T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	 建築物荷重指針・同解説を用いた風応答時における超高層制振建物の 履歴型ダンパーの塑性化判定
Title(English)	PLASTICITY JUDGEMENT OF HYSTERETIC DAMPERS OF A HIGH- RISE PASSIVELY CONTROLLED BUILDING UNDER WIND RESPONSE USING THE RECOMMENDATIONS FOR LOADS ON BUILDINGS
 著者(和文)	│ │ 平塚紘基, 佐藤大樹, 田中英之 │
Authors(English)	Koki Hiratsuka, Daiki Sato, Hideyuki Tanaka
出典(和文)	構造工学論文集, Vol. 67B, ,pp. 655-664
Citation(English)	Journal of Structural Engineering, Vol. 67B, , pp. 655-664
発行日 / Pub. date	2021, 3

建築物荷重指針・同解説を用いた風応答時における

超高層制振建物の履歴型ダンパーの塑性化判定

PLASTICITY JUDGEMENT OF HYSTERETIC DAMPERS OF A HIGH-RISE PASSIVELY CONTROLLED BUILDING UNDER WIND RESPONSE USING THE RECOMMENDATIONS FOR LOADS ON BUILDINGS

平塚紘基*,佐藤大樹**,田中英之*** Koki HIRATSUKA Daiki SATO and Hideyuki TANAKA

The current wind-resistant design of structures is performed under the assumption that the main structure is kept to an elastic state and mainly relies on design guidelines for load recommendations on buildings. However, as the building's height increases, it becomes subjected to stronger external wind forces. In this circumstance, if a hysteretic damper is installed in a high-rise building, there is a possibility that the damper may behave plastically due to larger external wind forces. Therefore, understanding the plasticity behavior of hysteretic dampers installed in high-rise buildings under the load recommendations on buildings will pave the way to easily evaluate the elasto-plastic behavior of these passively controlled buildings. As such, this paper shows the judgement of the hysteretic damper plasticity against external wind force based on the elastic shear force of passively controlled high-rise building calculated using the recommendation for loads on buildings, and investigates the accuracy and problems in plasticity judgement.

> Keywords: High-rise passively controlled building, Hysteretic damper, Time history analysis, Elasto-plastic wind-induced response 超高層制振建物,履歴型ダンパー,時刻歴解析,弾塑性風応答

1. はじめに

地震時における超高層建物の構造体の損傷制御や応答制御を目的 として、建物にダンパーを付加する制振構造が多く採用されている 1)。履歴減衰型のダンパーの場合、制振効果を高めるためには、でき るだけ小さな荷重レベルから早期にダンパーを塑性化させることで, エネルギー吸収を積極的に行うことが有効である。一方で、超高層 建物を対象とした場合、風外力が建物の高層化に伴い構造設計にお いて支配的な荷重となる 2)恐れがあるものの、現状の耐風設計では 想定される最大級の強風に対して,主要な構造体を弾性応答で留め るように設計が行われている。これは、風外力の継続時間が数時間 に及ぶため、部材などに累積疲労損傷の恐れがあること、 塑性化に より建築物の固有周期が長くなると、固有周期に対応する風外力の パワースペクトル密度が増し、風荷重が増大する恐れがあること、 風の作用する建築物の弾塑性挙動についてほとんど情報がないとい うことなどの理由によるものである 3。しかし、地震に対する制振 効果を得るために、超高層建物に低い荷重レベルで塑性化させる履 歴型ダンパー(以下,ダンパー)を採用すると,風外力に対しても 塑性化することが考えられる。近年このような問題を踏まえて日本 免震構造協会によって免震建築物における免震層の風外力に対する

*東京工業大学 環境・社会理工学院 大学院生

東京工業大学 未来産業研究所 准教授・博士 (工学) *株式会社竹中工務店 技術研究所 主任研究員 応答状態のランク分け ⁴が提案され,風外力に対する塑性化が許容 され始めたものの,制振構造には適用できないのが現状である。

風応答時における制振構造の塑性化を把握するためには、一般的 に時刻歴応答解析を用いる必要がある。しかし、風外力を用いて超 高層建物を対象とした時刻歴応答解析を行うと、地震に比べ圧倒的 に継続時間が長いこと³⁾,応答値をアンサンブル平均する必要があ ること 5)~7)から膨大な時間と計算量が必要となり、設計者の大きな 負担となる。一方で、風応答時における弾性挙動は、建築物荷重指 針・同解説⁸⁾(以下,荷重指針)を用いて簡易的に評価することが でき、建築物の耐風設計を行う際によく用いられている。そのため 荷重指針を応用してダンパーの塑性化を簡易的に判定できれば、時 刻歴応答解析を用いないことから,風に対する超高層制振建物のダ ンパーの塑性化を把握しやすくなる。風応答時における弾塑性挙動 に関する研究は、これまでいくつか検討例がある^{例えば 9,10}。吉江ら は、エネルギーの釣合を利用した1質点系弾塑性モデルにおける弾 塑性風応答予測手法を提案している⁹。また,佐藤らは風応答時に おける累積損傷分布の予測手法を構築することを目的とし, 最適降 伏せん断力係数分布や損傷集中指数を新たに提案している¹⁰。しか しながら、これらの研究はダンパーが塑性化する前提で検討を行っ

Graduate Student, School of Environment and Society, Tokyo Institute of Technology

Associate Prof., FIRST, Tokyo Institute of Technology, Dr. Eng.

