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Abstract

The graph reachability or the st-connectivity problem asks, for a given graph
G and two of its vertices s and t, whether there is a path in G from s to t
or not. This problem is one of the fundamental computational problems in
both algorithm design and in complexity theory. In particular, this problem
is known to be complete (under logspace reductions) for the complexity class
NL—nondeterministic logspace. Thus an O(log n)-space algorithm for graph
reachability implies that the complexity class NL equals L, and resolves one of
the fundamental open problems in computational complexity theory. Interest-
ingly, for its undirected version, that is, for the undirected graph reachability
problem, Reingold gave a remarkable O(log n)-space algorithm. Note that, by
using standard algorithmic techniques such as BFS or DFS we can design an
algorithm that runs in almost linear-space and in almost linear-time for solv-
ing reachability over directed graphs. Savitch gave an algorithm that solves
reachability using O((log n)2)-space. However Savitch’s algorithm takes super
polynomial-time. While the BFS/DFS algorithm is time-efficient, Savitch’s al-
gorithm is space-efficient. Thus it is natural to ask whether there exists an
algorithm, for the directed graph reachability problem, that is efficient in both
time and space. In a survey article on the graph reachability and related prob-
lems, Wigderson asked whether there is a sublinear-space and polynomial-time
algorithm for the graph reachability problem. For this question, the best known
answer is the algorithm given by Barnes et al. that runs in O

(
n/2

√
logn

)
-space

and polynomial-time. Unfortunately, though the bound O
(
n/2

√
logn

)
is “sub-

linear”, it is quite close to being linear. If we view O
(
n1−ε

)
(for some ε > 0), as

“sublinear”, it has been open whether such a sublinear-space and polynomial-
time algorithm exists for reachability problem.

Recently, there have been some advancements on this sublinear-space and
polynomial-time computability for restricted graph classes. The first break
through was given by Asano and Doerr, who showed an algorithm that solves the
reachability problem on directed grid graphs inO(n1/2+ε)-space and polynomial-
time. Inspired by this work, Imai, Nakagawa, Pavan, Vinodchandran, and
Watanabe gave anO(n1/2+ε)-space and polynomial-time algorithm for the reach-
ability problem on directed planar graphs. Later Asano et al. gave an improved
Õ(
√
n)-space algorithm. In this doctoral dissertation, we propose an Õ(n1/3)

and polynomial-time algorithm for the grid graph reachability problem. Note
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that, in all of the above algorithms, the input graphs are planar and they all
critically rely on the existence of O(

√
n)-size separator.

The Separator Theorem states that any planar graph G with n vertices has
a separator of size O(

√
n), that is, a set S of O(

√
n) vertices of G such that by

removing S, G is split into disconnected subgraphs of almost equal size, say, each
having more than n/3 vertices. In fact, in their seminal work that first proved
the Separator Theorem, Lipton and Tarjan gave an efficient separator algorithm,
an algorithm for computing an O(

√
n)-size separator for planar graphs. The

notion of planar separator and the algorithm of Lipton and Tarjan have found
several applications in designing efficient algorithms for planar graphs. Since
the work of Lipton and Tarjan, several versions of separator algorithms have
been proposed, and they have been applied to design various algorithms for
planar graphs.

The above mentioned reachability algorithms use a separator algorithm pro-
posed by Imai et al. that computes an O(

√
n)-size separator in polynomial-time

and Õ(
√
n)-space for any given planar graph with n vertices. In their paper,

it is claimed that such a separator algorithm can be designed by modifying
the algorithm of Gazit and Miller that uses Miller’s separator algorithm as a
basic subroutine. While a key modification idea is given in their paper, one
needs to supply nontrivial details to design a desired algorithm claimed in their
paper. In this doctoral dissertation, we completely reconsider the design of a
separator algorithm that runs in Õ(

√
n)-space and polynomial-time on planar

graphs. While we borrow many ideas from Gazit and Miller and Imai et al, our
algorithm in this dissertation differs from both the algorithms in many techni-
cal details. Through this work we also clarify that the separator construction
problem is log-space reducible to the problem of constructing a BFS tree for
a given undirected graph. That is, we show that a key to get yet more space
efficient separator algorithm is to improve the space complexity of the BFS tree
construction problem.
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Chapter 1

Introduction

1.1 Planar separator theorem
A planar graph is a graph that can be embedded in a plane without any edge
intersections. There are several significant and useful characterizations and
properties of planar graphs. (e.g., Euler’s formula, Kuratowski’s and Wagner’s
theorems, etc. [41, 63, 64, 46, 24, 55, 61]) Above all, graph theoretically, the
Separator Theorem is important for illustrating one of the key characteristics of
planar graphs. This theorem claims that any planar graph G with n vertices
has an O(

√
n)-size separator, that is, a set S of O(

√
n) vertices of G such that

by removing S, G is split into disconnected subgraphs of almost equal size, say,
each having more than n/3 vertices. For example, consider a

√
n×√n grid graph

G (see Figure 1.1). The central column S is a
√
n-size separator. In fact, G is

divided into left and right hand sides of the same size by removing S. A set of
k <
√
n vertices in G can enclose at most k(k−1)/2 vertices in G. Thus, we need

at least
√

2n/3 vertices for dividing G such that disconnected subgraphs have

SA B

Figure 1.1: A separator for a grid graph. S divides the grid graph into two
subgraphs A and B of the same size.
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1.1. PLANAR SEPARATOR THEOREM

more than n/3 vertices. Therefore, the O(
√
n)-size in the theorem is optimal.

In their seminal work that first proved the separator theorem, Lipton and
Tarjan [45] gave an efficient separator algorithm, an algorithm for computing
an O(

√
n)-size separator for planar graphs. For an input planar graph G, they

first perform a breadth first search, starting from an arbitrary vertex v, and
classify the vertices of G by distances from v. A level-` layer is a set of vertices
whose distances from v are equal to `. If the level-` layer is removed, G is split
into level-< ` layers and level-> ` layers. They showed that we can compute
two layers such that a union of them becomes an O(

√
n)-size separator in linear

time. Precisely speaking, the size of the separator computed in this way is at
most

√
8n. Djidjev [28] improved the constant factor from

√
8 to

√
6 ≈ 2.45; he

also proved a lower bound of 1.56
√
n, which is still the best known. Another

approach was proposed by Miller [47]. For an input planar graph G, Miller’s
strategy first computes a spanning tree T of G such that the diameter of T is
O(
√
n). If we fix an edge e which does not appear in T , a path on T connecting

end points of e is determined. This path and the non-tree edge e form a simple
cycle. The simple cycle divides G into its inside and outside, and the size of
this cycle is O(

√
n) since the diameter of T is O(

√
n). Miller showed that we

can construct such a cycle that each of its inside and outside has more than n/3
vertices, thus the cycle is in fact an O(

√
n)-size separator. Moreover, many other

separator algorithms have been proposed; e.g., [5, 27, 48, 56, 4, 57, 35, 50, 30].
The separator theorem has been used heavily in computer science for de-

signing efficient algorithms for planar graphs. For solving many kinds of prob-
lems, divide and conquer is a strong and useful method. A divide and conquer
algorithm breaks down a problem into two or more subproblems. The subprob-
lems are solved by using the method recursively. Then the solutions of these
subproblems are combined, and a solution of the original problem is obtained.
For designing efficient divide and conquer algorithms, decomposed subproblems
should be significantly smaller than the original. One basic way to guaran-
tee this is dividing a problem into subproblems of roughly the same size. The
separator theorem divides a planar graph into two disconnected subgraphs of
almost equal size. Thus, the theorem can be used for designing efficient divide
and conquer algorithms for problems on planar graphs. In fact, fast algorithms
based on divide and conquer using separators have been proposed for many
problems on planar graphs; e.g., shortest path problem [31, 37, 59, 40], shortest
cycle problem [42, 20], construction of nearest neighbor graphs [32], polygon
triangulation [36] and point location problem [44]. In addition to these linear
or polynomial-time solvable problems, this strategy can be applied to NP-hard
problems, and various NP-hard problems on planar graphs are solvable in time
2O(
√
n) or 2O(

√
n logn); e.g., maximum independent set [44], Steiner tree problem

[16], Hamiltonian cycle [25] and traveling salesperson problem [44]. On general
graphs, 2o(n)-time algorithms for these problems are not known. Besides exact
solutions of NP-hard problems, approximation algorithms of NP-hard optimiza-
tion problems can be obtained by controlling the recursion depth of divide and
conquer. A polynomial-time approximation schemes (PTAS) is an algorithm
that takes an instance of an optimization problem and a parameter ε > 0 as

2



1. INTRODUCTION

input, and computes a solution whose value is at most (1 + ε) ·OPT (for a min-
imization problem) or at least (1 − ε) · OPT (for a maximization problem) in
polynomial-time, where OPT is the optimal value of the problem. For instance,
for the traveling salesperson problem, a PTAS could output a tour of length
less than (1 + ε) ·L, where L is the length of the shortest tour. Several PTAS’s
for NP-hard optimization problems on planar graphs have been proposed; e.g.,
maximum independent set [44, 13], minimum vertex cover [14, 21] and traveling
salesperson problem [7].

The separator theorem is useful for constructing not only time efficient algo-
rithms but also space efficient algorithms. For the graph reachability problem,
some space efficient algorithms have been proposed. (The details about the
graph reachability problem will be described in the next section.) Asano and Do-
err [8] showed an algorithm that solves the reachability problem on grid graphs
in O(n1/2+ε)-space. Inspired by this work, Imai, Nakagawa, Pavan, Vinodchan-
dran and Watanabe [38] gave an O(n1/2+ε)-space algorithm for the reachability
problem on planar graphs in general. Later Asano et al. [9] gave an improved
Õ(
√
n)-space1 algorithm. In all these algorithms, using O(

√
n)-size separator is

crucial. Furthermore, these algorithms except for the first one use a separator
algorithm proposed in [38] that produces an O(

√
n)-size separator in Õ(

√
n)-

space. This separator algorithm is based on an algorithm of Gazit and Miller
[33] that is designed for computing a separator efficiently on a parallel computa-
tion model. Since space-bounded computation and parallel computation share
common features, one can expect that the algorithm of Gazit and Miller can
be modified naturally for, say, Õ(

√
n)-space bounded computation. Unfortu-

nately, it was not so simple and there have been several nontrivial details left
unexplained in [38]. In this doctoral dissertation we completely reconsider the
design of a separator algorithm that runs in Õ(

√
n)-space and polynomial-time

on planar graphs [10].

1.2 Graph reachability problem

The graph reachability problem, for a graph G = (V,E) and two distinct vertices
s, t ∈ V , is to determine whether there exists a path from s to t. This problem
characterizes many important complexity classes. The directed graph reachabil-
ity problem is a canonical complete problem for the non-deterministic log-space
class, NL. SL is the class of problems solvable by symmetric, non-deterministic
log-space computation. (Symmetric means that, in non-deterministic compu-
tation by a Turing machine, a configuration A yields a configuration B if and
only if B yields A.) The inclusion relation L ⊆ SL ⊆ NL holds, where L is
the deterministic log-space computable class. The undirected graph reachability
problem is SL-complete [43]. There have been progresses of deterministic algo-
rithms for the undirected graph reachability problem; an O(log3/2 n)-space algo-

1In this dissertation “Õ(s(n))-space” means O(s(n))-words intuitively and precisely
O(s(n) logn)-space.

3



1.2. GRAPH REACHABILITY PROBLEM

rithm by Nisan, Szemeredi and Wigderson [49], an O(log4/3 n)-space algorithm
by Armoni, Ta-Shma, Wigderson and Zhou [6] and an O(log n log log n)-space
algorithm by Trifonov [60]. Reingold [53] gave a remarkable O(log n)-space algo-
rithm solving this problem. This result implies that L = SL and the undirected
graph reachability problem characterizes the class L. As with P vs. NP problem,
whether L = NL or not is a major open problem in computational complexity
theory. This problem is equivalent to whether the directed graph reachability
problem is solvable in deterministic log-space. There exist two fundamental so-
lutions for the directed graph reachability problem, breadth first search, denoted
as BFS, and Savitch’s algorithm [54]. BFS runs in O(n)-space and O(m)-time,
where n and m are the number of vertices and edges, respectively. For Sav-
itch’s algorithm, we use only O(log2 n)-space but require Θ(nlogn)-time. BFS
needs short time but large space. Savitch’s algorithm uses small space but super
polynomial-time. A natural question is whether we can make an efficient deter-
ministic algorithm in both space and time for the directed graph reachability
problem. In particular, Wigderson [65] proposed a problem that does there exist
an algorithm for the directed graph reachability problem that uses polynomial-
time and O(nε)-space, for some ε < 1?, and this question is still open. The best
known polynomial-time algorithm, shown by Barnes, Buss, Ruzzo and Schieber,
uses O(n/2

√
logn)-space [15]. Note that, though the bound O(n/2

√
logn) is “sub-

linear”, it is quite close to linear and improving this bound remains a significant
open question. In fact, improving this bound is considered to be difficult be-
cause there exists a tight lower bound for this problem on the node-named JAG
(NNJAG) model [29]. The jumping automation for graphs, or JAG, introduced
by Cook and Rackoff [23] is a computational model which moves a set of pebbles
on the graph. The operations of JAG are moving a pebble along an edge in the
graph and making a pebble jump a node occupied by another pebble. NNJAG
is an extension of JAG, where the computation is allowed to depend on the
name of the node on which a pebble is located. Though NNJAG is a restricted
model compared to Turing machine, many known algorithms for the directed
reachability can be implemented in NNJAG without significant blow up in time
and space [23, 51].

For some restricted graph classes, better results are known. Stolee and Vin-
odchandran [58] showed that for any 0 < ε < 1, the reachability problem for di-
rected acyclic graph with O(nε) sources and embedded on a surface with O(nε)
genus can be solved in polynomial-time and O(nε)-space. Chakraborty and
Tewari [18] showed that reachability in directed layered planar graphs can be
decided in polynomial-time and O(nε)-space for any ε > 0. Kannan, Khanna
and Roy [39] gave an O(nε)-space and polynomial-time algorithm for solving
the reachability problem in unique path graphs. Planar graphs are a natural
topological restriction of general graphs, and grid graphs are a subclass of pla-
nar graphs, where a grid graph is a graph whose vertices are located on grid
points, and whose vertices are adjacent only to their immediate horizontal or
vertical neighbors. The planar and grid graph reachability problems have been
well-studied. They are in the unambiguous log-space class, UL [17], which is
a subclass of NL. (Unambiguous means that problems are decided by a non-

4



1. INTRODUCTION

deterministic machine with at most one accepting computation.) Furthermore,
They are equivalent under log-space reduction [3], and log-space reducible to
their complements [2], and hard for NC1 under AC0 reduction [2]. (NC1 consists
of all families of circuits of depth O(log n) and polynomial size, with constant
bounded fan-in boolean gates, and AC0 consists of all families of circuits of depth
O(1) and polynomial size, with unbounded fan-in boolean gates.) Thus, in fact,
they are in UL ∩ co-UL, but are not known to be hard for L under AC0 reduction.
Asano and Doerr [8] showed an algorithm that solves the reachability problem
on grid graphs in O(n1/2+ε)-space. Inspired by this work, Imai et al. [38] gave
an O(n1/2+ε)-space algorithm for the reachability problem on planar graphs. In
both algorithms, due to the recursive structure of the algorithms, the exponent
of polynomial of time complexity grows in proportion to 1/ε. Asano et al. [9]
devised an efficient way to control the recursion, and proposed a polynomial-
time and Õ(

√
n)-space algorithm for the planar graph reachability problem.

In this doctoral dissertation we propose an Õ(n1/3)-space and polynomial-time
algorithm for the grid graph reachability problem [12].

1.3 Contribution

Space efficient computation has been one of the important research targets in
theory of computing from both theoretical and practical view points. For ex-
ample, constructing a polynomial-time and sublinear-space algorithm for the
directed graph reachability problem has been recently investigated actively [8,
38, 9], and several interesting sublinear-space algorithms have been found for
the problem on grid and planar graphs. These algorithms make use of a small
size separator of a given planar graph, and it is important to compute such
a separator in sublinear-space. More precisely, these algorithms use a sepa-
rator algorithm proposed in [38] that computes an O(

√
n)-size separator in

polynomial-time and Õ(
√
n)-space for any given planar graph with n vertices.

In [38], it is claimed that such a separator algorithm can be designed by mod-
ifying the algorithm of Gazit and Miller [33] that uses Miller’s algorithm [47]
as a basic subroutine. While a key modification idea is given in [38], one needs
to supply nontrivial details to design a desired algorithm claimed in [38]. In
this doctoral dissertation, we give a complete separator algorithm that runs in
Õ(
√
n)-space and polynomial-time on planar graphs [10]. For the sake of this,

we give nontrivial modifications of Miller’s algorithm [11] and the algorithm of
Gazit and Miller [10].

Miller’s algorithm is a linear-time algorithm for computing an O(
√
n)-size

separator for 2-connected planar graphs which in fact can be implemented as an
NC algorithm (i.e., a polylogarithmic parallel time algorithm with a polynomial
number of processors). We modify it to a space efficient version for using as a
subroutine of the main algorithm. More specifically, we show a polynomial-time
algorithm that computes, for any weighted plane graph G with n vertices and
f faces such that it is 2-connected and all its faces have weight ≤ 2/3 and size
≤ d, a weighted cycle separator of size O(

√
dn) in O(f log n)-space. Through

5



1.4. OUTLINE OF THIS DISSERTATION

this work we also clarify that the separator construction problem is log-space
reducible to the problem of constructing a breadth first search tree (BFS tree)
for a given undirected graph. That is, we show that a key to get yet more space
efficient separator algorithm is to improve the space complexity of the BFS tree
construction problem.

As mentioned in the previous section, Asano et al. [9] gave a polynomial-
time and Õ(

√
n)-space algorithm for the planar graph reachability problem.

Since grid graphs are special cases of planar graphs, we can solve the grid graph
reachability problem in Õ(

√
n)-space and polynomial-time. In this doctoral

dissertation, we give an Õ(n1/3)-space and polynomial-time algorithm for the
grid graph reachability problem [12]. Since this algorithm uses the algorithm
of Asano et al. as a subroutine, which crucially uses an O(

√
n)-size separator,

this algorithm also highly depends on an O(
√
n)-size separator. This result is

interesting in this sense because its space bound is much less than the separator
size.

1.4 Outline of this dissertation
In the next chapter, some formal definitions are shown to explain our algorithms.
Some basic notations and notion for discussing planar graphs are given in the
first section, and we discuss our computational model in the second section.

In the third chapter, we modify Miller’s separator algorithm to a space effi-
cient version. The outline of our algorithm is described in the first section. The
algorithm consists of four steps, and section 2 to 5 correspond to those steps. In
the sixth section, we show that the separator construction problem is log-space
reducible to the problem of constructing a BFS tree.

In the fourth chapter, a complete construction of an O(
√
n)-size separator

with Õ(
√
n)-space and polynomial-time is proposed. The outline of the algo-

rithm is described in the first section. The algorithm consists of three steps,
and Step 2 consists of four sub-steps. Step 3 is contained in the outline section,
and the other step and sub-steps correspond to the following sections.

In the fifth chapter, the Õ(n1/3)-space and polynomial-time algorithm for
the grid graph reachability problem is proposed. The algorithm transforms
an input grid graph to a specific planar graph, and applies the planar graph
reachability algorithm of Asano et al. [9] to the modified planar graph. The
graph transformation algorithm is shown in the second section. In the third
section, we explain how to apply the reachability algorithm of [9].

Finally the conclusion is discussed in the last chapter.

6



Chapter 2

Preliminaries

2.1 Basic notations and notion

Throughout this dissertation, for any set X, |X| denotes the number of elements
in X. We refer to the maximum and minimum elements of X as maxX and
minX, respectively. For any graph G, we formally use V(G) and E(G) to denote
the set of vertices of G and the set of edges of G respectively. On the other hand,
we will mainly discuss with some fixed graph G, and in this case, we simply use
V and E to denote V(G) and E(G). For any vertex v ∈ V , let NG(v) denote
the set of its neighbors, namely, vertices adjacent to v in G. For any U ⊆ V
(resp., D ⊆ E) we use G[U ] (resp., G[D]) to denote a subgraph of G induced by
U (resp., by D).

We assume that an input graph is simple, that is, each pair of vertices has
at most one edge. By a path of G = (V,E), we mean a “simple” path, that
is, a sequence adjacent edges of E where no vertex is visited more than once.
Similarly, a cycle of G = (V,E) is a sequence adjacent edges of E that comes
back to the first vertex where no vertex except for the first one is visited more
than once. We simply represent a path and a cycle by a sequence (v1, . . . , vm)
of vertices of V such that every {vi, vi+1} (and also {vm, v1} for a cycle) is an
edge of E. Although the same sequence could be used for representing both
a path and a cycle, the difference should be clear from the context. We may
also use this sequence representation for indicating the “direction” of a path or
a cycle.

While our argument should be mathematically precise, we would like to avoid
rigorous but tedious topological treatments of plane graphs. Thus, following
the previous work in the literature (see, e.g., [47]) we prepare a framework for
discussing plane graphs in a combinatorial way.

Definition 2.1 (Planar graph, plane graph, and combinatorial embedding). A
graph G is planar if it has a planar embedding, a way to arrange the vertices
of NG(v) on the plane (i.e., R2) for all v ∈ V so that no pair of edges intersect
each other except for their endpoints. A planar embedding is specified by a
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combinatorial embedding, that is, a set {πv : v ∈ V } of lists, where each πv is
an enumeration of vertices of NG(v) in the clockwise order around v under the
embedding.
Remark. Throughout this dissertation, we will use a plane graph to mean a
planar graph that is embedded in the plane following one of such combinatorial
embeddings.

Consider any plane graph G embedded in the plane under a combinatorial
embedding {πv : v ∈ V }. One of the keys for discussing plane graphs is a
way to define the faces of G. Intuitively, the graph G (embedded in the plane)
separates the plane into “subplanes,” each of which is a “face” of G. Here we
formally define the notion of “face” as follows.

First define the notion of “left-traverse” of G. Consider any edge {v1, v2} of
G, and fix its direction as, e.g., (v1, v2), which we regard as the first directed
edge e1 (of the left-traverse). Consider the enumeration πv2 of adjacent vertices
of v2, and let v3 be the next vertex of v1 in the enumeration, that is, v3 is
clockwise the first vertex adjacent to v2 after v1. Then define e2 = (v2, v3) as
the second directed edge. Continue this process of identifying directed edges
(based on edges of G) until we come back to the first directed edge e1. We
call this process left-traverse process, and a sequence of vertices visited during
the process left-traverse of G started from (v1, v2). Precisely speaking, we do
not include the last vertex, i.e., the starting vertex v1 in the sequence; see
Figure 2.1 for examples. Although a left-traverse is a sequence of vertices, this
can be regraded as the sequence of the directed edges in the order that they are
identified by the left-traverse process. We remark here the following fact.

Lemma 2.1. Consider any graph G. For any of its left-traverse (v1, v2, . . .), no
directed edge (vi, vi+1) appears more than once. Thus, no infinite loop occurs
in any left-traverse process.

Proof. 1 Assume to the contrary that some directed edge (vi, vi+1) appears
more than once. Let ei−1 = (vi−1, vi) and ei = (vi, vi+1) be the directed edges
identified in the left-traverse process when vi appears for the first time. From
our assumption, we have another (vj , vi) for some j > i + 1 right after which
ei appears for the second time in the process. Then since vi+1 is clockwise the
next vertex of vi−1 among all vertices adjacent to vi, it follows that vj must be
located between vi+1 and vi−1 in the clockwise enumeration πvi of NG(vi); that
is, vi+1 cannot be clockwise the next of vj in πvi because at least vi−1 comes
before vi+1 after vj ; see Figure 2.1 (c). Thus, (vi, vi+1) cannot be next to (vj , vi)
in the process; a contradiction.

Consider any plane graph G with at least two faces. Then any left-traverse
t = (v1, . . . , vm) of G separates the plane where G is embedded into at least two
“subplanes.” From the choice of directed edges, it is clear that there is no vertex

1The lemma may be clear since the same vertex cannot be the “next” vertex of two vertices
in an enumeration of a combinatorial embedding. But in order to give a clear image on the
left-traverse notion, we give a bit careful proof here.
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(a) (b) (c)

(a) An example of the first two edges identified by a left-traverse process.
As the next directed edge of e1 = (v1, v2), an edge e2 = (v2, v3) is
selected, where v3 is the clockwise next vertex of v1 among all adjacent
vertices of v2. By the choice of these edges, no vertex adjacent to v2
exists in the left of e1 → e2, which guarantees that the left of each
left-traverse is a “face.” (b) A connected but not 2-connected graph.
A left-traverse from edge (3, 4) is (3, 4, 5, 6, 3, 2, 1, 2), which defines the
outer face. On the other hand, the face inside the square is defined by,
e.g., a left-traverse from edge (4, 3), that is, (4, 3, 6, 5). (c) An example
for the proof of Lemma 2.1.

Figure 2.1: Left-traverse

of G in the “subplane” left of the directed edges of t; that is, a “face” is identified
by this left-traverse. In fact, it has been known that for any plane graph, all
its faces are identified by some left-traverse as stated in Proposition 2.1 below.
In this dissertation, we regard this proposition as our definition of the notion of
face; throughout this dissertation, we will identify each face by its corresponding
left-traverse, which is called the boundary of the face.

Proposition 2.1. Consider any plane graph G. Then for any left-traverse of
G, there is a unique subplane, i.e., face, located left of the traverse w.r.t. its
direction. On the other hand, for any face of G, there is a left-traverse of G that
defines the face as a subplane located left of the left-traverse w.r.t. its direction.
Remark. Since each left-traverse is determined by a starting directed edge,
there are more than one essentially the same left-traverses. Thus, the corre-
spondence between faces and left-traverses is not one-to-one but one-to-many.

Note that a left-traverse is not a cycle in general; for example, Figure 2.1
(b). But if G is 2-connected, then any left-traverse of G is a cycle; see, e.g.,
[26]. (A graph is 2-connected if every pair {u, v} of its vertices are connected by
two paths not sharing vertices except for {u, v}, or equivalently, it has no cut
vertex.)

Proposition 2.2. Consider any plane graph G that is also 2-connected. Then
any left-traverse is a cycle. That is, every face of G has a boundary consisting
of one cycle, which we call a face boundary cycle.
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Definition 2.2 (Face boundary representation and face size). For any 2-connected
plane graph G, for any face, its face boundary representation is its face boundary
cycle c, or more precisely, a sequence of vertices of c in the order so that the face
is located left of c w.r.t. the order. The size of a face is the number of vertices
of its face boundary cycle.

Definition 2.3 (Incidence and edge-incidence). Two faces are incident (resp.,
edge-incident) if their boundaries share some vertex (resp., some edge).
Remark. In general, we say that two graph objects are incident if they share
some vertex. For example, we say that two paths are incident if they share some
vertex (and possibly more).

Definition 2.4 (Complete face information). A complete face information of a
graphG is a list of all face boundary representations ofG and lists of respectively
all incident and edge-incident pairs of faces of G.

While it is not essential for our discussion, we note here that a complete face
information of any plane graph with n vertices can be expressed in Õ(n)-space,
which is easy to show by the Euler’s formula on the number of vertices, edges,
and faces of a plane graph.

We introduce a generalized separator notion, which will be mainly used in
this dissertation. First we define the standard separator notion formally.

Definition 2.5 (Standard separator). For any graph G with n vertices, and for
any parameter α ∈ (0, 1), an α-separator of G is a set S of vertices of G such
that the removal of S creates two disconnected subgraphs each of which has at
least αn vertices.

A generalized separator notion is defined for weighted graphs. Here a weighted
graph2 is a plane graph G for which we additionally give a weight to each face of
G. Formally, we may represent a weighted graph G = (V,E) by V , E, its com-
binatorial planar embedding, and its complete weighted face information where
each face representation is also given its weight. By normalizing weights, we
may assume that the total weight is always 1.

Definition 2.6 (Cycle weighted separator). For any 2-connected weighted graph,
and for any ρ ∈ (0, 1), a cycle weighted ρ-separator of the graph is a cycle C
that creates two subplanes each of which has weight ≥ ρ.
Remark. The weight of a subplane is simply the sum of the weights of all
faces in the subplane.

2.2 Computational model
For discussing sublinear-space algorithms formally, we use the standard multi-
tape Turing machine model. A multi-tape Turing machine consists of a read-
only input tape, a write-only output tape, and a constant number of work tapes.

2Our explanation is simplified from [47] by assuming zero weight to all vertices and edges.
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The space complexity of this Turing machine is measured by the total number
of cells that can be used as its work tapes. Throughout this paper, we will use n
to denote the number of vertices of an input graph and use it as our complexity
parameter; that is, we will measure the space and time complexity in terms of
n only (unless stated explicitly in other ways). As a unit for space complexity,
we will often use “word”, by which we mean c0 log n cells, where c0 is a constant
large enough to keep an input graph vertex index (i.e., a number between 1 and
n) in one word in our Turing machine model. We use Õ(s(n)) to mean O(s(n))

words. Thus, for example, by a “Õ(s(n))-space algorithm” we formally mean a
Turing machine that implements the algorithm by using O(s(n) log n)-size work
tapes, i.e., work tapes consisting of O(s(n) log n) cells in total, for processing an
input graph with n vertices.

For the sake of explanation, we will follow a standard convention and give a
sublinear-space algorithm by a sequence of constant number of sublinear-space
subroutines A1, . . . , Ak such that each Ai computes, from its given input, some
output that is passed to Ai+1 as input. Note that some of these outputs cannot
be stored in a sublinear-size work tape; nevertheless, there is a standard way
to design a sublinear-space algorithm based on these subroutines. The key
idea is to compute intermediate inputs every time when they are necessary. For
example, while computing Ai, when it is necessary to see the jth bit of the input
to Ai, simply execute Ai−1 (from the beginning) until it yields the desired jth
bit on its work tape, and then resume the computation of Ai using this obtained
bit. It is easy to see that this computation can be executed in sublinear-space.
Furthermore, while a large amount of extra computation time is needed, we can
show that the total running time can be polynomially bounded if all subroutines
run in polynomial-time. In this dissertation, we in fact do not calculate the exact
value of the exponent of polynomial of time complexity, but, of course, we will
prove that our algorithms run in polynomial-time by using the above argument.
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Chapter 3

Modification of Miller’s
Separator Algorithm

Miller [47] proposed a linear-time algorithm for computing small separators
for 2-connected planar graphs. In this chapter, we explain his algorithm and
present a way to modify it to a space efficient version [11]. Our algorithm can
be regarded as a log-space reduction from the separator construction to the
breadth first search tree construction.

3.1 Outline of the algorithm
We introduce notations used in this chapter, and then state our main result in
this chapter and the outline of our algorithm.

We consider simple, undirected, 2-connected, and weighted plane graphs.
Consider a plane graph G = (V,E). We will use, e.g., ~c to denote a directed
cycle, and use (~c)−1 to denote its reverse directed cycle. (We will also use, e.g., ~e
and (~e)−1 to denote a directed edge and its reversal.) For a directed cycle ~c, we
regard its left hand side w.r.t. its direction as the inside of ~c, and the right hand
side is called the outside of ~c. We use ins(~c) and out(~c) to denote respectively
the inside and the outside of ~c. Precisely speaking, the boundary cycle ~c is not
included in ins(~c) or out(~c); that is, the graph is divided into three disjoint
parts, namely, ins(~c), ~c, and out(~c). By ins+(~c) (resp., out+(~c)) we denote the
subgraph induced by the vertices of ins(~c) (resp., out(~c)) and ~c. In general, for
any set C of directed cycles, we define ins(C) as the intersection of the insides
of all directed cycles of C, which is simply called the inside of C. Note that
determining whether a given vertex is located inside of a given directed cycle
under an assumed planar embedding is O(log n)-space computable by using the
undirected graph reachability algorithm of Reingold [53].

In this chapter, we assume that an input graph G is a weighted graph; that
is, each face is assigned a positive value as its weight. For each face ~f , we use
w(~f) to denote the weight of ~f (w.r.t. the graph considered in each context). We
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assume that the sum of the weights of all faces is 1. (For simplicity, we would
use integers for specifying the weights of faces considering that their normalized
values divided by their total are real weights.)

In summary, we assume that an input to our separator algorithm is a plane
weighted graph G = (V,E) with n vertices that is specified by (i) its combina-
torial embedding (i.e., a list of cyclic order enumerations of adjacent vertices of
v ∈ V ), and (ii) a list of all faces, (i.e., their boundary cycles) and their weights
(in integers). We assume that each integer weight can be expressed in O(log n)
bits so that we may assume that the input can be encoded in O(n log n) bits.
Note that there is a O(log n)-space (and hence, polynomial-time) algorithm that
determines whether a given graph is planar and (if it is a planar) computes one
of its planar embeddings [3]. Furthermore, it is easy to enumerate all bound-
ary cycles for faces in O(log n)-space from a combinatorial planar embedding.
Thus, if there is some simple way to define the weight of a face, then we can pre-
pare the above input data from any standard undirected graph representation
in O(log n)-space.

Consider any weighted plane graph G = (V,E). A cycle of G (or more
specifically, a directed cycle ~c) is called a weighted cycle separator of G if both
the weight of the inside ~c and that of the outside of ~c is at most 2/3. Here the
weight of the inside (resp., the outside) of ~c is the sum of the weights of all faces
located in the inside (resp., the outside) of ~c. The size of a separator ~c is simply
the number of vertices of ~c.

We state the theorem of Miller [47] and our result.

Theorem 3.1 ([47]1). For any weighted plane graph G with n vertices, if it is
2-connected and all its faces have weight ≤ 2/3 and size ≤ d, then there exists
a weighted cycle separator of size O

(√
dn
)
. Furthermore, we have an algorithm

that, for a given weighted plane graph G satisfying the above conditions, com-
putes such a weighted cycle separator in Õ(n)-time (and hence Õ(n)-space).

In this chapter, based on the above algorithm of Miller, we propose an algo-
rithm that is space efficient in the following sense.

Theorem 3.2 ([11]). We have an algorithm that, for a given weighted plane
graph G satisfying the conditions of the above theorem, computes a weighted
cycle separator of size O

(√
dn
)
in Õ(f)-space and polynomial-time w.r.t. n,

where f is the number of faces of G.

We explain the outline of our algorithm. Some technical terms (i.e., quoted
ones) are used without definition; see the corresponding sections for the details.
The outline of our algorithm is essentially the same as that of Miller’s algo-
rithm. Let G be a given weighted plane graph satisfying the conditions of the
theorem. We consider the following four steps, each of which is conducted by
a space efficient algorithm. (Since the polynomial-time computability of these

1Miller [47] gave a more precise separator size bound by specifying also a constant factor.
He also showed a polylogarithmic parallel time algorithm. But we omit such discussions in
this dissertation.
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algorithms is clear, we will omit mentioning their running time in the following
discussion.)

1. In this step we reorganize G as a breadth first search tree (in short, BFS
tree) FG of the faces of G and construct a tree TG consisting of cycles relevant
to the faces in FG. We will refer FG as a “face level tree” and TG as a “frontier
cycle tree.” (In order to distinguish from the input graph, we will use node to
refer a vertex of a frontier cycle tree.)

We consider two algorithms for achieving the computation of this step. The
first one is to compute a face level tree FG for G, and the second one computes
a frontier cycle tree TG from FG. It should be noted here that the first one
needs Õ(f)-space, which is only the part of our algorithm that needs more than
Õ(1)-space, i.e., more than constant number of working variables. The other
parts of the algorithm can be computed in Õ(1)-space.
2. We modify the frontier cycle tree TG. This step consists of two substeps.
First prune some branches and an ancestor part of TG. An algorithm for this
substep creates a pruned frontier cycle tree TH′ , which defines a subgraph H ′
of G. Secondly add back some nodes of TG to TH′ to obtain a frontier cycle tree
TH so that all its leaf nodes correspond to small size cycles in G. A subgraph
H of G is also produced from TH .
3. In this step we construct a small diameter spanning tree of H. More speci-
ficailly, we creates a spanning tree T of H such that any pair of vertices of H
has a path of length O

(√
dn
)
in T .

Our algorithm for this task is different from the one given by Miller [47] that
uses breadth first search in H starting from all but one edge in the root cycle
of TH , for which we need Õ(n)-space. Our algorithm produces a tree whose
diameter may become at most four times larger; but it is simpler, and it can be
computed in Õ(1)-space.
4. Finally construct a desired weighted cycle separator ~c∗. Roughly speaking,
an algorithm for this step computes ~c∗ by collecting faces in an appropriate
cycle ~c~e formed by a non-tree edge ~e = (u, v) of H and the path connecting v
and u in T . We show a way to implement this computation in Õ(1)-space.

In the following sections, we explain each step and show the corresponding
algorithms. Throughout the explanation, let G = (V,E) denote an input plane
graph that satisfies the conditions of the theorem. Let FG denote the set of the
faces of G. For this G, as mentioned in the above theorems, we will use n, d,
and f to denote respectively the number of its vertices, an upper bound for the
size of its faces, and the number of its faces.

