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Abstract

Owing to their high tunability, ultracold atoms provide versatile platforms for investigating
interacting systems. Here, the quantum statistics of particles is controlled by the choice
of atomic species and the space geometry by the operation of optical lattices. In addition,
the strength of the interparticle interaction can be tuned from weak to strong through the
Feshbach resonance. One of the ultracold atomic systems which take maximum advantage of
this tunability is a two-component Fermi gas near the two-body resonance, which is referred
to as a resonant Fermi gas. Because the interaction is characterized by only one parameter,
the s-wave scattering length, the interaction effect appears only through the scattering length
near the resonance. Thus, the resonant Fermi gas shows universal behaviors independent of
the details of the interaction and forms an ideal example of a strongly correlated quantum
many-body system. This universality and the high tunability connect the study of ultracold
atoms to various other fields of physics.

In particular, a resonant Fermi gas in the unitarity limit, where the scattering length is
tuned to infinity in three dimensions, shows remarkable universality because of the absence
of length scales in the interaction. The emergence of the conformal invariance due to the
absence of length scales is one representative example of the universality in the unitarity
limit. The strong coupling, which is associated with conformality, motivates studies of the
thermodynamic properties and the transport properties. For example, the system achieves an
almost “perfect fluid” in the unitarity limit, where the bulk viscosity vanishes and the shear
viscosity has a remarkably small ratio to the entropy density. Although the strong coupling
leads to intriguing transport properties, it makes the calculations of transport coeflicients
difficult.

This thesis investigates the transport properties of two-component Fermi gases near the
two-body resonance in two and three dimensions. We particularly focus on their transport
coeflicients, such as the bulk viscosity, the shear viscosity, and the thermal conductivity, for
an arbitrary scattering length. In order to carry out reliable analysis in the strongly correlated
regime, such as near the unitarity limit, we need non-perturbative methods. One of the non-
perturbative methods is to use the conformal symmetry that emerges in the unitarity limit.
The application of this symmetry-based approach to hydrodynamics revealed the vanishing
bulk viscosity in the unitarity limit. Another non-perturbative approach is an expansion
in terms of the fugacity, called the quantum virial expansion. In the high-temperature and
low-density regime, this expansion is valid because the fugacity is small.

First of all, we focus on the bulk viscosity, which characterizes the dissipation caused by an
expansion of the fluid volume. The vanishing bulk viscosity in the unitarity limit is intuitively
understood because the entropy does not change before and after an isotropic expansion of the
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fluid due to no interaction scales. In order to investigate the bulk viscosity for a finite scatter-
ing length, we extend the intuitive understanding of the vanishing bulk viscosity at unitarity
to the case where the scattering length is finite. To do this, we construct hydrodynamics with
a finite and spacetime-dependent scattering length. We show that the spacetime-dependent
scattering length uniquely enters into a viscous term so as to represent the expansion and
contraction of the fluid in both normal and superfluid phases. Consequently, we find that the
entropy production due to the modulation of the scattering length is proportional to the bulk
viscosity. Based on this finding, we propose a novel experimental probe for the bulk viscosity
via the entropy production rate when the scattering length is temporally varied in a uniform
system.

Next, we evaluate the transport coefficients via the Kubo formulas in the quantum virial
expansion. Among the transport coefficients, we first discuss the bulk viscosity. As shown
by our hydrodynamic equations, we can find the bulk viscosity in the dissipation produced
by the varying scattering length. We confirm that the bulk viscosity can be found in the
response to the scattering length from the linear response theory without relying on the
hydrodynamics. We also express the Kubo formula for the bulk viscosity with a response
function of the contact, which is the thermodynamically conjugate quantity to the scattering
length. We then review the evaluation of the bulk viscosity up to the second order in fugacity.
The bulk viscosity calculated from the quantum virial expansion does not fully agree with
the one calculated from the kinetic theory. We point out that this discrepancy is due to a
breakdown of the quasiparticle approximation underlying the kinetic theory at the first order
in fugacity.

Finally, we compute the remaining two transport coefficients, i.e., the shear viscosity and
the thermal conductivity, in the quantum virial expansion. In the calculations of these two
transport coefficients, there is a singularity that reduces the order of the fugacity. We give
an exact microscopic computation for the shear viscosity and the thermal conductivity in the
high-temperature limit by taking into account the singularity. We derive a self-consistent
equation for the vertex function which is needed to obtain the transport coefficients in the
high-temperature limit. In particular, we show that the self-consistent equation is identical to
the linearized Boltzmann equation. In addition to the microscopic theory using the quantum
virial expansion, the kinetic theory has been used as another approach for transport in the
high-temperature limit. Our results provide a direct relation between the two approaches
and provide an interpretation of the kinetic theory in the high-temperature limit from the
microscopic theory.
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Chapter 1

Introduction

1.1 Dilute gases near the Feshbach resonance in ultracold atoms

Ultracold atoms are created by laser cooling and evaporative cooling of an atomic cluster
trapped in a vacuum by magnetic and optical methods [IH3]. By selecting the atomic species
that constitute the cluster, we can create both fermionic and bosonic many-body systems. For
instance, popular atomic species for bosonic systems are 8’Rb and **Na, and for fermionic
systems YK and ®Li. After evaporative cooling, ultracold atomic gases typically reach a
number density n of about 10" cm™3 at the center of the trap, with temperatures T' of about
50 nK, resulting in ultracold dilute gases.lj:I For typical experimental conditions, the quantum
degeneracy temperature Tyeg = h?n%3/(2mkp), where m is the mass of the atoms, is near
or below one microkelvin. Thus, the gases achieve quantum degeneracy and provide ideal
platforms for study of quantum many-body systems.

More importantly, in ultracold atoms, the s-wave scattering length a, which is defined
from the two-body scattering amplitude, can be tuned by applying an external magnetic field
through the Feshbach resonance. The Feshbach resonance occurs when the kinetic energy of
an incoming particle coincides with the binding energy in a closed channel []. For ultracold
atoms, we trap atoms with the hyperfine structure and adjust the energy difference between
open and closed channels, causing the Feshbach resonance between the hyperfine states. Be-
cause the energy difference between the hyperfine states can be controlled using an external
magnetic field, we can induce the Feshbach resonances with the magnetic field. In the vicinity
of the resonance, the scattering length a is given by

A
= apg <1—B_Ejgo>, (1.1.1)

where the background scattering length ay, represents the off-resonant value, Ap is the
resonance width, and By is the resonance position [B]. Fig. [ Ilshows the Feshbach resonances
for a Bose-Einstein condensation of optically trapped 2*Na atoms [B]. Fig. [Tl demonstrates
the tunability of the scattering length, according to Eq. (LII).

The tunability of the scattering length enables a situation where only the scattering length
is relevant to the length scales of the interparticle interaction. For a short-range interaction

1One can see the diluteness of ultracold atoms by comparing the number densities of other systems. For

instance, the number density of an ideal gas at 273.15K (0°C) and 1 atm is 2.7 X 10° ecm™3. In the same

condition, the number densities of metals are typically about 10?2 cm™3.
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Figure 1.1: Observation of the magnetically tuned scattering length for a Bose-Einstein con-
densation of optically trapped 2*Na atoms using the Feshbach resonance [6]. The horizontal
axis represents the magnetic field, and the resonance occurs at about 907 G. The vertical
axis represents the scattering length normalized to the background scattering length ay,, = a,
measured by the expansion after release from the trap. The solid line represents the scattering

length given by Eq. (LII]).

at low energies, the length scales due to the interaction are given by the scattering length a
and the radius rg of the interaction potential. In addition to the length scales due to the
interaction, the gases have two length scales: the average interparticle distance n=1/3 and the
thermal de Broglie wavelength Ay = hy/27/(mkpT'). Since the ultracold atomic gases are
cold and dilute, the average interparticle distance and the thermal de Broglie wavelength are
sufficiently larger than the radius rg. Moreover, the absolute value of the scattering length
can be tuned to be sufficiently larger than rg. Therefore, in the vicinity of the resonance, the
gases meet the condition of

< Y3 Mg, al. (1.1.2)

In this thesis, we refer to a two-component Fermi gas that satisfies this condition as a resonant
Fermi gas. This condition allows rg to be regarded as zero, which is referred to as the zero-
range limit. In the zero-range limit, the interaction is characterized only by the scattering
length. Because the interaction effects appear only through the scattering length, physical
quantities show a universal behavior independent of the details of the interaction potential.
Furthermore, the interaction strength can be tuned according to the scattering length, which
is a remarkable feature of ultracold atoms [7]. This universality and the tunability of the

2A “short-range” interaction here does not need to decay exponentially, as long as its potential radius is
small. For example, a typical interaction potential has a long-range tail of van der Waals potential 7%, but
with a radius of about 1 nm.
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interaction strength connect the study of ultracold atoms to various fields of physics, such as
high T¢-superconductors, nuclear matter, neutron stars, and quark-gluon plasmas [B[Q].

For example, the tunability enabled the observation of the BCS-BEC crossover [IOHIG].
The BCS-BEC crossover is the phenomenon in resonant Fermi gases which vary without a
phase transition from the fermionic superfluid described by the Bardeen—Cooper—Schrieffer
theory to the bosonic superfluid of a Bose—Einstein condensate of tightly bound molecules,
along with an increase in the attractive interaction strength between the particles. This
increase in the attractive interaction can be realized by increasing the inverse of the scattering
length, resulting in a free Fermi gas for (kpa) ™! — —oo and a free Bose gas for (kpa) ! — +o0,
where kg is the Fermi wavevector. Here, the radius rg is assumed to be small kprg — 0.
Fermionic superfluids with a large scattering length have been suggested to be linked to
nuclear matter [[Q[I7] and high-7, superconductors [Ig].

1.2 Thermodynamic properties of resonant Fermi gases

For a mass-balanced two-component, i.e., spin-1/2, Fermi gas with a large scattering length,
which we refer to as a resonant Fermi gas, the free energy F is entirely determined only by
the temperature T', the volume V', the number of particles N, and the scattering length a,
due to the universality. With the help of the dimensional analysis, one can write down the
free energy as

F(T,V,N;a) = epN fp(kgT/cr, ha/v/2mer), (1.2.1)

where ep = (272N/V) 2/3 2 /(2m) is the Fermi energy, and fr is a function of two dimen-
sionless ratios. This function fr is significant in the regime with a large scattering length
because it is responsible for the universality. In particular, at the resonance point, where the
scattering length diverges, the function fr turns into a single-variable function fp(k;BT/ EF)
defined by

fF(kBT/&“F) = |a1‘iinoo fF(kBT/EF, ha/\/ QTTLEF). (1.2.2)

The thermodynamic properties are governed by the single-variable function fF, just like the
free Fermi gas, although the system is strongly interacting. The thermodynamics at the
resonance point is referred to as the universal thermodynamics [[9H2]], and the function fp
was measured in ultracold atoms experiments [22H24].

The limit with an infinite scattering length is called the unitarity limit because it saturates
the s-wave scattering cross-section to the maximum value allowed by the unitarity condition
of the scattering matrix. A resonant Fermi gas in the unitarity limit, which we refer to
as the unitary Fermi gas, is the most pronounced system for the universality owing to the
absence of length scales in the interaction. The universal thermodynamics is an example of
the universal properties of the unitary Fermi gas. The absence of length scales also makes the
unitary Fermi gas a conformal invariant system, which is another example of the universal
properties 25H2T]. The conformal invariance provides insights into some properties of the
unitary Fermi gas in terms of symmetry, as we see later.

Another universal property of the resonant Fermi gases is universal relations that connect
their short-range correlations to thermodynamic properties [28H34]. Because the universal
relations hold for any number of particles, temperature, and scattering length, they offer
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valuable information even in the strongly correlated regime. For example, the wavevector
spectrum has a power-law tail at large |k| as

lim |k|'ns (k) =C (0 =1,1), (1.2.3)
| k| —o00
where the spectrum n, (k) is normalized so that the total number of fermions with spin o is
given by

N, = /(2(:1:)3710(14:). (1.2.4)

The origin of the power-law tail lies in the short-range singularity due to the zero-range limit.
Here, C is the coefficient of the tail of the spectrum n,(k) and is called the contact. The
contact characterizes the short-range correlation because it appears due to the short-range
singularity. On the other hand, the contact is also related to thermodynamic quantities. A
representative example is the adiabatic relation:

F 2
<8_1> __ " (1.2.5)
Oa T.V.N 4mm

Egs. (LZ3) and (23] connect the short-range correlations and the thermodynamic quanti-
ties through the contact. The contact plays a central role in the universal relations. While
the contact appears in various thermodynamic quantities originating from Eq. (L23]), it also
appears in power-law tails of various physical quantities such as the dynamical structure fac-
tor [BEH3E] and the viscosity spectral function [BGBI], as well as in the wavenumber spectrum.

1.3 Transport properties of resonant Fermi gas

The universality of the resonant Fermi gases appears not only in thermodynamics but also
in transport phenomena. The transport properties can be experimentally investigated from
observations, such as the expansion dynamics after release from the trap EQ[AI]. The atten-
uation and dissipation in these processes are governed by the shear viscosity 7 and the bulk
viscosity ¢ I2H3]. It has been confirmed that the shear viscosity is remarkably small [44-48],
and the bulk viscosity is zero in the unitarity limit [40]. Because of the small viscosities, the
resonant Fermi gases are said to be an almost “perfect fluid.”

The vanishing bulk viscosity in the unitarity limit can be understood in terms of the
conformal invariance [49]. The bulk viscosity appears as a coefficient of the entropy production
associated with the expansion and contraction of the fluid. In scale-invariant systems, because
of the absence of intrinsic length scales, the entropy of the system does not increase during an
isotropic expansion, where the fluid velocity v(¢, ) at point & being v(t, ) = cx with some
constant ¢. This non-production of the entropy means that the bulk viscosity is zero. The
vanishing bulk viscosity can be seen in the non-damping mode for expansion and contraction.
In particular, the unitary Fermi gas in a harmonic trap has an oscillating mode that expands
and contracts with twice the trap potential frequency, which is called the breathing mode [27]
BOEI]. Conversely, the presence of the bulk viscosity is a signal of the breaking of scale
invariance. For example, the model of the two-dimensional Fermi gases in the zero-range
limit classically has a scale invariance, but the scale invariance is broken by quantum effects,
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which result in the appearance of the scattering length. This breaking can be detected via
the bulk viscosity and was measured from the damping of the breathing mode [E2H5H].

For the shear viscosity, a conjecture about the ratio of the shear viscosity 7 to the entropy
density s is of interest [56]. This conjecture is that the ratio n/s should be bounded from
below as

W . b

- > .
s — 4rkp
This conjecture was originally derived from gravity duals based on string theory and proposed

(1.3.1)

for relativistic quantum field theories at finite temperature and zero chemical potential. How-
ever, since Eq. (L3 does not involve the speed of light, it was speculated that Eq. (L3
might be valid even in nonrelativistic systems. This conjecture has motivated the search for
the “perfect fluid” which realizes, or at least comes close to, the lower-bound. In particular,
because a N’ = 4 supersymmetric Yang-Mills theory in the limit of infinite 't Hooft coupling
realizes the lower bound of the ratio [57], strongly correlated systems such as the unitary
Fermi gas is expected to realize the “perfect fluid.” In fact, the minimum values of the ratio
n/s was estimated for some fluids: n/s ~ 25 for HyO, n/s ~ 8.8 for *He, 1/s ~ 6.3 for °Li
at unitarity, and n/s ~ 5.0 for quark-gluon plasma, with %/(47kg) as the unit BSEI. The
unitary Fermi gas is said to achieve a ratio close to the lower bound. Although there are some
counter-proposals that suggest different lower bounds on the ratio [6OHGE], it is interesting
that the ratio has a non-zero lower bound, and it is an important problem to derive the lower
bound from the principles of quantum statistical physics. The resonant Fermi gas provides a
research platform for this problem.

1.4 Purposes and outline of this thesis

In this thesis, we investigate transport phenomena of the resonant Fermi gases in two and three
dimensions to understand the universal nature of transport in strongly correlated quantum
many-body systems. We particularly focus on the transport coefficients such as the bulk
viscosity, the shear viscosity, and the thermal conductivity. We perform two studies to discuss
the transport coefficients for an arbitrary scattering length: construction of hydrodynamics
with a spacetime-dependent scattering length [Chapter ] and evaluation of the transport
coefficients in the quantum virial expansion [Chapthers [ and [].

We begin with a review of the universality of the resonant Fermi gas in Chapter Bl Then,
as preparation for calculating the transport coefficients, we review the Kubo formulas for the
transport coefficients [6BHGY]. Finally, we review the kinetic theory approach to the transport
coefficients in the high-temperature limit [6IHTH].

In Chapter Bl we focus on the bulk viscosity. As already explained, the bulk viscosity
vanishes in the unitarity limit [9]. This vanishing bulk viscosity at unitarity is intuitively
understood because the entropy is not produced during an isotropic expansion of the fluid
due to no reference scales in interactions. In order to investigate the bulk viscosity for a
finite scattering length, we extend this intuitive understanding of the isotropic expansion
at unitarity to the case where the scattering length is finite. A finite scattering length,
which is the only reference scale in the interaction, characterizes the isotropic expansion
process. Namely, the expansion process is understood as an increase in the fluid volume
relative to the reference volume element a®. This understanding of the expansion as the
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comparison of the volumes suggests that an isotropic expansion of the fluid volume at a fixed
scattering length can be regarded as equivalent to a contraction of the scattering length at a
fixed fluid density. We consider a resonant Fermi gas whose scattering length is modulated
over spacetime to construct hydrodynamic equations that involve this equivalence. One can
realize the spacetime-dependent scattering length by applying a modulated magnetic field
over spacetime because the scattering length is tuned via an external magnetic field [TGHTS].
We show that the spacetime-dependent scattering length enters the hydrodynamic equations
uniquely so as to represent the expansion and contraction of the fluid in both normal and
superfluid phases. As a consequence of our hydrodynamics, we propose a novel experimental
probe for the bulk viscosity via the entropy density production due to a temporal change in
the scattering length. Also, we find that a leading dissipative correction to the contact density
due to the spacetime-dependent scattering length is proportional to the bulk viscosity.

We calculate the bulk viscosity in Chapter l] and the shear viscosity and the thermal
conductivity in Chapter [l using a systematic expansion method whose expansion parameter
is the fugacity z = et/ (k8T)  Here, T is the temperature, and 1 the chemical potential. In the
high-temperature and low-density regime n)\% < 1, the fugacity z is small. Thus, physical
quantities can be expanded systematically in terms of the fugacity. This expansion, which
is called the quantum virial expansion, has been widely used to calculate thermodynamic
quantities because it is valid even in strongly coupled regimes such as near the unitarity
limit [F9H88]. The transport coefficients were recently computed via the Kubo formulas in
the quantum virial expansion [B9BIHOF]. As reviewed in Chapter ] the transport coeffi-
cients in the high-temperature limit were calculated using the kinetic theory [69H7D]. For the
bulk viscosity, the microscopic results using the quantum virial expansion are not consistent
with the kinetic ones. In contrast, for the shear viscosity and the thermal conductivity, the
microscopic results with an approximate resummation in the quantum virial expansion are
consistent with the kinetic results in the relaxation-time approximation.

In Chapter [ we calculate the bulk viscosity in the quantum virial expansion. As shown in
Chapter Bl the bulk viscosity can be found in the response of the contact when the scattering
length is varied. We express the Kubo formula for the bulk viscosity with the contact-
contact response function and confirm that the bulk viscosity is found in the response of the
contact to the varying scattering length from the linear response theory. We then review the
computaition of the contact-contact response function up to the second order of the fugacity
and the evaluation of the bulk viscosity. We discuss the computation for the bulk viscosity
using the kinetic theory in the high-temperature limit and show that the kinetic theory is not
capable of computing the bulk viscosity up to the second order of the fugacity.

In the calculations of the shear viscosity and the thermal conductivity, there is a singularity
that reduces the order of the fugacity by one. In Chapter Bl we give an exact microscopic
computation for the shear viscosity and the thermal conductivity in the leading order of the
fugacity by taking into account the singularity. We derive the self-consistent equation for the
vertex function which is needed to obtain the transport coefficients in the high-temperature
limit (or equivalently, in the leading order). Furthermore, we show that the self-consistent
equation is equivalent to the linearized Boltzmann equation, which means that the microscopic
calculations agree with the kinetic calculations without any approximation for the transport
coefficients in the high-temperature limit.
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Finally, in Chapter [l we conclude this thesis and discuss some remarks on prospects.

In what follows, we set i = kg = 1 and employ the shorthand notations 9, = 0/0t,
0; = 0/0z" and gb%d} = [¢(0u9) — (0up)?]/2 with =t or i. Unless otherwise specified,
we assume implicit sums over repeated indices for the subscript of the spatial coordinates as
well as for [vi]Q = v;v;. Also, an integration over a d-dimensional wavevector or momentum
is denoted by [, = [ dk/(2m) for the sake of brevity.



Chapter 2

Review for transport of resonant
Fermi gases

In this section, we review three topics in relevance to the transport of the resonant Fermi
gases. We first review the universality of the resonant Fermi gases in Sec. 211 We next review
the Kubo formulas for transport coefficients in Sec. Sec. 2.3]is devoted to a review of the
kinetic theory approach for the resonant Fermi gases at high temperatures.

2.1 Universality of resonant Fermi gases

For the resonant Fermi gases, we consider a two-component fermionic many-body system,

consisting of spin 1- and |-particles with the same mass m in two and three dimensions.

2.1.1 Two-body scattering

Let us discuss the scattering problem between two particles with different spins in three
dimensions. We discuss the scattering problem in two dimensions later. By focusing on
the relative motion, the problem can be reduced to that of a single particle scattered by a
spherical potential V' (|z|). The single-particle problem is described by the three-dimensional
Schrodinger equation given by

1
2m,.

V24 V()| U(z) = EV(x), (2.1.1)

where m, = m/2 denotes the reduced mass and E the scattering energy. To obtain scat-
tering states, we suppose that the energy F is positive and denote it as E = k?/(2m,.) with
momentum k > 0 of the incoming particle. Let the radius of the potential be rr, and let the
potential decrease sufficiently in || > rgr. A boundary condition at infinity imposes that
ikz

the wave function is a superposition of the plane wave e"*# of the incoming particle and the

outward scattering wave el /|x|:

ezk|w|

+fk(Q)W7 (2.1.2)

|z|—=00 ks

V()

where f;(£2) is the scattering amplitude and €2 the spherical angles of an outgoing direction.
For the spherical potential, the angular momentum £ is a good quantum number, so that the

8
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scattering amplitude f(€2) can be decomposed into independent partial-wave components as

o

Fe(€) =D (204 1) fo(k) Py(cos 0), (2.1.3)

(=0
where Py(cosf) denotes the Legendre polynomials and 6 is the angle between the incoming
direction (z-axis) and an outgoing direction. The scattering amplitude for the ¢-th partial

wave can be represented as
1

K=~
Jelk) = 5 So(k) — ik’

where (k) is the ¢-th wave phase shift [04].
If the potential V' (|x|) decreases exponentially, the phase shift is expand for small & as

(2.1.4)

o(k) ~ k2L, (2.1.5)

In reality, the interaction potential between particles is estimated as 7~ at large distance, as
in the van der Waals potential 7~%. In this case, the phase shift for small & is given by [0405]

20+1 " —
de(k) ~ { :4 ﬁ ; En B ggg (2.1.6)

Considering the case of the van der Waals potential n = 6, a low-energy expansion of the
phase shift is given by
—a7l 4 %Hk? FO(K®) =0,
kcotde(k) = ¢ O(k™2) (=1, (2.1.7)
O(k™®) £>2,
where a is the s-wave scattering length and r.g the effective range. Therefore, at low energies,

the zeroth scattering amplitude fy—o(k) is dominant and the scattering amplitude is expressed

as
1

a - T%ﬁk‘Q +ik"

fe(Q) = fo=o(k) = — (2.1.8)
For further low-energy approximation, we assume that the absolute value of the effective
range is at most about the radius of the potential: |reg| < rr. This assumption is satisfied
experimentally by using atoms whose resonance width Ap of Eq. (LIJ) is large, and such
a resonance with a large resonance width is called the broad Feshbach resonance []. Under
this assumption, as discussed in Chapter [, we can ignore the effective range along with the
potential radius when the absolute value of the scattering length is sufficiently larger than
the potential radius. Thus, in the zero-range limit rg — 0, the effective-range term becomes
irrelevant and the scattering amplitude is simply obtained by

1

fe(2) = T (2.1.9)

Since poles of the scattering amplitude on the positive imaginary axis of k£ correspond to
bound states, there is a bound state with the following binding energy FEhing for a > 0:

B =220 L 2o (2.1.10)
bind — 2m7« = ma2 Epole = . .
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At this point, we can see the universality that the behaviors of the system do not depend
on the details of the interaction potential V'(Jx|). The scattering amplitude ([21.9]) is expressed
only by the scattering length a, which means that the system shows the same behavior at low
energies even for different interaction potentials as long as the scattering length is the same.

We briefly discuss two-body scattering in two dimensions. In two dimensions, the bound-
ary condition at infinity is given by

(x) — ethr — 57 k(0 \Iﬁ (2.1.11)
x|
For the spherical potential, the scattering amplitude is decomposed into independent partial-
wave components as [800]

=3 (2 600) fo(k) cos(€6). (2.1.12)
=0

The scattering amplitude for the ¢-th partial wave is expressed by the phase shift d,(k) as

- = —4e"¢") gin 6, (k). (2.1.13)

fe(k) = cot dp(k) —i

As in the three-dimensional case, the zeroth partial wave component fy—o(k) is dominant at
low energies, and the low-energy expansion of the scattering amplitude is obtained by

—4m

0) = fr_o(k) = - 2.1.14

where a is the scattering length in two dimensions. In two dimensions, the scattering length a
is always positive and the attractive potential with any strength induces a zero-energy bound
state. Also, the scattering amplitude has a pole corresponding to the bound state of the

binding energy Fhinq = —1/(ma?), as in the case of three dimensions.