Chief Researcher, Research & Development Institute, Takenaka Corporation

ており,実際の建築物の風応答時において全層のダンパーが必ずし も塑性化するとは限らない。そのため、どの層のダンパーが塑性化 したか把握した上で,文献 9),10)の手法を活用することが望ましい と考えられる。

そこで本論文では、風応答時における超高層制振建物のダンパー の塑性化を判定する手法を構築する第一段階として、荷重指針によ って算出した超高層制振建物の弾性時における層せん断力に基づき、 ダンパーの塑性化を判定することを試み、その精度や問題点につい て示すことを主たる目的とする。なお、本論文では構造物の振動に より風力特性が変化しないことを前提とし、空力不安定振動⁸⁰の問 題は対象外とする。また、風方向および風直交方向荷重のみとし、 荷重の組み合わせ⁸⁰については考慮しない。

2. 解析対象モデルおよび風外力の概要

2.1 解析対象モデル

本論文では、文献 11)の高さ 300 m、辺長比 D/B=1 (D, B: 建築物の奥行,幅、D=B=50 m)のモデルからアウトリガーを除き、ダンパーを付加した超高層制振建物を対象とする 60 質点せん断型モデルを用いる。フレームの1次固有周期は、 $_1T_f = 7.49$ s であり、構造減衰を剛性比例型として、 $_1T_f$ に対して、減衰定数 $_1\xi_f = 1\%$, 2%, 4%の3 種類を用いる。なお、フレームは弾性状態を保つものとする。

本論文で用いるダンパーは完全弾塑性としてモデル化し、全層に 付加する。第1層目のダンパー降伏せん断力係数(以下,ダンパー 量) α_{dy1} は、0.01、0.02、0.04の3パターンとし、ダンパーの降伏層 間変形角 R_{dy} は、1/600とする。各層のダンパー降伏層せん断力 Q_{dy1} は、第1層目のダンパー降伏層せん断力 Q_{dy1} を基準とし、Ai 分布に 基づく設計用地震層せん断力をもとに4 段階とする(Fig. 1)。 Q_{dy1} は、 α_{dy1} を用いて次式で表される。

$$Q_{dv1} = \alpha_{dv1} \cdot W \tag{1}$$

ここで、W:全重量を表す。ダンパーの降伏変形 δ_{dyi} は R_{dy} および質 点間距離 h_i を用いて以下の式で表される。

$$\delta_{dvi} = R_{dv} \cdot h_i \tag{2}$$

式(1), (2)よりダンパー剛性 k_{di}は式(3)より求められる。

$$k_{di} = Q_{dyi} / \delta_{dyi} \tag{3}$$

しかし、モデル化したダンパーを、フレームをモデル化したバネに 並列配置したせん断型モデルを用いると、ダンパーに有効に働く変 形(以下、実効変形)を過大に評価することとなり危険側の評価と なる¹²⁾。そこで本論文では、文献 13)~15)と同様にダンパーの剛性 k_{di} に実効変形を過大に評価しないための直列バネ剛性 k_{bi} を設置し、 簡便に層の曲げ変形を考慮したせん断型モデル(Fig. 2)を用いる。 なお、Fig. 2 中の k_{fi} はフレームの剛性を表す。以降、 k_{di} と k_{bi} の直列 系 k_{ai} を付加系(Additional component)の剛性 k_{ai} と呼ぶ。 k_{ai} を算出 する際に用いる実効変形比(層間変形に対する実効変形の比) α_{ei} は、 文献 16)を参考に、第1層目から第60層目まで直線となるように仮 定し、第1層目の α_{ei} を1,第60層目の α_{ei} を0.1とする(Fig. 3)。付 加系降伏せん断力 Q_{ayi} は Q_{dyi} と同値である。よって以上の条件から、 付加系の剛性 k_{ai} は以下の算出式で表される。

$$k_{ai} = Q_{ayi} / \left(\delta_{dyi} / \alpha_{ei} \right) \tag{4}$$

なお、付加系降伏変形 δ_{ayi} は以下の式で表される。

$$\delta_{ayi} = \delta_{dyi} / \alpha_{ei} \tag{5}$$

Fig. 4 に α_{dy1} ごとの k_{f1} に対する k_{ai} の比率を示す。また、本論文では Fig. 2 に示すようなフレームと付加系を合わせてシステムと呼ぶ。 なお、付加系は粘性減衰を有さない。

2.2 システムの降伏層せん断力

Fig.5 にフレーム,付加系,システム(フレーム+付加系)の復元 力特性を示す。Fig.5 中に示す δ_i は*i*層の層間変形を表し, Q_i は δ 時 のフレーム層せん断力を表す。システム降伏層せん断力 Q_{syi} は, Fig. 5 に示した復元力特性より,以下の算定式で算出される。

2.3 風外力の概要

構造物に作用する風外力は風洞実験結果(地表面粗度区分III)を 用いた。層風力係数の時刻歴データは、高さ方向に14点で測定して いる。このデータを対象建物の高さ、質点数および建物地点東京(基 準風速 U₀ = 36 m/s)での再現期間 500 年風外力へ変換を行った。な お、小地形の影響、季節係数および風向係数の影響は考慮していな い。また,風向角は 0°(建物に正対する方向)であり,1組につき 60 質点分の波形を 0.05 秒刻み 14000 ステップ(700 s)とし,24 組 取り出した。Fig. 6(a),(b)に本論文で用いる風方向,風直交方向頂部 外力 *F*₆₀ の時刻歴波形の一例を示す。本論文では時刻歴応答解析の 過渡応答の影響を避けるため,各波形前後に 50 s のエンベロープを 設け,中間の 600 s (10 分間)での応答を評価に用いる。また,24 波 のアンサンブル平均により応答値を評価する。

3. 付加系の塑性化判定

3.1 塑性化判定の概要

本論文では、塑性化判定に文献 4)に基づく風応答状態ランクを適 用する。文献 4)より、ランク A:風荷重に対して弾性挙動を示すケ ース、ランク B:風荷重に対して弾性限を超えるが、風荷重の変動 成分に対しては弾性挙動をするケース、ランク C:風荷重に対して 弾性限を超え、風荷重の変動成分に対しても弾塑性挙動をするケー スと定義されている。