3.2 Face level tree and frontier cycle tree

We reorganize a graph as a face level tree and a frontier cycle tree for the
subsequent algorithms. For a pair of faces, we say that they are incident if their
boundary cycles share at least one vertex. We extend this notion to a relation
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including cycles in general; we say that, for example, a face is incident to a cycle
if the boundary cycle of the face has a common vertex with the cycle. Note here
that the incidence relation can be checked in Õ(1)-space, i.e., by using only
constant number of words, for a given pair of (boundary) cycles.

A face level tree FG and a frontier cycle tree TG are defined by a breadth first
search process w.r.t. the distance induced naturally by the incidence relationship
among the faces of G. Specifically, FG and TG are defined as follows. Fix any
face ~f0 of G, and let ~c0 be its boundary cycle. We regard this ~f0 as a level zero
face and as the root face of FG. The directed cycle ~c0 is the root node of TG. We
then consider the faces in out(~c0) that are incident to ~c0, which are called level
one faces (see Figure 3.1), i.e., the faces of the next level of FG. Let F1 be the
set of all such level one faces, and let ∪F1 denote the subgraph of G consisting
of the boundary cycles of the faces of F1. Then from the 2-connectivity of G, it
follows that ∪F1 is also 2-connected (Lemma 3.3) and its boundary is defined by
a set of boundary cycles with disjoint outsides. (Note that the cycle (~c0)−1, the
reversal of ~c0, is one of these boundary cycles.) These cycles except for (~c0)−1

are called frontier cycles and regarded as the child nodes of the root ~c0 in the
frontier cycle tree TG. In this way, level one nodes of FG and TG are defined.

Now consider any one of these frontier cycles, and denote it as ~c1. Our
breadth first search process explores the outside of ~c1, i.e., out(~c1). We identify
faces in out(~c1) that are incident to ~c1 (if they exits) as level two faces of FG.
Then the child nodes of ~c1 in the frontier cycle tree TG are defined as the
boundary cycles of these level two faces (except for (~c1)−1). The face level tree
and the frontier cycle tree of G are defined in this way. This process is justified
by the following lemma.

Lemma 3.3. For any directed cycle ~c of G, let F be the set of faces of G outside
of ~c that are incident to ~c, and let ∪F be the subgraph of G consisting of the
boundary cycles of F . Then ∪F is 2-connected. Hence, there exists a set C of
directed cycles such that ins+(C) = ∪F . Note that C has at least (~c)−1.

Proof. We need to show the 2-connectivity of ∪F since the rest of the lemma
is from well-known properties of 2-connected graphs; see, e.g., [26]. Thus, we
consider any two distinct vertices u, v ∈ ∪F and show that there exist two vertex
disjoint paths between u and v on ∪F .

When both u and v are on ~c, there exist two paths that are parts of the
cycle ~c from u to v in clockwise and anti-clockwise directions.

Next consider the case where u ∈ ~c and v /∈ ~c. Let ~f ∈ F be a face on which
v lies, and let ~pv denote a path following the boundary ~f that begins and ends
respectively with a vertex of ~c and that contains no edge whose reversal is in ~c.
(Intuitively, two endpoints a and b of ~pv are vertices of ~c closest to v following
the boundary ~f . We call such a path a face boundary path (w.r.t. ~f) attached
to ~c.) If a 6= b, then we have two disjoint paths from v to u that use ~pv and ~c;
one goes through a, and the other goes through b. If a = b, then we use a face
~f ′ ∈ F whose boundary has a vertex w that is reachable from v without going
through a. Let ~pw be a face boundary path w.r.t. ~f ′ attached to ~c containing w.
We may assume that it has an endpoint c on ~c that is different from a. If there
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An example of the breadth first search process of the faces of a given graph. In
this figure, the process is started by choosing a face numbered (0) as a level zero
face. The next level faces, i.e., level one faces are faces numbered (1), which are
all incident to the level zero face. It is easy to see that a subgraph consisting
of boundary cycles of these level one faces is 2-connected and that its boundary
is a set of five boundary cycles (those started with arrowed edges labeled by A,
B, C, D, and E), including the reversal of the boundary cycle of the level zero
face (the one started with edge C).

Figure 3.1: Level one faces and their boundary cycles

were no such face like ~f ′, then G has a face whose boundary is not a simple
cycle contradicting the fact that a boundary of a face of a 2-connected graph
is always a simple cycle (and the assumption that G is 2-connected). Thus we
have two disjoint paths from v to u. One goes through a, and the other goes
through w and then c.

Finally we consider the case where neither u nor v are on ~c. Consider two
face boundary paths attached to ~c; one denoted as ~pu containing u and the
other denoted as ~pv containing v. (If ~pu = ~pv, then we clearly have two disjoint
paths between u and v because they are on the same face boundary cycle.) If
both ~pu and ~pv have two endpoints on ~c, then we can find two disjoint paths
between u and v. In the case where ~pu (respectively, ~pv) has only one endpoint,
we consider, as before, another face boundary path attached to ~c that has a
different endpoint on ~c and that is reachable from u (respectively, v), which can
be used as the second path to ~c from u (respectively, from v).

We now explain the algorithm for computing the face level tree FG of G
and the frontier cycle tree TG of G. We achieve this task by two substeps
computed by algorithms A1,1 and A1,2. Algorithm A1,1 computes FG, and then
by traversing FG, A1,2 produces the set of frontier cycles, i.e., the nodes of TG.
It also computes (i) parent-child relationship among the frontier cycles in TG,
and (ii) for each node of TG (i.e., a boundary cycle ~c), the information on which
faces of FG are the faces of out(~c) and incident to ~c.
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The algorithm A1,1 first chooses one face ~f0, say, the first face of FG given
in the input, and it outputs ~f0 as a root and the level zero face of FG. Then
it identifies the level one faces that are incident to ~f0, and it outputs identified
faces as the children of ~f0 (with their level). The algorithm uses an array F to
keep such identified faces. In general, the algorithm repeats the following: (i)
select the first unmarked face ~f in F, (ii) mark it, (iii) output its incident faces
not in F as the child faces of ~f with the next level of ~f , and (iv) store these
newly identified faces in F unmarked. In this way, A1,1 produces the face level
tree FG of G in the breadth first way in Õ(f)-space.

Algorithm A1,2 computes the frontier cycles of TG. For this, at each level,
the algorithm checks all faces of this level to identify their boundary cycles. Let
F and ∪F denote respectively the set of such faces (as well as their boundary
cycles) and the subgraph of G consisting of (the undirected version of) the edges
of the boundary cycles of F . We say that a directed edge of F is solitary if its
reversal does not appear in F . It is easy to see (e.g., in Figure 3.2) that the set of
solitary edges forms the boundary cycles of ∪F . Thus, we can find a boundary
cycle ~c of ∪F by traversing adjacent solitary directed edges from any one of
the solitary directed edges of ~c until coming back to the start vertex. When
traversing, if there are more than one solitary directed edges adjacent to the
current edge ~e = (u, v), then we choose the one next to ~e in the counterclock-
wise order in the solitary directed edges leaving from v. In this way the algorithm
A1,2 identifies the boundary cycles of ∪F and outputs those starting from the
solitary directed edge with the lowest index in each boundary cycle (so that
each boundary cycle is produced exactly once). During its computation for
producing a boundary cycle ~c, the algorithm can also determine which faces in
the next level in FG are the faces in out(~c) and incident to ~c. By using this
information, the algorithm can also compute the required additional information
on the structure of TG and FG.

Note that Lemma 3.3 guarantees that the traversed boundary edges form
a cycle; thus, for identifying one boundary cycle in the above computation,
the algorithm needs to keep only the start vertex and the currently traversed
boundary edge in its work memory. Then it is easy to see that the computation
of A1,2 as a whole can be done in Õ(1)-space.

3.3 Pruning a frontier cycle tree
We show two algorithms A2,1 and A2,2 for computing a subgraph H of G by
merging the faces of G so that H has small diameter and yet it consists of faces
of small size. The construction is based on the frontier cycle tree TG obtained
by the previous step. The algorithm A2,1 prunes subtrees under some frontier
cycles to shorten the depth of TG to make a tree TH′ . Note that for each frontier
cycle ~c, i.e., a node of TG, a subtree of TG under ~c represents a subgraph of G
located outside of ~c. Thus, pruning this subtree means to merge the faces of
this part to create a new face with (~c)−1 as its boundary cycle. The weight of
the new face is the sum of the weights of the merged faces, which is denoted by
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An example of boundary cycles of a frontier cycle tree. The boundary cycles
~c, ~ci, and ~ci+1 are the cycles bounding the corresponding labeled areas. The
figure shows the situation when the outside of ~c is explored and ~ci and ~ci+1

are identified as child cycles of ~c. Note, for example, (~ci)
−1, one of the frontier

cycles, consists of the solitary boundary edges of the faces ~f1, ~f2, ~f3 that are
incident to ~c.

Figure 3.2: Child boundary cycles ~ci and ~ci+1 of ~c

w(out(~c)), extending our notation for face weights. Recall that we assume that
the size of every face of G, i.e., the number of vertices of its boundary cycle is at
most d. This pruning process may create faces with large size. The algorithm
A2,2 then adds back some removed nodes of TG to TH′ to extend a tree from
each new leaf node of TH′ until the obtained subtree consists of only leaf frontier
cycles with small size; the obtained subtree of TG is denoted by TH . We can
show that such a subtree exists within our desired depth.

Now we explain these two algorithms in detail. We first state the goal of these
algorithms precisely. Below by, e.g., w(out(~c)) and |~c|, we mean respectively the
sum of the weights of the faces outside of ~c and the size, i.e., the number of
vertices, of ~c.

Lemma 3.4. We have Õ(1)-space algorithms A2,1 and A2,2 that compute from
a given frontier cycle tree TG (together with an original input) its subtree TH
such that (i) its depth h is O

(√
dn
)
, (ii) the cycle ~ci corresponding to its root

node satisfies w(ins(~ci)) ≤ 2/3 and |~ci| = O
(√
dn
)
, and (iii) for every cycle

~c corresponding to one of its leaf nodes, we have w(out(~c)) ≤ 2/3 and |~c| =
O
(√
dn
)
.

Remark. From (ii) and (iii) it follows that the subgraph H of G induced by
the cycles of TH and the faces between them consists of faces of weight ≤ 2/3
and size O

(√
dn
)
. (Note that d ≤

√
dn.)

Consider the algorithm A2,1. It first computes the weight of (the outside of)
every frontier cycle, which is regarded as the weight of the corresponding node of
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3.3. PRUNING A FRONTIER CYCLE TREE

TG. Note that a frontier cycle ~c corresponding to a leaf node of TG is a directed
cycle with no vertex in its outside; that is, it is a reversal of the boundary cycle
of some face of G, and the weight of this face is the weight of (the outside of)
~c. Thus, we can compute the weights of all frontier cycles from the leaf nodes.
Clearly, this substep can be computed in Õ(1)-space. The algorithm A2,1 then
selects “trunk” nodes. Starting from the root node the algorithm chooses, as the
next trunk node, a node with the largest weight among all child nodes of the
current trunk node. Let ~c0, . . . ,~ct denote the sequence of selected trunk nodes,
which forms the trunk path of TG from its root ~c0 to one of its leaf nodes ~ct.
Again this trunk path is Õ(1)-space computable. Now the algorithm cuts this
trunk path further to get a subtree TH′ of TG with a small diameter. That is,
the algorithm computes a subpath ~ci,~ci+1, . . . ,~cj of the trunk path, and TH′ is
the subtree of TG consisting of this subpath and the child nodes of each trunk
node. For this, the algorithm searches the trunk path from ~c0 for the first ~cj
such that w(ins(~cj)) ≥ 1/3. It then searches from ~cj for an ancestor ~ci with
small height h := j − i from ~cj and small size; more precisely, the root node ~ci
of TH′ that satisfies (i) and (ii) of Lemma 3.4. The existence of such a cycle is
shown in [47]; but for the sake of completeness, we restate the proof here.

Claim 3.1. Let n′ be the number of vertices of the subgraph of G consisting
of the cycles of the trunk subpath ~c0, . . . ,~cj . Then there exists a cycle ~ci in
the trunk path above ~cj such that 2d′h + |~ci| ≤ 2

√
d′n′, where d′ = bd/2c and

h = j − i.
Proof. We prove by contradiction. Assume |~ci| > 2

√
d′n′ − 2d′(j − i) for every

i ≤ j. When j − i ≤
√
n′/d′, we have 2

√
d′n′ − 2d′(j − i) ≥ 0. Now,

n′ =

j∑

i=0

|~ci| >
j∑

i=j−
⌊√

n′/d′
⌋ 2
√
d′n′ − 2d′(j − i)

= 2
√
d′n′ ·

(⌊√
n′

d′

⌋
+ 1

)
− 2d′

⌊√
n′/d′

⌋
∑

h=0

h

=

(
2
√
d′n′ − d′ ·

⌊√
n′

d′

⌋)
·
(⌊√

n′

d′

⌋
+ 1

)

>
√
d′n′ ·

√
n′

d′
= n′.

Note that we have w(ins(~ci)) < 1/3 since ~cj is the first one from ~c0 that
satisfies w(ins(~cj)) ≥ 1/3. On the other hand, each non-trunk child ~c of ~ck,
i ≤ k ≤ j−1, satisfies w(out(~c)) ≤ 1/2 as the trunk node ~ck+1 is a child node of
~ck with the largest weight. Hence, including ~cj , for every leaf node ~c of TH′ , we
have w(out(~c)) ≤ 2/3; thus, TH′ satisfies (i) and (ii) of Lemma 3.4. This tree is
the output of the algorithm A2,1.
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3. MODIFICATION OF MILLER’S SEPARATOR ALGORITHM

It may be possible that a cycle ~c corresponding to some leaf of TH′ has large
size. The task of the algorithm A2,2 is to add back some nodes of the subtree
below ~c in TG up to some “level” so that all leaf nodes of this level are cycles
of small size. Here we say that a descendant node of ~c is of level k if there is a
path of length k from ~c to this node in TG, and by “the size of the level k cycles”
we mean the size of the largest level k cycle. By using the same argument as
above, Miller showed the following.

Claim 3.2. Consider any cycle ~c corresponding to a leaf node of TH′ of size
more than

√
2dn, and let n′ be the number of vertices of the subgraph of G

outside of ~c. Then there exists some level k such that d′k+ sk ≤ 2
√
d′n′, where

d′ = bd/2c and sk is the size of level k cycles.

For each leaf cycle ~c, the algorithm A2,2 adds all frontier cycles of TG under
~c up to level k such that d′k+ sk ≤ 2

√
d′n′ holds. It produces the obtained tree

as TH . Clearly, this is Õ(1)-space computable. Furthermore, it is easy to see
from our discussion that TH satisfies the conditions (i) to (iii) of Lemma 3.4.

3.4 Constructing a spanning tree
We show an algorithm for constructing a small diameter spanning tree of H.
Recall that H is the induced subgraph of G obtained by the second step; it
consists of the vertices appearing in the frontier cycles of TH and the faces
between these frontier cycles. The set FH of the faces of H (and their weights)
is also obtained in the second step. Note that a face of H is either a face with
a boundary cycle corresponding to the root or a leaf node2 of TH , or a face in
the original graph G. Then from the properties of TH (Lemma 3.4) and the
condition on the input graph G, we may assume that every face has weight
≤ 2/3, and size O

(√
dn
)
.

Lemma 3.5. We have an Õ(1)-space algorithm A3 that computes, for a given
pair of TH and FH , a spanning tree T of H with diameter O

(√
dn
)
.

Our algorithm A3 is different from the one given in [47] for computing a
spanning tree of H. Miller constructed a spanning tree of H using breadth first
search starting from all but one edge of the root frontier cycle of TH . We avoid
the O(n)-space incurred by breadth first search and use computations that are
local to the faces behind each frontier cycle. The diameter of our spanning
tree can be larger by a factor of up to 4 compared with Miller’s; but it can be
constructed in Õ(1)-space.

We first establish some terminologies. A face of H is called an inner face
if it does not correspond to a node of TH ; that is, it is a face from G between
frontier cycles. Consider any inner face ~f . Note that it must be incident to at
least 2 frontier cycles of TH . Among these cycles, its parent cycle is the cycle

2Precisely speaking, in the case of a cycle corresponding to a leaf node, its reversal is a
boundary cycle of the corresponding face.
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3.4. CONSTRUCTING A SPANNING TREE

~c that is closest to the root. Let P~f denote the set of directed face boundary
paths w.r.t. ~f attached to ~c, where their direction is the same as ~f . Note that
every edge of ~f whose reversal is not in ~c occurs in exactly one of the paths
in P~f . For ~p ∈ P~f , let `(~p) be the length of ~p and let pi be the ith vertex of ~p,
i.e., ~p = (p0, . . . , p`(p)). For any frontier cycle ~c of TH , let P~c =

⋃{P~f | ~f is an
inner face of H with parent cycle ~c }. Note that all vertices of frontier cycles
corresponding to child nodes of ~c appear in P~c. In the following, we often regard
a path or a cycle as a set of vertices on the path or the cycle, and we write, e.g.,
pi ∈ ~p for a path ~p. We also write pi ∈ P~f .

The algorithm A3 computes a set R of edges and then derives T := H \ R
as its output. It first adds one edge (say the largest one) from the root cycle to
R. For each non-leaf node ~c of TH , the algorithm executes as follows.

For every path ~p ∈ P~c, the algorithm first decides path directions of the edges
in ~p. For any i with 0 ≤ i < b`(p)/2c, the edge {pi, pi+1} has path direction
(pi, pi+1), and for any i with b`(p)/2c ≤ i < `(p), the edge {pi, pi+1} has path
direction (pi+1, pi). Then it defines the path distance of an edge {pi, pi+1} on
~p. The path distance of {pi, pi+1} is defined as min(i, `(p) − i − 1). Now, for
every edge e belonging to some path in P~c, it decides the actual direction of e
as follows. If e occurs only once on a path in P~c, the actual direction of e is
oriented as its path direction on that path. Consider the case where e occurs
on two paths ~p, ~p′ ∈ P~c as {pi, pi+1} and {p′j , p′j+1} respectively. If the path
directions of e on ~p and ~p′ are the same, the actual direction of e follows it.
If the path directions of e on ~p and ~p′ are different, then the actual direction
of e follows the path direction on the path on which the path distance of e is
less than the other. In the case where the path distances are equal, it follows
the path direction on the path that is lexicographically smaller. Finally, the
algorithm considers every vertex v ∈ P~c and all in-coming edges to v following
their actual directions. When the in-degree of v is greater than 1, it leaves only
one edge whose path distance is the smallest and adds the other edges to R. If
there are several edges with smallest path distance, it leaves the one of them
that is lexicographically smallest.

Let us now examine the correctness of this algorithm. Recall that T is
obtained by removing edges in R from H. For showing T is a tree, we will
show that the edges of T can be oriented such that every vertex has in-degree
at most 1 and at least one vertex has in-degree 0. This means that the number
of the edges is less than that of the vertices. Moreover, we will show that T is
connected. Thus, T is a tree because a connected graph that has fewer edges
than vertices must be a tree.

Claim 3.3. In the computed graph T , the number of the edges is less than that
of the vertices.

Proof. We orient edges in T . Note that one edge of the root cycle of TH is
in R (and hence removed from H to define T ). We orient the other edges
of the root cycle to form a directed path. Orient the other edges of T by
their actual directions. For any frontier cycle ~c and for any v ∈ ~c, consider
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3. MODIFICATION OF MILLER’S SEPARATOR ALGORITHM

T [P~c], a subgraph of T restricted on P~c. We can observe, from the definition of
path/actual direction, that no edge {u, v} in T [P~c] gets oriented as (u, v). From
this observation, we can show that all vertices of T except for the root vertex of
T , which has in-degree 0, have in-degree 1 in T . Hence, the claim follows.

Claim 3.3 and the following claim imply that T is a tree.

Claim 3.4. For every vertex v ∈ P~c, there is a vertex u ∈ ~c such that the
distance from u to v in T [P~c] is at most dd/2e.

Proof. We show that if a vertex v ∈ P~c is incident to an edge e that has path
distance k on some path ~p ∈ P~c, then v has distance at most k + 1 in T [P~c]
to some vertex u ∈ ~c. This shows the claim, as every edge in

⋃
P~c has path

distance at most dd/2e − 1.
The proof is by induction on k. Suppose that e = {pk, pk+1} and v = pk+1

(the case where e = {p`(~p)−(k+1), p`(~p)−k} and v = p`(~p)−(k+1) is symmetric). If
k = 0, the vertex p0 itself lies on ~c. We first consider the case where the edge e
is present in T . Obviously, p1 has distance 1 from ~c. If the edge e is not present
in T , the construction of T ensures that there is a unique incoming edge e′ at v
according to actual orientations, and that this edge e′ has path distance 0. Thus
p1 has distance 1.

If k > 0, we apply the inductive hypothesis to the edge eprev = {pk−1, pk}
and pk has distance at most k to some vertex u ∈ ~c. When the edge e is present
in T , it follows that v = pk+1 has distance at most k+ 1 to the vertex u. If the
edge e is not present in T , as with the case k = 0, the construction of T ensures
that there is a unique incoming edge e′ at v according to actual orientations,
and that this edge e′ has path distance at most k. Applying the above argument
to the occurrence of v in e′, it follows again that v has distance at most k + 1
to some vertex u ∈ ~c.

Using this claim, an easy induction by depth over the nodes of TH shows
that all vertices on a face whose parent cycle has depth k in TH (this includes
all vertices on depth k+1 nodes in TH) have distance at most 2d(k+1) to some
vertex on the root cycle. From Claim 3.1 and 3.2, we can bound 2d(k + 1) =
O
(√
dn
)
. As the size of the root cycle is bounded by O

(√
dn
)
, this implies that

the diameter of T is O
(√
dn
)
.

The algorithm can clearly be implemented in Õ(1)-space. In the first substep,
it computes the set P~c for each frontier cycle ~c of TH . To compute R in the
second substep, it just needs a constant number of variables for computing path
directions, path distances and actual directions. Finally, the tree T := H \R is
computed as the third substep.

3.5 Finding a separator

Finally we show an algorithm for constructing a weighted cycle separator for
H of small size. Recall that H is the induced subgraph of G that is obtained
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by merging the faces (and their weights) of G in the regions corresponding to
the nodes pruned from TG to create TH . Thus, the obtained weighted cycle
separator for H is also a weighted cycle separator for G. Recall also that the
algorithm can use the frontier cycle tree TH , the set FH of faces of H (and their
weights), and the spanning tree T of H with diameter O

(√
dn
)
obtained in the

previous steps.

Lemma 3.6. We have an Õ(1)-space algorithm A4 that computes a cycle
weighted separator ~c∗ of H with size O

(√
dn
)
from given TH , FH (with weight

information), and T .

This step is almost the same as Miller’s algorithm. We show here how
Miller’s algorithm for this step can be implemented in Õ(1)-space. We first
introduce some notation. For any non-tree edge {u, v} (i.e., an edge of H but
not of T ), consider its directed version ~e = (u, v). Let ~f~e be the face of H that
has ~e on its boundary cycle, and let ~c~e be the cycle in H that consists of ~e and
the directed path from v to u in T . Note that ~f~e belongs to the inside of ~c~e.
Let R~e denote the tree that has the faces inside ~c~e as nodes, where two faces
are adjacent if they share a non-tree edge. (Note that R~e is indeed a tree: If it
were disconnected, then T would contain a cycle, and if R~e contained a cycle,
then T would not be a spanning tree of H.)

The algorithm A4 uses a subroutine A4,1 that computes, for a given directed
non-tree edge ~e = (u, v), the cycle ~c~e, its weight w(~c~e), and R~e. We first explain
this subroutine A4,1. It works as follows for a given ~e = (u, v). (We again explain
as if things obtained at each step are passed to the next step as input. The
first two steps use ideas from the logspace reachability algorithm for undirected
forests given by Cook and McKenzie [22].)

1. Compute first a directed walk ~w~e from v to u in T : Starting from v0 = v,
pick a neighbor v1 of v in T (say the lexicographically least one). For i ≥ 1,
pick vi+1 as the neighbor of vi that is next after vi−1 in the counterclockwise
order around vi under the given planar embedding of H (inherited from G).
Stop once u is reached; this always happens, as the above rules ensure that the
whole tree T would be explored if the process was not aborted.

2. Compute ~c~e as the sequence of edges that are used only in one direction in ~w~e

in the order they appear.

3. Compute a tree R~e that consists of faces located inside of ~c as nodes and
edges between two faces sharing an edge (in different directions) in H \T . Then
traverse this tree from the face ~f~e to compute the weight w(~c~e). Compute also
C~e = {~e′ | ~f~e′ is a child of ~f~e in R~e }. (Since we know that R~e is a tree, traversing
all nodes in R~e is Õ(1)-space computable.)

Now we explain our algorithm A4. It first checks whether there is a face ~f
of H with 1/3 ≤ w(~f) ≤ 2/3; if so, then output ~f as the desired separator ~c∗. It
then uses A4,1 to compute ~c~e and w(~c~e) for each directed non-tree edge ~e, and
if there is an non-tree edge ~e such that 1/3 ≤ w(~c~e) ≤ 2/3, then output ~c~e as
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~c∗. Note that the size of this separator ~c∗ (i.e., the number of vertices of ~c∗) is
at most 1 plus the diameter of T , that is, O

(√
dn
)
.

Otherwise, the algorithm fixes any directed non-tree edge ~e = (u, v) such
that w(~c~e) > 2/3 and w(~c~e′) < 1/3 for all ~e′ ∈ C~e, the set of directed edges
corresponding to child faces of f~e in R~e. It remains to select S ⊂ C~e so that the
region ~f~e∪

⋃{~c~e′ |~e′ ∈ S} has an appropriate weight and small enough boundary.
The weight condition could be satisfied by a simple greedy strategy, but ensuring
a small boundary requires more care.

Let (v1, . . . , v`) be the traversal of ~f~e with v1 = v and v` = u. For ~e′ ∈
C~e ∪ {~e}, let

rightmost(~e′) = min
{
i ∈ {1, . . . , `}

∣∣ vi ∈ ~c~e′
}
, and

leftmost(~e′) = max
{
i ∈ {1, . . . , `}

∣∣ vi ∈ ~c~e′
}
.

For ~e1, ~e2 ∈ C~e ∪ {~e}, we say that ~e1 is dominated by ~e2 (written as ~e1 ≤d ~e2) if
both rightmost(~e2) ≤ rightmost(~e1) and leftmost(~e1) ≤ leftmost(~e2) hold.

The algorithm computes the rooted tree D~e on the vertex set C~e∪{~e} that is
the transitive reduction of ≤d. (Acyclicity is guaranteed because if one edge was
dominated by two incomparable edges, then it would follow that T contains a
cycle.) Then, for ~e′ ∈ C~e∪{~e}, the algorithm computes W~e′ :=

∑
~e′′≤d

~e′ w(~c ~e′′).
If there is ~e′ ∈ C~e such that 1/3 ≤ w(~f~e) + W~e′ ≤ 2/3, then the algorithm
outputs the cycle as ~c∗ that consists of the path from vrightmost(~e′) to vleftmost(~e′)

in T and the path from vleftmost(~e′) to vrightmost(~e′) in ~f~e. Clearly, its length is

bounded by the diameter of T plus the size of ~f~e. See Figure 3.3 for an example.

Edges in T are drawn as thick lines, and edges on ~c∗ are drawn as arrowed edges
(except for ~e′, whose arrow shows a direction of ~f~e′).

Figure 3.3: An example where 1/3 ≤ w(~f~e) +W~e′ ≤ 2/3

Otherwise there is ~e′ ∈ C~e ∪ {~e} such that W~e′ + w(~f~e) > 2/3 and W ~e′′ +

w(~f~e) < 1/3 for each child ~e′′ of ~e′ in D~e. The algorithm greedily selects a
subset S of the children of ~e′ in D~e so that the reversals of the edges in S ∪{~e′}
are consecutive on ~f~e among the non-tree edges and 1/3 ≤ w(~f~e)+

∑
~e′′∈S W ~e′′ ≤
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2/3. Let SR and SL be the partition of S into edges whose reversals occur before
and after ~e′ on ~f~e, respectively. Further, let

iL = min{rightmost( ~e′′) | ~e′′ ∈ SL},
jL = max{leftmost( ~e′′) | ~e′′ ∈ SL},
iR = min{rightmost( ~e′′) | ~e′′ ∈ SR}, and

jR = max{leftmost( ~e′′) | ~e′′ ∈ SR}.

The algorithm outputs as ~c∗ the cycle that consists of the paths on ~f~e from vjR
to viL and from vjL to viR , and of the paths in T from viL to vjL and from viR
to vjR . Clearly, its length is bounded by the size of ~f~e plus twice the diameter
of T , which is bounded by O

(√
dn
)
. See Figure 3.4 for an example.

viL
vjL

vjR

viR

Edges in T are drawn as thick lines, and edges on ~c∗ are drawn as arrowed edges
(except for ~e′, whose arrow shows a direction of ~f~e′).

Figure 3.4: The remaining case

It is not hard to see that each step of the algorithm can be implemented in
Õ(1)-space.

3.6 Log-space reduction to BFS tree construction

As mentioned in Section 2.2, almost all parts of the algorithm are Õ(1)-space
computable; that is, they can be implemented as O(log n)-space Turing ma-
chines. The only exception is the algorithm A1,1 for computing a face level
tree from the face incidence relation of an input graph. This task is essentially
to compute a BFS tree from a given graph. Thus, from the view point of the
space-limited computability, we can claim that the task of computing BFS tree
construction is the key for computing a separator.

We state this observation formally. For this, we define the BFS tree con-
struction problem as the following decision problem.
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n′-size BFS tree construction problem
(decision version)

input: A graph G′ = (V ′, E′) with n′ vertices,
a root vertex r ∈ V ′, and
a pair of vertices u, v ∈ V ′.

task: Determine whether u is a child of v in
a BFS tree rooted from r under any fixed
ordering among child vertices.

Note that a BFS tree for given graph G′ and root vertex r may differ de-
pending on the order of visiting child vertices of a parent vertex. On the other
hand, the distance of each vertex from r in a BFS tree, which is important for
our algorithm, is independent from such an ordering. Also note that we can
design a log-space Turing machine that indeed produces a BFS tree by using
an oracle that solves this decision problem. That is, the task of a BFS tree
construction is log-space Turing reducible to this decision problem. Now as a
corollary of our algorithm design, we have, for example, the following relation.

Theorem 3.7. The task of computing a separator of size O
(√
n
)
for a given

planar graph with n vertices is O(log n)-space Turing reducible to the O(n)-size
BFS tree construction problem (decision version).
Remark. As shown in the proof, we consider a triangulated version of a given
graph, which is clearly bi-connected (except for the trivial case). Thus, this
theorem holds in general for any planar graph.

Proof. We may assume that a given graph G is nontrivial one and has more
than three vertices.

Consider a process for obtaining a separator for a given planar graph G with
n vertices. First we compute [3] one of its combinatorial embeddings to the plane
in O(log n)-space. Then from this embedding, we convert G to a triangulated
graph Ĝ (i.e., a graph consisting of triangle faces) by adding edges, which is
easy to do in O(log n)-space. Note that Ĝ is bi-connected and that it has at
most 3n faces from Euler’s formula. Now a desired separator of G is obtained
by applying our algorithm of Theorem 5.2 to Ĝ assuming the unit weight to
every triangle face because a weighted separator of Ĝ can be regarded as a
separator of the original graph G. As mentioned above, we only need O(log n)-
space to execute our algorithm by using an oracle solving the f̂ -size BFS tree
construction problem (for some f̂ ≤ 3n). Therefore, this whole process can be
regarded as a log-space Turing reduction to the O(n)-size BFS tree construction
problem.
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Chapter 4

A Sublinear-space and
Polynomial-time Planar
Separator Algorithm

The purpose of this chapter is to give a detail construction of an Õ(
√
n)-space

and polynomial-time algorithm for computing an O(
√
n)-size separator for a

given planar graph with n vertices [10]. We use the separator algorithm obtained
in Chapter 3 as a subroutine.

4.1 Outline of the algorithm
We recall two separator algorithms that will be used to compute a separator in
our algorithm.

The first one is the standard algorithm of Lipton and Tarjan [45].

Proposition 4.1 (Lipton-Tarjan separator algorithm). For any planar graph
with n vertices, there exists a 1/3-separator of size 2

√
2n. Furthermore, there ex-

ists a polynomial-time algorithm that finds one of such separators by a breadth-
first search. The algorithm can be modified so that it uses a given BFS (breadth-
first search) tree of G and it runs in polynomial-time w.r.t. n and in Õ(k)-space
w.r.t. the depth k of the BFS tree.

The second one is based on an algorithm proposed by Miller in [47]. In
that paper, Miller showed a linear-time algorithm computing a cycle weighted
1/3-separator for a given 2-connected plane and weighted graph.

Proposition 4.2. Consider any plane and 2-connected weighted graph with n
vertices such that each of its faces has weight ≤ 2/3 and size ≤ d. Then there
exists a cycle weighted 1/3-separator of size 2

√
2bd/2cn. Furthermore, there

exists an algorithm that finds one of such separators in O(n)-time (under the
unit cost).
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As remarked in Section 1.2 of [33], for any graph with n vertices and nface
faces of size ≤ d, we have n ≤ 2dnface, which implies that 2

√
2bd/2cn ≤

√
8 ·

d
√
nface. Also looking into the proof of this proposition, we see that the above

algorithm operates only on faces of a given weighted graph if its complete face
information is given, from which we can expect that it can be modified to
run in Õ(nface)-space. This has been indeed proved formally in the previous
chapter([11]) as follows; in this chapter, we will refer this algorithm as Miller’s
algorithm.

Proposition 4.3 (Modification of Miller’s separator algorithm [11]). Consider
any plane and 2-connected weighted graph with n vertices and nface faces such
that each of its faces has weight ≤ 2/3 and size ≤ d. Then there exists a
weighted cycle 1/3-separator of size O(d

√
nface). Furthermore, there exists an

algorithm that finds one of such separators in Õ(nface)-space if a combinatorial
planar embedding and a complete face information are given.

We also recall the log-space algorithm of Reingold [53] for the undirected
graph reachability problem. More specifically, we have an O(log n)-space algo-
rithm that determines, for a given graph G and a pair of vertices u and v of
G, whether u is reachable to v in O(log n)-space. This algorithm will be used
several places in the following; we will call it Reinglod’s algorithm for the undi-
rected graph reachability test.

The main theorem of this chapter is the following.

Theorem 4.1 ([10]). For some constant α > 0, there exists an algorithm that
takes an undirected planar graph with n vertices as input and outputs its α-
separator of size O(

√
n) in polynomial-time and Õ(

√
n)-space.

We explain the outline of our separator algorithm and state necessary claims
to show the correctness of the algorithm. These claims will be restated and
proved in the subsequent sections.

Following the outline proposed by Gazit and Miller [33] we design a separator
algorithm that consists of the following steps:

1. Check the planarity condition etc. of an input graph, make some modifi-
cations on the input graph to create our base graphs, and prepare supple-
mentary information.

2. Transform the graph obtained at Step 1 to generate a frame-graph. (This
step is separated into four sub-steps. In some cases, a desired separator
of the base dual-graph is created during some sub-step; the algorithm of
Lipton and Tarjan is used there.)

3. By using Miller’s algorithm, compute a desired weighted separator of the
frame-graph, which can be naturally transformed to a separator for the
base dual-graph. Then compute a desired separator for the original input
graph.
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Below we first explain Step 1, a preprocessing step to create two graphs
that we will consider in the subsequent steps. We then introduce the notion
of “frame-graph”, and state important transformation sub-steps of Step 2 to
obtain a frame-graph. Finally, we give the proof of our separator theorem by
showing how to achieve Step 3 for obtaining desired separators for the base dual-
graph and the input graph. Following the convention explained in Preliminaries
section, we design an algorithm for each step and each sub-step so that it gets
data as input from the previous step and computes data as output passed to
the next step in Õ(

√
n)-space and polynomial-time.

Notational Remark. We would like to use symbols G and G̃ to denote the
base graphs that we will mainly consider in this chapter, where G is obtained
by transforming the input graph and G̃ is its dual-graph. Thus, we will use (if
necessary) Gorg to denote the original input graph. We also use n to denote
the number of vertices of G (and ñ for the number of vertices of G̃). Again
we use norg to denote the number of vertices of Gorg. As we will see, we have
n = Θ(norg) = Θ(ñ); hence, there is no difference among n, norg, and ñ as a
complexity parameter, and we will simply use n for discussing the complexity
of algorithms.

Step 1 and our base graphs (Corresponding technical section: Section 4.2)

In Step 1 we check the conditions assumed for the input graph Gorg and pre-
pare two base graphs and some additional information for these graphs. Here
Reingold’s algorithm for the reachability test plays a key role for achieving this
preprocessing in O(log n)-space (and hence, in polynomial-time).

