
nodes (512 GPUs) and apply 8-way partitioning on the depth dimension (“depth groups”).

1 layer {
2 name: "cosmoflow_module1_conv1_conv_instance1"
3 parents: "layer2"
4 children: "cosmoflow_module1_conv1_bn_instance1"
5 data_layout: "data_parallel"
6 weights: "weights1"
7 convolution {
8 num_dims: 3
9 num_output_channels: 16

10 num_groups: 1
11 conv_dims_i: 3
12 conv_pads_i: 1
13 conv_strides_i: 1
14 conv_dilations_i: 1
15 }
16 parallel_strategy {
17 sample_groups: 64
18 height_groups: 1
19 width_groups: 1
20 channel_groups: 1
21 filter_groups: 1
22 depth_groups: 8
23 }
24 }

CPU CPU

GPU

MPI proc.

LBANN

X
(0)
1

GPU

MPI proc.

LBANN

X
(1)
1

GPU

MPI proc.

LBANN

X
(2)
1

GPU

MPI proc.

LBANN

X
(3)
1

Halo xchg @ CUDA-aware MPI

Grad. sync. @ NCCL

Figure 4.5: The software stack of LBANN with hybrid-parallelism. X
(j)
i is the j-th partition

of i-th data sample.

Chapter 4. Training 3D CNNs with hybrid-parallelization 65

Rank 0

Rank 1

Rank 2

Input Output

2.

1.

3.

Figure 4.6: Overview of Distconv. Distconv 1) perform convolution on the central part of each
process’s assignment, 2) perform halo exchanges asynchronously, and 3) compute the boundary parts
once halo exchanges are done.

partitioned simultaneously, which we call 1D-, 2D-, and 3D-partitioning. However, since we found

that 1D-partitioning is enough to hide the halo exchange latency and achieve good scalability on

up to hundreds of GPUs, we mainly use 1D-partitioning throughout this study. We refer to “D-way

partitioning” as the strategy where the depth dimension of each sample is partitioned among D GPUs.

Figure 4.7 shows an overview of our framework. The framework repeats the following steps to

perform training;

1. partial domains that are needed for the following computation (hyperslabs) are read from the

Parallel File System (PFS) by using MPI I/O via the HDF5 library [127]. The hyperslabs are

cached in the host memory by using the Conduit data exchange library [123] for the second epoch

and beyond.

2. Each GPU compute the forward pass with appropriate halo exchanges that are issued by

Distconv. When the pass reaches the first fully-connected layer (if available) or the first layer

whose partitioned spatial domain is smaller than the number of processes of each group, all

activation data is gathered to the root GPUs (rank 0 and 4 in Figure 4.7), and they proceed

with the computation until the end of the pass.

3. The framework then performs a backward pass just as the reversed order of the forward pass.

All-reduce on parameter gradients is asynchronously performed during the backward pass once

gradients of each layer are computed.

4. Each GPU updates its local copy of parameters using synchronized gradients.

Chapter 4. Training 3D CNNs with hybrid-parallelization 66

PFS

Dataset

CPU GPUs

M
em

or
y

HDF5
0
1
2
3

Conv.

Halo ex.
+ conv.

· · ·

Shuffle Conv. FC
Back-prop.

CPU GPUs

M
em

or
y

HDF5
4
5
6
7

Conv.

Halo ex.
+ conv.

· · ·

Shuffle Conv. FC
Back-prop.

Sample
Exchange

Parameter gradients aggregation
(allreduce)

MPI
Rank

Data Ingestion conv1 · · · conv7 fc1, 2, 3

Node

Figure 4.7: Overview of hybrid-parallel training on LBANN and Distconv. Each node
contains four processes that partition a single data sample. Processes 0 to 3 processes the red sample,
and 4 to 7 the blue shaded sample, respectively.

4.2.2 Kernel optimization

At the time of extending Distconv to 3D networks, most of the Distconv and LBANN codes, including

GPU kernels, were assuming 4D tensors. We found that, however, simply extending them for the target

3D CNNs leaves several performance issues that have never been seen in 2D networks; we explain that

a similar problem exists even in a highly-optimized deep learning kernel library, cuDNN in Chapter

3. This, we applied the following additional optimization to achieve reasonably good computational

performance:

• Exchanging halo domains require packing before the exchange and unpacking after the exchange

to convert scattered data between a fully-packed message to communicate. For efficient halo

exchanges, we develop custom CUDA kernels that are dedicated to specific filter sizes (such as

33 and 53).

• The cross-entropy layer of the 3D U-Net is 3D, in which each voxel has multiple channels to

output the probability of each class. However, typical frameworks, including LBANN, assume

that cross-entropy layers are used for classification tasks, which only requires a spatial dimension

of one. Thus, we apply spatial partitioning to the layer type as well so that the computation on

each voxel is computed among multiple GPUs in parallel. We also extend its GPU kernel to use

integer ground-truth voxels directly instead of one-hot voxels to eliminate a conversion kernel

between them.

• We also tune CUDA kernels of different types of layers (such as batch-normalization layers) for

3D layers, where the spatial dimension size is much larger than 2D layers. We illustrate that

not doing this kind of tuning even for negligible kernels in terms of time results in significant

performance loss in Section 4.2.5.

Chapter 4. Training 3D CNNs with hybrid-parallelization 67

4.2.3 Spatially-partitioned I/O

I/O of deep learning applications typically refer to the online data load of input samples to every

training processor, such as GPUs. Its workload has peculiar characteristics than general HPC

applications;

• the data is composed of uniform data files, each of which contains one data sample or more. For

instance, many frameworks process the ILSVRC image dataset [3] as a list of files as the dataset

follows this assumption.

• Each data sample is read exactly once in a fixed number of steps (an epoch). Then epochs are

repeated until it reaches the predefined number of steps or terminated manually.

• The subset and the order of samples each processor reads are usually randomized (data shuffling).

Thus, each data file might be read by each processor throughout the training.

• A dataset for deep learning might be beyond the capability of each node’s disk space. For

instance, the CosmoFlow dataset is about 10 TB, which is larger than the capacity of a local

SSD of the Lassen supercomputer (1.6 TB).

Therefore, prior studies have proposed techniques to accelerate this heavy random read, such as staging

data to local storage [116], using an efficient parallel file system [128], dedicated I/O servers (burst

buffers) [59]. Note that, in this thesis, we refer to the cost to load data samples from any type of

storage or memory to GPU memory as I/O, even though actual I/O is not performed.

In this section, we introduce our spatially-partitioned I/O technique. As already mentioned, many

deep learning frameworks assume data samples are managed by files, which naturally enables random

sample read. This approach is suitable for data-parallel training, where each process reads more than

one data sample, so the I/O workload per step is naturally distributed by all of the processes. In

hybrid-parallel training, however, this doesn’t suit because each process does not necessarily read the

entire data sample. Although the prior work have not discussed this problem in detail [104, 122], we

identified this is the primary performance bottleneck of training of extremely large 3D CNNs. We then

propose splitting the I/O workload of each sample into multiple processes that process the sample in

upcoming forward and backward passes. We demonstrate that this technique is required to achieve

good strong-scaling of our target 3D CNNs with hybrid-parallelism.

In the prior Distconv work, the I/O pipeline has not been extended to read each data sample

in parallel. As we explained in Section 4.2.1, Distconv performs tensor shuffling when the parallel

strategy is changed during forward and backward passes, root processes (each of which is responsible

for computing its local batch when spatial partitioning is not applied) first read local batches, and then

shuffling is performed to distribute them to non-root processes (Figure 4.8). Specifically, when the

local batch size is one, each root process reads only one sample and then scatter it to other processes

that share the local sample in the following forward and backward passes.

Chapter 4. Training 3D CNNs with hybrid-parallelization 68

PFS

Dataset

CPU GPUs

M
em

or
y

I/O
0

Scatter

1
2
3

CPU GPUs

M
em

o
ry

I/O
4

Scatter

5
6
7

MPI Rank

Figure 4.8: Sample-parallel I/O. Process 0 and 4 read the red and the blue sample, respectively,
and then scatter each sample to other processes.

However, although this approach can use an existing implementation that does not intend to be

combined with hybrid-parallelism, this incurs extra overhead that is not necessarily required as follows;

• most part of the data root processes read is not used for the computation of the first layer because

we assume that the first layer is convolution. Even though processes share the bandwidth between

the PFS, non-root processes had to be idle while the actual I/O.

• For the same reason, the scatter operation is not essential if there is a way that all of the processes

read their responsible parts of data.

One trick we introduce to mitigate the I/O overhead is to cache already loaded data samples to

the host memory so that they will be reused for the second epoch and beyond. This function (“data-

store”) is included as a part of LBANN by combining MPI with the Conduit data exchange library

that provides efficient ways to exchange scientific data. For instance, we use a mini-batch size of 64 for

the CosmoFlow network in actual training runs (Section 4.3.4), and our target system has 240 GB/s

of PFS bandwidth, which requires 256 ms of mini-batch loading time at each step. Therefore, these

types of caching are inevitable to accomplish efficient hybrid-parallel training.

However, we found in a preliminary evaluation that even this technique cannot hide the I/O latency

for huge 3D data cubes. Figure 4.9 shows the iteration time of the CosmoFlow network with a mini-

batch size (N) of 1, 2, or 4. We apply 1D partitioning for all of the configurations; for example,

when 16 GPUs are used for N = 2, each sample is distributed among 8 GPUs (8-way partitioning).

Note that each data series is asynchronous, and LBANN performs I/O asynchronously to the GPU

computations, so the I/O time is more than seen in the figure. Figure 4.9 clearly shows that we

cannot achieve strong scaling at all just by increasing the number of GPUs. This is because while the

computation complexity scales as the number of GPUs is increased, the I/O workload per root process

remains constant, so it quickly becomes the bottleneck on a large number of GPUs. Therefore, this

result implies that I/O should scale as well as hybrid-parallelism is utilized.

Chapter 4. Training 3D CNNs with hybrid-parallelization 69

0 100 200 300 400 500 600

Time [ms]

I/O
Update
Forward
Backward128

64
32
16
8

128
64
32
16

256

128
64
32

256
512

N
u

m
b

er
of

G
P

U
s

N
=

1
N

=
2

N
=

4

2.9 s/s (1.09x)
3.2 s/s (1.18x)

3.0 s/s (1.12x)
2.8 s/s (1.04x)
2.7 s/s

5.7 s/s (1.11x)
6.3 s/s (1.25x)

5.9 s/s (1.15x)
5.5 s/s (1.09x)

5.1 s/s

10.5 s/s (1.08x)
12.3 s/s (1.27x)
12.2 s/s (1.25x)

11.0 s/s (1.13x)
9.7 s/s

Figure 4.9: Strong scaling of the CosmoFlow network with 5123 input cubes without spatial-
parallel I/O. We only use distributed caching with Conduit. We only use N = 1, 2, 4 as it does not
strong-scale clearly.

To mitigate this overhead, we propose a parallelized I/O pipeline where all of the processes are

involved in reading their own responsible fragments of a mini-batch (Figure 4.10a). In Figure 4.10a,

4-way 1D partitioning is applied on two groups of 4 processes, and each process reads a quarter part

of each data sample (which we call hyperslabs) from the PFS. We adopt the HDF5 file format [127]

to store 3D data cubes in the PFS, whose interface library utilizes MPI I/O to read data files in

parallel efficiently. We further combine this approach with the data-store function to cache hyperslabs

on the host memory; for example, in Figure 4.10a, process 0 and 4 share only the left-most quarters

of the data samples, so each process does not hold hyperslabs that are not used by itself, unlike the

sample-based approach. After the first epoch, all samples are read and cached on the host memory, so

any processes do not perform actual I/O between the PFS after the first epoch (Figure 4.10b). Note

that we don’t preload the datasets from the PFS to local storage because the data transfer cost is paid

only on the first epoch.

Another trick specific to the CosmoFlow dataset we found is that it offers nice characteristics to

reduce its data size. We found that most of the values of the dataset are one or less (Table 4.4), and

all of the values are under 215 − 1 = 32767. Therefore, we convert the dataset in int16 rather than

float64, which reduces the disk space by 4x than the previous work [59]. It is also possible to apply

data compression to each data sample to reduce the size, but we leave it as future work as we prove

that using int16 is enough to hide the I/O latency, as we show in Section 4.3. Similarly, the LiTS

dataset is stored in int16 for the same reason.

4.2.4 Performance modeling

As explained in our previous work [113] and other prior studies [102, 103, 104], it is not trivial to

predict the computational performance of deep learning frameworks due to their complexity. The

Chapter 4. Training 3D CNNs with hybrid-parallelization 70

PFS

Dataset

CPU GPUs

M
em

o
ry

HDF5
0
1
2
3

CPU GPUs

M
em

or
y

HDF5
4
5
6
7

Sample
Exchange

MPI Rank

(a) Epoch 0

CPU GPUs

M
em

o
ry

CPU GPUs

M
em

or
y

Sample
Exchange

(b) Epoch 1+

Figure 4.10: Spatially-partitioned data movement on our framework. During epoch 0, HDF5
ingests hyperslabs in parallel into the data store. During epoch 1 and more (“1+”), the data store
distributes the hyperslabs for each sample in the mini-batch that is about to be trained on.

Table 4.4: Statistics of a CosmoFlow data sample. We use the same data sample to Figure 4.1.
Note that all of the elements are non-negative integers.

Minimum 0
2nd quartile 0

Median 0
Mean 0.925

3rd quartile 1
99% quantile 11

Maximum 916

Chapter 4. Training 3D CNNs with hybrid-parallelization 71

number and types of kernel calls are determined by the target network architecture, each of which

does not necessarily achieve the theoretical peak performance [113]. The performance also depends on

several training configurations, such as the mini-batch size, which affects not only the computational

performance but the quality of convergence. Also, benchmarking such frameworks on real large-scale

environments requires an excessive amount of node-hour, or even impossible because reserving the

entire supercomputer can take a very long wait time; we actually use up to 512 nodes of 792 available

nodes of the Lassen supercomputer in our experiments. Therefore, applying performance modeling

techniques reduces much effort to find the best configurations for a given DNN and available hardware

only with limited hardware resources.

In this section, we propose an empirical performance model for our hybrid-parallel training

framework. The motivation here is to use the model to investigate whether our actual performance

achieves the expected peak empirical performance of the underlying supercomputer and discuss

whether the model can predict the best machine configurations for the same mini-batch size. The

model takes network architecture, mini-batch size, and the parallelization strategy for the network

and predicts the time to perform one training step. We choose an empirical way to construct the

model because our aim is to find the best achievable performance with achievable highly-optimized

computation and communication libraries (such as cuDNN and NCCL).

We first collect the runtime of cuDNN convolution, deconvolution, pooling, and batch-normalization

on a single GPU. We run a cuDNN benchmark suite with every possible layer parameters of the layer

types. We also measure the performance of NCCL and the underlying MPI library with a limited

number of nodes to construct GPU-to-GPU and global all-reduce communication models. We then

combine the benchmark results with the communication models to predict iteration runtime on multiple

GPUs.

First, we define the time to perform forward-computation of convolutional or pooling layer l as

FP l:

FP l = max

{
Compl

(
Dmain

l

)
,

2∑
d=0

2SR
(
Dhalo

l,d

)}
+ Compl

(
Dhalo

l

)
, (4.1)

where Compl(D) is time to compute layer l on a given domain D, and SR(D) is time to perform

peer-to-peer send-receive communication between two GPUs via NVLink or InfiniBand depending on

the location of the two processes. The shape of Dmain
l , the domain which can be computed without

halo communication, and Dhalo
l,d , the domain which requires halo region to be computed, are defined

by the partitioning of the layer. We also define BDl and BF l, the time to perform the backward-data

and the backward-filter passes on layer l in a similar manner.

To estimate Compl(D), we benchmark each layer type on a single GPU. For convolutional layers,

we use the largest cuDNN workspace possible, and enable cuDNN’s auto-tuning function to find the

fastest convolution algorithms. We use the median of three trials after warmup throughout this study.

Chapter 4. Training 3D CNNs with hybrid-parallelization 72

The time for a batch-normalization layer, which requires global all-reduce communication of the local

sum and squared-sum of each channel instead of halo communication, is the sum of the computational

time and time to perform the communication.

To estimate SR(D), we use Aluminum’s ping-pong benchmark. We use the median time of 100 trials

with float vectors of 1, 2, 4, . . . , 230 elements for each configuration. We then apply linear regression to

estimate the time for arbitrary message sizes. However, we found that the linear model cannot follow

the actual performance with both small and large message sizes, and it even outputs negative time for

too small message sizes (Figure 4.11a). Another conservative way is to apply linear interpolation to

the measured runtime, but this might be sensitive to the measurement error (Figure 4.11b). Therefore,

we use the linear model but uses one percentile of the measured runtime as its intercept (Figure 4.11c).

This heuristic provides reasonable predictions, especially for small message sizes.

We ignore the cost to compute non-3D parts of the 3D CNNs, such as fully-connected layers and

loss layers since their costs are negligible compared to other costs. We also ignore the cost of I/O

for loading data samples from the PFS or between processes, as our optimized pipeline mitigates I/O

costs drastically for the two networks we use in this work.

Finally, the total time of the network is

Cost =
∑
l

FP l + max

{∑
l

BDl + BF l,
∑
l

AR(θl)

}
, (4.2)

where AR is time to perform all-reduce among all of the GPUs and θl is the number of parameters of

layer l. To measure the runtime of AR, we measure the performance on one node (4 GPUs) to 128

nodes (512 GPUs), with float vectors of 1 to 224 elements. We measure 40 trials for message size and

each configuration. We assume a simple ring-based algorithm [98],

AR(n, p) = αp + βn + γ
n

p
+ δ, (4.3)

where n is the message size, p is the number of processes, and α, β, γ, δ are the model parameters.

However, we found a similar prediction error to the send-recv model (Figure 4.12a). Furthermore,

we cannot use the linear interpolation technique for this model because the model must accept the

number of nodes that is larger than the number we use for benchmarking. Therefore, we apply the

logarithmic transformation to the model to solve this problem (Figure 4.12c).

4.2.5 Architecture tuning

In this section, we conduct a manual neural architecture search to tune the network for our software

and evaluation environments. For example, when we increase the input size from 1283 to 5123, we

must carefully update the network’s design not to make any unnecessary computational performance

bottlenecks. Also, Distconv assumes that all the convolutional layers have odd size filters and use the

Chapter 4. Training 3D CNNs with hybrid-parallelization 73

101 103 105 107 109

Message size

10 5

10 4

10 3

10 2

10 1

Ti
m

e
[s

]

Intra-node, bi-directional
Intra-node, one-directional
Inter-node, bi-directional
Inter-node, one-directional

(a) Linear

101 103 105 107 109

Message size

10 5

10 4

10 3

10 2

10 1

Ti
m

e
[s

]

Intra-node, bi-directional
Intra-node, one-directional
Inter-node, bi-directional
Inter-node, one-directional

(b) Interpolation

101 103 105 107 109

Message size

10 5

10 4

10 3

10 2

10 1

Ti
m

e
[s

]

Intra-node, bi-directional
Intra-node, one-directional
Inter-node, bi-directional
Inter-node, one-directional

(c) Our model

Figure 4.11: Inter-GPU communication performance on Lassen. The points and the lines
show measured and predicted time, respectively. We show the median time for each configuration and
message size.

“same” padding so that the halo communication pattern is symmetric among any number of processes,

while the CosmoFlow network uses 2 × 2 × 2 filters. Although our primary goal is to accelerate the

computation of 3D CNNs by introducing hybrid-parallelism, we must ensure that our changes do not

make their convergence worse.