風方向における各ランクは、システム弾性時の層せん断力。Q_{si}お よびシステム降伏層せん断力 Q_{syi}を用いて次式より判定する。

$$_{e}Q_{si} < Q_{syi} \cdots \overline{\supset} \not \supset \not \land A$$
 (7a)

$$\left({}_{e}\mathcal{Q}_{si} > \mathcal{Q}_{syi}\right) \not \land \supset \left({}_{e}\mathcal{Q}'_{si} < \mathcal{Q}_{syi}\right) \cdots \not \supset \not \supset \mathcal{P} \mathbf{B}$$

$$(7b)$$

$$\left({}_{e}\mathcal{Q}_{si} > \mathcal{Q}_{syi}\right) \hbar^{2} \mathcal{O}\left({}_{e}\mathcal{Q}'_{si} > \mathcal{Q}_{syi}\right) \cdots \bar{\mathcal{P}} \mathcal{V} \mathcal{P}$$

$$(7c)$$

ここで、 $_{e}Q'_{si}: _{e}Q_{si}$ の変動成分であり、次式で表される。

$$\mathcal{Q}'_{si} = \mathcal{Q}_{si} - \left(\mathcal{Q}_{si}\right) \tag{8}$$

ここに, $_{e}\overline{Q}_{si}$: $_{e}Q_{si}$ の平均成分を表す。

風直交方向は、風方向とは異なり、平均成分を有さず、変動成分 のみであることから、風応答状態ランクはランクAおよびランクC のみとなる。風直交方向における各ランクは風直交方向の *eQsi*およ び*Qsyi*を用いて次式で判定する。

$$_{e}Q_{si} < Q_{syi} \cdots \overline{\supset} \not \supset \not \supset A$$
 (9a)

$${}_{e}Q_{si} > Q_{svi} \cdots \,\overline{\neg} \, \mathcal{V} \,\mathcal{P} \, \mathcal{C} \tag{9b}$$

Fig.7,8に風方向,風直交方向における各ランクの履歴曲線を示す。

3.2 荷重指針によるシステム弾性時の層せん断力の算出

荷重指針より算出されるシステム弾性時の層せん断力を以降 「 $_{Re}Q_{si}$ 」と表記する。風方向における $_{Re}Q_{si}$ は、システム弾性1次の状態(固有周期、減衰定数、モード)における風方向風荷重 W_{Di} を用いて次式より算出される⁸⁾。

$${}_{Re}Q_{si} = \sum_{j=i}^{N} W_{Dj} = \sum_{j=i}^{N} q_{H}C_{Dj}G_{D}A_{j}$$
(10)

ここで、 $N: 層数, q_H: 速度圧, C_{Di}: i 層目の風力係数, G_D: ガスト$ $影響係数, <math>A_i: i 層目の見付面積を表す。G_Dは, 風方向転倒モーメン$ トに基づいて次式で表される⁸⁾。

$$G_{D} = 1 + \frac{g_{D}\sigma_{MD}}{\overline{M}_{D}} = 1 + g_{D}\frac{C'_{g}}{C_{g}}\sqrt{1 + \phi_{D}^{2}R_{D}}$$
(11)

ここに、 g_D :風方向1次固有振動数 f_D における風方向転倒モーメントのスペクトル係数 $F_D(f_D)$ (附録 A)を用いた風方向荷重のピークファクター、 σ_{MD} , \overline{M}_D :建築物基部に作用する転倒モーメントの標準偏差、平均値、 C_g :風方向平均転倒モーメントに関する係数、 C'_g :風方向変動転倒モーメントに関する係数、 ϕ_D :振動モード補正係数、 R_D : $F_D(f_D)$ を用いた風方向振動の共振係数を表す。

風直交方向における_{Re}Q_{si}は,風方向と同様にシステム弾性1次の 状態における風直交方向風荷重 W_{Li}を用いて次式より算出される⁸。

$${}_{Re}Q_{si} = \sum_{j=i}^{N} W_{Lj} = \sum_{j=i}^{N} 3q_{H}C'_{L}A_{j}\frac{Z_{j}}{H}g_{L}\sqrt{1+\phi_{Lj}^{2}R_{L}}$$
(12)

ここで、 C'_L :風直交方向変動転倒モーメント係数, Z_i : I層目の高さ, H:建物高さ, g_L :風直交方向振動のピークファクター, ϕ_{Li} :振動モ ード補正係数, R_L :風直交方向1次固有振動数 f_L における風直交方 向転倒モーメントのスペクトル係数 $F_L(f_L)$ (附録 B) を用いた風直 交方向振動の共振係数を表す。なお, W_{Di} および W_{Li} の詳細について は文献 8), 17)を参照されたい。

システム弾性1次の状態についてシステム減衰定数1点は、付加 系が粘性減衰を持たないこと(2.1節)から、1点よりも低下する。よ って、1点は以下の式より算出される。

$$\xi_s = \left({}_1 \omega_f / {}_1 \omega_s \right) \cdot {}_1 \xi_f \tag{13}$$

ここで、105、105:フレーム、システムの1次固有円振動数を表す。

4. システム弾塑性時の時刻歴応答解析結果

4.1 層間変形角および塑性率

Fig.9にシステム弾塑性時における時刻歴応答解析結果(以下,弾 塑性解析結果)より得られた層間変形角 R_i および付加系の塑性率 μ_i (= $\delta_{i,max}/\delta_{ayi}, \delta_{i,max}$:層間変形の最大値)を示す。Fig.9(a), (b)より, ダンパー量 α_{dy1} および構造減衰 $_{1}\xi_{7}$ が増加することにより, R_i , μ_i と もに値が低下していることが確認できる。これは, α_{dy1} の増加によ る付加系の剛性が増加したこと, $_{1}\xi_{7}$ の増加による応答の変動成分が 減少したことが影響している。また, R_i , μ_i ともに風方向の値よりも 風直交方向の値の方が,大きくなっている。これは,建物の高層化 によって,風直交方向荷重が大きくなるためである²⁾。