First consider a sub-step for checking input graph conditions. For the graph
Gorg given by its adjacency matrix, we check whether it is connected by us-
ing Reingold’s algorithm. If Gorg is not connected, the algorithm considers its
largest connected component. If it has less than 30n/31 vertices, then the algo-
rithm can claim the empty set as a desired separator. Otherwise, the algorithm
can work on a subgraph G′org induced by the largest component to obtain its
1/31-separator, which is clearly a 1/31-separator of the original input graphGorg

(by adding the remaining connected components of Gorg to a smaller separated
subgraph of G′org). Note that identifying the largest connected component and
checking its size can be done in O(log n)-space by using Reingold’s algorithm.

We then apply the algorithm of Allender and Mahajan [3] for the planarity
test. Precisely speaking, they showed an O(log n)-space algorithm for the pla-
narity test by using the undirected graph reachability test as a subroutine, which
can be used as a standard O(log n)-space algorithm with Reingold’s algorithm.
In the same paper, they also gave an O(log n)-space algorithm (by using Rein-
gold’s algorithm) that produces a combinatorial planar embedding (if a given
graph is planar). Thus, we use their algorithms to check whether the input
graph is planar and (if it is so) to compute one of its combinatorial planar
embeddings.

In the rest of this chapter, we assume that a given input graph Gorg is con-
nected and planar and that the algorithm is also given one of its combinatorial
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planar embeddings. (From some technical reason, we also assume that Gorg is
not a trivial single triangle.)

Next we transform the input graph Gorg into a well-structured graph G.
From the above sub-step, we have the combinatorial planar embedding of Gorg.
Then it is not so hard to compute its triangulation in O(log n)-space, that is, a
combinatorial planar embedding for its triangulated graph (see Section 4.2 for
more explanation). Note here that a triangulated graph is 2-connected, and this
2-connectivity will be kept in the following sub-steps. As we will see below it
would be easier if we can assume that a graph is three-regular. So we transform
the obtained triangulated graph to a three-regular graph by vertex expansion
shown in Figure 4.1. Formally, the vertex expansion is defined as follows: Con-
sider any vertex v of a triangulated graph. Since the graph is triangulated (and
if it is not a trivial single triangle), we may assume that its degree deg(v) is at
least 3. The vertex expansion on v is to replace v with a deg(v)-size face, that is,
a face having a boundary cycle consisting of deg(v) vertices. Each of the deg(v)
edges incident to v is now connected to each vertex on the face boundary cycle
following their order under the assumed combinatorial planar embedding. We
expand all vertices of the triangulated Gorg in this way, and the obtained graph
is our first base graph G.

(a) (b)

(a) An example of vertex expansion. Each vertex of the left graph is
expanded to respectively a triangle, a square, and a pentagon in the
right graph. (b) An example of a base graph Gorg (only its subgraph).
All faces are either a face obtained by the vertex expansion or a polygon
(triangle ∼ hexagon) corresponding to a triangle of Gorg.

Figure 4.1: Vertex expansion

Here we point out some properties that are easy to see from Figure 4.1. That
is, (i) G is three-regular, and (ii) all faces of G are either a face obtained by
expanding the corresponding vertex of Gorg or a polygon (triangle ∼ hexagon)
corresponding to a triangle of Gorg. The other properties are summarized below.
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Claim 4.1 (Base graph G; restated as Lemma 4.3). Hereafter let G denote a
base graph, a graph obtained by applying the vertex expansion on all vertices of
the triangulated input graph Gorg (under its combinatorial planar embedding).
Let n denote the number of vertices of G (whereas we use norg to denote the
number of vertices of Gorg). Then G satisfies the following: (i) it is three-regular,
(ii) all faces of G are either a face obtained by expanding the corresponding
vertex of Gorg or a polygon (triangle ∼ hexagon) corresponding to a triangle of
Gorg, (iii) n = Θ(norg), and (iv) G has a planar embedding naturally defined
from the one for Gorg.

Gazit and Miller [33] considered a dual-like graph of an input graph; their
separator algorithm was explained by using both an input graph and its dual-
like graph. We follow this style, but here we consider the standard dual-graph.
(See Figure 4.2 for an example of a dual-graph; it is easy to see from the figure
that a dual-graph is triangulated if its base graph is three-regular.)

An example of a three-regular base graph (only its sub-
graph) and its dual-graph. The base graph is indicated
by black nodes (for vertices) and solid lines (for edges),
while its dual-graph is indicated by white nodes (for dual-
vertices) and dashed lines (for dual-edges). As shown here
a dual of a three-regular graph is triangulated.

Figure 4.2: A three-regular graph and its dual-graph

Definition 4.1 (Base dual-graph G̃). Throughout this chapter, let G̃ = (Ṽ , Ẽ)

denote a dual-graph of G (under its planar embedding) where G̃ is the set of
faces of G and Ẽ is the set of dual-edges, i.e., pairs of dual-vertices whose
corresponding faces share at least one edge.
Remark. We identify a dual-vertex of G̃ and its corresponding face of G, and
we sometimes say that a dual-vertex ṽ has an edge e of G, meaning that e is
one of the boundary edges of the face corresponding ṽ.
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Notational Remark. We will use a prefix “dual-” to denote a vertex, an edge,
a path, and a cycle in G̃ to distinguish them from those in G, and we will attach
“ ˜” to variables denoting these objects; for example, a vertex of G̃ is called a
dual-vertex and it is denoted by, e.g., ṽ. (There are some exceptions. In case
we add some other prefix such as “boss-”, “frame-”, etc. for referring an object of
the dual-graph G̃, we may omit adding “dual-.” Also since subplanes and faces
are notions involving a topological interpretation on R2, we will not use “dual-”
to denote them even if they are defined w.r.t. the dual-graph G̃.)

We remark here that the base dual-graph G̃ may not be a simple graph
though the base graph G is simple (by assuming the input graph is a simple
graph); see Figure 4.3 for an example. We assume any reasonable way to identify
non-simple dual-edges.

An example of the case where a non-
simple dual-graph is created from a
simple base graph. As the previ-
ous figure, i.e., Figure 4.2, a base
graph is indicated by black nodes
and solid lines, while some (not all)
of dual-vertices and dual-edges are
indicated by white nodes and dashed
lines.

Figure 4.3: An example of the creation of a non-simple dual-graph

It is easy to see that the number ñ of dual-vertices of G̃ is linearly related
to n. Furthermore, we have the following relation.

Claim 4.2 (Restated as Lemma 4.4). Assume that n is large enough. If G̃
has a 1/10-separator of G̃ of size O(

√
n), then Gorg has a 1/31-separator of size

O(
√
norg).

A frame-graph and four sub-steps of Step 2

A “frame-graph” is a weighted subgraph of the base dual-graph G̃. Roughly
speaking, we transform G̃ by removing its dual-vertices, which creates new faces.
The weight of these faces are defined proportional to the number of removed
dual-vertices. In order to be able to use Miller’s separator algorithm, we require
the following conditions to a frame-graph.

Definition 4.2 (Frame-graph). A frame-graph is a weighted subgraph H̃ of the
base dual-graph G̃ that satisfies the following conditions (we let k =

√
n and we

will fix this usage hereafter):
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(F1) H̃ is a weighted subgraph of G̃ induced by some subset of dual-edges of
G̃. The weight of each face1 f of H̃ is proportional2 to the number ñf of
dual-vertices of G̃ located in the face (which are removed from G̃), and it
is less than 1/3.

(F2) H̃ is 2-connected.

(F3) H̃ contains O(ñ/k) faces.

(F4) The size of each face of H̃ is O(
√
k); that is, for each face of H̃, its

boundary dual-cycle consists of O(
√
k) dual-vertices.

Step 2 of our algorithm is to obtain a frame-graph H̃ from the base dual-
graph G̃. Roughly speaking, we identify “frame-cycles”, dual-cycles that define
faces of H̃, and we compose H̃ as a collection of such dual-cycles. Step 2 is
divided into the following four sub-steps. (Here we only specify the outputs of
these sub-steps; some of the technical terms will be explained below. We may
assume that the input to these sub-steps is all data prepared as output in Step
1 and the previous sub-steps.)

2.1. Identify Voronoi regions and compute their boss-vertices that are used as
a root of a BFS dual-tree of each Voronoi region.
Output: The description of the Voronoi regions. That is, a set Ĩ of the
boss-vertices, and for each b̃ ∈ Ĩ, the description of a BFS dual-tree rooted
at b̃, and a set of boundary cycles for the corresponding Voronoi region.

2.2. Identify ridge edges (if needed), and compute connectors and branch ver-
tices. Then identify “preliminary” frame-cycles3.
Output: The set of branch vertices, connectors, and the description of
preliminary frame-cycles.

2.3. Preprocess preliminary frame-cycles and compute frame-cycles, from which
a frame-graph H̃ is defined. (During this preprocessing step, there are
cases where a desired separator of G̃ is obtained and the algorithm termi-
nates by transforming it to a desired 1/31-separator of Gorg. The algo-
rithm of Lipton and Tarjan is used in one of such cases.)
Output: The description of H̃, that is, its combinatorial planar embed-
ding and its complete weighted face information.

2.4. Identify floor- and ceiling-cycles, and modify H̃ by adding floor- and
ceiling-cycles as new face boundary dual-cycles.
Output: The description of the modified frame-graph H̃, that is, its
combinatorial planar embedding and its complete face information.

1It is clear that H̃ is a plane graph w.r.t. the embedding naturally inherited from G̃. Thus,
precisely speaking, we assume this embedding for discussing the faces of H̃.

2It is simply ñf divided by the total number ñ− of dual-vertices removed from G̃ for
defining H̃. In fact, we will use, for simplicity, ñf instead of ñf/ñ

− in our algorithm.
3In our technical discussion, we will define these preliminary frame-cycles formally and call

them “pre-frame-cycles.”
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We explain sub-steps a bit more in detail so that we can state important
properties on their outputs. (Note that some notions are used below without a
definition or with an only rough and not precise definition; see the corresponding
section for their definitions. Though omitted below, we clearly need to show
that these sub-steps can be done in Õ(

√
n)-space and polynomial-time, which

will be proved in the subsequent technical sections.)

Step 2.1. (Corresponding technical section: Section 4.3)
We borrow the idea of Gazit and Miller [33] and introduce the notion of Voronoi
region. A Voronoi region is defined by a set of connected dual-vertices within
distance 2k from some dual-vertex, which we call a boss-vertex. Boss-vertices are
selected in a greedy way, and it can be shown that we can cover G̃ by selecting
ñ/k boss-vertices. We use Ĩ to denote the set of all selected boss-vertices, and for
each boss-vertex b̃, we use Vr(̃b) to denote a Voronoi region having b̃ as a boss-
vertex. Precisely speaking, these Voronoi regions are subplanes dividing the
plane where the base plane graph G is drawn. We can show that each Voronoi
region is defined by boundary cycles consisting of G’s edges; see Figure 4.4 for
an example. The following properties are important.

Claim 4.3 (Voronoi region; follows from Lemmas 4.6 and 4.7). We have |Ĩ| ≤
ñ/k; that is, there are at most ñ/k Voronoi regions. Consider any b̃ ∈ Ĩ and its
Voronoi region Vr(̃b). Its boundary is a set of cycles of G. For any dual-vertex
ṽ ∈ Vr(̃b), there exists a dual-path from b̃ to ṽ of length ≤ 2k consisting of only
dual-vertices in Vr(̃b). Thus, Vr(̃b) has an O(k)-depth BFS dual-tree rooted at
b̃.

See Figure 4.4. There are vertices where three Voronoi regions meet, which
we call branch vertices, and a dual-triangle consisting of three dual-edges inci-
dent to a branch vertex is called a branch-triangle. As shown in the figure, we
can define a dual-cycle in a pair of Voronoi regions sharing a boundary edge
that consists of four dual-paths and two dual-edges of two branch-triangles.
The dual-cycle following a tour of dual-vertices labeled with 1 ∼ 6 is an exam-
ple. The four dual-paths are those in the BFS dual-trees of the corresponding
Voronoi regions. This dual-cycle is a basis of a frame-cycle; in fact, during this
outline explanation, we regard it as a preliminary frame-cycle. From the prop-
erty of Voronoi regions, we may assume an O(k)-depth BFS dual-tree inside of
such a preliminary frame-cycle.

Step 2.2. (Corresponding technical section: Section 4.5)
Dual-cycles like the one in Figure 4.4 can be used as frame-cycles for defining the
target frame-graph H̃. There is unfortunately a situation where some Voronoi
region has more than one boundary cycle, and in this situation, we may have
a more complicated dual-cycle as illustrated in Figure 4.5 whose size cannot be
bounded appropriately.

This situation can be resolved by introducing some more branch vertices by
which we can divide a large dual-cycle into small ones. Here again we borrow
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An example of Voronoi regions and dual-cycles that are bases for frame-
cycles. Solid lines are the boundaries of Voronoi regions, and black
nodes (which are called “branch vertices”) are vertices of G that are
incident to three Voronoi regions. White nodes are dual-vertices (whose
corresponding faces are) incident to these black nodes. In particular,
three dual-vertices incident to a branch vertex forms a dual-triangle,
which we call “branch-triangle.” The boss-vertex of each Voronoi region
(which is also a dual-vertex) is indicated by a star. Six dual-vertices
labeled with 1 ∼ 6 connected with dashed lines that indicate dual-
paths (some of which is a dual-edge) form a dual-cycle; this may be
regarded as a “frame-cycle.” Note that this dual-cycle contains a part
of Voronoi boundary shared by two Voronoi regions that connects two
branch vertices.

Figure 4.4: Voronoi regions and an example of “frame-cycle”

the idea from Gazit and Miller to select some of the edges of G as “ridge edges”;
intuitively, by adding ridge edges to Voronoi boundary edges, some Voronoi
boundary cycles are connected and new branch vertices are created. More for-
mally, let B and R denote respectively the set of Voronoi boundary edges and
that of ridge edges. Then we can show that B∪R forms a connected component
in G. We regard a degree three vertex in B ∪ R as a branch vertex (whereas
a branch vertex was previously a degree three vertex in B). By introducing
new branch vertices, large dual-cycles are divided into small and “standard”
dual-cycles, i.e., preliminary frame-cycles.

A path connecting a pair of branch vertices are called a connector. This is a
generalization of the shared Voronoi boundary that appears in the frame-cycle
of Figure 4.4. In fact, centering each connector, we can define a preliminary
frame-cycle. The main task of this sub-step is to obtain all such preliminary
frame-cycles of G̃ from connectors. This one-to-one correspondence between
connectors and preliminary frame-cycles is important for a later discussion.

Step 2.3. (Corresponding technical section: Section 4.6)
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An example of the case where there exists a Voronoi region with mul-
tiple Voronoi boundary cycles. Solid lines are Voronoi boundaries. We
omit here showing vertices, dual-vertices, and branch-triangles except
for boss-vertices. The outmost solid cycle is one of the boundary cycles
of a Voronoi region Vr(̃b). This Vr(̃b) contains four Voronoi regions and
it has two boundary cycles between them (i.e., two large squares con-
sisting of two subsquares). Dashed lines are branch dual-paths. There
are some “standard” dual-cycles that could be used as frame-cycles; for
example, two dual-cycles indicated by dashed lines surrounding shadow
parts have the same structure as the preliminary frame-cycle we saw in
Figure 4.4. On the other hand, the graph has a dual-cycle consisting of
twelve dual-paths labeled by numbers (where branch-triangles are omit-
ted). The problem here is that we cannot bound the length of such a
dual-cycle; thus, it cannot be used for a face boundary of a frame-graph
as it is for satisfying the condition (F4).

Figure 4.5: A Voronoi region with multiple boundary cycles

Some preliminary frame-cycles may not be appropriate for frame-cycles from
the following reasons: (i) there may be a preliminary frame-cycle that defines
a large subplane having too many dual-vertices of G̃, which creates a face of
weight more than 1/3 in H̃; (ii) there may be a preliminary frame-cycle that
splits G̃ into multiple disconnected subplanes, due to which H̃ cannot be 2-
connected by removing dual-vertices of G̃ not participating to the frame-cycles.
Thus, in this sub-step, we first preprocess the obtained preliminary frame-cycles
to modify them to appropriate forms.

During this preprocessing step, we may have a situation where some pre-
liminary frame-cycle itself is a desired separator of G̃, say, 1/10-separator of G̃.
Or we can apply the algorithm of Lipton-Tarjan to the subgraph that is inside
of some preliminary frame-cycle to obtain a desired separator of G̃. Note that
the latter one is the case where some preliminary frame-cycle is large enough
to cover many dual-vertices of G̃. Since (the inside of) each preliminary frame-
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cycle is covered by (at most) two Voronoi regions, and each Voronoi region has
an O(k)-depth BFS dual-tree, we can show by Proposition 4.1 that the algo-
rithm of Lipton-Tarjan runs in Õ(k)-space. Once a desired separator of G̃ is
obtained, the algorithm can terminate by yielding our target 1/31-separator of
Gorg by Claim 4.2 (i.e., by the method stated in its proof).

After this preprocessing step (and a separator is not yet obtained), we now
have frame-cycles and we can guarantee that each frame-cycle defines a single
subplane that does not have so many dual-vertices of G̃. Thus, we can define
our frame-graph H̃ as a collection of faces defined4 by these frame-cycles. We
should note, on the other hand, that the actual step of our algorithm is designed
in a slightly different way. This step is designed to yield a frame-graph H̃ as
an induced dual-graph consisting of dual-edges of all frame-cycles. Thus, we
need to prove the following claim. For its proof the one-to-one correspondence
between connectors and (preliminary) frame-cycles plays an important role.

Claim 4.4 (Face of H̃; restated as Lemmas 4.15 and 4.16). Each frame-cycle
defines exactly one face in H̃. Furthermore, there is no face in H̃ other than
ones defined by either a frame-cycle or a branch-triangle.

Based on this claim, for a complete weighted face information of H̃, the
algorithm needs to output lists of frame-cycles, their weights, and their incidence
relations. Note that the weight of each frame-cycle is simply the number of dual-
vertices of G̃ located its inside. From the preprocessing step, we can guarantee
that it is less than ñ−/3, where ñ− is the total number of dual-vertices removed
from G̃ to define H̃. Thus, the obtained H̃ satisfies the condition (F1).

We also prove that H̃ satisfies (F2) and (F3).

Claim 4.5 (Restated as Lemmas 4.13). H̃ is 2-connented.

Claim 4.6 (Number of connectors and fame-cycles; restated as Lemma 4.17).
The numbers of connectors is bounded by O(ñ/k). Hence, the number of faces
of H̃, that is, frame-cycles and branch-triangles is bounded by O(ñ/k).

Step 2.4. (Corresponding technical section: Section 4.7)
Let us see again the frame-cycle illustrated in Figure 4.4. It consists of four
BFS dual-paths and two branch-triangle edges. While we can bound the length
of each BFS dual-path by O(k), this bound is not enough for satisfying the
condition (F4) that requires an O(

√
k) bound for the length of frame-cycles.

We again borrow the idea of Gazit and Miller to introduce the notion of “floor-
cycle” and “ceiling-cycle” to overcome this problem.

Floor- and ceiling-cycles are defined by using dual-vertices of the same level.
A dual-vertex is given a level that is the distance from its boss-vertex (which
is a temporal definition just for an explanation here). We consider connected
components of dual-vertices of the same level; in particular, we are interested in

4Precisely speaking, faces are defined also by branch-triangles, but in the following expla-
nation, we sometimes omit mentioning branch-triangles for simplicity.
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connected components of size ≤
√
k. A neck of level ` is a connected component

of level ` dual-vertices whose size is bounded by
√
k. In such a neck we can find

(at least) two dual-cycles, one facing dual-vertices of level ` + 1 and another
facing dual-vertices of level ` − 1. A floor-cycle is a dual-cycle of the former
type that has enough number of dual-vertices (i.e., 2ñ/3 dual-vertices) in its
“outside”, the side the dual-cycle where level ` + 1 dual-vertices are located.
Similarly, a ceiling-cycle is a dual-cycle of the latter type that has more than
2ñ/3 dual-vertices in its “outside”, the side the dual-cycle where level `−1 dual-
vertices are located. If multiple nested such dual-cycles exist, then we take the
one with the largest level (resp., the smallest level) as the floor-cycle (resp., the
ceiling-cycle).

Cycles indicated by dashed lines surrounding shadow parts are floor- or
ceiling-cycles. By the modification of H̃ in sub-step 2.4, their “insides”
(i.e., these shadow parts) are removed so that floor- and ceiling-cycles
become are new face boundary dual-cycles; then the length of each
dual-path of a frame-cycle from a boss-vertex to the next face bondary
dual-cycle is reduced to O(

√
k).

Figure 4.6: Floor- and ceiling-cycles

Consider any frame-cycle c̃ of H̃. We can identify one floor-cycle containing
its boss-vertex “inside.” On the other hand, a ceiling-cycle (if it exits) is located
around its branch-triangle containing some dual-vertices of the branch-triangle
“inside” (Figure 4.6). By removing all dual-vertices inside of these floor- and
ceiling-cycles (thereby creating new faces), we can reduce the length of each
dual-path of the frame-cycle c̃ remained “outside” of these new faces to O(

√
k).

Claim 4.7 (Reducing dual-path length of frame-cycles; restated as Lemma 4.26).
Consider any frame-cycle c̃, and let p̃ be any dual-path between its boss-vertex
and the next dual-vertex of a branch-triangle used in c̃. There exist one floor-
cycle and at most one ceiling-cycle crossing p̃; let p̃′ be the part of p̃ located
outside of these cycles. Then the length of p̃′ is O(

√
k).
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In sub-step 2.4, for a given G̃ (and H̃) we identify floor- and ceiling-cycles
and modify the frame-graph H̃ by introducing new faces by removing all dual-
vertices of H̃ from the inside of these floor- and ceiling-cycles. We refer the
obtained dual-graph H̃ ′ as a modified frame-graph. The weight of its faces is
defined in the same way as H̃; that is, the weight of each face is defined by
the number of removed dual-vertices of G̃ in the face. Then from the property
of the original frame-graph H̃ and by our definition of floor- and ceiling-cycles,
we can show that the modified frame-graph H̃ ′ satisfies the condition (F1) ∼
(F3). Furthermore, from the above claim (and since the length of each floor- and
ceiling-cycle is O(

√
k) by definition), we have an O(

√
k) bound for the length of

each face boundary dual-cycle. Therefore, the obtained modified frame-graph
H̃ ′ satisfies all the required conditions (F1)∼ (F4). For simplifying our notation,
we will use from now on H̃ to denote this modified frame-graph.

Step 3 and the proof of our separator theorem

Now that a modified frame-graph H̃ satisfying the conditions (F1) ∼ (F4) is
obtained. Then the last step of our algorithm is to apply Miller’s algorithm to
obtain a weighted separator for H̃ and compute our desired separators for G̃
and Gorg.

Let us first prepare some parameters needed for the analysis. We use ñH̃ and
ñH̃face to denote respectively the number of dual-vertices and faces of H̃, and
let d be its max. face size. Then from the conditions (F3) and (F4), we have
ñH̃face = O(ñ/k) = O(n1/2) and d = O(

√
k) = O(n1/4) respectively; hence,

ñH̃ ≤ d× ñH̃face = O(n3/4). Thus, the number of dual-vertices removed from G̃

to obtain H̃, which we denote by ñ−, is ñ− ñH̃ = Ω(n)− O(n3/4); we assume
that n is large enough so that ñ− ≥ 3ñ/4 holds.

We consider the application of Miller’s algorithm to H̃. This creates a cycle
1/3-separator of H̃. From the condition (F4) and Proposition 4.3, it follows that
the size of this separator is O(d

√
ñH̃) = O(

√
n), and that Miller’s algorithm

can be executed in Õ(ñH̃face)-space (= Õ(
√
n)-space). Then since the obtained

separator is a dual-cycle, it can be used as a 1/4-separator of G̃ as the following
lemma claims. (Cf. A separator of H̃ is not necessarily a separator of G̃ in
general.) Thus, in Step 3, we first apply Miller’s algorithm to the frame graph
H̃ to obtain a weighted 1/3-separator (that is indeed a 1/4-separator of G̃) in
Õ(
√
n)-space, and then for the obtained separator for G̃, we apply the method

stated in the proof of Claim 4.2 to compute a desired 1/31-separator of Gorg in
Õ(1)-space.

Lemma 4.2. Any weighted dual-cycle 1/3-separator of a modified frame-graph
H̃ is a dual-cycle 1/4-separator of G̃.

Proof. Let C̃ denote a weighted dual-cycle 1/3-separator of H̃. Recall that
H̃ is a dual-edge induced subgraph of G̃. Thus, any dual-cycle of H̃ is also
a dual-cycle of G̃; thus, the dual-cycle separator C̃ of H̃ is a dual-cycle and
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hence a separator of G̃. Recall that the weight of each face of H̃ is the number
of dual-vertices of G̃ that are located in the face and that are removed when
defining H̃ normalized by the total number ñ− of removed dual-vertices. Thus,
since C̃ is a weighted 1/3-separator, two subplanes separated by C have weight
≥ 1/3; hence, the numbers of dual-vertices of these subplanes in G̃ are at least
ñ−/3 ≥ ñ/4 (as we checked before this lemma). Therefore, C̃ is a 1/4-separator
of G̃.

4.2 Base Graphs G and G̃

We explain Step 1 of the algorithm, a preprocessing step for computing the
base graphs G and G̃ and supplementary information. Here we prove the key
properties of these base graphs claimed in Outline section. We also give some
basic algorithms for achieving this step.

We begin by defining the notion of “triangulation” formally.

Definition 4.3 (Triangulation). A plane graph is triangulated (w.r.t. its planar
embedding) if addition of any edge results in a nonplanar graph. For a plane
graph, its triangulation means to add edges to the plane graph until it gets
triangulated w.r.t. this planar embedding.

As explained in Outline section, we may assume, after the preprocessing
sub-step of Step 1, that the input graph Gorg is planar and connected and that
the algorithm can use one of its combinatorial embeddings. Then in the rest of
Step 1, the algorithm conducts the following tasks: (i) triangulating the input
graph, (ii) applying the vertex expansion to this triangulated graph to obtain
the base graph G, and (iii) computing its dual as the base dual-graph G̃.

We explain the key properties of the base graphs. First one is for the base
graph G.

Lemma 4.3 (Restatement of Claim 4.1). The following holds for G and Gorg:
(i) G is three-regular, (ii) all faces of G are either a face obtained by expanding
the corresponding vertex of Gorg or a polygon (triangle ∼ hexagon) correspond-
ing to a triangle of Gorg, (iii) n = Θ(norg), and (iv) it has a planar embedding
naturally defined from the one for Gorg.

Proof. Properties (i) and (ii) are clear from the definition; see Figure 4.1 and
the explanation there. Thus, we prove (iii) and (iv) here. Recall that the vertex
expansion on v is to replace v with a degorg(v)-size face, by which we introduce
degorg(v) new vertices replacing v. Hence, by applying the vertex expansion to
all vertices of Gorg = (Vorg, Eorg), we create

∑
v∈Vorg

degorg(v) = 2|Eorg| new
vertices, which is at least norg and at most 6norg since |Eorg| ≤ 3norg due to the
planarity of Gorg and the Euler’s formula. This proves (iii). For showing (iv),
consider any vertex v ∈ Vorg. Let e0, . . . , ed−1 be edges incident to v indexed
in the order of the given combinatorial embedding of Gorg. We may consider
that the vertex expansion on v introduces a new vertex v′i corresponding to
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each edge ei, where v′i has an edge e′1 corresponding to ei and two edges e′0
and e′2 connecting to v′(i−1)mod d and v′(i+1)mod d. Then it is easy to see that the
order e′0, e′1, e′2 is a combinatorial embedding for v′i under the embedding of G
naturally inherited from Gorg.

Next consider the base dual-graph G̃. Recall that it is defined a dual-graph
of G (Definition 4.1) and it is triangulated thanks to the three-regularity of G
(Figure 4.2). Here we show a way to get a separator for Gorg from a separator
for G̃.

Lemma 4.4 (Restatement of Claim 4.2). If G̃ has a 1/10-separator of G̃ of size
O(
√
n), then Gorg has a 1/31-separator of size O(

√
norg).

Proof. First, we introduce a way to define a set of vertices of G (resp., Gorg) that
corresponds to a given dual vertex of G̃. Consider any vertex ṽ of G̃. Note that
ṽ is a face in G; we define inv(ṽ) by a set of vertices of G that are incident to this
face. Then define invorg(ṽ) by a set of vertices whose vertex expansion intersects
with inv(ṽ). For invorg(ṽ) the following more direct interpretation would be
helpful. Note that ṽ is a face in G; on the other hand, the above lemma claims
(as property (ii)) that every face of G is either a face obtained by expanding a
vertex v of Gorg or a polygon (triangle ∼ hexagon) face that corresponds to a
triangle face {v1, v2, v3} of Gorg. Hence, we have invorg(ṽ) = {v} for the former
case and invorg(ṽ) = {v1, v2, v3} for the latter case. For any set W̃ of dual
vertices of G̃, we define inv(W̃ ) and invorg(W̃ ) by inv(W̃ ) =

⋃
ṽ∈W̃ inv(ṽ) and

invorg(W̃ ) =
⋃

ṽ∈W̃ invorg(ṽ), respectively.
Now for a given separator S̃, we show that S := invorg(S̃) is a separator

of Gorg with a desired property. Note first that we have |S| ≤ 3|S̃| from the
above interpretation of invorg. Thus, from the assumption, we have |S| = O(

√
n)

(= O(
√
norg)). Below we use H̃1 and H̃2 to denote sets of vertices of G̃ separated

by S̃. Also for each i ∈ {1, 2}, we let Hi = invorg(H̃i) \ S. These symbols are
used also to denote their corresponding induced graphs.

We show that S is indeed a separator of G separating H1 and H2. For this
we consider S′ := inv(S̃) and H ′i := inv(H̃i) \ S′ for each i ∈ {1, 2}, and show
that H ′1 and H ′2 are separated by S′. Suppose otherwise, and assume that some
v′1 ∈ H ′1 and v′2 ∈ H ′2 are connected after removing S′. Then there should be
a path p′ connecting v′1 and v′2 that has no vertex in S′. Consider a set P ′ of
faces of G that share an edge with p′. Then a set of vertices of G̃ corresponding
the faces of P ′ forms a connected component in G̃. This is due to the fact that
any two dual-vertices of G̃ corresponding faces of G incident to some common
vertex of G must have an edge between them, thanks to the three-regularity
of G. Also it is clear that P ′ has no dual-vertex in S̃, and that there are two
dual-vertices whose corresponding faces are incident to v′1 and v′2 that are in H̃1

and H̃2 respectively. This contradicts that S̃ separates H̃1 and H̃2.
Next we show that S is a 1/31-separator. Without losing generality we may

assume that |H1| ≤ |H2|, and here we show that |H1| ≥ n/31 for sufficiently
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large n.
Consider first vertices of H̃1 and G̃. As explained above, each vertex of

G̃ corresponds to either a vertex of Gorg or a triangle face of Gorg; we call a
vertex of G̃ a v-vertex for the former case and a f-vertex for the latter case. The
converse relation also holds; that is, each vertex of Gorg and each triangle face
of Gorg corresponds to some vertex of G̃. Thus, we have ñ = norg + F , where ñ
is the number vertices of G̃ and F is the number of faces of Gorg. Let V1 and
F1 denote respectively the number of v-vertices and f-vertices of H̃1. Then we
have from our assumption that

V1 + F1 ≥ ñ/10 ≥ norg/10. (4.1)

Now consider a graphH+
1 induced by invorg(H̃1). (Recall thatH1 = invorg(H̃1)\

S.) Let n+1 , e
+
1 , and f

+
1 denote the number of vertices, edges, and faces of H+

1

respectively. We let x = |H+
1 ∩ S|. Then we have n+1 = V1 + x, f+1 ≤ F1 + x

and 2e+1 ≥ 3F1. The two inequalities hold because H+
1 might have faces that

are f-vertices of S̃ and the number of them is at most x. Then apply the Euler’s
formula for plane graphs to H+

1 , we have n+1 = e+1 − f+1 + 2, which derives
V1 − 0.5F1 ≥ −2x+ 2. Hence, by using (4.1) we have

3V1 ≥ norg/10− 4x+ 4 ≥ norg/10− 4x.

Recall that H1 = H+
1 \ S. Thus, we have

|H1| ≥ n+1 − |S| = V1 + x− |S| ≥ norg/30− x/3− |S|.

Then the desired bound holds for sufficiently large norg since x ≤ |S| and |S| =
O(
√
norg).

Algorithms for Step 1

We discuss algorithms for achieving Step 1. As explained in Outline section,
thanks to the previous work of Reingold [53] and Allender and Mahajan [3], we
have O(log n)-space algorithms for checking the connectivity and planarity and
for computing one of the combinatorial embeddings of the input graph. Thus,
our remaining algorithmic tasks are (i) triangulating the input graph Gorg, (ii)
computing a three-regular graph (i.e.., the base graph G) by applying the vertex-
expansion to the triangulated graph, and (iii) computing the dual-base graph
G̃. (By “computing a graph” we formally mean to compute its embedding and
its complete face information.) Here we explain how to achieve each task in
Õ(1)-space.

First consider the triangulation. The task of triangulation is essentially to
introduce edges to separate non-triangle faces into triangles. Hence, for the
triangulation task, we first need to identify each face, i.e., each traverse of
Gorg. Consider any directed edge (u, v) for any undirected edge {u, v} of Gorg,
and consider the task of computing the left-traverse of Gorg from (u, v). As
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we remarked in Preliminary section (Lemma 2.1), no same directed edge is
identified during the left-traverse process (until coming back to (u, v)). Thus,
for conducting the left-traverse process, we only need to remember (u, v) besides
the directed edge currently identified in the process; hence, only some constant
number of variables are needed for computing each left-traverse. For an obtained
left-traverse t = (v1, . . . , vm), the triangulation of the face corresponding to the
left-traverse is easy. Since the face corresponding t is the subspace located from
(vm, v1) to (v1, v2) clockwise, we simply add edges {v1, v3}, . . ., {v1, vm−1} for
triangulating this face. For the combinatorial embedding πv1 of vertices adjacent
to v1, we need to insert v3, . . . , vm−1 between vm and v1 in the reverse order.
Note that multiple edges may be created, which should be treated as different
edges; see Figure 4.7.

An example of triangulating a face corresponding to
a left-traverse. The original plane graph is a path
whose edges are indicated by solid lines, while newly
added edges are indicated by dotted lines. Here we
consider a left-traverse (1, 2, 3, 4, 5, 4, 3, 2), which de-
fines a single face in the original graph. This face
is divided into triangle faces by adding edges {1, 3},
{1, 4}, {1, 5}, {1, 4′}, and {1, 3′}. The combinato-
rial embedding π1 for NG(1) is modified from (2)
to (2, 3′, 4′, 5, 4, 3). We remark here that the graph
becomes a simple graph again after the vertex ex-
pansion.

Figure 4.7: An example of triangulating a face

Algorithmically, it is easier if we consider the triangulation by two sub-steps.
First enumerate all left-traverses ofGorg. Here for the second sub-step, we design
the algorithm for this sub-step so that it does output a traverse t = (v1, . . . )
only if v1 has the smallest index among all vertices in t. Then in the second
sub-step, the algorithm modifies the combinatorial embedding πv for each vertex
v of Gorg. For this, the algorithm searches through all left-traverses produced
in the first sub-step for left-traverses in which v appears. In the case where v
appears in a left-traverse t as the first vertex (say, t = (v, v2, . . . , vm)), a sequence
vm−1, . . . , v3 is inserted between vm and v2 in πv. On the other hand, in the
case where v appears somewhere middle of t (say, t = (v1, . . . , vi, v, vi+2, . . .)),
v1 is inserted between vi and vi+2 in πv. Note that each left-traverse causes the
insertion in a different part of πv. The algorithm produces the updated πv’s for
all v ∈ Gorg, and then update E(Gorg) by adding the introduced edges.

Now for the tasks (ii) and (iii), the algorithm first enumerates all triangle
face boundary cycles of the triangulated Gorg, which in fact can be done easily
when introducing edges during the above triangulation. Once all triangle face
boundary cycles are obtained, the rest of tasks (ii) and (iii) can be done easily
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by using some constant number of variables because local information is enough
for the vertex expansion for obtaining the base graph G and also for computing
the dual-graph G̃. Note that the computation of face boundary dual-cycles of
G̃ is nothing but that of left-traverses of G̃.

4.3 Voronoi Region
In this section, we formally define the notion of Voronoi region and explain the
properties of Voronoi regions. We then explain Step 2.1 of our algorithm for
computing Voronoi regions.

We start with introducing the notion of “region”, an important notion through-
out this chapter.