Table 4.5 summarizes preliminary training results of our CosmoFlow network variants using the

“2parB” dataset [121]. This is a smaller, simpler variant of the main dataset we report final results in

Section 4.3.4, which we use for hyperparameter tuning and architecture search. The dataset consists

of 1k samples, every 5123 voxels with a single channel. We split each sample into 1283 samples in

advance. We test the following network variants:

• CO: All of the 23 and 43 convolution filters are replaced by 33 and 53 filters, so all filter sizes

Chapter 4. Training 3D CNNs with hybrid-parallelization 74

100 101 102 103 104 105 106 107

Message size

10 5

10 4

10 3

10 2

10 1

100

Ti
m

e
[s

]

MPIBackend-MPI-ring
MPIBackend-MPI-recursive-doubling
MPIBackend-MPI-PE/ring
MPIBackend-automatic
MPIBackend-MPI-passthrough
MPIBackend-MPI-biring
MPIBackend-MPI-Rabenseifner
MPICUDABackend-host-transfer
NCCLBackend-automatic

(a) Linear

100 101 102 103 104 105 106 107

Message size

10 5

10 4

10 3

10 2

10 1

100

Ti
m

e
[s

]

MPIBackend-MPI-ring
MPIBackend-MPI-recursive-doubling
MPIBackend-MPI-PE/ring
MPIBackend-automatic
MPIBackend-MPI-passthrough
MPIBackend-MPI-biring
MPIBackend-MPI-Rabenseifner
MPICUDABackend-host-transfer
NCCLBackend-automatic

(b) Interpolation

100 101 102 103 104 105 106 107

Message size

10 5

10 4

10 3

10 2

10 1

100

Ti
m

e
[s

]

MPIBackend-MPI-ring
MPIBackend-MPI-recursive-doubling
MPIBackend-MPI-PE/ring
MPIBackend-automatic
MPIBackend-MPI-passthrough
MPIBackend-MPI-biring
MPIBackend-MPI-Rabenseifner
MPICUDABackend-host-transfer
NCCLBackend-automatic

(c) Our model

Figure 4.12: All-reduce collective performance among GPUs on Lassen. The points and the
lines show measured and predicted time, respectively. We show all of the trials for each message size
and each configuration.

are odd.

• C3: All of the convolution filter sizes are replaced by 33.

• C3P3: All pooling filter sizes are also replaced by 33.

• C3P3P2: Two additional pooling layers are added to C3P3, and biases are removed from all of

the convolutional layers.

We apply padding to all of the convolution and pooling layers whose filter size is odd.

The motivation of C3P3P2 is as follows:

• When each input dimension is doubled without changing the network architecture, the number

of neurons of the last convolutional layers is multiplied by 23 = 8. This results in increasing the

Chapter 4. Training 3D CNNs with hybrid-parallelization 75

co
n
v
1

co
n
v
2

co
n
v
3

co
n
v
4

co
n
v
5

co
n
v
6,

7

co
n
v
1

co
n
v
2

co
n
v
3

co
n
v
4

co
n
v
5

co
n
v
6,

7

co
n
v
1

co
n
v
2

co
n
v
3

co
n
v
4

co
n
v
5

co
n
v
6,

7

co
n
v
1

co
n
v
2

co
n
v
3

co
n
v
4

co
n
v
5

co
n
v
6,

7

co
n
v
1

co
n
v
2

co
n
v
3

co
n
v
4

co
n
v
5

co
n
v
6,

7

T
im

e
[m

s]

0

50

100

150

200

N = 1 N = 2 N = 4 N = 8 N = 16

Forward
Backward data
Backward filter
Backward bias

Figure 4.13: Layer-wise convolution performance of the CosmoFlow network.

number of parameters of the first fully-connected layer by eight times, which enlarges the

communication cost of the gradient synchronization (i.e., the total number of learnable

parameters) with almost the same proportion. This expansion is a possible bottleneck of strong

scaling because the communication is constant to the number of processes unless

fully-connected layers are also partitioned. Thus, we introduce additional pooling layers to

make the dimensions of the last convolutional layer constant regardless of the input dimension

size.

• As a result of benchmarking cuDNN, we found that its backward kernels for convolutional

layers’ biases are inappropriately slower than other kernels, especially on the first layer (Figure

4.13). This is unnatural because the kernel computes the sum of output errors for each channel,

whose complexity should be order-of-magnitude smaller than other convolution kernels.

Although cuDNN’s source code is not publicly available, we found the number of runtime

threads obtained by the nvprof profiler is determined by the number of channels. Hence, we

assume that the kernel parallelizes each channel’s computation, which algorithm does not work

well the first convolutional layer whose number of channels is much smaller than the spatial

dimensions. Therefore, we examine how biases affect the convergence quality by removing from

the model.

In Table 4.5, our best network, C3P3P2, achieves better accuracy than the baseline model, and

hence we use this network throughout this chapter. In addition, the test loss of the original network

is degraded by increasing the mini-batch size, even if the learning rate is increased in the same

proportion to the mini-batch size to keep the stochasticity of parameter gradients [87], as shown in

the previous work [59]. This result implies that there is a hidden scaling limit for this network in the

data-parallel scheme around hundreds of GPUs. Our hybrid-parallel scheme can accelerate training

by using hundreds of GPUs while keeping the same mini-batch size (Section 4.3.4).

Figure 4.14 and Table 4.6 shows the revised CosmoFlow network architecture. In this thesis, we

Chapter 4. Training 3D CNNs with hybrid-parallelization 76

Table 4.5: Comparison of CosmoFlow network variants. η(0) is the initial learning rate. The
C3P3P2 network achieves the best test loss.

Network # of nodes N η(0) Test loss
Baseline 8 512 1× 10−4 0.0051
Baseline 32 2048 2× 10−4 0.0077
Baseline 128 8192 5× 10−4 0.0184

CO 64 2048 1.5× 10−4 0.0073
C3 64 2048 3× 10−4 0.0077

C3P3 32 1024 1× 10−4 0.0057
C3P3P2 32 1024 2× 10−4 0.0041

In
p

u
t

1
6
×

33
co

n
v

23
p

o
ol

3
2
×

33
co

n
v

23
p

o
ol

6
4
×

33
co

n
v

23
p

o
ol

1
28
×

33
co

n
v
,

st
ri

d
e

of
2

23
p

o
ol

25
6
×

3
3

co
n
v

23
p

o
ol

25
6
×

3
3

co
n
v

23
p

o
ol

25
6
×

3
3

co
n
v

23
p

o
ol

20
48

F
C

2
5
6

F
C

4
F

C

L
a
y
e
r
si
z
e

4
×

5
12

3

16
×

5
12

3

16
×

2
56

3

32
×

2
56

3

32
×

1
28

3

64
×

1
28

3

6
4
×

6
4
3

12
8
×

3
2
3

12
8
×

1
6
3

25
6
×

1
6
3

2
56
×

8
3

2
56
×

8
3

2
56
×

4
3

2
56
×

4
3

2
56
×

2
3

2
04

8

25
6 4

B
N

+
L

R
eL

U

B
N

+
L

R
eL

U

B
N

+
L

R
eL

U

B
N

+
L

R
eL

U

B
N

+
L

R
eL

U

B
N

+
L

R
eL

U

B
N

+
L

R
eL

U

D
ro

p
o
u

t

L
R

eL
U

+
D

ro
p

ou
t

L
R

eL
U

+
D

ro
p

ou
t

Figure 4.14: Our revised CosmoFlow network architecture.

use the latest 2019 05 4perE CosmoFlow dataset, each sample of which is a 4-channel, 5123 voxels

along with four different cosmological parameters.

We also propose smaller variants of the network, which takes 1283 or 2563 sub-volumes of the data

samples. We follow the prior work by splitting each original cube into 1283 or 2563 sub-volumes for

the smaller networks. The only modification to the networks is that we optionally add pooling layers

after the 6th and 7th convolutional layers so that the output size of the last (7th) convolutional layer is

always 2563×23. By applying this approach, the number of parameters of all the networks is constant,

which prevents itself from being the performance bottleneck. On the other hand, both the number of

floating-point operations on the convolutional layers and the memory requirement per data sample is

nearly proportional to the number of input elements (see Section 4.3.3). This implies that 3D CNNs

offer great scalability once model-parallelism is utilized, where the complexity of the computation is

O(W 3
i) where that of the communication is O(logWi) for all-reduce and O(W 2

i) for halo exchange,

where Wi is the input dimension size. In fact, our smallest CosmoFlow network has 9.44 M parameters

and requires 18.5 GFlops for forward computation, while ResNet-152 [65], a 2D CNN, has O(10M)

Chapter 4. Training 3D CNNs with hybrid-parallelization 77

Table 4.6: Our revised CosmoFlow network architecture. Wi is the spatial input width.
cN→pN is convolution followed by pooling, and fcN are fully connected layers. Convolution is stride
one and pooling stride two unless noted. All of the layers use “same” padding. The last three rows
show per sample requirements.

Layer(s) Output width
Name(s) Filter Wi = 128 Wi = 256 Wi = 512

c1→p1 16× 33 1283→643 2563→1283 5123→2563

c2→p2 32× 33 643→323 1283→643 2563→1283

c3→p3 64× 33 323→163 643→323 1283→643

c4→p4
128× 33

83→43 163→83 323→163
(stride of 2)

c5→p5 256× 33 43→23 83→43 163→83

c6→p6 256× 33 23→N/A 43→23 83→43

c7→p7 256× 33 23→N/A 23→N/A 43→23

fc1 2048 2048 2048 2048
fc2 256 256 256 256
fc3 4 4 4 4

parameters
[
106
]

9.44 9.44 9.44
conv. ops. [GFlops] 55.55 443.8 3550

(Forward) [GFlops] 18.52 147.9 1183
Memory [GiB] 0.824 6.59 52.7

parameters and 1.13 GFlops for computation.

As shown in the table, the per-sample memory requirements for the 1283 and 2563 data are under

the memory size of the latest GPUs: A NVIDIA Tesla V100 GPU with 16 GB memory is capable of

holding one or more samples from these datasets. Thus, data-parallel training is sufficient to train

these networks. For 5123, however, the memory requirement exceeds the memory size. Hence it is

not feasible to perform data-parallel training. On the other hand, our approach resolves this problem

by introducing the hybrid-parallel scheme in LBANN where we spatially partition each sample among

four or more GPUs.

We then add batch-normalization after each convolutional layer to evaluate its effects on both

computational performance and inference accuracy. Although it was removed from the network in the

prior work [59] due to a performance issue, we found that our framework can keep GPUs busy even

though additional per-layer collective communication is introduced. We also demonstrate that the

additional batch-normalization layers improve the inference accuracy further, and it results in order-

of-magnitude improvement than the original network without batch-normalization layers. Note that

this change requires approximately twice the GPU memory size to hold activation and error signals

before and after each batch-normalization layer, so we use 8 GPUs at least per sample on 5123 cubes.

Table 4.7 shows the number of multiply-and-add operations required to compute each layer of the

networks. As shown in the table, the total number of operations is nearly dominated by the first three

layers. While Distconv does not partition layers that partitioned spatial dimension is smaller than

the number processes but gather to the root processes of each process group, it is expected that the

Chapter 4. Training 3D CNNs with hybrid-parallelization 78

Table 4.7: The number of operations of CosmoFlow’s convolutional layers with a 1283 cube.

Name Forward Backward data Backward filter
[GFlops] [GFlops] [GFlops]

conv1 1.81 1.81 1.81
conv2 7.25 7.25 7.25
conv3 3.62 3.62 3.62
conv4 0.03 0.03 0.03
conv5 0.91 0.91 0.91

conv6,7 1.81 1.81 1.81

convolution operations are distributed efficiently as the first half of the layers are parallelized on up to

128 GPUs.

4.3 Performance evaluation

In this section, we evaluate the performance of our framework using the CosmoFlow network and the

3D U-Net from various aspects. Our evaluation is three-fold:

• Scalability: We evaluate strong scaling (data sample throughput with a fixed mini-batch size on

different numbers of GPUs) and weak scaling (throughput with increasing both the mini-batch

size and the number of GPUs in the same proportion) to measure the computational

performance of our framework. Specifically, we provide a detailed performance breakdown to

show our framework is reaching the peak practical computational performance that can be

achieved with the current software stack. In these experiments, we only focus on the

performance from the HPC aspect, so we ignore the effect of changing the mini-batch size to

the quality of convergence. Furthermore, we compare the actual performance with a prediction

by the performance model to discuss how performance modeling cooperates in designing

training configurations with hybrid-parallelism.

• Comparison with another framework: We compare the performance of our framework with 1)

TensorFlow with Horovod that supports data-parallel training on multiple GPU nodes, and 2)

TensorFlow with Mesh-TensorFlow that supports spatial partitioning on a single GPU node. We

demonstrate that our framework achieves better due to its well-optimized halo exchanges and

also work on multiple nodes. To the best of our knowledge, LBANN is the only framework that

supports spatial partitioning on multiple GPU nodes as its built-in function.

• Training with 5123 CosmoFlow data cubes: Our ultimate goal is to improve the convergence of

3D CNNs by increasing their spatial resolution. Hence, we verify it by training the CosmoFlow

network with 4-channel 5123 data cubes, which is 4 × (512/128)3 = 256 times larger input size

than that of the prior work [59]. We demonstrate that improving input resolution brings order-

Chapter 4. Training 3D CNNs with hybrid-parallelization 79

of-magnitude accuracy improvement. To the best of our knowledge, this work is the first attempt

to train the network with that input size successfully.

4.3.1 Evaluation environment

We use Lassen, a GPU supercomputer at LLNL composed of 792 nodes. Each node has two IBM

POWER9 CPUs with 256 GB memory and four NVIDIA V100 GPUs with 16 GB memory (Figure

4.15). Every two GPUs are connected to one CPU with NVLink, and the two GPUs are also directly

connected via the NVLink. Each computing node equips dual-rail EDR InfiniBand NIC. Note that each

node is also equipped with a 1.6 TB NVMe SSD, but we don’t use them because both the CosmoFlow

dataset and the LiTS dataset can be stored into the CPU memory of the minimum number of nodes

required to train.

We use GCC 7.3.1, CUDA 10.1, cuDNN 7.6.4, NCCL 2.4.2 and IBM Spectrum MPI 10.2.0.11rtm2.

We use cuDNN’s auto-tuning function to select the best convolution algorithms with available GPU

memory size. We use single-precision for computation throughout the experiments. Throughout this

chapter, we do not use half-precision or mixed-precision training (regardless of the use of Tensor Cores),

because the impact of applying low-precision training to CosmoFlow has not yet been evaluated.

The LBANN framework relies on two communication libraries, Aluminum and Distconv. LBANN

perform all-reduce across devices by using Aluminum, which internally utilizes NCCL and MPI to

perform. We use the NCCL backend of Aluminum to perform gradient synchronization. Distconv

performs halo exchange by using CUDA-aware MPI (Figure 4.5).

4.3.2 Strong scaling

We refer to the scalability when varying the number of processes in the spatial dimensions with a fixed

mini-batch size as strong scaling. The strong scalability of a hybrid-parallel framework is important in

terms of how much the framework can be parallelized without changing the semantics of the training.

Figure 4.16 shows the strong scaling performance of the CosmoFlow network with the 5123 dataset.

We use global mini-batch sizes (N) of 1, 2, 4, 16, and 64, and split the network in the depth dimension.

We run the framework for four epochs with a 128-sample subset of the dataset (if the mini-batch size

is smaller than 128) or the full dataset and show the median iteration time except for the first epoch.

Note that the computational workload per epoch is constant regardless of the progress of training,

so we run the framework for few epochs to exclude variance in time. We also show predicted times

by our performance model, which largely match with the actually measured times, confirming our

implementation performed as expected. Since our data reader caches hyperslabs, which are loaded in

the past training iterations, we separately show the performance on the first epoch (“Epoch 0”) and

beyond (“Epoch 1+”).

As shown in Figure 4.16b, when the mini-batch size, N , is 16 and 64, we achieve speedups of 1.98x

Chapter 4. Training 3D CNNs with hybrid-parallelization 80

Figure 4.15: Sierra/Lassen node diagram. This figure is cited from the Sierra documentations
[129].

Table 4.8: Legend specifications of the strong scaling plots. We show the time when both
computation and asynchronous kernels are performed simultaneously as “Comp.”.

Label Meaning Async. to “Comp.”
I/O Data load ✓
Update Updating local copies of weights
{F,B}. Comm. Halo exchanges ✓
{F,B}. Shuffle

Gather/scatter to change the parallel strategy
(see Section 4.2.1)

{F,B}. Comp. GPU computation −
B. AR All-reduce collectives for gradient synchronization ✓

Chapter 4. Training 3D CNNs with hybrid-parallelization 81

0 500 1000 1500 2000 2500 3000

Time [ms]

I/O
Update
Forward
Backward128

64
32
16
8

128
64
32
16

256

128
64
32

256
512

128
256
512

2048
1024

N
u

m
b

er
o
f

G
P

U
s

N
=

1
N

=
2
N

=
4
N

=
16

4.4 s/s (6.64x)
3.9 s/s (5.84x)

2.4 s/s (3.56x)
1.3 s/s (1.93x)

0.7 s/s
9.7 s/s (7.32x)

5.2 s/s (3.97x)
4.8 s/s (3.66x)

2.6 s/s (1.93x)
1.3 s/s

6.5 s/s (2.49x)
11.7 s/s (4.51x)

8.5 s/s (3.28x)
5.1 s/s (1.95x)

2.6 s/s
41.2 s/s (5.22x)

23.9 s/s (3.03x)
15.5 s/s (1.96x)

14.6 s/s (1.86x)
7.9 s/s

(a) Epoch 0

0 100 200 300 400

Time [ms]

I/O
Update
F. Comm.
F. Shuffle
F. Comp.
B. Comm.
B. Shuffle
B. AR
B. Comp.

128
64
32
16
8

128
64
32
16

256

128
64
32

256
512

128
256
512

2048
1024

512

2048
1024

N
u

m
b

er
of

G
P

U
s

N
=

1
N

=
2

N
=

4
N

=
16

N
=

64

6.1 s/s (1.48x)

10.8 s/s (2.65x)

10.7 s/s (2.62x)

7.1 s/s (1.72x)

4.1 s/s

12.1 s/s (1.50x)

21.2 s/s (2.65x)

18.3 s/s (2.28x)

13.5 s/s (1.68x)

8.0 s/s

22.4 s/s (1.43x)

37.6 s/s (2.40x)

33.7 s/s (2.15x)

26.1 s/s (1.66x)

15.7 s/s

80.5 s/s (1.30x)

131.5 s/s (2.12x)

123.1 s/s (1.98x)

86.8 s/s (1.40x)

62.1 s/s

392.2 s/s (1.77x)

316.7 s/s (1.43x)

221.1 s/s

(b) Epoch 1+

Figure 4.16: Strong scaling of the CosmoFlow network with 5123 input cubes. Shaded bars
of Figure 4.16b show the time predicted by the performance model. “F.” and “B.” are forward and
backward passes, respectively. The full specifications are shown in Table 4.8. N is the mini-batch size.
Bars are annotated with throughput (samples/s) and speedup relative to the minimum setting with
the same N . A part of the time of each task is hidden when it is overlapped with other tasks.

Chapter 4. Training 3D CNNs with hybrid-parallelization 82

with 512 GPUs (128 nodes) compared to 128 GPUs (32 nodes), and 1.77x with 2048 GPUs (512 nodes)

compared to 512 GPUs (128 nodes), respectively. We note that when the mini-batch size is 16, the

performance gain for going to 2048 GPUs falls off because the problem (i.e., the computation required

for each data sample) becomes over-decomposed. However, the computational throughput can still be

scaled further by increasing the batch size to 64. As we show in Section 4.3.4, this mini-batch size is

a reasonable choice for actual training, and thus we prove that we successfully scale the training of

the CosmoFlow network to thousands of GPUs. Furthermore, the I/O time is almost invisible in the

figure since it is almost completely overlapped with computations in our optimized I/O pipeline. This

makes a significant contrast to conventional I/O methods in terms of strong scaling performance, as

their I/O parallelism is limited by the mini-batch size. In fact, as we already showed in Figure 4.9,

the iteration time does not scale without our spatially-parallel I/O approach due to I/O overhead.

This demonstrates the necessity of strong-scaling I/O along with computation to efficiently parallelize

training.