Fig. 9 Story drift angle and ductility demand

4.2 弾塑性解析結果に基づく風応答状態ランクの判定方法

本論文では、塑性化判定と同様に、弾塑性解析結果においても、 文献 4)に基づく風応答状態ランクを適用する。なお、システム弾塑 性時の層せん断力 Q_{si}を 3.1 節の_eQ_{si}に代入することにより各ランク を判定する。弾塑性解析結果のランク分けについて、設計者が総合 的に判断し、評価基準を設けることが妥当であると考えられるが、 本論では、最も簡便な多数決の原理により弾塑性解析結果を評価す る。Fig. 10 に、風方向および風直交方向の弾塑性解析結果における 各ランクの区分について示す。Fig. 10 より、風方向の場合、各層で

24 波中ランク A が 13 波以上ある場合はランク A, ランク B, C の 合計が 12 波以上である場合, 塑性状態とする。また, ランク B, C の区分けは塑性状態の中で, B または C の多い方をその層における ランクとしている。ただし, ランク B, C の数が一致している場合 は, ランク C と判断する。風直交方向の場合, ランクは前述の通り A, C のみとなり, 各層 24 波中ランク A が 13 波以上ある場合はラ ンク A, ランク C が 12 波以上ある場合はランク C とする。

5. 弾性解析結果のシステム弾性層せん断力を用いた場合の判定

本章では、荷重指針により算出したシステム弾性時の層せん断力 *ReQsi*を用いた塑性化判定を行う前に、*ReQsi*の精解値であるシステム 弾性時の時刻歴応答解析結果(以下,弾性解析結果)より得られる 層せん断力を用いて付加系の塑性化判定を行い、その精度検証を含 めた考察を行う。なお、弾性解析結果より得られる層せん断力を 「*reQsi*」と以降表記する。

5.1 風応答状態ランク 4) 適用後の弾塑性解析結果

Fig.11 に弾性解析結果から得られた風方向および風直交方向のシ ステム弾性層せん断力 πQ_sを用いた場合の塑性化判定結果と弾塑性 解析結果を比較したものを示す。図中に示すカラーのプロットは、 弾塑性解析結果におけるシステムがどのランクかを判断するプロ ットとなっており、白抜きのプロットである判定結果がカラーのプ ロット上にある場合、判定結果と弾塑性解析結果が一致することを 表す。また、凡例に示すかっこ内の数字は、24 波中何波が弾塑性解 析結果で判断しているランクとなっているかを表しており、Rank A(24-21)の場合、24 波中ランク A と判断した結果が 24 波から 21 波 あるということを意味する。

Fig. 11(a)より,風方向の弾塑性解析結果において」らが大きくなる ことによって、わずかながら塑性状態となる層が少なくなっている

Fig. 11 Comparison of plasticity judgement and elasto-plastic analysis (using result of elastic analysis)

ことがわかる。また、塑性状態と判断した層の中で、」なが増加する とともにランクBと判断される層数が増加していることが確認でき る。これは、4.1節でも考察したように、」なの増加に伴い応答の変動 成分が減少したためである。また、ランクが変化する層付近におい て、判断しているランクの波数が他の層に比べ少なくなっているこ とが確認でき、ランクごとのばらつきが大きくなっていることがわ かる。Fig. 11(b)より,風直交方向の弾塑性解析結果において,風方向同様に₁らが増加するとともにランク C となる層がわずかながら 少なくなっていることがわかる。また、ランクが変化する層付近に おいて、判断しているランクの波数が少なくなっていることも確認 でき、風直交方向においてもランクごとのばらつきがあることがわ かる。

5.2 判定結果

Fig. 11(a)より,風方向の弾塑性解析結果において付加系が塑性化 する層を全ての解析対象モデル(全9ケース)で誤差なく判定でき ていることが確認できる。弾塑性解析結果においてランクが切り替 わる層付近や, $_1\xi_1 = 2\%$, $\alpha_{dy1} = 0.02$ の場合で判定誤差が生じている ものの,安全側の判定誤差(弾塑性解析結果においてランクAであ る層で、判定がランク B、弾塑性解析結果においてランク B である 層で、判定がランク C) となっていることがわかる。この誤差の要 因として付加系の塑性化によりシステムの状態が変化したことが 考えられる。

Fig. 11(b)より,弾塑性解析結果において付加系が塑性化する層を 風方向同様に全ての解析対象モデルで誤差なく判定できているこ

とが確認できる。また、風方向よりも判定誤差が大きくなっている ものの安全側の判定誤差(弾塑性解析結果においてランク A である 層で、判定がランク C) となっていることがわかる。風方向よりも 誤差が大きくなる要因として,付加系の塑性率が風方向に比べ大き く(4.1節)システムの状態の変化が顕著に表れたことや風方向,風 直交方向風力の外乱特性の違いなどが考えられる。

6. 荷重指針によるシステム弾性層せん断力を用いた場合の判定

前章では、荷重指針より算出されるシステム弾性層せん断力 ReQsi の精解値である弾性解析結果のシステム弾性層せん断力 TeQsiを用い て塑性化判定を行い、付加系が塑性化する層を精度よく判定でき、 誤差も安全側の判定誤差となることが確認された。本章では、荷重 指針より算出される ReQsi (3.2節参照)を用いて塑性化判定を行う。 なお,荷重指針による ReQsiの算定には, AIJ-Wind(Ver. 1)¹⁸⁾を用いる。