Definition 4.4 (Region and boundary). A region is a set R of dual-vertices of G̃
such that any two dual-vertices of R is connected by some dual-path consisting
of only dual-vertices of R. In other words, R is a region if G̃[R], the subgraph
of G̃ induced by R, is connected. We also consider region R as a set of faces of
G, and a set of edges defined by

{ e ∈ E | there exists exactly one face in R that contains e }

is the boundary of R.
Remark. Though a region is defined as a set of dual-vertices of G̃, (formally
speaking) it should be regarded as a subplane defined in G by the corresponding
set of faces of G. Thus, we will use symbols without ˜ for regions.

We recall the following important fact from [47] that is provable for three-
regular graphs.

Proposition 4.4. Any region of a three-regular graph (e.g., our base graph G)
has a boundary consisting of simple cycles.

We introduce the notion of “Voronoi region”, a specific family of regions. For
any dual-vertices ũ and ṽ, by dist(ũ, ṽ) we mean the distance between ũ and
ṽ, that is, the length of a shortest dual-path between ũ and ṽ. Consider any
dual-vertex ṽ. Technically, it would be easier if we can identify the “nearest”
dual-vertex to ṽ; for this purpose, we introduce a total order (denoted by <ṽ)
in Ṽ based on the distance from ṽ. For any dual-vertices ũ and w̃, we say that
ũ is nearer to ṽ than w̃ (written as ũ <ṽ w̃) if we have either

• dist(ũ, ṽ) < dist(w̃, ṽ), or

• dist(ũ, ṽ) = dist(w̃, ṽ), and ũ has a smaller index5 than w̃.

For any dual-vertex ṽ and any integer d ≥ 0, let L(ṽ, d) denote the set of dual-
vertices whose distance from ṽ is d. We introduce two types of neighborhoods.

5We assume that dual-vertices are indexed in a certain way.
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An example of a region and its boundary. Here black nodes
and solid lines are those in G; each face is regarded as a
dual-vertex of G̃. The shaded part is a region. The bound-
ary of this region consists of two cycles. In general Miller
showed that in three-regular graph, the boundary of any
region is a set of simple cycles.

Figure 4.8: A region and its boundary

(Remark. Since L(ṽ, d)’s and the neighborhoods defined below are also regions,
we do not use ˜ for their symbols. Recall that k is the parameter that is set

√
n

throughout this chapter.)

Definition 4.5 (k-neighborhood). For any dual-vertex ṽ, let dnb(ṽ) be the
largest integer d such that | ∪0≤i≤d L(ṽ, i) | < k holds. Then we define Nk(ṽ)
and N+

k (ṽ) by

Nk(ṽ) =
⋃

0≤i≤d0

L(ṽ, i), and N+
k (ṽ) =

⋃

0≤i≤d0+1

L(ṽ, i),

where d0 = dnb(ṽ). We call Nk(ṽ) and N+
k (ṽ) a k-neighborhood and a k-

neighborhood+ respectively.
Remark. By Nk(ṽ) and N+

k (ṽ) we also mean subgraphs of G̃ induced by sets
Nk(ṽ) and N+

k (ṽ).

The following fact is immediate from the above definition.

Lemma 4.5. For any dual-vertex ṽ, we have the following: (i) Nk(ṽ) ⊆ N+
k (ṽ),

(ii) both Nk(ṽ) and N+
k (ṽ) are regions, (iii) |Nk(ṽ)| < k and |N+

k (ṽ)| ≥ k, and
(iv) the distance between ṽ and any vertex in N+

k (ṽ) is at most k.

We select representative k-neighborhoods, which will be used for defining
Voronoi regions.
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Definition 4.6. A subset Ĩ of Ṽ is a k-maximal independent set if it satisfies
following conditions:

• For any two dual-vertices b̃1, b̃2 ∈ Ĩ, N+
k (̃b1) ∩N+

k (̃b2) = ∅.

• For any dual-vertex ṽ 6∈ Ĩ, there exists a dual-vertex b̃ ∈ Ĩ such that
N+

k (ṽ) ∩N+
k (̃b) 6= ∅.

The following properties are immediate from the definition.

Lemma 4.6. Consider any k-maximal independent set Ĩ of G̃. Then we have
(i) |Ĩ| ≤ ñ/k, and (ii) for any dual-vertex ṽ ∈ Ṽ , we have some dual-vertex b̃ ∈ Ĩ
and some dual-vertex ũ such that ũ ∈ N+

k (ṽ) ∩N+
k (̃b), and we have dist(ṽ, b̃) ≤

2k.

Notational Remark. (The set Ĩ)
Though we explain our algorithm design for Voronoi regions later, we briefly
mention that a standard greedy method can be used to design an Õ(

√
n)-space

and polynomial-time algorithm that computes a k-maximal independent set.
From now on, let us use Ĩ to denote the k-maximal independent set obtained
by this algorithm for the base dual-graph G̃.

Now we define Voronoi regions w.r.t. the above defined Ĩ. Intuitively, for
each b̃ ∈ Ĩ, we would like to define the “Voronoi region” Vr(̃b) of b̃ by a set
of dual-vertices for which b̃ is closest among all dual-vertices in Ĩ. But such a
dual-vertex in Ĩ that is closest to ṽ may not be computable within our desired
space bound. Thus, we use “closest k-neighborhood” to determine our Voronoi
regions, by which we can identify Voronoi regions in O(k + ñ/k)-space.

Definition 4.7 (Voronoi region and boss-vertex). For any set W of dual-
vertices, nrstṽ(W ) denotes a dual-vertex ũ in W such that ũ <ṽ w̃ of all
w̃ ∈ W \ {ũ}. For any sets W and W ′ of dual-vertices, we write W <ṽ W ′

if nrstṽ(W ) <ṽ nrstṽ(W ′). For any dual-vertex ṽ, the boss-vertex of ṽ (denoted
by boss(ṽ)) is a dual-vertex b̃ ∈ Ĩ such that N+

k (̃b) <ṽ N+
k (̃b′) for any b̃′ ∈ Ĩ \{b̃}.

The Voronoi region of b̃ (denoted by Vr(̃b)) is a set of dual-vertices ṽ such that
boss(ṽ) = b̃.
Remark. In a nutshell, b̃ is the boss-vertex of ṽ if and only if its k-neighborhood
is nearest to ṽ among all dual-vertices in Ĩ. It may be the case that there is
some other dual-vertex in Ĩ that is nearer to ṽ.

By definition, for every dual-vertex ṽ ∈ Ṽ , there exists a unique Voronoi
region Vr(̃b) that contains ṽ. Furthermore, for any Voronoi region Vr(̃b), we
show below that it is indeed a region and that every dual-vertex in Vr(̃b) is
reachable by a dual-path in Vr(̃b) of length ≤ 4k.

Lemma 4.7. For any dual-vertex b̃ ∈ Ĩ and any dual-vertex ṽ ∈ Vr(̃b), there
exists a dual-path from b̃ to ṽ of length ≤ 2k consisting of only dual-vertices in
Vr(̃b). (Hence, any pair of dual-vertices in Vr(̃b) is connected by a dual-path in
Vr(̃b) of length ≤ 4k.)
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Proof. Consider any dual-vertex ṽ ∈ Vr(̃b). By Lemma 4.6 (ii), there exists
some b̃′ ∈ Ĩ such that N+

k (ṽ) ∩ N+
k (̃b′) 6= ∅ holds. Clearly, b̃ also satisfies

N+
k (ṽ) ∩ N+

k (̃b) 6= ∅ because otherwise b̃ cannot be the boss-vertex of ṽ. Thus,
there is a dual-path from ṽ to b̃ of length ≤ 2k.

For the lemma, it suffices to show that there exists a dual-path of length
≤ 2k from ṽ to b̃ consisting of only vertices in Vr(̃b). For this, consider ũ :=

nrstṽ(N+
k (̃b)), i.e., the dual-vertex in N+

k (̃b) nearest to ṽ, which in fact is the
dual-vertex in the whole ∪b̃′∈ĨN+

k (̃b′) nearest to ṽ witnessing that ṽ ∈ Vr(̃b).
Clearly, any shortest dual-path from ũ to b̃ belongs to N+

k (̃b) and its length is at
most k. (It is easy to see that N+

k (̃b) ⊆ Vr(̃b).) Consider any shortest dual-path
ṽ to ũ. Again it is clear that its length is at most k. We show that all dual-
vertices on the dual-path belong to Vr(̃b). Suppose otherwise; that is, there
exists some dual-vertex ṽ′ on the dual-path that belongs to the other Vr(̃b′).
Then for this ṽ′, there exists some ũ′ ∈ Vr(̃b′) that is nearer to ṽ′ than ũ. But
since ṽ′ is on one of the shortest dual-paths from ṽ to ũ, this means that ũ′ is
also nearer to ṽ than ũ, a contradiction. Therefore the lemma follows.

The lemma shows that each Voronoi region Vr(̃b) has a spanning BFS dual-
tree on (the subgraph induced by) the Voronoi region with b̃ as a root and that
the depth of such trees is at most 2k. Furthermore, it follows from Lemma 4.6,
the number of Voronoi regions (i.e., the size of Ĩ) is bounded by ñ/k. This
proves the properties stated in Claim 4.3. Before showing the algorithms for
Step 2.1, we show one more lemma.

Lemma 4.8. For any dual-vertex b̃ ∈ Ĩ and any dual-vertex ṽ ∈ Vr(̃b), there
exists an algorithm that computes dist(ṽ, b̃) in Õ(k)-space.

Proof. For any dual-vertex ũ, we can enumerate all dual-vertices in N+
k (ũ) in

Õ(k)-space (the details will be described in the Algorithms for Step 2.1). Thus,
if ṽ is in N+

k (̃b), we can compute dist(ṽ, b̃) in Õ(k)-space. Assume ṽ does not
belong to N+

k (̃b). In this case, N+
k (ṽ) ∩ N+

k (̃b) 6= ∅ holds, and let ũ be a vertex
in N+

k (ṽ) ∩ N+
k (̃b). We suppose that there is a dual-vertex w̃ /∈ N+

k (ṽ) ∪ N+
k (̃b)

in one of the shortest dual-paths between ṽ and b̃. The distances dist(ṽ, ũ) and
dist(̃b, ũ) are at most dnb(ṽ) + 1 and dnb(̃b) + 1 respectively, and the shortest
dual-paths are clearly included in their k-neighborhoods+. Since w̃ /∈ N+

k (ṽ) ∪
N+

k (̃b), the distances dist(ṽ, w̃) and dist(̃b, w̃) are more than dnb(ṽ) + 1 and
dnb(̃b) + 1 respectively. Thus w̃ cannot become a dual-vertex in the shortest
dual-path, a contradiction. Therefore, we can compute dist(ṽ, b̃) by calculating
dist(ṽ, ũ) +dist(̃b, ũ) for any ũ ∈ N+

k (ṽ)∩N+
k (̃b) and taking their minimum.

Algorithms for Step 2.1

We discuss algorithms for achieving Step 2.1. For algorithms we show below,
it is rather easy to see that they run within polynomial-time in n; thus, we
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omit explaining their time complexity. We also explain algorithms as if one
algorithm can pass a large amount of data to another algorithm; but as explained
in Preliminaries section this process can be realized without using a space for
keeping such data.

The task of Step 2.1 is to compute information on the Voronoi regions of G.
More specifically, we consider an algorithm that outputs

(a) the set Ĩ of boss-vertices;

(b) a family {Nk (̃b)}b̃∈Ĩ of k-neighborhoods;

(c) a list of (ṽ,boss(ṽ), ṽpre) for all ṽ ∈ Ṽ , where boss(ṽ) is the boss-vertex of
the Voronoi region that ṽ belongs to and ṽpre is the dual-vertex that is a
parent in a BFS dual-tree of Vr(boss(ṽ)); and

(d) a list of boundary cycles of all Voronoi regions and lists of pairs of Voronoi
regions sharing a vertex (resp., an edge).

A key algorithmic tool we use here is a BFS algorithm traversing at most
t dual-vertices from a given source dual-vertex ṽ. In this chapter we consider
specific BFS that is convenient for designing space efficient algorithms. We
define a tree T satisfying the following condition as a BFS tree (from a source
dual-vertex ṽ): w̃ is a child of ũ in T if and only if ũ has the smallest index among
dual-vertices that are adjacent to w̃ and satisfies dist(ṽ, w̃)−dist(ṽ, ũ) = 1. For
computing this BFS tree, we keep all vertices having the same level, namely
the same distance from the root, and collect the vertices in the next level by
processing smaller indexed vertex earlier; Cf. In a standard BFS algorithm, we
process vertices in the order added to a queue regardless of the indices. It is
easy to see that the algorithm runs in Õ(t)-space. Then we have an Õ(k)-space
algorithm that enumerates, for a given ṽ, all elements of Nk(ṽ), the set of the
first k closest dual-vertices to ṽ in G̃. We may assume that the distance to ṽ
is also computed and kept for all enumerated dual-vertices. Recall that dnb(ṽ)
= maxũ∈Nk(ṽ) dist(ũ, ṽ). By using this algorithm, we can design an algorithm
that decides whether a given dual-vertex ũ is in N+

k (ṽ), where N+
k (ṽ) contains

additionally all dual-vertices whose distance from ṽ is dnb(ṽ) + 1. Though we
cannot keep N+

k (ṽ) since it could become very large, we can determine whether
ũ ∈ N+

k (ṽ) by checking whether it is adjacent to some w̃ ∈ Nk(ṽ) whose distance
from ṽ is ≤ dnb(ṽ). Then by using this algorithm, we can design an Õ(k)-space
algorithm that determines, for given ṽ and b̃, whether N+

k (ṽ) ∩ N+
k (̃b) 6= ∅; it

simply search in Ṽ a dual-vertex that belongs to both N+
k (ṽ) and N+

k (̃b). We may
assume that the algorithm can also identify the dual-vertex in N+

k (ṽ)∩N+
k (̃b) 6= ∅

that is nearest to ṽ, namely, nrstṽ(N+
k (̃b)), and compute its distance to ṽ.

Armed with these algorithmics we can compute (a) ∼ (d) in Õ(k + ñ/k)-
space. First, for computing Ĩ as the output (a), we simply collect dual-vertices to
Ĩ in a greedy way until there is no dual-vertex ṽ such that N+

k (ṽ)∩N+
k (̃b) = ∅ for

all so far obtained boss-vertices b̃. Note that the working memory for keeping the
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obtained boss-vertices is needed here to achieve the greedy algorithm. Hence,
we need Õ(k + ñ/k)-space since we can bound |Ĩ| ≤ ñ/k. We may assume
that Nk (̃b) is computed (and produced as the output (b)) every time a new
boss-vertex b̃ is obtained.

Next let us fix any dual-vertex ṽ, and consider how to compute (ṽ,boss(ṽ), ṽpre)

as the output (c). For computing b̃ṽ := boss(ṽ), we enumerate all b̃ ∈ Ĩ such
that N+

k (ṽ) ∩N+
k (̃b) 6= ∅; then b̃ṽ is obtained as b̃ such that nrstṽ(N+

k (̃b)) is the
nearest to ṽ. According to our BFS tree definition, ṽpre needs to satisfy that
it is adjacent to ṽ and dist(̃b, ṽ) − dist(̃b, ṽpre) = 1 holds. By Lemma 4.8, we
can enumerate all such dual-vertices in Õ(k)-space, and ṽpre is the dual-vertex
having the smallest index among the candidates.

Finally, consider the computation for (d), that is, a list of boundary cycles
of all Voronoi regions and lists of their incidence and edge-incidence relations.
Consider any Voronoi region Vr(̃b) (specified its boss-vertex b̃). Since it is easy
to determine, for a given edge of G, whether it is a boundary edge of Vr(̃b), we
can enumerate all boundary edges in Õ(1)-space. Then since the boundary of
Vr(̃b) is a collection of cycles of G, we can simply use the Õ(1)-space algorithm
for computing a left-traverse for identifying all boundary cycles of Vr(̃b) from
the set of its boundary edges. Thus, a list of boundary cycles of all Voronoi
regions and lists of pairs of Voronoi regions sharing a vertex (resp., an edge) are
Õ(1)-space computable.

4.4 Multiple-Dual-Cycle (m.d.-cycle)

In this section we introduce the notion of “multiple dual-cycle with an orien-
tation” (in short, m.d.-cycle), which will be used to discuss faces defined by
dual-cycles. This section is a preliminary section for our later discussion, and it
does not correspond to any algorithmic step.

An m.d.-cycle c̃ is a sequence of dual-vertices connected with dual-edges
(with a direction implied by the sequence) that defines nonoverlapping sub-
plane(s) under the assumed planar embedding. Intuitively, an m.d.-cycle is sim-
ply a collection of incident dual-cycles and paths; see Figure 4.9 for examples.
Formally we have the following definition.

Definition 4.8 (m.d.-cycle). Anm.d.-cycle c̃ (under the clockwise/anti-clockwise
order) is a sequence (ṽ1, ṽ2), (ṽ2, ṽ3), . . . , (ṽm−1, ṽm) of directed dual-edges sat-
isfying the following conditions: (i) ṽ1 = ṽm, that is, it starts and ends with
the same dual-vertex; (ii) every directed dual-edge (ṽi, ṽi+1) of c̃ is based on a
dual-edge {ṽi, ṽi+1} of G̃; (iii) no directed dual-edge appears more than once
in c̃ (while it is possible that some directed dual-edge and its reverse may both
appear in c̃); and (iv) for every pair (ṽi−1, ṽi) and (ṽi, ṽi+1) of consecutive di-
rected dual-edges, (ṽi, ṽi+1) must be the clockwise (resp., anti-clockwise) next
directed dual-edge from ṽi appearing in c̃. (We regard the reverse directed
dual-edge (ṽ, ũ) of (ũ, ṽ) the furthest dual-edge from (ũ, ṽ) both clockwise and
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This figure shows examples of m.d.-cycles.
White nodes are dual-vertices that are con-
nected by dual-edges indicated by dashed
lines. We may specify an m.d.-cycle by
(ṽ1, ṽ2, ṽ3, ṽ4, ṽ5, ṽ6, ṽ7, ṽ6, ṽ5, ṽ4, ṽ8, ṽ3, ṽ1),
which traverses a set of directed dual-
edges under the anti-clockwise order
(i.e., turning always right). Similarly,
(ṽ1, ṽ3, ṽ8, ṽ4, ṽ5, ṽ6, ṽ7, ṽ6, ṽ5, ṽ4, ṽ3, ṽ2, ṽ1)
is a m.d.-cycle traversing the same set
of dual-vertices (with a different set of
directed dual-edges, though) under the
clockwise order (i.e., turning always left).
Note that non-duplicate dual-edges form
dual-cycles, and duplicate dual-edges form
a dual-path.

An example of the cases that one needs to be careful is the dif-
ference between sequences (ṽ1, ṽ2, ṽ3, ṽ8, ṽ4, ṽ5, ṽ6, ṽ7, ṽ6, ṽ5, ṽ4, ṽ3, ṽ2, ṽ1) and
(ṽ1, ṽ2, ṽ3, ṽ8, ṽ4, ṽ5, ṽ6, ṽ7, ṽ6, ṽ5, ṽ4, ṽ3, ṽ1); the difference is only the last three
(or two) dual-vertices. Both sequences traverse all dual-vertices, but the latter
one is not an m.d.-cycle while the former one is an m.d.-cycle. The difference
is the usage of four directed dual-edges at ṽ3.

Figure 4.9: M.d.-cycles

anti-clockwise.)
Remark. We use a sequence (ṽ1, ṽ2, . . . , ṽm) of dual-vertices for specifying
a m.d.-cycle c̃, by which we mean a sequence (ṽ1, ṽ2), . . . , (ṽm−1, ṽm) of dual-
edges of c̃. We also regard c̃ as a directed dual graph induced by its directed
dual-edges.

Definition 4.9 (Duplicate/nonduplicate dual-edge and line part). For any
m.d.-cycle c̃, a directed dual-edge (ũ, ṽ) of c̃ is called a duplicate dual-edge if
its reverse (ṽ, ũ) also appears in c̃. Otherwise, it is called a nonduplicate dual-
edge.
Remark. It is easy to see (Figure 4.9) that duplicate directed dual-edges of
c̃ form dual-path(s) in c̃; this motivate us to call the set of duplicate directed
dual-edges of c̃ the line part of c̃. On the other hand, nonduplicate dual-edges of
c̃ form dual-cycle(s). We will ignore the case where c̃ consists of only duplicate
dual-edges, and in the following, we may assume that c̃ has at least one dual-
cycle.

Consider any m.d.-cycle c̃. As mentioned above, we assume that it has at
least one dual-cycle. Hence, the plane (where G̃ is embedded) is separated
by c̃. We would like to classify these subplanes as “inside” or “outside” of c̃.
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(a) (b) (c)

Examples for showing the condition of m.d.-cycles. (a) A combina-
tion of directed dual-edges around a dual-vertex ṽ that cannot appear
“syntactically” in any m.d.-cycle. (Here we consider this particular com-
bination around ṽ. There exist some m.d.-cycle that have these directed
dual-edges (and more) around ṽ. By “syntactically” we mean that this
combination does not appear as a part of any m.d.-cycle in any order.)
(b) A set of directed dual-edges that may appear in some m.d.-cycle
depending on their order; that is, in the order of (1),(2), . . ., (3),(4)
under the anti-clockwise order, and in the order of (1),(4), . . ., (3),(2)
under the clockwise order. (c) A set of directed dual-edges that does
not appear in any m.d.-cycle in the order of (1),(2), . . ., (3),(4), or in the
order of (3),(4), . . ., (1),(2). Let us call this property the noncrossing
property of m.d.-cycle, which we will use several times later.

Figure 4.10: Examples of invalid/valid directed dual-edge sets for m.d.-cycles

Intuitively speaking, we define the inside/outside of c̃ by the left/right of the
directed dual-edges of c̃.

We define the left/right notion formally, and show that one can indeed de-
termine for a given dual-vertex, whether it is located left or right of c̃ uniquely.
In the following explanation, we abuse the notation G̃ \ c̃ to denote a subgraph
of G̃ obtained by “removing” c̃; precisely, G̃ \ c̃ is G̃[Ṽ \ V(c̃)], a subgraph of
G̃ = (Ṽ , Ẽ) induced by Ṽ \ V(c̃). Also in the following, for any dual-edge ẽ of
G̃, by a dual-triangle upon ẽ and its top-vertex, we mean respectively a dual-
triangle that uses ẽ as one of its three dual-edges and its dual-vertex opposite
to ẽ.

We first introduce the notion of “left/right adjacent.” Consider any directed
dual-edge ẽ of c̃. Since G̃ is triangulated, there are two dual-triangles upon ẽ.
We regard the one located left (resp., right) of ẽ w.r.t. the direction of ẽ as
left adjacent-triangle (resp., right adjacent-triangle). Then the top-vertex of the
left (resp., right) adjacent-triangle is called the left adjacent-vertex (resp., right
adjacent-vertex) of ẽ. While these notions are defined for any dual-edge of c̃, we
consider only nonduplicate dual-edges to define the notion of “left/right side” of
c̃. For any dual-vertex we say it is in the left (resp., right) of c̃ if it is connected
in G̃ \ c̃ to the left (resp., right) adjacent-vertex of some nonduplicate dual-edge
of c̃. The following lemma shows that the side of c̃ is uniquely determined in
this way.

53



4.4. MULTIPLE-DUAL-CYCLE (M.D.-CYCLE)

Lemma 4.9. Consider any m.d.-cycle c̃ of G̃. W.r.t. c̃, the side of every dual-
vertex of G̃\c̃ is uniquely determined as left or right. For any duplicate dual-edge
of c̃, its left and right adjacent-vertices are in the same side; that is, they are
both in the left (or in the right) of c̃.

The m.d.-cycle c̃ considered in the proof of the lemma is indicated by
bold dashed line with arrows showing its direction.

Figure 4.11: An example for the proof of Lemma 4.9

Proof. We give a proof following Figure 4.11. Consider some m.d.-cycle c̃, and
suppose that there exists a dual-vertex ṽ that is in the both left and right of c̃.
Let (ṽi, ṽi+1) and (ṽj , ṽj+1) be directed nonduplicate dual-edges of c̃ witnessing
that ṽ is in the left/right of c̃ respectively. Thus, there is a dual-path to ṽ from
the right (resp., left) adjacent-vertex of (ṽi, ṽi+1) (resp., (ṽj , ṽj+1)) that has no
common dual-vertex with c̃. Without losing generality, we assume that i < j;
that is, (ṽi, ṽi+1) appears earlier than (ṽj , ṽj+1) in c̃. Consider two subsequences
of c̃, one from ṽi+1 to ṽj and another from ṽj+1 to ṽ1. They must cross at some
dual-vertex ũ as shown in Figure 4.11, contradicting the noncrossing property
of m.d.-cycle (Figure 4.10).

Armed with this lemma, we can formally define the side of an m.d.-cycle.
Intuitively, the inside of an m.d.-cycle c̃ is subplane(s) located left of the non
line part of c̃.

Definition 4.10 (Inside/outside of an m.d.-cycle). Consider any m.d.-cycle c̃.
A dual-vertex is inside (resp., outside) of c̃ if it is in the left (resp., right) of
c̃. A dual-triangle is inside (resp., outside) of c̃ if its top-vertex is inside (resp.,
outside) of c̃. In general, the inside (resp., outside) of c̃ is the set of subplanes
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of the plane dual graph G̃ consisting of faces (not including c̃ itself) defined by
dual-triangles inside (resp., outside) of c̃.

4.5 Dividing Voronoi Regions
In this section we introduce the notion of “ridge edge” and define the notion of
“pre-frame-cycle” that is a base for a frame-cycle and a frame-graph. For our
algorithm, this section corresponds to Step 2.2, and we explain algorithms for
computing ridge edges and pre-frame-cycles.

While a dual-cycle shown in Figures 4.4 is a good candidate for a frame-cycle,
there is a situation where a more complicated dual-cycle is obtained similarly as
illustrated in Figure 4.5, and we cannot bound in general the size of such dual-
cycles. Such a situation occurs if some Voronoi region has multiple boundary
cycles. Here we introduce “ridge edges” for adding more branch vertices, thereby
dividing Voronoi regions and large dual-cycles appropriately.

Consider any b̃ ∈ Ĩ such that Voronoi region Vr(̃b) has more than one bound-
ary cycle. Let us fix these b̃ and Vr(̃b) for a while. Let T̃ be the BFS dual-tree
of Vr(̃b) that is obtained at the step 2.1 of our algorithm. Recall that it is an
O(k)-depth spanning tree of dual-vertices in Vr(̃b). Consider any two adjacent
dual-vertices ũ and ṽ that are not connected in T̃ . Then by connecting ũ and
ṽ by ẽ = {ũ, ṽ}, a dual-cycle is created6 with two dual-paths of T̃ . This dual-
cycle divides the plane into two subplanes. We consider the case where this
separation divides the set of boundary cycles of Vr(̃b). Below we say that a
dual-edge ẽ = {ũ, ṽ} crosses an edge e (and in parallel, e crosses ẽ) if two faces
corresponding to ũ and ṽ share the edge e.

Definition 4.11 (Ridge edge). Consider Vr(̃b) as a subgraph of G. An edge e
of Vr(̃b) is a ridge edge if the dual-edge ẽ = {ũ, ṽ} of Vr(̃b) crossing e satisfies
the following (below we let c̃(ẽ) denote the dual-cycle induced by ẽ and two
dual-paths of T̃ from the boss-vertex respectively to ũ and ṽ):

• ẽ is not a dual-edge of the BFS dual-tree T̃ of Vr(̃b), and

• each of two subplanes separated by c̃(e) contains at least one boundary
cycle of Vr(̃b).

Below we use Rb̃ to denote the set of ridge edges in Vr(̃b). Use Bb̃ to de-
note the set of boundary edges of Vr(̃b). These sets are sometimes regarded as
subgraphs of G.

We first point out a simple but important property that is immediate from
the definition: namely, no BFS dual-path of T̃ crosses Rb̃ ∪ Bb̃. We then show
the following two properties of Rb̃ and Bb̃.

6Precisely speaking, the created one should be considered as an m.d.-cycle instead of a
simple cycle because two dual-paths of T̃ may be merged before the boss-vertex. But since it
does not have more than one dual-cycle, we discuss below, for simplicity, as if it were a simple
cycle with an orientation so that we can specify its inside/outside.
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An example of a ridge edge. A bold dashed line is a dual-edge
connecting two dual-vertices ũ and ṽ that creates a dual-cycle with
BFS dual-paths containing a Voronoi boundary cycle (indicated
by a solid line) in its both sides. Then an edge crossing this dual-
edge {ũ, ṽ} (indicated by a bold line) is a ridge edge.

Figure 4.12: Ridge edge

Lemma 4.10. Rb̃ as a subgraph of G is a forest. Furthermore, every leaf of Rb̃
is incident to some boundary edge of Bb̃.

Proof. Consider any connected component K of Rb̃. We first show that K does
not contain a cycle. If K had a cycle, then the cycle divides Vr(̃b) into more
than two subplanes each of which contains at least one dual-vertex (since dual-
vertices correspond to faces of G). From the definition of a ridge edge, any
dual-edge of the BFS dual-tree T̃ cannot cross a ridge edge; hence, there must
be a subplane whose dual-vertices are not in the BFS dual-tree. This contradicts
to the fact that T̃ is a spanning tree of Vr(̃b).

Next we show that every leaf of K is incident to the boundary of Vr(̃b). Here
we assume otherwise; that is, there is some leaf v of a connected component of
K that is not incident to the boundary of Vr(̃b) and lead a contradiction.

Let e be the ridge edge that is incident to v. We consider three faces incident
to v that are regarded as dual-vertices ṽ0, ṽ1, and ṽ2 indexed in clockwise
starting from the one adjacent to e so that a dual-edge {ṽ0, ṽ2} crosses e. Let
e1 and e2 are edges incident to v that are crossed by edges {ṽ0, ṽ1} and {ṽ1, ṽ2}
respectively (Figure 4.13 (a)). Note that neither e1 nor e2 is a ridge edge
(because v is a leaf of some connected component consisting of ridge edges). If
ṽ1 does not belong to Vr(̃b), e1 and e2 become boundary edges since ṽ0 and ṽ2
are in Vr(̃b), and v is incident to the boundary, a contradiction. Thus ṽ1 is in
Vr(̃b).

Consider a dual-cycle c̃ induced by (two dual-paths of) the BFS dual-tree T̃
and a dual-edge {ṽ0, ṽ2} (Figure 4.13 (b)). The cycle c̃ divides the plane into
two subplanes; let W and W ′ denote them. Note that both contain at least one
boundary cycle of Vr(̃b) since e is a ridge edge. Without losing generality, we
may assume that W is the subplane containing v. Note that W contains ṽ0, ṽ1,
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(a)

e is the ridge edge and v is its endpoint
(b)

dual-cycle c̃ obtained by connecting ṽ0 and ṽ2

(c)

dual-cycle c̃1 obtained by connecting ṽ0 and ṽ1
(d)

dual-cycle c̃2 obtained by connecting ṽ1 and ṽ2

Figure 4.13: Examples for the proof of Lemma 4.10
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and ṽ2.
We have three cases:

(i) The dual-edges {ṽ0, ṽ1} and {ṽ1, ṽ2} are both in the BFS dual-tree T̃ : In this
case, W becomes the triangle consisting of ṽ0, ṽ1 and ṽ2. Obviously, W has no
boundary cycle of Vr(̃b).
(ii) Either one of {ṽ0, ṽ1} and {ṽ1, ṽ2} is in T̃ : Without loss of generality, we
assume that {ṽ0, ṽ1} is in T̃ and {ṽ1, ṽ2} is not in T̃ . Consider a dual-cycle c̃′

induced by T̃ and a dual-edge {ṽ1, ṽ2}, and let the divided subplane by c̃′ that
does not contain v be U . The difference of W and U , namely W \ U , is the
triangle consisting of ṽ0, ṽ1 and ṽ2. Thus U contains a boundary cycle of Vr(̃b);
hence, e2 becomes a ridge edge. A contradiction.
(iii) Neither {ṽ0, ṽ1} nor {ṽ1, ṽ2} is in T̃ : Consider a dual-cycle c̃1 induced by
T̃ and a dual-edge {ṽ0, ṽ1}, and let W1 denote one of the two subplanes divided
by c̃1 that is entirely contained in W (Figure 4.13 (c)). Note that W1 has no
boundary cycle of Vr(̃b) because otherwise the other side of c̃1, which contains
W ′, has no boundary of Vr(̃b) (since e1 is not a ridge edge), contradicting
the above mentioned fact that W ′ has at least one boundary cycle of Vr(̃b).
Similarly, the subplane W2 defined by a dual-cycle c̃2 induced by T̃ and an edge
{ṽ1, ṽ2} (Figure 4.13 (d)) has no boundary cycle of Vr(̃b). Note, however, v is
only one vertex of G that is in W \ (W1 ∪W2). Thus, W has no boundary cycle
of Vr(̃b). A contradiction.

Lemma 4.11. Bb̃ ∪Rb̃ as a graph is connected.

Proof. For proving by contradiction, suppose that Bb̃∪Rb̃ is not connected. Let
C and C ′ be two connected components of Bb̃ ∪ Rb̃. Here we note that both
C and C ′ consist of some Voronoi boundary cycles and ridge edges connecting
them, which is immediate from the above lemma.

Let c̃ denote a set of dual-vertices of Vr(̃b) incident to edges of C. Due to
the three regularity of G, it is easy to see that c̃ forms an m.d.-cycle under the
anti-clockwise7 order whose orientation is determined so that C is located its
outside. Note here the following two properties of c̃: Firstly, no dual-vertex of
Vr(̃b) belongs to the outside of c̃; if otherwise, i.e., if there were some ṽ ∈ Vr(̃b)

outside of c̃, then the BFS dual-path from b̃ to ṽ should cross some edge of C,
which would not occur by the basic property of Bb̃ and Rb̃. Thus, all dual-
vertices of Vr(̃b) (including dual-vertices of c̃) are located inside of c̃. Then
clearly, C ′ is also included in the inside of c̃. Secondly, no edge of Bb̃ ∪ Rb̃
crosses c̃, which is immediate from the first property.

Among directed dual-edges of c̃, there must be some dual-edges8 that are
7The choice of the anti-clockwise order is necessary to define an m.d.-cycle consisting of all

vertices of c̃ for the case where c̃ has a line part like the one shown in Figure 4.14 (a). Since
C is located in the outside (i.e., the right) of the m.d.-cycle, no line part of the m.d.-cycle is
created in its left. Thus, choosing dual-vertices in the anti-clockwise order is necessary and
sufficient to collect all dual-vertices of c̃.

8These dual-edges are not from the line part of c̃; see the explanation of Figure 4.14 (a).
Thus, its direction in c̃ is uniquely determined.
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not dual-edges of the BFS dual-tree T̃ . Let ẽ1, . . . , ẽh denote such directed dual-
edges of c̃ \ T̃ listed in the order of the m.d.-cycle c̃ (e.g., Figure 4.14 (b)). For
each ẽi, consider a pair of directed dual-paths of T̃ from the boss-vertex b̃ to the
tail of ẽi and the head of ẽi to b̃, with the direction consistent with the directed
dual-edge ẽi. Then this pair of dual-paths and ẽi define a dual-cycle9, which
we denote by ãi. Also denote by ai the subplane(s) defined as the inside of ãi.
By our choice of the direction, a1, . . . , ah are included in the inside of c̃; also
it is clear that there is no overlap between them. Furthermore, every vertex of
G located inside of c̃ is in some ai; see the explanation of Figure 4.14 (b). In
this sense, the set of subplanes a1, . . . , ah is a partition of the inside of c̃. In
particular, there must be some ãi that contains some and hence all vertices of
C ′ because no edges of C ′ can cross the dual-edges of ãi. Then ẽi satisfies the
condition given in Definition 4.11. That is, the edge that crosses ẽi is a ridge
edge, which contradicts the second property of c̃ confirmed above.

Now we are ready to define notions of “branch vertex” and “connector” for-
mally.

Definition 4.12 (B, R, and branch vertex). Hereafter we use B and R to
denote respectively the set of Voronoi boundary edges and the set of ridge edges
defined forG and G̃. Regard B∪R as an induced subgraph ofG. A branch vertex
is a degree three vertex in this graph. For each branch vertex v, a dual-triangle
consisting of three dual-vertices incident to v is a branch-triangle.
Remark. From the above two lemmas on Bb̃∪Rb̃, it is easy to see that B∪R,
as a graph, is a connected graph, and that every vertex of B ∪ R has degree
either 2 or 3.

Definition 4.13 (Connector). Two branch vertices are adjacent if they are
connected by edges in B ∪ R with no other branch vertex on it. The path
connecting adjacent branch vertices is a connector.
Remark. It is easy to see that each connector consists of Voronoi boundary
edges only or ridge edges only. Note that it is possible that some branch vertex
is adjacent to itself; that is, it is connected to itself by a cycle connector. We
fix some simple way to give a direction to each connector, and in the following,
we may assume that each connector has this direction.