2.1.2 Contact interaction

By virtue of the universality, we can take a simple interaction potential among the potentials
with the scattering length a. According to the zero-range limit, we employ a delta function
potential as the interaction potential, which is called a contact interaction. Then, in the
second-quantized formalism, the Hamiltonian of the two-component fermions in d spatial
dimensions is given by

= Z [ dwilia @)+ 2 [w@il@ij@i@in@), 11
0.0

where ¢ is the bare coupling constant between two fermions. Here, the annihilation and
creation operators satisfy the canonical anti-commutation relations

{Qﬁa (w)7
{to(2),

H(Y)} = 50" (x — y),

A A 2.1.16
o)} = {51 (), D)} = 0. (2.1.16)

0
¥
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Let us consider the two-body scattering T-matrix to discuss two-body scattering in this
model. The T-matrix T2(pg, p) obeys the following Lippmann-Schwinger equation:

: . 1 [dko :
—iT2(po,p) = —ig + Td / or Z(—zg)
ok . (2.1.17)
i i

X . . (_275 bo, P )7
;%0—ko—ﬁp/g_k—i-’t()"'p70+k0—6p/2+k+7,0+ ( )

where €, = p?/(2m) is the kinetic energy and 0" denotes an infinitesimal positive real number.
Here, L¢ is the volume of the system and we take the infinite-volume limit L=43", — |, ka8
needed. From the Lippmann-Schwinger equation, the T-matrix can be written as

1

T2(po, p) = ; 2.1.18
( ) 9_1 - Hpolar(p()ap) ( )
where II,o1ar (po, p) is the polarization function given by
1 dkg 1 1
1 — i [
polar(P0, ) = ~i 7 / 2m ; 3 = ko — epjai +i0F B+ ko — epjapp + 00T (2.1.19)

1 1
B Ld%:po—ep/2—2ek+z’0+'

This polarization function has a ultraviolet divergence for d = 2, 3. To avoid this divergence,
we employ a dimensional regularization. The polarization function in the infinite-volume limit
is computed as

| r(1—d/2) e
Hpolar ) = =—-m —m —€p/2) — 10 s
polar (P0; P) /kpo )2 %2 0+ (47)d/2 (=m(po — €p/2) )
(2.1.20)

where we use the following identities for the gamma function:

L) [ gyt - [T
I,(x+y)—/0d 1 -s)" = ( 1)y/0 d T (2.1.21)

In Eq. @120), the divergence of the polarization function is expressed by that of the gamma
function. The analytic contionuation for the gamma function eliminates the divergence for
d = 3 because of I'(=1/2) = —2/7. Also, the divergence for d = 2 can be avoided by
setting d = 2 — ¢ and expanding the gamma function for an infinitesimally small quantity 9.
Therefore, the T-matrix in the infinite-volume limit is found to be

T2(po, p) = Ta(po — €p/2 +i07), (2.1.22)

where we define the T-matrix in the center-of-mass frame as

1

Ta(e +1i07) = , (2.1.23)
g1 — (d—2TQd_1 (—me — Z0+)cl/271
with
o m¥? | 2n d=2,
a1 = M (2—d/2) | 47 d=3. (2.1.24)
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The on-shell T-matrix in the center-of-mass frame is related to the scattering amplitude,
—(47/m) fr(Q) = Ta(p?/m +i07) for d = 3 and (1/m) f,(0) = To(p?/m + i0F) for d = 2.
From these relations, we define the scattering length a in d spatial dimensions so that the

pole existing for @ > 0 corresponds to the binding energy Eyiq = —1/(ma?), and thus we
find o d
1 ma*~
S L — 2.1.25
g (d—=2)Qq ( )
and
. Q41 d—2
+ —
7:1(5 + 10 ) T T m a2—d — (—ms — i0+)d/2_1
1 —A4r
— d=2 2.1.26
_J mIn(—ma?e —i0T) ’ ( )
) 4w 1

m g~ — v/ —me — 0t

Eq. 2128) connects the bare coupling constant g to the scattering length @ in the dimensional

regularization.

2.2 Kubo formulas for transport coefficients

In this section, we review the Kubo formulas for transport coefficients, especially viscosity
coefficients. Transport coefficients are defined in hydrodynamics as coefficients for dissipation.
The Kubo formulas are obtained by matching linear responses computed in a microscopic
theory with those computed in hydrodynamics. Our discussion here follows mainly that in

Ref. [65].

2.2.1 Microscopics

Let us first consider a microscopic system that is weakly perturbed by an external field. For
viscosity coefficients, the external field is taken to be a vector potential corresponding to a
fluid velocity. The perturbed Hamiltonian is given by

TA () [Dto()]' - [Dio(@)] | -
HA®) = ;/dm o +V, (2.2.1)
where D = V — iA(t,x) is the covariant derivative. Here, the unperturbed Hamiltonian H
is intended to be a general Hamiltonian, including the one with the contact interaction of
Eq. @II0). The current density operator is defined by

OHAE) _ 72— Nty i 2). (2.2.2)

) _ . SHAM) _
Jil(t ) = méAi(t,ac) m

where M(x) and J;(x) is the unperturbed mass density operator and mass current density
operator given by

M@)=mY G @b (@),  Ji@) =—i Y k@) 9 b (). (2.2.3)



2.2. KUBO FORMULAS FOR TRANSPORT COEFFICIENTS 13

Suppose that at the initial time ¢ = —oo, the external field is zero, i.e., A;(—o0,x) = 0,
and the density matrix operator is prepared in thermal equilibrium,

R N L ga—un
P(—00) = Peq = -¢ BH=pN) (2.2.4)

B(H- HN)]

with the partition function Z = Tr[e™ Then, according to the linear response theory,

the expectation value of the mass current density is given by
Ji(t, ) = Te[T7 (8, 2)i(t)]

<u7A t,x) / dt'/da} jl t,x) jg( )]> At 737,) +O(A2), (2.2.5)

where O(t, z) = et O(z)e~* is an operator in the Heisenberg picture and (O) = Tr[Opeq is
an expectation value at the thermal equilibrium. By setting (M(t, )) = M and (J;(t, z)) =
0, the Fourier components of the expectation value is obtained by

Ji(w, k) = /OO dt/dw A

At ) (2.2.6)
w
— [Mbi; = Rz.7,(w, k)] = T +0(4%),
where the response function R 45(w, k) is defined by
Ras(w, k) = i / dt / da ™R ([ A(t, ), B(0,0)]). (2.2.7)
0

Here, w represents a complex frequency with Im[w] > 0. Although w is eventually replaced
by w + 07" for a real frequency w, it is technically helpful to work in the upper-half plane of
the complex frequency w in the process of the computation and to deal with the infinitesimal
imaginary part 10" at the very end.

2.2.2 Hydrodynamics

Next, we consider the same system in terms of hydrodynamics. Hydrodynamics is a low-energy
effective theory describing long-time and long-distance dynamics for correlated systems and
is valid on scales larger than scales that characterize the thermalization process, such as a
relaxation time and a mean free path. On this scale, the system is considered to be in local
thermal equilibrium, where thermal equilibrium is realized at each point in spacetime, and
local thermodynamic quantities describe the system. Hydrodynamic equations describing the
motion of the local thermodynamic quantities are given in the form of continuity equations
for mass, momentum, and energy [@7],

OM(t, @) + 0Tt x) = 0, (2.2.8)
0.t @) + 0,11y (1, ) = %[M(t, @) Eit, ) + Jj(t,) Fy (1, )], (2.2.9)
OH(E, @) + it @) = %ji(t, z)- Eit, @), (2.2.10)

where II;;(t,x) denotes the stress tensor, H(t,x) the energy density, Q;(t,x) the energy
current density. The right-hand sides of these equations represent the external forces due to
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the external vector field as the electric field E;(t,z) = —0;A;(t,«) and the magnetic field
Fij(t,z) = 0;A;(t,x) — 0;Ai(t,x). In order for the hydrodynamic equations to form a set of
closed equations, the conserved charge densities and their current densities are to be expressed
in terms of the local thermodynamic quantities and the fluid velocity v;(¢, ). Such equations
for the densities and the current densities are called constitutive relations. The constitutive
relations for normal fluids read

Ji(t,x) = M(t, x)vi(t, x), (2.2.11)
H(t,z) = E(t, ) + M(;’ 2) il )2, (2.2.12)
IL;(t, @) = P(t,x)8;; + M(t, @)vi(t, x)v; (£, x) — 03 (t, @), (2.2.13)
Q,(t, x) = [ (t, ) + P(t, m)}vi(t, ) — oyt )i (L, @) + (L, ), (2.2.14)

where £(t, x) is the internal energy density and P(t¢, x) the pressure. The viscous tensor o;;
and the heat flux ¢;(t, ) are given by

2
Jij(t, iU) =7 [aﬂ}j(t, ac) + Ojvi(t, ac) - géwv : ’U(t, 33) + C(SUV : ’U(t, ac) (2.2.15)

and
qi(t,x) = —rO;T(t, ), (2.2.16)

where T'(t,x) is the temperature. Also, 1, ¢ and k are transport coefficients, called the
shear viscosity, the bulk viscosity and the thermal conductivity, respectively. We choose the
mass density M(t,x) and the internal energy density £(¢,x) as the independent variables
in thermodynamics. Then, the pressure P(t,x) = P(M(t,x),E(t,x)) and the temperature
T(t,x) =T (M(t,x),E(t,x)) are locally determined from the thermodynamic relations. Thus,
Eqs. @Z23)-Z2ZI0) form a set of closed equations with M(t,x), E(t,x) and v;(t,xz) as
independent variables.

To find the mass current density, we solve the hydrodynamic equations for a weak external
field A;(t, x) by linearizing them. Depending on the weak external field, the thermodynamic
variables slightly deviate from their global equilibrium values M and £, and the fluid velocity
is small, all of which are O(A):

IM(t,x) = M(t,x) — M, 6E(t,x)=E(t,x)—E&, vi(t,e) ~ O(A). (2.2.17)

Then, the hydrodynamic equations are linearized and their spacetime Fourier transformations
are given by

— iwoM(w, k) + Mik;v;(w, k) =0, (2.2.18)
. . oP oP

— twMov;(w, k) + ik; [(W)g IM(w, k) + ((%)M 0& (w, k:)]

+ kv (w, k) + (C + d;Qn> kikjvj(w, k) = iw./\/lAi(:Z’k), (2.2.19)

— iwdE(w, k) + ik (€ + P ) vilw, k)

+ rk? [(;ﬂ)s SM(w, k) + (?)Z)M 6E (w, k:)] =0. (2.2.20)
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By eliminating 6 M (w, k) and 0&(w, k), the mass current density up to O(k?) is found to be
k2 d—2 \ kik; Aij(w, k
+n—0i + <C + n) -+ O(k:3)} 4w, k) )+O(A2),
w d w m
(2.2.21)

kik;
(iw)?

Ji(w, k) = — [M&ij — Mcg

where the adiabatic speed of sound c; is defined by

) ap) 5+7><a7>> <a73>
= — = — | — — | . 2.2.22
% (8/\/1 s M \o€ ), T \am), (2.2.22)

Here, the themodynamic quantities obey
E4+P =TS+ puM, d€ =T7dS + pdM, (2.2.23)

where § is the entropy density and g the mass chemical potential.

2.2.3 Kubo formulas for viscosity coefficients

By matching the current responses between the microscopic and hydrodynamic descriptions
in Eqs. (Z2Z0]) and (Z2Z2]) at low frequencies and wavevectors, we find

kik; k2 d—2 \ kik;
—“ R = M2 S gy - Sp) 2 3. 2.2.24
Rag (k) = ~M gy (¢+ C72) S o). 22

The purpose of this section is to derive the viscosity coefficients by taking the appropriate
limit for this equation.

Kubo’s canonical correlation function

It is useful to represent the response function, not in terms of the conserved charge density,
but in terms of its current density, i.e., the stress tensor, because response functions for
conserved charge densities can have long-range correlations [F7AAS]. Using iwe!™! = 9,e™?,

the temporal integral by parts leads to

wRg,7,(w, k) = —i / dt / da ™t =* (9, Ji(t, x), J;(0,0)])
0

(2.2.25)
~i [dee (G 0.2), T0,0)).
The second term vanishes because the equal-time commutator is computed as [09]
i(@), T3(w)] = =i T3(2)0; + Ti(y)9;) 0" (@ — v). (2.2.26)

Then, using the momentum continuity equation for the unperturbed mass current density
operator,
0 Ji(t, ®) + 0;115(t, @) = 0, (2.2.27)

with the stress tensor operator f[ij (t,x), the response function is further written as
o0
iwR 7,7, (w, k) = z/ dt/d:n e“”t’lk'“’qf)kﬂik(t, x), J;(0,0)]) (2.2.28)
0

_ > weiwtfik-w . T 7. . 2.
= kk/o dt/d (ML (t, ), J;(0,0)]) (2.2.29)
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Furthermore, because of the spacetime translational invariance, the expectation value of the

commutator turns into

([T (t, ), 73(0,0)]) = ([[Tx(0,0), T;(—t, —)]) (2.2.30)
= (T14(0,0)J;(—t, —®) — [;,(0,0)e PH 7:(—t, —x)ePH)  (2.2.31)

B R . .

= —/ dr 8- (I1;1,(0,0)e™ ™ T;(—t, —x)e™) (2.2.32)
0
B . .

=i / dr (I1(0,0)8,7; (—t + it, —)), (2.2.33)
0

where the number operator N commutes with the other operators, i.e., BN Q=8N = O,
By using the momentum continuity equation ([Z22.27)) again, we arrive at

o0 o B R .
iR g7 (w, k) = —hihy / at / da civt-ika / dr (5T1,4(0, 0)0TLy (—t + i, —a)), (2.2.34)
0 0
where 011;;(t, ) = IL;;(t, ) — (IL;;(t, )) is introduced to incorporate the boundary contribu-
tion at spatial infinity with the clustering property,

lim (T, (0,0)IL;y(—t + i, —x)) = lim (I (0, 0))(ILj;(—t + i1, —)). (2.2.35)

Using Kubo’s canonical correlation function [65] defined by

0 o B q . .
Kap(w, k) E/ dt/dm e“"tm'w/ FT (0A(t —iT,2)05(0,0)), (2.2.36)
0 0
the right-hand side of Eq. (222.34) can be written simply as
iwR 7,7, (w, k) = —Bkiki K, (w, k), (2.2.37)
and thus Eq. (Z224) is rewritten as
, keky  Mc2 kik; d—2 \ kik;
o [ﬁlcn““n”(w’o) w2 | TP\ ) e (22.38)

Kubo formulas

Let us extract the viscosity coefficients from Eq. [Z238). Here, the fourth-rank tensor
K1, (w, 0) is invariant under the exchange of i <> k and j <> [ by the definition of the
stress tensor and is also invaritnt under the exchange of (ik) <+ (jl) according to the On-
sager reciprocity. Because of the symmetry of the subscripts and the rotational symmetry,
K1, (w, 0) is represented by a linear combination of 6;;0k; 4 00 and ;05 By determin-
ing their coefficients to be consistent with Eq. [Z23]]), we find

Mec? 2
5z'j5kl:| = 1(0:j0k + dadji) + <C — d77> dik0j1, (2.2.39)

lim ﬁ’CHiknjl (w, 0) +

w—i0+ 1w

where the shear and bulk viscosities are given by
n= lim+ pK,,1m,, (w,0), (2.2.40)

w—10
2
¢ = lim [B/Cnn(w,o) + Ajwc] : (2.2.41)

w—i0F
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with the trace of the stress tensor II(¢, ) = IL;; (¢, x)/d.
By replacing the complex frequency w with w + i0", one can see that the second term of
the bulk viscosity has a peak originating from the gapless sound propagation,

Mc? M02

S

%
iw i(w+1i07T)

— M (—ipt —xsw)), 2.2.42
(-ip -~ mow)) (2:2.42)

where the symbol P stands for the principal value of the integral. The singularity that this
peak brings in the limit of w — 0 is canceled by the same singularity produced by the first
term. Actually, the two terms can be combined as

MC
iw

K (w, 0) + = BK gz (w,0), (2.2.43)

where we introduce a modified stress tensor operator ﬁ(t, x) as
2 ~ oP ~ oP ;
II =1I — | == — . 2.2.44
o) =1i(ta) - |(57) Hte)+ (Gg) Hiew) (2:2.44)

Here, /\;l(f, x) and 7:[(15,:1:) are the mass and energy density operators, respectively. In the
operator f[(t, x), the pressure fluctuations that cause sound waves are eliminated from the
trace of the stress tensor operator. Eq. (Z243) is derived from the following properties of
the canonical correlation function,

_ 1 (9(0(0)) w0 L (2000
Kyo(w,0) = iw(a(ﬁ,u) >,3’ Kyo(w,0) — (% >ﬁu’ (2.2.45)

and the thermodynamic relations for (M(z)) = M, (H(x)) = £, and (II(x)) = P. Therefore,
the bulk viscosity is given by
(= lim BKqg(w,0). (2.2.46)

w—i0F

Eqgs. (2240 and (2246l are the Kubo formulas for the viscosity coefficients in Refs. [GGLGE].

From Kubo’s correlation function to response function

Finally, we rewrite Kubo’s correlation function into the response function. By using jwe™! =

0™t in Kubo’s correlation function, the temporal integration by parts leads to

B ap(w, k) / dt/dwae“"t _ka/ dr (8A(t — i, 2)8B(0,0))
- _E Tt / dap civt-ik / dr (O0A(t — i7,2)5B(0,0))  (2.2.47)
0
1

I / dr (5 A(—ir, 2)5B(0, 0)).
0

iw
Then, the integral over T can be rewritten as

8 ) . 8 ) .
/ dr (0,8 A(t — iT, 2)8B(0,0)) = i / dr (88 A(t — ir, )01(0,0))
0 0

= i{[PH5A(t, @) T — 5A(t,2)]6B(0,0)  (2.2.48)
= —i([§A(t,z), §5(0,0)])
= —i([A(t,z), B(0,0)]),
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so that we obtain

Ras(w,k) — [Pdr [ dze % (5 A(—iT,2)05(0,0)) |

2.2.49
o (2.2.49)

B ag(w, k) =

According to the Kubo formulas for the viscosity coefficients of Eqs. (2240) and [22.44]), we
introduce the complex shear viscosity as

R, (w +i07,0) — JPdr [ da (611, (—iT, 2)611,,(0, 0))

1w

n(w) : (2.2.50)

and the complex bulk viscosity as

_ Ranfw +i0%,0) — [}/d7 [ da {STl(~ir 2)311(0,0)) (2.2.51)

¢(w)

The viscosity coefficients are given by the real part of the complex viscosities for w — w+i0"
in the static limit w — 0:

n= 01}30 Re[n(w + i07)], (2.2.52)
¢ = lim Re[¢(w + i07)]. (2.2.53)

2.2.4 Kubo formula for thermal conductivity

It is necessary for computing the thermal conductivity to apply a temperature gradient to
the system, which produces the heat flux. In the discussion of the viscosity coefficients, we
have introduced the vector potential as an external field corresponding to the fluid velocity.
An external field corresponding to the temperature is introduced as a gravitational potential
because the temperature is coupled with a Hamiltonian in the Boltzmann distribution [Gg].
By applying the gravitational potential as an external field, the energy current density can
be calculated by both microscopics and hydrodynamics, just as in the case of the viscosities.
By comparing the energy current response, the Kubo formula for the thermal conductivity is
given by

Tk = lim BKz174(w,0), (2.2.54)

w—i0+

where jiq(t, x) denotes the heat current density operator defined by

‘sz(t, x). (2.2.55)

The heat current density is defined by subtracting the current density multiplied by the

Zq(t,,at) = Qi(t7 CC) -

enthalpy from the energy current density. In the same way as the viscosity coefficients, the
complex thermal conductivity is introduced as

 Rgage(w,0) — [7dr [ da (574 (—ir, x)0T2(0,0))

Tk(w) o

) (2.2.56)
and the thermal conductivity is given by

x = lim Re[k(w +i07)]. (2.2.57)
w—0
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2.3 Kinetic theory at high temperatures

This section is devoted to a review of kinetic theory approach to transport for the resonant
Fermi gases at high temperatures [GIHT3].

2.3.1 Boltzmann equation

The kinetic theory describes collective motions of particles forming a gas with a one-body
distribution function in the phase space. We first consider a simple gas composed of identical
particles. Let us define a one-body distribution function f(¢, x,p) so that f(t,x,p)AxzAp is
the number of particles in a microvolume element AxzAp of the (2d)-dimensional phase space
spanned by the coordinates and momentums. The variation of the number of particles in the
volume element is caused by collisions between particles:

d 0
&f(t’m)p) - (atf(t’x’p)>cou. (231)
The left-hand side reads
d 0 .0 .0
&f(t, x,p) = af(t, x,p) + x@a—nf(t, x,p) +pza—pif(t, z,p), (2.3.2)

where the time derivatives r; and p; are determined by the canonical equations of motion:

, = Ebap) o OE(tz,p)
i o (2.3.3)

with the single-particle energy E(t, x,p). For nonrelativistic gases, we suppose that the energy
E(t,z,p) is given by

p2

FE = — 2.3.4
(t2.p) = 2+ U(t,), (2:3.4)
and thus the left-hand side is written as

d 0 p; O 0

dt ot m Or; Opi

where U(t, ) is a potential energy and F;(t,x) = —0;U(t, x) is its external force.

The left-hand side of Eq. (2.3.1]), called the streaming term, is simply written using the one-
body distribution function, as in Eq. ([Z.3.3]), because it is determined by the motion of a single
particle only. On the other hand, the right-hand side, called the collision term, cannot be
strictly described without two- or more-body distribution functions because collision processes
involve multiple particles. The collision term is approximately given by the following form
using the one-body distribution function only:

<8fp> :/ W(ky, ka2|p, p2) | fiey fieo (1 + cfp) (1 + ¢ fpy) — (L + ey )(L + ¢fiey) fp fps |
coll p2,k1,k2

ot
(2.3.6)
where W(k1, k2|p, p2) is the transition rate and fj, is the shorthand notation of f(¢,x,p). The
transision rate represents the probability that two particles with momenta p and po collide
and then have momenta ki and ks, respectively. Here, ¢ represents statistics of particles:
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¢ = 0 for classical particles, ¢ = 1 for bosons, and ¢ = —1 for fermions. The time-evolution
equation for f(¢,x,p) given by Eqgs. (23.10) and ([Z3.0) is called the Boltzmann equation.

Let us move on to our subject, the resonant Fermi gas. For the resonant Fermi gas, we
need to consider the spin degrees of freedom o =1,]. We introduce a distribution function
for each spin degree of freedom f,(¢,z,p). The Boltzmann equation for f,(t,x,p) is given
by

9 pi 0 3, 0
—folt,x,p) + ——fo(t,x,p) + F5(t,x) — fo(t,x,p) = | == f5(t, , . 2.3.7
il D )t R ) = (Ghten) @87
The streaming term remains in the same form because it is determined by the motion of a
single particle, but the collision term is modified to describe collisions between particles with
different spins:

0
<atf0(t7$>p)> = / W(klakQ‘p7p2)
p2,k1,k2

coll;o
X [f03k1f5;k2(1 - fU;P)(l - f5;P2) - (1 - fa;kl)(l - f&;kg)fa;pf&;pz]a
(2.3.8)

where & denotes the opposite spin to 0. Because the Boltzmann equations for f1., and f|.p
switch to each other under spin reversal, the distribution functions of both components are
always equal when both f;., and f|., are equal in an initial state. We consider only such
states, and define f(t,x,p) as f(t,x,p) = f1(t,x,p) = f (t,x,p). Then, the distribution
function f(t,x,p) obeys the same equation as in the case of the simple gas, i.e., Eqs. (Z3.3)
and (23.0) with ¢ = —1.

Furthermore, we focus on the high-temperature limit, where the thermal de Broglie wave-
length is sufficiently smaller than the average interparticle distance. In the high-temperature
limit, the collision term can be taken to be that for classical particles (¢ = 0). Also, the
two-body scattering is dominant in the limit, so that the transition rate is given by

W(ky, ko|p, p2) = |7;((kl;7k2)2+i0+)|2(27T)d+15d(k:1+k2—p—p2)5(6k1+6k2—ep—6p2), (2.3.9)

m

where €, = p?/(2m) is the kinetic energy and the two-body scattering T-matrix T (e +i0™)

is given by Eq. (2I126):

1672 1 d—>

o ko2 m? 2(g2lkick)?y | ge T
TP 0P =4 ' (2.3.10)

m 167 1 i3

2 5 (kiko)?
maz_i_%

Eventually, the resonant Fermi gas in the high-temperature limit is kinematically described
by the Boltzmann equation for classical particles of Eqs. 233) and [Z36) with ¢ = 0,

employing the transition rate of Eqs. (Z3.9) and (Z310).
2.3.2 Properties of the Boltzmann equation

In preparation for the calculations of the transport coefficients, we review the properties of
the Boltzmann equation for the resonant Fermi gas [I00].
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Collision invariants and continuity equations

Let us consider the following integral:

Oyp(t,x) = /p <aa‘};”>coucp(p), (2.3.11)

where ¢(p) is an arbitrary function of momentum p. From the symmetries of the transision
rate

W(k1, k2|p, p2) = W(k1, k2|p2, p) = W(ks, k1|p, p2) = W(p, p2|k1, k), (2.3.12)

the integral ® (¢, ) turns into

vt = [ WOk kel o) [ S~ foia] () + 6p2) — glkn) — k)

(2.3.13)
When ¢(p) satisfies
o(p) + ¢(p2) = ¢(k1) + p(k2) (2.3.14)
for any sets of possible momenta in the collision, the integral ® (¢, ) becomes zero for any
distribution function. Eq. [Z3J4) means that the sum of the physical quantity ¢(p) of
the two colliding particles is invariant before and after the collision. Therefore, when the
physical quantity ¢(p) is a conserved quantity in the collision process, ®¢(t, x) is zero. We
assume that conserved quantities in the collision process are only the number of particles,
momentum and energy. The number of particles, momentum and energy correspond to the
following functions:
e(p) = {1, pi, ep}- (2.3.15)
These quantities are called the collision invariants.
By multiplying the Boltzmann equation with the collision invariants and integrating
over p, we can obtain continuity equations

8tn(t, w) + 0;ji(t,x) = 0, (2.3.16)
moyji(t, x) + 0;11;(t, ) = n(t, x)Fi(t, z), (2.3.17)
8t7'[(t,:13) + &Ql(t,w) = Fi<t,$)ji(t, .’E), (2.3.18)
for the number of particles, momentum, and energy. Here, the physical quantities read
n(t, ) = 2/ f(t.z,p), (2.3.19)
p
Gitte)=2 [ Pt a,p), (2.3.20)
p M
H(t,z) = 2/ epf(t,z,p), (2.3.21)
P
I (¢, ¢) = 2/ PP3 y(t,, p), (2.3.22)
p M
Q(t.a) =2 [ Do fit.o,p), (23.23)
p M

for the number density, number current density, energy density, stress tensor, and energy
current density. Here, the prefactor 2 is the number of spin degrees of freedom.
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H-Theorem and equilibrium distribution

Let us show the H-theorem, one of the most important properties of the Boltzmann equation.
We introduce Boltzmann’s J#(t, ) and its current density defined by

H(t2)= [ fltap)nfte.p), (2.3.24)
P
Hit.@)= | Zf(t@.p)Inf(tz,p) (2.3.25)
P
These quantities satisfy
O (t,x) + 0,7 (t, x) = / (%C”) In f(t, x, p) (2.3.26)
P coll
1
—1 [ Wk kalpp) B~ Fol]
p.p2;ki k2
% (0 fis fra = L fpa))- (2.3.27)
Here, the following inequality holds:
(x —y)(Inz —Iny) >0 for any z,y >0, (2.3.28)

where the equality sign applies if, and only if, x = y. Therefore, we obtain
I (t,x) + 0;76,(t,x) <0, (2.3.29)
where the equality sign applies if, and only if, f(t,x,p) satisfies

Jry fey = fplpas (2.3.30)

for any sets of possible momenta in the collision. The inequality (2.3.29]) is called the H-
theorem and is considered to be the molecular counterpart of the law of increasing entropy.