6.1 判定結果および弾塑性解析結果比較

Fig. 12 に荷重指針により算出される風方向および風直交方向の ReQsiを用いた場合の塑性化判定結果と弾塑性解析結果を比較したも のを示す。Fig. 12(a)より, 風方向において, α_{dvl} ごとに比較していく と、 $\alpha_{dvl} = 0.01$ の場合、 $_{1\xi_{f}}$ が増加することにより、弾塑性解析結果 においてランク C である層でランク B と判定する層が多くなって いることが確認できる。また、弾塑性解析結果においてランク B で ある層で、ランクAと判定する層もあり、ランクB、Cともに危険 側の判定となっている。 $\alpha_{dv1} = 0.02$ の場合, $_{1\xi_{f}} = 1\%$ でランクCと判 定している層がなく、ランクCにおいて危険側の判定になっている。 また、ランクBにおいても危険側の判定となる層もある。一方で」5 =2%,4%では、ランクBにおける危険側の判定誤差となっている。 $\alpha_{dy1} = 0.04$ の場合,全ての $_{1\xi_{f}}$ において,ランク B での危険側の判定 誤差となっている。これらの誤差の要因として、GDを算出する際に 用いる風方向平均転倒モーメントに関する係数 Cg, 風方向変動転倒 モーメントに関する係数 C' およびスペクトル係数 F_D(1fD)が, 風洞 実験値から算出する値よりも小さく評価されており、その結果荷重 指針により算出される風方向の ReQsi が小さくなったことが考えら れる (附録 A)。

次に Fig. 12(b)より、風直交方向において、 α_{dy1} ごとに比較してい くと, α_{dy1}=0.01, 0.02 の場合,付加系が 塑性化する層を精度よく判 定できていることがわかる。弾塑性解析結果においてランクが切り 替わる層付近や上層において判定誤差が見られるものの, 安全側の 判定誤差となっている。α_{dy1}=0.04の場合, ₁ξ_f=1%, 2%において付 加系が 塑性化する層を精度よく判定できており、特に1ξf=2%にお いては、全体としての判定精度も高いことがわかる。15=1%、2% ともに上層において誤差が見られるものの安全側の判定誤差であ る。一方で、」と=4%においては、付加系が塑性化するほとんどの層 を判定できておらず危険側の判定になっている。これは、WLiを算出 する際に用いる風直交方向変動転倒モーメント係数 C'L,風直交方向 振動のピークファクター g_L およびスペクトル係数 $F_l(f_l)$ が風洞実験 結果および弾性解析結果に比べ誤差が生じており、その結果、荷重 指針により算出される風直交方向の ReQsi に誤差が生じたことが原 因として考えられる(附録 B)。なお、 $\alpha_{dv1} = 0.04$ 、 $_1\xi_f = 4\%$ 以外のパ ターンにおいても風洞実験結果,弾性解析結果と荷重指針値に誤差 が生じている(附録 B)が、本論文の対象モデルにおいては、Qsviに

対する風直交方向のシステム弾性時の層せん断力。O_gが比較的大き いことから, 塑性化判定において荷重指針より算出する ReOsiを用い ても危険側の判定誤差が生じなかったと考えられる。

7. おわりに

本論文では、風応答時における超高層制振建物の履歴型ダンパー の塑性化判定手法を構築する第一段階として、荷重指針によって算 出した超高層制振建物の弾性時における層せん断力を用いて、ダン パーの塑性化を判定することを試み、その精度や問題点について示 すことを目的に検討を行った。以下に得られた知見を示す。

- (1) システム弾塑性時の時刻歴応答解析結果(弾塑性解析結果)に おいて、ダンパー量 α_{dvl} および構造減衰 」長が増加することに より層間変形角 R_i,付加系の塑性率µi が減少することが確認 された。また, R_i, µ_iともに風直交方向の方が大きいことがわ かった。
- (2) 風方向における弾性解析結果の弾性層せん断力 TeQsi を用いた 場合の塑性化判定は,付加系が塑性化する層を精度よく判定 できることがわかった。また、判定誤差はあるものの、安全側 の判定誤差であることが確認された。この誤差に関して,付加 系の塑性化によりシステムの状態が変化したことが考えられ る。
- (3) 風直交方向におけるシステム弾性時の時刻歴応答解析結果 (弾性解析結果)の弾性層せん断力 reQsiを用いた場合の塑性化 判定は,風方向同様に付加系が塑性化する層を精度よく判定 できることがわかった。また, 誤差が安全側の判定誤差ではあ るものの,風方向よりも判定誤差が大きいことが確認された。 これは、µiが風方向よりも大きく、システムの状態の変化が 顕著に表れたことや風方向、風直交方向風力の外乱特性の違 いなどが考えられる。
- (4) 風洞実験結果を用いずに荷重指針より算出したシステム弾性 層せん断力 ReQsiを用いた塑性化判定(風方向)は、全ての解 析対象モデルで付加系が塑性化する層を確実に判定すること ができず, 危険側の判定誤差であることがわかった。これは, 荷重指針においてガスト影響係数 GDを算出する際に用いる風 方向平均転倒モーメントに関する係数 Cg, 風方向変動転倒モ ーメントに関する係数 C' およびスペクトル係数 F_D(1f_D)が, 風 洞実験結果から算出する値よりも小さく評価されており、そ の影響から風方向の ReQsi が小さくなったことが原因として考 えられる。
- (5) 風洞実験結果を用いずに荷重指針より算出したシステム弾性 層せん断力 ReQsiを用いた塑性化判定(風直交方向)は、ダン パー量 $\alpha_{dy1} = 0.04$,構造減衰 $_{1}\xi_{f} = 4\%$ の場合を除いて、付加系 が塑性化する層を精度よく判定でき、判定誤差も安全側の判 定誤差であることがわかった。危険側の判定誤差が出る原因 として,荷重指針において,風直交方向荷重 WLiを算出する際 に用いる風直交方向変動転倒モーメント係数 C'L,風直交方向 振動のピークファクター g_L およびスペクトル係数 $F_L(f_L)$ が, 風 洞実験および弾性解析結果から算出する値と比べ誤差が生じ ていることが考えられる。また,安全側の判定誤差となってい る場合においても C'_L , g_L および $F_L(f_L)$ に誤差が生じているが,