We are ready to define the notion of “pre-frame-cycle”, which will be used
as a basis for defining “frame-cycles” and “frame-graph.” We prepare some no-
tation. Consider any connector p (see Figure 4.15). Following the remark of
Definition 4.13, we may assume that p has a direction, and we use vfst and vlast
be the start and end vertices of p w.r.t. this direction. Note that vfst and vlast
are an adjacent pair of branch vertices. Let us call an edge of p having vfst as its
end point the first edge, and similarly, an edge of p having vlast as its end point
the last edge. We will refer a part of p removing the first and last edges as a body

9Again formally speaking, this may not be a real cycle because two dual-paths of the BFS
dual-tree may merge before the boss-vertex. But for simplicity, we regard it as a simple
dual-cycle.
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(a) (b)

Examples for the m.d.-cycle c̃ considered in the proof of Lemma 4.11. (a)
An example for the case where an m.d.-cycle c̃ has a line part. Solid lines
indicate edges of C, while dashed lines and white nodes are dual-edges
and dual-vertices respectively of the m.d.-cycle c̃ incident to C. Note
that dual-edges of a line part, i.e., ẽ1, ẽ2, ẽ3, are all dual-edges of the
BFS dual-tree T̃ from b̃. Suppose otherwise and, say, ẽ2 were non-tree
dual-edge; then at least one of the two BFS dual-paths from b̃ to ẽ2 must
cross C, a contradiction. (b) Thin dashed lines are dual-paths of the
BFS dual-tree T̃ from b̃. Bold dashed lines are dual-edges ẽ1, . . . , ẽ4 of c̃
that do not belong to T̃ , where their order and directions are consistent
with c̃. For each ẽi, an m.d.-cycle is defined by two BFS dual-paths to
the two end points of ẽi and ẽi, with the direction consistent with that of
ẽi, which define a subplane ai as its inside. Clearly, ai is located inside
of c̃, and furthermore, a1, . . . , a4 are the partition of the inside of c̃. To
see this, for each ẽi, consider ṽi (resp., ṽi+1) that is the first dual-vertex
in the BFS dual-path from b̃ to the tail (resp., the head) of ẽi. Then
it is easy to see that each pair ai and ai+1 of adjacent faces share the
same boundary from b̃ to ṽi+1; no situation like the one crossed by X
occurs because thin dashed lines are dual-tree edges. Thus, all vertices
located inside c̃ must be in some face ai.

Figure 4.14: Examples for the proof of Lemma 4.11
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of p and denote it by p′. Also let ẽfst = {ṽfst.r, ṽfst.l} and ẽlast = {ṽlast.r, ṽlast.l}
be dual-edges that cross the first and the last edges respectively, where ṽfst.l
(resp., ṽlast.l is the one located left of the first (resp., the last) edge, and ṽfst.r
(resp., ṽlast.r) is the one located right of the first (resp., the last) edge.

Figure 4.15: Notation on a connector

We can easily see that both ṽfst.l and ṽlast.l (similarly, both ṽlast.r and ṽlast.r)
have the same boss dual-vertex.

Lemma 4.12. boss(ṽfst.l) = boss(ṽlast.l) and boss(ṽfst.r) = boss(ṽlast.r).

Proof. Consider dual-vertices incident to p that are located on the left side of
p. We name them ṽ0 = ṽfst.l, ṽ1, . . . , ṽt−1, ṽt = ṽlast.l so that ṽi and ṽi+1 are
adjacent. Assume that there exists ṽi such that boss(ṽi) 6= boss(ṽi+1), then
an edge e that crosses {ṽi, ṽi+1} must be an edge of a Voronoi boundary. But
since e is incident to p, the end point of e that is on p must be a branch
vertex. This contradicts that p is a connecter. Therefore, there is no i such
that boss(ṽi) 6= boss(ṽi+1), and hence boss(ṽfst.l) = boss(ṽlast.l). With a similar
argument, we can show boss(ṽfst.r) = boss(ṽlast.r).

Then the notion of “pre-frame-cycle” is defined as follows. (This notion will
be revised in the next section. Thus, let us call the one defined here as “the first
version.”)

Definition 4.14 (pre-frame-cycle, the first version). Use notation defined in
Figure 4.15; also see Figure 4.16. For any connector p, a pre-frame-cycle (w.r.t.
p) is a “directed dual-cycle” that consists of (1) a BFS dual-path from ṽfst.r
to its boss-vertex, (2) a BFS dual-path from this boss-vertex to ṽlast.r, (3) a
branch-triangle dual-edge ẽlast from ṽlast.r to ṽlast.l, (4) a BFS dual-path from
ṽlast.l to its boss-vertex, (5) a BFS dual-path from this boss-vertex to ṽfst.l, and
(6) a branch-triangle dual-edge ẽfst from ṽfst.l to ṽfst.r. The direction of this
dual-cycle is defined naturally from the above order of dual-edges and dual-
paths, from which the connector p is located in the left, i.e., the inside, of the
pre-frame-cycle.
Remark. As shown in Figure 4.16, a pre-frame-cycle is not a simple dual-
cycle in general; it may have a line part and/or it may consist of two dual-
cycles. Thus, it seems better to regard it as an m.d.-cycle, more specifically, an
m.d.-cycle under the clockwise order from Figure 4.16. Unfortunately, though,
there are cases where an important part of a pre-frame-cycle is missed if we
consider an m.d.-cycle under the clockwise order; see, e.g., Figure 4.17 (b),
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(c). Furthermore, we will eliminate the cases where more than two dual-cycles
appear as Figure 4.16 (b). Thus, though some pre-frame-cycle may have a line
part, we regard it as a simple directed dual-cycle.

A dual-cycle we saw in Figure 4.4 is in fact a pre-frame-cycle given as Fig-
ure 4.16 (a) (1). On the other hand, a dual-cycle like the one in Figure 4.5
is now divided into several pre-frame-cycles thanks to the introduction of new
branch vertices; see Figure 4.18.

Algorithms for Step 2.2

The task of this step is to compute information of the pre-frame-cycles of G. We
again explain as if each step receives the output of the previous step as input,
and omit analysis of time complexity. Note that we can use the outputs of Step
2.1 as input; the set of boss-vertices Ĩ, the BFS tree T̃b̃ of every Voronoi region
Vr(̃b) (̃b ∈ Ĩ), a list of boundary cycles of all Voronoi regions and a list of pairs
of Voronoi regions sharing a vertex. We consider an algorithm that outputs

(a) the set B ∪R of Voronoi boundary edges and ridge edges;

(b) the set of branch vertices of B ∪R;

(c) a list of connectors; and

(d) a list of pre-frame-cycles10.

First, for computing B ∪ R as the output of (a), we compute Rb̃ for each
b̃ ∈ Ĩ. Note that the boundaries Bb̃ are the input of the algorithm. If Vr(̃b) has
only one boundary cycle, Rb̃ is empty from the definition of ridge edge. Assume
Vr(̃b) has at least two boundary cycles. For each non-tree edge ẽ = {ũ, ṽ} of
Vr(̃b), we compute the path from ũ to ṽ on T̃b̃ with a standard DFS (depth-first
search) algorithm. Since the diameter of T̃b̃ is O(k), this runs in Õ(k)-space. We
denote the dual-cycle11 consisting of this path and ẽ as c̃ẽ, where its direction
is determined in any appropriate way. For each boundary cycle of Bb̃, fix one
dual-vertex ṽB of Vr(̃b) adjacent to Bb̃, and run a DFS algorithm from ṽB on
T̃b̃ until getting to some vertex of c̃ẽ, and check the side of ṽB (and hence, the
boundary cycle) is located, which is again computed in Õ(k)-space. If both
sides of c̃ẽ have at least one boundary cycle, we add the edge crossing ẽ to Rb̃.

Next consider how to compute the branch vertices. For any vertex v of G,
we simply check whether v appears in B ∪R three times or not.

Now we compute connectors as output (c). For each branch vertex v, we
traverse on B ∪ R from v to all three directions until reaching another branch
vertex u (u may be equal to v). The path from v to u is a connector. We

10This was not the output of Step 2.2 explained in Outline section; but we added this for
the sake of explanation in the next section

11Here again we explain, for simplicity, as if c̃ẽ is a simple dual-cycle, though it may have
a line part.
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(a) (b)
(1) (1)

(2) (2)

This figure shows four typical pre-frame-cycles. pre-frame-cycles are
defined by bold dashed lines following the order indicated by numbers.
Two boss-vertices are used for a pre-frame-cycle in type (a), and only
one boss-vertex is used in type (b). Note that two subplanes are created
as the inside/outside of the pre-frame-cycles in (a), whereas three sub-
planes are created in (b). Also note that a connector, i.e., a solid line
with an arrow, is included (except its end points) in the inside subplane
P0 of a pre-frame-cycle for every type. A pre-frame-cycle of type (a) (2)
has a line part, and more examples of pre-frame-cycles with a line part
are shown in Figure 4.17.

Figure 4.16: Typical pre-frame-cycles
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(a) (b) (c)

pre-frame-cycles may have line parts when it has two BFS dual-paths
(with the same boss-vertex) merges before reaching to their boss-vertex.
Here are some typical examples. Figures (b) and (c) show the cases
where the line part indicated by thin dashed lines (and hence the cor-
responding boss-vertex) cannot be included if we regard them as m.d.-
cycles under the clockwise order.

Figure 4.17: Examples of line parts of pre-frame-cycles

outputs the path only if v has smaller or equal index than u for not outputting
a connector twice. The algorithm needs Õ(1)-space.

Finally, we compute pre-frame-cycle as output (d). For each connector, we
compute and output BFS dual-paths and branch-triangle dual-edges according
to the definition of pre-frame-cycle. The dual-paths can be computed by DFS
in Õ(k)-space. Then a sequence (similar to an m.d.-cycle) representing a pre-
frame-cycle can be easily obtained from these dual-paths and branch-triangle
dual-edges in Õ(k)-space.

4.6 Frame-Graph

We define the notion of “frame-graph” formally and show that an obtained
frame-graph satisfying the condition (F1) ∼ (F3). This section corresponds to
Step 2.3 of our algorithm.

Roughly speaking, our frame-graph is defined by removing all dual-vertices
(and dual-edges) not participating in any pre-frame-cycle or branch-triangle,
and these pre-frame-cycle and branch-triangles define all the faces of the frame-
graph. The actual situation is a bit more complicated in general because of
the type (b) of Figure 4.13 in which the 2-connectivity may not be guaranteed
by removing unused dual-edges. Fortunately, we can show that this situation
can be avoided by preprocessing pre-frame-cycles and merging two subplanes
for type (b) graphs (if necessary).

4.6.1 Preprocessing pre-frame-cycles

We show a preprocessing step to simplify pre-frame-cycles so that each simplified
pre-frame-cycle becomes a simple dual-cycle by removing (at most two) line
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(a)

(b)

An example of new branch vertices that introduce new pre-frame-cycles.
We use the Voronoi region of Figure 4.5. Thin solid lines are five boundary
cycles of the Voronoi region. Bold solid lines are paths consisting of ridge
edges connecting these three boundary cycles. Black vertices are new branch
vertices, from which new branch-triangles (not shown here) are created.
Then new branch dual-paths are introduced; for visibility, only three of
them are shown as bold dashed lines in (a) while all of them are shown
as bold dashed lines in (b). In (a), a pre-frame-cycle is indicated by its
component four dual-paths given numbers in the order of its direction. Note
that this directed dual-cycle contains one connector. Similarly, we can see
in (b) (though a bit busy figure) that the long dual-cycle of Figure 4.5 is
now separated into pre-frame-cycles.

Figure 4.18: New branch vertices and obtained pre-frame-cycles
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parts. Thus, we will simply call such a simplified pre-frame-cycles as a dual-
cycle although it may contain a line part.

In this preprocessing step, we go through all pre-frame-cycles, and for each
pre-frame-cycle c̃, we check the number of dual-vertices in each subplane defined
as the inside of c̃ and then take one of the following actions depending on these
numbers: (i) do nothing, that is, keep c̃ as it is (only for the type (a)), (ii) use the
algorithm of Lipton and Tarjan (Proposition 4.1) to compute a separator and
use it as a desired separator of G̃, (iii) merge two subplanes (only for the type
(b)), or (iv) use the pre-frame-cycle c̃ as a desired separator of G̃. Recall that
we can compute a target separator of Gorg from a separator of G̃ as explained
in Outline section (i.e., Claim 4.2). Thus, the whole algorithm terminates with
a desired output if either (ii) or (iv) is executed.

Now we explain this outline in detail. Consider any pre-frame-cycle c̃, and
let us use the symbols given in Figure 4.16 for c̃. In particular, P0 denotes a
subplane defined as the inside of c̃ that has the body of a connector p, and let P1

(resp., P1,1 and P1,2) a subplane(s) located outside of c̃. Let ñ0 (resp., ñ1, ñ1,1,
ñ1,2) be the number of dual-vertices in P0 (resp., P1, P1,1, P1,2), not including
dual-vertices on its boundary c̃. Let ñc̃ denote the number of dual-vertices of c̃;
recall that ñc̃ = O(k) (= O(

√
n)), which can be assumed negligible compared

with ñ.
First consider the type (a). We have the following three cases (here we do

not have the case (iii) mentioned above):

(i) If ñ0 < ñ/4: do nothing and use c̃ as a pre-frame-cycle.

(ii) If ñ0 ≥ 2ñ/3: Note first that P0, that is, the inside of c̃ is included in
the union of two Voronoi regions. Consider one of these Voronoi regions
having at least half of dual-vertices in P0. Let G̃0 be an induced subgraph
of G̃ consisting of dual-vertices of G̃ located in this part; note that it has
at least ñ/3 dual-vertices. Recall that we have a BFS dual-tree covering
dual-vertices of G̃0 of depth O(k) (= O(

√
n)), and also that this dual-

tree (Section 4.3) and the list of dual-vertices inside of c̃ (Section 4.5) are
given as input. Thus, we may assume that a BFS dual-tree of G̃0 is given.
Then we can apply the algorithm of Lipton and Tarjan to G̃0 to obtain a
separator of G̃0 that separates G̃0 into two subgraphs each of which has
at least (ñ/3)/3 = ñ/9 dual-vertices. Since the work space needed for
the algorithm of Lipton and Tarjan is linearly bounded by the depth of
a BFS dual-tree of a given graph, this computation can be executed in
Õ(
√
n)-space. Clearly, the obtained separator is also a 1/9-separator for

G̃, that is, our desired separator.

(iv) Otherwise: In this case we have ñ0 ≥ ñ/4 and ñ1 ≥ ñ− ñ0 − ñc̃, which is
larger than, say, ñ/4. Thus, we can output c̃ as a 1/4-separator of G̃.

Next consider the type (b). We have the following three cases (here we do
not have the case (i) mentioned above):
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(ii) If ñ0 ≥ ñ/3: In this case, for an induced subgraph G̃0 of G̃ consisting of
dual-vertices of G̃ in P0, we take the same action as (ii) for the type (a).

(iii) If either ñ0 + ñ1,1 < ñ/4 or ñ0 + ñ1,2 < ñ/4: Suppose that ñ0 + ñ1,1 <
ñ/4. Then we merge P0 and P1,1, and use a dual-cycle c̃′ bounding this
subplane as a replacement of c̃ and all pre-frame-cycles in P0 and P1,1.
More precisely, c̃′ is a sequence of dual-edges following (5) → (6) → (1)
of (b) in Figure 4.16. Then remove all pre-frame-cycles located left of c̃′,
i.e., in the subplane P0 ∪ P1,1, from the list of pre-frame-cycles; that is, a
new pre-frame-cycle c̃′ becomes the boundary dual-cycle of the subplane
P0∪P1,1 and no pre-frame-cycle exist in it. The case where ñ0+ñ1,2 < ñ/4
is handled in a similar way, and use a dual-cycle following (2) → (3) →
(4) to replace c̃ and all pre-frame-cycles in the subplane P0 ∪ P1,2.

(iv) Otherwise: In this case, we have ñ1,1 + ñ1,2 ≥ ñ− ñ0− ñc̃, which is larger
than, say, ñ/2 (since ñ0 < ñ/3). Thus, either ñ1,1 or ñ1,2 must be larger
than ñ/4. Let us assume that ñ1,1 > ñ/4. Then since ñ0 + ñ1,2 ≥ ñ/4, c̃ is
a 1/4-separator separating G̃ into subgraphs located in P1,1 and P0∪P1,2.
Thus, we output c̃ as a desired separator of G̃.

In the rest of this chapter, we consider the situation where the algorithm
does not terminate during this preprocessing and we still need to compute a
separator. Also we revise our notion of pre-frame-cycle, and consider these dual-
cycles obtained by this preprocessing as pre-frame-cycles. We should remark
here that the inside of each pre-frame-cycle has less than ñ/4 dual-vertices of
G̃.

Now we define “frame-graph” formally as follows.

Definition 4.15 (Frame-graph). For each pre-frame-cycle c̃ of G̃, let Ẽc̃ be
the set of dual-edges that appear once in c̃. Let Ẽ1 be the union of Ẽc̃ for all
pre-frame-cycles c̃, and let Ẽ2 be the set of all branch-triangle edges. Then a
frame-graph of G̃ is a subgraph H̃ = (Ũ , D̃) of G̃, where D̃ = Ẽ1 ∪ Ẽ2 and Ũ is
the set of all dual-vertices that are end points of dual-edges of D̃. A frame-graph
is a plane graph under the embedding of G̃ restricted to Ũ and D̃.
Remark. From the definition of “pre-frame-cycle” (i.e., Figure 4.16 and our
preprocessing step), a pre-frame-cycle c̃ is one dual-cycle that may have at most
two line part(s) if dual-paths merge before its boss-vertices; hence, the set Ẽc̃

of dual-edges that appear once is exactly the dual-cycle part of c̃. Thus, we call
it a frame-cycle and denote it by (c̃)− if we want to consider it as a directed
dual-cycle whose direction is consistent with c̃ (while Ẽc̃ is simply a set of dual-
edges).

As explained in Outline section, a frame-graph H̃ needs to be a weighted
subgraph of G̃. Here to meet the condition (F1), we define the weight of each
face of H̃ as follows.
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Definition 4.16 (Frame-graph and face weight). For each face of a frame-graph
H̃, its weight is the number of dual-vertices of G̃ located in the face (that are
removed to define H̃) divided by the total number ñ− of dual-vertices removed
from G̃.

Algorithms for Step 2.3

The task of this step is to compute H̃, that is, its complete weighted face
information, which consists of the list of branch-triangles and frame-cycles (as
face boundary dual-cycles), the weights of faces defined by them, and their
incidence relations. Since we have already computed pre-frame-cycles in Step
2.2 and the preprocessing step, we only need to consider a way to remove line
parts from each pre-frame-cycle to obtain the corresponding frame-cycle. From
the definition of pre-frame-cycle, Note that a line part exists in a pre-frame-cycle
only if two dual-paths from two branch-triangles merge before the boss-vertex;
such a line part can be identified by a standard DFS using Õ(k)-space. Thus, we
can compute the list of all frame-cycles of H̃ in Õ(k)-space. From the obtained
list of frame-cycles, it is easy to compute their incidence relations. Note that
the number of removed dual-vertices from the inside of each frame-cycle has
been already computed in the preprocessing step.

4.6.2 Properties of the frame-graph.

We show that the frame-graph H̃ satisfies the conditions (F1) ∼ (F3) given in
Outline section.

We start with showing the 2-connectivity of H̃, that is, the condition (F2).

Lemma 4.13. H̃ = (Ũ , D̃) is 2-connented.

Proof. For any two distinct dual-vertices ũ, ṽ ∈ Ũ , we show that there exists two
vertex disjoint dual-paths from ũ to ṽ in H̃. When both ũ and ṽ are on the same
frame-cycle or the same branch dual-triangle, there exist two dual-paths that
are parts of the dual-cycle from ũ to ṽ clockwise and anti-clockwise. Suppose
ũ and ṽ are on two frame-cycles c̃ and c̃′ respectively. Let p0 and p∗ be the
connectors whose bodies are contained in c̃ and c̃′ respectively. Since B ∪ R is
connected, there is a sequence of connecters p0 = p1, p2, . . . , pk = p∗ such that
pi and pi+1 share one endpoint for each i, 1 ≤ i < k. Note also that for each i,
1 < i < k, the body of pi is contained in a frame-cycle c̃i of the type (a)(1) of
Figure 4.16. We re-define the directions of pi so that we can traverse from p1
to pk. For every connector pi, it is obvious that two dual-paths on c̃i one from
ṽfst.l to ṽlast.l another from ṽfst.r to ṽlast.r share no dual-vertex. We call these
two dual-paths left- and right-path respectively. Then we can construct a path
p̃L (resp., p̃R) from ṽfst.l (resp., ṽfst.r) of p2 to ṽlast.l (resp., ṽlast.r) of pk−1 by
using only left- (resp., right-) paths and dual-edges of the corresponding branch-
triangles; clearly, these two dual-paths p̃L and p̃R share no dual-vertex. That
is, they are two vertex disjoint dual-paths from ũ to ṽ. (We need to consider
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the cases where ũ or ṽ is on a branch-triangle or on a frame-cycle based on a
pre-frame-cycle created in the preprocessing step; these cases can be treated
similarly, and we omit detail explanation for these cases.)

Next we consider the conditions (F1) and (F3). For this we need to identify
faces of H̃. Intuitively, it is almost clear that every face of H̃ is defined by either
a branch-triangle or a frame-cycle. We prove below this intuition. Recall that
we define our frame-graph H̃ by collecting necessary dual-edges instead of by
removing dual-vertices from the inside of each pre-frame-cycle. Thus, we need to
prove that there is no dual-vertex of H̃ inside of each frame-cycle to guarantee
that each frame-cycle indeed is a boundary of a face of H̃. We also need to
prove that there is no other face other than those defined by branch-triangles
or frame-cycles.

We first discuss (almost) one-to-one correspondence between pre-frame-cycles
and connectors in G̃. Consider any pre-frame-cycle c̃ that is not among those
introduced as a boundary dual-cycle of two merged subplanes in the preprocess-
ing step. From the definition of pre-frame-cycle, it is clear that the inside of c̃
has the body of some connector. We show that it indeed does not contain any
other edge of B ∪R.

Lemma 4.14. Consider G̃ and its pre-frame-cycle c̃ that is not introduced in
the preprocessing step. Let p′ be the body of a connector p that is located inside
of c̃. Then there is no edge of B ∪R except p′ that is inside of c̃.

Proof. We use the notation of Figure 4.15 here with p and c̃ of the lemma. Since
the BFS dual-tree of each Voronoi region does not cross any edge of R∪B, only
two dual-edges ẽfst and ẽlast of c̃ are crossing edges of R ∪B. Therefore, R ∪B
is parted into at most three connected components by c̃, and each component
is in either in the left side of c̃ (that is, inside of c̃) or in the right side of c̃ (that
is, not outside of c̃). Clearly, one component of them is p′ and it is inside of
c̃. The others12 contain the branch vertices of p, i.e., two end points of p that
are not in the pre-frame-cycle c̃; hence, those components have no edge in the
inside of c̃.

We now show that there is no dual-vertex of H̃ inside of each pre-frame-cycle.
Thus, each frame-cycle is indeed a boundary of a face of H̃. In the following, we
consider H̃+ that is defined as a subgraph of G̃ consisting of all dual-vertices and
dual-edges of branch-triangles and pre-frame-cycles. Note that H̃ is obtained
from H̃+ by removing dual-vertices and dual-edges not participating in frame-
cycles or branch-triangles.

Lemma 4.15. Consider any pre-frame-cycle c̃. No dual-edge of H̃+\c̃ is located
inside of c̃. Thus, the inside of (c̃)− has no dual-vertex of H̃.
Remark. It is possible that the inside of (c̃)− has some dual-vertex of c̃, which
is a dual-vertex of a line part of c̃ that is removed in H̃ (Figure 4.19).

12There is a case where p forms a cycle from a branch vertex (Figure 4.16 (a)(2)), in which
case B ∪R has only one component other than p′; this case can be treated similarly.
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(a) (b) (c)

Typical examples of line parts of pre-frame-cycles that are removed from
H̃+ when defining H̃. Dashed lines (both bold and thin) are pre-frame-
cycles (where the arrows indicate the directions for defining their in-
sides), bold dashed lines are their line parts removed in H̃. Figure (c)
indicates the case where a new pre-frame-cycle is created by merging
two suplanes in the preprocessing step.

Figure 4.19: Examples of line parts removed in H̃

Proof. Consider any pre-frame-cycle c̃. If it is one of those introduced in the
preprocessing step, then the lemma is immediate because the inside of c̃ has
no pre-frame-cycle (due to the preprocessing step), and hence all dual-vertices
are removed from there when defining H̃. Thus, in the following, we consider
a pre-frame-cycle c̃ of the type (a) of Figure 4.16. In particular, we assume for
simplicity that it is of the type (a)(1); the type (a)(2) can be treated similarly.
Let p′ be the body of a connector located inside of c̃.

Assume to the contrary that some dual-edge ẽ of the other pre-frame-cycle
c̃′ exists inside of c̃. It cannot be a dual-edge of a branch-triangle because if
so, the inside of c̃ would have an edge of B ∪ R other than p′, contradicting
to Lemma 4.14 above. Hence, it must be a part of a dual-path p̃ of a BFS
dual-tree. Since there is no Voronoi boundary (besides p′), the boss of this BFS
dual-tree (and one end of the dual-path p̃) is the boss-vertex of c̃ located in
the same side of p′ as ẽ; let us denote it b̃. On the other hand, the other end
of this dual-path in c̃′ must be a branch-triangle that is located outside of c̃
because the corresponding branch vertex must be outside of c̃. Thus, the dual-
path p̃ must cross c̃, and let w̃ denote a dual-vertex of the crossing point; that
is, w̃ is a dual-vertex in both p̃ and c̃. Clearly, its boss-vertex is b̃ because p̃
cannot cross p′. Thus, we have two dual-paths from w̃ to b̃, one following c̃ and
another following p̃, contradicting the fact that each dual-vertex has a unique
BFS dual-path to its boss-vertex.

From this lemma, we can claim that each frame-cycle is a boundary of a
face in H̃ because it is a dual-cycle (see Remark of Lemma 4.15) having no
dual-vertex in its inside in H̃.
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Lemma 4.16. The boundary of any face of frame-graph H̃ is either a frame-
cycle or a branch-triangle.

Proof. Consider any face of H̃. Since H̃ is 2-connected, the face has a single
boundary dual-cycle c̃ (Proposition 2.1). Let us assume that this is not a branch-
triangle and show that it indeed is a frame-cycle.

Note first that c̃ has at least one dual-edge from some branch-triangle. This
is because H̃ consists of dual-edges of disjoint BFS dual-trees of G̃ (from disjoint
Voronoi regions) and branch dual-triangles and we need at least one dual-edge
of some branch-triangle since no dual-cycle is formed by dual-edges of disjoint
dual-trees. Let ẽ and t̃ be respectively such a dual-edge and the branch-triangle
with this dual-edge. Note also that c̃ and t̃ are (the boundaries of) adjacent
faces sharing dual-edge ẽ.

Here we overlap the original plane graph G with H̃. Then by definition there
exists a branch vertex in branch-triangle t̃ where three connectors of B ∪ R
are merged. Clearly, there should be one connector that starts with an edge
crossing dual-edge ẽ. Thus, c̃ contains this connector. On the other hand,
there must be a frame-cycle c̃′ whose inside contains the body of this connector
(Definition 4.1413). Note that both c̃ and c̃′ are boundaries of some faces of H̃.
Therefore, c̃ must be the same as c̃′ since two faces cannot overlap; that is, c̃ is
a frame-cycle.

Now that we have identified all faces of H̃, we consider the conditions (F1)
and (F3) for H̃. Recall that the condition (F1) requires that each face weight
is less than 1/3. Since faces are defined by either a branch-triangle or a frame-
cycle, and the former case is trivial, we need to consider faces defined a frame-
cycle. Note that the preprocessing step guarantees that the number of dual-
vertices of G̃ inside of each frame-cycle is less than ñ/4. Furthermore, for the
total number ñ− of removed dual-vertex, we will see later (in Section 9) that
ñ− = ñ−O(

√
n); hence, we have ñ/4 < ñ−/3 for sufficiently large n, satisfying

the weight requirement of (F1).
For the condition (F3), that is, for showing that H̃ has O(n/k) faces, we

count the number of connectors and branch vertices.

Lemma 4.17. The number of connectors isO(n/k). Also, the number of branch
vertices is O(n/k).

Proof. We consider a plane graph G′ = (V ′, E′) defined from B∪R, where V ′ is
the set of branch vertices of B ∪R, and E′ is the set of edges between adjacent
branch vertices in B ∪R; thus, each edge of E′ corresponds to some connector.
We assume the planar embedding following that of G. Since G′ is plane, it
satisfies Euler’s formula |F ′| + |V ′| = |E′| + 2, where F ′ is the set of faces of
G′. Since the degree of any branch vertex is 3, we have 2|E′| = 3|V ′|. By
substituting this to the above Euler’s formula, we have 3|F ′|+2|E′| = 3|E′|+6,
implying |E′| = 3|F ′| − 6 = O(|F ′|).

13Precisely speaking, we also need to consider frame-cycles introduced in the preprocessing
step; but it is easy to see that this fact remains true even after the preprocessing step.
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Here we note that there is one to one correspondence between faces of G′
and Voronoi regions. To see this, consider a graph consisting of only B edges,
i.e., Voronoi boundary edges. Then the one-to-one correspondence is clear.
On the other hand, adding ridge edges does not divide any Voronoi region;
otherwise, the BFS dual-tree of the divided Voronoi region crosses some ridge
edge, contradicting the definition of ridge edges. Hence, no new face is created
by adding R edges. Thus, we have |F ′| = O(n/k). Therefore, we have |E′|,
which is the number of connectors, is O(n/k). Also we can bound the number
of branch vertices by O(n/k) because 2|E′| = 3|V ′|.

Then the following corollary is immediate from the one-to-one correspon-
dence respectively between branch-triangles and branch vertices and between
frame-cycles and connectors.

Corollary 4.18. The number of faces of H̃ is O(n/k).

4.7 Floor and Ceiling Modification
In this section, we formally define the notion of floor- and ceiling-cycles, and ex-
plain their properties. We then explain Step 2.4 of our algorithm for computing
floor- and ceiling-cycles and modified H̃ as a final output of the whole Step 2.

We begin with defining the notion of “core”, which is used in case no neck
appropriate for a floor-cycle exits. Recall that dnb(ṽ) is the largest d such that
| ∪0≤i≤d L(ṽ, i) | < k holds.

Definition 4.17 (Core). For any boss-vertex b̃ ∈ Ĩ, let dcore(̃b) denote the
largest d ≤ dnb(̃b) such that |L(̃b, d)| ≤

√
k. The core of b̃ (denoted by Core(̃b))

is defined by
Core(̃b) =

⋃

0≤i≤dcore (̃b)

L(̃b, i).

We first note the following relation.

Lemma 4.19. For any b̃ ∈ Ĩ, we have dnb(̃b)− dcore(̃b) ≤
√
k.

Proof. Suppose otherwise, that is, dcore(̃b) +
√
k < dnb(̃b) holds. Then we have

√
k⋃

i=1

L(̃b,dcore(̃b) + i) ⊆ Nk (̃b).

On the other hand, by definition, for any d such that dcore(̃b) < d ≤ dnb(̃b),
we have |L(ṽ, d)| >

√
k, from which we have |Nk (̃b)| > k, contradicting the

definition of k-neighborhood.

Consider any boss-vertex b̃ ∈ Ĩ and its core Core(̃b). By definition Core(̃b) is
a subset of Nk (̃b). Hence, k′ := |Core(̃b)| < k; that is, the core contains less than
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k dual-vertices. It is also a region. Thus, its boundary is a set of disjoint cycles
of G. Let c be one of such boundary cycles. We regard the subplane separated
by c not containing any dual-vertex of the core as the outside of c. The cycle c
is called a core boundary cycle if its outside contains at least 2ñ/3 dual-vertices.
It may be the case that no core boundary cycle exists. In this case, by removing
the core, we would have separated subgraphs G̃1, . . . , G̃t from which we can
define ∪1≤i≤t0G̃i and ∪t0<i≤tG̃i for some t0 such that both parts have at least
(ñ/3) − k′ dual-vertices. Hence, the core itself is, say, a 1/4-separator of G̃ for
sufficiently large k =

√
n and ñ, and its size is k′ ≤ √n; thus, the core itself can

be used as a desired separator from which we can construct a target separator
of Gorg using the method stated in Lemma 4.4. Therefore, in the following we
may assume that each core has a core boundary cycle. Note also that more
than one core boundary cycles do not exist for each boss-vertex because the
outside of such cycles are disjoint and no disjoint two sets can contain 2ñ/3
dual-vertices in each. Then for such a core boundary cycle, consider a set c̃ of
dual-vertices in Core(̃b) (regarded as faces of G) sharing a boundary edge with
the core boundary cycle. We show in Lemma 4.20 below that a subgraph of G̃
induced by c̃ in fact forms a dual-cycle. This observation leads the following
definition.

A bold solid line indicates the core boundary cycle c stated in the
lemma, and some of its vertices are shown as black nodes. White
nodes are some of dual-vertices that share a face boundary edge with
c. In particular, dual-vertices ṽ1 and ṽ2 are those in Core(̃b) sharing
boundary edges with c, and edges e1 and e2 are representatives of
such boundary edges discussed in the proof. It is easy to see that such
dual-vertices form an m.d.-cycle c̃ under the anti-clockwise order that
is indicated by a bold dashed line with arrows showing its direction.

Figure 4.20: An example of core boundary cycle and core-cycle for the proof of
Lemma 4.20 (1)

Definition 4.18 (Core boundary cycle and core-cycle). For each core Core(̃b),
its core boundary cycle is a cycle such that (i) it is one of the boundary cycles
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of the region Core(̃b), and (ii) its outside has at least 2ñ/3 dual-vertices. The
core-cycle of Core(̃b) is a directed dual-cycle induced by the set of dual-vertices
in Core(̃b) sharing an edge with the core boundary cycle. The inside of the
core-cycle is the side with the boss-vertex b̃.

Lemma 4.20. Consider any boss-vertex b̃ and its core Core(̃b), and let c be its
core boundary cycle. Then we can define an m.d.-cycle c̃ under the anticlockwise
order consisting of all dual-vertices of Core(̃b) sharing an edge with c. This c̃
in fact is a dual-cycle. (We may assume that c is directed so that its inside,
i.e., the left side w.r.t. the direction, contains Core(̃b). The direction of c̃ is also
determined consistent with that of c, by which b̃ is located the inside of c̃.)
Remark. From the relation between c and c̃, we refer c̃ as the m.d.-cycle
left-adjacent to c.

A graph consisting of black vertices connected by solid edges is a
part of the core boundary cycle c stated in the lemma. A part of the
m.d.-cycle c̃ is indicated by bold dashed directed edges connecting
white vertices as ṽ1, ṽ, ṽ2, . . ., ṽ3, and ṽ, . . .. Its sub m.d.-cycle c̃′
considered in the proof corresponds to the part ṽ, ṽ2, . . ., ṽ3, and ṽ.
Here w̃1, w̃2, and w̃3 are dual-vertices located in the opposite side,
i.e., the outside of c from, e.g., ṽ.

Figure 4.21: An example for the proof of Lemma 4.20 (2)

Proof. Let d0 = dcore(̃b); hence, Core(̃b) = ∪d≤d0
L(̃b, d). We first show the

existence of the m.d.-cycle c̃ stated in the lemma (see Figure 4.20). Consider
any edge e1 of the boundary cycle c, and let ṽ1 be a dual-vertex in Core(̃b)
(regarded as a face of G) that has e1 as one of its face boundary edges. Clearly,
c has edges that are not boundary edges of ṽ1, and let e2 be the first such edge
from e1 following the direction so that ṽ1 is located left. Then we have some
dual-vertex ṽ2 in Core(̃b) having e2 (as its face boundary edge). Similarly, we
can find e3 and ṽ3, and so on until coming back to e1. Let c̃ be the obtained
sequence of dual-vertices. Then c̃ is an m.d.-cycle under the anti-clockwise order
that has all dual-vertices of Core(̃b) in its inside. This is because there is no
dual-vertex of Core(̃b) from ṽi−1 to ṽi+1 anti-clockwise among all dual-vertices
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adjacent to ṽi. In fact, it is also easy to see that all ṽi’s are in L(̃b, d0) facing
w̃j ’s in L(̃b, d0 + 1).

