T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	変動風力を受ける超高層制振建物の弾塑性風応答予測 その 1 風洞実験 気流特性および風力特性に関する検討
Title(English)	Elasto-plastic wind-induced response evaluation of a passively controlled high-rise building to fluctuating wind force Part.1 Wind tunnel experiment examination of airflow characteristics and wind characteristic
著者(和文)	
Authors(English)	Koki Hiratsuka, Daiki Sato, Hideyuki Tanaka
出典 / Citation	
Citation(English)	, , , pp. 313-316
「 発行日 / Pub. date	2021, 3

変動風力を受ける超高層制振建物の弾塑性風応答予測

その1 風洞実験気流特性および風力特性に関する検討

構造-振動

正会員 〇 平塚紘基^{*1} 正会員 佐藤大樹^{*1} 正会員 田中英之^{*3}

超高層制振建物 弹塑性風応答

多質点系モデル 履歴型ダンパー

1. はじめに

地震時における超高層建物の構造体の損傷制御や応答 制御を目的として,建物にダンパーを付加する制振構造 は既に多く採用されている。履歴減衰型のダンパーの場 合,制振効果を高めるためには、できるだけ小さな荷重レ ベルから早期にダンパーを塑性化させることで、エネル ギー吸収を積極的に行うことが有効である。一方で,超高 層制振建物を対象とした場合,風外力が建物の高層化に 伴い構造設計において支配的な荷重となる恐れがあるも のの,現状の耐風設計では想定される最大級の強風に対 して, 主要な構造体を弾性応答で留めるように設計が行 われている。これは、風外力の継続時間が数時間に及ぶた め,部材などに疲労損傷の恐れがあること,塑性化により 建築物の固有周期が増加すると、固有周期に対応する風 外力のパワースペクトル密度が増し,風荷重が増大する 恐れがあること、風の作用する建築物の弾塑性挙動につ いてほとんど情報がないということなどの理由によるも のである¹⁾。しかし、地震に対する制振効果を得るために、 超高層建物に低い荷重レベルで塑性化させる履歴型ダン パー(以下,ダンパー)を採用すると、風外力に対しても 塑性化することが考えられる。このことより, 耐震設計と 同様に耐風設計においても、弾塑性応答を評価すること は必要不可欠である。

制振構造の弾塑性風応答を評価するためには,一般的 に時刻歴応答解析を用いる必要がある。しかし,風外力を 用いて超高層建物を対象とした時刻歴応答解析を行うと, 地震に比べ圧倒的に継続時間が長いこと¹⁾,多数の時刻歴 応答解析を行い,応答値をアンサンブル平均する必要が あること²⁾から膨大な時間と計算量が必要となり,設計者 の大きな負担となる。そのため,風荷重に対する弾塑性風 応答時における建物の挙動を実用的に評価するために時 刻歴応答解析を用いない手法が求められている。

弾塑性風応答予測に関する研究はこれまでいくつか行われている^{例えば3),4)}。吉江ら⁴⁾は,耐震設計において,エネ

ルギーの釣合に基づく設計手法が構造設計の信頼性を高 めることに貢献しているという事実を踏まえ,構造物の 風応答をエネルギー収支の観点から整理・分析すること で,エネルギーの釣合に基づく応答予測手法を提案して いる。しかし,提案されている弾塑性風応答予測手法の多 くは,1質点系での検討に留まっている。実際の構造物の 設計に応用するためには,多質点系での検討が必要であ るものの,これまで多質点系での弾塑性風応答予測手法 に関する研究はわずかである^{例えば5),6)}。

そこで本報では、履歴型ダンパーを有する超高層制振 建物を対象とし、多質点系での弾塑性風応答(最大変形) 予測手法を提案し、その精度について示すことを目的と する。本報その1では、検討に用いる風洞実験結果の風 力特性などについて建築物荷重指針・同解説⁷⁾(以下、荷 重指針)の値との比較を行い、風洞実験の妥当性について 示す。本報その2では多質点系での弾塑性風応答(最大 変形)予測手法を提案し、提案手法の予測精度について検 討を行う。なお、本報では構造物の振動により風力特性が 変化しないことを前提とし、空力不安定振動の問題は対 象外とする。

2. 風洞実験

2.1 建物形態

Fig. 1(a), (b)に対象とする模型形態と座標系を示す。対象とする模型形態は、F1を想定した(3.1節)正方形断面を有する辺長比D/B=1(D, B:建築物の奥行,幅)と、F16を想定した(3.1節)やや偏平な平面形状を有するD/B=1.6の2種類とする。なお、以降D/B=1の模型をType 1,D/B=1.6の模型をType 16と呼ぶ。座標軸は、Type 1, Type 16ともに同様である。風向角 α は、Type 1 でBに正対する角度を0°とし、反時計回りに5°毎の72方向で計測し、Type 16でDに正対する角度を0°とし、時計回りに5°毎の72方向で計測を行う。層風力の測定点は、Type 1 で高さ方向に9層、Type 16で8層とする。