本検討モデルにおいてはシステム降伏層せん断力 Q_{syi} に対す る風直交方向のシステム弾性時の層せん断力 $_{e}Q_{si}$ が大きいこ とから,塑性化判定において荷重指針より算出する $_{Re}Q_{si}$ を用 いても危険側の判定誤差が生じなかったと考えられる。

なお、本論文では荷重指針を準用したダンパーの塑性化判定手法 の精度や問題点についてのみの検討に留まっている。本論文で得ら れたシステムの状態の変化や外乱特性の違い、荷重指針の精度など の知見をもとに、より精度の高いダンパーの塑性化判定手法を別報 にて報告する予定である。

謝辞

本研究の一部は、JST 産学競争プラットフォーム共同研究推進プログラム によるものです。ここに記して感謝の意を示します。

参考文献

- 日本免震構造協会:パッシブ制振構造設計・施工マニュアル,第3版, 2013.11
- 木原碩美,浅野美次,國津博昭,吉江慶祐:風と構造フォルム超高層・タ ワー,建築技術, pp. 164 – 171, 2000.7
- 3) 大熊武司,神田順,田村幸雄:建築物の耐風設計,鹿島出版会,1996.3
- 4) 日本免震構造協会:免震建築物の耐風設計指針,2012
- 5) 吉江慶祐,北村春幸,大熊武司,和田章:時刻歴応答解析結果におけるア ンサンブル平均のばらつき,日本建築学会学術講演梗概集,pp.233-234, 2005.7
- 6) 平井宏幸,吉江慶祐,佐藤大樹,片桐純治,鶴見俊雄,北村春幸,大熊武司:風洞実験より得られた層風力のサンプル数が高層建築物の時刻歴風応答評価に及ぼす影響,日本建築学会技術報告集,第18巻,第39号, pp.489-494,2012.6
- 7) 齋藤元紀,佐藤大樹,吉江慶祐,大熊武司,片桐純治,北村春幸:風力の サンプル数が超高層免震建築物の弾塑性風応答評価に及ぼす影響,日本 建築学会技術報告集,第23巻,第53号,pp.65-70,2017.2
- 8) 日本建築学会:建築物荷重指針・同解説(2015), 2015
- 9) 吉江慶祐,北村春幸,大熊武司:エネルギーの釣合に基づく平均成分を 有する広帯域性変動風力を受ける弾塑性構造物の応答予測手法,日本建 築学会構造系論文集,第 608 号, pp. 122 - 128, 2006.10
- 10) 佐藤大樹,池上昌志,平井宏幸,吉江慶祐,佐藤利昭,北村春幸:履歴型 ダンパーを有する超高層制振建物の風応答時における累積損傷分布予測, 日本建築学会構造系論文集,第81巻,第728号,pp.1635-1645,2016.10
- 11) 岡日出夫, 笠井和彦, 渡井一樹, 佐藤大樹, 前田周作, 鈴木庸介: 建築物のさらなる高層化に向けた曲げせん断モデル化手法の提案 その2 既 往手法の適用限界とその要因, 日本建築学会学術講演梗概集, pp. 955 – 956, 2019.9
- 12) 栗林晃司, 佐藤大樹, 北村春幸,山口路夫,西本晃治: 実効変形を考慮した履歴減衰型制振部材を有する鋼構造建物のエネルギーの釣合に基づく応答予測法,日本建築学会構造系論文集,第76巻,第661号, pp.543-552, 2011.3
- 石井正人, 笠井和彦:多層制振構造の時刻歴解析に用いるせん断棒モデルの提案,日本建築学会構造系論文集,第75巻,第647号, pp. 103-112,2010.1
- 14) 古谷慶, 添田幸平, 佐藤大樹, 北村春幸, 石井正人, 吉江慶祐, 宮崎充, 佐々木和彦, 岩崎雄一: 履歴ダンパーを有する超高層弾性架構の実効変 形比に着目した制振性能評価, 構造工学論文集, Vol. 58B, pp. 197-207, 2012.3
- 15) 戸張涼太, 佐藤大樹, 古谷慶, 北村春幸, 石井正人, 吉江慶祐, 宮崎充, 佐々木和彦, 岩崎雄一: 骨組特性値を用いた履歴型ダンパーを有する建 物の制振性能評価, 構造工学論文集, Vol. 59B, pp. 321 – 327, 2013.3
- 16) 中島隆裕,添田幸平:制振ダンパーのエネルギー吸収メカニズムの比較, 建築技術, pp. 130 - 133, 2016.5
- 17) 日本建築学会:建築物荷重指針を活かす設計資料2 建築物の風応答・風 荷重評価/CFD ガイド, 2017.2
- 日本建築学会荷重運営委員会 http://news-sv.aij.or.jp/kouzou/s10/AIJ_Wind.html (2019.6.7 参照)

附録 A 風方向における各種値の比較

荷重指針より算出される風力係数 C_{DI} ,風方向変動転倒モーメントに関する 係数 C'_{g} ,平均転倒モーメントに関する係数 C_{g} ,風方向スペクトル係数 $F_D(f_D)$ および弾性層せん断力 $R_e Q_{si}$ と風洞実験,弾性解析より算出される C_{DI} , C'_{g} , C_{g} , $F_D(f_D)$ および $R_e Q_{si}$ の比較を行う。なお,荷重指針における C_{DI} の算出方法 については,文献 8)を参照されたい。