Comparing Figure 4.16a and Figure 4.16b, we can see that the data-store caching reduces the I/O

overhead considerably (note that the scale of the x-axes is different). Even though the first epoch is

approximately ten times slower than epochs after that, 1) one training trial repeats hundreds of epochs

to converge, and 2) it is inevitable overhead to read the dataset from file system due to its enormous

dataset size, so we consider this is acceptable overhead.

Further, our performance model successfully predicts the fastest model distribution for all of the

mini-batch sizes we evaluated; significantly, it predicts the performance fall-off by over-decomposition

we mentioned above. This result implies that performance modeling can choose suitable configurations

for hybrid-parallel frameworks without actual runs on hundreds of nodes.

Figure 4.17 shows the strong scaling performance of 3D U-Net with 2563 data cubes on a similar

evaluation methodology. With this network, we have to use at least 16 GPUs per sample due to memory

requirements. We achieve good strong scaling performance between 16-way and 32-way partitioning,

such as 1.42x on 512 GPUs over 256 GPUs with a mini-batch size of 16. As shown in the figure,

similarly to the CosmoFlow network, most of the iteration time is spent in computation. In fact, we

achieve almost the same performance on the first epoch (Figure 4.17c) and beyond (Figure 4.17d).

This implies that we achieve near-peak performance, despite the communication overheads of hybrid-

parallelism compared to data-parallelism.

Detailed performance analysis of the CosmoFlow network

To understand the parallel efficiency of our implementation and identify potential bottlenecks, we

conduct profiling on the CosmoFlow network by using nvprof [130].

Figure 4.18 shows the GPU execution timeline of a mini-batch iteration when 32 and 64 GPUs are

used to train the 5123 model with a mini-batch size of 4. The “Main” row corresponds to the CUDA

stream where compute kernels are launched; the “Halo xchg” row is an asynchronous stream to perform

Chapter 4. Training 3D CNNs with hybrid-parallelization 83

0 200 400 600 800 1000 1200

Time [ms]

I/O
Update
F. Comm.
F. Shuffle
F. Comp.
B. Comm.
B. Shuffle
B. AR
B. Comp.32

16

32

64

64

128

512

256

N
u

m
b

er
of

G
P

U
s

N
=

1
N

=
2
N

=
4
N

=
16

2.1 s/s (1.49x)

1.4 s/s

4.8 s/s (1.68x)

2.9 s/s

9.5 s/s (1.91x)

4.9 s/s

37.5 s/s (1.69x)

22.3 s/s

(a) Without batch-normalization layers (epoch 0)

0 200 400 600 800 1000 1200

Time [ms]

I/O
Update
F. Comm.
F. Shuffle
F. Comp.
B. Comm.
B. Shuffle
B. AR
B. Comp.32

16

32

64

64

128

512

256

N
u

m
b

er
of

G
P

U
s

N
=

1
N

=
2
N

=
4
N

=
16

2.1 s/s (1.49x)

1.4 s/s

4.8 s/s (1.68x)

2.8 s/s

9.5 s/s (1.91x)

4.9 s/s

37.5 s/s (1.68x)

22.3 s/s

(b) Without batch-normalization layers (epoch 1+)

0 200 400 600 800 1000 1200

Time [ms]

I/O
Update
F. Comm.
F. Shuffle
F. Comp.
B. Comm.
B. Shuffle
B. AR
B. Comp.32

16

32

64

64

128

512

256

N
u

m
b

er
of

G
P

U
s

N
=

1
N

=
2
N

=
4
N

=
1
6

2.1 s/s (1.72x)

1.2 s/s

4.1 s/s (1.69x)

2.4 s/s

8.5 s/s (1.70x)

5.0 s/s

31.8 s/s (1.61x)

19.7 s/s

(c) With batch-normalization layers (epoch 0)

0 200 400 600 800 1000 1200

Time [ms]

I/O
Update
F. Comm.
F. Shuffle
F. Comp.
B. Comm.
B. Shuffle
B. AR
B. Comp.32

16

32

64

64

128

512

256

N
u

m
b

er
of

G
P

U
s

N
=

1
N

=
2
N

=
4
N

=
16

2.1 s/s (1.72x)

1.2 s/s

4.1 s/s (1.69x)

2.4 s/s

8.5 s/s (1.70x)

5.0 s/s

32.0 s/s (1.60x)

20.0 s/s

(d) With batch-normalization layers (epoch 1+)

Figure 4.17: Strong scaling of the 3D U-Net with 2563 input cubes. Shaded bars show iteration
time predicted by the performance model. The figure format follows that of Figure 4.16.

Chapter 4. Training 3D CNNs with hybrid-parallelization 84

0 50 100 150 200 250

Time [ms]

S
tr

ea
m

Forward Backward Update

Main
Halo xchg
Allreduce

(a) N = 4, 5123, 8-way, 32 GPUs

0 50 100 150 200 250

Time [ms]

S
tr

ea
m

Forward Backward Update

Main
Halo xchg
Allreduce Allreduce

Halo xchg
(conv.)
Main

(b) N = 4, 5123, 16-way, 64 GPUs

Figure 4.18: Single-GPU execution timelines for training the CosmoFlow network with the
5123 input cubes. We use the mini-batch size of 4. We show one iteration of the root process’s
GPU of each run.

on-device halo exchanges; the “Allreduce” row corresponds to a stream used by the asynchronous all-

reduce operations by NCCL. From the beginning of back-propagation, NCCL starts to communicate

computed parameter gradients among processes asynchronously to the main computation stream.

Since the communication of gradient updates is done asynchronously, this does not block the compute

kernels. In both cases, the main streams are nearly fully packed, indicating the GPU compute units

are fully occupied. Similarly, the timelines indicate that the cost of our optimized halo exchanges is

almost negligible in these scenarios.

As shown in the figure, a speedup of approximately 1.66x is achieved using 2× the number of GPUs.

We see that the speedup from the 8-way to 16-way parallelization is mostly determined by the speedups

of the individual convolution kernels in the cuDNN library. In this work, we have exclusively relied on

cuDNN for optimized convolution kernels. These results indicate that they may not be well-tuned for

non-cube domains, as we only achieved a 1.66x speedup going from 8-way to 16-way parallelization.

Identifying the local compute kernels as the bottleneck to better scaling is also corroborated by our

performance model, shown in Figure 4.16b and Figure 4.17, which was generated by profiling cuDNN.

Nevertheless, the convolutional layers take up most of the GPU’s computation time, although the

model includes layer types other than the convolutional layers. Therefore, spatial partitioning is an

extremely suitable parallelization method for such a network, where convolutional layers are evenly

distributed across GPUs.

We further evaluate the computational efficiency by examining the performance of each cuDNN

Chapter 4. Training 3D CNNs with hybrid-parallelization 85

Table 4.9: Achieved performance of CosmoFlow convolution layers compared to the peak
performance of cuDNN.

Depth N Layer
Time Performance Peak perf. Relative
[ms] [TFlop/s] [TFlop/s] [%]

8-way 64 All 142.9 22.6 23.6 95.6
32-way 64 All 48.8 89.9 109.1 82.4
8-way 64 conv1 73.9 12.2 13.0 93.8
32-way 64 conv1 23.5 34.6 53.4 64.7

convolution kernel. Table 4.9 shows the achieved performance of each convolutional layer of

CosmoFlow with 5123 cubes and its peak performance estimated from cuDNN runtime. The “Time”

and “Performance” columns give the measured performance of our code (including halo

communication, etc.), measured with nvprof. In the “Peak perf.” column, we report the TFlop/s

achieved by running only the local cuDNN kernel for that configuration. This gives an effective upper

bound of the performance we can achieve using cuDNN in our configuration. Finally, we report the

achieved percent of this peak in the “Relative” column.

We observe that for CosmoFlow, we achieve 95.6% and 82.4% of this peak performance for 8- and

32-way partitioning, respectively. This indicates that the overhead of our distributed convolution is

relatively small than the computation itself. We also observe another benefit of strong scaling that the

potential peak performances exhibit super-linear scaling slightly. This is because a larger aggregated

memory space are available distributing the workload among more number of GPUs, which allows

cuDNN to use more efficient convolution algorithms.

We also examined which layer dominates runtime, and for CosmoFlow, we find that the first

convolutional layer accounts for almost half of the entire network runtime. This is due to the layer

processing the largest spatial dimensions. For 8-way partitioning, we achieve excellent scaling efficiency;

for 32-way partitioning, communication overheads limit increases but still enable overall performance

improvements.

While these results show good scaling efficiency for the achievable peak with cuDNN, the TFlops/s

achieved is relatively low compared to the theoretical peak of the hardware. This indicates that there

is significant potential for further optimizing 3D convolution kernels, as implied by other literature

[59].

4.3.3 Weak scaling

Weak scaling, the performance with a varying mini-batch size proportionally to the number of

processes, is a commonly-used metric to evaluate the performance of distributed deep learning

frameworks, even though it does not necessarily deal with the large-batch problem [87]. In this

section, we evaluate the weak scaling performance of our framework to that demonstrate that

hybrid-parallel training of 3D CNNs can scale on hundreds of GPUs. Note that the large-batch

Chapter 4. Training 3D CNNs with hybrid-parallelization 86

problem might not happen in our case because we apply spatial partitioning, which drastically

decreases the mini-batch size for a fixed amount of available computing resources (i.e., the number of

GPUs). Indeed, even we use 512 GPUs for a single training experiment in Section 4.3.4, the

mini-batch size is still 64, which is more than 100x smaller than the mini-batch size reported to be

problematic by the previous study [59].

Figure 4.19 shows our preliminary experiments using smaller CosmoFlow cubes (1283 and 2563).

At the time of this experiment, our CosmoFlow model did not have batch-normalization layers, and

spatially-partitioned I/O is not applied; yet, it achieves good weak scaling performance because the

time cost of I/O is constant to the number of GPUs. An important observation is that 2D partitioning

using 4 GPUs per sample (“4-way partitioning”) does not work better than 1D partitioning using

the same number of GPUs (“2 × 2-way”) for both cases. This is because when two different parallel

strategies use the same number of GPUs per sample, per-GPU computation workload (the number

of neurons per GPU) is almost the same, but the number of halo exchange steps is the number of

dimensions to be partitioned, which increases the communication cost. > 1 D partitioning is beneficial

for the case where each spatial width is too small to partition among a large number of GPUs. However,

our models, the CosmoFlow network and the 3D U-Net, have enough widths to utilize hundreds of

GPUs, and we observe a considerable performance drop when each sample is over-decomposed, so we

adopt 1D partitioning in this study.

Figure 4.20 shows the weak scaling performance of the two 3D CNNs with different input sizes. For

the CosmoFlow network with 1283 cubes, the data size used in the original paper, we use per-GPU

batch sizes of 8 and increase the global mini-batch size as we increase the number of GPUs. We

evaluate the performance using 4-way and 8-way partitioning for reference. In the 5123 case, we only

evaluate hybrid parallelization where each data sample is partitioned among 8, 16, or 32 GPUs as

nearly 53 GB of memory is required per sample as mentioned in Section 4.2.5.

In the case of CosmoFlow with 1283 cubes, our implementation achieves a nice speedup up to 512

GPUs (128 compute nodes) because of the high compute-to-communication ratio of the 3D CNNs,

and the asynchronous overlapped communication implementation of Aluminum. We achieve a 65.4x

speedup on 512 GPUs compared to 4 GPUs with the 1283 cubes. In this case, the highest efficiency

is achieved with the data-parallel scheme since the hybrid parallelization involves additional

communications due to halo exchanges.

With 5123, however, hybrid parallelization is required because the model is too large to fit into

the device memory of one GPU. We evaluate three configurations, 8-, 16-, and 32-way, and the global

mini-batch size is linearly increased as the number of GPUs is increased, resulting in 147.31x, 71.32x,

and 37.2x of speedup on 2048 GPUs over 8, 16, 32 GPUs (where the mini-batch size is 1), respectively.

With the 3D U-Net, we achieve good weak scalability (28.4x on 1024 GPUs over 32 GPUs with 32-way

partitioning) as well.

In all cases, increasing the spatial parallelism results in lower throughput due to the additional

Chapter 4. Training 3D CNNs with hybrid-parallelization 87

communication overhead as well as the decreased compute efficiency of the cuDNN kernels. Still, we

emphasize that the hybrid parallelization enables further speedups for a given fixed mini-batch size,

as is also shown in Section 4.3.2.

Comparison between prior work

Although many previous studies have evaluated hybrid parallel training of DNNs [45, 51, 52, 53, 131],

many of those codes have either not been incorporated into practical or publicly available frameworks

or have adopted methods other than spatial partitioning that are suitable for 3D CNNs [45, 132].

In this section, we compare our performance with Mesh-TensorFlow [133], an extension library to

a well-known framework TensorFlow, which applies spatial partitioning to DNNs. Note that Mesh-

TensorFlow only supports a single CPU or GPU node and TPU [134] clusters, but not multiple GPU

nodes.

In Figure 4.16, we compare with TensorFlow 2.2.0 [33] with Horovod 0.19.1 [100] (TF) for data

parallelism and Mesh-TensorFlow 0.1.16 (MeshTF) for hybrid parallelism. We convert the

CosmoFlow dataset into a set of TFRecord [135] files, each of which is a 1283 data cube in 16-bit

integers along with corresponding ground-truth parameters. We combine tf.data.TFRecordDataset

to create a TensorFlow dataset, and then apply shuffle and prefetch with the

tf.data.experimental.AUTOTUNE buffer size to mimic the behavior of our framework as much as

possible. We use the original NCDHW file format for the TensorFlow+Horovod experiment, but we

use the NDHWC format for the Mesh-TensorFlow experiment because it only supports the format

for convolutional layers.

TensorFlow with Horovod achieves similar performance to LBANN in the data-parallel regime for

1283 samples (Figure 4.20a). This is due to both frameworks using the same underlying computation

and communication libraries, cuDNN and NCCL (Figure 4.21), and indeed 88.8 % and 71.8 % of the

time are spent on cuDNN or NCCL on 16 nodes in LBANN and TensorFlow, respectively. However,

as we demonstrate in Section 4.3.4, increasing the input resolution is crucial to improve accuracy, and

thus enabling hybrid-parallel training is much more important for such applications.

On the other hand, as shown in Figure 4.20a, when hybrid-parallel is enabled, our framework

significantly outperforms Mesh-TensorFlow on one computing node that has 4 GPUs. Our framework

achieves 2.99x (52.86 samples/s on LBANN and 17.67 samples/s on Mesh-TensorFlow) of throughput

compared to Mesh-TensorFlow. Moreover, as we already explained, our framework is capable of scaling

to hundreds of GPUs, which makes it much more efficient than Mesh-TensorFlow. For the same reason,

5123 data cubes cannot be used with Mesh-TensorFlow because at least 8 GPUs are needed.

As a result of closer profiling on Mesh-TensorFlow, it turned out that Mesh-TensorFlow is

implemented on a wrong level of abstraction that creates an inefficient communication pattern.

Mesh-TensorFlow is implemented on top of the TensorFlow interface, which creates appropriate

communication operations to compute a given computational graph on multiple devices. Although

Chapter 4. Training 3D CNNs with hybrid-parallelization 88

Number of GPUs

4 8 16 32 64 128 256 512

102

103

104
T

h
ro

u
gh

p
u

t
[s

am
p

le
s/

s]
Data-parallel
Hybrid (4-way)
Hybrid (2× 2-way)
Hybrid (8-way)

(a) CosmoFlow without BN layers, 1283

Number of GPUs

4 8 16 32 64 128 256 512

101

102

103

T
h

ro
u

gh
p

u
t

[s
am

p
le

s/
s]

Data-parallel
Hybrid (4-way)
Hybrid (2× 2-way)
Hybrid (8-way)
Hybrid (16-way)

(b) CosmoFlow without BN layers, 2563

Figure 4.19: Weak scaling of the CosmoFlow network with different spatial partitioning.
We increase the global mini-batch size as we increase the number of GPUs. In the hybrid results, we
partition a single sample by multiple GPUs in its spatial domain.

Chapter 4. Training 3D CNNs with hybrid-parallelization 89

Number of GPUs

4 8 16 32 64 128 256 512

101

102

103

104

T
h

ro
u

g
h

p
u

t
[s

am
p

le
s/

s]
Data-parallel@TF
Hybrid (4-way)@MeshTF

Data-parallel
Hybrid (4-way)
Hybrid (8-way)
(Linear)

(a) CosmoFlow, 1283

Number of GPUs

8 16 32 64 128 256 512 1024 2048

101

102

103

T
h

ro
u

gh
p

u
t

[s
am

p
le

s/
s]

Hybrid (8-way)
Hybrid (16-way)
Hybrid (32-way)
(Linear)

(b) CosmoFlow, 5123

Number of GPUs

16 32 64 128 256 512 1024

100

101

102

T
h

ro
u

gh
p

u
t

[s
am

p
le

s/
s]

Hybrid (16-way)
Hybrid (32-way)
(Linear)

(c) U-Net, 2563

Figure 4.20: Weak scaling of the two different 3D CNNs. “Data-parallel” is executable only
in Figure 4.20a due to the GPU memory requirements. “@TF” and “@MeshTF” are TensorFlow with
Horovod and Mesh-TensorFlow, respectively.

Chapter 4. Training 3D CNNs with hybrid-parallelization 90

CPU CPU

GPU

MPI proc.

TF

X0

GPU

MPI proc.

TF

X1

GPU

MPI proc.

TF

X2

GPU

MPI proc.

TF

X3

Grad. sync. @ NCCL

Figure 4.21: The software stack of Horovod with data-parallelism. Xi is the i-th data sample.

CPU CPU

GPU

X
(0)
1

GPU

X
(1)
1

GPU

X
(2)
1

GPU

X
(3)
1

TensorFlow

Halo xchg @ gRPC

Grad. sync. @ gRPC

Figure 4.22: The software stack of Mesh-TensorFlow with model-parallelism. TensorFlow
launches a single process for each computing node, and it manipulates available GPUs on the node.
X(j) is the j-th partition of the data sample.

TensorFlow uses gRPC as the default communication backend and it is not explicitly mentioned how

this communication is done in the CUDA environment [33] (Figure 4.22), as we profile TensorFlow

processes, it is implemented by using P2P memory copy in the current version of TensorFlow (Figure

4.23). In fact, Mesh-TensorFlow’s P2P memory copy only occurs when model-parallelism is enabled

(Table 4.10). However, we observe that TensorFlow stalls at every memory copy operation, which

makes its performance significantly inefficient (Figure 4.24). We expect this inefficient

communication is why Mesh-TensorFlow performs poorly.

Chapter 4. Training 3D CNNs with hybrid-parallelization 91

Figure 4.23: TensorFlow’s GPU matrix multiplication (matmul) of two tensors.

(a) matmul on a single GPU

1 import tensorflow as tf
2
3 with tf.device(’/GPU:0’):
4 A = tf.random.uniform ([1024 , 1024] , dtype=tf.float32)
5 B = tf.random.uniform ([1024 , 1024] , dtype=tf.float32)
6 C = tf.matmul(A, B)

(b) Executed CUDA kernels on a single GPU

1 [CUDA memset]
2 void tensorflow ::..:: UniformDistribution ..
3 void tensorflow ::..:: UniformDistribution ..
4 [CUDA memcpy HtoD]
5 [CUDA memset]
6 volta_sgemm_128x32_nn
7 [CUDA memcpy DtoH]

(c) matmul on two GPUs

1 import tensorflow as tf
2
3 with tf.device(’/GPU:0’):
4 A = tf.random.uniform ([1024 , 1024] , dtype=tf.float32)
5 with tf.device(’/GPU:1’):
6 B = tf.random.uniform ([1024 , 1024] , dtype=tf.float32)
7 with tf.device(’/GPU:0’):
8 C = tf.matmul(A, B)

(d) Executed CUDA kernels on two GPUs

1 [CUDA memset]
2 void tensorflow ::.. UniformDistribution ..
3 [CUDA memset]
4 void tensorflow ::.. UniformDistribution ..
5 [CUDA memcpy HtoD]
6 [CUDA memcpy PtoP]
7 [CUDA memset]
8 volta_sgemm_128x32_nn
9 [CUDA memcpy DtoH]

Table 4.10: The number of kernels/memcpy of Mesh-TensorFlow on the CosmoFlow
network in one training iteration. We show the modes of the numbers in 128 iterations. We use
a mini-batch size of one.