Koki HIRATSUKA , Daiki SATO , Hideyuki TANAKA

Elasto-plastic wind-induced response evaluation of a passively controlled high-rise building to fluctuating wind force Part.1 Wind tunnel experiment examination of airflow characteristics and wind characteristics

Fig.1 Shape of the model and coordinates

2.2 実験気流

風洞実験は、閉鎖型回流境界層風洞を用いて行った。実 験気流は荷重指針の地表面粗度区分IIIの気流を目標に、 スパイヤーとラフネスブロックを用いて作成した。Fig. 2(a), (b)に Type 1, 16 の風洞実験結果による平均風速 U_Z , 乱れ強さ I_Z の鉛直分布を示す。同図に併記している荷重 指針に基づき算出した U_Z , I_Z はそれぞれ式(1), (2)で表さ れる。

$$U_Z = U_H \cdot \left(\frac{Z}{H}\right)^{0.2} \tag{1}$$

$$I_{Z} = \begin{cases} 0.1 \cdot \left(\frac{Z}{Z_{G}}\right)^{-\alpha - 0.05} & Z_{b} \le Z \le Z_{G} \\ 0.1 \cdot \left(\frac{Z_{b}}{Z_{G}}\right)^{-\alpha - 0.05} & Z \le Z_{b} \end{cases}$$
(2)

ここで、 U_H : 基準高さ H における平均風速、Z: 地表面 (風洞床面)からの高さ、 Z_b 、 Z_G 、 α : 風速の鉛直パラメ

ータⁿを表す。なお、模型上の基準高さ(Type 1:300 mm, Type 16:240 mm) での平均風速は Type 1 で 10.0 m / s, Type 16 で 9.16 m / s である。Fig. 2(a), (b)より、実験値 (Exp.) と指針値(AIJ)は風洞床面からの高さが大きく なるほど、誤差が大きくなる傾向が見られるが、全体とし て精度よく一致していることが確認できる。

Fig. 3(a), (b)に模型頂部高さでの変動風速の無次元化パワースペクトル密度 (PSD) を示す。なお、 $S_u(f)$ 、 σ_u は、風速のパワースペクトル密度、標準偏差、 L_x は乱れのスケールを表し (Type 1:0.53 m, Type 16:0.34 m)、Fig. 3 中にカルマン型⁷⁾の無次元化 PSD も併記している。Fig. 3(a)、(b)より、実験値 (Exp.) と指針値 (Von karman) が精度よく一致していることが確認できる。

2.3 実験方法

風圧の測定には多点同時風圧測定システムを使用した。 風力係数および風圧係数を算定するための基準速度圧は, ピトー管により測定された境界層外の速度圧を平均風速 の鉛直分布に基づき基準高さでの速度圧に換算した値を 用いている。また,収録された風圧データはチューブ系の 周波数応答特性に基づき補正した。風圧実験の測定条件 はサンプリング間隔 1000Hz,データ数 65536 個(測定時 間 65.536 秒),ローパスフィルタ 500Hz とした。

3. 実験結果

3.1 対象モデルおよび風外力概要

本報では、高さ H = 200 m の超高層制振建物を対象と した 20 質点せん断型モデルを用いる。辺長比は D / B = 1.0, 1.6 に 2 種類とし、以降それぞれ F1、F16 と呼ぶ。対 象とするモデルの D および B は、F1 モデルで D = B = 40 m、F16 モデルで D = 53.3 m、B = 33.3 m である。対象モ デルの詳細については、本報その 2 を参照されたい。

風外力は、風洞実験結果より得られた風力係数データ を対象建物の高さ、質点数および基準風速 36m/s での再 現期間 500 年風外力へ変換を行った。なお、小地形の影 響,季節係数および風向係数の影響は考慮していない。ま た、風向角は F1 モデルで Type 1 の 0°, F16 モデルで Type

16 の 90°とし、1 組につき 20 質点分の波形を 0.05 s 秒刻 み 14000 (700 s) ステップとし、10 組取り出した。なお、 取り出した風外力の前後の 50 s に時刻歴応答解析におけ る過渡応答の影響を避けるためのエンベロープを設けて いるため、中間の 600 s で風力特性の評価を行う。

Fig. 4(a), (b)に各モデルの頂部風外力の PSD, *S*_{F20} の 10 波のアンサンブル平均値を示す。Fig. 4 より,風方向の PSD は各モデルともに大きな差異はないが,風直交方向の PSD は, F1 モデルは狭帯域的なスペクトル形状となっているのに対して, F16 モデルはやや広帯域的なスペクト ル形状となっており,平面形状の違いにより,スペクトル 形状が異なっていることがわかる。