We then prove that c̃ is indeed a dual-cycle (see Figure 4.21). For this, it
suffices to show that the degree of every dual-vertices of c̃ is two in c̃. Sup-
pose otherwise; that is, we had a dual-vertex ṽ connecting more than two
dual-vertices in c̃. Hence, the m.d.-cycle c̃ would be expressed as a sequence
(ṽ1, ṽ, ṽ2, . . . , ṽ3, ṽ, ṽ4, . . .). (It may be the case that ṽ4 is the same as ṽ3.) We
can split this into two subsequences: (ṽ, ṽ2, . . . , ṽ3) and the remaining one, i.e.,
(ṽ1, ṽ, ṽ4, . . .). Note that both are m.d.-cycles, and clearly, one of them has the
boss-vertex b̃ in its inside while the other one does not. Without losing gener-
ality, we assume that c̃′ = (ṽ, ṽ2, . . . , ṽ3) does not have the boss-vertex b̃ in its
inside. Now consider, e.g., the dual-vertex ṽ2. Since ṽ2 ∈ Core(̃b), its distance
from b̃ is ≤ d0; hence, there must be some dual-vertex ũ ∈ L(̃b, d0 − 1) inside of
c̃′ adjacent to ṽ2. Thus, there must be a path of length d0 − 1 from b̃ to ũ. On
the other hand, this path should go through ṽ because b̃ is in the inside of the
other m.d.-cycle. But then the distance of ṽ becomes less than d0, contradicting
the assumption that ṽ shares a boundary edge with c, which means that there
exists a dual-vertex w̃1 that shares this boundary edge with ṽ in the outside of
Core(̃b), i.e., in L(̃b, d0 + 1).

We state here the following size bounds, which are immediate from the def-
inition.

Lemma 4.21. Each core-cycle has at most
√
k dual-vertices and at most ñ/3

dual-vertices in its inside.

We define the notions of neck, floor, and ceiling. For this we introduce the
notion of “level.” The main difference from the intuitive explanation in Outline
section is that it is defined in terms of the distance from all k-neighborhoods
(instead of a single boss-vertex). For any ` ≥ 1, let L̃nb(`) denote a set of dual-
vertices ṽ whose distance from its nearest k-neighborhood in {Nk (̃b)}b̃∈Ĩ is `.
More formally, it is defined by

L̃nb(`) =
{
ṽ | dist(ṽ, ṽnrst) = `, where ṽnrst = nrstṽ(Nk(boss(ṽ)))

}

Clearly, a family {L̃nb(`)}`≥1 is a partition of Ṽ ′ := Ṽ \ ∪b̃∈ĨNk (̃b). For any
dual-vertex ṽ ∈ Ṽ ′ (resp., any set U ⊆ Ṽ ′ of dual-vertices), the level of ṽ (resp.,
U) is ` such that ṽ ∈ L̃nb(`) holds (resp., U ⊆ L̃nb(`) holds). We use L̃nb(`) also
to denote a subgraph of G̃ induced by L̃nb(`), which we call a sliced graph of
level `.

We first note a property of sliced graphs that allows us to define interior and
exterior boundary cycles.

Lemma 4.22 (Interior and exterior boundary cycles). For any ` ≥ 1, consider
any connected component C of sliced graph L̃nb(`) with a dual-vertex adjacent
to some dual-vertex of level ` + 1. Then C has at least two disjoint boundary
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An example of a connected component C of some level graph L̃nb(`).
A solid line indicates its exterior boundary cycle c, and a dashed line
indicates the m.d.-cycle c̃ in C right-adjacent to c; note that the edges
of c̃ are traversed under the clockwise order. The level of both ṽ1 and
ṽ2 (and in fact all dual-vertices of c̃) is `, which is determined by the
distance from either Nk (̃b1) (e.g., for ṽ1) or Nk (̃b2) (e.g., for ṽ2).

Figure 4.22: Exterior boundary and its right-adjacent m.d.-cycle

cycles: interior boundary cycle and exterior boundary cycle (see the proof for
their definition). Furthermore, for these boundary cycles, we can define m.d.-
cycles like core-cycles. More precisely, consider any one of such boundary cycles
c. Then a set of dual-vertices of C sharing a boundary edge with c forms an
m.d.-cycle c̃ under the clockwise order.
Remark. It may be the case that the above c̃ is not a simple dual-cycle; see
Figure 4.22. (Cf. A core-cycle is a simple dual-cycle.) Below we will refer this c̃
as the m.d.-cycle in C right-adjacent to c. On the other hand, a cycle c is called
the base of c̃.

Proof. By definition C is a region, and hence, its boundary is a disjoint union
of cycles of G. Since C consists of only level ` dual-vertices, each boundary
cycle edge is an edge between a pair of dual-vertices of level either `− 1 and `
or ` and ` + 1. Let us call the former one an interior edge and the latter one
an exterior edge. Note that an interior edge must exist to define level ` dual-
vertices of C, and that an exterior edge must exist because of the assumption
of the lemma. We show that no boundary cycle has a vertex incident with both
interior and exterior boundary edges. Suppose otherwise; that is, some vertex
v exists that is incident with both interior and exterior boundary edges. Since
G is three regular, this v is incident to three faces, one corresponding to a level
` dual-vertex (of C), one corresponding to a level ` − 1 dual-vertex, and one
corresponding to a level ` + 1 dual-vertex. But this contradicts the definition
of level. Thus, C, as a region, has at least the following two disjoint boundary
cycles: an interior boundary cycle consisting of interior edges and an exterior
boundary cycle consisting of exterior edges.

Now consider any one of such boundary cycles of C, and denote it by c. Then
by the same argument as the proof of Lemma 4.20, we can define an m.d.-cycle
c̃ consisting of all and only dual-vertices of C that share boundary edges with
c. (We may assume that the direction of c̃ is determined so that vertices of c
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are located its inside (Figure 4.23), which is different from core-cycles. From
this difference, we need to consider the clockwise order when identifying an
m.d.-cycle right-adjacent to a given interior/exterior boundary cycle.)

Figure 4.23: Interior and exterior boundary cycles and their right-adjacent m.d.-
cycles

Based on this lemma, we introduce the notion of interior- and exterior-
cycles. (Recall here that every m.d.-cycle is a collection of dual-cycles incident
or connected by a line part.)

Definition 4.19 (Interior- and exterior-cycles). Let c be any interior (resp.,
exterior) boundary cycle of some connected component C of L̃nb(`). Let c̃ be the
m.d.-cycle in C right-adjacent to c, and let D̃c̃ be the set of dual-cycles obtained
from c̃ by removing all its line parts. An interior-cycle (resp., exterior-cycle) is
a dual-cycle in D̃c̃.
Remark. Note that D̃c̃ is defined for each boundary cycle. There may be
more than one interior (resp., exterior) boundary cycles, but we focus on one
boundary cycle c for defining c̃. We assume that each interior- and exterior-cycle
is directed following its base m.d.-cycle c̃; the notions of inside/outside are the
same as c̃ of Figure 4.23.

We show some basic properties of interior- and exterior-cycles. Below we say
that two dual-cycles have an overlap if each has a dual-vertex of the other dual-
cycle in its inside (or intuitively, they intersect at least at two dual-vertices).

Lemma 4.23. There is no overlap among interior-, exterior-, and core-cycles.
The inside of each interior-cycle contains at least one boss-vertex.

Proof. Recall that every interior- or exterior-cycle is a subgraph of sliced graph
L̃nb(`) for some `, and that {L̃nb(`)}`≥1 is a partition of Ṽ \ ∪b̃∈ĨNk (̃b). On the
other hand, every core-cycle is in Nk (̃b) for some b̃. Hence, in order to show that
there is no overlap among interior-, exterior-, and core-cycles, it suffices to show
that any two m.d.-cycles of level ` that could become interior- or exterior-cycles
have no overlap. Suppose otherwise; that is, suppose that we have m.d.-cycles
c̃ and c̃′ that are right-adjacent to some interior or exterior boundary cycles,
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say, c and c′ respectively of some connected component C of some sliced graph
L̃nb(`). (Note that c̃ and c̃′ must be in the same connected component because
they share some dual-vertex.) But by the construction of c̃ and c̃′, c and c′ must
have a common vertex, contradicting that all boundary cycles of any region are
disjoint.

The second claim of the lemma follows from the following two facts: (i) every
interior-cycle c̃ of level ` has a dual-vertex ṽ of level `− 1 in its inside, and (ii)
there should be Nk (̃b) witnessing the level of ṽ and there should be a dual-path
from ṽ to the boss-vertex b̃ that does not intersect with c̃.

Lemma 4.24. Consider any boss-vertex b̃ ∈ Ĩ, dual-vertex ũ ∈ Vr(̃b), and the
BFS dual-path p̃ from b̃ to ũ. Let (ṽ1, . . . , ṽt) be the tail subpath of p̃. where
ṽt = ũ, and ṽ1 is the first dual-vertex on p̃ that is not in Nk (̃b). For each i,
1 ≤ i < t, there exist an interior-cycle (resp., an exterior-cycle) that contains ṽi
and that has b̃ in its one side and ṽt in the other side.

Proof. We fix any i, 1 ≤ i < t, and let C be a connected component of a sliced
graph containing ṽi, and let ` be the level of ṽi and C. We first show that
ṽi appears in one of the exterior-cycles of C that satisfies the condition of the
lemma. (The argument for the interior-cycles of C is similar.)

Note that the level of ṽi+1 is `+ 1; hence, an edge e0 crossing the dual-edge
{ṽi, ṽi+1} is an edge of some exterior boundary cycle c of C. We focus on this
cycle; see Figure 4.24. Consider the enumeration of dual-vertices adjacent to ṽi
anti-clockwise from ṽi+1 to ṽi−1. Here we note that the level of the dual-vertices
in the enumeration is either ` − 1, `, or ` + 1, and that (∗) the levels of every
consecutive pair of dual-vertices differs at most one because they are connected
since G̃ is triangulated. Let x̃j−1 is the last dual-vertex in the enumeration that
is of level `+ 1 and the edge ek crossing ṽi and x̃j−1 is an edge of the exterior
boundary cycle c. Such x̃j−1 exists because (i) there exists a dual-vertex of level
`+ 1 in the adjacent dual-vertex enumeration whose boundary edge between ṽi
is an edge of c because at least we have ṽj+1 that satisfies this condition, and
(ii) there should be the last one from the fact (∗) stated above. Now from the
property of x̃j−1 and also from (∗) it follows that the next one x̃j in the adjacent
dual-vertex enumeration is of level `. Then the boundary edge ek+1 between
x̃j−1 and x̃j is a part of some exterior boundary cycle, which in fact must be
the cycle c. This is because (i) both ek and ek+1 must share the unique vertex
w in the triangle ṽi, x̃j−1, and x̃j as their end point, and (ii) the third edge e′
incident to w is not an exterior boundary edge.

Below let us denote x̃i simply by x̃. We can symmetrically show the exis-
tence of a dual-vertex ỹ with the same property in the clockwise enumeration
of adjacent dual-vertices of ṽi from ṽi+1 to ṽi−1.

Consider the m.d.-cycle c̃ right adjacent to c. Note first that a directed dual-
edge (x̃, ṽi) appears in c̃. This is because (i) a consecutive pair of boundary
edges ek+1 and ek are shared by x̃ and ṽi respectively, and (ii) the direction is
consistent with the requirement that c is located inside of c̃. A similar argument
shows that (ṽi, ỹ) appears in c̃. Our goal is to show that this pair of dual-edges
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(x̃, ṽi) and (ṽi, ỹ) appear in one of the dual-cycles of D̃c̃, that is, they are part of
some exterior-cycle c̃′ (see Definition 4.19 for D̃c̃). This goal clearly suffices for
the lemma because ṽi−1 (and hence b̃) is in one side of c̃′ while ṽi+1 (and hence
ṽt) is in the other side. (Note that ṽi is the unique point where the exterior-cycle
c̃′ crosses the BFS dual-path from b̃ to u = ṽt.)

For our goal, it suffices to show that (∗) after (ṽi, ỹ) in c̃, the dual-edge (x̃, ṽi)
must be used when the m.d.-cycle c̃ comes back to ṽi next, that is, no other
dual-edge to ṽi is used. Once this is proved, it is clear that the subsequence of
c̃ from (ṽi, ỹ) to (x̃, ṽi) has a directed dual-cycle having both (ṽi, ỹ) and (x̃, ṽi)
because ṽi appears in only these two dual-edges in this subsequence.

Now we show (∗). For this, consider the m.d.-cycle c̃ starting from ṽi with
dual-edge (ṽi, ỹ). Also we consider an upper part (i.e., the part from (x̃, ṽi) to
(ṽi, ỹ) anti-clockwise) and a lower part (i.e., the part from (ṽi, ỹ) to (x̃, ṽi) anti-
clockwise), and show that no dual-edge to ṽi in these parts is used for coming
back to ṽi for the first time. For the upper part, we can in fact easily show that
there is no directed dual-edge of c̃ to ṽi in this part. Suppose otherwise and
that some directed dual-edge of c̃ coming into ṽi. This should come from a dual-
vertex adjacent to ṽi that is of level ` sharing an edge of c that is a boundary
edge to a dual-vertex of level ` + 1. Clearly, this contradicts to the choice of
x̃ and ỹ. Consider next the lower part. Suppose that the m.d.-cycle c̃, after
(ṽi, ỹ), comes back to ṽi for the first time from the lower part by some dual-
edge (z̃, ṽi). Then after (z̃, ṽi), all dual-edges going out from ṽi or coming back
to ṽi must be located between (z̃, ṽi) and (ṽi, ỹ) clockwise because the m.d.-cycle
c̃ is defined under the clockwise order; otherwise, some subsequence of c̃ must
cross the subsequence of c̃ from ỹ to z̃, contradicting the noncrossing property of
m.d.-cycle (Figure 4.10). Then (x̃, ṽi) cannot appear in c̃, a contradiction.

Finally, we define the notion of neck, floor, and ceiling. Consider any interior-
or exterior-cycle. It is called a neck if it has at most

√
k dual-vertices, and an

interior (resp., exterior) neck is a neck interior-cycle (resp., neck exterior-cycle).
A neck is called biased if it has less than ñ/3 dual-vertices in its inside. Note that
if there is any neck that has at least ñ/3 dual-vertices in both inside and outside,
then we can use the neck itself as a 1/4-separator of G̃ (when n is sufficiently
large) from which we can construct a target separator for Gorg. Therefore, in
the following discussion, we assume that a neck is biased or it has less than ñ/3
dual-vertices in its outside.

Roughly speaking, a floor-cycle (resp., ceiling-cycle) is a biased neck interior-
cycle (resp., exterior-cycle). But some more conditions are needed. As explained
in Outline section, we modify the frame graph H̃ by covering each boss-vertex
by a floor-cycle and a branch-triangle by a ceiling-cycle in order for reducing
the length of each dual-path from a boss-vertex to (a dual-vertex of) a branch-
triangle. Thus, we only need the “largest” one covering each boss-vertex or
branch-triangle. Also we do not need an exterior-cycle that has no intersec-
tion with any branch-triangle as a ceiling-cycle. On the other hand, it may
be the case where some boss-vertex is contained in no floor-cycle. For such
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A bold line (with black nodes) indicates a part of the exterior bound-
ary cycle c focused in the proof. In the proof, for the anti-clockwise
enumeration of dual-vertices adjacent to ṽi from ṽi+1 to ṽi−1, we
consider x̃j−1, the last one in the enumeration that is of level ` + 1
and whose boundary edge, i.e., ek, is a part of c. We then show
that directed dual-edges (x̃, ṽi) and (ṽi, ỹ) are part of the m.d.-cycle
c̃ right adjacent to c, and in fact they are part of the same dual-cycle
component of c̃, i.e., an exterior-cycle defined from c̃.

Figure 4.24: An example for the proof of Lemma 4.24

boss-vertices, we would use their core-cycles as floor-cycles. From these consid-
erations, we define the notion of floor- and ceiling-cycles as follows.

Definition 4.20 (Floor- and ceiling-cycles). A floor-cycle is a biased neck
interior-cycle that is not contained in the inside of any other biased neck interior-
cycle. For any boss-vertex b̃ that is contained in no floor-cycle, we regard
the core-cycle of Core(̃b) also as a floor-cycle. A ceiling-cycle is a biased neck
exterior-cycle that is not contained in the inside of any other biased neck cycle-
cycle and that has at least one dual-vertex of some branch-triangle.
Remark. When a floor-cycle (resp., ceiling-cycle) is a special case of interior-
cycles (resp., exterior-cycles), its inside/outside is the same as the corresponding
interior-cycles (resp., exterior-cycles). Similarly, for a floor-cycle defined as a
core-cycle, its inside/outside follow those of the core-cycle.

We show that floor- and ceiling-cycles have desired properties. First we state
the following size bounds, which are immediate from the definition.

Lemma 4.25. Each floor- and ceiling-cycle has at most
√
k dual-vertices and

less than ñ/3 dual-vertices in its inside.

Next one is the key property of floor- and ceiling-cycles, which is the main
reason of introducing these structures. (One can find a similar argument in the
proof of, e.g., Lemma 3.3 of [33].)
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Lemma 4.26. Consider any pre-frame-cycle (after the preprocessing), and let
p̃ be any dual-path between its boss-vertex b̃ and the “next” dual-vertex ũ of a
branch-triangle used in the pre-frame-cycle 14. There exist one floor-cycle c̃f and
at most one ceiling-cycle c̃c crossing p̃. Let ũf and ũc denote dual-vertices at the
crossing point of respectively p̃ and c̃f , and p̃ and c̃c. Then p̃ is separated into
at most three parts p̃1, p̃2, and p̃3 by c̃f and c̃c: that is, dual-path p̃1 between
b̃ and ũf , dual-path p̃3 between ũ and ũc, and the remaining dual-path p̃2. (In
the case where c̃c does not exist, p̃2 is simply a dual-path defined by p̃ \ p̃1.)
Furthermore, the length of p̃2 is less than 4

√
k.

Proof. Recall that p̃ is a dual-path of the BFS dual-tree from b̃. The existence
of the unique floor-cycle c̃f and at most one ceiling-cycle c̃c follows from Lem-
mas 4.23 and 4.24, and Definition 4.20. Furthermore, it is easy to see that all
dual-vertices of p̃ between b̃ and ũf (except ũf itself) are inside of the floor-cycle
c̃f and that all dual-vertices of p̃ between ũc (except ũc itself) and ũ (if they
exist) are inside of the ceiling-cycle c̃f . Thus, p̃ is divided into at most three
parts p̃1, p̃2, and p̃3 as stated in the lemma, and p̃2 is the part of p̃ located
outside of both c̃f and c̃c.

We show that the length of p̃2 is less than 4
√
k. For our discussion, let us

regard p̃2 as a directed dual-path based on the distance from b̃. Consider first
the head part of p̃2 consisting of dual-vertices in Nk (̃b). This part exists only
if the floor-cycle c̃f is defined by a core-cycle, and the length of this part is by
definition at most dnb(̃b)−dcore(̃b) that is bounded by

√
k (Lemma 4.19). Thus,

the length of this head part of p̃2 is either 0 or at most
√
k.

Now consider the remaining tail part of p̃2, and let ṽ1, ṽ2, . . . , ṽt be the
enumeration of dual-vertices of this part following the direction of p̃2. For the
lemma, it suffices to show that the length of this part of p̃2, i.e., t is less than
3
√
k. Assume to the contrary that t ≥ 3

√
k.

Considering the fact that ṽ1, ṽ2, . . . , ṽt are all in Vr(̃b) \ Nk (̃b) and also on
one dual-path of the BFS dual-tree from b̃, we have ṽi ∈ L̃nb(`1 + (i − 1)) for
each i, 1 ≤ i ≤ t where `1 is the level of ṽ1, which fact will be referred as (∗)
later.

Consider any i, 1 ≤ i ≤ t. Lemma 4.24 guarantees the existence of an
interior-cycle c̃ini and an exterior-cycle c̃exi containing ṽi (where c̃ini and c̃exi might
be the same dual-cycle). We argue that either c̃ini or c̃exi is not a neck; that is,
|c̃ini | >

√
k or |c̃exi | >

√
k. Note first that c̃ini (resp., c̃exi ) contains c̃f (resp.,

c̃c if it exists) in its inside (Lemmas 4.23 and 4.24). Hence, neither c̃ini nor
c̃exi is a biased neck (Definition 4.20). Next assume that both c̃ini and c̃exi are
necks. Since c̃ini is not biased, c̃ini would have less than ñ/3 dual-vertices in its
outside. On the other hand, the inside of c̃exi is contained in the outside of c̃ini
(Figure 4.23). Hence, the inside of c̃exi would have less than ñ/3 dual-vertices,
that is, c̃exi is biased; a contradiction. Therefore, either c̃ini or c̃exi is not a neck;
let c̃i denote this non-neck dual-cycle. We note here that |c̃i| >

√
k.

14More precisely, the “next” dual-vertex ũ is the first/last dual-vertex of a branch-triangle
from/to the boss-vertex appearing in the frame m.d.-cycle following its direction.
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Now consider any i, 1.5
√
k ≤ i ≤ 2.5

√
k, and let C̃i be a set of

√
k+ 1 dual-

vertices of c̃i that are nearest to ṽi (including ṽi itself). (Here we can use the
fact that |c̃i| >

√
k to ensure the existence of C̃i.) Let C̃ = ∪1.5√k≤i≤2.5

√
kC̃i.

Then we have |C̃| > k. Note also that the distance between any dual-vertex
of C̃i and ṽi is at most

√
k. (Recall that c̃i is a dual-cycle.) Here consider a

set B̃ of dual-vertices whose distance from ṽ2
√
k is at most 1.5

√
k. Then we

have B̃ ⊃ C̃, and hence we have |B̃| > k. Note here that N+
k (̃b) is the nearest

k-neighborhood+ of ṽ2√k and the distance between ṽ2√k and N+
k (̃b) is at least

2
√
k (from (∗) mentioned above). Hence, no dual-vertex of B̃ belongs to N+

k (̃b′)

for any b̃′ ∈ Ĩ; because otherwise, the distance of ṽ2√k from N+
k (̃b′) would be at

most 1.5
√
k, contradicting that b̃ is the boss-vertex of ṽ2√k. That is, N+

k (ṽ2
√
k)

has no intersection with ∪b̃′∈ĨN+
k (̃b′), contradicting the choice of Ĩ.

Finally, we define the notion of “modified frame-graph” for our final graph
to which Miller’s algorithm is applicable.

Definition 4.21 (Modified frame-graph). Let H̃ be the frame-graph defined
from G̃ in the previous section. Let F̃ and C̃ be respectively a set of floor-cycles
and ceiling-cycles having at least one dual-vertex of H̃ in their insides. We let
Ẽ′1 be the set of dual-edges that appear in some cycle in F̃ ∪ C̃ and Ẽ′2 be the
set of dual-edges of H̃ that are not in the inside of any cycle of F̃ ∪ C̃. A graph
H̃ ′ = (Ũ ′, D̃′) is a modified frame-graph, where D̃′ = Ẽ′1 ∪ Ẽ′2 and Ũ ′ is the set
of all dual-vertices that are end points of dual-edges of D̃′.

Note that faces of H̃ ′ are defined by one of the following boundary dual-
cycles: (i) a floor-cycle, (ii) a ceiling-cycle, (iii) a branch-triangle, or (iv) a
frame-cycle of H̃ modified by floor- and ceiling-cycles. We call these boundary
dual-cycles H̃ ′-face-cycles. Based on this observation, we define weights of faces
of H̃ ′ in the same way as H̃.

Definition 4.22. For each face of a modified frame-graph H̃ ′, its weight is
the number of dual-vertices of G̃ located in the face (i.e., in the inside of its
H̃ ′-face-cycle) divided by the total number of dual-vertices removed from G̃.

We show that the modified frame graph H̃ ′ satisfies the conditions (F1) ∼
(F4).

First the condition (F1) follows from the definition of a frame-graph and
modified frame-graph. In particular, the condition that the weight of each face is
less than 1/3 follows from the fact that H̃ satisfies this condition. Next consider
the condition (F3); that is, the number of faces is bounded by O(ñ/k). Again
this follows easily from the fact that H̃ satisfies this condition. As mentioned
above, new faces introduced by our modification are those defined by floor- or
ceiling-cycles. By definition, the number of these dual-cycles are bounded by
either the number of boss-vertices or that of (dual-vertices of) branch-triangles,
which is bounded by O(ñ/k). Note that a face defined a frame-cycle of H̃ could
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be divided by ceiling-cycles; but it is easy to see that each face is divided at
most some constant number of faces because the number of floor- and ceiling-
cycles overlapping each frame-cycle is constant, say, at most six. From these
observations, we can bound the number of faces of H̃ ′ by O(ñ/k).

We argue that H̃ ′ keeps the condition (F2) as follows.

Lemma 4.27. H̃ ′ is 2-connected.

Proof. For any two distinct dual-vertices ũ and ṽ in Ũ ′, we show that there
exist two vertex disjoint dual-paths between ũ and ṽ. If ũ and ṽ are located on
the same H̃ ′-face-cycle, it is obvious. Assume that ũ and ṽ are in H̃ and they
survived the modification; namely, they are on branch-triangles or frame-cycles
of H̃ remained after the modification of Definition 4.22. There are two vertex
disjoint dual-paths p̃L and p̃R in H̃ since H̃ is 2-connected (Lemma 4.13). In H̃ ′,
some floor- and ceiling-cycles are introduced. When some of these dual-cycles
touches only one of p̃L and p̃R, then it is obvious that two disjoint dual-paths
exist in H̃ ′. Suppose that a floor- or ceiling-cycle c̃ touches both p̃L and p̃R.
Let ũL and ṽL (resp., ũR and ṽR) respectively denote the first and the last
dual-vertices on p̃L (resp., p̃R) on which p̃L (resp., p̃R) intersects c̃. These four
dual-vertices ũL, ṽL, ũR and ṽR divide c̃ into four subsequences. We can get
two disjoint subsequences from ũL to ṽL or ṽR and from ũR to ṽR or ṽL. If
otherwise; for example, if ũL is adjacent to ũR and ṽL, and ũR is adjacent to ũL
and ṽL on c̃, then ṽR never appears on c̃, a contradiction. Therefore, there exist
two disjoint dual-paths consisting of three subpaths; namely, the subpaths from
ũ to ũL (resp., ũR), the disjoint subsequences of c̃ from ũL (resp., ũR) to ṽL or
ṽR, and the subpath from ṽL (resp., ṽR) to ṽ.

Finally, assume that ũ and ṽ are on different floor- or ceiling-cycles c̃ũ and
c̃ṽ. From the definition, each of c̃ũ and c̃ṽ has at least one dual-vertex of H̃ in its
inside; let w̃ũ and w̃ṽ denote them. There exist two disjoint dual-paths p̃L and
p̃R between w̃ũ and w̃ṽ in H̃. Note that p̃L and p̃R have distinct intersections
with c̃ũ; let ũL (resp., ũR) be the last intersection of p̃L (resp., p̃R) and c̃ũ from
w̃ũ to w̃ṽ. Similarly, let ṽL (resp., ṽR) be the first intersection of p̃L (resp., p̃R)
and c̃ṽ. Clearly, there exist two disjoint dual-paths from ũ to ũL and ũR on c̃ũ;
one can find them by going along c̃ũ clockwise and anti-clockwise. Similarly,
we have two disjoint dual-paths from ṽL and ṽR to ṽ. By combining them,
there exist two disjoint dual-paths from ũ to ṽ. Note that there may be some
floor- or ceiling-cycle touching these disjoint dual-paths. Even in this case, by
an argument similar to the above, we can show two disjoint dual-paths between
ũ and ṽ.

Finally, we confirm as a corollary of Lemma 4.25 that the condition (F4)
holds.

Corollary 4.28. The size of each face of H̃ ′ is O(
√
k).

Proof. As mentioned above, the faces of H̃ ′ are defined by boundary dual-cycles
of type (i) ∼ (iv); see the comment after Definition 4.22. For those defined by

83



4.7. FLOOR AND CEILING MODIFICATION

floor-, ceiling-cycles, and branch-triangles, the size bound of the lemma clearly
holds by definition. Thus, we below consider faces defined by modified frame-
cycles.

Consider any face defined by a modified frame-cycle, and let (c̃)− and c̃
denote respectively the original frame-cycle and the pre-frame-cycle from which
(c̃)− is defined (Definition 4.15). Consider any dual-path p̃ of c̃ connecting a
boss-vertex of c̃ and its “next” dual-vertex of a branch-triangle used in c̃. By
our modification, a part p̃′ of p̃ that is in the outside of the corresponding floor-
cycle and ceiling-cycle (if it exists) could be used as a component of the modified
frame-cycle, and its length is bounded by 4

√
k by Lemma 4.26. Note that the

floor-cycle may not be used in H̃ ′ if it only intersects with the line part of c̃ that
is removed for defining (c̃)− (e.g., Figure 4.19 (a)). In this case, however, only
a part of p̃′ is used for the modified frame-cycle, which is even shorter. Thus,
the modified frame-cycle consists of (at most) four such reduced dual-paths, (a
part of) two floor-cycles, (a part of) four ceiling-cycles (i.e., could be two for
each branch-triangle), and two dual-edges from two branch-triangles, and their
total length is O(

√
k).

Algorithms for Step 2.4

The task of this step is to compute information of the modified frame-graph
H̃ ′. We again explain as if each step receives the output of the previous step as
input, and omit analysis of time complexity. Note that we can use the outputs
of Step 2.3, i.e., the frame-graph H̃, as input. We consider an algorithm that
outputs

(a) a list of core-cycles;

(b) a list of interior- and exterior-cycles;

(c) a list of floor- and ceiling-cycles; and

(d) the complete weighted face information of H̃ ′.

First we point out that a cycle, a sequence of vertices representing a (di-
rected) cycle, is Õ(1)-space computable provided we have a way to distinguish
a set of edges of the cycle (and, more precisely, it is guaranteed that this set of
edges indeed forms a cycle). Also for a given cycle c of G, the task of computing
an m.d.-cycle consisting of dual-vertices left/right adjacent to c can be done
locally and hence in Õ(1)-space; see the proof of Lemma 4.20 and Lemma 4.22.

Once these algorithmic techniques are clear, what remains to show here for
computing the above (a) and (b) is a way to identify core/interior/exterior
boundary cycle edges.

For (a), we first compute all boundary cycles of Core(̃b) for all b̃ ∈ Ĩ. For
any b̃ ∈ Ĩ, consider Core(̃b). Note that it is a subset of Nk (̃b); thus, we have an
Õ(k)-space algorithm that determines whether a given dual-vertex belongs to
Core(̃b) or not by using the same BFS algorithm of Step 2.1. Then by using this
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procedure, we can identify edges of each boundary cycle of Core(̃b); basically,
what we need is to check, for a given candidate edge of G, whether one of its
two adjacent dual-vertices belongs to Core(̃b) and the other does not. Next
we select core boundary cycles from all enumerated boundary cycles. For a
given boundary cycle c, we can use Reingold’s algorithm to determine whether
a given dual-vertex is in the outside of c; hence, we can count the number of
dual-vertices outside of c and determine whether c is a core boundary cycle.
Thus, we can enumerate all core boundary cycle, from which we can enumerate
all core-cycle as the output (a).

For (b), i.e., interior- and exterior-cycles, we first compute the level of all
dual-vertices of G̃. For each dual-vertex ṽ and its boss-vertex b̃, we have an
algorithm that computes dist(ṽ, b̃) in Õ(k)-space (Lemma 4.8). The level of all
dual-vertices is computable by this procedure. Based on this level information,
we can identify connected components of dual-vertices with the same level (out-
side of ∪b̃∈ĨNk (̃b)). Again this procedure is enough for enumerating interior
and exterior boundary cycles, and m.d.-cycles right-adjacent to them. Once we
obtain a list of all m.d.-cycles right-adjacent to interior or exterior boundary
cycles, the remaining task for computing the output (b) is to remove all line
parts from these m.d.-cycles and decompose them into dual-cycles, which can
be done in Õ(1)-space.

By using the core-, interior- and exterior-cycles obtained above as input, it
is easy to list floor- and ceiling-cycles; that is, the output (c). We compute the
size of each cycle and check whether it is a neck, and count the number of dual-
vertices in its inside and check whether it is biased. By these computations,
biased neck interior- and exterior-cycles are obtained in Õ(1)-space. Further-
more, we can check inclusion relations of these cycles and branch-triangles in
Õ(1)-space, from which we can obtain a list of floor- and ceiling-cycles, i.e., the
output (c).

Now we can use H̃ and the list of floor- and ceiling-cycles as input for
computing the output (d). For this, we start with the list of frame-cycles (of
H̃) as an initial list of H̃ ′-face-cycles. For each floor- and ceiling-cycle, we check
whether the dual-cycle has at least one dual-vertex of H̃; if it does, then it
is added to the list, and the corresponding frame-cycles of H̃ in the list are
modified appropriately (if necessary). In this way we can compute a list of
all H̃ ′-face-cycles in Õ(1)-space. Once we have the list, the rest of the task is
similar to the previous sub-steps.
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Chapter 5

Õ(n1/3)-Space Algorithm for
the Grid Graph Reachability
Problem

The directed graph reachability problem takes as input an n-vertex directed
graph G = (V,E), and two distinguished vertices s and t. The problem is to
determine whether there exists a path from s to t in G. This is a canonical
complete problem for class NL. The main result of this chapter is to show that
the directed graph reachability problem restricted to grid graphs can be solved
in polynomial time using only Õ(n1/3) space [12].

5.1 Outline of the algorithm

Asano et al. proposed an Õ(
√
n)-space and polynomial time algorithm for the

directed grid and planar graph reachability problem. Our algorithm uses this
algorithm as a subroutine.

Theorem 5.1 ([9]). There exists an algorithm that decides directed planar
graph reachability in polynomial time and Õ(

√
n) space. (We refer to this

algorithm by PlanarReach.)

Recall that a grid graph is a graph whose vertices are located on grid points,
and whose vertices are adjacent only to their immediate horizontal or vertical
neighbors. We refer to a vertex on the boundary of a grid graph as a rim vertex.
For any grid graph G, we denote the set of the rim vertices of G as RG. For any
u, v ∈ V , a directed edge e from u to v is denoted as e = (u, v); on the other
hand, the tail u and the head v of e are denoted as t(e) and h(e), respectively.

We show the outline of our algorithm. We assume both
√
n and n1/3 are

integers for simplicity. Let G be an input
√
n×√n grid graph with n vertices.
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1. Separate G into n1/3×n1/3 small grid graphs, or “blocks”. There are n1/3
blocks, and each block contains n2/3 vertices.

2. Transform each block B into a special planar graph, “gadget graph”, with
O(n1/3) vertices. The reachability among the vertices in RB should be
unchanged. The total number of vertices in all blocks becomes O(n2/3).

3. We apply the algorithm PlanarReach to the transformed graph of size
O(n2/3), then the reachability is computable in Õ

(√
n2/3

)
= Õ(n1/3)

space.

In step 1 and 2, we reduce the number of vertices in the graph G while
keeping the reachability between the rim vertices of each block so that we can
solve the reachability problem of the original graph. Then to this transformed
graph we apply PlanarReach in step 3, which runs in Õ(n1/3) space.

Theorem 5.2 ([12]). There exists an algorithm that computes the grid graph
reachability in polynomial-time and Õ(n1/3) space.

The start vertex s (resp., the end vertex t) may not be on the rim of any
block. In such a situation, we make an additional block so that s (resp., t)
would be on the rim of the block. This operation would not increase the time
and space complexity. We assume that s (resp., t) is on the rim of some block.

5.2 Graph transformation
In this section, we explain an algorithm that modifies each block and analyze
time and space complexity of the algorithm. Throughout this section, we let
a directed graph G0 = (V0, E0) denote a block of the input grid graph, and
let V rim

0 denote the set of its rim vertices. We use N to denote the number
of vertices of the input grid graph and n to denote |V rim

0 |, which is O(N1/3);
note, on the other hand, that we have |V0| = O(n2) = O(N2/3). Our task is
to transform this G0 to a plane “gadget graph”, an augmented plane graph, G̃p

with O(n) = O(N1/3) vertices including V rim
0 so that the reachability among

vertices in V rim
0 on G0 remains the same on G̃p.

There are two steps for this transformation. We first transform G0 to a circle
graph Gcir

0 , and then obtain G̃p from the circle graph.