Total HtoD DtoH DtoD PtoP
DP 351 22 2 96 0

4-way 596 24 2 85 122

Chapter 4. Training 3D CNNs with hybrid-parallelization 92

(a) data-parallelism

(b) 4-way partitioning

Figure 4.24: Timeline of Mesh-TensorFlow with data-parallelism and 4-way partitioning.
We use a mini-batch size of one. Each green range shows a rough estimation of the duration of one
training iteration. Note that the percentage of each kernel shown is calculated from the entire run,
which is not necessarily the same as the percentage of each training iteration.

Chapter 4. Training 3D CNNs with hybrid-parallelization 93

4.3.4 CosmoFlow model accuracy improvement with 5123 data cubes

Our original motivation is to improve the convergence of 3D CNNs by providing high-resolution 3D data

that cannot be used on GPUs without hybrid-parallelism. Therefore, in this section, we demonstrate

that this assumption holds for the CosmoFlow dataset by conducting end-to-end training using the

original data size, four-channels, 5123 3D cube.

Figure 4.25 shows the training results of our CosmoFlow network variant with the full-resolution

dataset (5123) and its split versions (1283 and 2563). We swept the initial learning rate from 10−4

to 10−2 logarithmically and show the results with the best configuration. We train all networks for

130 epochs with a mini-batch size of 64 in every configuration, and use the 4-way partitioning (256

GPUs in total) for the networks without batch normalization layers, or 8-way (512 GPUs in total)

for networks with batch normalization, due to the increased memory requirements. To account for

training variance, we show the median result of five trials with different initial random seeds.

We observe that the test loss significantly decreases as we increase the dataset size to 0.0169 MSE

with 2563 and 0.00727 MSE with 5123 data. Adding batch normalization improves this result further,

to 0.00445 MSE, achieving an order-of-magnitude improvement compared to the baseline 1283 data.

At the same time, we get 2.79x of speedup from 1283 to 5123 with the same number of GPUs and

the same mini-batch size. This result implies that CNNs can be trained with the same computing

resources and dataset size, but with a smaller mini-batch and small overheads (see Section 4.3.3). This

brings an opportunity to keep mini-batch sizes fixed and strong-scale onto more GPUs for speedup.

Figure 4.26 shows the correlation between the predicted and actual cosmological parameters of our

networks with different input sizes. We clearly demonstrate improvements in the quality of predictions

with increasing data volume size. In particular, the prediction of H0 (the Hubble constant) shows

the most improvement in accuracy with increasing data volume size. We assume that this is because

the variable is related to the large-scale expansion of the universe. As cosmological simulations move

to sub-percent measurements, being able to test the quality of the surrogates via a greatly improved

CosmoFlow network, with an order of magnitude improvement in the measurement of the cosmological

parameters, is the only way to validate the quality and precision of the models quickly.

Table 4.11 shows the relative prediction errors of each parameter. This again clearly shows that

using larger data volumes improves the prediction quality for all parameters. Note that, while the

prior work on CosmoFlow achieved a lower absolute error for Ωm, σ8, ns cosmological constants, it is

not directly comparable because the datasets used are different; this updated dataset has a broader

dynamic range for each of the cosmological parameters, plus an additional parameter to predict (H0),

increasing the parameter space by two orders of magnitude. Hence, the difficulty of predicting the

four parameters is much more serious than with the previous dataset. Nevertheless, we achieve similar

errors with our models trained on 5123 data.

Chapter 4. Training 3D CNNs with hybrid-parallelization 94

0 20 40 60 80 100 120

Epoch

L
os

s

130

10−3

10−2

10−1

100

101

0.0441
0.0165

0.0075
0.0044

1283, η(0) = 5.0× 10−4 (min.)
2563, η(0) = 1.0× 10−3 (min.)
5123, η(0) = 1.0× 10−3

5123, BN, η(0) = 1.0× 10−3

(a) Epoch

0 1 2 3 4 5 6

Time [h]

L
o
ss

10−3

10−2

10−1

100

101

5.99 h

0.0441

2.52 h

0.0165

2.15 h

0.0075 2.08 h

0.0044

1283, η(0) = 5.0× 10−4 (min.)
2563, η(0) = 1.0× 10−3 (min.)
5123, η(0) = 1.0× 10−3

5123, BN, η(0) = 1.0× 10−3

(b) Time

Figure 4.25: Training of the CosmoFlow network with different input resolutions. The
solid and dashed lines show training and validation losses, respectively. The points show the smaller
validation losses. For 1283 and 2563, we show the minimum loss values at each point in time for
visibility.

Table 4.11: Comparison of relative prediction errors.

Ωm σ8 ns H0

Previous work [59] 0.0022 0.0094 0.0096 N/A
1283 0.0380 0.0380 0.0394 0.0751
2563 0.0234 0.0241 0.0256 0.0468
5123 0.0158 0.0167 0.0188 0.0285

5123, BN 0.0102 0.0126 0.0142 0.0241

Chapter 4. Training 3D CNNs with hybrid-parallelization 95

-1 0 1
Ωm

′
-1 0 1

σ8
′

-1 0 1
ns

′
-1 0 1

H0
′

-1

0

1

5
12

3
,

B
N

-1

0

1

51
2
3

-1

0

1

25
6
3

-1

0

1
12

8
3

True

P
re

d
ic

te
d

MSE=0.0018

MSE=0.0050

MSE=0.0094

MSE=0.0289

MSE=0.0031

MSE=0.0056

MSE=0.0103

MSE=0.0237

MSE=0.0032

MSE=0.0061

MSE=0.0101

MSE=0.0230

MSE=0.0092

MSE=0.0147

MSE=0.0364

MSE=0.0872

-0.5 0 0.5
Ωm

′
-0.5 0 0.5

σ8
′

-0.5 0 0.5
ns

′
-0.5 0 0.5

H0
′

0

5

10

15

Residual

D
en

si
ty

1283

2563

5123

5123, BN

Figure 4.26: True and predicted cosmological parameters from four different configurations.
The bottom figure shows the distribution of the residuals. The parameters are normalized to [−1, 1].
In the top figure, we show 200 randomly chosen data points for visibility.

Chapter 5

Related work

The issue of GPU memory capacity often comes up in deep learning applications. Although our

two proposed methods optimize intra-processor and inter-processor performance, respectively, their

common objective is to maximize the computational efficiency within limited GPU memory constraints.

Even though hybrid-parallel training partially resolves the problem by distributing per-sample data

among multiple GPUs, it is still common to maximize the use of GPU memory by increasing the local

batch size, and thus the workspace issue still arises. In fact, the original study of the CosmoFlow

network [118] also reported that the trade-off between memory usage and computation speed by FFT-

based convolution appeared in the real application, which implies that there is a great demand for

methods that automatically tune convolution algorithms independent of the users’ tuning skills and

knowledge of computer science.

In this chapter, we classify prior studies about optimizing the computational efficiency of deep

learning frameworks and applications into two classes, intra-processor and inter-processor optimization,

and discuss their advantages and disadvantages compared to our work.

5.1 Optimizing intra-processor parallelism

Li et al. [136] propose a heuristic to tune each tensor’s memory layout of CNNs to utilize either

GEMM-based or FFT-based convolution efficiently. The proposed heuristic is, however, based on the

authors’ performance observation using several conventional convolutional layers and specific GPU

architecture. Thus there is no guarantee that the algorithm always provides the best memory layout

for unseen CNNs and GPU architecture. On the other hand, µ-cuDNN uses dynamic programming

and integer linear programming/ Thus it is guaranteed that µ-cuDNN provides the best performance

that the library can produce for a given GPU architecture.

Rhu et al. [81] propose a memory management technique that offloads neuron activations, errors,

and network parameters from the GPU memory to the CPU memory during forward-/backward-

96

Chapter 5. Related work 97

propagation so that users can train larger models with the same memory constraint. However, as we

show in Section 3.3 even in such memory-efficient implementations or similar memory management

techniques [86] µ-cuDNN is expected to save the peak memory usage of each layer. Moreover, we

revealed that there are cases where careful algorithm selection is needed to improve the performance

even when sufficient workspace is given, which is solved by µ-cuDNN.

Zlateski et al. [75] propose ZNNi, an FFT-based convolution algorithm, and they mention a

technique similar to µ-cuDNN to reduce the temporal memory usage by the algorithm. In our work,

we generalize the schema so that loop splitting can be applied to any convolution algorithm, obtain

the best computational performance for the given layer configurations, and maintain high portability

between different deep learning frameworks.

The issue of GPU memory capacity often comes up in deep learning applications. We discuss

another strong approach to mitigate the memory pressure, hybrid-parallel training, in Chapter 4.

Still, it is common to maximize the use of GPU memory even when hybrid-parallelism is utilized, and

thus the workspace issue still arises.

5.2 Optimizing inter-processor parallelism

As we explained in Section 2.2, there are various ways to parallelize the computation of deep learning

frameworks; Tal et al. [25] conducted a comprehensive survey about various parallelization strategies

for DL frameworks. The idea of dividing a problem into multiple processors is very common in the

computer science domain. Thus even before the release of early DL frameworks such as Caffe [38]

and TensorFlow[33], model-parallel model training using multiple GPUs was already proposed. For

example, Krizhevsky et al. [45] trained a CNN known as AlexNet on two NVIDIA GTX 580 GPUs.

They applied channel partitioning to reduce the memory footprint per GPU and allowed only a few

layers to exchange their channels for reducing the communication overhead. Dean et al. [51] proposed

DistBelief, which employs thousands of CPU cores to apply arbitrary partitioning on a neural network

and adopts parameter server synchronization to update local parameters asynchronously. Coates et

al. [52] implemented spatial partitioning for 2D networks on a GPU cluster. Chilimbi et al. [53]

proposed the Adam framework similar to DistBelief that can adjust multiple parallelism degrees using

hybrid-parallelism and the parameter server mechanism.

The TensorFlow framework [33], one of the most well-known machine learning frameworks, has a

similar concept to DistBelief; it regards a model as a computational graph and assigns each processor

to one or more nodes of the graph so that users can split the model freely without worrying about

implementation limitations. Indeed, this philosophy has the advantage of exploiting

hybrid-parallelism more quickly than other frameworks such as LBANN that were designed with the

intention of data-parallelism. For instance, GPipe [132] implements layer pipelining on the top of the

TensorFlow interface. Similarly, Mesh-TensorFlow [133, 137] implements spatial partitioning; it

Chapter 5. Related work 98

allows users to specify how each tensor is split in each dimension/ It then inserts appropriate

communication automatically to perform model-parallel training. The authors evaluated its

performance on the Transformer [91] model [133], and the 3D U-Net [137], using hundreds of TPU

[134] cores. They also reported that they successfully trained the 3D U-Net with an input resolution

of 5123. In Section 4.3.3, however, we find that the timing of communication in this library is

dependent on the implementation of TensorFlow and that it is not fully optimized to perform spatial

partitioning for 3D CNNs on a GPU cluster, so the LBANN framework with our hybrid-parallel

extension still outperforms Mesh-TensorFlow. We also emphasize that Mesh-TensorFlow does not

support multiple GPU nodes that is a severe limitation on parallelism, while our framework runs on

hundreds of GPUs.

Several studies applied performance modeling for hybrid-parallel training on deep learning

frameworks [102, 103, 104]. While these studies focus on relatively small models where data-parallel

training is possible, we show in this work that performance modeling is still useful for estimating

training throughput for huge models where data-parallel training is infeasible.

FlexFlow [131] is another deep learning framework that considers the sample, operation, attribute,

and parameter dimensions distributed among GPUs. The framework can minimize the execution

time of a given DNN architecture by using a simulator to estimate the execution time of a given

computational graph, and the Markov Chain Monte Carlo (MCMC) search algorithm to explore the

parallelization strategy design space. However, it is still limited to 2D networks, even though 3D

models truly require hybrid-parallelism, as we show in this chapter.

The Distconv library [104, 122] implements spatial and channel partitioning for 2D CNNs. We

extend the library to support various types of 3D CNNs, as we explain in this chapter. We also

demonstrate that appropriate hybrid parallelization of I/O is also necessary to handle high-dimensional

models, which has not been done in the prior work.

Several methods have been proposed to manage GPU memory efficiently to handle huge models

without explicitly dividing them [81, 82, 83]. One type of such approaches is to copy tensors from/to the

CPU memory during forward and backward passes, not to overflow the GPU memory. This memory

copy often overlaps with computation to minimize the overhead. The advantage of this method is that

the framework itself does not need to be modified fundamentally. In fact, ooc cuDNN [82] proposes

a transparent implementation using the cuDNN interface. Also, NVIDIA’s Unified Memory [138]

allows frameworks to use CPU memory almost entirely transparently. Specifically, it is suited to

architectures with high CPU-GPU communication bandwidth, such as Lassen nodes (Figure 4.15).

Another technique is to reacquire intermediate data by discarding tensors calculated at the beginning

of the pass and recomputing it later in the pass [83, 84, 85].

While these methods have proven to be effective for several different models, we believe that spatial

partitioning is the most suitable per-GPU data size reduction method for 3D CNNs. This is because

it cannot scale with the model size in the same way as data-parallelism; for example, the CosmoFlow

Chapter 5. Related work 99

network with batch-normalization layers example requires about 100 GiB of memory to compute one

sample, and Lassen’s architecture cannot allocate this size of memory per GPU in the combined CPU

memory. Furthermore, the 3D U-Net requires a larger memory size than that. Also, the amount of

data moved by offloading methods or computed by recomputation methods is W 3, where W is the

spatial width, while that by spatial partitioning is W 2. Even if we consider that the CPU-GPU memory

bandwidth and the communication bandwidth between two GPUs on different nodes differ by a factor

of ten, the communication overhead of the offloading method is not very small compared to spatial

partitioning. Therefore, model-parallelism is still necessary to train such extremely high-resolution 3D

CNNs.

Chapter 6

Discussion

In this chapter, we discuss implications and future work of our main two research topics explained in

Chapter 3 and Chapter 4.

6.1 Automatic optimization of computational kernels

In Chapter 3, we have shown that loop splitting can significantly speed up convolutional computation,

which accounts for the majority of deep learning computations. In this section, we discuss further

whether it is possible to extend this algorithm for more general software and computational content.

6.1.1 Implications and possible future work

As we mentioned, our method is applicable to a wide range of CNNs and DL frameworks, and thus

our method is expected to accelerate the training and inference of various CNNs. In our basic loop

algorithm, µ-cuDNN requires no additional information than that passed through the cuDNN interface,

it is possible that the proposed algorithm is incorporated into cuDNN itself.

Applying the µ-cuDNN method for different tensor layout

In this section, we discuss the speedup using the NHWC memory layout. Many frameworks use

the NCHW format (Table 3.7), i.e., each element of the tensor is stored sequentially in the order

of the spatial, channel, and sample dimensions. For example, in FFT-based convolution, since the

transformation is performed for each channel, the NCHW format is regarded to be efficient because

the elements in the spatial dimension are contiguous. On the other hand, in GEMM-based convolution,

since the multiply-add operation is performed on all input channels, the NHWC format is considered

to be efficient. In fact, cuDNN recommends using the NHWC format when using Tensor Cores that

are specialized in multiply-add [139]. In addition, when performing convolution using Tensor Cores in

100

Chapter 6. Discussion 101

Table 6.1: GPU trace of DeepBench’s 1× 1 convolution layer in different memory formats.

(a) NCHW

Duration [us] Name
37.12 nchwToNhwcKernel< half, half, float, bool=1>

2.176 cudnn::gemm::computeOffsetsKernel

126.431 volta h884cudnn 256x128 ldg8 relu exp interior nhwc tn v1

11.2 nhwcToNchwKernel< half, half, float, bool=1>

(b) NHWC

Duration [us] Name
2.208 cudnn::gemm::computeOffsetsKernel

127.264 volta h884cudnn 256x128 ldg8 relu exp interior nhwc tn v1

Table 6.2: The support status of ONNX.

Framework Exporting Importing
Caffe2 ✓ ✓
PyTorch ✓
CNTK ✓ ✓
MXNet (✓)
Chainer ✓
TensorFlow (✓)

the NCHW format, extra kernels are executed before and after the main convolution kernel to perform

the format conversion (Table 6.1), and thus, NHWC is inevitably faster.

We evaluate the relative speedups of DeepBench’s convolution kernels by switching the data layout

from NCHW to NHWC in Figure 6.1. The speedup is significant when using Tensor Cores, especially

for the 1×1 kernels, which can run efficiently without redundant memory copies. On the other hand, the

3×3 and 5×5 kernels, which are frequently used as much as 1×1 kernels, do not necessarily get faster.

This implies that there is room to accelerate convolution by adaptively switching the memory layout

in a similar way µ-cuDNN tunes the batch size and convolution algorithms. Furthermore, cuDNN’s

workspace interface allows µ-cuDNN to do such optimization on memory layouts by considering the

memory conversion overhead in terms of both time and workspace size.

Implementation-independent micro-batching using ONNX

Open Neural Network eXchange (ONNX) [140] is a data format to exchange model definitions between

different deep learning frameworks. ONNX provides a way to describe computational graphs and

defines primitives as nodes of the graphs. Since each deep learning framework has different advantages

(such as support for specific accelerators or support for recently proposed layer types), ONNX aims at

allowing users to exploits such advantages by exchange models between frameworks. Many frameworks

support importing and exporting ONNX models (Table 6.2). Figure 6.2 shows an example code to

define a convolution node with the Chainer framework and ONNX.

Chapter 6. Discussion 102

0.0

0.5

1.0

1.5

2.0

2.5

S
p

ee
d

u
p

s
of

N
H

W
C

ag
ai

n
st

N
C

H
W

1x1
3x3
5x5
7x7
10x5
20x5

K80 P100 P100
(half)

V100 V100
(half)

V100
(Tensor Cores)

Figure 6.1: Speedups of convolutional layers with the NHWC format compared to the
NCHW format. The bold line, edges, and whiskers of each box show the median, 1Q/3Q, and the
minimum/maximum values, respectively.

Figure 6.2: Making an ONNX convolution node.

1 >>> import onnx
2
3 >>> node_with_padding = onnx.helper.make_node(
4 ’Conv’,
5 inputs =[’x’, ’W’],
6 outputs =[’y’],
7 kernel_shape =[3, 3],
8 pads=[1, 1, 1, 1],
9)

10
11 >>> node_with_padding
12 input: "x"
13 input: "W"
14 output: "y"
15 op_type: "Conv"
16 attribute {
17 name: "kernel_shape"
18 ints: 3
19 ints: 3
20 type: INTS
21 }
22 attribute {
23 name: "pads"
24 ints: 1
25 ints: 1
26 ints: 1
27 ints: 1
28 type: INTS
29 }
30
31 >>> type(node_with_padding)
32 onnx_pb2.NodeProto

Chapter 6. Discussion 103

User

ONNX FrameworkFramework

µ-cuDNN

C P C P

CNN

C

C

P

C

C

C

P

Micro-batched CNN

Figure 6.3: Combining the µ-cuDNN method with ONNX. Note that “µ-cuDNN” represents
the WR algorithm, but not the C++ library itself.

In this section, we prototype an ONNX-based Python auto-tuning library to apply µ-cuDNN’s

loop splitting algorithm to CNNs in ONNX, but without integrating the µ-cuDNN library with the

framework (Figure 6.3). The motivation here is to reduce users’ effort to adopt our method and provide

performance portability among frameworks. Although our library can be combined with any deep

learning frameworks that employ cuDNN, and users don’t have to modify the logic of the frameworks,

it is troublesome to compile a deep learning framework from scratch due to its complicated software

dependencies. In our new proposal, users no longer modify the framework and compile to incorporate

µ-cuDNN by using the common model exchange format. Note that we only assume optimizing CNNs

in terms of forward computation time because ONNX does not support backward computation,

This library assumes the following scenario to apply µ-cuDNN’s WR algorithm to CNNs:

1. Users construct a CNN model on a deep learning framework. The data type of the model depends

on the framework, so distinct implementation is required to apply auto-tuning to its convolutional

layers.