風洞実験結果より算出される C'gおよび Cgはそれぞれ以下の式で表される 8). 17)。

$$C_g = \frac{\sigma_{MDQ}}{q_H \cdot B \cdot H^2 \cdot C_H} \tag{A1}$$

$$C_g = \frac{\overline{M}_D}{q_H \cdot B \cdot H^2 \cdot C_H} \tag{A2}$$

ここで、 σ_{MDQ} :風方向転倒モーメントの非共振成分の標準偏差, \overline{M}_D :風方 向転倒モーメントの平均値,B:見付幅, C_H :建物頂部における風力係数を表 す。なお、 σ_{MDQ} は次式で表される。

$$\sigma_{MDQ} = \left| \int_0^\infty S_{MD}(f) df \right|^{0.5} \tag{A3}$$

ここに、*Shap(f)*:風力として作用する風方向転倒モーメントのパワースペクトル密度を表す。

風洞実験結果より算出される風方向スペクトル係数 *F*_D(*f*)は,以下の式で表される^{8),17)}。

$$F_D(f) = \frac{f \cdot S_{MD}(f)}{\sigma_{MDQ}^2} \tag{A4}$$

なお,式(A4)中の振動数fを風方向の1次固有振動数 foに置き換えることにより, foにおけるスペクトル係数 Fo(fo)を算出することができる。

風洞実験値を用いずに荷重指針より算出される C'g, Cgは, それぞれ次式で表される^{8), 17)}。

$$C'_{g} = 2I_{H} \frac{0.49 - 0.14\alpha}{1 + \left\{ 0.63 \left(\sqrt{B \cdot H} / L_{H} \right)^{0.56} / (H/B)^{0.07} \right\}}$$
(A5)

$$C_g = \frac{1}{3+3\alpha} + \frac{1}{6} \tag{A6}$$

ここで, I_H , L_H : 基準高さ Hにおける乱れ強さ,乱れのスケール, α : 風速の 鉛直分布を表すパラメータを表す。

風洞実験値を用いずに荷重指針より算出される F_D(y_D)は、以下の式で表される^{8,17)}。

$$F_{D}(_{1}f_{D}) = \frac{I_{H}^{2} \cdot F \cdot S_{D} \cdot \left(0.57 - 0.35\alpha + 2R\sqrt{0.053 - 0.042\alpha}\right)}{C'_{g}}$$
(A7)

ここで、 $F: 風速スペクトル係数, S_D: 規模係数, R: 風上面と風下面の風圧 の相関を表す係数を表す。<math>F, S_D, R$ はそれぞれ以下の式より算出される。

$$F = \frac{4 \cdot_1 f_D \cdot L_H / U_H}{\left\{ 1 + 71 \left(_1 f_D \cdot L_H / U_H\right)^2 \right\}^{5/6}}$$
(A8)

$$S_{D} = \frac{0.9}{\left\{1 + 6\left({}_{1}f_{D} \cdot L_{H}/U_{H}\right)^{3}\right\}^{0.5} \left\{1 + 3\left({}_{1}f_{D} \cdot L_{H}/U_{H}\right)\right\}}$$
(A9)

$$R = \frac{1}{1 + 20(_{\downarrow}f_D \cdot B/U_H)} \tag{A10}$$

ここに、 U_H : 基準高さ Hにおける設計風速を表す。なお、式(A8)~(A10)中の f_D を振動数 f に置き換えることにより、f におけるスペクトル係数 $F_D(f)$ を把 握することができる。

Fig. A1 に荷重指針値(AIJ)および風洞実験値(Exp.)の風力係数 C_{Dl} を比較した図を, Table A1 に荷重指針値(AIJ)と風洞実験値(Exp.)の C'_g , C_g および C'_g/C_g を比較したものを示す。Fig. A1 より,下層部および上層部において風洞実験値が荷重指針値よりも小さくなっており,また中間層においてはわずかに風洞実験値が荷重指針値よりも大きくなっているが,全体として概ね一致していることが確認できる。一方で,Table A1 より, C'_g および C_g ともに,荷重指針値の方が風洞実験値よりも小さく評価されていることがわかる。また, C'_g/C_g に関しても荷重指針値が風洞実験値よりも約 0.8 倍程度小さく評価されていることが確認できる。

Fig. A2 に荷重指針値 (AIJ) および風洞実験値 (Exp.)の FD(f)を比較したも のを, Fig.A3 に本論文で対象とするモデルの1次固有振動数における FD(1fD) を比較したものを示す。なお、Fig. A2 中の横軸fは、振動数を無次元化した 値である (f^{*}=fB/U_H)。また, Fig. A2 中に本検討モデルの無次元化固有振動数 の範囲も併記する(斜線部)。Fig. A2より, FD(f)においては, 無次元化固有振 動数の範囲も含む高周波数領域において風洞実験値の方が荷重指針値よりも 大きくなっているが、スペクトル全体として概ね一致していることが確認で きる。しかし、Fig. A3 より対象モデルの固有振動数における Fo(1fo)は、風洞 実験値の方が荷重指針値を大きく上回っており、誤差が大きいことが確認で きる。

Fig. A4 に荷重指針より算出されるシステム弾性層せん断力 ReQsi および弾 性解析結果より得られるシステム弾性層せん断力 TeOsiを比較したものを示す。 図中に示す灰色の実線は誤差±10%,破線は誤差±20%を表す。Fig. A4より, 全てのパターンにおいて ReQsiが TeQsiよりも小さく評価されていることが確認

Fig. A4 Comparison of shear force (along-wind direction)

できる。この誤差は,前述した C'g, Cg および Fb(1fb)の誤差が影響しているこ とが考えられる

附録 B 風直交方向における各種値の比較

荷重指針より算出される風直交方向のスペクトル係数 FL(1fL),変動転倒モ ーメント係数 C'L, 風直交方向振動のピークファクターgL および弾性層せん断 力 ReQsi と風洞実験,弾性解析より算出される FL(1fL), C'L, gLi および TeQsi の比 較を行う。