3.2 実験結果の平均風力係数の高さ方向

対象建物の高さ、質点数に変換後の風洞実験結果より 得られた風力係数 *C*_{Di}の高さ方向分布と荷重指針より算 出される *C*_{Di}の高さ方向分布の比較を行う。なお、荷重指 針より算出される *C*_{Di}は、文献 7)を参照されたい。

Fig. 5(a), (b)に各モデルの *C_{Di}* の高さ方向分布を示す。 なお,風洞実験結果より得られた *C_{Di}* は, 10 波のアンサ ンブル平均値を示している。Fig. 5(a)より,F1 モデルは全 層に渡って,実験値が指針値よりもわずかに大きく評価 されているが,概ね一致していることが確認できる。Fig. 5(b)より,F16 モデルは全層に渡って精度よく実験値と指 針値が一致していることが確認できる。

3.3 風方向のスペクトル係数

風洞実験結果より算出される風方向スペクトル係数 $F_D(f)$ と荷重指針より算出される $F_D(f)$ の比較を行う。風 洞実験結果より算出される $F_D(f)$ は、以下の式より算出さ れる 7,8 。

$$F_D(f) = \frac{f \cdot S_{MD}(f)}{\sigma_{MDQ}^2}$$
(3)

ここで,f:振動数, $S_{MD}(f)$:風力として作用する風方向 転倒モーメントのパワースペクトル密度, σ_{MDQ} :風方向転 倒モーメントの非共振成分の標準偏差を表し,次式で表

される。

$$\sigma_{MDQ} = \left[\int_0^\infty S_{MD}(f) df \right]^{0.5} \tag{4}$$

風洞実験値を用いずに荷重指針より算出される *F_D(f)*は, 以下の式で表される^{7),8)}。

$$F_D(f) = \frac{I_H^2 \cdot F \cdot S_D \cdot \left(0.57 - 0.35\alpha + 2R\sqrt{0.053 - 0.042\alpha}\right)}{C'_g} \tag{5}$$

ここで、 I_H :対象とする建物の基準高さ H における乱れ 強さ、F:風速のスペクトル係数、 S_D :規模係数、 α :風速 の鉛直分布を表すパラメータ、 C'_g :風方向変動転倒モー メントに関する係数を表し、それぞれ以下の式より算出 される。

$$F = \frac{4 \cdot f \cdot L_H / U_H}{\left\{ 1 + 71 \left(f \cdot L_H / U_H \right)^2 \right\}^{5/6}}$$
(6)

$$S_D = \frac{0.9}{\left\{1 + 6\left(f \cdot L_H / U_H\right)^3\right\}^{0.5} \left\{1 + 3\left(f \cdot L_H / U_H\right)\right\}}$$
(7)

$$R = \frac{1}{1 + 20(f \cdot B/U_H)} \tag{8}$$

$$C'_{g} = 2I_{H} \frac{0.49 - 0.14\alpha}{1 + \left\{ 0.63 \left(\sqrt{B \cdot H} / L_{H} \right)^{0.56} / \left(H / B \right)^{0.07} \right\}}$$
(9)

ここに, *U_H*: 対象とする建物の基準高さ *H* における設計 風速を表す。

Fig. 6(a), (b)に各モデルの $F_D(f)$ を示す。Fig. 6 より, 両モデルともに,低振動数領域においてスペクトル形状 が概ね一致していることが確認できるが,高振動数領域 において,わずかに実験値が指針値よりも大きく評価さ れていることがわかる。

3.4 風直交方向のスペクトル係数

風洞実験結果より算出される風直交方向スペクトル係 数 $F_L(f)$ と荷重指針より算出される $F_L(f)$ の比較を行う。 風洞実験結果より算出される $F_L(f)$ は、建築物が建物頂部 を1とするロッキングモードで振動することを仮定し、

次式より算出される^{7),8)}。

$$F_L(f) = \frac{f \cdot S_{ML}(f)}{\sigma_L^2} \tag{10}$$

ここで、 $S_{ML}(f)$:振動数fにおける1次変動転倒モーメント₁L(t)のパワースペクトル密度、 $_{1}\sigma_{L}$: $_{1}L(t)$ の標準偏差を表す。 $_{1}L(t)$ および $_{1}\sigma_{L}$ は、1次モーダル風外力 $_{1}F(t)$ を用いて次式で表される。

$${}_{1}L(t) = H \cdot {}_{1}F(t) = H \cdot \sum_{i=1}^{N} {}_{i}\phi_{i} \cdot F_{i}(t)$$
(11)

$${}_{1}\sigma_{L} = H \cdot_{1} \sigma_{F} \tag{12}$$

ここに、N:対象モデルの層数、 $_{1}\phi: i$ 層の1次振動モード、 $F_{i}(t): i$ 層の風外力時刻歴、 $_{1}\sigma_{F}: _{1}F(t)$ の標準偏差を表す。