2. Users convert the model to the equivalent ONNX model. Specifically, its convolutional layers are

converted to ONNX’s Conv nodes.

3. The library applies the WR algorithm to the ONNX version of the model. It is the users’

responsibility to implement a function that takes an ONNX model and the mini-batch size as

input and output time to compute the forward pass. Since it is not possible in ONNX to apply

convolution for a subset of a mini-batch, we insert Split and Concat nodes between split Conv

nodes so that each Conv node computes a subset.

4. The library returns the transformed ONNX model to the users, and users re-transform the model

to the framework.

Figure 6.4 shows AlexNet before and after the WR transformation on Chainer v4.4.0. We achieve

a 1.41x speedup (55.7 ms to 39.4 ms), including all other operations on V100-SXM2 GPU, which is

Chapter 6. Discussion 104

similar to the speedups we observed in Section 3.3.2. This implies that the WR algorithm does not

necessarily require modifying the framework code but can be fulfilled by using ONNX. Since deep

learning frameworks usually rely on many dependency libraries for computation, communication, and

file accesses, and thus much effort is required to compile from scratch, the ONNX-based approach has

an advantage that users can easily enjoy speedups just by using the library externally.

Applying the µ-cuDNN method for other layer types

Our proposed method does not depend on the computational content of the layer itself but is applicable

as long as the computational efficiency varies nonlinearly with the workspace limit or batch size. Thus,

we conduct a sensitivity analysis of the computational performance using ResNet’s batch-normalization

layers. Figure 6.5 shows the change in execution time when architecture parameters (the number

of channels (C) and spatial width/height (W,H)) of the last batch-normalization layer of ResNet’s

“conv2” block are varied. We add ±1,±2,±4, · · · to the default parameters. When the mini-batch

size is 32, it gets 1.25x faster by increasing the layer width, W is increased from 55 to 56, which is

counterintuitive. This is because the global memory throughput is reduced because the 2D tensor

size of each channel is not a multiple of the cache line size, 128 bytes (Table 6.3). Although µ-

cuDNN utilizes the characteristics of cuDNN’s convolutional layers that various algorithms that have

different performance advantages are available, this type of performance nonlinearity is quite common

in computer science; for example, we previously reported that the performance of cuBLAS’s GEMM

in a deep learning framework varies with different matrix sizes drastically [113], which implies that it

internally selects different GEMM algorithms (in fact, the cublasGemmEx routine allows users to specify

a GEMM algorithm explicitly [141]). This result motivates us to split the dimensions other than the

sample dimension. As we mentioned, the runtime configurations of convolutional layers, especially

on NVIDIA GPUs, are complex and could allow for a broader scope of exploration of µ-cuDNN’s

optimization algorithm. However, when dividing dimensions other than the sample dimension, an

additional memory copy is required because the memory addresses are not continuous, and thus this

overhead needs to be considered in the optimization algorithm. In addition, since there is room for

speeding up layer types other than convolutional layers by such a method, a more general method

can be considered, which applies graph transformations to divide arbitrary dimensions to improve the

kernel performance.

6.2 Training 3D CNNs with hybrid-parallelization

In Chapter 4, we demonstrated that end-to-end training of high-resolution 3D data, which was

infeasible in previous studies, can be achieved by implementing hybrid-parallel training. Although

the method of splitting 3D data between GPUs is already known in the context of parallel stencil

computations, we implemented it in a practical deep learning framework and evaluated its

Chapter 6. Discussion 105

(a) Before
transformation

(b) After transformation

Figure 6.4: Visualization of AlexNet on the micro-batching technique on V100-SXM2.

Chapter 6. Discussion 106

W,H

C

39 47 51 53 54 55 56 57 59 63 71

240
248
252
254
255
256
257
258
260
264
272

0.53
0.55
0.57
0.56
0.57
0.57
0.57
0.58
0.58
0.59
0.60

0.72
0.76
0.77
0.76
0.77
0.77
0.77
0.78
0.78
0.78
0.81

0.81
0.86
0.87
0.87
0.87
0.88
0.88
0.88
0.89
0.90
0.92

0.86
0.92
0.93
0.93
0.93
0.93
0.94
0.95
0.95
0.96
0.98

0.83
0.88
0.89
0.89
0.88
0.89
0.88
0.90
0.90
0.91
0.93

0.93
0.98
0.99
1.00
1.00
1.00
1.00
1.01
1.01
1.03
1.05

0.75
0.78
0.79
0.80
0.79
0.80
0.80
0.81
0.81
0.82
0.84

1.00
1.05
1.07
1.07
1.07
1.07
1.08
1.08
1.08
1.10
1.13

1.05
1.10
1.12
1.13
1.13
1.13
1.13
1.14
1.15
1.16
1.19

1.17
1.24
1.24
1.26
1.25
1.26
1.26
1.27
1.27
1.30
1.34

1.44
1.53
1.55
1.56
1.56
1.57
1.58
1.59
1.59
1.61
1.67

Figure 6.5: Relative time to compute ResNet’s batch-normalization layer with cuDNN on
V100-SXM2. We use Chainer v4.4.0, CuPy 5.0.0b4, cuDNN 7.1.4, CUDA 9.2. The number in each
cell shows the time relative to the center cell. We measure each configuration for 100 times after three
times of warmup runs and report relative median time.

Table 6.3: Profiling results of ResNet’s batch-normalization layer. We use the same software
and libraries to Table 6.5.

Global Transactions Shared Transactions
Load Store Load Store # of FLOPs

(Throughput [GB/s]) (Throughput [GB/s])

W = 55
6290498 3779584 39850 8788

342299136
(360.91) (216.85) (9.15) (2.02)

W = 56
6439424 3212288 32085 8813

354906624
(488.47) (243.67) (9.74) (2.67)

Chapter 6. Discussion 107

performance to show that it contributes to the improvement of learning accuracy so that the

practicality of this approach is clearly demonstrated. In this section, we further discuss the possible

implications of this work, a comparison between prior work and our future work.

6.2.1 Predicting multi-dimensional partitioning performance

In this section, we estimate the benefits of splitting 3D CNNs into multiple dimensions. Although

the current proposed framework supports only 1D partitioning, decomposition in multiple dimensions

may further speed up the training by utilizing a greater number of processes. Therefore, we study the

effect on the two models using our performance model.

Figure 6.6 and Figure 6.7 show the predicted time of the two networks using 1D to 3D partitioning

strategies. Since the time of each computation kernel on a single GPU can be greatly mispredicted by

unnecessarily slow algorithms (as we observed in Chapter 3), we use the linear heuristic model that we

used to estimate SR(D) (Section 4.2.4) to predict the computation time on unseen spatial domains. In

both figures, we assume the number of available nodes is 512 nodes (2048 GPUs) of Lassen’s 792 nodes;

for example, 8×8×1-way partitioning, where the two spatial dimensions of each sample is partitioned

among 8 GPUs, respectively, is infeasible with a mini-batch size (N) of 64 on the CosmoFlow network

because it requires 1024 nodes (4096 GPUs).

In Figure 6.6, we can see that when the mini-batch size is sufficiently small, 2D partitioning is

slightly faster than 1D partitioning. This is because the kernel computation time (“F.” and “B.

Comp.”) is distributed to more number of GPUs, but also the shuffle time (“F.” and “B. Shuffle”) is

reduced because the timing at which LBANN aggregates the layer data to the root GPUs is shifted

backward in the network. When the mini-batch size is 64, however, 1D partitioning achieves the best

throughput because the number of GPUs per sample is limited to up to 32 to keep the total number

of GPUs below the limitation; in this case, 32×1×1 outperforms 8×4×1 and 4×4×2 as we already

discussed in Section 4.3.3. A similar result is found in Figure 6.7, but in the case of the 3D U-Net,

the spatial width of the layer (up to 256) is smaller than the CosmoFlow network (up to 512), so as

the number of GPUs per sample increases the overhead increases and a good speedup is not obtained.

Considering that N = 64 is a mini-batch size that is actually used for training (Section 4.3.4), these

results imply that if the amount of available computing resources is fairly limited (for example, 2048

GPUs in our case), the 1D partitioning method is the most reasonable strategy for practical training.

Even on the Sierra supercomputer [142], which shares the same node architecture as Lassen but has

4320 nodes in total, we can still keep the mini-batch size smaller than thousands (the upper limit of

which has been reported to degrade accuracy in the previous work) only with 1D partitioning. We also

note that multi-dimensional partitioning techniques will be necessary for much more massive parallel

environment such as the Fugaku supercomputer [143]; Fugaku is composed of 158976 nodes, each of

which equips an A64FX CPU chip, which has computational performance and amount of memory of a

similar order to a V100 GPU. Moreover, the CPUs are connected with Tofu Interconnect D, which is

Chapter 6. Discussion 108

0 100 200 300 400

Time [ms]

I/O
Update
F. Comm.
F. Shuffle
F. Comp.
B. Comm.
B. Shuffle
B. AR
B. Comp.

8x8x8
4x4x4
2x2x2

16x16x1
8x8x1
4x4x1
4x2x1

128x1x1
64x1x1
32x1x1
16x1x1
8x1x1
8x8x8
4x4x4
2x2x2

16x16x1
8x8x1
4x4x1
4x2x1

128x1x1
64x1x1
32x1x1
16x1x1
8x1x1
8x8x8
4x4x4
2x2x2

16x16x1
8x8x1
4x4x1
4x2x1

128x1x1
64x1x1
32x1x1
16x1x1
8x1x1
4x4x4
2x2x2
8x8x1
4x4x1
4x2x1

128x1x1
64x1x1
32x1x1
16x1x1
8x1x1
4x4x2
2x2x2
8x4x1
4x4x1
4x2x1

32x1x1
16x1x1
8x1x1

P
a
rt

it
io

n
in

g
N

=
1

N
=

2
N

=
4

N
=

16
N

=
64

13.0 s/s
10.3 s/s

3.2 s/s
14.2 s/s

11.2 s/s
5.7 s/s

3.3 s/s
7.3 s/s

10.7 s/s
9.2 s/s

6.4 s/s
3.4 s/s

26.4 s/s
20.3 s/s

6.4 s/s
28.4 s/s

21.9 s/s
11.2 s/s

6.5 s/s
14.5 s/s

21.0 s/s
18.0 s/s

12.6 s/s
6.7 s/s

53.6 s/s
40.2 s/s

12.8 s/s
57.7 s/s

43.5 s/s
22.1 s/s

12.9 s/s
29.0 s/s

41.7 s/s
35.4 s/s

24.9 s/s
13.3 s/s

163.0 s/s
50.4 s/s

176.6 s/s
87.1 s/s

50.8 s/s
118.2 s/s

168.9 s/s
141.0 s/s

98.2 s/s
52.6 s/s

504.6 s/s
201.3 s/s

536.7 s/s
350.8 s/s

203.1 s/s
575.8 s/s

396.2 s/s
210.1 s/s

Figure 6.6: Predicted strong scaling of the CosmoFlow network with multi-dimensional
partitioning. The figure format follows that of Figure 4.16. Labels are colored by the number of
dimensions to be split. Each number in red and bold font represents the fastest partitioning in the
same mini-batch size. We only show our prediction after the first epoch when I/O is hidden efficiently.

Chapter 6. Discussion 109

0 500 1000 1500

Time [ms]

I/O
Update
F. Comm.
F. Shuffle
F. Comp.
B. Comm.
B. Shuffle
B. AR
B. Comp.

8x8x8
4x4x4
4x2x2

16x16x1
8x8x1
4x4x1

64x1x1
32x1x1
16x1x1
8x8x8
4x4x4
4x2x2

16x16x1
8x8x1
4x4x1

64x1x1
32x1x1
16x1x1
8x8x8
4x4x4
4x2x2

16x16x1
8x8x1
4x4x1

64x1x1
32x1x1
16x1x1
4x4x4
4x2x2
8x8x1
4x4x1

64x1x1
32x1x1
16x1x1
4x2x2
8x4x1
4x4x1

32x1x1
16x1x1

P
a
rt

it
io

n
in

g
N

=
1

N
=

2
N

=
4

N
=

16
N

=
64

2.0 s/s
1.6 s/s

0.8 s/s
2.6 s/s

2.0 s/s
0.9 s/s

2.7 s/s
2.4 s/s

1.3 s/s
4.0 s/s

3.2 s/s
1.7 s/s

5.3 s/s
4.0 s/s

1.9 s/s
5.4 s/s

4.9 s/s
2.6 s/s

7.9 s/s
6.4 s/s

3.4 s/s
10.6 s/s

8.0 s/s
3.7 s/s

10.8 s/s
9.7 s/s

5.3 s/s
25.4 s/s

13.4 s/s
31.8 s/s

14.9 s/s
43.3 s/s

38.9 s/s
21.0 s/s

53.6 s/s
91.9 s/s

59.6 s/s
155.6 s/s

84.1 s/s

Figure 6.7: Predicted strong scaling of the 3D U-Net with multi-dimensional partitioning.

suitable for multi-dimensional mesh communication. In such an environment, the multi-dimensional

decomposition method is considered to be the best way to perform system-wide training.

6.2.2 Implications

In this study, we have shown that hybrid parallelization enables the training of DNNs with high-

resolution, high-dimensional data that could not be used before. This finding makes it possible to

discover domain-specific knowledge in various fields that could not be discovered by data-parallel

training alone; indeed, in Section 4.3.4, we showed that our framework improves the inference accuracy

in parameter estimation of the cosmological data. By using our framework, domain scientists can not

only train such models with increased spatial resolutions but also increase the number of channels per

channel and the number of layers unless the per-layer memory footprint exceeds the GPU memory

capacity.

As we introduced in Section 5.2, a number of studies have been done to train specific types of

DNNs using hybrid parallelism. However, as explained in Section 2.2 and Section 5.2, model-parallel

training is still not commonly used because it is a method that does not work well without careful

consideration of the number of available processors and the characteristics of the model to determine

how to distribute the model. In fact, as we have shown in Section 4.3.3, to the best of our knowledge,

Chapter 6. Discussion 110

our proposed framework is the most efficient among deep learning frameworks to train high-resolution

3D CNNs on a GPU cluster by a spatial partitioning. However, as we have explained in Section 2.2.3,

the optimal model parallelization strategy depends on the model’s architecture. For example, our

spatial decomposition method is not appropriate for an MLP or LSTM network with fully-connected

layers since it requires all-to-all collective communication instead of light neighbor communication.

Therefore, in order to implement a general-purpose hybrid parallel training framework for a wide

range of network architectures, it is necessary to integrate these methods. In this respect, LBANN

supports spatial decomposition of 2D and 3D networks and 2D channel decomposition, which makes

hybrid-parallel training easier than other frameworks. In addition, when training multi-modal models,

such as a model that generates caption from images [144], it is expected that different parallelization

methods will need to be applied to different parts of the network.

6.2.3 Future work

In this section, we discuss possible future work that extends our work in various ways, such as improving

computational performance and training more complex deep learning models.

Multi-dimensional partitioning support

As we mentioned earlier, Our I/O pipeline assumes only 1D partitioning because we found in our

preliminary evaluation that increasing the number of spatial partitions worsens the computational

efficiency of each computation kernel and makes it difficult to obtain a good speedup (which is also

implied in Figure 4.18). However, it is assumed that this strategy is not optimal for higher-dimensional

data or data whose degree is higher than 3D, which requires a higher number of spatial partitions.

Also, this does not support the case where the channel dimension is partitioned. Therefore, it is

necessary to support such more complex parallelization methods to deal with more diverse scientific

data in massively parallel environments.

Using a dataset beyond CPU memory

As we have shown in this thesis, if a large, high-resolution scientific dataset such as the CosmoFlow

dataset is used for training, users need to pay close attention to the I/O performance. Benchmarks

such as the ILSVRC dataset, which has been used as a benchmark for DNNs in the HPC field, are

much smaller than the dataset used in this study and need to be accelerated by a qualitatively different

method than simply staging or parallel I/O; in fact, Figure 4.9 uses MPI I/O and caching with CPU

memory, but it does not scale at all. Our method is able to hide the I/O overhead for up to a few

hundred GPUs for the CosmoFlow dataset, but if a larger dataset is used on a few computing nodes,

CPU memory caching may be infeasible due to the limitations of the total memory capacity; in fact,

when we ran a training job on less than 64 nodes, we encountered a runtime error due to lack of

Chapter 6. Discussion 111

memory. In such cases, further performance optimization is required, such as partial shuffling of the

data samples [31] and using efficient methods to access PFS such as burst buffers.

More aggressive communication latency hiding

In the context of stencil computations, there are methods to hide the latency of halo communication,

such as temporal blocking. In the case of CNNs, if there are no layers that require process-wide

communication (such as batch-normalization layers), it is expected that such techniques can reduce

the halo communication latency by communicating extra halos as in stencil computations. To the

extent that we have experimented in this thesis, most of the loss in computational efficiency is due

to over-decomposition; instead, we demonstrated or predicted that the training scales to thousands of

GPUs by increasing data parallelism. However, as we showed in Section 6.2.1, such a latency-hiding

technique may become necessary if the mini-batch size falls below the parallelism available in the entire

system and excessive model parallelism needs to be introduced. In such a case, it would be necessary

to modify the framework at the framework-wide level since it is not possible to implement this method

only by modifying each layer as we did.

More empirical and exhaustive parallel-strategy search

In Figure 4.25, we used the fixed mini-batch size of 64 and the fixed number of computational resources

to evaluate the effect of increasing the input data size on the validation accuracy. As a result, for the

same mini-batch size, we get better results by increasing the input size. Since this experiment cannot

be performed in a conventional data-parallel framework, this is a finding that can only be obtained by

our proposed hybrid-parallel implementation for 3D CNNs.

On the other hand, similar to other studies on optimizing deep learning models and optimizers,

there is room for more exhaustive optimization using ample time and computational resources. For

example, since SGD is an iterative method, the step size (i.e., mini-batch size) and the number of

steps to convergence (i.e., the number of epochs) are often set experimentally. While this study

demonstrated that increasing the input size is clearly beneficial for the same mini-batch size, it is also

possible to improve the apparent convergence speed by increasing the mini-batch size beyond that. For

example, there are studies that dynamically change the mini-batch size during an experiment to reduce

the training time without loss of accuracy [145, 146]. Although it is difficult to know the inference

accuracy of trained models for given learning configurations such as mini-batch size, there is room for

more computationally-efficient scheduling by combining experimental prediction methods [147, 148]

with our framework and performance model.

Chapter 7

Conclusion

As we explained throughout this thesis, emerging demands for training huge and diverse deep learning

models on state-of-the-art accelerators expose various performance issues. In order to keep up with

such rapid trend changes, it is required to build a fast training infrastructure that takes advantage of

the parallelism of huge models at multiple levels. In this thesis, we have proposed two methods to

optimize for multiple levels of parallelism. Overall, these methods are suitable for accelerating high-

resolution and high-dimensional CNNs, which are assumed to get much more attention in the future

in both the machine learning and application domains. Thus, our proposed methods are expected to

make a significant contribution to speeding up such training tasks.

But still, we need to adapt our new methods to emerging hardware and models. For example,

NVIDIA recently announced Tesla A100 GPUs with 80 GB high-bandwidth memory, which is

theoretically able to train the CosmoFlow network without batch-normalization layers with 5123

cubes only with data-parallelism (see Figure 4.6). This does not immediately mean that

hybrid-parallel training is not needed anymore because domain scientists still intend to increase the

model size (such as the number of layers) to improve the accuracy of such networks, but we must

carefully investigate whether new bottlenecks do not appear with such a rapid expansion of the

model size, like what we have observed in this thesis (note that, as we mentioned and demonstrated

in Chapter 4, 1D spatial partitioning is believed to scale when the input size is increased unless

per-layer memory requirements exceed a single GPU’s memory). Besides, it is also possible that the

trend in hardware performance requirements may change with the evolution of deep learning models;

for example, a replacement to convolutional layers that is much faster and works better in terms of

prediction accuracy has been proposed [149]. Therefore, it is important to use a method that

automatically predicts the optimal parallelization strategy for a given model, and our proposed loop

optimization method attributed to a mathematical problem and the optimal inter-node parallel

strategy selection method using our performance model contribute to such an optimization.