風洞実験結果より算出される風直交方向スペクトル係数 FL(f)は、建築物が ロッキングモードで振動することを仮定し、以下の式で表される^{8),17}。

$$F_L(f) = \frac{f \cdot S_{ML}(f)}{\sigma_L^2} \tag{B1}$$

ここで、 $S_{ML}(f)$:振動数fにおける1次変動転倒モーメント $_1L(t)$ のパワースペ クトル密度, $1\sigma_L$: $L(t)の標準偏差を表す。 L(t)および 1\sigma_L$ は、1次モーダル風 外力」F(t)を用いて次式で表される。

$${}_{1}L(t) = H \cdot {}_{1}F(t) = H \cdot {}_{i=1}^{N} \phi_{i} \cdot F_{i}(t)$$
(B2)

(B3) $_{1}\sigma_{L} = H \cdot_{1} \sigma_{F}$

ここに, 1¢: i 層の1 次振動モード, F_i(t): i 層の風外力時刻歴, 1σF: 1F(t)の 標準偏差を表す。なお、式(B1)中のfを風直交方向の1次固有振動数 ifL に置 き換えることにより、 ufu におけるスペクトル係数 Fu(ufu)を算出することがで きる。

風洞実験結果より算出される風直交方向変動転倒モーメント係数 C'L は, 建築物がロッキングモードで振動することを仮定し、次式で表される^{8),17)}。

$$C_L = \frac{{}_1 \sigma_L}{q_H \cdot B \cdot H^2} \tag{B4}$$

ここで、q_H:速度圧を表す。また、弾性解析結果から算出する風直交方向振動 のピークファクター g_{Li} は、層間変形の最大値 $\delta_{i,max}$ および標準偏差 σ_{δ} を用いて 次式より算出する。

$$g_{Li} = \delta_{i,max} / \sigma_{\delta i} \tag{B5}$$

風洞実験値を用いずに荷重指針より算出される FL(1fL)は、次式で表される 8), 17) 1

$$F_{L} = \sum_{j=1}^{m} \frac{4\kappa_{j} \left(1 + 0.6\beta_{j} \right)}{\pi} \cdot \frac{\left(\frac{1}{j} f_{L} / f_{ij} \right)^{2}}{\left(1 - \left(\frac{1}{j} f_{L} / f_{ij} \right)^{2} \right)^{2} + 4\beta_{j}^{2} \left(\frac{1}{j} f_{L} / f_{ij} \right)^{2}}$$
(B6)

ここで,

$$n = \begin{cases} 1 & D/B < 3 \\ 2 & D/B \ge 3 \end{cases}$$
(B6.1)

$$\kappa_1 = 0.85$$
 $\kappa_2 = 0.02$ (B6.2)

$$\beta_1 = \frac{(D/B)^4 + 2.3(D/B)^2}{2.4(D/B)^4 - 9.2(D/B)^3 + 18(D/B)^2 + 9.5(D/B) - 0.15} + \frac{0.12}{(D/B)}$$
(B6.3)

$$\beta_2 = \frac{0.28}{\left(D/B\right)^{0.34}} \tag{B6.4}$$

$$f_{s1} = \frac{0.12}{\left\{1 + 0.38(D/B)^2\right\}^{0.89}} \cdot \frac{U_H}{B}$$
(B6.5)

$$f_{s2} = \frac{0.56}{\left(D/B\right)^{0.85}} \cdot \frac{U_H}{B}$$
(B6.6)

ここに、D:建築物の奥行を表す。なお、式(B6)中の fl を振動数fに置き換え ることにより、fにおけるスペクトル係数FL(f)を把握することができる。 風洞実験値を用いずに荷重指針より算出する C'L および gL は、それぞれ次

式で表される ^{8), 17)}。 (B7)

 $C'_{L} = 0.0082 (D/B)^{3} - 0.071 (D/B)^{2} + 0.22 (D/B)$

$$g_L = \sqrt{2\ln(600 \cdot f_L) + 1.2}$$
(B8)

Fig. B1 に荷重指針値 (AIJ) および風洞実験値 (Exp.) の FL(f)を比較したも のを, Fig. B2 に本論文で対象とするモデルの 1 次固有振動数 ift における FL(1fL)を比較したものを、Table B1 に式(B4)および(B7)より算出される CLを 示す。また、Fig. B1 中に本検討モデルの無次元化固有振動数の範囲も併記す る(斜線部)。Fig. B1より, FL(f)が高振動数領域,低振動数領域で誤差が見ら

Fig. B4 Comparison of shear force (across-wind direction)

れるものの, 概ね一致していることが確認できる。しかし, 1 次固有振動数 ff. における FLを比較すると, 荷重指針値の方が風洞実験値よりも大きく評価さ れていることがわかる (Fig. B2)。Table B1 より, CLにおいては荷重指針値が 風洞実験値よりも小さく評価されていることがわかる。

Fig. B3 に式(B5)より算出した g_{L1} (Ana) と式(B8)より算出される g_L (AIJ) を示す。Fig. B3 より, 構造減衰 1*G* = 2%において,全てのダンパー量 α_d₀1で 荷重指針値と解析結果が概ね一致しているのに対して,1*G* = 1%,4%の場合は どのαψιにおいても誤差が生じていることが確認できる。

Fig. B4 に荷重指針により算出されるシステム弾性層せん断力 $R_e Q_{si}$ および 弾性解析結果より得られるシステム弾性層せん断力 $R_e Q_{si}$ を比較したものを示 す。Fig. B4 より, 一部 $R_e Q_{si}$ と $R_e Q_{si}$ が概ね一致している場合もあるが, 基本的 には誤差が生じていることが確認できる。この誤差は, 前述した C'_{L} , g_L およ び $F_L(g_L)$ の誤差が影響していることが考えられる。