When the equality condition ([Z3330) holds, the collision term is obviously zero. In ad-
dition, when the collision term is zero, the equality condition ([Z330) is true because the
equality sign of Eq. ([2329) holds from Eq. (Z320). Therefore, the vanishing collision term
and the equality condition ([(Z330) are equivalent:

(aaftp> =0 < fk1 ka = fpfp2. (2.3.31)
coll

Here, we define the local thermal equilibrium distribution f°4(¢, x, p) so that the collision term
is zero. Then, from the condition ([2330]), the equilibrium distribution f¢i(t,x, p) satisfies

In fod +n fid = In fpd +1In fpd (2.3.32)

for any sets of possible momenta in the collision. This equation is the same as the condition
for the collision invariants of Eq. (Z3I4]). Because the collision invariants are only the
number of particles, momentum and energy, In fp' is represented as a linear combination
of the collision invariants. Therefore, the equilibrium distribution is given by the Maxwell-
Boltzmann distribution as

FoU(t, 2, p) = exp [B(t,a:) <(p — () ,u(t,a:))} , (2.3.33)

2m

where ((t,x), vi(t,z), and p(t,z) correspond to the local inverse temperature, the local
velocity and the local chemical potential, respectively.
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2.3.3 From the Boltzmann equation to hydrodynamics

We derive hydrodynamics from the Boltzmann equation and find the formulas for the trans-
port coefficients [I0I]. For simplicity, let potential U(t, x) be zero in the following. Let us
expand the distribution function around the local thermal equilibrium,

f(t,x,p) = fUt, x,p) + 0f(t,z,p). (2.3.34)

The parameters of f¢4(t, x, p), i.e., B(t, x), vi(t,x), and u(t, x), are determined by the match-

0= /,, 5= /,, pidfy = /p wd (2.3.35)

These conditions impose the coincidence between the conserved quantities calculated using

ing conditions,

f(t,x,p) and those calculated using f¢4(¢, z, p).

Constitutive relations

The continuity equations are given by Eqs. (Z316), 23I7), and (Z3I8)). Substituting the
expansion (23.34) into Eqs. 2319)-@2.323]), the constitutive relations read

/2
n(t,x) = d(t, x = 2e8t@)u(t.z) _m .3.
(t.z) 2/pf (t,z,p) =2 " (2776(75,33)) : (2.3.36)
jilt,x) = 2/ %feq(t,a:,p) = n(t, z)vi(t, ), (2.3.37)
m|v; X 2

H(t,x) = 2/ epfCi(t,x,p) = E(t,x) + [Z(;’)}n(t,:c), (2.3.38)
p

ty(t.) =2 [ P2 (f9(t.2,p) + 67 (t.2,)) (2.3.39)

=P(t,x) +mn(t, z)vi(t, x)vj(t, ) — 04 (t, ), (2.3.40)

Qult.) =2 [ ey (1t,2p) + 07 (1. 2.p) (2.3.41)
p

= (H(t,2) + Pt 2) vt @) — oy (t, @) (@) + gilt, @), (2.3.42)

with the use of the matching conditions ([Z335]). Here, £(t, ) and P(t,x) are the internal
energy density and the pressure, respectively:

d deﬁ(trz)u(tvw) m
)= o ey o [ e Blt@ep-nta)] _
£t @) = 5Pt @) /p Bta) \2nBlta

While fi(t,x, p) determines the local thermodynamic quantities, the deviation 0 f(¢, x, p)

d/2
)> . (2.343)

determines the dissipative terms provided by the viscous tensor o;;(t,«) and the heat flux
q; (tv CC) ’

oij(t, @) = —2/ pi = m”i(t’m)gj mUUIGED) T (2.3.44)
p

Gi(t, @) = 2/ pi—muilt,x) [p —mut o) o (2.3.45)
p

m 2m
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Therefore, our problem is to determine the deviation 6 f(¢,«, p) up to the first order of the
derivatives of the velocity and the temperature from the Boltzmann equation, and to compute
the dissipative terms.

Linearized Boltzmann equation

We derive an equation for finding ¢ f (¢, , p) from the Boltzmann equation. With the help of
the thermodynamic relation,

d(BP) = —€dB + nd(Bp), (2.3.46)
and the zeroth-order hydrodynamic equations, we have
oP
(00-+ vte.200;)0,2) = tt2) (57 ) 19wl (2.347)
oP
(at +(t, w)aj) B¢, x)p(t, x)] = —B(t, z) (an> IV - o(t,z)], (2.3.48)
&
(815 + Uy (t, m)aj)v@(t, m) = —W (2349)
Then, the streaming term turns into
9 pi 0 Vi;(t, x) :
Y peq | i eq _ eq | .. J ) _ 4 ,
s B i = Bl o) UG 4 a T o) - )i ()]
(2.3.50)
with the shear strain rate tensor Vj;(t, ),
Vit @) = 0yt @) + Oyui(t, @) — —63,[9 - w(t, )], (2.3.51)
and
2
() = PiPi P s
7ij (P) m dmém’ (2.3.52)
2
P (9P _ (9P
(p) = P (88 )n <8n )g, (2.3.53)
: E+PN\ pi
U — _ Pi
i) = (- )2 (2.3.54)

Here, we take the local rest frame that is v;(t,z) = 0 and yet O;v;(t,x) # 0. In the high-
temperature limit, from Eq. (2343]), we have

oP 2 oP
((%,)n = (8”>£ =0, (2.3.55)
and thus 7(p) is equal to zero.

On the other hand, by substituing the expansion (2334, the collision term is linearized
as

0
(fp> =—B(t x) ,‘iq/ TpaW(k1, k2|p,p2) |¢p + bpy — Pky — Pks
coll po.ki1 ko

ot (2.3.56)

= —B(t, z) [Pt L1 ()],
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where we take df, = (¢, ) fpl¢p and introduce the linearized collision operator Lyi,. By
combining Eqs. (Z350) and ([Z3350]), we obtain the linearized Boltzmann equation

w j tv €T . x T
m @) 20T 1o Bt @) = O £y o], (2357)

According to the form of the left-hand side, we choose ¢p, as

2

¢p = —e PRI(t2) [% (p) — i(p)di In B(t, m)} . (2.3.58)

Then, the linearized Boltzmann equation is separated into equations for the shear strain rate
tensor,

7ij(P) = Liin[pij (P)]

e (2.3.59)
— / e Pe2W (ky, kao|p, po) [%’j(P) + ¢ij(p2) — ij(k1) — %‘j(’@)],
p2,k1,k2
and for the temperature gradient,
7{(P) = Liin[#i(p)]
(2.3.60)

_ / . e Pr2W(ky, ka|p, po) {%(P) + ©i(p2) — pi(k1) — SOi(kQ)}-
pP2,Kk1,R2

We can determine the deviation ¢ f, by solving Eqgs. ([Z3.59) and (Z3.60) together with the
matching conditions (Z3.30).

Transport coefficients

With the use of 0 fp = 8(t, ) fp dp, the strain tensor and the heat current density are written
as

oij(t, ) = —26(t, ) / 715 () £, (2:3.61)
qi(t,x) =28(t,x / P)fpldp, (2.3.62)
p
in the local rest frame. These dissipative terms in hydrodynamics are given by
oij(t, ) = nVij(t, ) + (045[V - v(t,®)],  q¢(t,x) = —kOT(t, ). (2.3.63)

By substituting Eq. (Z358)) into Eqs. (23.61]) and ([Z3.62]) and comparing them to Eq. (Z363]),

we find the shear viscosity and the thermal conductivity,
1=28 | Iy )onB) (23.64)
Tr =2 | P ilp)enp), (2:3.65)
where the spacetime dependence of the thermodynamic quantities are dropped. In the high-

temperature limit, the bulk viscosity ¢ vanishes because ¢, does not have a term proportional
to the bulk strain rate [V - v(t, )] due to w(p) = 0.
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2.3.4 Linearized collision operator

We focus on the shear viscosity and discuss the linearized Boltzmann equation of Eq. (Z3.359]).
The following argument can apply to the thermal conductivity as well. The shear viscosity is

obtained from Eq. [23.64)) using the solution ¢, (p) of Eq. (Z3.359).

Inner product

Associated with Eq. (Z3.64]), we introduce an inner product as

(o1 p2) = / e o1 (p)pa(p). (2.3.66)
P

where 1(p) and ¢o(p) are arbitrary real functions of p. From the definition, this inner
product satisfies

linearity : ap1 + bpe) = alp, 1) + blp, v2), (2.3.67)
(b2, p1), (2.3.68)

(2.3.69)
( )

2.3.70

p2) =
s07s0>2
©, ) = = =0,

(e,

conjugate symmetry : (1,
positivity :

(

non-degenerate :

where ¢, p1, and @9 are any real functions of p and a and b are any real numbers. With the
use of this inner product, Eq. (23.64) is written as

n= 25<7rxya ‘ny> = 25<£kin[90:1:y]a Soxy>~ (2.3.71)

Here, the linearized collision operator Ly;, is self-adjoint for this inner product,

(o1, Lyinlp2]) = i/

p,p2,k1,k2
% [2(p) + @2(p2) = 2(kr) — o (k)]

= (Lin[p1], @2)- (2.3.72)

e Plerter )W (ky, ks lp, po) [@1(19) + ¢1(p2) — w1(k1) — 901(’“2)}

In particular, the positivity of the transition rate leads to

1 - € € 2
(¢, Lin[e]) = / L ot eI W (ke kalp, p2) [90(1?) +o(p2) — (ki) — @(kz)} >0,
D2,k1,R2

4Jp
(2.3.73)
which means that the linearized collision operator Ly, is non-negative. The equality sign
holds if and only if ¢(p) is the collision invariants. Therefore, the linearized collision operator
Liin has zero eigenvalue for the collision invariants and positive eigenvalues for the other
eigenfunctions. Because the matching conditions (Z3.35) make the solution ¢, (p) orthogonal
to the collision invariants, it can be expressed as

Pay(P) = Ligy[may ()], (2.3.74)

where ﬁgull denotes the inverse of the linearized collision operator in the orthogonal comple-
ment space for the collision invariants.
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Relaxation-time approximation

Because the linearized Boltzmann equation is difficult to solve analytically, it is usually solved
trial

by expanding ¢, (p) by polynomials. Here, let DOy (p) be the approximate solution to the
linearized Boltzmann equation. The Schwarz inequality leads to

<90§c€jaly Ekin[@;rgialb«%ya Ligin[pzy]) = <9022a1» Ekin[‘Pl‘yDZ- (2.3.75)

Using this inequality for Eq. [Z31)), it is possible to evaluate the lower bound of the shear
viscosity as . '
<@;2al, Ekin[%ﬁyDQ — 28 <90t:prgjal’ 7T:cy>2
(pial | Ly [pliial]) (pital | Ly [plrial
The equal sign is true if and only if the trial function gpgryial
tion uy(P).

Here, as the simplest approximation, we take (pgal(p) as

n=>28 [ = e (2.3.76)

(p) is proportional to the solu-

trial

P (p) = €1y may (P)- (2.3.77)

This trial function is a solution when the collision term is approximated to

<6fp> - _fp_ile’q. (2.3.78)
ot coll;relax

Tn

Employing this collision term is called the relaxation-time approximation, where 7;, is referred
to as the relaxation time for the shear viscosity. The relaxation time 7, is defined so that the
shear viscosity in the relaxation-time approximation 7. coincides with the lower bound of
the shear viscosity ng. The shear viscosity in the relaxation-time approximation is calculated
as

Trelax = 28(Tzy, eﬁ“anmy) = QBeB“Tn(mcy, Tay), (2.3.79)

whereas the lower bound np is given as

<7Tmya 7ra:y>
LB = 20 Ty Tay)- 2.3.80
7 <7Try> ﬁkin[ﬂxy]>< w xy> ( )
The relaxation time 7, is found to be
7y = ATy Tay) (2.3.81)

<7Tmy7 eﬁ‘uﬁkin[ﬂ':py]),

and thus the relaxation time is given by the inverse of the expectation value of the linearized
collision operator with 7., (p) corresponding to the shear strain.

2.4 Summary

This chapter devoted to a review of topics related to our study of the resonant Fermi gases.
In Sec. 1] we reviewed the universality of the resonant Fermi gases from the perspective of
the two-body scattering. We also introduced the contact interaction model in the second-
quantized formalism to describe the resonant Fermi gas [Eq. ZZI.IH)] and derived the two-
body scattering T-matrix [Eq. (ZI.26)]. The T-matrix due to the two-body scattering in
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vacuum plays an important role in the high-temperature limit. In Sec. 222 we gave the Kubo
formulas for the transport coefficients [Eqs. (22.52), (Z2.53), and [Z2.57)]. We will compute
the transport coefficients in Chapters @l and [l via these Kubo formulas. We also introduced
hydrodynamics, which defines the transport coefficients. The formulation of hydrodynamics,
consisting of the continuity equations and the constitutive relations, will be the basis for
extensions of the hydrodynamic equations in Chapter In Sec. 23l we gave the kinetic
description of the resonant Fermi gas and derived the computation method for the transport
coefficients using the kinetic theory. The linearized Boltzmann equations of Egs. (Z359) and
@3560) will be derived from the microscopic theory using the quantum virial expansion in
Chapter Bl

The vanishing bulk viscosity in the unitarity limit can be found via the Kubo formula
@Z40). In the free and unitarity limit, where the system is conformal invariant, II(¢, z) =
2H(t, ) /d holds [see Eq. (AL3Q) in Appendix [A]. Accordingly, the equation of state obeys
P = 2€/d, so that the modified stress tensor I1(t, ) of Eq. (ZZZZ4) turns into zero. Therefore,
the bulk viscosity is found to be zero in the free and unitarity limit.



Chapter 3

Hydrodynamics with
spacetime-dependent scattering
length

In this chapter, we focus on the bulk viscosity among the transport coefficients. It was shown
that the bulk viscosity vanishes in the unitarity limit because of no interaction scales [H9].
The vanishing bulk viscosity at unitarity is intuitively understood because the entropy does
not change before and after an isotropic expansion due to no interaction scales. We extend
this intuitive understanding to the case where the scattering length is finite in order to inves-
tigate the bulk viscosity for a finite scattering length. When the scattering length is finite,
an isotropic expansion of the fluid volume at a fixed scattering length can be regarded as
equivalent to a contraction of the scattering length at a fixed fluid density because there are
no reference scales other than the scattering length in contact interactions. We consider the
resonant Fermi gas whose scattering length is modulated over spacetime to construct hydro-
dynamic equations that involve this equivalence. In Sec. Bl we introduce a Hamiltonian with
the spacetime-dependent scattering length and derive operator identities including continuity
equations. Hydrodynamic equations must be consistent with the equations obtained from the
expectation values of the operator identities. We construct constitutive relations for normal
fluids in Sec. and for superfluids in Sec. In Sec. B4 we summarize our findings and
propose possible applications to ultracold atoms.

3.1 Quantum field theory

3.1.1 Spacetime-dependent scattering length for hydrodynamics

In ultracold atoms, the scattering length can be tuned by applying an external magnetic field
via the Feshbach resonance. By modulating the applied magnetic field spatially and tempo-
rally, one can make the scattering length dependent on space and time. To investigate the role
of the spacetime-dependent scattering length in the low-energy dynamics, we employ hydro-
dynamics. Hydrodynamics is a low-energy effective theory for dynamics on scales sufficiently
larger than the scales that characterize the thermalization of the system, such as a relaxation
time and a mean free path. For the hydrodynamics, we suppose that the spacetime modu-

29
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lation of the scattering length is sufficiently smooth. We consider a resonant Fermi gas with
the spacetime-dependent scattering length in d dimensions whose Hamiltonian is provided by

ﬁ(t)—/da: Z

o="1,

b (t. )T Db (. x - 7
([Dzwa(ta )Q]WEJDHZJU(tv )] _ At(t, .’L‘)'L/J;(t, -'17)1/10(ta ;13))

(3.1.1)
+g(t27w) UZP I’Z}‘];(t’ m)‘z’j}(t’ $),¢A}P(tv m)qj}a(t, w)] ,

where the coupling constant g(t, ) is connected to the scattering length in the dimensional
regularization via Eq. (ZI1.25):

1 ma(t,z)*
g(t,x)  (d—2)Qq_1 (3.1.2)

Here, we employ the Heisenberg picture, and D,, = 0, — iA,(t, ) is the covariant derivative
and an external gauge field A,(t,x) is introduced for generality. The temporal component
A4(t, x) represents the trapping potential, whereas the vector potential A;(¢,x) appears in

noninertial frames.

3.1.2 Continuity equations
The annihilation and creation operators obey the equal-time anti-commutation relations

{ia(tv x)v Qﬁj—(tv y)} - 5075d(x - y)7

] ; ) 1 (3.1.3)
{Uo(t, @), Pr(t,y)} = {5 (1, 2), ¥I(t,y)} = 0.

The time-evolution equation for 1[10 (t,x) is obtained by the Heisenberg equation of motion:

iaﬂ&a(tv :E) = ['J}G(ta m)v I;’(t)]

D;D; ; ; (3.1.4)
= |~ m - At(t7 :L') + g(t, 93) Z T/Ji(ta 93)1/17(75, 93) ¢U(t’ w)
This equation is invariant under the gauge transformation of
bolt@) = X, (L), Au(ta) > Ault@) + Dt @). (3.1.5)

We can write the continuity equations for the mass, momentum, and energy. The mass,

momentum, and energy density operators are defined by

Mt ) =m > it @)s(t, ), (3.1.6)

Jilt,@) = i Y di (@) Dida (), (3.1.7)

N 1) x)|T[ D) x x N - - N
H(t, $) _ Z [Dzwa(ty );nEDzwa(t; )] + g(té ) Z wg(t, $)'¢;(t, m)wp(t> %)7,/}0(75, x)
o o,p

(3.1.8)
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The continuity equations can be straightforwardly derived from the Heisenberg equation

BI4) and are given by
OM(t, ) + 8T (t, ) =0, (3.1.9)
M(t, x) Jit,®)  dalt,x) C(tz)

0:Ji(t, ) + 0j1Lij(t, @) = Fu(t, x) + Fyj(t, x) Galta) T
(3.1.10)
AR, @) + 0,04(t, ) = Fu(t,w)Li0®) | dalt2) (o) (3.1.11)

m Qq_1a(t,z)=1 m ~’

where F,,(t,z) = 0,A,(t,x) — 0,Au(t,x) denotes the field strength tensor and the right-
hand sides of the momentum and energy continuity equations represent the external forces
and powers supplied by A,(t,z) and a(t,x). The stress tensor ﬂij (t,x), the energy current
density Qi(t, x), and the contact density C (t,x) are defined by

ﬂij(t, IB) _ Z [Diia(tvm)]T[Dj'&d(ta :B)] + [Dﬂ;o(ta m)]T[Di@/}cr(tax)]

2m

9t x) zw (t, )P} (t, @)y (t, ®)o (1, @) (Zw* (t, @) (¢, w))] :

(3.1.12)

g

+ (57,‘]

. o (t, )T [D; Dby (t, )] — jjAa ) Dby (t, @
Qi(t’m):Z[Dzwa(t7 N[D; Dy (t, )] — [DjDjthy(t, )| [Diths (L, )]

4im?
" g(zt’x) Z@(t’ z) @E(’f’w)ﬁi’p(ta 90)) Vot @), (3.1.13)

m

C(t,x) = 9721/;* t, )bl (t, ), (¢, 2)do (t, ). (3.1.14)

The contact obtained by integrating the contact density ¢ (t,x) over the whole space is the
important quantity in the universal relations of the resonant Fermi gases [29].
In addition to the continuity equations, the trace of the stress tensor satisfies

o C(t, ) d e
1L (t, @) = 2H(t, ) + g 1a(t,z) 2 dm? 0;OiM(t, x). (3.1.15)

In the unitarity limit, the divergence of the scattering length results in Eq. (BI1I5]) without
the second term on the right-hand side, which represents the nonrelativistic counterpart of the
traceless condition for conformality (see Appendix [Al). The second term represents conformal
symmetry breaking due to the scattering length. Here, we note that the stress tensor operator
BII2) is not unique. One can add any term A;;(t, ) satisfying 9;A;;(t, ) = 0 to the stress
tensor operator without changing the form of the continuity equation for the momentum. For
example, by modifying the stress tensor to

d M(t, )
d—1 4m?2

the last term is eliminated. This ambiguity, however, has no effect within the hydrodynamics

IL;(t,x) — I(tx) — <5ij3kak - aiaj) (3.1.16)

up to first order in derivatives and is irrelevant to our discussion below.
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3.2 Hydrodynamics for normal fluids

3.2.1 Constitutive relations

To move on to hydrodynamics, we define the expectation values for the operators as
O(t, x) = Tr [,a@(t, m)} , (3.2.1)

where the density matrix operator p is arbitrary but independent of time because we work in
the Heisenberg picture. Then, Eqs. (81.9), (BI10), and BIII) lead to

OM(t, x) + 0;T;(t,x) = 0, (3.2.2)
t (t dialt, C(t,
0. Ti(t, ) + 0,115 (t, ) = Fit(t,m)w + Fy(t, m)jy(n;m) - Qd_lz((t i))dl (mm>,
(3.2.3)
AH(t, ) + 0,04(t ) = Fa(t,p)Lilt®) | Oalt.2)  Cha) (3.2.4)

m Qq_1a(t, )1 m

These are the continuity equations in the hydrodynamics. Also, the operator identity (B.1.15])
leads to

C(t,x)

I (¢, ) = 2H(¢,
(t,x) = 2H(t, x) + S a(t, )12

+0(8%). (3.2.5)

Hydrodynamics requires constitutive relations that express the physical quantities in terms
of fluid variables in order for the continuity equations to form a set of closed equations. Here,
the fluid variables are the local thermodynamic quantities and the fluid velocity v;(¢, ). The
constitutive relations for normal fluids read

NS

H(t,x) =E(t,x) +

(t,z) = M(t, z)vi(t, ),
(
(
(

/\/l(;,w)vi(t7 m)Qa
Pt )b + M(t, @)vi(t, ®)v(t, @) — 00 (t, ),

[H(t.2) + P(t,2)|uilt, @) — o (8, @)yt 2) + 0t ),

I;5(t, )
Qi t7 :B)

7 i

for the momentum density, the energy density, the stress tensor, and the energy current

density, respectively. Here, £(t, x) is the internal energy density and P(t, x) is the pressure,
while Ug-z)
current density, respectively. If the scattering length is uniform over space and time, these
constitutive relations have to return to Eqs. (2Z211)-@2214). Therefore, only the derivatives

of the scattering length can be added to Eqs. Z2II)—2214), and the dissipative terms
(a)

i

(t,x) and qi(a) (t,x) are the dissipative corrections to the stress tensor and the energy

ag.l) (t,z) and ¢, ' (t,x) can contain the derivatives of the sattering length in addition to the
usual ones T
The constitutibe relation for the contact density C(¢,x) is obtained by substituting the

constitutive relations for the energy density and the stress tensor of Eqs. (B2.7) and (B2.8)

Note that the conserved charge densities do not have dissipative corrections, including the derivatives of
the scattering length. This is because the conserved charge densities match the local thermodynamic quantities
in the fluid rest frame v;(¢, ) = 0. That is, J;(¢t,x) = 0 and H(t,z) = £(¢, ) hold in the fluid rest frame.
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into Eq. B2.3):

C(t,x)

et i~ PEe) ~ 28t w) 0 (t,2) + 0(0") (3.2.10)
d—l 9

Here, we introduce the contact density in local thermal equilibrium as

Ceq(t, )
de—la(tv m)d72

= dP(t,x) — 28 (t, ), (3.2.11)

which is understood as the local extension of one of the universal relations known as the
pressure relation [28R29]. With the use of Cey(t, ), the constitutive relation for the contact
density is written as

C(t, @) = Coq(t, @) — mQ_a(t, )" 20" (t, 2) + 0(5?). (3.2.12)

3.2.2 Entropy production
(a)

To determine the dissipative corrections of Jg-l)(t, x) and ¢; '(t,x), let us discuss entropy

production. The entropy density S(¢, ) is introduced as
Et,x)+P(t,x) =T(t,x)S(t,x) + u(t,z) M(t, x), (3.2.13)

where T'(t,x) and u(t,x) are the local temperature and the local mass chemical potential,
respectively. We choose M(t,x) and E(t, ) as the independent variables of thermodynamics
and regard the entropy density as a function of M(t,x), £(t,x), and a(t,x). With the help
of the dimensional analysis, the entropy density is written as

S(t,z) = a(t, )" fs(a(t, ) M(t, ) /m, ma(t, £)T2E(t, z)), (3.2.14)
where fg(601,02) is a function of two dimensionless ratios. Using this expression, we obtain
the derivative of S(¢, x) with respect to a(t, x) as

a(t, :B)Zi((zaf)) = —dS(t,x) + dM(t, a:)m + (d+2)&(t, :::)8

— _dS(t, @) + AM(t, ) (— it m)> b (d+2)E(t ) <T(t17 m)> (3.2.15)

T(t,x)
dP(t,x) —2E(t, x)
T(t, ) '

Together with Eq. (B2Z11]), we obtain

aS(t,x) Ceq(t, )

Tt @) da(t,x)  mQ_ja(t,z)d=1’

(3.2.16)
which is the local extension of one of the universal relations known as the adiabatic relation [28]
29]. The total differential of S(¢,x) is given by

Ceq(t, )
de—la(tv iB)

T(t,x)dS(t, x) = dE(t, ®) — p(t, )dM(t, x) — da(t, ). (3.2.17)

d—1

Since the derivatives of the entropy density are related to the derivatives of the other
conserved charge densities by Eq. (8217, the continuity equations for the other conserved
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charge quantities lead to the continuity equation for the entropy, called the entropy production
equation,
g (t, )

O S(t, ) + 0; 5]

S(t,x)v;(t, x) + = : (3.2.18)

Here, the dissipation function ®(¢,x) is given by

zT t, a
0T(t,z) + Ul(j)(t, x)0;v;(t, x)

I(t ) (3.2.19)
— o9t z) [at Ina(t, &) + vg(t, )3 I alt, m)} +0(8%).

o(t,x) = —¢V(t, 2)

)

We then impose the second law of thermodynamics in local thermal equilibrium, i.e., the
entropy production rate is non-negative for arbitrary field configurations of T'(¢, x), v;(t, x),
and a(t,x). Then, the dissipative corrections up to first order in derivatives are found to be

0\ (t, ) = —r(t, )0 T (t, ) + O(6%), (3.2.20)
o (@) = n(t, @)Vis (t, x) + O(6%), (3.2.21)
ol (tx) = d((t, 2V (t, ) + 0(0?), (3.2.22)
and
k(t,x) >0, n(t,x) >0, ¢(t,x) >0, (3.2.23)
where the traceless part of the viscous term is introduced as
a a Okk(t, @
Ugij)> (t, ) = az(j) - 6ij(d)‘ (3.2.24)

Here, V;;(t, ) is the usual shear strain rate tensor defined by Eq. ([23.51]), but
VOt z) = dup(t, z) — d[&t Ina(t, z) + ve(t, @)y lnalt, :1:)} (3.2.25)

is the bulk strain rate tensor modified by the spacetime-dependent scattering length. The

transport coefficients, k(t,x), n(t,x), and ((¢,x), depend on space and time because they

are locally specified by M(t,x), £(t,x) and a(t, ), Substituting these dissipation corrections

into Eq. (B219), the dissipation function results in

PT(t,2))” | n(t, =)
T(t,x) 2 [

Thus, the second law of thermodynamics is satisfied.