112

Appendix A

cuDNN performance on DeepBench

convolutional layers

We show cuDNN performance on DeepBench convolutional layers on three different GPUs on Figure

A.1, Figure A.2, and Figure A.3.

113

Appendix A. cuDNN performance on DeepBench convolutional layers 114

T
im

e
no

rm
al

iz
ed

 b
y

IM
P

LI
C

IT
_G

E
M

M

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
13

4.
68

11
.7

5

9.
39

6.
96

8.
63

8.
96

4.
01

0
10

24
20

48
30

72
40

96
51

20
61

44

W
or

ks
pa

ce
 s

iz
e

[M
iB

]

1
(D

ee
pS

pe
ec

h,
 2

0x
5)

2
(D

ee
pS

pe
ec

h,
 2

0x
5)

3
(D

ee
pS

pe
ec

h,
 2

0x
5)

4
(D

ee
pS

pe
ec

h,
 2

0x
5)

5
(D

ee
pS

pe
ec

h,
 1

0x
5)

6
(D

ee
pS

pe
ec

h,
 1

0x
5)

7
(D

ee
pS

pe
ec

h,
 1

0x
5)

8
(D

ee
pS

pe
ec

h,
 1

0x
5)

9
(O

C
R

, 3
x3

)

10
 (

O
C

R
, 3

x3
)

11
 (

O
C

R
, 3

x3
)

12
 (

O
C

R
, 3

x3
)

13
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

14
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

15
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

16
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

17
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

18
 (

V
is

io
n,

 3
x3

)

19
 (

V
is

io
n,

 3
x3

)

20
 (

V
is

io
n,

 3
x3

)

21
 (

V
is

io
n,

 3
x3

)

22
 (

V
is

io
n,

 3
x3

)

23
 (

V
is

io
n,

 3
x3

)

24
 (

V
is

io
n,

 3
x3

)

25
 (

V
is

io
n,

 3
x3

)

26
 (

V
is

io
n,

 3
x3

)

27
 (

V
is

io
n,

 3
x3

)

28
 (

V
is

io
n,

 3
x3

)

29
 (

V
is

io
n,

 3
x3

)

30
 (

V
is

io
n,

 7
x7

)

31
 (

V
is

io
n,

 5
x5

)

IMPLICIT_GEMM
IMPLICIT_PRECOMP_GEMM
GEMM
DIRECT
FFT
FFT_TILING
WINOGRAD
WINOGRAD_NONFUSED
u−cuDNN
(FP16)
(FP16 with Tensor Cores)
(PSEUDO_HALF)

T
im

e
no

rm
al

iz
ed

 b
y

IM
P

LI
C

IT
_G

E
M

M

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
20

6.
57

12
.4

1

3.
70

5.
17

7.
40

19
.9

0

3.
70

3.
74

6.
90

12
.7

9

0
10

24
20

48
30

72
40

96
51

20
61

44

W
or

ks
pa

ce
 s

iz
e

[M
iB

]

32
 (

V
is

io
n,

 1
x1

)

33
 (

V
is

io
n,

 5
x5

)

34
 (

V
is

io
n,

 1
x1

)

35
 (

V
is

io
n,

 1
x1

)

36
 (

V
is

io
n,

 5
x5

)

37
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

38
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

39
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

40
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

41
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

42
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

43
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

44
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

45
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

46
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

47
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

48
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

49
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

50
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

51
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

52
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

53
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

54
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

55
 (

S
pe

ak
er

 ID
, 5

x5
)

56
 (

S
pe

ak
er

 ID
, 3

x3
)

57
 (

S
pe

ak
er

 ID
, 5

x5
)

58
 (

S
pe

ak
er

 ID
, 3

x3
)

59
 (

S
pe

ak
er

 ID
, 5

x5
)

60
 (

S
pe

ak
er

 ID
, 3

x3
)

61
 (

S
pe

ak
er

 ID
, 5

x5
)

62
 (

S
pe

ak
er

 ID
, 3

x3
)

IMPLICIT_GEMM
IMPLICIT_PRECOMP_GEMM
GEMM
DIRECT
FFT
FFT_TILING
WINOGRAD
WINOGRAD_NONFUSED
u−cuDNN
(FP16)
(FP16 with Tensor Cores)
(PSEUDO_HALF)

T
im

e
no

rm
al

iz
ed

 b
y

IM
P

LI
C

IT
_G

E
M

M

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

7.
35

6.
47

5.
47

4.
39

4.
55

3.
45

5.
62

3.
94

6.
05

3.
37

5.
52

8.
90

7.
19

7.
36

6.
51

5.
98

4.
82

3.
85

3.
27

3.
30

3.
76

3.
87

3.
28

3.
30

4.
06

6.
88

7.
30

0
10

24
20

48
30

72
40

96
51

20
61

44

W
or

ks
pa

ce
 s

iz
e

[M
iB

]

63
 (

R
es

ne
t,

1x
1)

64
 (

R
es

ne
t,

1x
1)

65
 (

R
es

ne
t,

1x
1)

66
 (

R
es

ne
t,

1x
1)

67
 (

R
es

ne
t,

1x
1)

68
 (

R
es

ne
t,

1x
1)

69
 (

R
es

ne
t,

1x
1)

70
 (

R
es

ne
t,

1x
1)

71
 (

R
es

ne
t,

1x
1)

72
 (

R
es

ne
t,

1x
1)

73
 (

R
es

ne
t,

1x
1)

74
 (

R
es

ne
t,

1x
1)

75
 (

R
es

ne
t,

3x
3)

76
 (

R
es

ne
t,

1x
1)

77
 (

R
es

ne
t,

1x
1)

78
 (

R
es

ne
t,

1x
1)

79
 (

R
es

ne
t,

1x
1)

80
 (

R
es

ne
t,

1x
1)

81
 (

R
es

ne
t,

1x
1)

82
 (

R
es

ne
t,

1x
1)

83
 (

R
es

ne
t,

1x
1)

84
 (

R
es

ne
t,

1x
1)

85
 (

R
es

ne
t,

1x
1)

86
 (

R
es

ne
t,

1x
1)

87
 (

R
es

ne
t,

1x
1)

88
 (

R
es

ne
t,

1x
1)

89
 (

R
es

ne
t,

1x
1)

90
 (

R
es

ne
t,

1x
1)

91
 (

R
es

ne
t,

3x
3)

92
 (

R
es

ne
t,

1x
1)

93
 (

R
es

ne
t,

1x
1)

94
 (

R
es

ne
t,

1x
1)

IMPLICIT_GEMM
IMPLICIT_PRECOMP_GEMM
GEMM
DIRECT
FFT
FFT_TILING
WINOGRAD
WINOGRAD_NONFUSED
u−cuDNN
(FP16)
(FP16 with Tensor Cores)
(PSEUDO_HALF)

Figure A.1: Time to compute DeepBench’s convolution kernels on a K80 GPU. We use a
workspace size of 2 GiB. We use the same plot format of Figure 3.7a.

Appendix A. cuDNN performance on DeepBench convolutional layers 115

T
im

e
no

rm
al

iz
ed

 b
y

IM
P

LI
C

IT
_G

E
M

M

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

4.
32

4.
68

4.
91

5.
74

5.
86

12
.1

4
12

.2
0

8.
17

8.
19

5.
21

5.
25

4.
85

4.
91

3.
29

0
10

24
20

48
30

72
40

96
51

20
61

44

W
or

ks
pa

ce
 s

iz
e

[M
iB

]

1
(D

ee
pS

pe
ec

h,
 2

0x
5)

2
(D

ee
pS

pe
ec

h,
 2

0x
5)

3
(D

ee
pS

pe
ec

h,
 2

0x
5)

4
(D

ee
pS

pe
ec

h,
 2

0x
5)

5
(D

ee
pS

pe
ec

h,
 1

0x
5)

6
(D

ee
pS

pe
ec

h,
 1

0x
5)

7
(D

ee
pS

pe
ec

h,
 1

0x
5)

8
(D

ee
pS

pe
ec

h,
 1

0x
5)

9
(O

C
R

, 3
x3

)

10
 (

O
C

R
, 3

x3
)

11
 (

O
C

R
, 3

x3
)

12
 (

O
C

R
, 3

x3
)

13
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

14
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

15
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

16
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

17
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

18
 (

V
is

io
n,

 3
x3

)

19
 (

V
is

io
n,

 3
x3

)

IMPLICIT_GEMM
IMPLICIT_PRECOMP_GEMM
GEMM
DIRECT
FFT
FFT_TILING
WINOGRAD
WINOGRAD_NONFUSED
u−cuDNN
(FP16)
(FP16 with Tensor Cores)
(PSEUDO_HALF)

T
im

e
no

rm
al

iz
ed

 b
y

IM
P

LI
C

IT
_G

E
M

M

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

4.
70

4.
78

4.
54

4.
57

5.
98

6.
22

9.
13

9.
13

0
10

24
20

48
30

72
40

96
51

20
61

44

W
or

ks
pa

ce
 s

iz
e

[M
iB

]

20
 (

V
is

io
n,

 3
x3

)

21
 (

V
is

io
n,

 3
x3

)

22
 (

V
is

io
n,

 3
x3

)

23
 (

V
is

io
n,

 3
x3

)

24
 (

V
is

io
n,

 3
x3

)

25
 (

V
is

io
n,

 3
x3

)

26
 (

V
is

io
n,

 3
x3

)

27
 (

V
is

io
n,

 3
x3

)

28
 (

V
is

io
n,

 3
x3

)

29
 (

V
is

io
n,

 3
x3

)

30
 (

V
is

io
n,

 7
x7

)

31
 (

V
is

io
n,

 5
x5

)

32
 (

V
is

io
n,

 1
x1

)

33
 (

V
is

io
n,

 5
x5

)

34
 (

V
is

io
n,

 1
x1

)

35
 (

V
is

io
n,

 1
x1

)

36
 (

V
is

io
n,

 5
x5

)

37
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

38
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

IMPLICIT_GEMM
IMPLICIT_PRECOMP_GEMM
GEMM
DIRECT
FFT
FFT_TILING
WINOGRAD
WINOGRAD_NONFUSED
u−cuDNN
(FP16)
(FP16 with Tensor Cores)
(PSEUDO_HALF)

T
im

e
no

rm
al

iz
ed

 b
y

IM
P

LI
C

IT
_G

E
M

M

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
33

3.
35

3.
35

3.
41

6.
08

6.
23

10
.7

8
10

.8
0

3.
24

3.
33

5.
81

5.
97

9.
22

9.
23

0
10

24
20

48
30

72
40

96
51

20
61

44

W
or

ks
pa

ce
 s

iz
e

[M
iB

]

39
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

40
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

41
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

42
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

43
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

44
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

45
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

46
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

47
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

48
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

49
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

50
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

51
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

52
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

53
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

54
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

55
 (

S
pe

ak
er

 ID
, 5

x5
)

56
 (

S
pe

ak
er

 ID
, 3

x3
)

57
 (

S
pe

ak
er

 ID
, 5

x5
)

IMPLICIT_GEMM
IMPLICIT_PRECOMP_GEMM
GEMM
DIRECT
FFT
FFT_TILING
WINOGRAD
WINOGRAD_NONFUSED
u−cuDNN
(FP16)
(FP16 with Tensor Cores)
(PSEUDO_HALF)

T
im

e
no

rm
al

iz
ed

 b
y

IM
P

LI
C

IT
_G

E
M

M

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

7.
38

7.
41

4.
33

4.
38

5.
27

5.
27

3.
35

3.
40

3.
71

3.
72

3.
13

3.
15

3.
45

3.
46

3.
49

3.
53

3.
54

3.
60

3.
17

3.
25

3.
51

3.
51

4.
79

4.
85

5.
76

5.
95

0
10

24
20

48
30

72
40

96
51

20
61

44

W
or

ks
pa

ce
 s

iz
e

[M
iB

]

58
 (

S
pe

ak
er

 ID
, 3

x3
)

59
 (

S
pe

ak
er

 ID
, 5

x5
)

60
 (

S
pe

ak
er

 ID
, 3

x3
)

61
 (

S
pe

ak
er

 ID
, 5

x5
)

62
 (

S
pe

ak
er

 ID
, 3

x3
)

63
 (

R
es

ne
t,

1x
1)

64
 (

R
es

ne
t,

1x
1)

65
 (

R
es

ne
t,

1x
1)

66
 (

R
es

ne
t,

1x
1)

67
 (

R
es

ne
t,

1x
1)

68
 (

R
es

ne
t,

1x
1)

69
 (

R
es

ne
t,

1x
1)

70
 (

R
es

ne
t,

1x
1)

71
 (

R
es

ne
t,

1x
1)

72
 (

R
es

ne
t,

1x
1)

73
 (

R
es

ne
t,

1x
1)

74
 (

R
es

ne
t,

1x
1)

75
 (

R
es

ne
t,

3x
3)

76
 (

R
es

ne
t,

1x
1)

IMPLICIT_GEMM
IMPLICIT_PRECOMP_GEMM
GEMM
DIRECT
FFT
FFT_TILING
WINOGRAD
WINOGRAD_NONFUSED
u−cuDNN
(FP16)
(FP16 with Tensor Cores)
(PSEUDO_HALF)

T
im

e
no

rm
al

iz
ed

 b
y

IM
P

LI
C

IT
_G

E
M

M

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

6.
75

7.
02

5.
99

6.
00

3.
35

3.
41

4.
05

4.
09

3.
08

3.
18

3.
28

3.
30

3.
13

3.
21

4.
58

4.
61

5.
76

5.
89

6.
11

6.
32

0
10

24
20

48
30

72
40

96
51

20
61

44

W
or

ks
pa

ce
 s

iz
e

[M
iB

]

77
 (

R
es

ne
t,

1x
1)

78
 (

R
es

ne
t,

1x
1)

79
 (

R
es

ne
t,

1x
1)

80
 (

R
es

ne
t,

1x
1)

81
 (

R
es

ne
t,

1x
1)

82
 (

R
es

ne
t,

1x
1)

83
 (

R
es

ne
t,

1x
1)

84
 (

R
es

ne
t,

1x
1)

85
 (

R
es

ne
t,

1x
1)

86
 (

R
es

ne
t,

1x
1)

87
 (

R
es

ne
t,

1x
1)

88
 (

R
es

ne
t,

1x
1)

89
 (

R
es

ne
t,

1x
1)

90
 (

R
es

ne
t,

1x
1)

91
 (

R
es

ne
t,

3x
3)

92
 (

R
es

ne
t,

1x
1)

93
 (

R
es

ne
t,

1x
1)

94
 (

R
es

ne
t,

1x
1)

IMPLICIT_GEMM
IMPLICIT_PRECOMP_GEMM
GEMM
DIRECT
FFT
FFT_TILING
WINOGRAD
WINOGRAD_NONFUSED
u−cuDNN
(FP16)
(FP16 with Tensor Cores)
(PSEUDO_HALF)

Figure A.2: Time to compute DeepBench’s convolution kernels on a P100-SXM2 GPU.
We use a workspace size of 2 GiB.

Appendix A. cuDNN performance on DeepBench convolutional layers 116

T
im

e
no

rm
al

iz
ed

 b
y

IM
P

LI
C

IT
_G

E
M

M

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
64

3.
64

3.
78

5.
12

5.
57

15
.8

6
15

.9
6

10
.3

9
10

.8
9

6.
26

6.
28

4.
40

4.
50

3.
96

4.
16

4.
50

4.
51

0
10

24
20

48
30

72
40

96
51

20
61

44

W
or

ks
pa

ce
 s

iz
e

[M
iB

]

1
(D

ee
pS

pe
ec

h,
 2

0x
5)

2
(D

ee
pS

pe
ec

h,
 2

0x
5)

3
(D

ee
pS

pe
ec

h,
 2

0x
5)

4
(D

ee
pS

pe
ec

h,
 2

0x
5)

5
(D

ee
pS

pe
ec

h,
 1

0x
5)

6
(D

ee
pS

pe
ec

h,
 1

0x
5)

7
(D

ee
pS

pe
ec

h,
 1

0x
5)

8
(D

ee
pS

pe
ec

h,
 1

0x
5)

9
(O

C
R

, 3
x3

)

10
 (

O
C

R
, 3

x3
)

11
 (

O
C

R
, 3

x3
)

12
 (

O
C

R
, 3

x3
)

13
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

14
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

15
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

16
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

17
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

18
 (

V
is

io
n,

 3
x3

)

19
 (

V
is

io
n,

 3
x3

)

IMPLICIT_GEMM
IMPLICIT_PRECOMP_GEMM
GEMM
DIRECT
FFT
FFT_TILING
WINOGRAD
WINOGRAD_NONFUSED
u−cuDNN
(FP16)
(FP16 with Tensor Cores)
(PSEUDO_HALF)

T
im

e
no

rm
al

iz
ed

 b
y

IM
P

LI
C

IT
_G

E
M

M

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
64

3.
68

3.
46

4.
03

4.
05

4.
15

3.
69

3.
82

3.
86

3.
98

8.
07

8.
19

0
10

24
20

48
30

72
40

96
51

20
61

44

W
or

ks
pa

ce
 s

iz
e

[M
iB

]

20
 (

V
is

io
n,

 3
x3

)

21
 (

V
is

io
n,

 3
x3

)

22
 (

V
is

io
n,

 3
x3

)

23
 (

V
is

io
n,

 3
x3

)

24
 (

V
is

io
n,

 3
x3

)

25
 (

V
is

io
n,

 3
x3

)

26
 (

V
is

io
n,

 3
x3

)

27
 (

V
is

io
n,

 3
x3

)

28
 (

V
is

io
n,

 3
x3

)

29
 (

V
is

io
n,

 3
x3

)

30
 (

V
is

io
n,

 7
x7

)

31
 (

V
is

io
n,

 5
x5

)

32
 (

V
is

io
n,

 1
x1

)

33
 (

V
is

io
n,

 5
x5

)

34
 (

V
is

io
n,

 1
x1

)

35
 (

V
is

io
n,

 1
x1

)

36
 (

V
is

io
n,

 5
x5

)

37
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

38
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

IMPLICIT_GEMM
IMPLICIT_PRECOMP_GEMM
GEMM
DIRECT
FFT
FFT_TILING
WINOGRAD
WINOGRAD_NONFUSED
u−cuDNN
(FP16)
(FP16 with Tensor Cores)
(PSEUDO_HALF)

T
im

e
no

rm
al

iz
ed

 b
y

IM
P

LI
C

IT
_G

E
M

M

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
26

3.
38

5.
18

5.
29

3.
22

3.
31

10
.0

9
10

.1
9

3.
37

3.
46

3.
52

3.
64

5.
77

6.
21

11
.3

3
11

.3
8

0
10

24
20

48
30

72
40

96
51

20
61

44

W
or

ks
pa

ce
 s

iz
e

[M
iB

]

39
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

40
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

41
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

42
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

43
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

44
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

45
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

46
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

47
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

48
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

49
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

50
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

51
 (

Fa
ce

 R
ec

og
ni

tio
n,

 3
x3

)

52
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

53
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

54
 (

Fa
ce

 R
ec

og
ni

tio
n,

 1
x1

)

55
 (

S
pe

ak
er

 ID
, 5

x5
)

56
 (

S
pe

ak
er

 ID
, 3

x3
)

57
 (

S
pe

ak
er

 ID
, 5

x5
)

IMPLICIT_GEMM
IMPLICIT_PRECOMP_GEMM
GEMM
DIRECT
FFT
FFT_TILING
WINOGRAD
WINOGRAD_NONFUSED
u−cuDNN
(FP16)
(FP16 with Tensor Cores)
(PSEUDO_HALF)

T
im

e
no

rm
al

iz
ed

 b
y

IM
P

LI
C

IT
_G

E
M

M

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

8.
18

8.
41

5.
53

5.
68

5.
91

6.
17

4.
50

4.
63

6.
05

6.
12

3.
07

3.
21

5.
79

5.
90

3.
09

3.
18

5.
30

5.
46

3.
03

5.
61

5.
71

3.
78

3.
86

5.
12

5.
19

0
10

24
20

48
30

72
40

96
51

20
61

44

W
or

ks
pa

ce
 s

iz
e

[M
iB

]