5.2.1 Circle graph
We introduce the notion of “circle graph”. A circle graph is a graph embedded on
the plane so that all its vertices are placed on a cycle and all its edges are drawn
inside of the cycle. Note that a circle graph may not have an edge between a
pair of adjacent vertices on the cycle. We introduce some basic notions on circle
graphs. Consider any circle graph G = (V,E), and let C be a cycle on which all
vertices of V are placed. For any u, v ∈ V , a clockwise tour (resp., anti-clockwise
tour) is a part of the cycle C from u to v in a clockwise direction (resp., in an
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u v

Cacl[u, v]

Ccl[u, v]

gap-3 chord

lower area

upper area

(a) (b) (c)

e1 e2

e3

e4 e1

e2
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Figure 5.1: An example of the notions on chords. (a) a figure showing a chord,
arcs, a lower area, an upper area, (b) a figure showing crossing chords (e1 and
e2) and semi-crossing chords (e3 and e4) and (c) separating chords (e3 separates
e1 and e2).

anti-clockwise direction). We use Ccl[u, v] (resp., Cacl[u, v]) to denote this tour
(Figure 5.1(a)). When we would like to specify the graph G, we use Ccl

G[u, v]
(resp., Cacl

G [u, v]). The tour Ccl[u, v], for example, can be expressed canonically
as a sequence of vertices (v1, . . . , vk) such that v1 = u, vk = v, and v2, . . . , vk−1
are all vertices visited along the cycle C clockwise. We use Ccl(u, v) and Ccl[u, v)
(resp., Cacl(u, v) and Cacl[u, v)) to denote the sub-sequences (v2, . . . , vk−1) and
(v1, . . . , vk−1) respectively. Note here that it is not necessary that G has an
edge between adjacent vertices in such a tour. The length of the tour is simply
the number of vertices on the tour. An edge (u, v) of G is called a chord if u and
v are not adjacent on the cycle C. For any chord (u, v), we may consider two
arcs, namely, Ccl[u, v] and Cacl[u, v]; but in the following, we will simply use
C[u, v] to denote one of them that is regarded as the arc of the chord (u, v) in
the context. When necessary, we will state, e.g., “the arc Ccl[u, v]” for specifying
which one is currently regarded as the arc. A gap-d (resp., gap-d+) chord is a
chord (u, v) whose arc C[u, v] is of length d + 2 (resp., length ≥ d + 2). For
any chord (u, v), the subplane inside of the cycle C surrounded by the chord
(u, v) and the arc C[u, v] is called the lower area of the chord; on the other
hand, the other side of the chord within the cycle C is called the upper area
(see Figure 5.1(a)). A lowest gap-d+ chord is a gap-d+ chord that has no other
gap-d+ chord in its lower area. We say that two chords (u1, v1) and (u2, v2)
cross if they cross in the circle C in a natural way (see Figure 5.1(b)). Formally,
we say that (u1, v1) crosses (u2, v2) if either (i) u2 is on the tour Ccl(u1, v1) and
v2 is on the tour Cacl(u1, v1), or (ii) v2 is on the tour Ccl(u1, v1) and u2 is on
the tour Cacl(u1, v1). Also, we say that (u1, v1) semi-crosses (u2, v2) if either (i)
u2 is on the tour Ccl[u1, v1] and v2 is on the tour Cacl[u1, v1], or (ii) v2 is on the
tour Ccl[u1, v1] and u2 is on the tour Cacl[u1, v1] (see Figure 5.1(b)). Note that
clearly crossing implies semi-crossing. In addition, we say that a chord (u1, v1)
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separates two chords (u2, v2) and (u3, v3) if the endpoints of two chords v2 and
v3 are separated by the chord (u1, v1) (see Figure 5.1(c)). Formally, (u1, v1)
separates (u2, v2) and (u3, v3) if either (i) v2 is on the tour Ccl[u1, v1] and v3 is
on the tour Cacl[u1, v1], or (ii) v3 is on the tour Ccl[u1, v1] and v2 is on the tour
Cacl[u1, v1]. We say that k chords (u1, v1), (u2, v2), . . . , (uk, vk) are traversable
if the following two conditions are satisfied:

1. (u1, v1) semi-crosses (u2, v2),

2. ∀i ∈ [3, k], ∃p, q < i, (ui, vi) separates (up, vp) and (uq, vq).

Now for the graphG0 = (V0, E0), we define the circle graphGcir
0 = (V cir

0 , Ecir
0 )

by

V cir
0 = V rim

0 , and
Ecir

0 =
{

(u, v) | ∃path from u to v in G0

}
,

where we assume that the rim vertices of V cir
0 (= V rim

0 ) are placed on a
cycle C0 as they are on the rim of the block in the grid graph. Then it is clear
that Gcir

0 keeps the same reachability relation among vertices in V cir
0 = V rim

0 .
Recall that G0 has O(n2) vertices. Thus, by using PlanarReach, we can show
the following lemma.

Lemma 5.3. Gcir
0 keeps the same reachability relation among vertices in V cir

0 =
V rim
0 . That is, for any pair u, v of vertices of V cir

0 , v is reachable from u in Gcir
0

if and only if it is reachable from u in G0. There exists an algorithm that
transforms G0 to Gcir

0 in O(n)-space and polynomial-time in n.

The notion of traversable is a key for discussing the reachability on Gcir
0 .

Based on the following lemma, we use a traversable sequence of edges for char-
acterizing the reachability on the circle graph Gcir

0 .

Lemma 5.4. For a circle graph Gcir
0 = (V cir

0 , Ecir
0 ) obtained from a block grid

graph G0, if there are traversable edges (u1, v1), (u2, v2), . . . , (uk, vk) ∈ Ecir
0 ,

then (u1, vk) ∈ Ecir
0 .

Proof. We show that vk is reachable from u1 in G0 by induction on k. First,
we consider the case k = 2, namely (u1, v1) semi-crosses (u2, v2). G0 contains a
path pu1,v1 which goes from u1 to v1. Also, G0 contains a path pu2,v2 which goes
from u2 to v2. Since G0 is planar and u1, v1, u2, and v2 are the rim vertices and
the edges are semi-crossing, there exists a vertex w which is common in pu1,v1

and pu2,v2 in G0. Since w is reachable from u1 and v2 is reachable from w, there
exists a path from u1 to v2.

Next, we assume that the lemma is true for all sequences of traversable edges
of length less than k. By the definition, there exist two edges (up, vp) and (uq, vq)
that the edge (uk, vk) separates (p, q < k). We have two paths pu1,vp from u1 to
vp and pu1,vq from u1 to vq in G0 by the induction hypothesis. Also we have a
path puk,vk from uk to vk. Since (uk, vk) separates (up, vp) and (uq, vq), vp and
vq are on the different sides of arcs of the edge (uk, vk). If u1 and vp are on the
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u1

ukvk w′ ukvk

u1

w′

(a) (b)

up vp

vq

uq

up vp

vq

uq

Figure 5.2: A common vertex w′ of a path from uk to vk and a path from u1 to
vq or vp for some p, q < k.

same arc of (uk, vk), the paths pu1,vq and puk,vk have a common vertex w′ (see
Figure 5.2(a)). On the other hand, if u1 and vq are on the same arc of (uk, vk),
the paths pu1,vp and puk,vk have a common vertex w′ (see Figure 5.2(b)). Thus
there exists a path from u1 to vk via w′ in G0.

5.2.2 Gadget graph
We introduce the notion of “gadget graph”. A gadget graph is a graph that is
given a “label set” to each edge.

Definition 5.1. A gadget graph G̃ is a graph defined by a tuple (Ṽ , Ẽ, K̃, L̃),
where Ṽ is a set of vertices, Ẽ is a set of edges, K̃ is a path function that assigns
an edge or ⊥ to each edge, and L̃ is a level function that assigns a label set to
each edge. A label set is a set {i1 → o1, i2 → o2, . . . , ik → ok} of labels where
each label ij → oj , ij , oj ∈ R ∪ {∞}, is a pair of in-level and out-level.

Remark. For an edge (u, v) ∈ Ẽ, we may use expressions K̃(u, v) and L̃(u, v)

instead of K̃((u, v)) and L̃((u, v)) for simplicity.

Our goal is to transform a given circle graph (obtained from a block grid
graph) Gcir

0 = (V cir
0 , Ecir

0 ) in which all vertices in V cir
0 are placed on a cycle C

to a plane gadget graph G̃p = (Ṽ out
p ∪ Ṽ in

p , Ẽp, K̃p, L̃p) where Ṽ out
p is the set of

outer vertices that are exactly the vertices of V cir
0 placed in the same way as Gcir

0

on the cycle C, and Ṽ in
p is the set of inner vertices placed inside of C. All edges

of Ẽp are also placed inside of C under our embedding. The inner vertices of
Ṽ in
p are used to replace crossing points of edges of Ecir

0 to transform to a planar
graph (see Figure 5.3). We would like to keep the “reachability” among vertices
in Ṽ out

p in G̃p while bounding |Ṽ in
p | = O(n).
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∞ → 1

∞ → 1

∞ → 1

∞ → 2 ∞ → 1

∞ → 3

∞ → 3

1 → ∞

1 → ∞

1 → ∞

1 → ∞

2 → ∞

3 → ∞

1 → 1

1 → 2

2 → 2

1 → 2

Figure 5.3: An example of the transformation from a circle graph to a gadget
graph.

We explain how to characterize the reachability on a gadget graph. Consider
any gadget graph G̃ = (Ṽ , Ẽ, K̃, L̃), and let x and y be any two vertices of Ṽ .
Intuitively, the reachability from x to y is characterized by a directed path on
which we can send a token from x to y. Suppose that there is a directed path
p = (e1, . . . , em) from x to y. We send a token through this path. The token
has a level, which is initially ∞ when the token is at vertex x. (For a general
discussion, we use a parameter `s for the initial level of the token.) When the
token reaches the tail vertex t(ej) of some edge ej of p with level `, it can “go
through” ej to reach its head vertex h(ej) if L̃(ej) has an available label ij → oj
such that ij ≤ ` holds for its in-level ij . If the token uses a label ij → oj ,
then its level becomes the out-level oj at the vertex h(ej). If there are several
available labels, then we naturally use the one with the highest out-level. If
the token can reach y in this way, we consider that a “token tour” from x to
y is “realized” by this path p. Technically, we introduce K̃ so that some edge
can specify the next edge. We consider only a path p = (e1, . . . , em) as “valid”
such that ei+1 = K̃(ei) for all ei such that K̃(ei) 6= ⊥. We characterize the
reachability from x to y on gadget graph G̃ by using a valid path realizing a
token tour from x to y.

Definition 5.2. For any gadget graph G̃ = (Ṽ , Ẽ, K̃, L̃), and for any two
vertices x, y of Ṽ , there exists a token tour from x to y with initial level `s if
there exists a sequence of edges (e1, . . . , em) that satisfies

1. x = t(e1) and y = h(em),

2. h(ei) = t(ei+1) (1 ≤ i < m),

3. if K̃(ei) is not ⊥ (1 ≤ i < m), then ei+1 = K̃(ei),

4. there exist labels i1 → o1 ∈ L̃(e1), . . . , im → om ∈ L̃(em) such that `s ≥ i1
and ot ≥ it+1 for all 1 ≤ t < m.

92
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e∗ v∗
u v

new circle graph part

e1 e2

e3

w

G̃0 G̃1

u v

e∗

Figure 5.4: An initial transformation step from G̃0 to G̃1.

At the beginning of our algorithm, we obtain a gadget graph G̃0 = (Ṽ0, Ẽ0, K̃0, L̃0)

whose base graph is equal to Gcir
0 , and K̃0(e) = ⊥, L̃0(e) = {0→∞} for every

e ∈ Ẽ0. It is obvious that Gcir
0 and G̃0 have the same reachability. Namely,

there exists a token tour from x to y for x, y ∈ Ṽ0 in G̃0 if and only if there
exists an edge (x, y) ∈ Ẽ0.

We explain first the outline of our transformation from G̃0 to G̃p. We begin
by finding a chord e∗ = (u, v) with gap ≥ 2 having no other gap-2+ chord in
its lower area, that is, one of the lowest gap-2+ chords. (If there is no gap-2+
chord, then the transformation is terminated.) For this e∗ and its lower area,
we transform them into a planar part and reduce the number of crossing points
as follows (see Figure 5.4): (i) Consider all edges of G̃0 crossing this chord e∗
(e1, e2 and e3 in Figure 5.4). Create a new inner vertex v∗ of G̃p on the chord
and bundle all crossing edges going through this vertex v∗; that is, we replace
all edges crossing e∗ by edges between their end points in the lower area of e∗
and v∗, and edges between v∗ and their end points in the upper area of e∗. (ii)
Introduce new inner vertices for edges crossing gap-1 chords in the lower area of
e∗ (w in Figure 5.4). (iii) Add appropriate label sets to those newly introduced
edges so that the reachability is not changed by this transformation. At this
point we regard the lower area of e∗ as processed, and remove this part from
the circle graph part of G̃0 by replacing the arc C[u, v] by a tour (u, v∗, v) to
create a new circle graph part of G̃1. We then repeat this transformation step
on the circle graph part of G̃1. In the algorithm, Ut is the vertices of the circle
graph part of G̃t, thus G̃t[Ut] indicates the circle graph part of G̃t. Note that
e∗ is not removed and becomes a gap-1 chord in the next step.

We explain step (ii) for G̃0 in more detail. Since e∗ is a gap-2+ chord, there
exist only gap-1 chords or edges whose one end point is v∗ in the lower area of
e∗. If there are two edges e0 and e1 that cross each other, we replace the crossing
point by a new inner vertex u (see Figure 5.5(a), (b)). The edge ei becomes
two edges (t(ei), u) and (u, h(ei)) (i = 0, 1), and we set K̃1(t(ei), u) = (u, h(ei)).
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v∗

v∗

e0

e1

u

v∗

v∗

e0 e1

u

(a) (b)

v∗

v∗

(c)

v∗

v∗

e
ē

(d)

Figure 5.5: Examples of vertices made by MakePlanar.

The edges might be divided into more than two segments (see Figure 5.5(c)).
We call the edge of G̃0 original edge of the divided edges. By the path function,
we must move along the original edge. An edge e might have a reverse direction
edge ē = (h(e), t(e)) (see Figure 5.5(d)). In this case, e and ē share a new vertex
for resolving crossing points. For G̃t[Ut] (t > 0), we process the lower area in
the same way. We refer to this algorithm as MakePlanar, and the new inner
vertices created by MakePlanar in step t as V t

MP.
The detailed process of step (iii) is written in Algorithm 2, and Algorithm 1

describes the entire process of step (i), (ii) and (iii). The following lemma shows
that an output graph of Algorithm 1 has small size.

Lemma 5.5. Algorithm 1 terminates creating a planar graph of size O(n).

Proof. In the beginning of the algorithm, |U0| = n and |Ut| decreases by at
least 1 for each iteration since the picked edge et∗ is a gap-2+ chord. Hence
the algorithm stops after at most n iterations and the number of the new inner
vertices made at line 7, or vt∗, is also at most n. If a gap-k chord is picked, we
make at most 2k− 1 new inner vertices by MakePlanar, namely |V t

MP| ≤ 2k− 1,
since there exist only gap-1 chords in the lower area of the picked edge. The
total number of inner vertices becomes at most

n+

t∑

i=1

(2ki − 1) = n+ 2

t∑

i=1

ki − t ≤ n+ 2× 2n = 5n

where t is the number of iterations and ki means that a gap-ki chord was picked
in the i-th iteration. After all, |Ṽ out

p ∪ Ṽ in
p | ≤ n+ 5n = 6n.

Now we explain Algorithm 2 describing how to assign labels to G̃t+1 con-
structed in Algorithm 1. For each outer vertex v ∈ Ṽ out, we keep three at-
tributes pt(v), `tin(v) and `tout(v), and we call them parent, in-level and out-level
respectively. We calculate these values from line 2 to 7 and line 25 to 27. pt(v)

is a vertex belonging to the circle graph part of G̃t, namely pt(v) ∈ Ut. From
the algorithm, we can show that there are token tours from v to pt(v) and/or
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Algorithm 1
Input: A circle graph Gcir

0 = (V cir
0 , Ecir

0 ) obtained from a block graph.
Task: Output a plane gadget graph G̃p = (Ṽ out

p ∪Ṽ in
p , Ẽp, K̃p, L̃p) which satisfies

Ṽ out
p = V cir

0 and the reachability among vertices in Ṽ out
p in G̃p is the same

as Gcir
0 .

1: initialize t = 0 // loop counter
2: G̃0 = (Ṽ out ∪ Ṽ0, Ẽ0, K̃0, L̃0) where Ṽ out ← V cir

0 , Ṽ0 ← ∅, Ẽ0 ←
Ecir

0 , K̃0(e)← ⊥, L̃0(e)← {0→∞} for each e ∈ Ecir
0 , and U0 ← Ṽ out

3: for every v ∈ Ṽ out, `0in(v)← 0, `0out(v)←∞, p0(v)← v.
4: while G̃t[Ut] has a lowest gap-2+ chord do
5: pick a lowest gap-2+ chord et∗
6: make a new vertex vt∗
7: Ṽt+1 ← Ṽt ∪ {vt∗}
8: Ẽt+1 ← (Ẽt∪{(t(e), vt∗), (vt∗, h(e)) | e crosses e∗ or e = e∗})\{e | e crosses

e∗}
9: Ut+1 ← (Ut ∪ {vt∗}) \ CG̃t[Ut]

(t(et∗), h(et∗))

10: use MakePlanar to make the lower area of et∗ planar and update Ṽt+1, Ẽt+1

and K̃t+1.
11: change the labels by using Algorithm 2 for keeping reachability
12: output G̃t+1[CG̃t[Ut]

[t(et∗), h(et∗)]∪ {vt∗} ∪ V t
MP], which is the lower area of

et∗.
13: t← t+ 1
14: end while
15: use MakePlanar to make G̃t[Ut] planar and assign labels by line 17-24 of

Algorithm 2.
16: output G̃t[Ut ∪ V t

MP]
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Algorithm 2

Task: Set L̃t+1 so that G̃t+1 has the same reachability as G̃t

1: For every edge e appearing in both G̃t and G̃t+1, let L̃t+1(e) = L̃t(e).
2: S` (resp., Su) ← {v ∈ Ut | ∃e ∈ Ẽt s.t. e crosses et∗, t(e) = v or h(e) = v,

and v is at the lower (resp., upper) area of et∗}
3: T ` (resp., Tu) ← {v ∈ V cir

0 | pt(v) ∈ S` (resp. Su)}
4: Fix any vertices x′, y′ ∈ V cir

0 such that pt(x′) = t(et∗), p
t(y′) = h(et∗).

5: Set an order to T ` according to the order appearing in CGcir
0

[y′, x′]. We
regard T ` as a sequence (t`1, t

`
2, . . . , t

`
|T `|) (see Figure 5.6(b)).

6: Set an order to Tu in the same way as T ` but according to the tour along
the other arc. We also regard Tu as a sequence (tu1 , t

u
2 , . . . , t

u
|Tu|) (see Fig-

ure 5.6(b)).
7: Use Algorithm 3 for calculating `t+1

in (v) and `t+1
out (v) for all v ∈ T `.

8: for u ∈ S` do
9: L̃t+1(u, vt∗)← {`tin(v)→ `t+1

in (v) | pt(v) = u}
10: L̃t+1(vt∗, u)← {`t+1

out (v)→ `tout(v) | pt(v) = u}
11: end for
12: for u ∈ Su do
13: L̃t+1(u, vt∗)← {`tin(tui )→ maxt`∈T `{`t+1

out (t`)| (tui , t
`) ∈ Ecir

0 }|tui ∈ Tu and
pt(tui ) = u}

14: L̃t+1(vt∗, u) ← {mint`∈T `{`t+1
in (t`) | (t`, tui ) ∈ Ecir

0 } → `tout(t
u
i )| tui ∈ Tu

and pt(tui ) = u}
15: end for
16: L̃t+1(t(et∗), v

t
∗)← {∞→ 0}, L̃t+1(vt∗, h(et∗))← {∞→ 0}

17: for all edge e created by MakePlanar do
18: Let e′ be the original edge of e
19: if t(e) = t(e′) then
20: L̃t+1(e)← {a→ b | a→ b ∈ L̃t(e

′)}
21: else
22: L̃t+1(e)← {b→ b | a→ b ∈ L̃t(e

′)}
23: end if
24: end for
25: for v ∈ {u ∈ V cir

0 | ∃w ∈ Ut s.t. w is at the lower area of et∗ and pt(u) = w}
do

26: pt+1(v) = vt∗
27: end for
28: Unchanged `tin(·), `tout(·) and pt(·) will be taken over to `t+1

in (·), `t+1
out (·) and

pt+1(·).
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Algorithm 3
Task: Calculate `t+1

in (v) and `t+1
out (v) for all v ∈ T `.

1: for i ∈ [1, |T `|] do
2: `t+1

in (t`i)← max{j | (t`i , t
u
j ) ∈ Ecir

0 , tuj ∈ Tu}+ i/n

3: `t+1
out (t`i)← min{j | (tuj , t

`
i) ∈ Ecir

0 , tuj ∈ Tu}+ i/n
4: end for
5: for i = 1 to |T `| do
6: ∆← max(0,max{`t+1

out (t`j)− j/n | 1 ≤ j < i} − (`t+1
in (t`i)− i/n))

7: for k ∈ [i, |T `|] do
8: `t+1

in (t`k)← `t+1
in (t`k) + ∆

9: `t+1
out (t`k)← `t+1

out (t`k) + ∆
10: end for
11: end for

from pt(v) to v. For the token tour from v to pt(v), the final level of the token
becomes `tin(v). On the other hand, for the token tour from pt(v), it is enough
to have `tout(v) as an initial level to reach v. We will show these facts implicitly
in the proof of Lemma 5.7.

At the beginning of each iteration of Algorithm 1, we choose a lowest gap-2+
chord et∗. We collect vertices in Ut which are endpoints for some edges crossing
with et∗, and we refer to the vertices among them which are in the lower area
of et∗ as S` and the vertices in the upper area of et∗ as Su (see Figure 5.6(a)
and line 2). Next we collect vertices whose parents are in S` (resp., Su), and
we denote them by T ` (resp., Tu) (line 3). Let x′ and y′ be vertices whose
parents are t(et∗) and h(et∗) respectively. We assign indices to the vertices in
Tu and T ` such that the nearer to x′ a vertex is located, the larger index the
vertex has (see Figure 5.6(b)). We regard T ` as a sequence (t`1, t

`
2, . . . , t

`
|T `|),

and Tu as a sequence (tu1 , t
u
2 , . . . , t

u
|Tu|). For each vertex t`i in T `, we calculate

`t+1
in (t`i) and `t+1

out (t`i) in Algorithm 3. From line 1 to 4, we decide temporary
values of `t+1

in (t`i) and `t+1
out (t`i) according to reachability among vertices in T `

and Tu in Gcir
0 . When tuj has the maximum index among vertices that t`i can

reach in Tu, we let `t+1
in (t`i) = j + i/n. When tuj has the minimum index among

vertices which can reach t`i in Tu, we let `t+1
out (t`i) = j + i/n. The term i/n

is for breaking ties. See Figure 5.7: T ` = {t`1, t`2, t`3}, Tu = {tu1 , tu2 , tu3} and
the edges are derived from Ecir

0 . The vertex t`3 can reach tu1 , tu2 and tu3 . Thus
`t+1
in (t`3) = max(1, 2, 3) + 3/n = 3 + 3/n. The vertices tu2 and tu3 can reach t`2.
Thus `t+1

out (t`2) = min(2, 3) + 2/n = 2 + 2/n. In the next for-loop, we change the
in- and out-levels so that the in-level of the larger indexed vertex is larger than
the out-level of the smaller indexed vertex. If there exists a vertex t`j such that
i > j and `t+1

out (t`j) > `t+1
in (t`i), then we let ∆ = (`t+1

out (t`j)− j/n)− (`t+1
in (t`i)− i/n)

and add ∆ to `t+1
in (t`i) and `t+1

out (t`i). For preserving the magnitude relationship
between in- and out-levels of t`i and those of t`k (k > i), we also add ∆ to
`t+1
in (t`k) and `t+1

out (t`k). In Figure 5.7, we have `t+1
in (t`2) < `t+1

out (t`1). Thus we
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add 1 = (`t+1
out (t`1)− 1/n)− (`t+1

in (t`2)− 2/n) to `t+1
in (t`2). Moreover, we add 1 to

`t+1
out (t`2), `t+1

in (t`3) and `t+1
out (t`3) so that we keep the magnitude relationship. Here

we state a lemma.

Lemma 5.6. For any t, if i > j, then `t+1
in (t`i) > `t+1

out (t`j).

Back to Algorithm 2. From line 8 to 16, we assign labels to edges newly
appearing in G̃t+1. Figure 5.8 is an example of how to assign label sets based
on Figure 5.7. The vertex a is the parent of tu3 , b is the parent of tu1 and tu2 , c is
the parent of t`2 and t`3 and d is the parent of t`1. Let v be any vertex in T `. For
edges in the lower area of et∗, the edge (pt(v), vt∗) has a label `tin(v) → `t+1

in (v)
(line 9), and the edge (vt∗, p

t(v)) has a label `t+1
out (v) → `tout(v) (line 10). In

Figure 5.8, the edge (c, vt∗) has labels `tin(t`2)→ `t+1
in (t`2) and `tin(t`3)→ `t+1

in (t`3).
The edge (vt∗, c) has a label `t+1

out (t`2)→ `tout(t
`
2) and the edge (vt∗, d) has a label

`t+1
out (t`1) → `tout(t

`
1). Consider edges in the upper area of et∗. Let v be any

vertex in Tu. The edge (pt(v), vt∗) has a label `tin(v) → `max where `max is
the maximum in-level of vertices in T ` that can reach v (line 13). The edge
(vt∗, p

t(v)) has a label `min → `tout(v) where `min is the minimum out-level of
vertices in T ` that v can reach (line 14). In Figure 5.8, the edge (a, vt∗) has a
label `tin(tu3 ) → `t+1

out (t`2) since tu3 can reach t`1 and t`2, and `t+1
out (t`1) < `t+1

out (t`2)
(see Figure 5.7). The edge (vt∗, b) has a label `t+1

in (t`2)→ `tout(t
u
1 ) since t`2 and t`3

can reach tu1 , and `
t+1
in (t`2) < `t+1

in (t`3) (see Figure 5.7). The edges (t(et∗), v
t
∗) and

(vt∗, h(et∗)) have only one label ∞ → 0, which prohibits using these edges (line
16).

From line 17 to 24, we assign labels to edges made by MakePlanar. For
every edge (u, v) in the lower area of et∗, the edge (u, v) might be divided into
some edges, for instance (u,w1), (w1, w2), . . . (wk, v) by MakePlanar. In this case,
when (u, v) has a label a → b, (u,w1) has a label a → b and the other edges
have labels b→ b (see Figure 5.9).

From line 25 to 27, we update the parents of the vertices whose parents are
in the lower area of et∗. For each vertex v in V cir

0 which pt(v) is in the lower area
of et∗, we let pt+1(v) = vt∗.

For a gadget graph G̃ = (Ṽ , Ẽ, K̃, L̃), we use (v1, `1) ⇒ (v2, `2),⇒ · · · ⇒
(vm, `m) to denote a token tour from v1 to vm in G̃ with having a level `i at
vi ∈ Ṽ for any 1 ≤ i ≤ m. Needless to say, if such a tour exists, (vi, vi+1) ∈ Ẽ
and `′i → `i+1 ∈ L̃(vi, vi+1) where `i ≥ `′i for any 1 ≤ i < m. In addition, when
we would like to show which available labels we used, we write, for example,
(vi, `i; `

′
i → `i+1)⇒ (vi+1, `i+1), which means the available label `′i → `i+1 was

used. The following lemma shows that paths in G̃0 remain in G̃t for every t.

Lemma 5.7. For any t in Algorithm 1, if there exists an edge from x toward y
in G̃0, then there exists a token tour from x to y in G̃t whose length is at most
2t+ 1.

Proof. We prove the lemma by showing that if (x, y) ∈ Ẽ0 then one of the
following two statements holds in G̃t for any t:
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et∗

G̃t[Ut] Su

Sℓ

T ℓ

Tu

Sℓ

Su

et∗x′ y′

tu1

tu2tu3

tu4

tℓ4

tℓ3 tℓ2

tℓ1

G̃t

(a) (b)

Figure 5.6: (a) An example of S` and Su, (b) An example of T ` and Tu.

(i) there exists a token tour of length at most 2t+ 1 from x to y which uses
no chords appearing in G̃t[Ut] (see Figure 5.10(i)).

(ii) there exists a token tour tx,y = (x,∞) ⇒ · · · ⇒ (pt(x), `tin(x); `tin(x)− →
`tout(y)+)⇒ (pt(y), `tout(y)+; `tout(y)− → `)⇒ · · · ⇒ (y,∞) where `tin(x)− ≤
`tin(x), `tout(y)+ ≥ `tout(y) and `tout(y)− ≤ `tout(y). In addition, this tour
uses no chords appearing in G̃t[Ut] except (pt(x), pt(y)), and its length is
at most 2t+ 1 (see Figure 5.10(ii)).

We prove by induction on t. We have a tour (x,∞; 0 → ∞) ⇒ (y,∞) in G̃0.
Thus G̃0 satisfies the statement (i) if x and y are consecutive on the cycle, and
otherwise satisfies the statement (ii).

Assume that the statement (i) holds in G̃t. The tour from x to y appears also
in G̃t+1 and satisfies the statement (i) in G̃t+1. Now, we suppose the statement
(ii) holds in G̃t. We first consider the case that the chord (pt(x), pt(y)) does not
cross et∗. When (pt(x), pt(y)) is in the lower area of et∗, the tour tx,y satisfies
statement (i) in G̃t+1. When (pt(x), pt(y)) is in the upper area of et∗ or equal
to et∗, the tour tx,y satisfies statement (ii) in G̃t+1. Next, we assume that the
chord (pt(x), pt(y)) crosses et∗. There are two cases:

(I) pt(x) ∈ S` and pt(y) ∈ Su: We have x ∈ T ` and y ∈ Tu. There exists
a label `tin(x) → `t+1

in (x) ∈ L̃t+1(pt(x), vt∗) (cf. line 9 of Algorithm 2).
There also exists a label `min → `tout(y) ∈ L̃t+1(vt∗, p

t(y)) where `min =
mint`∈T `{`t+1

in (t`) | (t`, y) ∈ Ecir
0 } (cf. line 14 of Algorithm 2). Since

x ∈ T ` and (x, y) ∈ Ecir
0 , we have `min ≤ `t+1

in (x). Thus, in G̃t+1, there
exists a token tour (x,∞) ⇒ · · · ⇒ (pt(x), `tin(x); `tin(x) → `t+1

in (x)) ⇒
(vt∗, `

t+1
in (x); `min → `tout(y)) ⇒ (pt(y), `tout(y)) ⇒ · · · ⇒ (y,∞). If the
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tu1tu2tu3

tℓ3 tℓ2 tℓ1
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Figure 5.7: How to calculate in and out levels.

ℓtin(t
ℓ
2) → ℓt+1
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ℓ
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ℓ
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ℓ
1) → ℓtout(t

ℓ
1)

ℓt+1
in (tℓ2) → ℓtout(t

u
1 )

ℓt+1
in (tℓ3) → ℓtout(t

u
2 )

ℓtin(t
u
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ℓt+1
out (t

ℓ
2)

ℓtin(t
u
3 )

→ ℓt+1
out (t

ℓ
2)

ℓt+1
in (tℓ3) → ℓtout(t
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∞ → 0 ∞ → 0

tu1

tu2
tu3

tℓ3

tℓ2

tℓ1

vt∗

a b

c d

a = pt(tu3 )

b = pt(tu2 ) = pt(tu1 )

c = pt(tℓ3) = pt(tℓ2)

d = pt(tℓ1)

Figure 5.8: How to assign labels to edges.
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vt∗ vt∗

d → d

c → d

a → b

b → b

a → b

c → d

Figure 5.9: How to assign labels to edges made by MakePlanar.
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G̃t[Ut]

x
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G̃t[Ut]

pt(x)
pt(y)

ℓ−in(x) → ℓ+out(y)

(i) (ii)

Figure 5.10: Two cases of token tours in the proof of Lemma 5.7.
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edge (pt(x), vt∗) has a crossing point in the lower area of et∗, we have
to modify the part (pt(x), `tin(x); `tin(x) → `t+1

in (x)) ⇒ (vt∗, `
t+1
in (x)) to

(pt(x), `tin(x); `tin(x) → `t+1
in (x)) ⇒ (u, `t+1

in (x); `t+1
in (x) → `t+1

in (x)) ⇒
(vt∗, `

t+1
in (x)) where u is a vertex created by MakePlanar.

(II) pt(x) ∈ Su and pt(y) ∈ S`: We have x ∈ Tu and y ∈ T `. There exists a la-
bel `tin(x)→ `max ∈ L̃t+1(pt(x), vt∗) where `max = maxt`∈T `{`t+1

out (t`) | (x, t`) ∈
Ecir

0 } (cf. line 13 of Algorithm 2). Since y ∈ T ` and (x, y) ∈ Ecir
0 ,

we have `max ≥ `t+1
out (y). There also exists a label `t+1

out (y) → `tout(y) ∈
L̃t+1(vt∗, p

t(y)) (cf. line 10 of Algorithm 2). Thus, in G̃t+1, there exists a
token tour (x,∞)⇒ · · · ⇒ (pt(x), `tin(x); `tin(x)→ `max)⇒ (vt∗, `max; `t+1

out (y)→
`tout(y))⇒ (pt(y), `tout(y))⇒ · · · ⇒ (y,∞) in G̃t+1. If the edge (vt∗, p

t(y))
has a crossing point in the lower area of et∗, we have to modify the part
(vt∗, `max; `t+1

out (y)) → `tout(y)) ⇒ (pt(y), `tout(y)) to (vt∗, `max; `t+1
out (y) →

`tout(y)) ⇒ (u, `tout(y); `tout(y) → `tout(y)) ⇒ (pt(y), `tout(y)) where u is a
vertex created by MakePlanar.

In both cases, the length of the new tour is longer than that of tx,y by at most 2,
thus it is at most 2(t+1)+1. We have pt+1(x) = vt∗ in case (I) and pt+1(y) = vt∗
in case (II). Thus the new tour has only one chord (pt+1(x), pt+1(y)) appearing
in G̃t+1[Ut+1], and the chord has a label `tin(x)− → `tout(y)+. Therefore the new
tour satisfies statement (ii).

The following lemma shows the other direction: if there exists a token tour
from x to y in the gadget graph, then there exists a path from x to y in the
circle graph. From Lemma 5.4, it is enough to prove the following Lemma.

Lemma 5.8. For any t and x, y ∈ V cir
0 , if there exists a token tour from x to

y in G̃t, then there exists a traversable edge sequence (e1, . . . , ek) in Gcir
0 such

that t(e1) = x and h(ek) = y.

Before proving this, we prepare several lemmas, i.e., Lemma 5.9 to Lemma 5.13.
We refer to temporal in- and out-levels for t`i ∈ T ` calculated at line 2 and

3 in Algorithm 3 as t`t+1
in (t`i) and t`t+1

out (t`i). Namely,

t`t+1
in (t`i) = max{j | (t`i , t

u
j ) ∈ Ecir

0 , tuj ∈ Tu}+ i/n,

t`t+1
out (t`i) = min{j | (tuj , t

`
i) ∈ Ecir

0 , tuj ∈ Tu}+ i/n.

Lemma 5.9. In Algorithm 3 of step t, if i > j then t`t+1
in (t`i) > t`t+1

in (t`j),
`t+1
in (t`i) > `t+1

in (t`j), t`
t+1
out (t`i) > t`t+1

out (t`j) and `t+1
out (t`i) > `t+1

out (t`j). Moreover, if
i > j and t`t+1

io1
(t`i) > t`t+1

io2
(t`j) then `t+1

io1
(t`i) > `t+1

io2
(t`j) (io1, io2 ∈ {in, out}).

Proof. Let i′ = max{k | (t`i , t
u
k) ∈ Ecir

0 , tuk ∈ Tu} and j′ = max{k | (t`j , t
u
k) ∈

Ecir
0 , tuk ∈ Tu}. Namely, t`tin(t`i) = i′ + i/n and t`tin(t`j) = j′ + j/n. Assume

i′ < j′. Now we have i > j and i′ < j′. Thus the edges (t`i , t
u
i′) and (t`j , t

u
j′) are

crossing (see Figure 5.11(a)). From Lemma 5.4, the edge (t`i , t
u
j′) is in E

cir
0 . This
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tℓjtℓi

tui′tuj′

tℓjtℓi

tui′tuj′

(b)(a)

Figure 5.11: Examples of wrong positions of vertices.

is contrary to the fact that i′ is the maximum index. Thus t`tin(t`i) = i′+ i/n >
j′ + j/n = t`tin(t`j) holds.

Let i′ = min{k | (tuk , t
`
i) ∈ Ecir

0 , tuk ∈ Tu} and j′ = min{k | (tuk , t
`
j) ∈

Ecir
0 , tuk ∈ Tu}. Namely, t`tout(t`i) = i′ + i/n and t`tout(t`j) = j′ + j/n. Assume

i′ < j′. Now we have i > j and i′ < j′. Thus the edges (tui′ , t
`
i) and (tuj′ , t

`
j) are

crossing (see Figure 5.11(b)). From Lemma 5.4, the edge (tui′ , t
`
j) is in Ecir

0 . This
is contrary to the fact that j′ is the minimum index. Thus t`tout(t`i) = i′+ i/n >
j′ + j/n = t`tout(t

`
j) holds.

The in- and out-levels `tin(t`i), `tin(t`j), `tout(t`i) and `tout(t`j) might be larger
than t`tin(t`i), t`tin(t`j), t`tout(t`i) and t`tout(t`j) since some positive integer ∆ might
be added (see at line 8 and 9 in Algorithm 3). However, when ∆ is added to
`tin(t`j) (resp., `tout(t`j)), ∆ is also added to `tin(t`i) (resp., `tout(t`i)) since i is
not less than j. Thus `tin(t`i) > `tin(t`j) and `tout(t

`
i) > `tout(t

`
j). By the same

argument, the second statement holds.