O(t, x) = k(t, x) Vij(t, @))% + C(t, ) [VO(t, )] + 0(8%).  (3.2.26)

We can see that the dissipation function has a term involving the spacetime-dependent
scattering length as

2
B(t, ) ~ 5((:;))2 Bra(t, @) ~ C(t, 2)alt, z)’ <ata(;m)> . (3.2.27)
In order for such terms to be non-divergent, the bulk viscosity must vanish at the least as
C(t,x) ~ alt,x)? for a(t,x) —0 (3.2.28)
and 1 1
C(t,x) ~ alta)? for altm) — 0, (3.2.29)

assuming that the hydrodynamics is applicable in both limits. In particular, the latter be-
havior is consistent with the vanishing bulk viscosity of the unitary Fermi gas in a normal

phase [6/I 70 EIHET].
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3.3 Hydrodynamics for superfluids

3.3.1 Superfluid velocity

We can construct the hydrodynamic equations for superfluids in a similar way. The hydro-
dynamics for superfluids is given by Landau’s two-fluid model [@7. In the two-fluid model,
there is a superfluid component, whose velocity is microscopically defined by

8@9(25, ac) — Ai(t, :B)

ui(t,x) = - , (3.3.1)

in addition to the normal fluid component. Here, 6(t, ) is the condensate phase normalized
so as to transform as 0(t, ) — 0(t, ) + x (¢, x) under the U(1) gauge transformation ([B.I1.5]).
The time derivative of u;(t, ) can be written formally as

Opu;(t, ) + 0; (W + V(t,a:)> = M, (3.3.2)

where v(t, ) is defined by

v(t,x) = _8159(75,:0)”; Atz) _ [ui(tém)]Q. (3.3.3)

This quantity v (¢, ) is a scalar under the Galilean transformation and corresponds to the mass
chemical potential if the system is uniform over space and time [26]. In the hydrodynamics,
Eq. B332) is regarded as the time-evolution equation for u;(t, ), and v(t,x) is given by the
constitutive relation,

v(t, @) = p(t, x) + 1D (t, ), (3.3.4)

where pu(t, ) is the local chemical potential and /(%) (¢, ) is its dissipative correction.

3.3.2 Constitutive relations

The two-fluid model has M(t,x), E(t, x), vi(t,x), and u;(t,x) as independent variables. The
time evolution for these eight variables is described by the continuity equations of Eqs. (8:2.2),
B23), and B24), and the time-evolution equation of Eq. (8:3:2)). Here, the continuity
equations remain the same because they follow from the operator identities. The constitutive
relations is modified due to the presence of the superfluid velocity, and read

M(t, ) = Mn(t, ) + M (t, ), (3.3.5)

Ji(t,x) = My (t, x)vi(t, x) + Ms(t, x)u;(t, ), (3.3.6)

H(t,x) =E(t,x) + Ti(t, x)ui(t, ) — /\/l(;f,a:) [ui(t, x))%, (3.3.7)
)

= P(t, )83 + M (t, 2)vi(t, @) (t, @) + M(t, ®)ui(t, )us (8, ) — ol (¢, @),
(3.3.8)

Qi(t,x) = [H(t,m) + P(t, $)}Uz‘(t, x) — [u(t,m) + %[uj(t, x))?| My(t, )w;(t, z)

2

ol (t @)y (t,x) — WO (t, )M (t, ®)wi(t, @) + ¢ (1, ), (3.3.9)
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for the mass density, the momentum density, the energy density, the stress tensor, and the
energy current density, respectively. Here, M,,(t,x) and M,(t,x) are the normal fluid and
superfluid components of the total mass density, and w;(¢, x) is the relative velocity between
the two components:

wi(t, ) = vi(t, ) — u;(t, x). (3.3.10)

Because one cannot take an inertial frame in which the velocities of both components are zero
simultaneously in general, the thermodynamics of a superfluid phase is considered in a rest
frame of u;(¢t,x) = 0. In such a frame, the relative velocity appears in the thermodynamic

relations:
<m>g,m - Ty (3:3.11)
(%)MM”W N T(tl, z)’ (3.3.12)
(ﬂMjf%i?(t,@])Mw - _Q;Z((t:;)v (3.3.13)
where the entropy density S(t,z) is provided by
P(t,x) + £t @) = Mu(t, @) [wi(t, )" = T(t,2)S(t, @) + p(t, 2)M(t ). (3.3.14)

The constitutive relation for the contact density C(t,«) is obtained by substituting the
constitutive relations for the energy density and the stress tensor of Eqgs. (83.7) and (B3.8)

into Eq. B2.3):

C(t,x)
mQq_1a(t, z)42

= dP(t, @) — 26 (t, @) + My (t, @) [w;(t, x)]> — o'V (t, @) + O(8%). (3.3.15)

We introduce the contact density in local thermal equilibrium as

Ceq(t, )
mQq_1a(t, z)42

=dP(t,x) — 2E(t, @) + M, (t, x)[w;(t, z)]?, (3.3.16)

which is the pressure relation for the two-fluid model. With the use of Ceq(t, ), the consti-
tutive relation for the contact density is written as

C(t, ) = Ceq(t, ) — mQy_1a(t, 2)" 20D (t, ) + O(?). (3.3.17)

13

3.3.3 Entropy production

We regard the entropy density as a function of M(t,x), £(t,x), M, (t, x)w;(t,x), and a(t, x).
With the help of the dimensional analysis, the entropy density is written as

S(t,x) = a(t, )" fs(a(t, ) M(t,x)/m, ma(t, ) T2E(t, ), a(t, )T M, (t, 2)w;(t, z)),
(3.3.18)
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where fg(01,602,03) is a function of three dimensionless ratios. Using this expression, we
obtain the derivative of S(t,x) with respect to a(t, x) as

aS(t, x) IS(t, )

oS(t,x)
ot 2) 5ot ) OM(t, )

9E(t, x)

= —dS(t,x) + dM(t, x) + (d+2)E(t, x)

0S(t,x)

+ (d+ )My (t, 2)w;(t, x)ﬁ[./\/ln(t P Y (3.3.19)
_dP(t,®) — 28(t, @) + M (t, ) [wi(t, @)
T T(t, ) '
Together with Eq. (83.16]), we obtain
Tt ) 250 ) _ Ceqlt, @) (3.3.20)

da(t,) — mQy_ia(t, )1

which is the adiabatic relation for the two-fluid model. For the two-fluid model, the total
differential of S(¢,x) is given by

T(t,z)dS(t,x) = dE(t, x) — p(t, )dM(t, x)
Ceq(t, ) (3.3.21)

— w;(t, z)d[M,,(t, x)w;(t, z)] — 0 alt,z) da(t, x).

We can calculate the continuity equation for the entropy by using the continuity equations
and the constitutive relations, and obtain the following entropy production equation:

)

¢t
[

Tm) | = (3.3.22)

atS(t, $) + 0; S(t, m)vi(t, :13) +

where the dissipation function ®(¢,x) is given by

o(tz) = —Q§“)(t,w)w o) (t,2)0;v;(t, x)
- UZ-(f) (t,z) [&f Ina(t, ) + vk (t, )0 In a(t, x) (3.3.23)

+ Ot )0, [Ms(t, z)w(t, z)| + 0.

We impose the second law of thermodynamics in local thermal equilibrium, i.e., the en-
tropy production rate is non-negative for arbitrary field configurations of T'(¢,x), v;(t, ),
M (t, x)w;(t,x), and a(t,x). Then, the dissipative corrections up to first order in derivatives
are found to be

g\ (t, x) = —k(t, 2)OT(t, ) + O(5%), (3.3.24)
o)t @) = n(t, %) Vi (1, ) + O(0?), (3.3.25)
o9 (t, @) = dCi (1, 2) M (t, @)wi(t, )] + dea(t, )V O (¢, ) + O(?), (3.3.26)
(DOt @) = C3(t, )0 | M (t, )wilt, w)} + Gt 2)V D (¢ x) + 0(0?), (3.3.27)

and

k(t,xz) >0, n(t,x) >0, G x) >0, Gt,x)>0, Gt x)(E(tx) > Cl(t,a:)z.
(3.3.28)
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where V;; (¢, ) and V(%) (¢, z) are the shear and bulk strain rate tensors defined by Eqs. (Z3.51)
and ([B.220)), respectively. Because of the Onsager reciprocity, we have (1(t,x) = (4(¢, x).
The transport coefficients, x(t,x), n(t,x), (1(t,x), (2(t,x), and (3(t,x), depend on space
and time because they are locally specified by M(t, x), E(t, ), M, (t, z)w;(t,x), and a(t, x).
Substituting these dissipation corrections into Eq. ([B:3.23]), the dissipation function results in

[0:T(t, )] 77(75733){
T(t,x) 2

+ Gt ) VOt 2)]? + Gt z) (ai M, (t, 2)wi(t, a:)])2 +O(8%). (3.3.29)

O(t,x) = K(t, z) Vii (4, ®)]2 + 2¢1 (8, ) VO (8, )93 M (¢, x)ws(t, )]

Thus, the second law of thermodynamics is satisfied.
We can see that the dissipation function has terms involving the spacetime-dependent
scattering length as

~ i(t, z)alt, ) (ata(i:c)) + Gt w)alt, a)? (%(i@) .
In order for such terms to be non-divergent, the bulk viscosity must disappear at the least as
G(t,x) ~a(t,x), Go(t, ) ~ alt, x)? for a(t,z) =0 (3.3.31)
and 1 ] 1
Gt x) ~ ata)’ Ca(t,x) ~ alt.z)? for alt ) — 0, (3.3.32)

assuming that the hydrodynamics is applicable in both limits. In particular, the latter behav-
iors are consistent with the vanishing bulk viscosities of the unitary Fermi gas in a superfluid

phase [491102/I03.

3.4 Summary

Hydrodynamics is a low-energy effective theory describing long-time and long-distance physics
of correlated systems out of thermal equilibrium. The hydrodynamic equations are provided
by the continuity equations and the constitutive relations, which form a set of closed equa-
tions. In this chapter, we constructed the hydrodynamic equations including the spacetime-
dependent scattering length as an external field. We showed that it not only appears ex-
plicitly as an external source of the momentum and energy continuity equations [Eqs. (B23))
and ([3:24)], but also enters the constitutive relations through the modified bulk strain rate
tensor [Eq. (B22H)] in both normal and superfluid phases. The expression of the modified
bulk strain rate tensor can be understood intuitively from the equivalence between dy vy (¢, )
and —dd; Ina(t,x) = —[0sa(t, z)?/a(t,z)?. Because the interaction has no scale other than
the scattering length, the expansion (contraction) rate of the fluid volume represented by
Ok (t,x) is equivalent to the contraction (expansion) rate of the volume element a(t,x)?
represented by —[d;a(t,x)%]/a(t,z)?. Furthermore, to ensure the Galilean invariance, the
time derivative term J;Ina(t, ) has to be accompanied by vy (¢, )0k Ina(t, ) so as to form
the material derivative 0y + v (t, ). As a result, the spacetime-dependent scattering length



3.4. SUMMARY 39

is added to the original bulk strain rate tensor dyvi(t, ) in the form of Eq. (B2.27]). Because
the isotropic expansion of the fluid volume is associated with a scale transformation, we can
also derive the modified bulk strain tensor in terms of the Galilean and conformal symmetries,
as detailed in Appendix [Bl

Finally, we summarize the physical implications to be extracted from our findings. As
already shown in Eqs. B229) and 332)), the vanishing bulk viscosities in the unitarity
limit can be reproduced in both normal and superfluid phases [6LH9 74 RIHOTTTAM0F]. In
addition, let us consider for brevity the case where the scattering length depends only on
time and varies slowly in a uniform system at rest. From the constitutive relations and the

dissipative corrections, i.e., Eqs. (B212)) and [B.222) for the normal phase and Eqs. (83.17)
and [B3.20) for the superfluid phase, the contact density is obtained as

C(t) = Coq(t) + d*mQy_1C(t)a(t)?3a(t) + O(a?), (3.4.1)

where ((t) for the normal phase should be replaced with (2(t) for the superfluid phase. Here,
the time variation of the scattering length does not cause the fluid velocity in a uniform
system. The continuity equation for the energy further leads to

e 0+ i + 06 o

H(t) =
Similarly, Eqs. (3226]) and (3329) prove that the entropy density is produced as

TW8(1) = - g))za(t)? +0®®). (3.4.3)

The energy and entropy densities have the contributions proportional to the bulk viscosity due
to the time-dependent scattering length. We will confirm Eqgs. (B41)—(B-43]) microscopically
by employing the linear response theory in Chapter @l These results of Eqs. (B.41)-B4.3)
may be useful as a novel probe to measure the bulk viscosity in ultracold atom experiments 2
For example, when the scattering length is periodically modulated as

a(t)™t = Sbsin(wt), (3.4.4)
the entropy production can be expressed as
T()S(t) = ¢'(t) (dwdb)? cos®(wt) + O(w>, 6b%), (3.4.5)

where, according to Eqs. (3229) and (B.332), we define ('(t) as the coefficient of the tail of
the bulk viscosity in the unitarity limit,

() = C(ba(t)™ (3.4.6)

In the unitarity limit, the bulk viscosity itself vanishes, but ¢’(¢) is supposed to be finite and
the modulated scattering length may be useful to measure it.

2A uniform system can be realized experimentally, for example, by using an optical box trap [[og.



Chapter 4

Bulk viscosity in the quantum virial
expansion

In this chapter, we compute the bulk viscosity of the resonant Fermi gas. To perform a reliable
computation in the strongly correlated regime, such as the unitarity limit, we employ the
quantum virial expansion as a non-perturbative method. In Sec. 1l we review the quantum
virial expansion and specifically calculate the thermodynamic quantities of the resonant Fermi
gas. In Sec. 2] we first derive the Kubo formula for the bulk viscosity expressed by the
contact-contact response function and confirm that the bulk viscosity appears in the response
of the contact to a variation of the scattering length from the viewpoint of the linear response
theory. We next review the bulk viscosity calculation via the Kubo formula in the quantum
virial expansion [R9HII]. Then, we compare the obtained bulk viscosity with that derived in
the kinetic theory and discuss the origin of the discrepancy between them. This chapter is
concluded by a summary in Sec.

4.1 Quantum virial expansion

At high temperatures, where nAdT < 1 holds for the particle number density n and the thermal
de Broglie wavelength Ap = /27 /(mT), correlations between particles are effectively weak.
As already discussed, the resonant Fermi gas has three length scales: the average interparticle
distance n~Y? the thermal de Broglie wavelength Az, and the scattering length a. All of
them are sufficiently larger than the other length scales of the interaction potential, which
are typically represented by the radius of the interaction rg. In the quantum virial expansion
for the resonant Fermi gas, we consider a regime in which the gas meets the condition of

R <A < nVe R <L a, (4.1.1)

which is referred to as the high-temperature regime.

4.1.1 Formulation

Physical quantities in thermal equilibrium are calculated from the expectation values in the

grand canonical ensemble:
1

()= T 6_5(1?_“1\7)@} , (4.1.2)

40
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where Z is the grand canonical partition function provided by
Z =T [e_ﬁ(ﬁ_“]v)} , (4.1.3)

with the inverse temperature f = T~! and the chemical potential p. The trace can be
decomposed into each particle number sector as

o0

Tr[e BUH-uN) &) ]:ZTrN[ plH- ”N)(’)] ZzNTrN[e*ﬁﬂé}, (4.1.4)
N=0

where Try denotes the trace restricted to the N-body sector and z = e# is the fugacity. At
high temperatures with a fixed number of particles, the chemical potential u diverges to —oo,
so that the fugacity becomes small z <« 1 and it plays the role of an expansion parameter.
Then, the expectation value can be expanded in terms of z as

(0) = 2(0)Y) 4+ 22(0)2) + 0(2?), (4.1.5)
with
(O)V) = Ty, [e_’BH@} , (4.1.6)
()@ = Tr, [e*ﬁf’ (’)} T [e*BH O] Try [e*/ﬁﬁ } : (4.1.7)
where the zero particle sector is obviously Tro[e*fgg ] = 1 and the physical quantity O is

supposed to be zero in vacuum: Trq [e_ﬁﬁ @] = 0. This expansion is called the quantum virial
expansion [I05], which is valid in the high-temperature regime. The low-order coefficients for
the fugacity can be computed from few-body problems.

4.1.2 Matsubara formalism

To discuss specific calculations in the quantum virial expansion, we introduce the Matsubara
formalism. We consider a resonant Fermi gas in d spatial dimensions whose Hamiltonian is
given by

i = Z [l e +Z/dw IiH @i (@)l @)io(2).  (415)

Here, we employ the Schrodinger picture, and the annihilation and creation operators obey
the canonical anti-commutation relations,

{va(@), ()} = 86p0" (@ — y),
{do(@), $p(y)} = {$h(2), Dl (y)} =0.

In the dimensional regularization, the bare coupling constant g is related to the scattering

length a as in Eq. (Z129]):

(4.1.9)

1 ma?¢

= s (4.1.10)

with Qq_1 = (4m)¥2/21(2 — d/2) = 27, 47 for d = 2, 3.
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For the Matsubara formalism, we introduce the imaginary-time representation of an op-

erator O as

A~

O(r) = eT(ﬁ_“N)@e_T(ﬁ_“N), 0<71<p). (4.1.11)

Using the annihilation and creation operators in the imaginary-time representation, we define
the single-particle Green function as

Goor (1,257, &) = —(Totho (1, )01, (7, 2)), (4.1.12)
where 7, denotes the time-ordering operator for the imaginary time:
Trbe (1, 2), (7, &) = O(1 — 7)o (1, )] (7, ') — O(7" — 7)1, (7', & )b, (7, 2), (4.1.13)

with the step function ©(7). We note that 1[)2(7', x) = eT(ﬁ_“N)@Zi(a:)e_T(ﬁ_”N) is not the
hermitian conjugate operator of 1, (7, ). From translational and spin-rotational symmetries,
the Green function can be expressed as

Goor (1257, X)) = 850G (7 — T — ). (4.1.14)

We further introduce the spatiotemporal Fourier transformations of the annihilation and

creation operators as

n 1 p iwE r—ik-x 7
TZ)O-(WT}:L,IC) = \/W/(; dT/dﬂf@ m k ¢O—(T,w),

; , - (4.1.15)
Dl (wh, k) = \/BLd/z/o dr /dﬂ'3 e~ tmT ikt (1 a),

where w! = 27(m +1/2)/p is the fermionic Matsubara frequency. Then, the spatiotemporal
Fourier transformation of the single-particle Green function is introduced as

Giwk k) / dT/dace“u Tmikrg(r ). (4.1.16)

In particular, the single-particle Green function for free fermions, referred to as the free
propagator, takes the simple form of

1

. F .
G(Zwmvk) - in — €k +H7
m

(4.1.17)
with the single-particle energy e = k?/(2m). The free propagator G(iw’, k) in Matsubara
frequency and momentum space plays the role of a building block in the quantum virial
expansion, as well as in general diagrammatic techniques.

We also introduce the pair propagator D(iw?, k) [I06], represented diagrammatically in
Fig. A1l as

- D(“‘)lek) = /BLd ZZ GT Zwmvp)Gi(Zw - iwf:uk _p)(_g) oo (4118>

where wlB = 27l/( is the bosonic Matsubara frequency. We can write the pair propagator

D(iwP, k) as
1

971 + 1:Ipolar(i(")lBa k) 7

D(iwP, k) = (4.1.19)
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== T— e _|_ coe

Figure 4.1:  Diagrammatic representation of the pair propagator. The pair propagator,
described by the double line, consists of the single line and the dot, representing the free
propagator of Eq. (£1.17) and the bare coupling constant (—g), respectively.

where ﬁpolar(iwlB, k) is the polarization function in the medium,

1
Hpolar(zwl ;k ,BLd Z Z le — - . (4120)

ep + piwd —iwk —ep_p+p

The summation over the Matsubara frequency results in

— fr( 6Ic+p/2 1) — fr(ep— p/2 — 1t)

H olar ; = s 4.1.21
pol (Zwl Ldz _ep/2—2€k+2/l ( )
where fr(e) is the Fermi-Dirac distribution function:
o) = (1122
P& = g 1.
Therefore, we obtain
111 —p) — —
Dlif k) =1 - Ly Fr(ensoep — 1) = Fr(er2—p — 1) (4.1.23)

iwP — e/2 — 2ep + 21

Here, the Fermi-Dirac distribution function fr(e — p) is at least the first order of z:

1

m = 267'86 + 0(22). (4124)

frle—p) =
Therefore, the pair propagator D(iwlB, k) is expanded in terms of z as
D(iw?P k) = To(iwP — en/2 + 2p) + O(2), (4.1.25)

where T, (iw? — €x/2 + 2u) is the two-body scattering T-matrix in the center-of-mass frame
defined by

-1
11 1
To(w) = [g -~ 74 zp: w_%p] . (4.1.26)

This definition is consistent with the two-body scattering T-matrix in Chapter 2 [Eqs. (ZIIS),
ZII9), and ZI122)]. With the use of Eq. (£110), the T-matrix in the infinite-volume limit
L4y, = J,, is represented as

Ta(w) = T —. (4.1.27)



44 CHAPTER 4. BULK VISCOSITY IN THE QUANTUM VIRIAL EXPANSION

Since the pair propagator has the zeroth-order term for the fugacity due to the two-body
scattering in vacuum, it plays the role of a building block in the quantum virial expansion
in addition to the free propagator G(iw! k). Namely, we can evaluate the leading order of
physical quantities for the fugacity by the diagrammatic approach with the free propagtor
G(iwk k) and the T-matrix T, (iwf — €x/2 + 2p).

In the Matsubara frequency representation, the fugacity appears through the expansion
of the distribution function resulting from the Matsubara frequency summation. Thus, it is
difficult to find the fugacity dependence in the Matsubara frequency representation before
summing over the Matsubara frequency. On the other hand, the free propagator in the

imaginary-time representation has an explicit fugacity dependence,

G(r,k) = —e T * " M[O(1) — fr(e — p)] = Z NaW (7 k), (4.1.28)
N=0
with
—eTHe Tk O(T) N =0,
G (1, k) = (4.1.29)

N
—eTHe Tk (6*56’“) N > 1.

With the use of GIY) (1, k), we can express the coefficients of each order for the fugacity in the
quantum virial expansion. In fact, the diagrammatic computational method for the quantum
virial expansion is established in the imaginary-time representation, not in the Matsubara
frequency representation [BBETZ. In particular, the zeroth-order term G(%) (7, k) runs only in
the forward direction for the imaginary time because it involves ©(7). Thus, we can estimate
the order of each diagram for the fugacity from the number of propagators going backward
in the imaginary time when an imaginary time is assigned to each vertex. Nevertheless, we
mainly employ the Matsubara frequency representation. We rely on the technique in the
imaginary-time representation only when we estimate the order of diagrams for the fugac-
ity. The Matsubara frequency representation is more convenient than the imaginary-time
representation for the resummation discussed in Chapter Bl

4.1.3 Thermodynamic quantities

As a concrete example, we review the thermodynamic quantities of the resonant Fermi gas
in the quantum virial expansion. The thermodynamic potential {2 in the grand canocnial
ensemble is defined by

0= ; nZ. (4.1.30)

The partition function is expanded in terms of the fugacity as
Z=1+2Tr {e_ﬁg} + 22 Try {e_ﬁﬁ} + 0(2%), (4.1.31)

and then the thermodynamic potential is expanded as

Q
p2 2

0= [blz +bo2? 4 0(23)] , (4.1.32)
T

where L% is the volume of the system and the prefactor 2 is the number of the spin degrees of
freedom. The coefficients b, are referred to as the n-th order virial expansion coefficients [8g],
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and they determine the quantum virial expansion of the thermodynamic quantities. Here, by
is fixed by the one-body problem, so that it is obtained as by = 1 from the results for the free

Fermi gas [see Eq. ([1.50)].

Here, the thermodynamic relations of the resonant Fermi gas are given by

E+P =TS+ pun, (4.1.33)

C
d€ =Td dn4+ —% __4q 4.1.34
& S + pdn + iy ad a, (4.1.34)

where & is the internal energy density, P the pressure, S the entropy density, and Ceq the
contact density. Here, the last term on the right-hand side of Eq. (134 represents the
adiabatic relation, which is one of the universal relations of the resonant Fermi gas [28]. From
these relations, we obtain

_ PCeq
d(fP) = —-€dB +ndlnz O at rda. (4.1.35)
In the infinite-volume limit, with the use of this thermodynamic relation and Q@ = —PL%, the
thermodynamic quantities are found as
2 2 3
BP = = [z F b2 4 Oz )}, (4.1.36)
AT
(577)> d 2 0by ,
E=— =P - 25 O(z 4.1.37
_ (BP) 2
n_z< o), [z—l—ngz + 024, (4.1.38)
Ceq 1 (O(BP) 2 0by .2
- = 4.1.
e L G B o ) (1.039)

To find the virial expansion coefficients, we calculate the particle number density n by
using

n=Y (50,2),(0,2)) =26(r = 0T,z =0) = lim Bid ; Ek: e~ nTG(iwk k).

0+
o=1.1 -0
(4.1.40)
Thus, we only need to find the Green function G(iw! k). We introduce the self-energy
Y(iwk , k) such that the Green function has the form of

1

. F
k
Gliwm; k) = iwk — e +p— X(iwk k)

(4.1.41)

The leading order of the self-energy can be evaluated from the diagram in Fig. and is
given by

- F
Yro(iwk k) 5LdZZD iwl +iwl k+ p)G(iwk p). (4.1.42)
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> = >

Figure 4.2: Diagrammatic representation of the leading-order fermion self-energy. See the

caption of Fig. 1] for the meaning of the symbols. In this diagram, one can assign an
imaginary time to each vertex such that only the leftward free propagator goes backward in
the imaginary time. The fact that at least one propagator goes backward in the imaginary
time means that this diagram has a first-order contribution of the fugacity. Only this diagram
provides the self-energy at O(z).

With the use of Eq. ([II25]), the self-energy is calculated as

(iwk —i—zw — €ktp/2+ 2p)
Yo (iwh k) 5[;122 +O0(2)

—e +u
B dw (iwh +w — egip/2 + 2)
- Ldz%meF —— +0(2) (4.1.43)
LdeF (ZW +ep —€rtp/2+ 1) +O0(2 )

where «y consists of counterclockwise closed contours around the singularities of fz(w) in the
complex plane of w. Only the pole of the free propagator w = € — u leads to the first-order
contribution for the fugacity. Thus, by using Eq. @I24]), we obtain the self-energy up to
first order for the fugacity as

Sroliw?l k) =74 Z e P, 1wk + €p — enip/2 + 1) + O(2%). (4.1.44)
From the self-energy Y10 (iwm, k), the particle number density n is given by

2 .
n=3 Z / gm0 {G(z‘wi, k) + G(iwh  k)Sro(iwt k)G liw k) + 0(z?)
k

ZwFOJF Cped Z (’LLL)F k)
= w0 _ZLOm 2 4.1.45
52/[sz—ek+u+e [W@—Ek-i—,uP—i_O(z)} ( )
d b)) K
_2/fF € — 1 2/%27:]0 (w)m+o(23)’

where we take the infinite-volume limit L7435, — |, . and rewrite the Matsubara frequency
summation as the contour integral on . Here, v can be deformed according to the singularities
of the integrand, as depicted in Fig.

v = Y+ -
Yiiw=¢e+i0T, € = —00 — +00, (4.1.46)

yorw=¢—i0", € = 400 — —o00.
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Figure 4.3: Deformation of the integral contour . Because the singularities of the integrated
function except for frp(w) in Eq. ([@I.43) are located on the real axis, the integral contour is
deformed to straight lines 4 and ~_ that are parallel to and slightly shifted from the real
axis. Here, the contribution on the circle with infinite radius is negligible.

Then, the contour integral is expressed as

dw Yro(w, k T de Yro(e —i0T, k
j{ 2.fF(w)LO()2 — _/ = fr(e) Im[ Lol ’ +) 2} (4.1.47)
o 2mi [w— ex + pl e T [e — €k + o — 0]
- 0+
= —z2/ - %6_666_’66"’"’”/2 Im[ Ta(e =40 ) 2} + 0(23).
o T € — €k—p/2 —i0T]
(4.1.48)
Therefore, the particle number density n is obtained as
n= 22/ e Per — 222/6256’c
k 4§ (4.1.49)
+ s JF 1.
ozt [ [T E e | TEZR o)
kpd—oo T [e — €x—p/2 —i0T]?
By comparing this with Eq. (I138]), we find the virial expansion coefficients as
b = A%/ e P =1, (4.1.50)
k

d d +o0 .
by = 28 / ek . AT / / de _pe ~Benip/2py | Tale —i07)
2 Jk 2 Jkpoo T € — ex_p/2 — i0T]?