58
 (

S
pe

ak
er

 ID
, 3

x3
)

59
 (

S
pe

ak
er

 ID
, 5

x5
)

60
 (

S
pe

ak
er

 ID
, 3

x3
)

61
 (

S
pe

ak
er

 ID
, 5

x5
)

62
 (

S
pe

ak
er

 ID
, 3

x3
)

63
 (

R
es

ne
t,

1x
1)

64
 (

R
es

ne
t,

1x
1)

65
 (

R
es

ne
t,

1x
1)

66
 (

R
es

ne
t,

1x
1)

67
 (

R
es

ne
t,

1x
1)

68
 (

R
es

ne
t,

1x
1)

69
 (

R
es

ne
t,

1x
1)

70
 (

R
es

ne
t,

1x
1)

71
 (

R
es

ne
t,

1x
1)

72
 (

R
es

ne
t,

1x
1)

73
 (

R
es

ne
t,

1x
1)

74
 (

R
es

ne
t,

1x
1)

75
 (

R
es

ne
t,

3x
3)

76
 (

R
es

ne
t,

1x
1)

IMPLICIT_GEMM
IMPLICIT_PRECOMP_GEMM
GEMM
DIRECT
FFT
FFT_TILING
WINOGRAD
WINOGRAD_NONFUSED
u−cuDNN
(FP16)
(FP16 with Tensor Cores)
(PSEUDO_HALF)

T
im

e
no

rm
al

iz
ed

 b
y

IM
P

LI
C

IT
_G

E
M

M

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

5.
73

5.
88

7.
26

7.
40

4.
41

4.
51

5.
87

5.
98

3.
22

3.
34

3.
04

3.
35

3.
40

3.
37

3.
49

3.
53

3.
68

3.
25

3.
36

4.
16

4.
19

4.
79

4.
86

6.
06

6.
22

0
10

24
20

48
30

72
40

96
51

20
61

44

W
or

ks
pa

ce
 s

iz
e

[M
iB

]

77
 (

R
es

ne
t,

1x
1)

78
 (

R
es

ne
t,

1x
1)

79
 (

R
es

ne
t,

1x
1)

80
 (

R
es

ne
t,

1x
1)

81
 (

R
es

ne
t,

1x
1)

82
 (

R
es

ne
t,

1x
1)

83
 (

R
es

ne
t,

1x
1)

84
 (

R
es

ne
t,

1x
1)

85
 (

R
es

ne
t,

1x
1)

86
 (

R
es

ne
t,

1x
1)

87
 (

R
es

ne
t,

1x
1)

88
 (

R
es

ne
t,

1x
1)

89
 (

R
es

ne
t,

1x
1)

90
 (

R
es

ne
t,

1x
1)

91
 (

R
es

ne
t,

3x
3)

92
 (

R
es

ne
t,

1x
1)

93
 (

R
es

ne
t,

1x
1)

94
 (

R
es

ne
t,

1x
1)

IMPLICIT_GEMM
IMPLICIT_PRECOMP_GEMM
GEMM
DIRECT
FFT
FFT_TILING
WINOGRAD
WINOGRAD_NONFUSED
u−cuDNN
(FP16)
(FP16 with Tensor Cores)
(PSEUDO_HALF)

Figure A.3: Time to compute DeepBench’s convolution kernels on a V100-SXM2 GPU.
We use a workspace size of 2 GiB.

Bibliography

[1] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-Based Learning

Applied to Document Recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[2] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. https://www.cs.

toronto.edu/~kriz/learning-features-2009-TR.pdf, 2009. Last visit: Jan 6, 2021.

[3] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng

Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C Berg, and Li Fei-Fei.

ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision,

115(3):211–252, 2015.

[4] Google. Open Images V6. https://storage.googleapis.com/openimages/web/index.html,

2020. Last visit: Jan 6, 2021.

[5] Ignacio Arganda Carreras, Srinivas C. Turaga, Daniel R. Berger, Dan Cire San, Alessandro

Giusti, Luca M. Gambardella, Jürgen Schmidhuber, Dmitry Laptev, Sarvesh Dwivedi,

Joachim M. Buhmann, Ting Liu, Mojtaba Seyedhosseini, Tolga Tasdizen, Lee Kamentsky, Radim

Burget, Vaclav Uher, Xiao Tan, Changming Sun, Tuan D. Pham, Erhan Bas, Mustafa G.

Uzunbas, Albert Cardona, Johannes Schindelin, and H. Sebastian Seung. Crowdsourcing the

creation of image segmentation algorithms for connectomics. Frontiers in Neuroanatomy, 9:1–

13, 2015.

[6] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for

Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-

Assisted Intervention (MICCAI), pages 234–241, 2015.

[7] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated residual networks. In Proceedings

of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

636–644, 2017.

[8] Liang Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam.

Encoder-decoder with atrous separable convolution for semantic image segmentation. In

Proceedings of the European Conference on Computer Vision (ECCV), pages 833–851, 2018.

117

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://storage.googleapis.com/openimages/web/index.html

Bibliography 118

[9] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and Yann LeCun.

OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks.

arXiv e-prints, 2013.

[10] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for

accurate object detection and semantic segmentation. In Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR), pages 580–587, 2014.

[11] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng Yang Fu,

and Alexander C. Berg. SSD: Single shot multibox detector. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 21–37, 2016.

[12] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill,

Omer Levy, and Samuel R. Bowman. SuperGLUE: A stickier benchmark for general-purpose

language understanding systems. In Proceedings of the 33rd Conference on Neural Information

Processing Systems (NeurIPS), pages 1–29, 2019.

[13] ACL 2019 Fourth Conference on Machine Translation (WMT19). Translation Task -

ACL 2019 fourth Conference on Machine Translation. http://www.statmt.org/wmt19/

translation-task.html, 2019. Last visit: Jan 6, 2021.

[14] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan

Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, and Andrew Y. Ng. Deep Speech:

Scaling up end-to-end speech recognition. arXiv e-prints, pages 1–12, 2014.

[15] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg,

Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, Jie Chen, Jingdong

Chen, Zhijie Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, Ke Ding, Niandong Du,

Erich Elsen, Jesse Engel, Weiwei Fang, Linxi Fan, Christopher Fougner, Liang Gao, Caixia

Gong, Awni Hannun, Tony Han, Lappi Vaino Johannes, Bing Jiang, Cai Ju, Billy Jun, Patrick

LeGresley, Libby Lin, Junjie Liu, Yang Liu, Weigao Li, Xiangang Li, Dongpeng Ma, Sharan

Narang, Andrew Ng, Sherjil Ozair, Yiping Peng, Ryan Prenger, Sheng Qian, Zongfeng Quan,

Jonathan Raiman, Vinay Rao, Sanjeev Satheesh, David Seetapun, Shubho Sengupta, Kavya

Srinet, Anuroop Sriram, Haiyuan Tang, Liliang Tang, Chong Wang, Jidong Wang, Kaifu Wang,

Yi Wang, Zhijian Wang, Zhiqian Wang, Shuang Wu, Likai Wei, Bo Xiao, Wen Xie, Yan Xie,

Dani Yogatama, Bin Yuan, Jun Zhan, and Zhenyao Zhu. Deep speech 2: End-to-end speech

recognition in english and mandarin. In Proceedings of the 33rd International Conference on

Machine Learning (ICML), page 173–182, 2016.

[16] D Palaz, M Magimai.-Doss, and R Collobert. Convolutional Neural Networks-based continuous

speech recognition using raw speech signal. In Proceedings of the 2015 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4295–4299, 2015.

http://www.statmt.org/wmt19/translation-task.html
http://www.statmt.org/wmt19/translation-task.html

Bibliography 119

[17] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht

Madhavan, and Trevor Darrell. BDD100K: A Diverse Driving Dataset for Heterogeneous

Multitask Learning. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pages 2633–2642, 2020.

[18] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, and Olaf Ronneberger. 3D U-Net:

Learning Dense Volumetric Segmentation from Sparse Annotation. arXiv e-prints, 2016.

[19] Guodong Zeng, Xin Yang, Jing Li, Lequan Yu, Pheng-Ann Heng, and Guoyan Zheng. 3D U-net

with Multi-level Deep Supervision: Fully Automatic Segmentation of Proximal Femur in 3D MR

Images. In Proceedings of the International Workshop on Machine Learning in Medical Imaging

(MLMI), pages 274–282, 2017.

[20] Paul Blanc-Durand, Axel Van Der Gucht, Niklaus Schaefer, Emmanuel Itti, and John O Prior.

Automatic lesion detection and segmentation of 18F-FET PET in gliomas: A full 3D U-Net

convolutional neural network study. PLOS ONE, 13(4):1–11, 2018.

[21] Wei Chen, Boqiang Liu, Suting Peng, Jiawei Sun, and Xu Qiao. S3D-UNet: Separable 3D U-

Net for Brain Tumor Segmentation. In Proceedings of the International MICCAI Brainlesion

Workshop (BrainLes), pages 358–368, 2019.

[22] Patrick Bilic, Patrick Ferdinand Christ, Eugene Vorontsov, Grzegorz Chlebus, Hao Chen,

Qi Dou, Chi-Wing Fu, Xiao Han, Pheng-Ann Heng, Jürgen Hesser, Samuel Kadoury, Tomasz

Konopczynski, Miao Le, Chunming Li, Xiaomeng Li, Jana Lipkovà, John Lowengrub, Hans

Meine, Jan Hendrik Moltz, Chris Pal, Marie Piraud, Xiaojuan Qi, Jin Qi, Markus Rempfler,

Karsten Roth, Andrea Schenk, Anjany Sekuboyina, Eugene Vorontsov, Ping Zhou, Christian

Hülsemeyer, Marcel Beetz, Florian Ettlinger, Felix Gruen, Georgios Kaissis, Fabian Lohöfer,

Rickmer Braren, Julian Holch, Felix Hofmann, Wieland Sommer, Volker Heinemann, Colin

Jacobs, Gabriel Efrain Humpire Mamani, Bram van Ginneken, Gabriel Chartrand, An Tang,

Michal Drozdzal, Avi Ben-Cohen, Eyal Klang, Marianne M. Amitai, Eli Konen, Hayit Greenspan,

Johan Moreau, Alexandre Hostettler, Luc Soler, Refael Vivanti, Adi Szeskin, Naama Lev-Cohain,

Jacob Sosna, Leo Joskowicz, and Bjoern H. Menze. The Liver Tumor Segmentation Benchmark

(LiTS). arXiv e-prints, pages 1–43, 2019.

[23] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel

Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.

Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,

Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,

Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. arXiv e-prints,

2020.

Bibliography 120

[24] Cornell University. arXiv. https://arxiv.org/. Last visit: Jan 6, 2021.

[25] Tal Ben-Nun and Torsten Hoefler. Demystifying Parallel and Distributed Deep Learning: An

In-Depth Concurrency Analysis. ACM Computing Surveys, 52(4), 2019.

[26] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[27] Takuya Akiba, Shuji Suzuki, and Keisuke Fukuda. Extremely Large Minibatch SGD: Training

ResNet-50 on ImageNet in 15 Minutes. arXiv e-prints, pages 1–4, 2017.

[28] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu Zhou, Liqiang Xie,

Zhenyu Guo, Yuanzhou Yang, Liwei Yu, Tiegang Chen, Guangxiao Hu, Shaohuai Shi, and

Xiaowen Chu. Highly Scalable Deep Learning Training System with Mixed-Precision: Training

ImageNet in Four Minutes. arXiv e-prints, 2018.

[29] Masafumi Yamazaki, Akihiko Kasagi, Akihiro Tabuchi, Takumi Honda, Masahiro Miwa, Naoto

Fukumoto, Tsuguchika Tabaru, Atsushi Ike, and Kohta Nakashima. Yet Another Accelerated

SGD: ResNet-50 Training on ImageNet in 74.7 seconds. arXiv e-prints, 2019.

[30] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. ImageNet Training

in Minutes. arXiv e-prints, pages 1–11, 2017.

[31] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,

Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, Large Minibatch SGD: Training

ImageNet in 1 Hour. arXiv e-prints, pages 1–12, 2017.

[32] PyTorch core team. PyTorch. http://pytorch.org/, 2017. Last visit: Jan 6, 2021.

[33] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg

S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,

Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,

Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray,

Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,

Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale

Machine Learning on Heterogeneous Systems. arXiv e-prints, pages 1–19, 2015.

[34] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: a Next-Generation Open

Source Framework for Deep Learning. In Proceedings of Workshop on Machine Learning Systems

(LearningSys) in The 29th International Conference on Neural Information Processing Systems

(NIPS), pages 1–6, 2015.

https://arxiv.org/
http://pytorch.org/

Bibliography 121

[35] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan

Catanzaro, and Evan Shelhamer. cuDNN: Efficient Primitives for Deep Learning. arXiv e-prints,

pages 1–9, 2014.

[36] NVIDIA. NVIDIA Collective Communications Library (NCCL). https://developer.nvidia.

com/nccl, 2017. Last visit: Jan 6, 2021.

[37] Leslie G. Valiant. A Bridging Model for Parallel Computation. Communications of the ACM,

33(8):103–111, 1990.

[38] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,

Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional Architecture for Fast Feature

Embedding. arXiv e-prints, 2014.

[39] Facebook. Caffe2. https://caffe2.ai/, 2017. Last visit: Jan 6, 2021.

[40] NVIDIA. NVIDIA Caffe. https://github.com/NVIDIA/caffe, 2017. Last visit: Jan 6, 2021.

[41] Ronan Collobert, Samy Bengio, and Johnny Marithoz. Torch: A Modular Machine Learning

Software Library, 2002.

[42] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,

Chiyuan Zhang, and Zheng Zhang. MXNet: A Flexible and Efficient Machine Learning Library

for Heterogeneous Distributed Systems. arXiv e-prints, pages 1–6, 2015.

[43] Frank Seide and Amit Agarwal. CNTK: Microsoft’s Open-Source Deep-Learning Toolkit. In

Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (KDD), page 2135, 2016.

[44] Brian Van Essen, Hyojin Kim, Roger Pearce, Kofi Boakye, and Barry Chen. LBANN: Livermore

Big Artificial Neural Network HPC Toolkit. In Proceedings of the Workshop on Machine Learning

in High-Performance Computing Environments (MLHPC), pages 1–6, 2015.

[45] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification with Deep

Convolutional Neural Networks. In Proceedings of the 25th International Conference on Neural

Information Processing Systems (NIPS), page 1097–1105, 2012.

[46] Yosuke Oyama. Automatic and Adaptive Optimization of Convolution Workspace and

Communication Precision for Deep Learning. Master’s thesis, Tokyo Institute of Technology,

2018.

[47] 大山 洋介, 野村 哲弘, 佐藤 育郎, and 松岡 聡. ディープラーニングのデータ並列学習における少

精度浮動小数点数を用いた通信量の削減. IPSJ SIG Technical Report, 2017-HPC-158(30):1–10,

2017.

https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://caffe2.ai/
https://github.com/NVIDIA/caffe

Bibliography 122

[48] Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, and Satoshi Matsuoka. Less is More: Accelerating

Deep Neural Networks with Micro-Batching. IPSJ SIG Technical Report, 2017-HPC-162(22):1–9,

2017.

[49] NVIDIA. NVIDIA TESLA V100 GPU ARCHITECTURE. https://images.nvidia.com/

content/volta-architecture/pdf/volta-architecture-whitepaper.pdf. Last visit: Jan

6, 2021.

[50] Satoshi Matsuoka, Hideharu Amano, Kengo Nakajima, Koji Inoue, Tomohiro Kudoh, Naoya

Maruyama, Kenjiro Taura, Takeshi Iwashita, Takahiro Katagiri, Toshihiro Hanawa, and Toshio

Endo. From FLOPS to BYTES: Disruptive change in high-performance computing towards

the post-moore era. In Proceedings of the 2016 ACM International Conference on Computing

Frontiers (CF), pages 274–281, 2016.

[51] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew

Senior, Paul Tucker, Ke Yang, Quoc V Le, Marc’aurelio Ranzato, Andrew Senior, Paul Tucker,

Ke Yang, Quoc V Le, and Andrew Y Ng. Large Scale Distributed Deep Networks. In Proceedings

of the 25th International Conference on Neural Information Processing Systems (NIPS), pages

1223–1231, 2012.

[52] Adam Coates, Brody Huval, Tao Wang, David Wu, and Andrew Y Ng. Deep learning with

COTS HPC systems. In Proceedings of the 30th International Conference on Machine Learning

(ICML), pages 1337–1345, 2013.

[53] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman. Project Adam

: Building an Efficient and Scalable Deep Learning Training System. In Proceedings of the 11th

USENIX Symposium on Operating Systems Design and Implementation (OSDI), pages 571–582,

2014.

[54] NVIDIA. Tesla K20 GPU Active Accelerator. https://www.nvidia.com/content/PDF/kepler/

tesla-k20-active-bd-06499-001-v03.pdf. Last visit: Jan 6, 2021.

[55] NVIDIA. Tesla K80 GPU Accelerator. https://www.nvidia.com/

content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/

Tesla-K80-BoardSpec-07317-001-v05.pdf. Last visit: Jan 6, 2021.

[56] NVIDIA. Tesla P100 Most Advanced Data Center Accelerator. http://www.nvidia.com/

object/tesla-p100.html. Last visit: Jan 6, 2021.

[57] NVIDIA. NVIDIA A100 Tensor Core GPU Architecture. https://www.nvidia.com/content/

dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf. Last

visit: Jan 6, 2021.

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.nvidia.com/content/PDF/kepler/tesla-k20-active-bd-06499-001-v03.pdf
https://www.nvidia.com/content/PDF/kepler/tesla-k20-active-bd-06499-001-v03.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/Tesla-K80-BoardSpec-07317-001-v05.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/Tesla-K80-BoardSpec-07317-001-v05.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/Tesla-K80-BoardSpec-07317-001-v05.pdf
http://www.nvidia.com/object/tesla-p100.html
http://www.nvidia.com/object/tesla-p100.html
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf

Bibliography 123

[58] Baidu Research. DeepBench. https://github.com/baidu-research/DeepBench, 2016. Last

visit: Jan 6, 2021.

[59] Amrita Mathuriya, Deborah Bard, Peter Mendygral, Lawrence Meadows, James Arnemann, Lei

Shao, Siyu He, Tuomas Karna, Daina Moise, Simon J. Pennycook, Kristyn Maschoff, Jason

Sewall, Nalini Kumar, Shirley Ho, Mike Ringenburg, Prabhat, and Victor Lee. CosmoFlow:

Using Deep Learning to Learn the Universe at Scale. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage, and Analysis (SC18), 2018.

[60] Vinod Nair and Geoffrey E Hinton. Rectified Linear Units Improve Restricted Boltzmann

Machines. In Proceedings of the 27th International Conference on Machine Learning (ICML),

pages 807–814, 2010.

[61] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into Rectifiers:

Surpassing Human-Level Performance on ImageNet Classification. In Proceedings of the 2015

IEEE International Conference on Computer Vision (ICCV), pages 1026–1034, 2015.

[62] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier Nonlinearities Improve Neural

Network Acoustic Models. In Proceedings of the ICML Workshop on Deep Learning for Audio,

Speech and Language Processing, 2013.

[63] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale

Image Recognition. arXiv e-prints, pages 1–14, 2014.

[64] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,

Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.

In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1–9, 2015.

[65] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image

Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 171–180, 2016.

[66] Gao Huang, Zhuang Liu, Kilian Q. Weinberger, and Laurens van der Maaten. Densely Connected

Convolutional Networks. arXiv e-prints, pages 1–12, 2016.

[67] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning Long-Term Dependencies with

Gradient Descent is Difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

[68] Min Lin, Qiang Chen, and Shuicheng Yan. Network In Network. In Proceedings of the

International Conference on Learning Representations (ICLR), pages 1–10, 2014.