Lemma 5.10. In Algorithm 2 in step t, for t`p, t`q ∈ T `, if t`t+1
in (t`p) ≥ t`t+1

out (t`q),
then `t+1

in (t`p) ≥ `t+1
out (t`q).

Proof. When p > q, this lemma holds from Lemma 5.9. Consider the case
p ≤ q. Let t`t+1

in (t`p) = i + p/n and t`t+1
out (t`q) = j + q/n. Since t`t+1

in (t`p) ≥
t`t+1

out (t`q) and p ≤ q, we have i ≥ j. Assume `t+1
in (t`p) < `t+1

out (t`q). In order that
`t+1
in (t`p) < `t+1

out (t`q) holds, some positive integer ∆ should be added to `t+1
out (t`q)

at line 9, and not added to `t+1
in (t`p) at line 8 of Algorithm 3. Thus, there

should be a vertex t`r such that q ≥ r ≥ p and ∆ = max{t`t+1
out (t`k) − k/n | 1 ≤

k < r} − (t`t+1
in (t`r) − r/n) > 0. Since ∆ is positive, there exists a vertex

t`s such that r > s and t`t+1
in (t`r) < t`t+1

out (t`s). Since r ≥ p and q ≥ s, we
have t`t+1

in (t`r) ≥ t`t+1
in (t`p) and t`t+1

out (t`q) ≥ t`t+1
out (t`s) from Lemma 5.9. Now

t`t+1
in (t`p) ≥ t`t+1

out (t`q) holds, thus t`t+1
in (t`r) ≥ t`t+1

out (t`s) and ∆ becomes non-
positive. This is a contradiction. Thus `t+1

in (t`p) ≥ `t+1
out (t`q) holds.
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For every label in G̃t and k ≤ t, there are three types: (i) `kin(x)→ `k+1
in (x)

(cf. line 9), (ii) `k+1
out (x) → `kout(x) (cf. line 10) and (iii) `kin(x) → `kout(y) (cf.

line 13, 14) for x, y ∈ V cir
0 . We define a source vertex and a sink vertex for any

types of labels.

(i) source vertex is x. When i = max{j | (x, tuj ) ∈ Ecir
0 , tuj ∈ Tu}, sink vertex

is tui .

(ii) sink vertex is x. When i = min{j | (tuj , x) ∈ Ecir
0 , tuj ∈ Tu}, source vertex

is tui .

(iii) source vertex is x and sink vertex is y.

For a label L, we refer to an edge in Gcir
0 from L’s source vertex to L’s sink

vertex as a source edge of L. It is obvious that any source edge exists in Gcir
0 .

Lemma 5.11. We consider any token tour of length 2 going through vt∗:
(x, a′; a→ b)⇒ (vt∗, b; c→ d)⇒ (y, d) in G̃t′ where t < t′.

1. (x, vt∗) is in upper area, and (vt∗, y) is in upper area of et∗: Let (tui , t
`
p) be

a → b’s source edge, and we let (t`q, t
u
j ) be c → d’s source edge. We have

p ≥ q.

2. (x, vt∗) is in upper area, and (vt∗, y) is in lower area of et∗: Let (tui , t
`
p) be

a → b’s source edge, and we let (tuj , t
`
q) be c → d’s source edge. We have

p ≥ q.

3. (x, vt∗) is in lower area, and (vt∗, y) is in upper area of et∗: Let (t`p, t
u
i ) be

a → b’s source edge, and we let (t`q, t
u
j ) be c → d’s source edge. We have

i ≥ j and p ≥ q.

4. (x, vt∗) is in lower area, and (v∗, y) is in lower area of et∗: Let (t`p, t
u
i ) be

a → b’s source edge, and we let (tuj , t
`
q) be c → d’s source edge. We have

(i) i ≥ j and p ≥ q, (ii) i ≥ j and p < q or (iii) i < j and p ≥ q.

The indices i, j, p and q are based on the sequences Tu and T ` made in Algo-
rithm 2 in step t.

Proof.

1. We have b = `t+1
out (t`p) and c = `t+1

in (t`q). From the rule of token tours,
`t+1
out (t`p) ≥ `t+1

in (t`q) holds. If p < q, we have `t+1
out (t`p) < `t+1

in (t`q) from
Lemma 5.6. Thus we have p ≥ q.

2. We have b = `t+1
out (t`p) and c = `t+1

out (t`q). From the rule of token tours,
`t+1
out (t`p) ≥ `t+1

out (t`q) holds. If p < q, we have `t+1
out (t`p) < `t+1

out (t`q) from
Lemma 5.9. Thus we have p ≥ q.
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Figure 5.12: Relations of vertices and their parents.

3. We have b = `t+1
in (t`p) and c = `t+1

in (t`q). From the rule of token tours,
`t+1
in (t`p) ≥ `t+1

in (t`q) holds. If p < q, we have `t+1
in (t`p) < `t+1

in (t`q) from
Lemma 5.9. Thus we have p ≥ q. From the definition of source edge,
tui has the maximum index among vertices that t`p can reach. Assume
i < j. Now we have p ≥ q and i < j. Thus the edges (t`p, t

u
i ) and (t`q, t

u
j )

are semi-crossing. From Lemma 5.4, the edge (t`p, t
u
j ) is in Ecir

0 . This is
contrary to the fact that i is the maximum index. Thus i ≥ j holds.

4. We have b = `t+1
in (t`p) and c = `t+1

out (t`q). From the rule of token tours,
`t+1
in (t`p) ≥ `t+1

out (t`q) holds. We will show that i < j and p < q do not hold
simultaneously. Assume i < j and p < q. We have i + p/n = t`t+1

in (t`p) <

t`t+1
out (t`q) = j + q/n. From Lemma 5.9, we have `t+1

in (t`p) < `t+1
out (t`q) since

p < q, and we cannot follow the tour. Thus, there are three possible
relationships: (i) i ≥ j and p ≥ q, (ii) i ≥ j and p < q, (iii) i < j and
p ≥ q.

Lemma 5.12. For any three vertices u, v, w ∈ Ut, if (u, v, w) is in clockwise
(resp., anti-clockwise) order in G̃t[Ut], then (x, y, z) is also in clockwise (resp.,
anti-clockwise) order in Gcir

0 for any x, y, z ∈ V cir
0 such that pt(x) = u, pt(y) = v

and pt(z) = w (see Figure 5.12(a)).

Proof. We prove by induction on t. Since the parent of every vertex is itself in
step 0, the Lemma is true in step 0. Let u, v and w be vertices such that (u, v, w)

is in clockwise (resp., anti-clockwise) order in G̃t+1[Ut+1]. Fix any three vertices
x, y and z such that pt+1(x) = u, pt+1(y) = v and pt+1(z) = w. When none of u,
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v or w is vt∗, (u, v, w) is in clockwise (resp., anti-clockwise) order also in G̃t[Ut].
Thus (x, y, z) is in clockwise (resp., anti-clockwise) order from the induction
hypothesis. Let u = vt∗. Since pt(x) is in the lower area of et∗, (pt(x), u, v) is
in clockwise (resp., anti-clockwise) order in G̃t[Ut] (see Figure 5.12(b)). From
the induction hypothesis, (x, y, z) is in clockwise (resp., anti-clockwise) order in
Gcir

0 . In cases v = vt∗ or w = vt∗, the Lemma is proved in the same way.

Lemma 5.13. For any k ≤ t such that vk∗ ∈ Ut, let x and y be vertices such
that pk(x) = t(ek∗) and pk(y) = h(ek∗) respectively. pt(x), vk∗ and pt(y) are
consecutive in G̃t[Ut].

Proof. Fix any k. We prove by induction on t. When t = k, it is obvious
that pt(x), vk∗ and pt(y) are consecutive. Assume the Lemma is true for a
fixed t. If vk∗ is not an endpoint of et∗, we have pt(x) = pt+1(x) and pt(y) =

pt+1(y). Thus pt+1(x), vk∗ and pt+1(y) are consecutive in G̃t+1[Ut+1] from the
induction hypothesis. When vk∗ is an endpoint of et∗ and pt(x) (resp., pt(y)) is
on CG̃t[Ut]

(t(et∗), h(et∗)), we have pt+1(x) = vt∗ (resp., pt+1(y) = vt∗). Since vk∗
and vt∗ are adjacent, pt+1(x), vk∗ and pt+1(y) are consecutive in G̃t+1[Ut+1].

Now we prove Lemma 5.8.

Lemma 5.14 (restated). For any t and x, y ∈ V cir
0 , if there exists a token tour

from x to y in G̃t, then there exists a traversable edge sequence (e1, . . . , ek) in
Gcir

0 such that t(e1) = x and h(ek) = y.

Proof. Let tx,y be a token tour (v1, `1; f1 → `2) ⇒ (v2, `2; f2 → `3) ⇒ · · · ⇒
(vm, `m) such that v1 = x and vm = y. We modify tx,y. If the edges (vi, vi+1), . . . , (vi+d−1, vi+d)

are made by MakePlanar and they have the same original edge, namely K̃t(vj , vj+1) =
(vj+1, vj+2) (i ≤ j < i + d − 1), we change the partial tour (vi, `i; fi →
`i+1) ⇒ (vi+1, `i+1; fi+1 → `i+2) ⇒ · · · ⇒ (vi+d, `i+d) to (vi, `i; fi → `i+1) ⇒
(vi+d, `i+1). Note that `i+1 is equal to `i+d. Next, we remove redundant moves.
Consider a partial tour of length 2 (vi, `i; fi → `i+1) ⇒ (vi+1, `i+1; fi+1 →
`i+2) ⇒ (vi+2, `i+2; fi+2 → `i+3). When vi = vi+2 and fi ≥ `i+2, we regard
this move as a redundant move. We have `i ≥ fi and `i+2 ≥ fi+2. If the
move is redundant, `i ≥ fi+2 holds. We change the partial tour (vi, `i; fi →
`i+1) ⇒ (vi+1, `i+1; fi+1 → `i+2) ⇒ (vi+2, `i+2; fi+2 → `i+3) ⇒ (vi+3, `i+3) to
(vi, `i; fi+2 → `i+3) ⇒ (vi+3, `i+3). Again, we let the changed token tour be
tx,y = (v1, `1; f1 → `2)⇒ (v2, `2; f2 → `3)⇒ · · · ⇒ (vm, `m).

We construct a traversable edge sequence. We put source edges of the labels
appearing in tx,y. Let this edge sequence be (e1, . . . , em−1) where ei is a source
edge of the label fi → `i+1. For each i (2 ≤ i < m), vi corresponds to vk∗ for
some 1 ≤ k < t since we removed vertices made by MakePlanar from the tour.
For every i (2 ≤ i < m), we take an edge e′i ∈ Ecir

0 such that pk(t(e′i)) = t(ek∗)
and pk(h(e′i)) = h(ek∗) where k is derived from vi = vk∗ . There exist several ways
to choose e′i. We show that if we select e′i’s appropriately, the edge sequence
(e1, e

′
2, e2, e

′
3, e3, . . . , em−2, e

′
m−1, em−1) becomes traversable.
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5. Õ(N1/3)-SPACE ALGORITHM FOR THE GRID GRAPH
REACHABILITY PROBLEM

tui tuj

tℓp tℓq

tuituj

tℓp tℓq

tui tuj

tℓp tℓq

tuituj

tℓp tℓq

tui tuj

tℓp tℓq

tui tuj

tℓptℓq tℓp tℓq

tui tuj

tℓp tℓq

tuituj

1−(ii)1−(i) 2−(i) 2−(ii)

4−(ii)4−(i) 4−(iii)3

Figure 5.13: Relations of two source edges.

It is obvious that e1 crosses e′2. We have to show that all edges except for e1
and e′2 separate two edges appearing before themselves. By induction, suppose
we fixed e′j (i + 2 ≤ j < m). We show which pair of edges ei+1 separates.
Consider the partial tour of length 2 (vi, `i; fi → `i+1) ⇒ (vi+1, `i+1; fi+1 →
`i+2) ⇒ (vi+2, `i+2), and let vi+1 = vk∗ . We suppose that this partial tour
corresponds to case 1 of Lemma 5.11, namely the edge (vi, vi+1) is in upper area
and the edge (vi+1, vi+2) is in upper area of ek∗. We let (tui , t

`
p) be fi → `i+1’s

source edge, and (t`q, t
u
j ) be fi+1 → `i+2’s source edge. From Lemma 5.11, we

have p ≥ q. Thus ei+1 = (t`q, t
u
j ) separates e′i+1 and ei = (tui , t

`
p) for any choice

of e′i+1 (see Figure 5.13 1-(i), 1-(ii). The horizontal edge corresponds to e′i+1.
In both cases (i)i ≥ j and (ii)i < j, t`p and h(e′i+1) are on the opposite side of
(t`q, t

u
j )). When the partial tour corresponds to case 2, 3, 4-(i) or 4-(ii), ei+1

separates e′i+1 and ei for any choice of e′i+1 (see Figure 5.13).
Suppose the partial tour corresponds to case 4-(iii). Assume vi = vi+2. Let

vi and vi+1 be vk∗ and vt∗ respectively. Let (t`p, t
u
i ) be fi → `i+1’s source edge

and (tuj , t
`
q) be fi+1 → `i+2’s source edge. The indices i, j, p and q are based

on the sequences Tu and T ` made in Algorithm 2 in step t. Recall i < j and
p ≥ q. We will show that fi = `k+1

in (t`p) ≥ `k+1
out (t`q) = `i+2. Suppose ek∗ and

et∗ has the same direction, namely t`p and t`q had indices p′ and q′ respectively
in step k such that p′ ≥ q′. In this case, we have `k+1

in (t`p) ≥ `k+1
out (t`q) from

Lemma 5.6. Assume ek∗ and et∗ has the opposite direction, namely tui , tuj , t`p
and t`q had indices i′, j′, p′ and q′ respectively in step k such that i′ > j′ and
p′ ≤ q′. Since i′ > j′, t`k+1

in (t`p) − p/n ≥ i′ and t`k+1
out (t`q) − q/n ≤ j′, we have

t`k+1
in (t`p) ≥ t`k+1

out (t`q). From Lemma 5.10, `k+1
in (t`p) ≥ `k+1

out (t`q). Thus, when
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Figure 5.14: case 4-(iii): pt(h(e′)) is on CG̃t[Ut]
[t(et∗), vi+2).

vi = vi+2, this is a redundant move and does not appear in tx,y.
Again, let vi and vi+1 be vk∗ and vt∗ respectively. Let e′ be an edge such that

pk(t(e′)) = t(ek∗) and pk(h(e′)) = h(ek∗). Now we consider the case vi 6= vi+2,
thus there are two cases for a location of pt(h(e′)) from Lemma 5.13.

1. pt(h(e′)) is on CG̃t[Ut]
[t(et∗), vi+2): Consider the four vertices pt(h(e′)),

vi+2, h(et∗) and pt(t(ei+1)). A possible order on Ut of the four vertices
is (pt(h(e′)), vi+2, h(et∗), p

t(t(ei+1))). From Lemma 5.12, ei+1 separates e′
and e′i+1 for any choice of e′ (see Figure 5.14).

2. pt(h(e′)) is equal to vi+2: If ei+1 separates e′ and e′i+1, we set e′ as e′i (see
Figure 5.15 (a)). However, ei+1 might not separate e′ and e′i+1. In this
case, e′ crosses ei+1. From Lemma 5.4, there exists an edge (t(e′), h(ei+1))
in Ecir

0 (see Figure 5.15 (b)). We choose (t(e′), h(ei+1)) as e′i and ei+1

separates e′i and e′i+1 in Gcir
0 .

Suppose we fixed e′j (i + 2 ≤ j < m). We show how to select e′i+1 and
which pair of edges e′i+2 separates. Consider any partial token tour of length 2
(vi, `i; fi → `i+1) ⇒ (vi+1, `i+1; fi+1 → `i+2) ⇒ (vi+2, `i+2). Assume vi = vs∗,
vi+1 = vk∗ and vi+2 = vt∗. Note that ei and ei+1 are source edges of fi → `i+1

and fi+1 → `i+2 respectively, and e′i+2 is an edge such that pt(t(e′i+2)) = t(et∗)
and pt(h(e′i+2)) = h(et∗). We let e′ be a source edge of a label of ek∗. When
t > k:

1. vs∗ is on Ut: Consider the four vertices pt(t(e′i+2)), vk∗ , pt(h(e′i+2)) and
pt(h(ei+1)). A possible order on Ut of the four vertices is (pt(t(e′i+2)), vk∗ , p

t(h(e′i+2)), pt(h(ei+1))).
From Lemma 5.12, e′i+2 separates ei+1 and ei (see Figure 5.16). We select
e′ as e′i+1.

2. vs∗ is not on Ut: From Lemma 5.13, there are three cases for a location of
pt(h(e′)).
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Figure 5.15: case 4-(iii): pt(h(e′)) is equal to vi+2.

(i) pt(h(e′)) is neither h(et∗) nor t(et∗): Consider the four vertices pt(t(e′i+2)),
pt(h(e′)), pt(h(e′i+2)) and pt(h(ei+1)). A possible order on Ut of the
four vertices is
(pt(t(e′i+2)), pt(h(e′)), pt(h(e′i+2)), pt(h(ei+1))). From Lemma 5.12,
e′i+2 separates ei+1 and e′ (see Figure 5.17). We select e′ as e′i+1.

(ii) pt(h(e′)) is equal to h(et∗): When e′i+2 separates ei+1 and e′ (see
Figure 5.18(a)), we select e′ as e′i+1. e′i+2 might not separate ei+1 and
e′ (see Figure 5.18(b)). In this case, e′ crosses e′i+2. From Lemma 5.4,
there exists an edge (t(e′), h(e′i+2)) in Ecir

0 . We choose (t(e′), h(e′i+2))
as e′i+1 and e′i+2 separates ei+1 and e′i+1 in Gcir

0 .
(iii) pt(h(e′)) is equal to t(et∗): When e′i+2 separates ei+1 and e′ (see

Figure 5.19(a)), we select e′ as e′i+1. e′i+2 might not separate ei+1 and
e′ (see Figure 5.19(b)). In step k, h(ei) and h(e′i+2) was in Tu. Let i
and j be indices of h(ei) and h(e′i+2) respectively, that is, h(ei) = tui
and h(e′i+2) = tuj . If i < j, then ei crosses e′i+2, and t(ei) can reach
h(e′i+2) (see Figure 5.19(c)). Since tui has the maximum index among
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Figure 5.16: t > k: vs∗ is on Ut.
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Figure 5.17: t > k: vs∗ is not on Ut, pt(h(e′)) is neither h(et∗) nor t(et∗).

vertices t(ei) can reach, this is a contradiction. Therefore we have
i ≥ j. Thus e′i+2 separates ei and e′ (see Figure 5.19(d)). We select
e′ as e′i+1.

When k > t:

1. (vs∗, v
k
∗ ) and (vk∗ , v

t
∗) are in the same side of ek∗: pk(t(e′i+2)), pk(h(ei+1))

and pk(h(e′i+2)) are consecutive on Uk from Lemma 5.13. The parent of
h(ei) is on the other side of ek∗. From Lemma 5.12, e′i+2 separates ei+1

and ei (see Figure 5.20). We select e′ as e′i+1.

2. (vs∗, v
k
∗ ) and (vk∗ , v

t
∗) are in the opposite side of ek∗: From Lemma 5.13,

there are three cases for a location of pk(h(e′i+2)) and pk(t(e′i+2)).

(i) Neither pk(h(e′i+2)) nor pk(t(e′i+2)) is h(ek∗): Consider the four ver-
tices pk(t(e′i+2)), pk(h(e′i+2)), pk(h(ei+1)) and pk(e′)). A possible
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Figure 5.18: t > k: vs∗ is not on Ut, pt(h(e′)) is equal to h(et∗).
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Figure 5.19: t > k: vs∗ is not on Ut, pt(h(e′)) is equal to t(et∗).

112
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Figure 5.20: k > t: (vs∗, v
k
∗ ) and (vk∗ , v

t
∗) are in the same side of ek∗.

order on Uk of the four vertices is
(pk(t(e′i+2)), pk(h(ei+1)), pk(h(e′i+2)), pk(e′)) (see Figure 5.21). From
Lemma 5.12, e′i+2 separates ei+1 and e′. We select e′ as e′i+1.

(ii) pk(h(e′i+2)) is equal to h(ek∗): When e′i+2 separates ei+1 and e′ (see
Figure 5.22(a)), we select e′ as e′i+1. e′i+2 might not separate ei+1 and
e′ (see Figure 5.22(b)). In this case, e′ crosses e′i+2. From Lemma 5.4,
there exists an edge (t(e′), h(e′i+2)) in Ecir

0 . We choose (t(e′), h(e′i+2))
as e′i+1, and e′i+2 separates ei+1 and e′i+1 in Gcir

0 .

(iii) pk(t(e′i+2)) is equal to h(ek∗): When e′i+2 separates ei+1 and e′ (see
Figure 5.23(a)), we select e′ as e′i+1. e′i+2 might not separate ei+1

and e′ (see Figure 5.23(b)). Assume the edge (vs∗, v
k
∗ ) is in the upper

area of ek∗. In step k, h(ei) and h(e′i+2) was in T `. Let p and q
be indices of h(ei) and h(e′i+2) respectively, that is, h(ei) = t`p and
h(e′i+2) = t`q. If p < q, then ei crosses e′i+2, and t(ei) can reach
h(e′i+2) (see Figure 5.23(c)). Since t`p has the maximum index among
vertices t(ei) can reach, this is a contradiction. Therefore we have
p ≥ q. Thus e′i+2 separates ei and e′ (see Figure 5.23(d)). We select
e′ as e′i+1. In the case (vs∗, v

k
∗ ) is in the lower area of ek∗, we could

show that e′i+2 separates ei and e′ in the almost same way.

When we consider which pair of edges ei+1 separates, we might choose a
specific e′i (see Figure 5.15(b)). When we consider which pair of edges e′i+1 sep-
arates, we also might choose specific e′i (see Figure 5.18(b) and 5.22(b)). If the
cases of Figure 5.15(b) and Figure 5.18(b) occur simultaneously, h(et∗) must be
vi+2, but the edge (vt∗, t(e

t
∗)) has no available label. In the case of Figure 5.22(b),

the edge ei is in the upper area of et∗. Thus, these cases never occur simultane-
ously. From the above, the constructed edge sequence is traversable.

We analyze the space and time complexity of Algorithm 1. Note that, for
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Figure 5.21: k > t: (vs∗, v
k
∗ ) and (vk∗ , v

t
∗) are in the opposite side of ek∗, neither

pk(h(e′i+2)) nor pk(t(e′i+2)) is h(ek∗).

saving computation space, we do not implement the Algorithm straightforwardly
in some points. We begin with the space complexity. We regard the circle graph
Gcir

0 = (V cir
0 , Ecir

0 ) as the input. For every v ∈ V cir
0 , we keep three attributes

`tin(v), `tout(v) and pt(v) in step t. The in- and out-levels are rational numbers
that have the form of i + j/n. Thus we keep two integers i and j for each in-
and out-level. We use Õ(n) space for preserving them. In step t, we also keep
Ut by using Õ(n) space. We need G̃t[Ut], but we do not keep Ẽt explicitly. For
u, v ∈ Ut, whether there exists an edge (u, v) in G̃t[Ut] is equivalent to whether
there exists an edge (x, y) in Ecir

0 such that pt(x) = u and pt(y) = v. Since
Ecir

0 is included in the input, we could calculate it with Õ(1) space. We keep no
other information throughout the Algorithm. The number of edges in G̃t[Ut] is
at most 2|Ut|2 = O(n2). Thus, for line 4 and 5, we can find a lowest gap-2+

chord by using Õ(1) space. For line 7 and 9, we use only Õ(1) space for updating
Ṽt and Ut. For line 8, we ignore the edges in the upper area of et∗ (these edges
belong to G̃t+1[Ut+1], thus we have no need to keep them). For the edges in
the lower area of et∗, since there exist only gap-1 chords in the area, the number
of edges in the area is O(n). We use Õ(n) space for temporarily keeping them.
In MakePlanar (line 10), we look through them, and find crossing points and
resolve them and set K̃t+1(·) by using Õ(n) space.

Now we consider Algorithm 2. The number of edges in G̃t[Ut] is at most
2|Ut|2 = O(n2). Thus, for line 2, we can find S` and Su by using Õ(1) space,
and we use Õ(n) space for keeping them. For line 3 to 6, since |T `|, |Tu| = O(n),
we also use Õ(n) for keeping T ` and Tu. In addition, we use Õ(n) space for
calculating `t+1

in (v) and `t+1
out (v) for all v ∈ T `. In Algorithm 3, we use Õ(1)

space for each operation and the length of for-loops is O(n). Thus we use Õ(1)
space in all. For line 8 to 11, we only refer to in- and out-levels that we are
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Figure 5.22: k > t: (vs∗, v
k
∗ ) and (vk∗ , v

t
∗) are in the opposite side of ek∗, pk(h(e′i+2))

is equal to h(ek∗).

keeping. For line 12 to 15, we do not keep and ignore the labels belonging to
edges in the upper area. For line 16, we use Õ(1) space. For line 17 to 24, we
check whether an edge in the lower area was divided by MakePlanar and we use
additional Õ(1) space. For line 25 to 27, we can find all vertices in the lower
area of et∗ by using Õ(n) space, and we use additional Õ(1) space for updating
pt+1(·).

We go back to Algorithm 1. For line 12, we output the information of
the vertices, edges, labels and values of the path function in the lower area
of et∗. Here we have to calculate the labels on the gap-1 chords (other infor-
mation is preserved now). Let the gap-1 chord be (vp∗ , v

q
∗). If p < q, this

edge was made in step q and the labels on the edge were calculated at line
13 of Algorithm 2. Thus, for any v ∈ V cir

0 such that pt(v) = vp∗ , we cal-
culate `out = maxt`∈V cir

0 ,pt(t`)=vq
∗{`tout(t`) | (v, t`) ∈ Ecir

0 }, and `tin(v) → `out
becomes one of the labels on the edge (if the vertex v is not in Tu, `out is not
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Figure 5.23: k > t: (vs∗, v
k
∗ ) and (vk∗ , v

t
∗) are in the opposite side of ek∗, pk(t(e′i+2))

is equal to h(ek∗).
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defined and a label for v does not exist). On the other hand, if p > q, this
edge was made in step p and the labels on the edge were calculated at line
14 of Algorithm 2. Thus, for any v ∈ V cir

0 such that pt(v) = vq∗, we calculate
`in = mint`∈V cir

0 ,pt(t`)=vp
∗{`tin(t`) | (t`, v) ∈ Ecir

0 }, and `in → `tout(v) becomes
one of the labels on the edge (if the vertex v is not in Tu, `in is not defined and
a label for v does not exist). We use additional Õ(1) space for these calculation.
For line 15, we trace line 10 to 12. In total, we use Õ(n) space.

Next consider the time complexity. In Lemma 5.5, we proved that the while-
loop at line 4 stops after at most n steps. Since the sizes of Ut, S`, Su, T ` and
Tu are all O(n), every operation in the Algorithms takes poly(n) time. Thus
this algorithm runs in polynomial time.

Lemma 5.15. Algorithm 1 runs in polynomial time with using Õ(n) space.

From Lemma 5.7, 5.8 and 5.15, we can obtain desired G̃p with Õ(n) =

Õ(N1/3) space and polynomial time.

5.3 Apply PlanarReach to a gadget graph

By applying PlanarReach to the obtained plane gadget graph G̃p with O(N2/3)
vertices, we can prove Theorem 5.2. In this section, we explain how to apply
PlanarReach to a plane gadget graph, which has labels in edges. We have to
modify PlanarReach slightly. We now describe the outline of the algorithm
PlanarReach. The notion of “separator” is central to the algorithm.

Definition 5.3. For any undirected graph G = (V,E) and for any constant
ρ, 0 < ρ < 1, a subset of vertices S is called a ρ-separator if (i) removal of S
disconnects G into two subgraphs A and B, and (ii) the number of vertices of
any component is at most ρ · |V |. The size of separator is the number of vertices
in the separator.

It is well known that every planar graph with n vertices has a (2/3)-separator
of size O(

√
n) [33, 45], and we refer an algorithm which obtains such a separator

as Separator.
Let G = (V,E), s and t be the given input; that is, G is a directed graph,

and s and t are the start and goal vertices in V . We assume that t is reachable
from s in G, and explain that the algorithm confirms it. We use G to denote an
underlying undirected graph of G. The algorithm first uses Separator to compute
a separator S of size O(

√
n) for G, and suppose G is divided into two subgraphs

G[V0] and G[V1] by S (V0 ∩V1 = ∅, V0 ∪V1 ∪S = V ). Let us fix a path p from s
to t. The path p is divided into some k subpaths p1, p2, . . . , pk by S. Note that
the end vertex ui of pi is on S and whole path pi is in either one of G[V0 ∪ S]
and G[V1 ∪ S]. Suppose p1 is in G[V0 ∪ S]. By searching in G[V0 ∪ S], we can
find u1 is reachable from s. The algorithm remembers it and searches G[V1 ∪S]
from u1 in the next step. Then we can find p2, namely u2 is reachable from u1
and s. By repeating this procedure, we can confirm ui is reachable from s for
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Figure 5.24: An example of a separator S and separated paths.

any i. More precisely, for each vertex v ∈ S, we keep a boolean value which
represents reachability from s. In each searching step, we start the search from
vertices in S whose boolean values are true. We use this reachability algorithm
recursively when searching G[Vb ∪S] (b ∈ {0, 1}). Algorithm 4 is a pseudo code
for this algorithm. In the actual algorithm, we have to control the recursion
more carefully, but this is enough for explaining where to modify the algorithm
for gadget graphs.

Algorithm 4 PlanarReach(G = (V,E), Vs, R[Vs], Vt)

Input: A planar graph G, start vertices Vs, a boolean array R[Vs] for Vs, end
vertices Vt.

Task: Return a boolean array R[Vt] for Vt. For any v ∈ Vt, R[v] is true if and
only if v is reachable from some vertex u ∈ Vs such that R[u] is true.

1: if the size of V is small enough then
2: use a standard BFS algorithm and compute R[Vt].
3: return R[Vt]
4: else
5: Run Separator and obtain a separator S (G is divided into G[V0] and

G[V1]).
6: R[S] = PlanarReach(G[V0 ∪ S ∪ Vs], Vs, R[Vs], S)
7: while unsearched paths remain do
8: R[S] = PlanarReach(G[V0 ∪ S], S,R[S], S)
9: R[S] = PlanarReach(G[V1 ∪ S], S,R[S], S)

10: end while
11: return PlanarReach(G[V1 ∪ S ∪ Vt], S,R[S], Vt)
12: end if

Now, we explain where to modify. Let G̃p = (Ṽp, Ẽp, K̃p, L̃p) be an input
plane gadget graph of PlanarReach and N be the number of vertices of an input
grid graph of Algorithm 1. Consider a gadget graph G̃′p = (Ṽ ′p , Ẽ

′
p, K̃

′
p, L̃
′
p) which
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is a subgraph of G̃p. While we execute PlanarReach, for every v ∈ S, we have
to keep a boolean value whether v is reachable from s with using O(|S|) space.
For G̃′p, instead of the boolean value, we keep the maximum level that a token
starting from s could have at v. When v is equal to t(K̃ ′p(e)) for some edge e,
we should keep a specific level that a token can have at v when the token used
the edge e last. Such a vertex is made by MakePlanar, and we should keep at
most two specific levels for a vertex. Thus we use Õ(|S|) space for preserving
them, and we can still obtain an Õ(N1/3) space algorithm.

For G̃′p, we use Algorithm 5 like Bellman-Ford algorithm instead of BFS.
Algorithm 5 takes as input G̃′p, a start vertex s, an initial level `s and an edge
restriction r ∈ Ẽp∪{⊥}. For any v ∈ Ṽ ′p , the algorithm computes the maximum
level that a token starting from s with a level `s can have at v. When v is equal
to t(K̃ ′p(e)) for some edge e, the algorithm calculates the maximum level that a
token can have at v when the token used the edge e last. In Algorithm 5, A[ve]
means that the maximum level that a token can have at v with using the edge e
last, and A[v⊥] means that the maximum level that a token can have at v with
using an edge e last such that K̃ ′p(e) = ⊥. At the end of t-th while-loop, for any
v ∈ Ṽ ′p , A[v∗] has the maximum level which we can have at v within t steps by
starting from s with level `s. At line 4, we use two mappings k and K̃−1, and
they are defined as follows:

k(e) =

{
⊥ if K̃ ′p(e) = ⊥
e otherwise

, K̃−1(e) =

{
e′ ∃e′, K̃ ′p(e′) = e

⊥ otherwise

Since the value A[·] changes no more than two times with the same label, the
while-loop will terminate in |L̃′p| steps where |L̃′p| = |⋃e∈Ẽ′p L̃

′
p(e)|. Thus the

computation time for Algorithm 5 is O(|L̃′p|2). An edge has at most O(N1/3)
labels, thus the algorithm runs in polynomial time of N .

Algorithm 5

Input: A gadget graph G̃′p = (Ṽ ′p , Ẽ
′
p, K̃

′
p, L̃
′
p), start vertex s, initial level `s,

edge restriction r ∈ Ẽp ∪ {⊥}.
1: initialize A[v⊥] = A[ve] = −1 for every v ∈ Ṽ ′p and e ∈ Ẽ′p such that h(e) = v

except for s and let A[sr] = `s
2: while A was changed in the previous loop do
3: for all e ∈ Ẽ do
4: A[h(e)k(e)]← max(A[h(e)k(e)],max{b | a→ b ∈ L̃′p(e), A[t(e)K̃−1(e)] ≥

a})
5: end for
6: end while
7: output A
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Chapter 6

Conclusion

In the third and fourth chapters, we presented an Õ(
√
n)-space and polynomial-

time algorithm computing an O(
√
n)-size separator. As mentioned in the third

chapter, the separator construction problem is log-space reducible to the prob-
lem of constructing a BFS tree. Thus, if we could construct a sub-linear space
algorithm of a BFS tree, then a more space efficient separator algorithm can
be obtained. Though DFS search (decision version) is P-complete [52], BFS
search (decision version) is solvable by a circuit in NC3, namely a circuit of
depth O(log3 n) and polynomial size [34]. Since BFS can be highly parallelized,
we might be able to devise a o(n)-space BFS algorithm.

In the fifth chapter, we presented an Õ(n1/3)-space algorithm for the grid
graph reachability problem. The most natural question is whether we can apply
our algorithm to the planar graph reachability problem. Although the directed
planar reachability is reduced to the directed reachability on grid graphs [1],
the reduction blows up the size of the graph by a large polynomial factor and
hence it is not useful. Moreover, it is known that there exist planar graphs that
require quadratic grid area for embedding [62]. However we do not have to stick
to grid graphs. We can apply our algorithm to graphs which can be divided into
small blocks efficiently. For instance we can use our algorithm for king’s graphs
[19]. More directly, for using our algorithm, it is enough to design an algorithm
that divides a planar graph into small blocks efficiently.

121



122



Bibliography

[1] Eric Allender, David A. Mix Barrington, Tanmoy Chakraborty, Samir
Datta, and Sambuddha Roy. Planar and grid graph reachability problems.
Theory of Computing Systems, 45(4):675–723, 2009.

[2] Eric Allender, T. Chakraborty, DAM Barrington, Samir Datta, and Sam-
buddha Roy. Grid graph reachability problems. In 21st Annual IEEE
Conference on Computational Complexity (CCC’06), pages 15–pp. IEEE,
2006.

[3] Eric Allender and Meena Mahajan. The complexity of planarity testing.
Information and Computation, 189(1):117, 2004.

[4] Noga Alon, Paul Seymour, and Robin Thomas. A separator theorem
for nonplanar graphs. Journal of the American Mathematical Society,
3(4):801–808, 1990.

[5] Noga Alon, Paul Seymour, and Robin Thomas. Planar separators. SIAM
Journal on Discrete Mathematics, 7(2):184–193, 1994.

[6] Roy Armoni, Amnon Ta-Shma, Avi Wigderson, and Shiyu Zhou. An
O(log4/3 n) space algorithm for (s, t) connectivity in undirected graphs.
Journal of the Association for Computing Machinery, 47(2):294–294, 2000.

[7] Sanjeev Arora, Michelangelo Grigni, David R. Karger, Philip N. Klein, and
Andrzej Woloszyn. A polynomial-time approximation scheme for weighted
planar graph tsp. In SODA, volume 98, pages 33–41, 1998.

[8] Tetsuo Asano and Benjamin Doerr. Memory-constrained algorithms for
shortest path problem. In CCCG 2011, pages 315–319. CCCG. CA, 2011.

[9] Tetsuo Asano, David Kirkpatrick, Kotaro Nakagawa, and Osamu Watan-
abe. Õ(
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