風洞実験値を用いずに荷重指針より算出される $F_L(f)$ は, 以下の式で表される $^{7,8)}$ 。

$$F_{L}(f) = \sum_{j=1}^{m} \frac{4\kappa_{j} (1+0.6\beta_{j})}{\pi} \cdot \frac{(f/f_{sj})^{2}}{(1-(f/f_{sj})^{2})^{2} + 4\beta_{j}^{2} (f/f_{sj})^{2}}$$
(13)

ここで,

$$m = \begin{cases} 1 & D/B < 3\\ 2 & D/B \ge 3 \end{cases}$$
(14)

$$\kappa_1 = 0.85 \qquad \kappa_2 = 0.02 \tag{15}$$

$$\beta_1 = \frac{(D/B)^4 + 2.3(D/B)^2}{2.4(D/B)^4 - 9.2(D/B)^3 + 18(D/B)^2 + 9.5(D/B) - 0.15} + \frac{0.12}{(D/B)^4}$$

$$\beta_2 = \frac{0.28}{(D/D)^{0.34}} \tag{16}$$

$$f_{s1} = \frac{0.12}{\left(1 + 0.38(D/B)^2\right)^{0.89}} \cdot \frac{U_H}{B}$$
(18)

$$f_{s2} = \frac{0.56}{(D/B)^{0.85}} \cdot \frac{U_H}{B}$$
(19)

Fig. 7(a), (b)に各モデルの $F_L(f)$ を示す。Fig. 7(a)より,

F1 モデルにおいて、低振動数領域で実験値が指針値より も大きく評価されているものの、高振動数領域で概ね実 験値と指針値が一致していることが確認できる。Fig.7(b) より、F16 モデルにおいて、F1 モデル同様に低振動数領 域で実験値が指針値よりも大きく評価されており、高振 動数領域では、実験値が指針値よりも小さく評価されて いることがわかるが、全体としてのスペクトル形状は概 ね一致していることが確認できる。

4. おわりに

本報その1では、検討に用いる風洞実験結果の風力特 性などについて荷重指針の値との比較を行い、風洞実験 の妥当性について検討を行った。その結果、実験気流特性 および風力特性ともに、荷重指針値と概ね一致すること が確認された。本報その2では、その1で用いた風外力 を用いて、弾塑性風応答予測手法について検討を行う。

参考文献

- 大熊武司,神田順,田村幸雄:建築物の耐風設計,鹿島出版会, 2004.6
- 2) 吉江慶祐,北村春幸,大熊武司,和田章:時刻歴応答解析結果におけるアンサンブル平均のばらつき,日本建築学会学術講演梗概集,pp.233-234,2005.7
- 3) 辻田修,早部安弘,大熊武司,和田章:弾塑性構造物の風応答 性状並びにその予測に関する研究 その1 風直角振動の場 合,日本建築学会構造系論文集,第481号, pp.9-16, 1996.3
- 4) 吉江慶祐,北村春幸,大熊武司,和田章:エネルギーの釣合に 基づく平均成分を有する広帯域性変動風力を受ける弾塑性構 造物の応答予測手法,日本建築学会構造系論文集,第608号, pp.21-28,2006.10
- 5) 辻田修, 早部安弘, 大熊武司, 和田章: 弾塑性構造物の風応答 性状ならびにその予測に関する研究 その4 多質点モデル への展開, 日本建築学会構造系論文集, 第 499 号, pp.39-45, 1997.9
- 6) 鶴見俊雄,片桐純治,大熊武司,大内隼人,工藤愛架:高層免 震建築物の等価線形モデルによる風応答解析 その1~4,日本 建築学会学術講演梗概集, pp.163-170, 2015.9
- 7) 日本建築学会:建築物荷重指針·同解説, 2015
- 8) 日本建築学会:建築物荷重指針を活かす設計資料 2 建築物の 風応答・風荷重評価/CFD ガイド, 2017.2
- 謝辞は、その2にまとめて示す。

*1東京工業大学環境・社会理工学院 大学院生

*2 東京工業大学未来産業技術研究所 准教授・博士(工学)

Graduate Student, School of Environment and Society, Tokyo Institute of Technology Associate Prof., FIRST, Tokyo Institute of Technology, Dr. Eng.

**3株式会社竹中工務店 技術研究所 主任研究員・博士(工学) Chief Researcher, Research & Development Institute, Takenaka Corporation, Dr. Eng.