[69] Netlib. BLAS (Basic Linear Algebra Subprograms). http://www.netlib.org/blas/, 2017. Last

visit: Jan 6, 2021.

https://github.com/baidu-research/DeepBench
http://www.netlib.org/blas/

Bibliography 124

[70] Shmuel Winograd. Arithmetic Complexity of Computations, 1980.

[71] Andrew Lavin and Scott Gray. Fast Algorithms for Convolutional Neural Networks. In

Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 4013–4021, 2016.

[72] Michaël Mathieu, Mikael Henaff, and Yann Lecun. Fast Training of Convolutional Networks

through FFTs. In Proceedings of the International Conference on Learning Representations

(ICLR), pages 1–9, 2014.

[73] Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala, Serkan Piantino, and Yann

LeCun. Fast Convolutional Nets With fbfft: A GPU Performance Evaluation. In Proceedings of

the International Conference on Learning Representations (ICLR), 2015.

[74] Aleksandar Zlateski, Kisuk Lee, and H. Sebastian Seung. ZNN - A Fast and Scalable

Algorithm for Training 3D Convolutional Networks on Multi-core and Many-Core Shared

Memory Machines. In Proceedings of the 2016 IEEE 30th International Parallel and Distributed

Processing Symposium (IPDPS), pages 801–811, 2016.

[75] Aleksandar Zlateski, Kisuk Lee, and H. Sebastian Seung. ZNNi: Maximizing the Inference

Throughput of 3D Convolutional Networks on CPUs and GPUs. In Proceedings of the

International Conference for High Performance Computing, Networking, Storage, and Analysis

(SC16), pages 73:1–73:12, 2016.

[76] Aleksandar Zlateski, Zhen Jia, Kai Li, and Fredo Durand. FFT Convolutions are Faster than

Winograd on Modern CPUs, Here is Why. arXiv e-prints, 2018.

[77] John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online Learning

and Stochastic Optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

[78] Matthew D. Zeiler. ADADELTA: An Adaptive Learning Rate Method. arXiv e-prints, 2012.

[79] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In

Proceedings of the 3rd International Conference for Learning Representations (ICLR), pages

1–15, 2015.

[80] NVIDIA. CUDA Tooklit. https://developer.nvidia.com/cuda-toolkit. Last visit: Jan 6,

2021.

[81] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W. Keckler.

VDNN: Virtualized deep neural networks for scalable, memory-efficient neural network design.

In Proceedings of the Annual International Symposium on Microarchitecture (MICRO), 2016.

https://developer.nvidia.com/cuda-toolkit

Bibliography 125

[82] Yuki Ito, Ryo Matsumiya, and Toshio Endo. ooc-cuDNN: Accommodating convolutional neural

networks over GPU memory capacity. In Proceedings of the 2017 IEEE International Conference

on Big Data (Big Data), pages 183–192, 2017.

[83] Mohamed Wahib, Haoyu Zhang, Truong Thao Nguyen, Aleksandr Drozd, Jens Domke, Lingqi

Zhang, Ryousei Takano, and Satoshi Matsuoka. Scaling Distributed Deep Learning Workloads

beyond the Memory Capacity with KARMA. In Proceedings of the International Conference for

High Performance Computing, Networking, Storage, and Analysis (SC20), 2020.

[84] Audrūnas Gruslys, Remi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. Memory-

Efficient Backpropagation Through Time. In Proceedings of the 29th International Conference

on Neural Information Processing Systems (NIPS), pages 4125–4133, 2016.

[85] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song, Zenglin Xu,

and Tim Kraska. SuperNeurons: Dynamic GPU Memory Management for Training Deep Neural

Networks. ACM SIGPLAN Notices, 53(1):41–53, 2018.

[86] Koichi Shirahata, Yasumoto Tomita, and Atsushi Ike. Memory Reduction Method for Deep

Neural Network Training. In Proceedings of the 2016 IEEE 26th International Workshop on

Machine Learning for Signal Processing (MLSP), 2016.

[87] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping

Tak Peter Tang. On Large-Batch Training for Deep Learning: Generalization Gap and Sharp

Minima. In Proceedings of the International Conference on Learning Representations (ICLR),

pages 1–16, 2016.

[88] Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv e-prints,

pages 1–7, 2014.

[89] Yasunorikudo. chainer-ResNet. https://github.com/yasunorikudo/chainer-ResNet, 2017.

Last visit: Jan 6, 2021.

[90] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den

Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,

Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy

Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering

the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

[91] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st

International Conference on Neural Information Processing Systems (NIPS), pages 5999–6009,

2017.

https://github.com/yasunorikudo/chainer-ResNet

Bibliography 126

[92] Barret Zoph and Quoc V. Le. Neural Architecture Search with Reinforcement Learning. arXiv

e-prints, pages 1–16, 2016.

[93] NVIDIA. cuBLAS. https://developer.nvidia.com/cublas. Last visit: Jan 6, 2021.

[94] Zhang Xianyi. OpenBLAS. https://www.openblas.net/. Last visit: Jan 6, 2021.

[95] Intel. Intel R⃝Math Kernel Library. https://software.intel.com/content/www/us/en/

develop/tools/math-kernel-library.html. Last visit: Jan 6, 2021.

[96] oneAPI-SRC. oneAPI Deep Neural Network Library (oneDNN). https://github.com/

oneapi-src/oneDNN. Last visit: Jan 6, 2021.

[97] OpenMP. OpenMP. https://www.openmp.org/. Last visit: Jan 6, 2021.

[98] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of Collective

Communication Operations in MPICH. International Journal of High Performance Computing

Applications, 19(1):49–66, 2005.

[99] Forrest N. Iandola, Khalid Ashraf, Matthew W. Moskewicz, and Kurt Keutzer. FireCaffe: near-

linear acceleration of deep neural network training on compute clusters. In Proceedings of the

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–13, 2015.

[100] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in

TensorFlow. arXiv e-prints, 2018.

[101] Naoya Maruyama, Tatsuo Nomura, Kento Sato, and Satoshi Matsuoka. Physis: An

implicitly parallel programming model for stencil computations on large-scale gpu-accelerated

supercomputers. In Proceedings of the International Conference for High Performance

Computing, Networking, Storage, and Analysis (SC11), 2011.

[102] Feng Yan, Olatunji Ruwase, Yuxiong He, and Trishul Chilimbi. Performance Modeling and

Scalability Optimization of Distributed Deep Learning Systems. In Proceedings of the 21th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pages

1355–1364, 2015.

[103] Amir Gholami, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydın Buluç. Integrated Model,

Batch, and Domain Parallelism in Training Neural Networks. In Proceedings of the 30th ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 77–86, 2018.

[104] Nikoli Dryden, Naoya Maruyama, Tom Benson, Tim Moon, Marc Snir, and Brian Van Essen.

Improving strong-scaling of CNN training by exploiting finer-grained parallelism. In Proceedings

of the 2019 IEEE 33rd International Parallel and Distributed Processing Symposium (IPDPS),

pages 210–220, 2019.

https://developer.nvidia.com/cublas
https://www.openblas.net/
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
https://github.com/oneapi-src/oneDNN
https://github.com/oneapi-src/oneDNN
https://www.openmp.org/

Bibliography 127

[105] NVIDIA. NVIDIA CUDNN DOCUMENTATION. https://docs.nvidia.com/deeplearning/

cudnn/api/index.html, 2020. Last visit: Jan 6, 2021.

[106] Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Micikevicius, David

Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, David Brooks, Dehao Chen,

Debojyoti Dutta, Udit Gupta, Kim Hazelwood, Andrew Hock, Xinyuan Huang, Atsushi Ike, Bill

Jia, Daniel Kang, David Kanter, Naveen Kumar, Jeffery Liao, Guokai Ma, Deepak Narayanan,

Tayo Oguntebi, Gennady Pekhimenko, Lillian Pentecost, Vijay Janapa Reddi, Taylor Robie,

Tom St. John, Tsuguchika Tabaru, Carole-Jean Wu, Lingjie Xu, Masafumi Yamazaki, Cliff

Young, and Matei Zaharia. MLPerf Training Benchmark. arXiv e-prints, 2019.

[107] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther Schmuelling,

Carole Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois, William Chou, Ramesh

Chukka, Cody Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott

Gardner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St. John, Pankaj

Kanwar, David Lee, Jeffery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius

Micikevicius, Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip

Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson, Frank Wei, Ephrem Wu,

Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron Zhong, Peizhao Zhang, and Yuchen

Zhou. MLPerf Inference Benchmark. In Proceedings of the 2020 ACM/IEEE 47th Annual

International Symposium on Computer Architecture (ISCA), pages 446–459, 2020.

[108] Tal Ben-Nun, Maciej Besta, Simon Huber, Alexandros Nikolaos Ziogas, Daniel Peter, and Torsten

Hoefler. A modular benchmarking infrastructure for high-performance and reproducible deep

learning. In Proceedings of the 2019 IEEE 33rd International Parallel and Distributed Processing

Symposium (IPDPS), pages 66–77, 2019.

[109] The TensorFlow Authors. tensorflow/models. https://github.com/tensorflow/models. Last

visit: Jan 6, 2021.

[110] The TensorFlow Authors. tensorflow/benchmarks. https://github.com/tensorflow/

benchmarks. Last visit: Jan 6, 2021.

[111] Zhuang Liu. Densely Connected Convolutional Network (DenseNet). https://github.com/

liuzhuang13/DenseNetCaffe, 2016. Last visit: Jan 6, 2021.

[112] Andrew Makhorin. GLPK (GNU Linear Programming Kit). https://www.gnu.org/software/

glpk/. Last visit: Jan 6, 2021.

[113] Yosuke Oyama, Akihiro Nomura, Ikuro Sato, Hiroki Nishimura, Yukimasa Tamatsu, and Satoshi

Matsuoka. Predicting Statistics of Asynchronous SGD Parameters for a Large-Scale Distributed

https://docs.nvidia.com/deeplearning/cudnn/api/index.html
https://docs.nvidia.com/deeplearning/cudnn/api/index.html
https://github.com/tensorflow/models
https://github.com/tensorflow/benchmarks
https://github.com/tensorflow/benchmarks
https://github.com/liuzhuang13/DenseNetCaffe
https://github.com/liuzhuang13/DenseNetCaffe
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/

Bibliography 128

Deep Learning System on GPU Supercomputers. In Proceedings of the 2016 IEEE International

Conference on Big Data (Big Data), pages 66–75, 2016.

[114] Dan C. Cireşan, Alessandro Giusti, Luca M. Gambardella, and Jürgen Schmidhuber. Deep

Neural Networks Segment Neuronal Membranes in Electron Microscopy Images. In Proceedings

of the 25th International Conference on Neural Information Processing Systems (NIPS), pages

2843–2851, 2012.

[115] Thorsten Kurth, Jian Zhang, Nadathur Satish, Ioannis Mitliagkas, Evan Racah, Mostofa Ali

Patwary, Tareq Malas, Narayanan Sundaram, Wahid Bhimji, Mikhail Smorkalov, Jack Deslippe,

Mikhail Shiryaev, Srinivas Sridharan, Prabhat, and Pradeep Dubey. Deep Learning at 15PF:

Supervised and Semi-Supervised Classification for Scientific Data. In Proceedings of the

International Conference for High Performance Computing, Networking, Storage, and Analysis

(SC17), 2017.

[116] Thorsten Kurth, Sean Treichler, Joshua Romero, Mayur Mudigonda, Nathan Luehr, Everett

Phillips, Ankur Mahesh, Michael Matheson, Jack Deslippe, Massimiliano Fatica, Prabhat,

and Michael Houston. Exascale Deep Learning for Climate Analytics. In Proceedings of the

International Conference for High Performance Computing, Networking, Storage, and Analysis,

2018.

[117] Robert M. Patton, J. Travis Johnston, Steven R. Young, Catherine D. Schuman, Don D. March,

Thomas E. Potok, Derek C. Rose, Seung Hwan Lim, Thomas P. Karnowski, Maxim A. Ziatdinov,

and Sergei V. Kalinin. 167-PFlops deep learning for electron microscopy: From learning physics

to atomic manipulation. In Proceedings of the International Conference for High Performance

Computing, Networking, Storage, and Analysis (SC18), pages 638–648, 2018.

[118] Siamak Ravanbakhsh, Junier Oliva, Sebastien Fromenteau, Layne C. Price, Shirley Ho, Jeff

Schneider, and Barnabas Poczos. Estimating Cosmological Parameters from the Dark Matter

Distribution. In Proceedings of the 33rd International Conference on Machine Learning (ICML),

pages 2407–2416, 2016.

[119] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training

by Reducing Internal Covariate Shift. arXiv e-prints, pages 1–11, 2015.

[120] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.

Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine

Learning Research, 15:1929–1958, 2014.

[121] National Energy Research Scientific Computing Center. CosmoFlow datasets. https://portal.

nersc.gov/project/m3363, 2019. Last visit: Jan 6, 2021.

https://portal.nersc.gov/project/m3363
https://portal.nersc.gov/project/m3363

Bibliography 129

[122] Nikoli Dryden, Tim Moon, Tom Benson, and Marc Snir. Channel and Filter Parallelism for

Large-Scale CNN Training. In Proceedings of the International Conference for High Performance

Computing, Networking, Storage, and Analysis (SC19), 2019.

[123] Lawrence Livermore National Laboratory. Conduit. https://github.com/LLNL/conduit, 2014.

Last visit: Jan 6, 2021.

[124] Jiri Kraus. An Introduction to CUDA-Aware MPI. https://developer.nvidia.com/blog/

introduction-cuda-aware-mpi/, 2013. Last visit: Jan 6, 2021.

[125] Nikoli Dryden, Naoya Maruyama, Tim Moon, Tom Benson, Andy Yoo, Marc Snir, and Brian Van

Essen. Aluminum : An Asynchronous , GPU-Aware Communication Library Optimized for

Large-Scale Training of Deep Neural Networks on HPC Systems. In Proceedings of the Workshop

on Machine Learning in High-Performance Computing Environments (MLHPC), 2018.

[126] Lawrence Livermore National Laboratory. Hydrogen. https://github.com/llnl/Elemental,

2010. Last visit: Jan 6, 2021.

[127] The HDF5 Group. The hdf5 R⃝library & file format. https://www.hdfgroup.org/solutions/

hdf5/, 2006. Last visit: Jan 6, 2021.

[128] Fahim Chowdhury, Yue Zhu, Todd Heer, Saul Paredes, Adam Moody, Robin Goldstone, Kathryn

Mohror, and Weikuan Yu. I/O characterization and performance evaluation of BeeGFS for deep

learning. ACM International Conference Proceeding Series, 2019.

[129] Lawrence Livermore National Laboratory. Using LC’s Sierra Systems. https://hpc.llnl.gov/

training/tutorials/using-lcs-sierra-system, 2020. Last visit: Jan 6, 2021.

[130] NVIDIA. Profiler user’s guide. https://docs.nvidia.com/cuda/profiler-users-guide/,

2020. Last visit: Jan 6, 2021.

[131] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond Data and Model Parallelism for Deep Neural

Networks. arXiv e-prints, 2018.

[132] Yanping Huang, Yonglong Cheng, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, and

Zhifeng Chen. GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism.

arXiv e-prints, 2018.

[133] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn

Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, Ryan Sepassi,

and Blake Hechtman. Mesh-TensorFlow: Deep Learning for Supercomputers. In Proceedings

of the 32nd International Conference on Neural Information Processing Systems (NIPS), pages

10414–10423, 2018.

https://github.com/LLNL/conduit
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/
https://github.com/llnl/Elemental
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://hpc.llnl.gov/training/tutorials/using-lcs-sierra-system
https://hpc.llnl.gov/training/tutorials/using-lcs-sierra-system
https://docs.nvidia.com/cuda/profiler-users-guide/

Bibliography 130

[134] Norm Jouppi. Google supercharges machine learning tasks with

TPU custom chip. https://cloud.google.com/blog/products/gcp/

google-supercharges-machine-learning-tasks-with-custom-chip, 2016. Last visit:

Jan 6, 2021.

[135] TensorFlow. Tfrecord and tf.train.example. https://www.tensorflow.org/tutorials/load_

data/tfrecord, 2020. Last visit: Jan 6, 2021.

[136] Chao Li, Yi Yang, Min Feng, Srimat Chakradhar, and Huiyang Zhou. Optimizing Memory

Efficiency for Deep Convolutional Neural Networks on GPUs. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage, and Analysis (SC16), pages

633–644, 2016.

[137] Le Hou, Youlong Cheng, Noam Shazeer, Niki Parmar, Yeqing Li, Panagiotis Korfiatis, Travis M.

Drucker, Daniel J. Blezek, and Xiaodan Song. High Resolution Medical Image Analysis with

Spatial Partitioning. arXiv e-prints, pages 15–19, 2019.

[138] Mark Harris. Unified memory for cuda beginners. https://developer.nvidia.com/blog/

unified-memory-cuda-beginners/, 2017. Last visit: Jan 6, 2021.

[139] Loyd Case. Volta Tensor Core GPU Achieves New AI Performance Milestones. https://

developer.nvidia.com/blog/tensor-core-ai-performance-milestones/, 2018. Last visit:

Jan 6, 2021.

[140] The Linux Foundation. Open Neural Network Exchange. https://onnx.ai/, 2019. Last visit:

Jan 6, 2021.

[141] NVIDIA. cuBLAS CUDA Toolkit Documentation. https://docs.nvidia.com/cuda/cublas/

index.html, 2020. Last visit: Jan 6, 2021.

[142] Lawrence Livermore National Laboratory. Sierra. https://computing.llnl.gov/computers/

sierra, 2020. Last visit: Jan 6, 2021.

[143] FUJITSU. Specifications - Supercomputer Fugaku. https://www.fujitsu.com/global/about/

innovation/fugaku/specifications/, 2020. Last visit: Jan 6, 2021.

[144] M D Zakir Hossain, Ferdous Sohel, Mohd Fairuz Shiratuddin, and Hamid Laga. A Comprehensive

Survey of Deep Learning for Image Captioning. ACM Computing Surveys, 51(6), 2019.

[145] Samuel L. Smith, Pieter-Jan Jan Kindermans, Chris Ying, and Quoc V. Le. Don’t Decay the

Learning Rate, Increase the Batch Size. In Proceedings of the 3rd International Conference for

Learning Representations (ICLR), 2018.

https://cloud.google.com/blog/products/gcp/google-supercharges-machine-learning-tasks-with-custom-chip
https://cloud.google.com/blog/products/gcp/google-supercharges-machine-learning-tasks-with-custom-chip
https://www.tensorflow.org/tutorials/load_data/tfrecord
https://www.tensorflow.org/tutorials/load_data/tfrecord
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/tensor-core-ai-performance-milestones/
https://developer.nvidia.com/blog/tensor-core-ai-performance-milestones/
https://onnx.ai/
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cublas/index.html
https://computing.llnl.gov/computers/sierra
https://computing.llnl.gov/computers/sierra
https://www.fujitsu.com/global/about/innovation/fugaku/specifications/
https://www.fujitsu.com/global/about/innovation/fugaku/specifications/

Bibliography 131

[146] Hiroaki Mikami, Hisahiro Suganuma, Pongsakorn U-chupala, Yoshiki Tanaka, and Yuichi

Kageyama. ImageNet/ResNet-50 Training in 224 Seconds. arXiv e-prints, 2018.

[147] Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. Learning Curve

Prediction With Bayesian Neural Networks. In Proceedings of the 3rd International Conference

for Learning Representations (ICLR), 2017.

[148] Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Accelerating neural architecture

search using performance prediction. arXiv e-prints, 2, 2017.

[149] Yunpeng Chen, Haoqi Fan, Bing Xu, Zhicheng Yan, Yannis Kalantidis, Marcus Rohrbach, Yan

Shuicheng, and Jiashi Feng. Drop an octave: Reducing spatial redundancy in convolutional

neural networks with octave convolution. In Proceedings of the IEEE International Conference

on Computer Vision (ICCV), pages 3434–3443, 2019.

Created at: 2021/02/27 20:51:21
ID: bd715c24112f0f0d6c4fa2d145eb46e4b34280e1 (tag: t2r2)