1 20/2 [+ e m?Ta(e —i0T)
=— —e 71 a . 4.1.51
s a5t m[[—ma T z’0+]2d/2] (4.1.5)

—00



48 CHAPTER 4. BULK VISCOSITY IN THE QUANTUM VIRIAL EXPANSION

The second term of the second virial expansion coefficient is known as the Beth-Uhlenbeck
term [[07]. In particular, when d = 3 and |a| = oo, one can find by = 3/(4v/2), which is
consistent with experimental results for the unitary Fermi gas [22H24].

From the virial expansion coefficients, the thermodynamic quantities can be calculated
according to Egs. ([A1.36)-(.1.39). For later use, we calculate the contact density. From

Eq. @EI39) and

0 L 2(—me —i0%)2=9/2 9 L
g = — —Ta ) 4.1.52
a@T(E—FzO ) g | 38T(E+ZO ) (4.1.52)
the contact density is given by
9d/2  ptoo d
Coq = 22)\7 / ?56_55 Im [m2771(5 —i0")] + O(2%). (4.1.53)
T J—00

Here, the imaginary part of 7,(¢ — i0") is provided by

204
s\ d—1 1 d—2
Im[7,(e —i07)] = @(a)mﬂé(s + —=5) + O(e)ma” “pqy(e), (4.1.54)
with
27 _
[In(ma?e)]? + 72 ’
pale) = 4.1.55
©) sgn(a)vVma?e ( )
— o d=3
a"“+me
which consists of a bound-state peak at the binding energy Ehinq = —1/(ma?) and a contin-

uum of scattering states for positive energies. Therefore, the contact density for d = 3 has
the analytic expression of [2I]
o l6m

Coq = 25 [1 n \2776511 (1 +ert (a1)>] + 024, (4.1.56)
T

where the dimensionless scattering length is introduced as a = v2wa/Ar = \/m/fa.

4.2 Bulk viscosity

We reviewed the quantum virial expansion with a warming-up calculation of the thermody-
namic quantities. We now turn to the bulk viscosity via the Kubo formula and evaluate it in

the quantum virial expansion.

4.2.1 Contact-contact response function

The complex bulk viscosity is given by Eq. (Z2351):

_ Run(w,0) — [’ dr [ da (6T1(—i7, )511(0, 0)) |

— (4.2.1)

¢(w)

The bulk viscosity coefficient is provided by the real part of the complex bulk viscosity in the

static limit [Eq. 22353))],
¢ = lim Re[¢(w +i0T)]. (4.2.2)
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The response function R 453(w, k) is defined by Eq. (Z2Z1):
Ras(w, k) =i / dt / daz etk ([ A(t, ), B(0,0)]). (4.2.3)
0

Here, II(t,x) = IL;(t,)/d is the trace of the stress tensor operator divided by d and the

modified stress tensor operator II(t, ) is defined by Eq. (Z2.44).
In the resonant Fermi gas, the trace of the stress tensor operator obeys

fi(t) = /dzc H(;""') _ zﬁ(t) + CMSZ(?aH’ (4.2.4)

which follows from Eq. (B1I5). Here, the contact operator C’(t) is defined by the integral
over the whole space of the contact density operator C(¢,x):

2
~ ~ mg ~ ~ ~ ~
C(t) = /da: C(t,x) = /d:c (2) Zwi(t,m)@b;(t, x)P,(t, ) Ys(t, ). (4.2.5)
a.p
The substitution of Eq. (2Z4]) into the response function leads to

Run(w,0) = 1 [ dre (i), o))

- (dmﬂdllad—2)2 ﬁ /Ooodt H[C(t), C0)]) (4.2.6)
= ! 2Rcc(w,0),

(dmQq_1a%-2)

where the commutator of the Hamiltonian with any operator in the grand canonical ensemble
can be dropped. Furthermore, the second term of the right-hand side of Eq. [21]) is written
as

B . . 00
/0 dT/daz <5f{(—¢7,:c)5ﬁ(0,0)>:/ d?wﬁlcﬁﬁ(wﬂoﬂo),

— /Oo %‘”g(wﬂ'oﬂ, (4.2.7)

—00

where K 45(w, k) is Kubo’s correlation function defined by Eq. (ZZ30) and the frequency
integration sets the two operators at equal time. The frequency integration of the complex
bulk viscosity provides the sum rule, which was derived in Refs. [B61[I08]:

* duw e 1 9Ceq
/ w0 = o ( o >n73. (4.2.8)

—00

Therefore, the complex bulk viscosity is obtained as

1 Ree(w,0) 1 1 9Ceq
(o) = iw (dmSg-1a9-2)? * iw d?mQg_1a?3\ Oa ), s (4.2.9)

The contact-contact response function is more favorable for the calculation of the complex
bulk viscosity than the stress-stress response function. Since the response function is expressed
by the expectation value in the grand canonical ensemble, it can be evaluated in the quantum
virial expansion.
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4.2.2 Linear response to the contact

According to the linear response theory, the contact-contact response function appears in the
response of the contact to a variation of the scattering length, which is a conjugate variable
to the contact as in Eq. (I34). In fact, we derived the response of the contact in the
hydrodynamic framework [Eq. (8:41])] and found the bulk viscosity appears. Let us confirm
that Eq. (841 can be reproduced by combining the linear response to the contact with the
Kubo formula for the bulk viscosity of Eq. (£29]). We consider the system which is perturbed
by a slightly modulated scattering length from its constant value as

a(t) = ag + da(t). (4.2.10)

We consider a certain frequency mode by setting da(t) = e~ *“!ja with Im(w) > 0. Along
with the variation of the scattering length, the Hamiltonian in the Schrédinger picture varies

adl

H,(t) = H + Saf(t). (4.2.11)

de_lag_l

The density matrix operator also varies as

Pa(t) = Peq + 0p(t), (4.2.12)

where poq = e—BH—pN) /Z is the equilibrium density matrix and

) t : T N A F T ’
Sp(t) = —;CH / At e HEC pogle T sa(t), (4.2.13)
mflg_1ag —o

up to first order for the perturbation. The expectation value of the contact operator is then
given by

Co(t) = Tr[Co(t)pa(t)] = Tr[Cpeq] + Tr[CIH(1)] + O(5a?). (4.2.14)
The second term is written as

: t
WEop0) =~y [ v (G0, CENale)
defla() —00

i = | (4.2.15)
T | ar e, cone s,

where C’(t) = (iftCe=ilt is the unperturbed contact operator in the interaction picture.
From Eq. (£23)), we find the bulk viscosity as
{ 0Ceq

b [Ty et C(t), C0)]) = —iwd®*mQy_1al3L? +< ) . (4.2.16
e [ e W), €O = i L+ (5) (210

5

so that the second term of Eq. ([{214)) is expressed as

8Ceq
da

Tr[Cop(t)] = dalt) ( ) . + 8a(t)d*mQg_1ad 3L + O(54). (4.2.17)

i

'Here, the contact does not vary: Qé(m)/aa = 0. To see this, we need to employ the cutoff regularization
rather than the dimensional regularization of Eq. (ZII0). In the cutoff regularization, the coupling constant
g is related to the scattering length a as (mg) ™' = ((d — 2)Qq_1)"'[a*~% — A2 /(T'(d/2)T'(2 — d/2))]. In the
limit of A — oo, the coupling constant goes to zero, i.e., g — 0, while the contact density operator remains
finite. Thus, we get AC(x)/da = 2(mg)C(x)/(Qa—1a*"") — 0.
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Therefore, the linear response of the contact is obtained as
Co(t) = Ceglalt)] + d*mQq_1ad 3 LCa(t) + O(5a?, 6d), (4.2.18)

with Ceqla(t)] = Tr[Cheq] + (0C/da)n.sda(t) + O(a?). Furthermore, the expectation value
of the energy continuity equation ([B.I.I1]) integrated over the whole space leads to

() = o il
= M'(t) _|_de2 ¢ .(t>2 I 0(5 3 (5") (4'2'19)
B deqa(t)d—la a(t)2a a”,0a).

Then, the thermodynamic relation [{1.34)) provides the entropy production at the rate of

Ceqla(t)]

" g a) T = L5 a(t)? + O(6a%, 6i). (4.2.20)

a(t)?

Therefore, dividing Eqs. (2.18]), (Z2.19]), and (£220) by the volume, we arrive at Eqs. (B.4.1]),

BZ2), and B43), respectively, from a microscopic perspective without relying on the hy-

TS(t) = H(t)

drodynamics.

4.2.3 Evaluation

We calculate the bulk viscosity from Eq. (23] in the quantum virial expansion. We first
evaluate the contact-contact response function. The response function is obtained from the
analytic continuation for the imaginary-time correlator,

Rag(w,0) = xap(w,0). (4.2.21)

Here, the imaginary-time correlator is defined by
B B . .
aslic? k) = / dr / da <=k (T i (7. 2)B(0, 0)), (4.2.92)
0

where /1(7', x) and B(T,:L') are operators in the imaginary-time representation. The leading
order of the contact-contact correlator is depicted diagrammatically in Fig. B4, and the
correlator is given by

4
xco(iw®? k) = 3L E g D(iw® + zwlB, k+ p)D(zwlB,p)
L (4.2.23)

4
m . . .
= 5Ld Z ZE(ZWB +iwf — epip/2 + 20) Taliw? — €p/2 + 2u),
Il p

where only the leading-order contribution is considered and higher-order contributions are
dropped. With the use of

Talw) = /Oo de Im(7a(e im)], (4.2.24)

oo T w— €
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Figure 4.4: Diagrammatic representation of the contact-contact correlator. The double
line represents the pair propagator, and the crossed dot shows the contact density operator
insertion. The diagram has a second-order contribution for the fugacity, which is the leading
order in the high-temperature limit.

we can perform the summation over the Matsubara frequency and obtain

4 0 d ) d / ,
yeo(iwB, k) = T;sz/m;/m;(fB(€+€k+p/2—2M)—fB(€ +6p/2—2u))

(4.2.25)
y Im[7, (e — i0")] Im[ T, (" — i0T)]
iwB —e+e —epip/2+€p/2 ]
where fp(e) is the Bose-Einstein distribution function:
1

Because of fg(e — 2u) = 2%e™7° + O(z%), the correlator at zero momentum in the infinite-
volume limit is reduced to

d/2 2 —Be _ ,—pBe’
xce(iw?, 0) _ 2 / dg/ defe c Im[m27;(5 —i0)] Im[m2T, (e —i0T)],

T oiwB —e+¢
(4.2.27)
and the contact-contact response function is given by
Ree(w,0) 1 2d/2 2/ ds/ de'e —Pe _ o=B¢
(dmQq_1a%=2)2 (ded 1a9=2) T w—c+e (4.2.28)

x Im[m?T (e — 10+)] Im[m*T, (e —i0T))].
We next evaluate the partial derivative of the contact density with respect to a. Since the
contact density is given by Eq. (ZI53), its partial derivative is written as

OCeq _ 22 [T de o—Be 9 .+ 3
<3a )ﬁZ_ZAdT I Im |m? == Ta(e —i07)| + O(z"). (4.2.29)

Because the partial derivative with respect to a at fixed n and S is equivalent to that at fixed
B and z in the leading order for the fugacity, we get

1 0Ceq B 1 2‘1/2 /+°° de /‘H’O dée’ 6_55 e he
d?>mQy_1a%=3 \ Oa nS ~ (dmQyg_1a?2) e—¢

X Im[m27;(5 - ZO+)] Im[m?T,(e' —i0T)] + O(%),  (4.2.30)
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where the following identity is used:
0
2Im[mT,(e — i07)] Re[mT, (e —i0T)] = Qd_lad*% Im[m7, (e —i07)]. (4.2.31)

Therefore, we obtain the complex bulk viscosity of Eq. (£29) as

)= s [ * e % — ¢ Imm Ty e — i01)| Imfm (¢ — 10°)
- VAT oo T o '

(dQg_1a9—2 T e—¢ i(w—e+¢€)
(4.2.32)
We find that the real part of ((w + i0T) reproduces the bulk viscosity spectral function in

Refs. [B9HOT]:

— e P Im[mT, (e4w—i0")] Im[m T, (e—i0™)].

Re[¢(w+i0T)] = (dQq_1ad=2)2X. W o0 T
(4.2.33)

24d/2 52 1—e P /°° de

With the use of Eq. [@I54), the bulk viscosity spectral function is expressed as

24/2,21 _ =Bl 5 9 2
et 23000) - 2m0) + pulle] -

Re[¢(w +i0T)] = 2)0(lw| — o)

dQA% |w| ma m ma
2d/222 1— 6—,6’|w\ © de i
YR /0 —e " pa(e)pale + |w]) + O(%). (4.2.34)

We can see that Eq. (I234]) has a term proportional to O(a)d(w) coming from the product
of the bound-state peaks in Eq. (@233]). This peak contribution ©(a)d(w) is considered to
be broadened by incorporating higher-order contributions for the fugacity [E900].

By taking the static limit w — 0 for Eq. (£234)) for a < 0, we obtain the bulk viscosity
coefficient up to second order for the fugacity as

22 [®dz 2m 2 3

o= | e | 4.2.

o s | ] o (4.2.35)
2222 -1+ (1+a 2 a*)I'(0,a 2

Cd=3 = fz rra )ef;p(a (0.2 )+O(z3), (4.2.36)
9N a

where a = v/2ma /A is the dimensionless scattering length and I'(s, ) is the upper incomplete
gamma, function:

[(s,z) = / dtt*te ™t (4.2.37)

Here, because the upper incomplete gamma function is expanded as

| —

! (_lj)k, (4.2.38)

o

'0,z) = —y—In(z) — Z
k=1

with the Euler’s constant v, the bulk viscosity coefficient (;—3 exhibits the non-analyticity in
the unitarity limit |a| — oo:

2v/222 In(a%e~177)

2--4 3
OmAD =2 +0(z%a ", 2°). (4.2.39)

Cd=3 =
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In contrast, in the free-particle limit |a| — 0, the bulk viscosity coefficient (;—3 has the

2v/222
f§ @ + 0(z2a4, 2%), (4.2.40)
I\

which is analytic. In two dimensions, the bulk viscosity coefficient (4—o has the asymptotic

asymptotic form of

Ca=3 =

form of
2

- j\%[ln(agz_ﬂ]“ +0(2*[n(@*)]~°, 2%). (4.2.41)

The non-analysity of Eq. ([£239)) is considered to be regularized by higher-order contributions,

Ca=2

and a?(4—3 converges to a finite value in the unitarity limit [20].

4.2.4 Kinetic theory approach

The bulk viscosity coefficient in the limit of @ — oo was calculated in the kinetic theory, and

it is given by
2

z
m Cpsiy = ————— 4.2.42
Jim Ga=g;i 122032 ( )
for three dimensions [74] and
2
li D — 4.2.43
3R, C=2kin = o @) 42.4)

for two dimensions [70]. These results disagree with Eqs. (£239) and (A23%). In three
dimensions, Eqs. [239) and [@242) have different forms as a function of the scattering
length. In two dimensions, Eqs. (£241]) and [{.243)) are different by a constant factor.

To understand the discrepancy, we review the kinetic theory approach for the bulk vis-
cosity coefficient [[4[75]. The bulk viscosity in the high-temperature limit was computed by
employing the Landau kinetic equation for quasiparticles,

0, OB 0, OB 0 _ (05
TRLINT S L 8pfp_<6t . (4.2.44)

where the collision term is given by

(af> - / W(ks, kalp, Do) | e fia (1= Fp) (1= Fpa) = (1= Fio)(1 = fo) fr e
coll p2,k1,k2

ot
(4.2.45)
with the transition rate of

Wk, kalp, p2) = | To(BpE2 4 i0) 2 (2m) T 6% Ky + ks —p — p2)6( By + Erey — Ep — Epy).

(4.2.46)
Here, fp = f(t,x,p) is a nonequilibrium distribution function of fermions for each spin com-
ponent and the quasiparticle energy Ej, = Ep[f] is given as a functional of the nonequilibrium
distribution function. In the high-temperature limit, the quasiparticle energy is obtained from
the real part of the self-energy of Eq. ([LI1.43)) where the Fermi-Dirac distribution function
fr(ep — ) is replaced by the nonequilibrium distribution function fp:

Ep[f] =¢p+ Re [ELO(EP —H Z.OJF’p)”fp(ep—u)—n‘p

2 4.2.47
=ép +/ Re [7:1(7(”27’;) - z'0+)} fp- ( )
p/
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As discussed in Chapter [ if the quasiparticle energy is set to Ep = €p, the bulk viscosity
vanishes. The nonvanishing bulk viscosity is predicted by the presence of the real part of
the self-energy. However, because the self-energy of Eq. ([£1.43) has both real and imaginary
parts in O(z), we consider that such a kinetic equation is not fully grounded. Namely, if we
consider the real part of the self-energy, we cannot ignore the imaginary part of the same
order. The imaginary part of the self-energy invalidates the quasiparticle approximation,
i.e., the fermion spectral function cannot be regarded as a delta function in O(z) due to the
imaginary part.

To further support our consideration, let us derive the equilibrium distribution function
resulting from the kinetic equation of Eq. ([@244). As in the discussion in Chapter P the
equilibrium distribution is defined from the condition that the collision term ([£.2.45]) vanishes.
From this condition, the equilibrium distribution in the rest frame obeys the self-consistent
equation of [T09]

foi = !
k= opBEL] — )] £ 1

By substituting the quasiparticle energy and expanding the right-hand side with respect to

(4.2.48)

the fugacity, we obtain
fit = frlen — 1) + frler — ) Re[Sro(ex — p — 107, k)] + O(2%), (4.2.49)

with fr.(¢) = 0-fr(e). In contrast, the equilibrium distribution is obtained microscopically
as

T——07F

=G(r=-0"k)= lim ;Z e nTG(iwk k). (4.2.50)

Since G(1 = —07, k) is given by Eqs. (L4 and @EILZ3), we get

o0

ELo(e — i0+,k)
e — ek + p —i0F]?

[l = frlex — p) +/

—0o0

%fp(s) Im [ } +0(2%), (4.2.51)

with the use of Eq. (@I4T). This equilibrium distribution can be expressed as

filt = Zrfr(ex — p) + fr(er — p) Re[Sro(ex — p— 0", k)]

+P/oo %lg[fp(e—Fek — ) Im[Ep0(e + € —u—i0+,k§)]] +O(Z3)>

oo T EO0E

(4.2.52)

where Zp, = 1+ ReX (e — pp — 10T, k) is the quasiparticle residue, and the symbol P
stands for the principal value of the integral. Thus, we can find two discrepancies between
Egs. (@249) and [@I252). One is the quasiparticle residue, and the other is a term involving
the imaginary part of the self-energy. Because all thermodynamic quantities in the kinetic
theory are represented through the distribution function, they are also inconsistent with those
derived from the microscopic computation. Therefore, the Landau kinetic equation employed
in Refs. [[4[TH] is invalid at the order in which the self-energy contributes because its imaginary
part is not negligible. We consider that this is the origin of the discrepancy between the bulk
viscosity derived from the Kubo formula and that derived from the kinetic theory.
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4.3 Summary

In this chapter, we introduced the quantum virial expansion as a non-perturbative compu-
tational method and discussed the bulk viscosity in the high-temperature limit. In Sec. E1]
we reviewed the quantum virial expansion using the Matsubara formalism. We also reviewed
the calculation of the thermodynamic quantities and obtained the first and second virial
coefficients [Eqs. (ZI50) and (15| [IO7]. The virial expansion coefficients are important
quantities characterizing the universality shown by the thermodynamics of the resonant Fermi
gas. The higher-order coefficients were calculated [79R2)[R3BEHETITIHITE] and agreed with
the experimental results [IIG0I7). In Sec. B2 we derived the Kubo formula for the bulk
viscosity expressed by the contact-contact response function [Eq. [2Z9)], and also derived
the response of the physical quantities to the time-dependent scattering length from a micro-
scopic perspective without relying on the hydrodynamic approach [Eqs. (£2.I8), (Z219)), and
#220)]. We then reviewed the calculation of the contact-contact response function in the
quantum virial expansion and obtained the bulk viscosity [Eqs. ({.2.35) and ([£.2.30)] [R9HOT].
Finally, we discussed the discrepancy between the bulk viscosity derived from the Kubo for-
mula in the quantum virial expansion and the one derived from the kinetic theory. We pointed
out that the kinetic theory is invalid due to the breakdown of the quasiparticle approximation

at O(z).



Chapter 5

Shear viscosity and thermal
conductivity in the quantum virial
expansion

In this chapter, we compute the shear viscosity and the thermal conductivity of the resonant
Fermi gas in the quantum virial expansion. As the bulk viscosity reviewed in Chapter @ they
were also calculated in the quantum virial expansion via the Kubo formulas [39 89011 03].
However, the calculations of the shear viscosity and the thermal conductivity suffer from
a divergence in the static limit due to a singularity called the pinch singularity [[T9[I20].
In Refs. BARIOI M, an expansion of the spectral function was carried out, and then the
expansion approximately resummed by the memory function method. The purpose of this
chapter is to give an exact microscopic computation for the shear viscosity and the thermal
conductivity in the high-temperature limit by taking into the account the singularity. The
pinch singularity appears not only in the high-temperature limit but also in the weak coupling
limit. The singularity was studied in the weak coupling limit [[TO[I20]. We derive a self-
consistent equation incorporating terms with the singularity in the high-temperature limit by
extending the methods in the weak coupling limit, mainly based on the Eliashberg method
for the Fermi liquid [I20] and its modern description [I23].

In Sec. Bl we review the transport coefficients calculated in the quantum virial expansion
using the memory function method. In Sec. B2 we introduce the pinch singularity and
confirm its appearance in the Kubo formula. We also express the transport coefficient in the
high-temperature limit by a vertex function. In Sec. B3] we then derive the self-consistent
equation for the vertex function in the high-temperature limit and show that it is equal to
the linearized Boltzmann equation. In Sec. £.4] we solve the derived self-consistent equation
and calculate specifically the shear viscosity and the thermal conductivity. We conclude this
chapter in Sec.

In this chapter, we consider the quantum virial expansion for the resonant Fermi gas, as in
Chapter @l The Hamiltonian of the system is given by Eq. (£1.8), and the basic formulations
of the quantum virial expansion are as described in Chapter [

o7
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5.1 Memory function method for shear viscosity

We first review the computation of the shear viscosity in the quantum virial expansion to

see that a resummation is required for the expansion BIRIMOI]. The shear viscosity 7 is
computed from®™

o Im[Rm,,m,, (w+ 0T, 0)]

n = lim pty .

w—0 w

(5.1.1)

Here, f[zy (t,x) = eith ﬂxy(:c)e*i“ﬁ[ is the xy-component of the stress tensor operator in the
Heisenberg picture and I, () is

. - 00y +
My (2) = — 3 3 (@) 20 (o). (5.1.2)
The response function R 45(w, k) is defined by Eq. ([Z2.7):

Roas(w, k) = i /0 Y / da ¢ (At ), B(0,0)]). (5.1.3)

As the bulk viscosity in Chapter Bl the stress-stress response function of the resonant
Fermi gas was calculated in the quantum virial expansion [BA[@T], which results in the spectral
function Im[Riy,, 11, (w + 07, 0)] /w as

Im[Rnwnw (w+140T, 0)]
w

2 d/2 Pw ) -
2 (m/2m)¥2 B — 1 [ttt [l o= 01
MT(24+d/2) w 0 (w+1i01)?

2 (m/2m)*P 1 — e % o iapy [Tale +w —i07) 5
EF(2+d/2) ” /0 dee e Im{ (@ i) ]—1—0(2 ), (5.1.4)

where P is the pressure given by Eqgs. [II30) and @IZI). From Eq. (BII), the shear
viscosity 7 is obtained by taking the static limit w — 0 in Eq. (B14). However, this limit

cannot be taken in Eq. (B.I4), and a resummation is required. For the spectral function
Im[Ri1,, 11, (w + i0%,0)]/w, there is a resummation method called the memory function
method [II8]. In the memory function method, the spectral function is supposed to have
the Drude form of

= Prd(w) +

Im[Ri1,, 11, (w + 07, 0)] 1w [ 10 ]

w w—i0t — M(w) (5.1.5)

where M (w) is called the memory function, and 7 is a real constant. By comparing Eq. (51.4)
with the Drude form of

Im o } — 1o Im [w_lw] 410 Im [(M(w)] TR (5.1.6)

w—i0t — M(w) w —101)2
we can find gy = P and

B 22 (m/2m)%? efw —
PAXLT(2+d/2) w

2 (m/2m)¥2 1 — e e g 1+d/2 . 9
fp)\% P(2+d/2) w /O dee € 7;(64-00 — 10 )+O(Z ) (5.1.7)

1See Appendix [0 for this Kubo formula.

Mw) =

1 oo
/ de e P22 T (e — w +i07T)
0
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Because of Re[M (0)] = 0, the shear viscosity is obtained as [S9LOT]

9 e’} . LIT2 -1
P ™ oo ) +0W 42 5.1.8
T M) 157 o g8 ! (5:1.8)
m / dxe - &_2 + O(Z) d = 3,

where @ = v/2ma/\r is the dimensionless scattering length. On the other hand, the shear
viscosity in the high-temperature limit was calculated from the kinetic theory for d = 3 [GA[Z0]
and for d = 2 [[A[3], as reviewed in Chapter @I The result of Eq. (LI8]) agrees with that
calculated from the kinetic theory in the relaxation-time approximation.
The thermal conductivity x was also computed in the quantum virial expansion via
m[quJq (w+ 0T, 0)]

I
Tk = lim L , (5.1.9)
w—0 w

and the expansion was resummed by the memory function method [@3]. Then, the thermal
conductivity obtained using the memory function method agrees with that calculated from the
kinetic theory in the relaxation-time approximation [71]. Here, J(t, x) = e®H 74 (x)e " is
the z-component of the heat current density operator in the Heisenberg picture [Eq. (Z2.55)]
and J(x) is

E+P -

Ji (@) = Qi(x) - ———Ji(=),
igiL‘ 8]'8]' o (L —@-c’)flm @'AUZIZ
:Z[w ¢()iim£ o (@)] (0o ()]
~ — ~
i S U@ Bl Winle) - SEP 3 A 00l@)

where £, P, and n are the internal energy density, the pressure, and the particle number
density, respectively.

5.2 Pinch singularity in Kubo formulas

5.2.1 Pinch singularity

We now turn to a singularity that causes a divergence in the quantum virial expansion. The
need for the resummation comes from the so-called “pinch singularity,” which breaks down the
naive expansion [[T9MI20]. The pinch singularity arises from the product of the single-particle

Green functions with the same frequency and momentum,

Aw, k)

R A =
G (w, k)G (w, k) = —2Im YR (w, k)’

(5.2.1)

which appears in the static limit of the response function. Here, GR(w, k) and G*(w, k) are

the retarded and advanced Green functions, respectively, and are given in the form of
1

G (w, k) = T = GM(w, k), (5.2.2)
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where YR (w, k) is the retarded self-energy and A(w, k) is the spectral function defined by
A(w,k) = —2ImG®(w, k). This product (ZZI) diverges when the imaginary part of the
self-energy vanishes. The vanishing of the imaginary part of the self-energy leads to the pinch
singularity but also justifies the quasiparticle approximation, which underlies the kinetic
theory. For this reason, it is necessary to discuss the pinch singularity to understand the
relation between the microscopic and kinetic computations [[2I1122].

The reatrded and advanced Green functions are obtained from the analytic continuation
of the Matsubara Greem function G(iwk , k) of Eq. (@112,

GR(w, k) = GM(w, k) = G(w + 0T, k). (5.2.3)

Thus, the retarded self-energy L(w, k) in the high-temperature limit is provided by Eq. ([E1.44):

YR (w, k) = Bro(w+ 10T, k) = % Z e PeTo(w + ep — orp/2 + p +i0T), (5.2.4)
p

where O(z?) terms are dropped. Then, the product of Eq. (B2 is evaluated as

1 2m0(w — €k + 1)

R A
k k) = : 5.2.5
g (w )g (w ) : —2Im EoRn—shell(k) ( )
where SR (k) is defined by
1 e ,
Stshen (k) = Td Z e PP Ta(ek—p/2+1i07). (5.2.6)
p

Therefore, the product has the inverse power of the fugacity, which breaks down the naive
expansion. Since this product reduces the order of the fugacity by one, the terms involving this
product are enhanced in the high-temperature limit. We refer to the product of Eq. (LZ1)
as the singular product. Throughout this chapter, we consider the high-temperature limit.
Namely, we only consider the lowest-order terms for the fugacity without overlooking the

pinch singularity and drop higher-order corrections.

5.2.2 Kubo formula

We confirm that the pinch singularity appears in the Kubo formula of Eqs. (B.11]) and ([Z.1.9]).
The response function is obtained from the analytic continuation of the imaginary-time cor-
relator: R 4p(w + i0%,0) = yap(w + i07,0). To study the shear viscosity and the thermal
conductivity in a unified manner, we consider an imaginary-time correlator

B
iw?,0) = 7 [ da e’ ~O(r,2)0(0,0)), 2.
Yoo(iw®,0) / a / da " (T, O(7,2)0(0,0)) (5.2.7)

where O(r, ) = eT(ﬁ_“N)@(m)e_T(ﬁ_“N) is an operator in the imaginary-time representa-
tion. Here, we suppose that the operator Oisa quadratic one

@(p - 0) - Z Zqﬂl;kg(k)qﬁa;kv (528>
ok
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Figure 5.1:  Diagrammatic representation of the imaginary-time correlator by using the
vertex function I'. The bold line represents the full propagator G, as opposed to the thin line
representing the free propagator G as in Fig. Il The square denotes the bare vertex Q.

where @U;p = [ 4/? [ dx e*ip'mzﬂg(a:) is the Fourier component of the annihilation operator.
From Eq. (512, the :cy—component of the stress tensor operator is given by

1Ly (p=0) Z Z@ZJ kﬂ'my ¢a ks (5.2.9)

with 75, (k) = kyky/m, so that we can set Q(k) = 7y, (k) for the shear viscosity. On the other
hand, the heat current density operator is not a quadratic operator from Eq. (LI.I0) [03):

q Qq -
Jd(p=0) Z Z ¢U I (k) oo +7a Z % Q/2+k¢¢ Q)2 W LQ -k Q2 ks
Q
(5.2.10)

with

. k
Jik) = <ek — ) o (5.2.11)
In the high-temperature limit, the first term of Ja (p = 0) is dominant and the second
term is negligible, so that we can set Q(k) = j!(k) for the thermal conductivity. This is
because the relative momentum dependence of the second term inhibits the appearance of
the singular product, which is the product of the single-particle Green functions with the
same momentum. The contribution from the second term is not enhanced by the singularity
in the high-temperature limit.

With the use of Eq. (28], the imaginary-time correlator (L.2.7) is written as

Yoo(iw?,0) Ldz/ dr "7 37 Qk) (Tt (7)o (1) it (0) ot (0)) QK.

kK’
(5.2.12)
We introduce the vertex function I'(iwl +iw?, iw? ; k) such that the correlator is denoted by

xoo(iw?,0) Ld Z Z Q(k)G(iwh 4 iw? k)G (iwk , k)T (iwh +iw? iwk; k), (5.2.13)

which is represented diagrammatically in Fig. Bl Here, because the bare vertex Q(k) is
diagonal with respect to the spin indices and independent of the spin indices, the vertex
function is also diagonal and independent.
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Figure 5.2: Branch cut structure and contours of integration used to evaluate the imaginary-
time correlator. The contour <y can be deformed to four lines: v — C = C; + Cy + C3 + C4.
Here, the contribution from the circle with infinite radius is negligible. The complex variable
w is parametrized as w = € + 0" on C1, w = ¢ — 0" on Co, w = ¢ — iw? 4+ i0" on C3, and
w=¢ —iwP —i0T on C4 with £ € R.

For the analytic continuation iw®? — w+i07, it is necessary to express the correlator such
that xoo(w,0) is regular in the upper half-plane of w € C. To do this, we first rewrite the
Matsubara frequency summation as the contour integral on ~:

xoo(iw?,0) = Ldf%m ZQ G(w + iwP, k)G (w, k)T (w + iw?, w; k), (5.2.14)

where v consists of counterclockwise closed contours around the singularities of fr(w). Here,

the Green function G(w, k) has a branch on Im[w] = 0 and the vertex function I'(w+iw?, w; k)

can have branches on Im[w] = 0 and Im[w] = —w?, as shown in Appendix [D} Thus, we can

deform ~ to C, as depicted in Fig. Then, the correlator is expressed as

xoo(iw”,0) = Td /OO ;;ZfF
x {g(e +iwB K)G(e + 0T, k)T (e + iw?, 2 +i0F: k)
Gle +iwP k)G(e —i0T, k)T (e + iw®, e —i0T; k)
G(e 4107, k)G(e — iwP E)D(e +i0T, e — iwP; k)
Gle —i0T, k)G(e — iw? k)(e — 0T, e — iw?; kz)}

(5.2.15)

B

We can apply the analytic continuation iw” — w + i0" to this expression and obtain the
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response function Rpo(w + 01, 0) as
Roo(w + 0™, 0) = Xoo w4i07,0 0)
> de
Ld / i Z fr(e+w) fF(€)] Q(k)

x GR(e 4 w, k)gA(e, E) (e +w+i0T, e —i0T; k)
+ Rnon—sing (w + iOJra 0)7

(5.2.16)

with the use of Eq. (LZ3]). One sees that Eq. (B2.I06) has a product of the retarded and
advanced Green functions with the same frequency and momentum in the static limit. Here,
Ruon-sing (w + i0™,0) is the contribution from the integrals on C; and C4, and is given by

© de
Rion- smg(w + 'LO 0 Ld / Z fF

2mi
x {GR (e +w, k)gR(e, k)T +w+i0* e +i0t k) (217
— G e, k)G (e —w, k)D(e —i0F, e —w —i0'F; k)},
where the infinitesimal quantities obey 0'" > 07 because of the sequence of the limits. This
Rnon_sing(w+i0+, 0) is not enhanced in the static limit because it does not involve the singular

product.
We introduce a transport coefficient oo in the same form as the Kubo formulas,

Im[Ropo(w + i0™, 0)]
oo = lim .
w—0 w

(5.2.18)

In the static limit, the term involving the singular product yields the leading-order contribu-
tion, and thus the transport coefficient o is given by

_% —PBex PRA(k)
_Ld;e Q(k) TwsE () (5.2.19)

where Eq. (523 is used. Here, I'ra(k) is the vertex function connecting to the singular
product and is defined by

Tra(k) =T(ep — p+i07, e — p — 0™ k). (5.2.20)
From Eq. (BZT19), I'ra(k) is the only vertex function we need to calculate for the transport
coefficient.
5.3 Self-consistent eqution for vertex function

In the previous section, we derived the formal expression for the transport coefficient oo by
using the vertex function. In this section, we evaluate the leading-order vertex function in the
quantum virial expansion. Since the singular product reduces the order of the fugacity by one,
the leading-order vertex function is given by the sum of an infinite number of terms. To take
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T)= =+ |I

| = + Y

Figure 5.3: The self-consistent equation for the vertex function (top) and the leading-order
four-point functions (bottom). In the upper figure, the Green functions connected with the
vertex function are the full propagator G, denoted by the bold line. In the lower figure, the
first term on the right-hand side represents the Maki-Thompson diagram and the second term
represents the Aslamazov-Larkin diagram.

into account the contributions of the infinite number of terms, we consider the self-consistent
equation for the vertex function, represented in Fig. diagrammatically,

1
I(iwh 4 iw? iwk k) = Q(k) + 3 Z/I(zwf; + iwP iwl kliw! +iw?,iwl’; p)
x Gliwy, +iw” p)G(iwy, P (iwy, +iw?, iy’ p),

where Z denotes the connected four-point function. Hereafter, we take the infinite-volume
limit L—¢ Zp — fp. The pinch singularity can result from the product of the Matsubara
Green functions of the same frequency and momentum in the limit iw®” — 0 corresponding
to the static limit. In the self-consistent equation, the singular product can arise from the
product of the two Green functions connected with the vertex function.

Let us take the four-point function Z specifically such that the second term of Eq. (3.1
has the zeroth-order contribution for the fugacity. Since the singular product reduces the
order by one, we consider the four-point function Z with a first-order contribution for the
fugacity. As mentioned in Chapter @l we can estimate the order of diagrams by using the
techniques of the quantum virial expansion in the imaginary-time representation. The first-
order contributions are given by diagrams of the Maki-Thompson and Aslamazov-Larkin

types [BAM@I], which are drawn in Fig. B3]
Tar (iwh 4+ iw? ok kliwl +iw?P iwl p) = To(iwk +iwl +iw?, k + p), (5.3.2)
and
Tas(iwk +iw?,iwk: kil +iw? iwk'; p)

2 3.
= —B Z / E(iwlB +iw?, q)ﬁ(iwlB, q)G(iwlB — iwg, q-— k)G(z’wlB — iwf, q-—Dp), (5.3.3)
1 q



5.3. SELF-CONSISTENT EQUTION FOR VERTEX FUNCTION 65

with Z = Iyt +Zar, and %(iwlB, p) = ﬁ(iwlB —ep/2+2p). It is sufficient for the leading-order
vertex function to evaluate the four-point functions Zyr and Zap, with the full propagator G
and the pair propagator D replaced by the free propagator G and the T-matrix 7.

The only vertex function required for the transport coefficient is I'ra (k), which is obtained
by applying the following analytic continuations to the vertex function I'(iwk +iw?, iw?l ; k):
— e —p—i0T,

- F
1. dw,,

(5.3.4)
2. iwP? — 0+i0T,

where the infinitesimal quantities obey 0’ > 0T because of the sequence of the limits@ In
the following, we apply these analytic continuations ([.3.4]) to the self-consistent equation,
particularly, to the contributions from the two diagrams, i.e., Maki-Thompson and Aslamazov-

Larkin, and derive the leading-order self-consistent equation for I'ga (k).

5.3.1 Maki-Thompson contribution

We denote the contribution from the Maki-Thompson diagram in the form of a linear operator,

L[] (iwE +iw?iwl k) = = Z/IMT iwl +iw? iwl kliw +iwBiw!’; p)
(5.3.5)
F . B . F.
X g(zwn +w 7p)g(zwn 7p)F(7’wn +w™, wy, ,p)
In order to carry out the analytic continuations (534, it is necessary to express Eq. (3.3 so

as to be regular in the lower half-plane of the complex variable for arguments containing iw’

B

regular in the upper half-plane of the complex variable for arguments containing iw”, and

regular in the upper half-plane of the complex variable for arguments containing iwf;; + iwB.
The Matsubara frequency summation in Lyp[I'] is expressed by the controur integral on Cyip
as
. F | . B . F dw B
Lyt [T (iw,, + iw ,zwm;k):—f /fp( )Ta(w + iwk +iw? k + p)
Cmr 2mi (5.3.6)
x G(w + iw”, p)G(w, p)T (w + iw”, w; p),
where the contour Cyr runs around all the singularities of fr(w). We evaluate Lyp[I'] from
the singularities of the integrand except for fr(w). Within the leading order, the singularity
of the T-matrix T,(w + iwl + iw®? k + p) is negligible because the contribution from its
singularity leads to O(z2). Therefore, Lyyr[I'] in the high-temperature limit can be evaluated
from the singularities of G(w + iw?, p), G(w, p), and I'(w + iw?,w;p). This means that we
can take Cyr to be C depicted in Fig. in the high-temperature limit. Since the integral
on C is rewritten as the integrals over € as in Eq. (210, Lumr[I] is given by

Ly [T]( zw + iw? zw,f;;k:)
> de
/ 27T’L/fF
X {E(a—i—iwm+in,k+p)g(€+in,p)g(6—i0+,p)F(5+in,5—iO+;p) (5.3.7)
7;(€+Zwm,k+p)9(6+i0+,p)g(€—in7p)F(6+i0+,6—in;P)]

+ EMT;non—sing [F] .

2When there is no need to distinguish their magnitudes, we denote both as 0.
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Here, LMT:non-sing[I'] represents the integrals on C; and Cy4, which do not involve the singular
product after the analytic continuations. Then, we can apply the analytic continuations
(E33) to this expression and obtain

ﬁMT[FRA](k) = ,CMT[F](Ek — U + iOJr, € — U — i0+; k:)

B ) T'ra(p) (5.3.8)
= [ e PP2Im| T, (ep_p/2 +i0T RALP .
/P |: ( * p/ ) —2Im Eon shell(p)

5.3.2 Aslamazov-Larkin contribution

We also denote the contribution from the Aslamazov-Larkin diagram as

LD (iwk 4+ iw? iwk; k) Z/IAL iwk +iw® iwk s kliw! +iwB,iwl’; p)
% Gliwt +w,mmwmmnM T iw®, il p)
——}1{ /fp VZaL(iwk 4+ iw? iwk : k|lw + iw?, w; p)
CaL 27i
% Gw +iw?, p)G(w, p)T(w + i, w; p), (5.3.9)

where the contour Car, runs around all the singularities of fr(w). We investigate the analyt-
icity of the four-point function Zay, for the analytic continuations. By taking the summation
over the Matsubara frequency, the four-point function Zay, of Eq. (5:33)) is calculated as

:ngF+wﬁ'f“mmF+meﬁm)

o [t Tl s ok Tl e~
a iwh —iwl — €q_k + €q—p

(5.3.10)
+ ((wh, k) € (Wh,p) + O(2%).

Thus, Zar,(iwh +iw?, iwk: kjw+iw?, w; p) has the singularities of the pole w = iw’ + €q—k —
€q—p and the branches on the axes Im[w] = 0 and Im[w] = —w? for w € C. To evaluate
L[], we can deform the contour Cat, to C + Cpole, Where the contour C is shown in Fig.
and the contour Cpgle runs clockwise around the pole w = iwfZ + €g—k — €q—p- The contour
integral on Cpole is calculated as

‘%Cpole

x G(w + iw®, p)G(w, p)T (w + iw®, w; p)

2m/fp VZAY (il 4+ iw? iw klw + iw®, w; p)

= 2z/ e Pear T, (iwh +iw® + eqr — 1, @) Taliw? + eq 1 — 11, q) (5.3.11)
p.q
x G(iwh +iw® — eq_p + €q1, P)G ik, — €q—p + €q_k, D)
x T(iwh 4+ iw? — eqop + €qk, iWh — €q—p + €q—k; P)-
The analytic continuations ([3.4]) can be applied to this expression. The contour integral on

C can be computed in the same way as for the Maki-Thompson contribution, and we arrive
at an expression to which the analytic connections can be applied. Therefore, we can apply
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the analytic continuations to the Aslamazov-Larkin contribution and obtain
LALTra](k) = LavLT] (e — p+ 0", e — p— 075 k)

_ T (5.3.12)
= 2/ e PN (k, kol q1, q2) Rl;{(ql) ;
k2,q1,q92 —2Im Eon-shell (ql)

where the transition rate W(kq, k2|q1, g2) is introduced as

W k1, ka|q1, q2) = |Tal€r, 1y /2 +i07)?

(5.3.13)
X (27T)d+15(ek1 + €py —€q — qu)éd(kl + ko —q1 —q2).

After the analytic continuations, only the contribution from the integral on Cpqc results in the
leading order by the singular product. The contribution from the integral on C does not have
the zeroth-order contribution because the four-point function Zay, itself has the first-order for
the fugacity, unlike the Maki-Thompson contribution.

5.3.3 Leading-order self-consistent equation and linearized Boltzmann equa-
tion

By combining the above results, the leading-order self-consistent equation for I'ga (k) is given
by
FRA(k) = Q(k) + EMT[FRA](k) + ﬁAL[FRA](k), (5.3.14)

where Lyr[I'raj(k) and La1,[I'ra(k) are defined in Egs. (B38) and (£312). Therefore, the
leading-order self-consistent equation is written as a closed equation for I'ga (k).

We can show that this self-consistent equation ([E3.14) is equivalent to the linearized
Boltzmann equation. To do this, we introduce ¢(k) as

olh) = aP)

= , (5.3.15)
—2Im Z%{n—shell(k)

following [I23], and write the self-consistent equation as

(k) = —2Tm SR, (k)p(k) — /

o=Be39Tm [ﬁ(ek_kQ /24 z’0+)} o(ks)
ko

- 2/ e PR W(k, kalqr, g2)p(q1)
k2,q1,92
_ / e %o I [ Toekiy/2 4 10%) (k) + (k)
ko

- 2/ 6_B€k2w(k7k2|q17q2)90(q1)) (5316)
k27q17q2

where Eq. (0.2.0)) is used. Here, the optical theorem relates the imaginary part of the T-matrix
to the transition rate,

— 21m|:7;(6k1_k2/2+’i0+)] = / W(kl,k2|Q1,q2). (5.3.17)
q1,92
Therefore, the self-consistent equation for (k) is obtained as

o) = [ eI kalara)[pb) + k) — ela) — pl@)]. (5319
2,41,92
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and also the leading-order transport coefficient o is evaluated from Eq. (2Z19) as

oo = QB/ke—ﬁ%Q(k)gp(k). (5.3.19)

Eq. (B317]) is nothing other than the linearized Boltzmann equation, as detailed in Chapter 2]

[Egs. 2Z3359) and 23560)]. Eq. (5319) also corresponds to Egs. (23.64) and [2.3.68]), which

provide the shear viscosity and the thermal conductivity in the kinetic theory. Therefore, for
the transport coefficient o in the high-temperature limit, the microscopic calculation agrees
with the kinetic one without approximation, such as the relaxation-time approximation or
the approximation to the memory function.

5.4 Numerical results

5.4.1 Shear viscosity

For the shear viscosity, we set Q(k) = gy (k). Then, the linearized Boltzmann equation can
be solved by expanding ¢(k) with the generalized Laguerre polynomials:

N
(k) = Bray(k) Y LD/ (Bey,). (5.4.1)
n=0

In the simplest case of truncation at NV = 0, known as the relaxation-time approximation, we
find ¢(k) = 27,7,y (k) with the relaxation time for the shear viscosity,

B2 m d roo
(zm) ™" = r(d/z)r(ﬁ2+d/2) <2\/§7r) /0 de e e Tale — 0T (5.4.2)

We also find the shear viscosity in the relaxation-time approximation,

2 |: 00 ZE'Q -1
— dee™ d=2
2 / In(za?s)]? + 2} ’
Ny = Zzm,) = T Lo [in( ) _ir (5.4.3)
157 o 2
— / dee*—— d=3,
42 | Jo T+ a2

where @ is the dimensionless scattering length @ = /m/fa. These results agree with
Eq. (B18), which is obtained from the memory function method [RI@I]. Therefore, the
memory function method, i.e., taking the Drude form of Eq. (I0]) and the memory function
of Eq. (B11), is equivalent to the relaxation-time approximation, or more microscopically, to
approximating the vertex function as

I'ra (k:)
—2z Im[zgn—shell (k)]

= Ty Tay (k). (5.4.4)

The results of the shear viscosity in the high-temperature limit are plotted in Fig. 5.4
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Figure 5.4: The shear viscosity in the high-temperature limit as a function of Ay /a in the
form of Adn for d = 2 (left) and d = 3 (right). These results are computed from the solution
using the expansion (BZI]). In three dimensions, the shear viscosity is an even function of
the scattering length. For example, when Ar/a = 0 in three dimensions, the normalized shear
viscosity in the high-temperature limit is )\:}n = 4.165 in the relaxation time approximation
and A3 = 4.231 in the exact computation.

5.4.2 Thermal conductivity

For the thermal conductivity, we set Q(k) = ji(k). Then, the linearized Boltzmann equation

can be solved by expanding (k) with the generalized Laguerre polynomials again

%Z ) L2 (Bey,). (5.4.5)

In the simplest case of truncation at N = 1, known as the relaxation-time approximation, we
find ¢(k) = z7,.j] (k) with the relaxation time for the thermal conductivity,

d—1
(210) "t = T(zn,)*l (5.4.6)
Thus, the thermal conductivity in the relaxation-time approximation is given by
00 —5a2 -1
d+2 8[/ dsl(f;)s-i-2:| =2
T n(a?s) +
Mk = 5 2T = 0 (5.4.7)

225 [e%e) —s .3 -1
”U ds 2 52} d=3.
16v2 | /o s+a-

These results agree with the computations in the kinetic theory [71] and also agree with the
results in the unitarity limit using the memory function method [@3]. The results of the
thermal conductivity in the high-temperature limit are plotted in Fig.
The ratio of the shear viscosity to the thermal conductivity is known as the Prandtl
number,
=12 (5.4.8)

kmn’

3The bare vertex jZ(k) is represented by the generalized Laguerre polynomial as Bmjl(k) = —kmL‘li/ *(Bex)
because of B(€ + P)/n = (d + 2)/2 in the high-temperature limit. For this reason, the expansion starts at
n =1, not n = 0. This is consistent with the matching condition 2330) for the equilibrium distribution in
the kinetic computation.
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Figure 5.5: The thermal conductivity in the high-temperature limit as a function of Ar/a
in the form of Mmk for d = 2 (left) and d = 3 (right). These results are computed from
the solution using the expansion Eq. (40). In three dimensions, the termal conductivity is
an even function of the scattering length. For example, when Ar/a = 0 in three dimensions,
the normalized thermal conductivity in the high-temperature limit is )\?:’Fmﬁ = 15.62 in the
relaxation time approximation and )\:}m/@ = 16.01 in the exact computation.

where cp is the specific heat at constant pressure. The Prandtl number quantifies the relative
importance of the shear viscosity to the thermal conductivity. This quantity appears in sound
attenuation in a fluid [07], and was measured in ultracold atoms experiment [I24]. In the the
relaxation-time approximation, the Prandtl number Pr in the high-temperature limit is given
by Pr = (d — 1)/d because of cp = (d + 2)n/2, and is independent of the scattering length.
However, the Prandtl number computed with Eqgs. (5.4.]]) and (B-43]) depends slightly on the
scattering length, as plotted in Fig.

5.5 Summary

In this chapter, we presented exact nonperturbative results for the shear viscosity and the
thermal conductivity of the resonant Fermi gas in the high-temperature limit. We confirmed
that the singular product (2T has the inverse power of the fugacity and derived the self-
consistent equation of the vertex function in the high-temperature limit. Our results are
Egs. (310), (3I8), and (E319). The only vertex function required for the transport
coefficient in the high-temperature limit is I'ga (k). Then, the function ¢(k) is defined from
Ira(k) via Eq. (53150) and obeys the linearized Boltzmann equation (.3.I8]). The transport
coefficient is provided by (k) via Eq. (B319]). The kinetic theory entirely describes the shear
viscosity and the thermal conductivity in the high-temperature limit. Our results provide
a direct derivation of the kinetic theory in the quantum virial expansion. The linearized
Boltzmann equation is understood as the leading-order equation obtained by applying the
analytic continuations (5.3 to the self-consistent equation for the vertex function, which is
represented diagrammatically in Fig.

In Sec. B4l we computed the shear viscosity and the thermal conductivity in the high-
temperature limit by solving the derived self-consistent equation, i.e., the linearized Boltz-
mann equation. Our results for the shear viscosity and the thermal conductivity are plotted
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Figure 5.6: The rescaled Prandtl number Pr x d/(d — 1) as a function of Ar/a computed
from the results in Figs. B4 and

in Figs. 5.4 and The Prandtl number, which is the ratio of them, is plotted in Fig.
The thermal conductivity in two dimensions is a novel result of our work.



Chapter 6

Summary and prospects

Summary

In this thesis, we theoretically studied two-component Fermi gases near the two-body reso-
nance in two and three dimensions, which are referred to as the resonant Fermi gases. The
resonant Fermi gas is realized by taking advantage of the high tunability of ultracold atoms
and exhibits universal behavior independent of the details of its interparticle interaction. To
understand the universal nature of the transport properties, we investigated their transport
coefficients, i.e., the bulk viscosity, the shear viscosity, and the thermal conductivity, for an
arbitrary scattering length.

Chapter 2 was devoted to the review for studying the transport properties of the resonant
Fermi gases. We first explained that the interparticle interaction is characterized only by the
s-wave scattering length a at low energies. This property is the key of the universality of the
resonant Fermi gas. Namely, the systems with different interaction potentials behave in the
same way at low energies as long as the scattering lengths are the same. We then introduced
the contact interaction model to describe the universal behavior of the resonant Fermi gas.
Also, we derived the Kubo formula to calculate the transport coefficients and reviewed the
kinetic theory, which is one of the approaches to calculate the transport coefficients in the
high-temperature limit.

In Chapter Bl we focused on the bulk viscosity, which characterizes the dissipation caused
by an expansion and contraction of the fluid volume. It was shown that the bulk viscosity
vanishes in the unitarity limit because of no interaction scales [A9]. The vanishing bulk vis-
cosity at unitarity is intuitively understood because the entropy is not produced during an
isotropic expansion due to no intrinsic scales in the interaction. In order to extend this un-
derstanding to the case where the scattering length is finite and investigate the bulk viscosity
at finite scattering length, we constructed hydrodynamics with a spacetime-dependent scat-
tering length. Because the scattering length can be tuned by applying an external magnetic
field via the Feshbach resonance in ultracold atoms, one can realize the spacetime-dependent
scattering length by modulating the applied magnetic field over spacetime. We showed that
the spacetime-dependent scattering length not only appears explicitly as an external source
of the momentum and energy continuity equations [Eqs. (B2Z3]) and BZ4)], but also enters
the constitutive relations through the modified bulk strain rate tensor [Eq. B223])] in both
normal and superfluid phases. We also found the dependence of the bulk viscosity on the

72
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scattering length near the free limit |a| — 0 [Eqgs. (B2.28)) and (8331))] and near the unitarity
limit |a| — oo [Egs. B229]) and (B332)]. The expression of the modified bulk strain rate
tensor can be intuitively understood from the equivalence between the expansion (contrac-
tion) of the fluid volume and the contraction (expansion) of the scattering length because
of no interaction scale other than the scattering length. This intuitive understanding of the
modified bulk strain rate tensor provides an extension of the understanding of the vanishing
bulk viscosity at unitarity to the case where the scattering length is finite. We can derive the
modified bulk strain rate tensor from another method using the conformal symmetry, as dis-
cussed in Appendix [Bl This symmetry-based derivation supports the equivalence between the
expansion (contraction) of the fluid volume and the contraction (expansion) of the scattering
length.

The modified bulk strain rate tensor indicates that the dissipation proportional to the bulk
viscosity can be induced through the modulated scattering length. As one of the applications
of our hydrodynamics, we considered the time-dependent scattering length in a uniform sys-
tem and showed that the dissipation proportional to the bulk viscosity appears in the contact
density [Eq. BZI)], the energy density [Eq. (BZ2)], and the entropy density [Eq. BZ43])].
These results may be useful as a novel probe to measure the bulk viscosity. In particular, in
the unitarity limit, the bulk viscosity ¢ itself vanishes, but ¢a? is supposed to be finite, and
our results may also be useful for its measurement [Eq. (B.4.0])]. As discussed in Chapter[] the
bulk viscosity is expressed with the contact-contact response function [Eq. [@29))]. The bulk
viscosity is considered to capture the pair fluctuations and to have a strong signature at the
superfluid phase transition driven by the pair fluctuations because the contact density ¢ (t,x)
can be interpreted as the density of the fermion pair field A(t, z): C(t,x) = Af(t,2)A(t, z)
with A(t, ) = mgi, (t, )4 (t, ) [. Therefore, the measurement of the bulk viscosity may
provide valuable information about the pair fluctuations.

Chapters @l and Bl were devoted to calculating the transport coefficients in the high-
temperature regime, where n)\i} < 1 holds for the particle number density n and the thermal
de Broglie wavelength A\p = /27/(mT). In the high-temperature regime, the fugacity is
small z = e*/T < 1, so that the expansion in terms of the fugacity is valid. This expansion,
referred to as the quantum virial expansion, is used as a non-perturbative method, which is
applied to the strongly correlated regime, such as the unitarity limit [8§]. In Chapter @ we
expressed the Kubo formula for the bulk viscosity with the contact-contact response function
[Eq. @2Z3)], and derived Eqs. BZAI)-BZ3) from the linear response theory [Eqs. [@2ZI8])—
(@Z20)]. We then reviewed the calculation of the bulk viscosity via the Kubo formula in
the quantum virial expansion [R9HII]. The bulk viscosity calculated from the quantum virial
expansion does not fully agree with that from the kinetic theory [4[75]. We pointed out that
the reason for the discrepancy is the breakdown of the quasiparticle approximation, which is
the basis of the kinetic theory.

On the other hand, for the shear viscosity and the thermal conductivity, the following two
computational methods are known to provide the same results: the quantum virial expansion
with resummation by the memory function method BABIAPILOF] and the kinetic theory in
the relaxation-time approximation [GHZ3]. To understand these coincidences, we directly
derived the linearized Boltzmann equation in the quantum virial expansion in Chapter Bl
Our derivation proves the agreement between the quantum virial expansion and the kinetic
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theory in the high-temperature limit without any approximation. We confirmed the pinch
singularity [Eq. (B22.3])], which is the origin of the need for the resummation, and showed that
the self-consistent equation of the vertex function is identical to the linearized Boltzmann
equation in the high-temperature limit. Our method provides the exact transport coefficients
in the high-temperature limit from the microscopic theory. We then computed the shear
viscosity and the thermal conductivity in the high-temperature limit [Figs. B4 and B5]. We
also computed the Prandtl number, which is defined from their ratio, and found that it slightly
depends on the scattering length [Fig. B.6].

Prospects

There are several interesting prospects for our studies. For example, it is interesting to investi-
gate the flow induced by the spacetime-dependent scattering length using the hydrodynamics
constructed in Chapter Bl In Chapter Bl we considered the application to a uniform system
with a temporally modulated scattering length as a simple case, where the fluid velocity does
not arise. An interesting flow may be found from the hydrodynamic approach by setting the
scattering length to a specific configuration. From microscopic approaches, it was proposed
that several intriguing phenomena can be realized by arranging the spacetime-dependent
scattering length with specific configurations [I25HI30].

As another prospect, it is an important task to elaborate on the quantum virial expansion
of the bulk viscosity multiplied by the square of the scattering length in the unitarity limit.
The bulk viscosity obtained in the quantum virial expansion [Eq. [£2.30)] is singular in the
unitarity limit. It is necessary to resum higher-order corrections to obtain the expansion for
the bulk viscosity in the unitarity limit. Although this resummation was achieved numeri-
cally [@0], the origin of the divergence is not fully understood, and a systematic resummation
method is not established. It is essential to identify the singularity that causes the divergence
and to formulate a systematic expansion that incorporates the terms yielding the singularity.

As a further development of the quantum virial expansion, it is worthwhile to formulate the
expansion in the real-time formalism [[36] instead of the Matsubara formalism. In Chapter [
we employed the Matsubara formalism to take advantage of the established quantum virial
expansion, where the analytic continuations are unavoidable. In the real-time formalism, we
can directly find the singular product that leads to the pinch singularity without the analytic
continuations [I23]. In addition, the derivation of the kinetic theory itself, rather than the
linearized one, was achieved in the real-time formalism in the weak coupling limit [I37].
It is also useful to formulate the quantum virial expansion in the real-time formalism for
understanding more general non-equilibrium transport phenomena.

Thanks to their universality, the studies of the resonant Fermi gases can be applied to
various systems which satisfies the following condition:

R <K n—l/d’ )\T7 |a|a

where rg is the radius of the interparticle interaction potential. In ultracold atoms, the gases
meet this condition by their high tunability, whereas there are systems in which this condition
is naturally satisfied [B@]. For example, in dilute nuclear matter, the neutron-neutron s-wave
scattering length a ~ —18.5 fm is larger than the radius rg < 1 fm [[38]. Thus, the resonant
Fermi gas can be regarded as an idealization of dilute nuclear matter and may be relevant
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to the physics of neutron stars [I39]. Understanding the inside of neutron stars is one of the
important problems in nuclear physics, and the studies of the resonant Fermi gases may be
useful for this problem. We hope that the studies of the resonant Fermi gases will provide
valuable insights into strongly correlated Fermi systems and facilitate the understanding of
systems linked by the universality.



Appendix A

Symmetries of resonant Fermi gases

In this appendix, we review symmetries of the resonant Fermi gas. We introduce the Galilean
symmetry, the nonrelativistic conformal symmetry, and hidden symmetries that correspond
to their extensions. In Sec. [A], we review a symmetry group of the Schrédinger equation for
a nonrelativistic spinless free particle, which is referred to as the Schrédinger group [T401[141],
including the Galilean boost and the conformal transformation. We also confirm that the
system exhibits the conformal invariance in the unitarity limit 25H27]. In Sec.[A2] we review
hidden symmetries of the resonant Fermi gas: the nonrelativistic general coordinate invariance
and the conformal invariance [26]. These symmetries are the extensions of the Galilean and
conformal symmetries. Sec. is devoted to the summary.

The discussion in this appendix is based mainly on Refs. [[40MI4T] in Sec.[Adland Ref. 2]
in Sec.

A.1 Schrodinger group

We consider a non-relativistic system whose action is given by

SWJJ, wl] = SO Wm wl] + Sint [1/}07 wl]

(A.1.1)
= /dtdaz Lo(t, ) —i—/dtd:c Lint(t, ),

where Ly(t, ) and Liy (¢, x) are the kinetic and interaction terms of the Lagrangian density,

respectively:
o (VB (.
Colt.o) = X [id ) Bt ) - OO OO (A12)
o=T,1
Lint(t, x) = —% Z/dy Wit )it )V (jx — y))or(t, y)be (L, x). (A.1.3)

Here, 9, (t, ) is a spin-1/2 fermion field with its mass m and V(J& — y|) is an interparticle
potential @ We employ the Lagrangian formalism rather than the Hamiltonian formalism
for symmetry discussions and review the symmetries of this action. In particular, when the

!For the discussion of the symmetries, we take the interaction potential to be a general one, rather than a
simplified contact interaction.
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interaction potential V (|x —y|) is scale invariant [see Eq. (A124))], the action has a symmetry
group referred to as the Schrodinger group [[40[I4I]. The conformal symmetry is one of the
most important properties of the unitary Fermi gas.

A.1.1 U(1) phase and SU(2) spin rotation

Evidently, this action is invariant under the U(1) phase and SU(2) spin rotations,

Yolt,@) — V(@) =X Sertpr(t, ), (A.1.4)

with eX € U(1) and S, € SU(2).
The infinitesimal transformation for the U(1) phase rotation is given by

S (t, @) = YL (t, ) — Yo (t, ) = ixe(t, ). (A.1.5)
Its operator counterpart can be represented as
S (t, ) = —ix[M/m, Yo (t, )], (A.1.6)

where the generator M is found to be the mass operator,
M = /da:M(t, z),  Mtz)=m) Yt a)(t z), (A.1.7)

with the mass density operator M(t, x). Here, the operator @a(t,x) obeys the canonical
anti-commutation relations,

{¥o(t,
{YZJU (t7

( )}:5075d( - )7
(ty)} = (it @), DLt y)} = 0.

);

A18
) (A.1.8)

x), Pl
x), ot
A.1.2 Spacetime translation and spatial rotaion

As obvious spacetime symmetries, the action is invariant under the spacetime translation and
the spatial rotation,

Q;Z)U(tvm) — ?/);(75793) :¢U(t—§07w_£)a (A'l'g)
Vo(t, ) — Ol (t,x) = Y, (t, R 'x), (A.1.10)

with R € SO(d). As in the case of the U(1) rotation, the generators of the transformations
can be found to be the Hamiltonian H for the time translation, the momentum P, for the
spatial translation, and the angular momentum Mij for the spatial rotation:

H Z/ zwo t €T ] [ i@/}cr(uw)]

2m
+3 Z/da:dy Gh ()Lt y)V (12 — yl)de(E y)do (¢, @), (A.1.11)
P = /da:z-(t,m), (A.1.12)

Mij = /dw [%Z(t,w) —;Ji(t, @), (A.1.13)
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where J}-(t, x) is the momentum density operator,

Jit,w) = =i > () 9, by (t, @). (A.1.14)

In three dimensions, the dual operator L; = %eijijk corresponds to the well-known angular
momentum operator, where ¢;;;, is the antisymmetric tensor: €123 = +1.

A.1.3 Galilean transformation

Due to the form of the kinetic term Ly(¢,x), the action is invariant under the following
Galilean transformation:

Vot ) — W.(t@) =e TV MV Ty (1 V), (A.1.15)

which involves the phase factor e~ U3 VAHImV2 ip addition to the spatial translation x —

x — Vt. The Galilean invariance implies a relation between the U(1) symmetry and the

spatial translation symmetry, which equates the mass flux with the momentum density2

The infinitesimal transformation is given by
0y (t, ) =V [imz; — t0;]) Yo (L, x), (A.1.16)
and its operator counterpart is provided by
8 (t,m) = —iV;[K;(t) — tP;, 4o (t, @), (A.1.17)

where the operator K;(t) is found to be
Ki(t) = /da: L M(t, x). (A.1.18)

Although K;(t) is not commutative with the Hamiltonian and is time-dependent,

[Ki(t), H] = iP;, (A.1.19)
the generator itself does not depend on time,

d /- - - P 0 [~ A
i (Kilt) =tP)) = [Ki(t) = P, H] + i (Kit) —th) =0, (A.1.20)
where the partial derivative acts on the time dependence of the operator Kz(t) — tP; in the
Schrédinger picture. Here, f{l(t) physically stands for the center-of-mass coordinates, and
the conservation of Kz(t) — tP; means Newton’s first law of motion, i.e., the center-of-mass
remains in motion with a constant momentum in nonrelativistic systems without external
forces.

Let J,. be the Noether current of the mass conservation 9,.J, = 0 due to the U(1) symmetry and T}; be
the Noether current of the momentum conservation 9, 7,; = 0 due to the spatial translation symmetry. Then,
the Noether current derived from the Galilean symmetry is given as J,x; — tT,;, and its conservation leads to
0= au[Jul’i — tTM‘] = JZ — To»;.
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A.1.4 Scale transformation

Since the kinetic term Lo(t, ) has a first-order time derivative and a second-order spatial
derivative, it is invariant under the following scale transformation:

A

*QAt, x — ' =e 'z,

t - t'=e
d
Yo(t,x) — YLt 2') = eﬁAwJ(t,m).
Under the scale transformation, the interaction term is transformed into

Sint [V, W] — Sine[10], 1]

1
=3 Z/dtda:dy eQd’\wl(ezAt, e’\m)wl(eQ/\t, eMy)

(A.1.21)

x V(| — y)r (e*t, e*y)vs (e*'t, e’x)
= —% > / dtd@dg e Pl (F @)L (E §)V (e & — 9)v- (F 9)vo (F, @),
| (A.1.22)

with
i = e, z = ez, g =ely. (A.1.23)

Therefore, the interaction term is scale invariant if the interparticle interaction potential
satisfies
V(r) =e V(e ). (A.1.24)

This condition is trivially satisfied in a free particle system (V' = 0), an inverse squared
potential system (V o r~2), and a two-dimensional contact interaction system (V o 6%(r)).
Note that the two-dimensional contact interaction potential is classically scale invariant, but is
not quantum-mechanically because of a scale anomaly. At unitarity, the interaction potential
does not satisfy the condition ([A124]) and is not invariant under the scale transformation.
However, the scattering length is transformed as

a = d =eéea (A.1.25)

under the scale transformation because it is a length scale. From this transformation law,
the infinite scattering length remains infinite under the scale transformation. In other words,
the unitarity limit is maintained under the scale transformation. As long as the low-energy
physics where only the scattering length is relevant is concerned, the system at unitarity can
be considered to be scale invariant®

The infinitesimal transformation of Eq. (A1.2]]) is given by

0y (t, @) = A (;l + z;0; + 2t8t> Vo (t, ). (A.1.26)

3The discussion here only guarantees that the two-body subsystem of the unitary Fermi gas is scale invariant,
but does not guarantee that three- or more-body subsystems do not have a length scale. There may be three-
or many-body bound states, for example, due to the quantum effect known as the Efimov effect [[42]. In the
unitary Fermi gas, the breaking of the scale invariance has not been found and is considered to be strictly scale
invariant.
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Its operator counterpart is provided by
Sy (t, ) = —i)\[f)(t) —2td, @Zg(t,w)], (A.1.27)
where the operator ﬁ(t) is found to be

D(t) = /da: i Ji(t, x). (A.1.28)

The generator D(t) — 2tH is time-independent, but the operator D(t) is not commutative

with the Hamiltonian: A A A
[D(t), H] = 2iH. (A.1.29)
This commutation relation indicates the condition for the trace of the stress tensor:
2H = —i[D(t), H) = 8,D(t) = /dsc 20, Ji(t, ) = —/dm ;0,11 (t, ) = /dac ILi(t, ),
A (A.1.30)
where the stress tensor operator 1I;;(¢, ) is introduced via the momentum conservation equa-

tion,
O Ji(t,x) + 0;1L;(t, ) = 0. (A.1.31)

A.1.5 Conformal transformation

Scale-invariant nonrelativistic systems are also invariant under the following conformal trans-

formation [I40/[I41]:

A i et
—c —c
o (A.1.32)
ﬂ)cr(ta m) - ﬂ’é(t,w,) = (1 - Ct)d/2 eXp |:Zl — Ct2|m|2:| wcr(tg m)
The infinitesimal transformation is given by
d
Sg(t,x) = ¢ [irgaz|2 — 5t —twidi — t28t} Vo (t, ), (A.1.33)
and its operator counterpart is provided by
5y (t, ) = —ic|C(t) — tD(t) + t2H, )y (t, )], (A.1.34)
where the operator C(t) is found to be
. 1 .
C(t) = /dm2|w2M(t, x). (A.1.35)
The operator C(t) satisfies
[C(t), H] = iD(t) (A.1.36)

and the generator C (t) — tﬁ(t) + t2H is time-independent. This commutation relation is
derived as

~

2 2
[C(t),H] =i0,C(t) = i/dm |$26t/\/l(t,a:) = —i/da: a;'&-%(t,w) =4iD(t), (A.1.37)
with the mass conservation
AM(t, ) + 8;T;(t, ) = 0. (A.1.38)

Therefore, the time-independence of the generator, i.e., the conformal invariance of the sys-
tem, follows solely from the scale invariance and the mass conservation.
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A.1.6 Commutation relations

We summarize the commutation relations of the generators. The following operators form
a closed algebra referred to as the Schrodinger algebra [I40)[I41]: Hamiltonian H, mass M,

momentum F;, angular momentum M;;, Galilean boost Kj, scale transformation D, and
conformal transformation C'

(M, H} (M, B] = [M, M) = [M, K;] = [M, D] = [M, C] =0, ( )
[Myj, H] = [My5, D] = [My5, C] =0, ( )
(M, B] = (0 Pj — 01 P), (A.1.41)
[Mzg, Ky = i(60.K; — 0;.K;), ( )
(M, Myg) = i(8ix My — Sy My, — 85 My + ;1 Mi.), ( )

where all operators are in the Schrodinger picture.

) b it b ¢ P K,
H 0 —2iH —iD 0 —iP;
D 2iH 0 —2iC iP; —iK
C iD 2iC 0 iK; 0
2 0 —iP —iK; 0 —i6;; M
K; iP; iK; 0 i6;; M 0

Table A.1: Commutation relations: [A, B]

In particular, H , 15, and C form a subgroup:

[H, D)= —2iH, [H,C])=—iD, |[C,D]=2cC. (A.1.44)
With the use of . ) )
Sy = 5(fl+ C), Sy = 5(}? —C), S5= —515, (A.1.45)

one can see that these operators obey the SO(2, 1) algebra,

[S1, So] = —iS3, [S, O3] =iy, [S3, Si] = —iS,. (A.1.46)

A.2 Nonrelativistic diffeomorphism

We discussed the symmetries of the action (AT, especially, the Schrodinger group that

emerges at unitarity. The action [(A1J]) has hidden symmetries that correspond to an exten-
sion of the Schrodinger group [26].
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A.2.1 Resonant Fermi gases in curved space

To discuss the hidden symmetries, we promote the global symmetries to their local counter-
parts by coupling the action to an external U(1) gauge field A, (¢, ) and a metric g;;(t, z)
as external fields. The metric g;;(t,«) provides the infinitesimal line element in the curved

space as
ds® = g;j(t, x)dz'da’. (A.2.1)

Hereafter, we distinguish the upper and lower indices, which are raised and lowered by the
metric g;;(t, z) and its inverse ¢g"/ (¢, ). We also introduce the covariant spatial derivative V;
with respect to the metric g;;(¢, ) and the covariant temporal derivative V; as

Y M(t, @) = \/géiw)at(\/g(t,mw(t,m)), (A.2.2)

with the determinant of the metric g(t,x) = det[g;;(¢, )]. The covariant derivative V; acts
on a scalar quantity M(t, ), a covariant vector J;(t, ), and a contravariant vector J7 (¢, )
as

ViM(t,xz) = O, M(t,x),
ViJj(t, ) = 8:7(t, @) — Tt ) Tu (¢, ), (A.2.3)
VT (t,x) = i (8, @) + T (t,2) T*(t, @),

where the Christoffel symbol Ffj(t, x) is defined by
Tk (1, x) = %gkl(t, @) [00(t,) + digy (¢, @) — Dugis (1. ). (A.2.4)
The action with the external fields is given by
S, ¥ Ay, gij] = Soltbe, ¥1; A gij] + Sint
— [ dtda V5(E.) Lot @) + S,
where Lo.curved (t, @) is the kinetic term of the Lagrangian density:

g7 (t, x)
2

(A.2.5)

Locurved(t, ) = Y [iwg(t,x)ﬁiwa(t,x)— [Ditbo(t, )T Dyt )] | . (A.2.6)

o="1,}

Here, Dy = 0, — iAi(t,x) and D; = V; — iA;(t,x) are the gauge covariant derivatives and
the field ¥, (t, ) is a scalar quantity. To give the interaction term in curved space as a local
form, we use an auxiliary field 7 (¢, x):

Sint = Sint [¢07 1#27 Ue Aua gij]

T :1:2 ij X
_ / dtdz\/g(, @) [q2¢g(t,m)¢g(t,m)w(t,x)— ()7 g J(;’ )Gm(t,w)ajﬂ(t,m)].

2
27“R

(A.2.7)

In flat space g;;(t, &) = 0;; in three dimensions, this interaction term leads to the following
Yukawa interaction when the auxiliary field is integrated out with the use of its equation of

motion: )

VYukawa(r; q, TR) = _ﬁe_r/TR~ (AQS)
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In particular, the unitarity limit is achieved at mg?rg = 21.1... [B6]. Although we take the

interaction term that leads to the Yukawa potential in flat space, the detailed form of the

interaction potential is irrelevant as far as the low-energy physics is concerned.

A.2.2 Nonrelativistic general coordinate transformation

The external fields naturally promote the U(1) symmetry and the spatial translation symme-

try to their local counterparts. The action is invariant under the U(1) gauge transformation

and the general coordinate transformation:

Uolt,x) = W (t, @) = X, (1, @),
Aut,e) — AL (t,x) = Au(t, @) + Oux(t, ),

and
= .CC’i::L'/i(:B),
Vo(t, ) — YL(t,x') = s(t, ), n(t,x) — ©'(t,x') = n(t,x),
J
Altz) » Ata) = Alha),  Altz) o Ana)= 25

-Aji(t,x)
L
, , oxk oz
gij(t, ) — gi;(t, ') = Wﬁgkl(ta x).

The infinitesimal versions are given by

s (t, @) = ix(t, )Y, (t, x), 0A,(t,x) = O,x(t, x),

and
b — 2t + (),
0y (t,x) = —§k(m)8k1/1a(t,az), on(t,x) = —§k(az)8k7r(t,az),
SAi(t,x) = —€F(2) 0 Au(t, ),
5A;(t,z) = —EF(2)0 A (L, ) — Ap(t, )0k (),
895 (t, @) = =& () Ohgri(t, @) — gin(t, )0;6" () — gij (t, ) 0:6* ().

(A.2.9)

(A.2.10)

(A.2.11)

(A.2.12)

Because the action is coupled with the metric for space instead of spacetime, the gauge

parameter £!(x) is time-independent. However, one can makes it spacetime-dependent with

keeping the action invariant by modifying the transformation as

0o(t,x) = €t 2) o (t, @), Om(t,x) = —€"(t, 2)Opr(t, @),
SAi(t,x) = —€F(t,2) 0 As(t, &) — Aj(t, )€ (L, x),

dA;(t,x) = —Ek(t,m)akAj(t, x) — Ap(t, )" (t, ) — mgij(t, x)&(t, ),
8gi(t, @) = —&" (t, @) Opgu(t, @) — gin(t, ®)0;€" (t, ) — g (t, )0:E" (¢, ).

(A.2.13)

This is called the nonrelativistic general coordinate transformation [26], which is a local

version of the spatial translation including the Galilean boost. Indeed, if we set the gauge

parameters as
x(t, ) = ma;V?, gt x) = V',

(A.2.14)
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the infinitesimal transformation of the field 1, (¢, ) results in Eq. (A-II6). The nonrela-
tivistic general coordinate invariance is a hidden symmetry that is exposed by putting the
system in curved space and is a larger symmetry than the spatial translation and Galilean

symmetries.

A.2.3 Scale and conformal transformations

The conformal symmetry can also be extended. The kinetic term is invariant under
t — t' =*t(t),

d/4 d/4
Vot 3) = GL(t @) = (C(ft) voltz),  mtw) o 7t @) = (iﬁ) (t, @),
At z) - At @) = (;;) At z), Altz) — A z) = At ),

de\ !
9ij(t,x) — gi;(t' ) = (dt,> 9ij(t, ). (A.2.15)

The infinitesimal version is given by

t = t'=t+a(t),
S0t @) = ~a(t)o(t,2) ~ (a0 (t2),  Sr(t,@) = —alt)n(t @) — Al @),
At @) = —a() At @) — () At @), SA(L @) = —al(t)Ai(t, @),
0gij(t, @) = —a(t)gi;(t, @) + &(t)gi; (L, ). (A.2.16)

This transformation is an extension of the scale and conformal transformations. In fact, one
can reproduce the scale transformation [(A1.26) by taking the gauge parameters as

a(t) = =2x,  &(t,x) = -\’ (A.2.17)
and the conformal transformation (AT33]) by taking them as
Oé(t) = Ct2> gl(ta m) = Ctxi7 X(t, :B) = %C|$|2. (A218)

The interaction term S, is not invariant under the conformal transformation (A2.16]).
However, as already mentioned, the system is considered to be conformal invariant at unitarity
as long as the low-energy physics is concerned.

A.3 Summary

In this appendix, we reviewed the symmetries of the resonant Fermi gas: the U(1) symme-
try, the spacetime translation symmetry, the spatial rotation symmetry, and the Galilean
symmetry. We also reviewed the scale and conformal symmetries that emerge in the uni-
tary Fermi gas. In Sec. [Ad] we introduced the Schrédinger group, which consists of the
U(1) phase rotation, the spacetime translation, the spatial rotation, the Galilean boost, the
scale transformation, and the conformal transformation. In particular, we confirmed that
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the trace of the stress tensor is related to the Hamiltonian in the conformal invariant sys-
tem [Eq. (A.130)]. In the presence of a finite scattering length, Eq. (A.130) is modified by
adding a term describing the conformal symmetry breaking due to the scattering length [see
Eq. BIIH8)]. We also confirmed that the system at unitarity can be considered to be con-
formal invariant as long as the low-energy physics is concerned. In Sec.[A2] we reviewed the
nonrelativistic general coordinate and conformal invariances, which are exposed by putting
the system in curved space [20]. Because the nonrelativistic general coordinate invariance
can impose stronger constraints on systems than the Galilean invariance, it has been widely
used not only for the resonant Fermi gases, but also for other nonrelativistic systems such
as superfluids [[43HI47] and quantum Hall systems [[48HI53]. The conformal invariance in
curved space was used to prove the vanishing bulk viscosity of the unitary Fermi gas [9].
Furthermore, as we will discuss in Appendix [B] the conformal invariance provides a guiding
principle in constructing the hydrodynamic equations with a spacetime-dependent scattering
length, which are derived in Chapter [3



Appendix B

Hydrodynamics with conformal
invariance

In this chapter, we discuss hydrodynamics from the perspective of the conformal invariance
and derive the hydrodynamic equations with a spacetime-dependent scattering length dis-
cussed in Chapter 8l In Sec.[B.l we consider a resonant Fermi gas with a finite and non-zero
scattering length and give its Hamiltonian coupled with an external U(1) gauge field and
a metric in order to take advantage of the nonrelativistic general coordinate and conformal
invariances introduced in Appendix [Al In the presence of the finite and non-zero scattering
length, the conformal invariance of the system is explicitly broken. However, this invariance
can be recovered formally by regarding the scattering length as a fictitious field properly trans-
formed under the transformations. We derive the continuity equations and directly verify that
they are covariant under the conformal transformation with a fictitious transformation for the
scattering length. In Sec. [B.2] we construct hydrodynamic equations for normal fluids with
the scattering length as an external field. Our guiding principle in the construction is that
the continuity equations maintain the covariance under the nonrelativistic general coordinate
transformation and the recovered conformal transformation. We then show that the scatter-
ing length uniquely enters the constitutive relations, and arrive at the constitutive relations
derived in Chapter Bl In Sec. B3] we summarize this appendix. For the sake of simplicity,
we discuss only the case of normal fluids.

B.1 Quantum field theory

B.1.1 Commutation relation and Hamiltonian

Let us consider nonrelativistic spin-1/2 fermions in d spatial dimension. The annihilation
operator T, (t,x) obeys the equal-time anti-commutation relations,

{\ija(t7$)’ \i/l(t, y)} = 5075d(m - y)»

. . AT - (B.1.1)
{\110<t7 .’B), \IIT(tv y)} = {\I]a@? .’B), \IIT(t7 y)} =0,
and its time evolution is governed by the Heisenberg equation of motion,
iU, (t, @) = [U, (L, x), H(t)], (B.1.2)

86
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with the Hamiltonian H (t). As discussed in Appendix [A]l we can expose hidden symmetries
by coupling the system to an external U(1) gauge field A, (¢, ) and a metric g;;(t, ). The
Hamiltonian with A,(¢,x) and g¢;;(¢, ) is provided by

0= % [aovaeo) |© LD 0l Db (o) - At )it )it o)

2m
=1,

+) / da:\/g(t,a:)A(tQ’w)zﬂl(t,m)lﬁi(t, ) (t, ) e (t, ), (B.1.3)

where D; = V; — iA;(t,x) is the gauge covariant derivative and A(¢,x) is a spacetime-
dependent bare coupling.'j:I Here, we introduce the reduced annihilation operator zﬂg(t,w)
as

Vo (t,x) = g(t, ) YV, (t, ). (B.1.4)

It is convenient to represent physical observables such as the Hamiltonian in terms of @@a(t, x)
because 1, (t, x) is transformed as a scalar under the general coordinate transformation,

z = o =a(2),  Doltw) » Wta) = delt ). (B.L5)

In contrast, \ifg(t, @) is not transformed as a scalar in order to preserve the anti-commutation
relation (B.1I)). The coupling A(¢, ) is related to the scattering length a(t, ) in the dimen-

sional regularization as

r ma(t,w)Q_d
ANt,x)  (d—2)Q1’ (B.1.6)

with Qq_; = (4m)¥2/[21(2 — d/2)] = 2w, 4n for d = 2,3. Here, the scattering length is
assumed to have the spacetime dependence to be regarded as a fictitious field.

B.1.2 Symmetries

Owing to the presence of the U(1) gauge field and the metric, the Heisenberg equation (BI.2l)
is covariant under the U(1) gauge transformation and the nonrelativistic general coordinate
transformation? Their infinitesimal transformations are provided by

5)(1[}0(757 CC) = iX(tv a’)"ﬂa(tv :13),

(B.1.7)
OxAp(t, ) = ux(t, ),

for the U(1) gauge transformation and
5§1Z}U (ta 33) = _gk (ta m)akr@;(f (ta ZB),
6§At(t7 ','U) = _gk (ta x)akAt(t7 x) - Ak(t7 x)ék(t> %),
0cAi(t, x) = —fk(t, )0 Ai(t, ) — Ax(t, :c)@ifk(t, x) — mgik(t,m)ék(t, x), (B.1.8)
5£gij (t, :B> = _gk (t, w)akglj (tv ‘T') - gik(tv w>8j€k(t7 :L‘) — 9kj <t7 .’B)asz(t, w)?
dea(t,x) = fk(t, x)oga(t, x),

In this appendix, we denote the coupling by A(t, ) to avoid confusing it with the metric determinant
g(t7 w) = det[gij (t7 w)]

2When we refer to an equation A = B as being covariant under a transformation, we mean that §A = §B
under the transformation throughout this appendix.
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for the nonrelativistic general coordinate transformation. Here, the scattering length is sup-
posed to be transformed as a scalar.

The conformal invariance is explicitly broken by the presence of the scattering length. In
fact, the Heisenberg equation (BI2]) is not covariant under the conformal transformation of
Eq. (A22.16). However, it is possible to make the Heisenberg equation covariant by artificially
imposing the following transformation law on the scattering length:

1
daa(t,x) = —a(t)a(t,x) + id(t)a(t, x). (B.1.9)
Accordingly, the Heisenberg equation becomes covariant under the following conformal trans-
formation:
60(72)0(75733) = _O‘(t)qz)a(t’x) — =0 (t)?!;a(t, m),
6C¥At(t> w) = _a(t)At(t7 33) - d(t)At(ta w)>
. d .
5agij (tv x) - _a(t)gij (t7 x) + Za(t)gij (ta 33),
1
daa(t,x) = —a(t)a(t,x) + §a(t)a(t, x)

B.1.3 Continuity equations

We can write the continuity equations for mass, momentum, and energy. The mass, momen-
tum, and energy densities are defined by

M(t,z)=m Y Pit, @) (t, ), (B.1.11)
Git3) = —iS dh 02 D (), B112
Ailt.) = 30 D ) (1, Dy ) (B113)

+ 30 22D )b 1) (1 )i (), (B.1.14)

where the energy density refers to that without the trapping potential term. The continuity
equations can be straightforwardly derived from the Heisenberg equation and are provided
by

VMt x) + VT (t,x) =0, (B.1.15)
7 77 M(tv ) jj(tam) aia(ta $) é(t,$)
: T _n 3 _
ViJi(t, x) + V1L (t,z) = Fiu(t, x) m + Fij(t, x) m Qura(t, )1 m
(B.1.16)
A A o ji(t,iﬂ) _ gij(tvm) 7 ata(tvm) C(tv "'U)
ViH(t,x) + V; Q' (t,x) = Fyu(t, x) - 5 1Y (t, x) + Goatz) T m
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where V,O(t,x) = 615[\/M@(t,m)]/\/g(t,m) and the gauge field strength F,,(t,x) =
0uA,(t, ) — 0,Au(t,x) are introduced. The right-hand sides of the momentum and energy
continuity equations represent the external forces and the external powers supplied by the
external fields. Here, the stress tensor f[ij (t,x), the energy current density Q;(t,«), and the
contact density C(t, ) are defined by

ﬂij(ta :12) _ Z Di"[};(t? w)DjTZJU(ta .’13) + Dﬂ;:;(t? w)DidA}a(ta m)

2m

g

T gis(t, m)A(’;’“’) SOt )Gt ), (¢, @) (¢, @)

o,p
kl
—gz'j(t,ﬂﬁ)M (Zw* (t, )0 (t, w)) ) (B.1.18)

ta) =3 Db (t, )[g7* (t, @) D Dby (t, )] + [g3* (t, @) D; Dbl (t, )| Ditby (t, )

49m?

NEZ) S 58 0,0) (651, 2) DL (0. 2) ) o 1,0

+ [0/ g(t, @) Ajjl (D dbt.2)is(t.2)), (B.1.19)
5 m2\(t, z)? ot ot . .
Clt, @) = —— D dh @)l @)t @) (¢, ). (B.1.20)
a,p

The contact obtained by integrating the contact density ¢ (t,x) over the whole space is the
important quantity in the universal relations of the resonant Fermi gas 29]. In addition to
the continuity equations, the trace of the stress tensor satisfies
C(t, x)

mQq_1a(t, )2 4m? g
which follows from the definitions of Eqs. (B.L11l), (B.1.13), (B.1.18), and (B.1.20)). This iden-
tity (B.I.21]) corresponds to the traceless condition for the conformal invariance of Eq. (B110]).

The continuity equations are obviously U(1) gauge invariant, and also covariant under

gi5(t, @)Y (t, @) = 2H(t, ) + (), V; M(t,z), (B.1.21)

the general coordinate and conformal transformations because they inherit the covariance
of the Heisenberg equation. We can verify these covariances directly with the help of the
transformation laws of the local operators, which are derived from Egs. (B-LY) and (BII0Q)
as

SeM(t, ) = €8 (t, )0 M(t, ), (B.1.22a)
SeJi(t ) = —EX(t, ) Ti(t, ) — Ti(t, 2) D" (t, ) + M(t, ) gix (t, x)E¥ (¢, ), (B.1.22b)
SeH(t, ) = —€7(t, )0 H(t, ) + Ti(t, x)E8 (¢, x), (B.1.22¢)
eIl (t, @) = —€F (¢, 2) 0105 (t, ) — T (t, )D;" (¢, ) — Ty (t, ) 0;E8 (¢, )
+ Ji(t, ) gin(t, ®)ER (8, ) + Ti(t, ) g (t, 2)EX(t, ), (B.1.22d)
0¢Qi(t, @) = =" (t, )0, Qi (t, ) — Qu(t, @)D" (¢, )
+ H(t, @) gar(t, ®)EF (¢, ) + T (¢, 2)EX(t, ), (B.1.22¢)
5eC(t, ) = € (t, 2)0C(t, z), (B.1.22f)
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and
SaM(t,x) = —a(t)oM(t, x) — gd(t)M(t,:n), (B.1.23a)
badi(t, ) = —a(t)0rTi(t, ) — ga(t)z-(t, x), (B.1.23b)

St (t,x) = —a(t)H(t, x) — #a(tm(t,m), (B.1.23c)

5Tl () = —a ()T (1, @) — gd(t)ﬂij(t, z), (B.1.23d)
5204t ) = —a()20i(t @) — T 2a(t) Oyt ) + gd(t) ai/?n(; z) (B.1.23¢)
5.C(t ) = —a(t)3C(t, ) — 2a(t)C (L, x). (B.1.23f)

When one verifies the covariance of the energy conservation under the conformal transforma-
tion, the operator identity (B.I1.21)) is needed.

B.2 Hydrodynamics for normal fluids

To move on to hydrodynamics, we denote the expectation values for the operators as
Ot,z) = Tr [ﬁ@(t, m)} : (B.2.1)

where the density matrix operator p is arbitrary but independent of time because we work in
the Heisenberg picture. From Eqs. (BI1IH), (BI1I6), and (BIIM), we have the continuity

equations of the expectation values as
VtM<t, .’B) + Viji(t, :IJ) =0, (B.2.2>

Mgnt’w) + Fij(tvm)j]:: g - Qd—aliZ((: i))dl C(:@m)’
(B.2.3)
Owa(t,z) C(t,x)
Qq_1a(t,z)=1 m
(B.2.4)

Vi Ji(t, ) + VI (t, ) = Fyl(t, x)

ViH(t,x) + V;Q'(t,x) = Fi(t, ) 1% (¢, ) +

2

These are the continuity equations in the hydrodynamics. Also, the operator identity (B1.21)

leads to
C(t,x)

de—la(ta m)d_

Hydrodynamics requires constitutive relations that express the physical quantities in terms of

g (t, )1 (t, ) = 2H(t, ) + 5+ 0(8%). (B.2.5)

fluid variables in order for the continuity equations to form a set of closed equations. Here, the
fluid variables are the local thermodynamic quantities and the fluid velocity v;(t, ). We con-
struct the constitutive relations so that each expectation value obeys the same transformation

laws as in Egs. (B.1.22) and (B.123). If a quantity O(¢, ) is transformed as

5:0(t,x) = —€F(t, )0, O(t, x), (B.2.6)
0.0(t,x) = —a(t)0,0(t,x) — Apa(t)O(t, x) (B.2.7)

under the general coordinate and conformal transformations, we refer to the quantity O(t, x)
as a scalar field with conformal dimension Ay, for later convenience.
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B.2.1 Conserved charge densities

The mass density M(t, x) itself is a local thermodynamic quantity and obeys the same trans-
formation laws as in Eqs (B.1.22a) and (B.1.23al). In other words, the mass density is a scalar
field with conformal dimension d/2.

We define the fluid velocity v;(t, ) via the momentum density as

Ji(t,x) = M(t,x)v;(t, x), (B.2.8)

which is the constitutive equation for the momentum density. From the transformation laws
of Ji(t, ), the velocity v;(t, ) is transformed as

devi(t, @) = —{k(t, x)O0pv;(t, ) — vi(t, :c)(?iffk(t,a:) + gk (t, :c)ék(t, x), (B.2.9)
davi(t, @) = —a(t)Ov;(t, x). (B.2.10)

The transformation law of Eq. (B:22.9) consists of terms coming from the vector nature of
vi(t,x) and a term that leads to a translation v — v+ V under the Galilean boost &¥(t, ) =
vk,

In order for the energy density #H(¢,x) to be consistent with the transformation laws of

Egs. (BI122d) and (B.I123d), it is expressed as

M(t, x)

H(t,x) = E(t,x) + 5

g7 (t, z)vi(t, ©)vi(t, x), (B.2.11)

where E(t, x) is a scalar field with conformal dimension 1+d/2 and is identified as the internal
energy density.

B.2.2 Stress tensor

The stress tensor is expressed as
I (t, ®) = P(t, x)gi; (t, &) + M(t, x)vi(t, 2)v;(t, ) — o0 (t, ), (B.2.12)

where P(t, x) is the pressure and is a scalar field with conformal dimension 1+ d/2. In order
to satisfy the same transformation laws as in Egs. (B.1.22d) and (B.1.23d), the viscous term
agy)(t, x) must be transformed as

deoid) (t, @) = —€M(t, 2) 0o (tx) — ol () 0;€8 (1 ) — o) (1, )0k (t ), (B.2.13)

a a d . a
000, (t,) = —a(t)do (t,x) — §a<t)a§j>(t, ). (B.2.14)

In the unitarity limit, the viscous term satisfying Eq. (B.2.I3)) was constructed in Ref. 9],
which reads
ol (t,x) = n(t, @) Vij (1, ) + (1, @)gi; (t, )V (¢, 2) + O(8?), (B.2.15)

with the shear and bulk strain rate tensors in curved space given by
2
V(t,x) = Vo' (t,x) + 0, In/g(t, x). (B.2.17)



92 APPENDIX B. HYDRODYNAMICS WITH CONFORMAL INVARIANCE

Under the conformal transformation, each strain rate tensor is transformed as
50“/;j(ta w) = _O‘(t)at‘/ij(t:m)) (B218)

SaV(t, ) = —a(t)dV(t,x) — a(t)V(t, z) + gd(t). (B.2.19)

In order for Eq. (B214) to be satisfied, the shear viscosity 7(¢, ) must be a scalar field
with conformal dimension d/2 and the bulk viscosity ((¢, ) must vanish. Therefore, the bulk
viscosity (¢, ) vanishes in the unitarity limit.

When there is a finite and non-zero scattering length, it can enter the hydrodynamic
equations as an external field, and it is possible to circumvent the vanishing bulk viscosity.
We consider the modified bulk strain rate tensor as

V@O (t,z)=V(t,x)-V(tx), (B.2.20)

where the modification term V(t, @) is constructed by the scattering length. When the scat-
tering length is set to be a constant, f/(t, ) must vanish to recover the usual hydrodynamics.
This means that the scattering length in f/(t, x) must be accompanied by at least one deriva-
tive. In order for Eqs. (B213) and (B:22.14) to be satisfied and for the bulk viscosity to exist
as a scalar field with conformal dimension d/2, the modified bulk strain rate tensor must obey

the transformation laws as

5§V(a)(tv ':U) = _gk(ta x)akv(a)(tﬁx)7 (B221)
5av(a) (tv "'U) = _a(t)atv(a) (t7 w) - d(t)v(a)(ta w) (B222)

Eq. (B219) has a term proportional to ¢(t), and differs from Eq. (B2222) because of this
term. In order to eliminate this difference, the vanishing bulk viscosity is derived in the
unitarity limit. By comparing the transformation laws of V(¢,z) with Egs. (B22])) and
([BZ22), we can find the transformation laws that the modification term V (¢, &) must satisfy
as

eV (t @) = =€ (t, )RV (¢, ), (B.2.23)

. - ~ d
0V (1, @) = —a()OV (t,) — &)V (1, @) + Sa(1). (B.2.24)
From these transformation laws, we can construct f/(t, x) obeying these transformation laws

V(t,x) = d[0; Ina(t,x) + v*(t, )0 Ina(t, z)], (B.2.25)

and thus we obtain the modified bulk strain tensor as
V@Ot x) = V(t,x) — dd; Ina(t,x) + v*(t, )0 Ina(t, )], (B.2.26)

The modification term V(t, @) is the only term consisting of the scattering length up to first
order in derivatives that obeys Egs. (B:2223) and (B224). This modified bulk strain rate
tensor V(¥ (¢, x) is a scalar field with conformal dimension 1. Therefore, when the bulk
viscosity is a scalar field with conformal dimension d/2, the bulk viscous term with V(¢ z)
satisfies Eq. (B214). In flat space g¢;j(t,x) — 0;;, the modified bulk strain rate tensor
V{@(t,x) is reduced to Bq. (ZZH).
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B.2.3 Contact density

By substituting the constitutive relations for the energy density and the stress tensor into

Eq. (B23), we obtain

C(t,x)
mQg_qa(t, )

— =dP(t,x) — 2&(t,x) — d(t,2)V V) (t, ) + O(0?). (B.2.27)

Here, we introduce the contact density in local thermal equilibrium as

Ceq(t, )
= -2 B.2.2
) = P(t,) — 26(0,2). (B.2.29

which is understood as the local extension of one of the universal relations known as the
pressure relation 28[29]. With the use of Ceq(t, ), the constitutive relation for the contact
density is written as

C(t, @) = Coq(t, ®) — dmQy_1a(t, )2 (t, )V (t, ) + O(d?). (B.2.29)

B.2.4 Energy current density

The energy current density is expressed as

Q,(t, ) = [H(t, )+ P(t, @) |vi(t, ) — ol (ta)o! (t, @) + ¢/ (t, ) + V (2, m)w,
(B.2.30)
with
ol (t,) = n(t, @) Vij(t, ) + (1, 2)gi; (1, 2) VD (1, 2) + O(6?), (B.2.31)
¢\ (t,x) = —k(t,2)0T(t, ) + O(5°). (B.2.32)

Here, the temperature T'(¢, ) and the thermal conductivity (¢, ) are both scalar fields with
conformal dimensions 1 and d/2, respectively. Although a term proportional to d;a(t,x) can
be added to Q;(t,x) so as to keep the transformation laws in Eqs. (B.122€) and (B.1.23€)
intact, that term is forbidden by the second law of thermodynamics, which we discuss below
[Eq. (B236)]. The last term in Eq. (B2230) is necessary to generate the last term of the
transformation law in Eq. (B.1.23é€), but we neglect it below because it is the second order in
derivatives.

B.2.5 Entropy production equation

The entropy density is introduced as
E(t,x)+P(t,x) =T(t,x)S(t, ) + pu(t,x) M(t, x), (B.2.33)

where u(t,x) is the local mass chemical potential. In the same way as the derivation of
Eq. B2ZI1), the total differential of S(¢, x) is given by

Ceq(t, )

T(t,2)dS(t, @) = dE(t, @) — ult, @)dM(t @) — —o o gy

da(t, x). (B.2.34)
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Then, the thermodynamic relations combined with the continuity equations and the consti-
tutive relations lead to the entropy production equation,

ViS(t,x) + V; |S(t, x)v'(t, ) + " = i ), (B.2.35)

with the dissipation function provided by

O;T(t,)0'T(t,x) n n(t, )

O(t,x) = k(t, ) () 5

Vij(t, )V (t,x) + C(t, ) [V D (2, 2))? + 0(8%).

(B.2.36)
Here the production rate of the entropy density is found to be non-negative when x(t, ) > 0,
n(t,x) > 0, and ((t,x) > 0, so that the second law of thermodynamics is satisfied.

B.3 Summary

In this appendix, we constructed the covariant hydrodynamics with the spacetime-dependent
scattering length under the nonrelativistic general coordinate and conformal transformations.
The constitutive relations [Eqs. (B2.8), (B211)), (B212)), (B2:30), and ([B:2.29)] are consis-
tent with the transformation laws of their operator counterparts under the general coordinate
and conformal transformations. Up to first order in derivatives, the scattering length uniquely
enters only the stress tensor and the contact density through the modified bulk strain rate
tensor V() (t,x) [Eq. (B228)]. In flat space g;;(t,x) = d;;, these constitutive relations are
reduced to those derived in Chapter [

What was important in the derivation of V(®)(¢,z) in this appendix is that V(t,) of
Eq. (B2ZID) and V (¢, ) of Eq. (B:2.25) have the same transformation laws under the nonrel-
ativistic general coordinate and conformal transformations. This understanding for V(@) (¢, x)
based on the conformal symmetry supports the intuitive understanding discussed in Chap-

ter [3



Appendix C

Derivation of Kubo formulas for
shear viscosity and thermal
conductivity

In Chapter [l we employed Eq. (B11) as the Kubo formula for the shear viscosity:

0= lim Im[Rszsz (w + i0+, 0)]

w—0 w

On the other hand, the Kubo formula for the shear viscosity 7 is given by Eq. 2252):

n = lim Re[n(w +i07)], (C.2)

w—0

where n(w) is the complex shear viscosity defined by Eq. (Z2Z50):

R, (w,0) — [ d7 [ da (6114, (—iT, 0)81L,, (0, 0))

1w

n(w) (C.3)

In this appendix, we discuss the relation between Eqs. (C) and (C2). Here, I, (t,z) =
eith f[xy(a:)e_“H is the xy-component of the stress tensor operator in the Heisenberg picture.
The response function R ap(w, k) is defined by Eq. (2271):

Roas(w, k) = i /0 Tt / da =% ([ A(t, ), B(0,0)]). (C.4)

The real part of the complex shear viscosity for w — w + i07 is expressed as

Im[anszy (w + i0+, 0)]
w

3 R .
— 76 (w) [Re[anszy(iOJr,O)] - /0 dr / da (011, (—iT, 0)611,,(0,0))| .
(C.5)

Re[n(w +i0")] =

Thus, Egs. (CJ) and (C2)) are equal if the second term on the right-hand side cancels. Here,

95
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the response function R, i1,, (407, 0) is written as

Rit,, 1., (i07,0) / dt / dz e~ ([, (¢, ), 11,,(0,0)])

- 11\1}(1)1/0 dt/dm e H([8TLy (t, ®), 811, (0,0)])

o0 B R .

=— 1{1(1) dt/dw/ dr e (04611, (t — iT, )11, (0, 0)), (C.6)
N0 Jo 0

where 6f[zy (t,x) = f[xy(t, x)— (f[xy(t, x)) and Eq. (2248]) are used. The temporal integration

by parts leads to

B . .
Rit,, I, (107,0) = / dr / da (011, (—iT, )11, (0, 0))

—hme/ dt/dx/ dr e~ (5TL,, (t — im, 2)0T1,,(0,0)).  (C.7)

When the second term on the right-hand side vanishes, the second term of Eq. (CH) is
cancelled out. Because of the limit € N\, 0, the second term of Eq. (C7) vanishes if the
following integral is finite:

= /0 “at / dz /O ar (8104, (t — i7, T)811,,(0, 0)). (C.8)

Therefore, if the correlation (611, (t — i, )01, (0, 0)) approaches zero faster than ¢~ in the
limit ¢ — oo, this integral I is finite and Egs. (CJ) and (C2) are equal.

This correlation (5T, (t — i, )11, (0,0)) is supposed to become zero in t — 0o, unless
there is zero-energy mode, for example, by free particles or sound waves. We assumed that
this correlation goes to zero of t — oo, and employed Eq. (C)) as the Kubo formula for the
shear viscosity in Chapter Bl In addition, for the thermal conductivity, when we assume that
the correlation between the heat current density operators (874 (t — i, 2)8.72(0,0)) goes to
zero of t — oo, we can show that Eq. (2257 is equal to Eq. (I9]) in the same way.



Appendix D

Spectral representation of
three-point function

In this appendix, we derive the spectral representation of the following three-point function
to understand the analyticity of the vertex function:

K (71,72, 73) = (T4 (1)1 (72) O(73)), (D.1)

where the spin degrees of freedom and the spatial coordinates are omitted, for simplicity.
Here, let O(713) be a quadratic operator. By comparing the definition of the vertex func-
tion (B2ZI2) and (BZI3) with Eq. (D)), one can map the vertex function to the three-point
function (71, 72,73). Our derivation reviewed in this appendix partly follows that in [I20]
(see appendix therein).

We compute the Fourier transformation of (71, 72, 73), which is defined by

K(iwm,iwn,iw ) :,33/2/ dTl/ d’i‘g/ d7'3 ! Wm T Wy T2 T3,C(T1,7‘2,7‘3). (D-2)
0 0 0

The three-point function is separated into six cases according to the order of the imaginary
time. For the imaginary-time periodicity, it is convenient to treat the three cases mapped
to each other by cyclic permutations as one set. Accordingly, we separate the three-point
function into the following two parts:

K(11,712,73) = K1-2.3(71, 72, 73) + K21-3(71, T2, 73), (D.3)

with
Ki9.3(11,72,m3) = K(71, T2, T3) [@(Tl, T2, T3) + O(12, 73, 71) + @(7’3,7’1,7'2)}, (D.4)
Ko13(71,72,73) = K(11, T2, T3) [@(72,7'1,7'3) + O(71,73,T2) + @(73,7'2,7'1)}, (D.5)

where the step function of three variables is introduced as O (71, 72, 73) = O(11 — 72)0 (172 — 73).
Let us find the spectral representation of KCi.2.3(71,72,73). By using the complete basis
la), K1-2.3(71, 72, 73) is expressed as

!/

IC / / /
Kio3(m1,72,73) = ) “7’17’66’(73’“)%’(”’TQ)EF(TQ’T?’)EC
a,b,c (DG)

!

X |:6_5E‘,‘@(7'1,7'2,7’3) — e PP0(ry, 13, 71) + S_BEé@(Tg,Tl, 7'2)},
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with K, = (a|yt|b) (0]1h|c)(c|Ola). Here, the energy E! is defined by (H — uN) |a) = E!, |a).

a,b,c
Then, the Fourier components are calculated as

K
- F . F . B a,b,c
Ki-2-3(iwy,, iw,, ,iw”) = g OwE | wE 4+wB

1/2
a,b,c 'B / 2
y [ e~ BE,
(El. — E!, —iwB)(E} — E}, —iwl —iwbB) (D.7)
e PE
(B, — Ej + iwk) (B!, — E} — iwB + iwk)
e—BE.

B~ B =) (B, — Bt i, —iwh) )’

Because of the Kronecker delta d,r ,ri, 5, the three-point function can be denoted as a

two-variable function of iw! + iw? and iw?!":
K1 3(in +iw? iwl) = Kiosg(iw) +iw?,iw!, iw?) (D.8)
Z a b c |: —PE:
abcﬁl/QZ — Bl —iwP)(E} — E}, —iwl —iwP)
e_ﬁEll, e_ﬂE(/:
T (B, B+ il i) (BB tiad) (B, B, wl)(E, Bt i)’
(D.9)
Thus, Ki.0.3(w + iw?,w) for w € C has the singularities on Im[w] = 0 and Im[w] = —w?.
The spectral representation of Ko 1.3(71, 72, 73) can be obtained in the same way as
Ko1- 3(in + iwPiwl) = Ko s(iw! +iw?,iwl iw?) (D.10)
Z a b c |: B_BE;
& B2z — El, —iwl)(E] — E, — iw} —iwB)
T B - B+ iwl 1 wP) (B — B, +iwP) | (B - B —iwP) (B, — Bt wl)]’
(D.11)
Thus, Ka.1.3(w + iw®,w) for w € C has the singularities on Im[w] = 0 and Im[w] = —w?.

We define the Fourier component of K(71, 72, 73) reduced to a two-variable function as

K(iwE + iw? iwl) = Kliw! +iw?,iwl iw?)
—’Clgg(lw —i—Z(,UB )+]C213(Zw +ZOJ wF). (D.12)
Then, K(w + iw?, w) for w € C has the singularities on Im[w] = 0 and Im[w] = —w®”. The

three-point function K(iw! +iw?, iwk’) corresponds to G(iwt +iw?)G (1w (iwr +iw?, iwk)
in Chapter Bl Therefore, the singularities of the vertex function I'(w + iw?B, w) does not exist

other than on Im[w] = 0 and Im[w] = —w?.
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